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1 Introduction

According to Robert Solow’s famous definition, Total Factor Productivity (TFP) growth

is the part of output growth that cannot be explained by growth in inputs (Solow, 1957).

It therefore measures how efficiently a firm, an industry or an entire country use their

resources. Over the last 65 years, TFP growth has been one of the most important statistics

in macroeconomics, playing a key role for the analysis of short and long-run phenomena.

In his seminal paper, Solow did not only introduce TFP growth as a concept, but also

proposed a simple method to measure it. He noted that under perfect competition, the

elasticity of output with respect to a given input must be equal to the sales share of that

input (i.e., to the ratio of input spending to sales). Therefore, TFP growth can be computed

as the difference between output growth and a sales-share-weighted average of input

growth rates. Such “Solow residuals” are still the most common measure of TFP growth.

They have allowed researchers to repeatedly confirm Solow’s main finding, namely that

TFP growth - most often attributed to technological progress - is the main driver of long-run

economic growth (Jones, 2016).

However, Solow residuals from standard datasets (e.g., the BLS multifactor productivity

database in the United States or EU KLEMS in Europe) are problematic for short-run

analysis. The main problem is due to changes in capacity utilization, that is, changes in the

intensity with which firms use their inputs. For instance, in a recession, workers typically

perform less tasks per hour of work. As this fall in labour input is not recorded in standard

datasets, their Solow residuals spuriously decrease during recessions. The state-of-the-art

approach to dealing with this issue is due to a series of influential papers by Basu, Fernald

and Kimball (Basu and Fernald, 2001; Basu, Fernald and Kimball, 2006). Basu, Fernald and

Kimball (henceforth, BFK) show that under some assumptions, fluctuations in hours per

worker are one-to-one related to fluctuations in capacity utilization, and can therefore be

used to proxy the latter. This method underlies the widely used series for capacity-adjusted

quarterly TFP growth in the United States introduced by Fernald (2014a). It effectively

decomposes the Solow residual into a first part capturing changes in utilization, and a

second part capturing “true” TFP growth.

The Solow and BFK methods have greatly enhanced our understanding of TFP dynamics

and set standards in the literature. However, they also rely on strong assumptions. Our

paper points out some limitations of these assumptions and proposes alternative ways to

address the underlying measurement issues. In particular, we revisit the measurement

of capacity utilization and the related question of factor adjustment costs, two important

business cycle issues. We also relax the zero-profit assumption of the standard methods,

1



which conflicts with the rising empirical evidence for positive profits.

Following the tradition of the growth accounting literature, our approach is founded on

a simple dynamic model in which firms minimize costs and take input prices as given. This

framework shows the potential limitations of the BFK proxy method. Indeed, both shocks to

the relative cost of hours per worker and changes in the composition of the labour force blur

the relationship between hours per worker and unobserved utilization. These limitations

are empirically relevant, especially in Europe. Therefore, we propose an alternative proxy:

capacity utilization rates from firm surveys. Utilization surveys - a common business cycle

indicator in many countries - ask firms to report the ratio between actual and full capacity

output. In our model, this measure is unaffected by composition effects and relative factor

prices, and proportional to changes in actual unobserved utilization.1

Our focus on capacity utilization leads us to also consider the closely related issue of

adjustment costs. Adjustment costs are an important conceptual explanation for fluctuations

in capacity utilization.2 They also matter for TFP growth, as they create a wedge between

the effective and the measured growth rate of capital and labour inputs. Nevertheless,

Solow and BFK assume from the outset that adjustment costs are negligible. In contrast, we

estimate the parameters of adjustment costs functions for capital and labour by using our

model’s Euler equations, following a method introduced by Hall (2004).

We also engage with the recent debate about the role of profits (Gutierrez and Philippon,

2017; Basu, 2019; Karabarbounis and Neiman, 2019; Barkai, 2020; De Loecker, Eeckhout

and Unger, 2020). The Solow and BFK methods both assume that profits are zero. In light

of the recent evidence, we do not want to impose this assumption a priori. Instead, we

show that if firms make positive (or negative) profits, factor elasticities are equal to cost

shares rather than sales shares. To convert sales to cost shares, we estimate industry-level

profits. This requires us to compute a rental rate of capital, following the seminal approach

of Hall and Jorgenson (1967). In most countries and industries, we find positive profits.

Thus, we obtain higher output elasticities for labour and materials than standard methods,

as the cost share of these inputs exceeds their sales share. At the same time, we obtain

lower output elasticities for capital. This is important for productivity measurement, as

capital behaves differently from other inputs both in the short and in the long run.

Combining the new elements discussed so far, we obtain industry-level TFP growth

by running an instrumental variable regression of a modified Solow residual (computed

1The fact that our proxy is unaffected by shocks to relative factor prices is not only an advantage over
hours per worker, but also over other proxies that have been suggested in the literature (e.g., electricity use).

2For instance, BFK write that “internal adjustment costs are required to model why industries vary utilization
in response to idiosyncratic changes in technology or demand” (Basu et al., 2006, P. 1422).
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using cost shares and including adjustment costs) on changes in the capacity utilization

survey.3 The residual from this regression is our measure of industry-level TFP growth. This

approach is similar to BFK, who regress the standard Solow residual on changes in hours

per worker. However, our dependent variable accounts for profits and adjustment costs,

and we use a different utilization proxy.

Finally, we show how to use these results to compute aggregate TFP growth, which is

probably the most relevant macroeconomic statistic. In the presence of non-zero profits, we

can no longer rely on standard aggregation results. Instead, we use the recent insights of

Baqaee and Farhi (2019) to consistently aggregate industry-level TFP growth rates.

We implement our method by estimating industry-level and aggregate TFP growth rates

for the United States (between 1989 and 2018) and the five largest European economies

(between the early 1990s and 2015). Doing so, we obtain TFP series that are substantially

different from the ones obtained by standard methods. These differences are mainly driven

by our treatment of profits and our new utilization proxy, while adjustment costs and

aggregation choices play a more modest role.

In Europe, our most striking finding is that TFP was essentially flat during the Great

Recession and Euro crisis, while the Solow and BFK methods suggest a substantial decrease.

This result is partly due to profits. Positive profits lower our estimate for the output

elasticity of capital, and capital fell less than other inputs during the crisis. Thus, our

method attributes more of the fall in output to a fall in inputs and less to TFP. This effect is

particularly strong in Southern Europe, where profits are high and the crisis was severe.

Our new utilization proxy also plays a crucial role. In many countries, BFK-style utilization

adjustment regressions have a weak first stage and an insignificant second stage, while our

survey measure delivers much stronger results. Accordingly, in all five countries, the survey

proxy delivers a TFP series that is less volatile and less cyclical than the one obtained with

the hours per worker proxy. For instance, the standard deviation of our series for aggregate

TFP growth in Eurozone countries is only half as large as the one of the BFK measure, and

its correlation with real value added growth is 0.14 (against 0.52 for the BFK measure).

In the United States, we find that aggregate TFP increased on average by 1.02% per

year between 1989 and 2018, around 0.05 percentage points more than suggested by the

BFK and Solow methods. As in Europe, profits play an important role: positive profits lower

our estimate for the output elasticity of capital, and as capital has grown faster than other

inputs over the period, we attribute less of output growth to capital and more to TFP. We

also note a particularly strong upward adjustment of TFP growth between 2005 and 2009,

3We use monetary, oil, financial and uncertainty shocks as instruments for capacity utilization.
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driven both by our treatment of profits and by our utilization proxy. Thus, while the Solow

and BFK methods suggest an abrupt slowdown around the year 2005 (Fernald, 2014b;

Gordon, 2016), we find that TFP growth was still 0.7% per year between 2005 and 2009,

before dropping to 0.3% between 2009 and 2018. This suggests that there might have been

a further drop in productivity growth after the Great Recession.

Related literature Following Solow (1957), many researchers have assembled extensive

industry-level growth accounting datasets. Leading examples for this approach are EU

KLEMS (O’Mahony and Timmer, 2009) or the BLS multifactor productivity database. These

high-quality datasets are the basis for our empirical work. However, their Solow residuals

do not consider profits, adjustment costs, or changes in utilization.4

There is a large literature on each of these aspects. The need to adjust TFP growth for

changes in capacity utilization has long been recognized.5 Costello (1993) and Burnside,

Eichenbaum and Rebelo (1995) propose electricity consumption (in the latter case, joint

with hours per worker) as a proxy for capital services, while Field (2012) relies on the

unemployment rate. Imbs (1999) develops an alternative model-based methodology.

Currently, the BFK method is the leading approach on this issue. Its application has been

largely limited to US data, with only two exceptions that we are aware of. Inklaar (2007)

uses the BFK method for European countries and finds that the resulting TFP measures

remain strongly procyclical. He concludes that hours per worker may not be an appropriate

utilization proxy in Europe, but does not propose an alternative.6 More recently, Huo,

Levchenko and Pandalai-Nayar (2020) use the BFK method to calculate utilization-adjusted

TFP series for a large panel of countries. Their baseline estimates impose that the relation

between hours per worker and utilization is the same in all countries. Our results instead

suggest heterogeneity across countries and problems with the hours per worker proxy

in Europe. In general, our main contribution to this literature is the use of capacity

utilization surveys as a new proxy. We show that this proxy does not require assumptions on

relative factor prices, is robust to changes in employment composition and labour market

4TFP measurement obviously faces many other challenges that we do not consider here. For instance, we
ignore measurement issues relating to quality improvements and new products (Boskin, Dulberger, Gordon,
Griliches and Jorgenson, 1996; Aghion, Bergeaud, Boppart, Klenow and Li, 2017). We also do not attempt to
measure intangible capital (Corrado, Haskel, Jona-Lasinio and Iommi, 2012; Crouzet and Eberly, 2021).

5Solow himself was aware of the issue, and proposed a correction dealing specifically with capital
utilization: “Lacking any reliable year-by-year measure of the utilization of capital I have simply reduced [the
capital stock] by the fraction of the labor force unemployed in each year [..]. This is undoubtedly wrong, but
probably gets closer to the truth than making no correction at all” (Solow, 1957, P. 314).

6Planas, Roeger and Rossi (2013) propose a statistical filtering method to extract trend TFP growth for
European countries (also relying on capacity utilization surveys). Their approach differs from BFK and from
ours by the fact that it uses a statistical model instead of the economic structure imposed by cost minimization.
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institutions, and is empirically relevant in all countries considered.7

Adjustment costs have also received some attention in the productivity literature (Berndt

and Fuss, 1986; Brynjolfsson, Rock and Syverson, 2018). For instance, Basu, Fernald and

Shapiro (2001) have computed a TFP series for the United States that accounts for capital

adjustment costs. While they calibrate a capital adjustment function using external evidence

and assume that there are no adjustment costs for labour, we estimate adjustment costs by

using our model’s Euler equations. Finally, several recent papers have explored the effects of

positive profits on TFP measurement (Karabarbounis and Neiman, 2019; Meier and Reinelt,

2020; Crouzet and Eberly, 2021; Piton, 2021). We examine the implications of profits for a

broad set of countries. More importantly, to the best of our knowledge, our paper is the first

to jointly account for profits, adjustment costs and utilization, and to consistently aggregate

the resulting industry-level TFP series.

The remainder of this paper is structured as follows. Section 2 lays out the dynamic cost

minimization model that disciplines our analysis. Section 3 describes our TFP estimation

method and compares it to the standard ones. Section 4 discusses the data. Section 5

presents our estimates for output elasticities, adjustment costs and utilization adjustments,

and Section 6 analyses our final estimates for TFP growth rates. Section 7 concludes.

2 A workhorse model

2.1 Production technology

Inputs We assume that the economy is composed of I industries. In each industry i and

time period t, a representative firm produces output Yi,t by using capital, two types of

labour, and materials. Precisely, output is given by

Yi,t = Zi,tFi

(
Ki,tΦi

(
Ki,t

Ki,t−1

)
; EF

i,tH
F
i,tN

F
i,tΨi

(
NF

i,t

NF
i,t−1

)
; EV

i,tH
V
i,tN

V
i,t; Mi,t

)
, (1)

where Zi,t is industry TFP and Fi is a neoclassical production function.

As shown in equation (1), the capital input is the product of the capital stock Ki,t and

an internal adjustment cost factor Φi that depends on the growth rate of the capital stock.

Next, there are two types of labour inputs: quasi-fixed labour (denoted by the superscript F

7As we discuss in Section 3.2, capacity utilization surveys are obviously not perfect (Shapiro, 1989, 1996).
However, our results suggest that they contain valuable information and behave in line with their theoretical
counterparts. This is consistent with the recent results of Boehm and Pandalai-Nayar (2020), who also find
that empirical measures of capacity utilization behave in line with theoretical priors.
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and subject to adjustment costs) and variable labour (denoted by the superscript V and

not subject to adjustment costs). For each type ℓ, Nℓ
i,t stands for the number of workers of

this type, Hℓ
i,t for the number of hours per worker, and Eℓ

i,t for the number of tasks a worker

undertakes in one hour (“worker effort”). Adjustment costs for quasi-fixed labour are

captured by the function Ψi, which depends on the growth rate of quasi-fixed employment.

Finally, material inputs are denoted by Mi,t and are not subject to adjustment costs.

Given the focus of our analysis, it may be surprising that the production technology has

no role for a utilization rate of capital. This is because we think that capital utilization is

not well modelled as a production factor per se. Instead, it is an endogenous outcome that

depends on the capital stock and on all other inputs, and does not appear in a reduced-form

production function.8 Nevertheless, Appendix A.2 shows that modelling capital utilization

as an input, as it is often done in the literature, does not affect our measurement.

Functional forms In order to implement our method, we need to assume functional forms

for the production function F and for the adjustment cost functions Φ and Ψ.9 We assume

that the production function is Cobb-Douglas with constant returns to scale:

F (•) =

(
KtΦ

(
Kt

Kt−1

))αK
(

EF
t HF

t NF
t Ψ

(
NF

t

NF
t−1

))αF
L (

EV
t HV

t NV
t

)αV
L
(

Mt

)αM

,

where αK + αF
L + αV

L + αM = 1. This is obviously a strong assumption, but it is in line with

the empirical evidence and the vast majority of the growth accounting literature.10

We assume that the adjustment cost function for capital is

Φ

(
Kt

Kt−1

)
= exp


−

aΦ

2

(
Kt

Kt−1
−

K∗
t

K∗
t−1

)2

 ,

where aΦ is a positive parameter and K∗
t

K∗
t−1

stands for the growth rate of capital on the

balanced growth path (BGP), a concept which we define below. The adjustment cost

function for quasi-fixed employment Ψ is specified analogously, with a parameter aΨ. It is

8For example, the utilization rate of a machine depends on how often workers use it, how much electricity
it consumes, and how many material inputs it receives. The utilization rate of a restaurant building depends
on how many people work in the restaurant, and how many tasks (cooking, waiting) they carry out.

9To simplify notation, we drop industry subscripts whenever this does not cause confusion.
10While Basu et al. (2006) allow for non-constant returns to scale, their results indicate constant returns,

and they impose these from the outset in later work (Basu, Fernald, Fisher and Kimball, 2013; Fernald, 2014a).
Moreover, Basu and Fernald (2001) argue that because the Cobb-Douglas production function is a first-order
approximation to any production function, deviations from this framework must be second-order issues.
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worth noting that this exponential specification is similar to the quadratic specifications often

used in the literature (e.g., David and Venkateswaran, 2019).11 However, the exponential

specification delivers an elasticity of adjustment costs to capital growth that is linear in the

parameter aΦ, which will be useful for the estimation.

Taking stock Using our functional form assumptions, we can express TFP growth as

dZt = dYt −

[
αK (dKt + dΦt) + αF

L

(
dEF

t + dHF
t + dNF

t + dΨt

)

+αV
L

(
dEV

t + dHV
t + dNV

t

)
+ αMdMt

]
,

(2)

where dXt ≡ ln Xt − ln Xt−1 stands for the growth rate of variable Xt. That is, TFP growth

can be computed as the difference between the growth rate of output and an appropriately

weighted average of input growth rates.

Equation (2) conveniently summarizes the challenges that need to be overcome in

order to measure TFP growth. While growth in output, the capital stock, hours per worker,

employment and materials are observable in standard datasets, the output elasticities α, the

parameters of the adjustment cost functions Φ and Ψ, and the changes in worker effort dE

are not. Any TFP estimation method therefore needs to address these three measurement

challenges. In line with the growth accounting tradition, we engage with these challenges

by imposing additional structure. In particular, just as Solow and BFK, we assume that

firms minimize costs and are price-takers in input markets. The next section lays out our

dynamic cost minimization model.

2.2 Dynamic cost minimization

Setup We assume that the representative firm solves the cost minimization problem

min E0

[
+∞

∑
t=0

(
t

∏
s=1

(
1

1 + rs

))(
wF

t ΓF

(
HF

t

)
NF

t + wV
t ΓV

(
HV

t

)
NV

t

+qF
t ΛF

(
EF

t

)
HF

t NF
t + qV

t ΛV

(
EV

t

)
HV

t NV
t + PM,tMt + PI,t It

)]

s.t. Yt = ZtF

(
KtΦ

(
Kt

Kt−1

)
; EF

t HF
t NF

t Ψ

(
NF

t

NF
t−1

)
; EV

t HV
t NV

t ; Mt

)
,

Kt+1 = (1 − δK)Kt + It,

NF
t+1 =

(
1 − δF

N

)
NF

t + AF
t .

(3)

11Indeed, a first-order approximation of our adjustment cost function yields Φ ≈ 1 − aΦ
2

(
Kt

Kt−1
−

K∗
t

K∗
t−1

)2
.
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Problem (3) shows that the firm minimizes the expected discounted sum of production

costs, subject to stochastic shocks to output, TFP, interest rates and input prices. The

firm owns the capital stock, which depreciates at rate δK, and discounts future costs at

the interest rate rt. Importantly, we assume that the firm has to decide upon the level of

capital and quasi-fixed employment one period in advance (by choosing investment It and

quasi-fixed hiring AF
t ). Within the period, both factors are fixed.

Total costs in period t are given by the cost of materials, PM,tMt (where PM,t stands

for the price of materials), the cost of capital investment, PI,t It (where PI,t stands for the

price of investment goods), and labour costs. For each type of labour ℓ, costs have two

components. The first, wℓ
t Γℓ

(
Hℓ

t

)
Nℓ

t , depends on employment and hours per worker. Γℓ is

an increasing and convex function, capturing the fact that workers need to be paid more

when working longer hours (e.g., because of overtime premia). wℓ
t is a stochastic cost

shifter, capturing changes in wages that are not due to changes in hours per worker. The

second component is a cost for increasing effort per hour worked, qℓt Λℓ

(
Eℓ

t

)
Hℓ

t Nℓ
t . We stay

as agnostic as possible with respect to this cost, only assuming that it is proportional to

total hours worked, increasing and convex in effort, and subject to a stochastic cost shifter

qℓt . Note that our method does not require functional form assumptions for Γℓ and Λℓ.

Optimal input choices We are now ready to derive the first-order optimality conditions

for the firm’s cost minimization problem. The first-order condition for materials is

PM,t = λtαM
Yt

Mt
, (4)

where λt is the Lagrange multiplier on the output constraint (i.e., the marginal cost of

output in period t). Equation (4) states that the firm equalizes the marginal cost of materials,

PM,t, to their marginal benefit. The marginal benefit of buying materials is that this relaxes

the output constraint by αM
Yt
Mt

units, valued at the marginal cost λt.

We get analogous expressions for hours and effort of both types of workers:

(
wℓ

t Γ′
ℓ

(
Hℓ

t

)
+ qℓt Λℓ

(
Eℓ

t

))
Nℓ

t = λtα
ℓ
L

Yt

Hℓ
t

for ℓ ∈ {F, V} , (5)

qℓt Λ′
ℓ

(
Eℓ

t

)
Hℓ

t Nℓ
t = λtα

ℓ
L

Yt

Eℓ
t

for ℓ ∈ {F, V} . (6)

Finally, variable employment holds

wV
t ΓV

(
HV

t

)
+ qV

t ΛV

(
EV

t

)
HV

t = λtα
V
L

Yt

NV
t

. (7)
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As shown in greater detail in Appendix A.1, capital and quasi-fixed employment choices

are pinned down by two Euler Equations. The Euler equation for capital is

Et−1

(
Rt

1 + rt

)
= Et−1

(
1

1 + rt

[
λt

αKYt

PI,t−1Kt
(1 + εΦ,t)−

λt+1

1 + rt+1

αKYt+1

PI,t−1Kt
εΦ,t+1

])
, (8)

where εΦ,t ≡
Φ′

t
Φt

Kt
Kt−1

is the elasticity of Φ with respect to the growth rate of the capital stock

and Rt is the rental rate of capital, pinned down by the standard Hall and Jorgenson (1967)

equation:

Rt ≡ 1 + rt − (1 − δK)
PI,t

PI,t−1
. (9)

The Euler equation shows that the firm equalizes the expected marginal cost of capital

(the discounted rental rate) and its expected marginal benefit. The marginal benefit is

composed of two terms. First, capital relaxes the output constraint in period t, which is

valued at the marginal cost λt. Second, capital affects adjustment costs in period t + 1.

When the firm expects to invest more than the BGP rate tomorrow (implying εΦ,t+1 < 0),

more capital today lowers tomorrow’s adjustment cost. However, when the firm expects to

invest less than the BGP rate tomorrow (implying εΦ,t+1 > 0), more capital today requires

a costly reversal tomorrow.

The Euler equation for quasi-fixed employment follows a similar logic, and is given by

Et−1

(
w̃F

t

1 + rt

)
= Et−1

(
1

1 + rt

[
λt

αF
LYt

NF
t

(1 + εΨ,t)−
λt+1

1 + rt+1

αF
LYt+1

NF
t

εΨ,t+1

])
, (10)

where w̃F
t ≡ wF

t ΓF

(
HF

t

)
+ qF

t ΛF

(
EF

t

)
HF

t is the quasi-fixed wage bill per worker and

εΨ,t ≡
Ψ′

t
Ψt

NF
t

NF
t−1

is the elasticity of Ψ with respect to the growth rate of quasi-fixed employment.

As with capital, the firm equalizes the expected marginal cost of hiring one more quasi-fixed

worker to its expected marginal benefit (given by the relaxation of the output constraint

and the impact on adjustment costs).

These first-order conditions characterize optimal input choices. In the next section, we

explain how they can be leveraged to measure TFP growth. We first present our method,

and then discuss how and why it deviates from the standard Solow and BFK methods.

3 Measuring TFP growth

To organize the discussion, it is useful to return for a moment to equation (2). This

equation shows that in order to compute industry-level TFP growth, we need to measure
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factor elasticities α, the parameters of the adjustment cost functions Φ and Ψ, and changes

in worker effort dE. We now discuss how our method deals with each of these challenges.

3.1 A new method to estimate industry-level TFP growth

Factor elasticities To measure factor elasticities, we use our model’s BGP solution. We

define the BGP as a situation where interest rates are constant, and output, TFP and factor

prices grow at a constant rate. Using the first-order conditions from Section 2, we can show

that

αM =
P∗

M,tM
∗
t

TC∗
t

=
P∗

M,tM
∗
t

P∗
t Y∗

t

·
1

1 − π∗
, (11)

where TC∗
t denotes the BGP level of total costs in period t, P∗

t Y∗
t is the BGP level of

sales, and π∗ ≡ 1 −
TC∗

t
P∗

t Y∗
t

is the BGP profit share.12

Equation (11) shows that the output elasticity of materials is equal to the share of

material expenditures in total costs. When profits are zero, total costs are equal to sales,

and we obtain the classical result of Solow growth accounting: the material elasticity is

equal to the sales share of materials. However, when profits are positive, the material

elasticity is higher than its sales share.

For each type of labour ℓ and for capital, we have in the same way

αℓL =
w̃ℓ∗

t Nℓ∗
t

P∗
t Y∗

t

·
1

1 − π∗
for ℓ ∈ {F, V} , (12)

αK =
R∗P∗

I,t−1K∗
t

P∗
t Y∗

t

·
1

1 − π∗
. (13)

To implement these equations and measure factor elasticities in the data, we need a

measure of BGP profit shares. To do so, we compute a time series for the rental rate of

capital, using equation (9). This allows us to compute times series for capital costs, total

costs, and profit shares. We define the BGP profit share as the average of profit shares over

time (and likewise, we define BGP sales shares as the average of sales shares over time).

Section 4 provides implementation details and describes our data sources.

Adjustment costs In order to measure the contributions of adjustment costs to input

growth (dΦ and dΨ), we estimate the adjustment cost function parameters aΦ and aΨ with

an Euler equation method introduced by Hall (2004).

12Appendix A.1 provides further details on the BGP solution. In particular, it shows that BGP total costs are
given by TC∗

t = P∗
M,t M∗

t + w̃F∗
t NF∗

t + w̃V∗
t NV∗

t + R∗P∗
I,t−1K∗

t .
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Combining the first-order condition for materials (4) and the Euler Euler equation for

capital (8), we get

αM

αK
Et−1

(
Rt

1 + rt

)
PI,t−1Kt = Et−1

(
1

1 + rt

[
PM,tMt (1 + εΦt)−

PM,t+1Mt+1

1 + rt+1
εΦt+1

])
.

(14)

This equation can be transformed into a moment condition by adding and subtracting

the realized values of the left and right hand side terms. Then, we obtain

αM

αK

Rt

1 + rt
PI,t−1Kt =

1

1 + rt

(
PM,tMt (1 + εΦt)−

PM,t+1Mt+1

1 + rt+1
εΦt+1

)
+ νK,t+1, (15)

where νK,t+1 is the expectation error.13 Finally, using our functional form assumption

for Φ and rearranging terms, this becomes

αM

αK

RtPI,t−1Kt

PM,tMt
− 1 = aΦ

[(
Kt

Kt−1
−

K∗
t

K∗
t−1

)
Kt

Kt−1

−
1

1 + rt+1

PM,t+1Mt+1

PM,tMt

(
Kt+1

Kt
−

K∗
t

K∗
t−1

)
Kt+1

Kt

]
+ ν̃K,t+1, (16)

where ν̃K,t+1 ≡ νK,t+1
1+rt

PM,t Mt
. We already estimated αM and αK, and have data on capital

growth, capital costs and material costs.14 Thus, we can estimate the parameter aΦ using

GMM. To do so, we assume that the residual in equation (16) - the interaction of the

expectation error, interest rates and material spending - is orthogonal to a series of shocks

affecting capital growth. We use lags of oil, monetary, financial and uncertainty shocks,

described in greater detail in Section 4.

Likewise, for employment, we obtain the estimation equation

αM

αF
L

w̃F
t NF

t

PM,tMt
− 1 = aΨ

[(
NF

t

NF
t−1

−
NF∗

t

NF∗
t−1

)
NF

t

NF
t−1

−
1

1 + rt+1

PM,t+1Mt+1

PM,tMt

(
NF

t+1

NF
t

−
NF∗

t

NF∗
t−1

)
NF

t+1

NF
t

]
+ ν̃N,t+1, (17)

and estimate the parameter aΨ analogously to its capital equivalent.

These equations provide a clear intuition for how the estimation identifies the param-

eters aΦ and aΨ. Consider the case of capital. In our Cobb-Douglas model, adjustment

13νK,t+1 ≡ Ξt+1 − Et−1(Ξt+1), with Ξt+1 ≡ αM
αK

Rt
1+rt

PI,t−1Kt −
1

1+rt

(
PM,t Mt (1 + εΦt)−

PM,t+1 Mt+1
1+rt+1

εΦt+1

)
.

14We assume that the BGP growth rate of capital is equal to the average growth rate observed in the data.
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costs cause time variation in relative cost shares. For instance, if there is a positive shock,

materials are adjusted more quickly than capital, and capital’s relative cost share falls.

When adjustment costs are high, this variation is strong, and the left hand side of equation

(16) takes high values. At the same time, the right hand side (which is essentially a first

difference of capital growth rates) takes low values, as adjustment costs make capital

growth very persistent. Both factors yield a high estimate for aΦ. Alternatively, with low

adjustment costs, we should observe little variation in relative cost shares and large swings

in capital growth, yielding a low value of aΦ.15

Unobservable inputs The final measurement problem we face is the fact that changes

in worker effort are not observable. To address this problem, we use capacity utilization

surveys as a proxy measure.

Capacity utilization surveys are run by the Census Bureau in the United States, and

by various national institutes (coordinated by the European Commission) in the European

Union. In the United States, participating plants are asked to compute the ratio between

their current output and full capacity output. Full capacity output is defined as “the

maximum level of production that [...] could reasonably [be] expect[ed] under normal and

realistic operating conditions fully utilizing the machinery and equipment in place”.16 The

European survey instead asks participating firms to directly provide a numerical estimate of

their capacity utilization rate.17

To map these surveys into our model, we note that by definition,

CUt =
Yt

YFC
t

, (18)

where CUt is capacity utilization in period t and YFC
t is full capacity output. Thus, to

make progress, we need to specify how our model’s representative firm would compute full

capacity output when answering the survey. To do this, we make three assumptions.

1. The firm assumes that the full capacity level of capital and quasi-fixed employment is

equal to the current level.

15In a previous version of this paper, we structurally estimated adjustment cost parameters from our cost
minimization model, targeting input volatilities (Comin, Quintana, Schmitz and Trigari, 2020). This method
yielded similar results, but was computationally intensive.

16The Census Bureau questionnaire (https://www2.census.gov/programs-surveys/qpc/
technical-documentation/questionnaires/instructions.pdf) also specifies that in order to
compute full capacity output, respondents should consider an unchanged capital stock, a “number of shifts,
hours of plant operations, and overtime pay [that] can be sustained under normal conditions and a realistic work
schedule”, and should assume that “labor, materials, utilities, etc. are fully available”.

17The European survey questionnaire can be consulted at https://ec.europa.eu/info/sites/
info/files/bcs_user_guide_2021_02_en.pdf.
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2. The firm assumes that there is some full-capacity level of hours per worker and effort

per hour, and that this level does not change over time.

3. The firm assumes that the full capacity level of the remaining variable inputs (materials

and variable labour) is scaled up proportionately to output. That is, there are positive

constants γM and γV
L such that MFC

t /Mt = (YFC
t /Yt)

γM and NV,FC
t /NV

t = (YFC
t /Yt)

γV
L .

Interpreting the survey measure through the lens of our model is obviously challenging.

In particular, while Assumptions 1 and 2 seem reasonably straightforward, Assumption 3

might appear somewhat ad hoc. However, it is worth noting that this assumption is actually

a more general version of a structural relationship that can be justified by cost minimization.

Indeed, suppose that the firm minimizes the cost of full capacity output, and assumes that

full capacity input prices are equal to current input prices. Then, our model implies that the

full capacity level of variable inputs is scaled up exactly proportionally to output (e.g., for

materials, we would have MFC
t /Mt = YFC

t /Yt). We view Assumption 3 as a generalized version

of this structural interpretation, allowing for a more flexible interpretation of the way in

which real-world firms answer the survey.

Using Assumptions 1 and 2 as well as equation (18), we can write changes in capacity

utilization as
dCUt = αV

L

(
dHV

t + dEV
t

)
+ αF

L

(
dHF

t + dEF
t

)
+

αM

(
dMt − dMFC

t

)
+ αV

L

(
dNV

t − dNV,FC
t

)
.

(19)

Equation (19) shows that capacity utilization measures changes in variable inputs.

Using Assumption 3 to substitute out materials and quasi-fixed employment growth, we get

(
1 − γV

L αV
L − γMαM

)
dCUt = αV

L dHV
t + αF

LdHF
t + αV

L dEV
t + αF

LdEF
t . (20)

Thus, capacity utilization is proportional to changes in hours per worker and worker

effort. Using this expression, we can finally rewrite our measurement equation (2) as

dYt −
[
αK (dKt + dΦt) + αF

L

(
dNF

t + dΨt

)
+ αV

L dNV
t + αMdMt

]
= βdCUt + dZt, (21)

where β ≡ 1 − γV
L αV

L − γMαM. Equation (21) is our final estimation equation. It shows

that industry-level TFP growth can be obtained as the residual from a regression of a

modified Solow residual on changes in capacity utilization. However, OLS estimation faces

an endogeneity issue, as TFP shocks could be correlated with capacity utilization. Thus, we

instrument capacity utilization with a series of shocks that are orthogonal to TFP shocks. As
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in our adjustment cost estimations, we use oil, monetary, financial and uncertainty shocks.18

Instruments and further implementation details are discussed in Section 4.

3.2 A comparison to standard methods

Before proceeding to aggregation issues, it is important to review how and why our

method to estimate industry-level TFP growth differs from the standard Solow and BFK

methods. To frame this discussion, note that our method and the standard methods share

the same measurement equation (2). However, we make different choices regarding the

three empirical issues highlighted by this equation: we have a different way to measure

factor elasticities and adjustment costs, and we use a different proxy for worker effort.19

Solow growth accounting The seminal growth accounting method of Solow (1957) is

still the basis for most standard measures of TFP growth. This method abstracts from

adjustment costs and changes in worker effort (i.e., it assumes dΦt = dΨt = dEℓ
t = 0), so

that the only remaining measurement problem are the unknown factor elasticities α. To

discipline these, Solow growth accounting also relies on the relationship between elasticities

and BGP cost shares shown in Section 3.1. However, it imposes the additional assumption

that BGP profits are zero (i.e., π∗ = 0). Thus, material and labour elasticities are equal to

sales shares:

αSolow
M =

P∗
M,tM

∗
t

P∗
t Y∗

t

and αSolow,ℓ
L =

w̃ℓ∗
t Nℓ∗

t

P∗
t Y∗

t

. (22)

Under constant returns to scale, the capital elasticity αSolow
K can then be obtained as a

residual. In the end, the Solow measure of TFP growth is therefore

dZSolow
t = dYt −


αSolow

K dKt + ∑
ℓ∈{F,V}

αSolow,ℓ
L

(
dNℓ

t + dHℓ
t

)
+ αSolow

M dMt


 . (23)

BFK Following Solow, BFK assume that firms do not make profits. They also assume that

while there are adjustment costs to capital and labour, these only imply negligible changes

in capital and labour input.20 Their fundamental innovation with respect to Solow is that

18Note that if we were to follow the structural cost minimization interpretation outlined above, we would
have γV

L = γM = 1 and could compute β without any IV estimation. In Appendix C.4, we explore this
interpretation and show that it delivers strikingly similar results to our baseline.

19Without loss of generality, we discuss the standard methods by using our model, which nests Solow
(1957) and is similar to the model of Basu et al. (2006). We discuss this in greater detail in Appendix A.2.

20Precisely, BFK assume that industries are always in the vicinity of their BGP, where marginal adjustment
costs are zero. Therefore, changes in inputs due to adjustment costs are zero up to a first-order approximation.
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they consider changes in unobserved utilisation, and argue that these can be proxied by

changes in hours per worker. To illustrate the rationale behind this choice, it is convenient

to assume functional forms for the cost functions for hours and effort (even though the

argument does not depend on this). We assume21

Γℓ

(
Hℓ

t

)
= 1 + bΓℓ

(
Hℓ

t

)cΓ

,

Λℓ

(
Eℓ

t

)
= bΛℓ

(
Eℓ

t

)cΛ

.

Combining Equations (5), (6) and these functional form assumptions, we get a relationship

between hours per worker and effort for each type of labour:

dEℓ
t =

1

cΛ

(
dwℓ

t − dqℓt

)
+

cΓ − 1

cΛ

dHℓ
t , for ℓ ∈ {F, V} . (24)

Therefore, the total unobserved effort holds

αF
LdEF

t + αV
L dEV

t = ∑
ℓ∈{V,F}

(
αℓL
cΛ

(
dwℓ

t − dqℓt

)
+ αℓL

cΓ − 1

cΛ

dHℓ
t

)
. (25)

BFK assume that all labour inputs are quasi-fixed (i.e., αV
L = 0) and that the relative

price of effort with respect to hours per worker is constant (i.e., dwt = dqt). Then, equation

(25) simplifies to

dEt =
cΓ − 1

cΛ

dHt, (26)

where Et stands for aggregate effort and Ht stands for aggregate hours per worker. That is,

there is a linear relationship between changes in effort and changes in hours. As a result,

BFK can rewrite equation (2) as

dYt −
(

αSolow
K dKt + αSolow

L (dHt + dNt) + αSolow
M dMt

)
= βHdHt + dZBFK

t , (27)

where βH ≡ αL
cΓ−1

cΛ
. The left-hand side of this equation is the Solow residual, and

the right-hand side is the hours-per-worker utilization proxy. BFK estimate the unknown

parameter βH with an instrumental variable (IV) regression, using oil price shocks, fiscal

policy shocks and monetary policy shocks as instruments for hours per worker. The residual

of this IV regression is their measure of TFP growth, dZBFK
t .

Our method follows BFK in computing industry-level TFP growth as the residual of

21The intercept in the function Γℓ implies that firms need to pay workers even if they work zero hours, and
is needed for the choice of hours per worker and employment to be well defined on the BGP.
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an IV regression of a raw TFP measure on a utilization proxy. However, there are crucial

differences between our estimation equation (21) and the BFK estimation equation (27). On

the left hand side, we weight inputs by cost rather than by sales shares, include adjustment

costs, and exclude hours per worker. On the right hand side, we use a different utilization

proxy. In the next section, we discuss our motivations for introducing these changes.

Discussion First, we use cost rather than sales shares to compute factor elasticities because

we do not want to impose that BGP profits are zero. Indeed, most of the recent empirical

evidence indicates positive long-run profits (Gutierrez and Philippon, 2017; Gutierrez, 2018;

Grullon, Larkin and Michaely, 2019; Barkai, 2020; De Loecker et al., 2020; Piton, 2021).

With positive profits, the sales shares used by the BFK and Solow methods underestimate

the output elasticities of materials and labour, and overestimate the output elasticity of

capital. As capital behaves differently from labour and materials both in the short and in

the long run, this introduces a bias. Our method aims to remove this bias by using cost

shares. Obviously, this solution brings its own challenges, such as the need to estimate

rental rates of capital.22 However, we show that our main insights are robust across various

estimates for rental rates.

Second, we use capacity utilization surveys rather than hours per worker as a utilization

proxy. Indeed, we believe that there are several issues which may blur the BFK relationship

between hours per worker and unobserved worker effort.

One such issue are shocks to the relative price of these inputs, which directly break the

one-to-one relationship between them (see equation (24)). In practice, such shocks could

arise through changes in regulation. For instance, many European countries undertook

major labour market reforms during the last decades, which may have changed the relative

cost of hours per worker (an obvious example being the 35-hour work week in France).

Another problem is due to composition effects. To illustrate this, we rewrite equation

(25) as

αF
LdEF

t + αV
L dEV

t =
cΓ − 1

cΛ

(
αLdHt − αF

Ld

(
Ht

HF
t

)
− αV

L d

(
Ht

HV
t

))
, (28)

where Ht ≡
HV

t NV
t +HF

t NF
t

NV
t +NF

t
are aggregate hours per worker, and we have assumed dwℓ

t = dqℓt
to abstract from shocks to relative prices. Equation (28) shows that in the presence of

worker heterogeneity, the BFK proxying equation contains two extra terms. When aggregate

hours per worker do not move in line with hours per worker for both categories, these terms

are non-zero. It is easy to imagine instances where this would be the case. For instance,

22For a critical discussion of this issue, see Karabarbounis and Neiman (2019) and Basu (2019).
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firms might reduce variable employment more than quasi-fixed employment during a crisis.

If variable workers work shorter hours, this implies an increase in the ratio Ht/HF
t and a

decrease in the ratio Ht/HV
t , due to a composition effect. These systematic movements could

introduce a bias in the BFK estimation.

We believe that both issues - shocks to relative prices and composition effects - are

empirically relevant. Therefore, we prefer to rely on capacity utilization surveys to proxy

changes in unobserved worker effort. As discussed in Section 3.1, these surveys are a

summary statistic for changes in variable inputs, and are not affected by labour composition

or shocks to relative prices. Obviously, the surveys are not perfect either (see Shapiro (1989,

1996) for a critical discussion).23 However, the empirical evidence indicates that they do

reflect useful information. For instance, Boehm and Pandalai-Nayar (2020) have recently

shown that “industries with low initial capacity utilization rates expand production twice as

much after demand shocks as industries that produce close to their capacity limit”, exactly as

economic theory would predict. In the end, the relative advantages and shortcomings of

the survey with respect to hours per worker are an empirical matter. Our results, discussed

in Section 5, suggest that the survey proxy delivers robust results across all countries, while

hours per worker yield weak and inconsistent results in some.

Finally, our method explicitly estimates adjustment costs. The rationale for this choice is

conceptual. In our model, adjustment costs are an important reason for which firms change

worker effort. Thus, while it is certainly possible that small adjustment costs coincide with

large changes in effort, this is not obvious a priori. If adjustment costs would turn out

to be large, they could significantly alter capital or labour input during large increases in

investment or hiring (e.g., during the recovery from a major recession or in the early years

of new industries). This, in turn, could affect measured TFP growth.

3.3 Aggregation

So far, we discussed how to estimate industry-level TFP growth. However, for many

applications, we are interested in a measure of aggregate TFP growth.

The standard procedure to aggregate industry-level TFP growth, used by BFK and in

all standard datasets, goes back to Hulten (1978). It computes aggregate TFP growth by

using Tornqvist-Domar weights, which depend on each industry’s ratio of gross output to

23Shapiro (1989) argues that with a neoclassical production function, there is no maximum level of output.
Thus, he proposes to define full capacity output as “high enough so that fixed factors are not idle, but not so
high that variable factors are making the marginal cost curve very steep” (P. 184). This definition is intuitive,
but difficult to implement. Instead, our approach outlined in Section 3.1 aims to provide a reasonable
interpretation of the survey question, using the guidance provided by the survey questionnaires.
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aggregate value added.24

Baqaee and Farhi (2019) have recently pointed out that this procedure is flawed

in the presence of markups. Their paper highlights two issues. First, they show that

standard Tornqvist-Domar weights underestimate the contribution of upstream industries

to aggregate TFP growth. Intuitively, when downstream producers apply markups, the ratio

of upstream producer sales to aggregate value added underestimates their importance for

production. Second, when markups are heterogeneous across industries and factors are

mobile, resources are not allocated efficiently. Then, changes in the resource allocation

between industries also affect aggregate TFP growth.

In the context of our method, which allows for positive BGP profits (and therefore

positive BGP markups), these insights are important. Thus, relying on Proposition 1 in

Baqaee and Farhi (2019), we compute a consistent measure of changes in aggregate

technology as

dZt =
I

∑
i=1

1

2

(
λ̃i,t−1 + λ̃i,t

)
dZi,t. (29)

where λ̃i,t−1 is the cost-based Domar weight of industry i. As shown in Appendix A.3,

the vector of weights holds λ̃t = b
′
t

(
I − Ω̃t

)−1
, where bt is a vector of industry shares

in aggregate consumption, and Ω̃t is a cost-based input-output matrix (where the line l,

column c element is the share of industry l costs spent on industry c output).

While our measure of aggregate TFP growth defined in equation (29) correctly weighs

the contribution of each industry to aggregate TFP growth, it abstracts from changes in the

resource allocation. Conceptually, this choice is equivalent to assuming that all production

factors are industry-specific. In the data, there is indeed considerable evidence for obstacles

to reallocation across industries in the short and medium run (Ramey and Shapiro, 2001;

Autor, Dorn and Hanson, 2016). Even if some resources are reallocated, these changes are

gradual and therefore unlikely to affect the cyclical properties of our aggregate TFP series.

In line with this argument, Baqaee and Farhi find that the contribution of between-industry

reallocation to aggregate TFP growth is essentially zero in the United States.25

We are now ready to study the implications of our method for industry-level and

aggregate TFP growth in the United States and in Europe. The next section discusses our

data sources, as well as some further implementation details.

24Precisely, aggregate TFP growth is given by dZt = ∑
I
i=1

1
2 (λi,t−1 + λi,t) dZi,t, where λi,t is the ratio of

industry i’s gross output in year t to aggregate value added in year t.
25In practice, computing the contribution of reallocation to productivity growth would require taking a

stand on reallocation costs, and computing a time series of markups (note that while we compute a time
series for profit shares, these do not directly translate into markups, as our production function does not have
constant returns to scale in the short run). These two tasks are beyond the scope of our paper.
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4 Data sources and implementation details

4.1 Data sources

We estimate TFP growth rates for the United States and for the five largest European

economies (Germany, Spain, France, Italy and the United Kingdom). In this section, we

briefly describe our main data sources. Appendix B contains further details.

Growth accounting data Our main data source for European countries is the July 2018

release of EU KLEMS (O’Mahony and Timmer, 2009; Jäger, 2018).26 This release provides

annual industry-level data for output, inputs, factor prices and depreciation rates between

1995 and 2015. We combine this dataset with earlier KLEMS releases to extend the time

series until the early 1990s. For the United States, we use the industry-level multifactor

productivity (MFP) data provided by the Bureau of Labor Statistics (BLS), which contains

the same type of information as EU KLEMS for the period 1988-2018.27

In all countries, we restrict our attention to the non-farm, non-mining market economy.

For our baseline results, we also exclude the financial industry (however, as shown in

Appendix C.4, our results are robust to including it). This leaves us with 18 industries for

European countries, and 44 industries for the United States.

Labour composition We define quasi-fixed labour as the input of workers with full-time

and permanent contracts, and variable labour as the input of workers with part-time or

temporary contracts. KLEMS and the BLS MFP data do not contain information on these

two worker types, and we therefore need to rely on other sources.

For European countries, we use micro-level data from the European Union Labour Force

Survey (EU LFS), which allows us to compute the share of employment and total hours

worked represented by both categories. We then apply these shares to the KLEMS data on

employment and total hours worked to obtain time series. To compute factor elasticities,

we also need to know the relative BGP wages of quasi-fixed and variable labour. For this,

we rely on the European Union’s Structure of Earnings Survey (EU SES), which provides

26EU KLEMS data can be downloaded at http://www.euklems.net/. Note that there is a more recent
version of KLEMS (see https://euklems.eu/ and Adarov and Stehrer, 2019). However, Fernald and
Inklaar (2020) point out some concerns with this update, such as inconsistencies with prior vintages and
other sources (see Footnote 9, P.110 of their paper). Therefore, we prefer to rely on the earlier edition.
Nevertheless, our findings on TFP volatility and cyclicality still hold when we use the latest update. Finally,
UK capital data is excessively volatile in EU KLEMS. After consulting with the UK Office for National Statistics
(ONS), we therefore chose to use ONS data for UK capital instead (see Appendix B for details).

27BLS data can be downloaded at https://www.bls.gov/mfp/mprdload.htm.
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data in four-year intervals between 2002 and 2014. Again, we use these relative wages

to split the KLEMS total wage bill into wages paid to both types of workers, extrapolating

relative wages for years with missing data.

In the United States, there is no strong distinction between permanent and temporary

work contracts. Therefore, we identify quasi-fixed labour with full-time and variable labour

with part-time employment. We use micro-level data from the BLS Current Population

Survey (CPS) to compute the share of full-time and part-time workers in employment and

hours and apply these shares to the BLS MFP data to obtain time series. Information on

relative wages comes from the FRED database of the Federal Reserve of St. Louis.28

Rental rates of capital We compute industry-level rental rates of capital by using the Hall

and Jorgenson (1967) formula spelled out in equation (9), which defines the rental rate

as a function of the interest rate, depreciation and investment goods prices. Depreciation

rates and investment good prices are included in our growth accounting data. Choosing the

relevant interest rate is less straightforward. For our baseline, we follow Gutierrez (2018)

and define the interest rate as the sum of the interest rate on 10-year government bonds

and the spread on Moody’s Baa US bonds with a maturity of 20 years or more. Government

bond rates are from the OECD, while Moody’s Baa yields are from FRED.

Figure A.5 in the Appendix plots the resulting rental rates. Appendix C.4 discusses

robustness checks with other interest rates, including country-specific corporate bond yields

and measures accounting for equity and taxes, as in Barkai (2020).

Capacity utilization surveys For European countries, we rely on the European Commis-

sion’s Harmonised Business and Consumer Surveys, which ask firms “At what capacity is

your company currently operating (as a percentage of full capacity)?” The survey provides

quarterly time series for 24 industries, which we aggregate up to the yearly frequency by

using simple averages, and to KLEMS industries by using value added weights.

For the United States, we use the Federal Reserve Board’s annual reports on Industrial

Production and Capacity Utilization. These are based on the Census Bureau’s Quarterly

Survey of Plant Capacity, which asks plants to report their full production capacity. Capacity

utilization is the ratio between current production and full capacity.

It is important to note that both of these surveys only cover manufacturing. However,

28The split of employment and hours is not available before 1994 (in the United States) or 1995 (in Europe).
For these years, we assume that growth in employment and hours per worker for both categories is equal to
growth in overall employment or overall hours per worker. These data limitations are not crucial. Indeed,
while we account for both types of workers for consistency, we do not use hours as a utilization proxy and
therefore only rely on these series in a limited way (see Section 4.2 and Appendix B for further details).
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the European Commission has been conducting a separate survey on capacity utilization in

service industries since 2011 (see Appendix B.3). For our baseline results, we use this service

data whenever it is available, and backcast the industry-level series by projecting them on

average capacity utilization in manufacturing for all earlier years. Table 1 summarizes the

results of our backcasting regression. It shows that in all five European countries, capacity

utilization measures in services and manufacturing are strongly correlated, providing

support for our approach. In the United States, instead, there is no data for service

industries, and we use the manufacturing average as a proxy for them throughout.

Table 1: Capacity utilization in service industries

Germany Spain France Italy UK

Manufacturing average 0.644*** 0.685*** 0.201*** 0.564*** 0.638***
(0.073) (0.065) (0.046) (0.068) (0.085)

Observations 175 240 195 211 178
R-squared 0.70 0.35 0.46 0.37 0.30

Notes: This table lists the estimated coefficients β for the regression CUi,q,t = αi + αq + βCUManuf
q,t + ǫi,q,t,

where CUi,q,t is capacity utilization in service industry i in quarter q of year t, CUManuf
q,t is average capacity

utilization in manufacturing in quarter q of year t, and αi and αq are industry and quarter fixed effects. The
estimated coefficients are used to backcast capacity utilization for all service industries. Results are unchanged
with industry-specific βs. Robust standard errors in parentheses. ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

Instruments Our estimations use four instrumental variables: oil price shocks, monetary

policy shocks, economic policy uncertainty shocks and shocks to financial conditions.

Following Basu et al. (2006), we compute oil price shocks as the log difference between

the current quarterly real oil price and the highest real oil price in the preceding four

quarters. We define the annual oil price shock as the sum of the four quarterly shocks.

Monetary policy shocks for Eurozone members come from Jarocinski and Karadi (2018),

who rely on surprise movements in Eonia interest rate swaps after ECB policy announce-

ments. In the United Kingdom, we use Cesa-Bianchi, Thwaites and Vicondoa (2020), who

identify monetary policy shocks through changes in the price of 3-month Sterling future

contracts after policy announcements by the Bank of England. Finally, for the United States,

we use narratively identified monetary policy shocks from Romer and Romer (2004), as

updated in Wieland and Yang (2020).29

29For Eurozone countries, we backcast monetary policy shocks for years before 1999 by projecting them on
the other instruments. For the United States, we apply the same procedure to prolong monetary policy shocks
beyond 2007. As shown in Appendix C.4, our results are unchanged if we drop the monetary policy shock.
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For economic policy uncertainty (EPU), we use the measure developed by Baker, Bloom

and Davis (2016). In Europe, this is a monthly index based on newspaper articles on

policy uncertainty. In the United States, EPU also considers the number of federal tax code

provisions set to expire in future years and disagreement among economic forecasters. For

all countries, we use the log change in the EPU index as our measure of uncertainty shocks.

Finally, we measure financial conditions using the excess bond premium introduced

in Gilchrist and Zakrajšek (2012). This measure is computed as the difference between

the actual spread of unsecured bonds of US firms and the predicted spread based on firm-

specific default risk and bond characteristics. Thus, it captures variation in the average

price of US corporate credit risk, above and beyond the compensation for expected defaults.

We use the change in the annual average as our measure of financial shocks.

In our utilization adjustment regressions, we use shock values in year t − 1 as instru-

ments for changes in capacity utilization in year t. Recall that in order to valid, instruments

need to be correlated with changes in capacity utilization, but uncorrelated with TFP shocks.

In our adjustment cost GMM estimations, we use two more lags (i.e., shocks in year t − 2

and t − 3), although our conclusions are unchanged when using year t − 1 shocks instead.

Input-Output tables In order to implement the Baqaee and Farhi (2019) aggregation

results, we use input-output tables for the year 2010 from Eurostat (for European countries)

and from the BEA (for the United States).

Data availability As shown in Table 2, we have 30 years of data for the United States, and

around 21 for the typical European country. The binding constraint on extending European

time series backwards is capacity utilization data, which only starts in the early 1990s.

Table 2: Data availability

USA Germany Spain France Italy UK

First year 1989 1994 1995 1994 1994 1996

Last year 2018 2015 2015 2015 2014 2014

Notes: This table lists for each country the first and the last year for which we can compute TFP growth rates.

4.2 Implementation details

Before proceeding to discuss our estimation results, two implementation details are

worth noting. First, to increase statistical power, we follow BFK and divide industries
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into three broad sectors (durable manufacturing, non-durable manufacturing, and non-

manufacturing). We assume that all industries in a sector j share the same utilization

adjustment coefficient βj and the same adjustment cost parameters a
j
Φ and a

j
Ψ.

Second, while hours per worker are stationary in our model, they have a downward

trend in the data. In line with our model, we assume that cyclical variation in hours per

worker is reflected in firms’ answers to the capacity utilization survey, while long-run trends

are not. Following BFK - who face the same issue when using hours per worker as their

utilization proxy - we detrend the logarithm of hours per worker with a Christiano and

Fitzgerald (2003) band-pass filter, isolating frequencies between 2 and 8 years, and take

the first differences in the resulting series as our measure of cyclical changes.30

Summing up, we implement Equation (21) by pooling all industries i of sector j and

estimating

dY
j
i,t − dX

j
i,t = κ

j
i + βjdCU

j
i,t + ε

j
i,t,

with dX
j
i,t ≡ α

j
Ki

(
dK

j
i,t + dΦ

j
i,t

)
+ α

Fj
Li

(
dN

Fj
i,t + dH

Fj,Trend
i,t + dΨ

j
i,t

)

+α
Vj
Li

(
dN

Vj
i,t + dH

Vj,Trend
i,t

)
+ α

j
MidM

j
i,t.

(30)

In this specification, κ
j
i is a dummy variable for industry i of sector j, and dH

ℓj,Trend
i,t

stands for the trend growth of hours per worker of category ℓ (which, as it is not reflected

in the survey, must be included in our adjusted Solow residual on the left hand side). Our

measure of TFP growth for industry i is then given by dZ
j
i,t = κ

j
i + ε

j
i,t.

For comparison purposes, we also estimate TFP growth using the BFK method for all

industries and countries in our sample. To that effect, we estimate

dY
j
i,t − dX

j,BFK
i,t = κ

j
i + β

j
HdH

j,Cycle
i,t + ε

j
i,t,

with dX
j,BFK
i,t ≡ α

j,Solow
Ki dK

j
i,t + α

j,Solow
Li

(
dN

j
i,t + dH

j
i,t

)
+ α

j,Solow
Mi dM

j
i,t,

(31)

where dH
j,Cycle
i,t stands for cyclical changes in hours per worker. In this estimation, we use

the same instruments as in our baseline.

We are now ready to discuss our results, starting with our estimates for output elastici-

ties, adjustment costs and utilization adjustment coefficients.

30In the United States, the capacity utilization survey also has a downward trend (Pierce and Wisniewski,
2018). Thus, we also detrend it, using again the band-pass filter. European surveys do not have a trend.
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5 Results: elasticities, adjustment costs and utilization

5.1 Output elasticities

Table 3 lists our estimates for average BGP profit shares in all six countries. We find the

highest profit shares in Spain, France and Italy, where profits represent 12 to 15% of value

added, and the lowest in the United Kingdom, where profits represent around 4% of value

added. These numbers are consistent with other recent studies. In particular, our findings

for the United States are in line with Barkai (2020).31

Table 3: Profit shares

USA Germany Spain France Italy UK

Percentage of gross output 3.0 3.5 4.5 5.8 6.4 2.1

Percentage of value added 6.2 7.1 11.5 13.6 15.8 4.4

Notes: For each industry i, the profit share in gross output is defined as πi,t = 100 ·
(

1 −
TCi,t

Pi,tYi,t

)
. The BGP

profit share is the simple average of profit shares over time. The table reports an average of BGP profit shares
across industries, weighted by industry value added.

The fact that most industries make positive profits contradicts the zero-profit assumption

of the standard methods. This matters for factor elasticities. As shown in Section 3.1,

positive profits imply that the cost share of labour and materials is higher than their sales

share. Thus, our cost-share method suggests a higher output elasticity for labour and

materials, and a lower output elasticity for capital, than the sales-share Solow and BFK

methods. Table 4 illustrates the quantitative importance of this observation, by listing

average industry-level output elasticities according to both types of method. In countries

with high profit shares, our method reduces the capital elasticity by up to 5-6 percentage

points, and increases labour and material elasticities by corresponding amounts.

These differences matter for TFP measurement. Indeed, in most countries, capital

has grown faster than other inputs during our sample period. Moreover, capital typically

contracted less than other inputs during recessions. Therefore, a lower output elasticity of

capital implies higher estimates for TFP growth both in the long run and during recessions.

As we will show in Section 6, this simple fact significantly alters TFP dynamics in most

countries.

31Some industries have negative BGP profit shares. While this is a priori not an issue for our method, we
winsorize BGP profit shares at −5% to deal with outliers. Our results are unchanged if we instead choose a
threshold of −10%, or if we do not allow for negative profits at all (see Appendix C.4).
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Table 4: Average output elasticities

USA Germany Spain France Italy UK

Materials

Our elasticity 0.44 0.53 0.56 0.55 0.61 0.52

Solow-BFK elasticity 0.43 0.51 0.53 0.52 0.57 0.51

Quasi-fixed labour

Our elasticity 0.36 0.30 0.26 0.31 0.27 0.33

Solow-BFK elasticity 0.36 0.29 0.25 0.29 0.25 0.32

Variable labour

Our elasticity 0.03 0.05 0.06 0.05 0.03 0.04

Solow-BFK elasticity 0.03 0.05 0.06 0.05 0.03 0.04

Capital

Our elasticity 0.16 0.12 0.12 0.08 0.09 0.12

Solow-BFK elasticity 0.19 0.15 0.16 0.14 0.15 0.13

Notes: Our industry-level output elasticities are computed using equations (11) to (13), as explained in
Section 3.1. Solow-BFK elasticities are computed using equation (22), as explained in Section 3.2. Reported
values are value-added weighted averages across industries. Elasticities may not add to 1 due to rounding.

5.2 Adjustment costs

Table 5 lists our estimates for adjustment costs. We find small positive labour adjustment

costs for most European countries, while (as in Hall, 2004) our estimates for the United

States are indistinguishable from zero. In turn, capital adjustment costs are generally

positive and higher than labour adjustment costs. This is in line with the literature, and a

direct consequence of the fact that capital is less volatile than employment in the data.32

To fix ideas on the magnitude of these costs, consider a situation in which capital and

quasi-fixed employment grow at their BGP rate in year t − 1 and 2 percentage points above

their BGP rate in year t. Then, for aΦ = 6 and aΨ = 1 (roughly the median estimates in

Table 5), our functional form assumptions imply that adjustment costs reduce the effective

32Some point estimates in Table 5 are negative (although these are never statistically different from zero).
As negative values are inconsistent with our model, we set these to zero in our TFP estimation.
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growth rate of capital input by 0.12 percentage points and the effective growth rate of

quasi-fixed labour input by 0.02 percentage points.33 This suggests that adjustment costs

have minor effects on output and estimated TFP during normal times. Intuitively, this is

because the indirect effect of adjustment costs cancels out the direct one. For instance, when

capital adjustment costs are high, capital growth is low, so that capital input is not affected

much. Therefore, even significant capital adjustment costs might only have small effects

on estimated TFP. However, this is ultimately a quantitative question, and the practical

relevance of adjustment costs depends on the size of the shocks hitting the economy. We

return to this issue in Section 6.

Table 5: Estimated adjustment cost parameters

USA Germany Spain France Italy UK

Non-durable manufacturing

Capital 13.6 1.0* 8.1** -0.3 8.7*** 4.3**
(10.5) (0.6) (3.3) (1.8) (2.7) (1.9)

Labour 0.9 1.9** 1.9* 1.4*** 0.2 0.0
(1.9) (0.8) (1.1) (0.5) (0.4) (0.7)

Observations 168 100 100 100 95 90

Durable manufacturing

Capital 10.3* 0.3 4.3 -3.3 6.3* 3.1**
(5.9) (0.7) (3.9) (2.0) (3.5) (1.6)

Labour -0.4 0.9 1.6** 1.2** -0.3 -1.1
(0.9) (0.6) (0.8) (0.5) (0.6) (0.8)

Observations 240 100 100 100 95 90

Non-manufacturing

Capital 4.9** 2.9** 2.2 0.6 4.1* 4.4*
(2.4) (1.3) (4.7) (3.2) (2.1) (2.5)

Labour -0.8 1.0* 2.0** 0.2 -0.2 0.0
(0.6) (0.6) (0.8) (0.7) (0.4) (0.4)

Observations 648 160 160 160 152 144

Notes: This table lists estimates for the parameters aΦ (capital) and aΨ (labour), estimated through GMM on
equations (16) and (17). Instruments used are one and two-period lags of oil, monetary policy, uncertainty
and financial shocks. Standard errors in parentheses. ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.1

33E.g., for capital, dΦt =
aΦ
2

((
Kt−1
Kt−2

−
K∗

t
K∗

t−1

)2
−
(

Kt
Kt−1

−
K∗

t
K∗

t−1

)2
)

, which gives the result in the main text.
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5.3 Utilization adjustment regressions

Table 6 lists the estimates for our utilization adjustment coefficients β, as specified in

Equation (30). Estimates are positive in all countries and sectors, as well as statistically

significant in 16 out of 18 cases. Moreover, the first stage of our IV regressions yields

F-statistics that are above or close to the threshold value of 10 in almost all cases.

Table 6: Utilization adjustment regression results

USA Germany Spain France Italy UK

Non-durable manufacturing

β̂ 0.277*** 0.570*** 0.086* 0.131** 0.425*** 0.080
(0.097) (0.062) (0.044) (0.067) (0.081) (0.071)

Observations 210 110 105 110 105 95
First-stage F-statistic 10.2 9.6 10.3 9.3 7.5 6.6

Durable manufacturing

β̂ 0.309*** 0.396*** 0.105*** 0.255*** 0.351*** 0.228***
(0.050) (0.042) (0.037) (0.054) (0.029) (0.038)

Observations 300 110 105 110 105 95
First-stage F-statistic 25.1 17.6 9.3 12.0 19.9 17.0

Non-manufacturing

β̂ 0.166** 0.110* 0.054 0.403*** 0.225*** 0.326***
(0.073) (0.057) (0.083) (0.118) (0.070) (0.074)

Observations 810 176 168 176 168 152
First-stage F-statistic 9.7 65.5 25.3 6.6 16.9 55.5

Notes: Utilization adjustment coefficients β are estimated using 2SLS on Equation (30). Instruments for
capacity utilization are oil, monetary policy, uncertainty and financial shocks. The table reports Kleibergen-
Paap rk Wald F statistics. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

According to our model, positive estimates imply that changes in the survey are posi-

tively correlated with changes in worker effort and hours per worker. Therefore, we need to

adjust TFP growth upwards in years in which the survey indicates falling capacity utilization,

and downwards in years in which the survey indicates rising capacity utilization.

It is worth emphasizing that this finding is not inconsistent with our prior finding of

small labour adjustment costs. First, small adjustment costs might be sufficient to generate

larger fluctuations in effort. Second, as quasi-fixed employment is chosen one period in

advance, there is effectively an infinite within-period adjustment cost (which does not
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matter for input measurement). In our model, this can trigger significant fluctuations in

effort when there are unanticipated shocks. Finally, our model suggests that even in the

absence of any labour adjustment cost, effort might move because of shocks to its relative

price.

Table 6 also shows substantial heterogeneity across countries and sectors, indicating

that a pooled approach could be misleading. For instance, utilization adjustments are largest

in the durable manufacturing sector, and smaller in Spain than in most other countries.

For comparison, Table 7 reports our estimates for the utilization adjustment coefficients

βH estimated using the BFK method, as specified in Equation (31).

Table 7: BFK utilization regression results

USA Germany Spain France Italy UK

Non-durable manufacturing

β̂H 1.094** 0.767*** -3.440 0.340 0.679*** 0.253
(0.439) (0.145) (3.683) (0.234) (0.181) (0.398)

Observations 217 115 110 115 110 100
First-stage F-statistic 7.9 35.5 0.3 13.7 9.4 0.6

Durable manufacturing

β̂H 1.401*** 0.856*** 2.226** 0.764*** 0.664*** 1.257***
(0.266) (0.074) (1.035) (0.180) (0.075) (0.400)

Observations 310 115 110 115 110 100
First-stage F-statistic 20.7 40.6 2.1 20.5 18.9 2.6

Non-manufacturing

β̂H 1.273 0.651* -1.204* 0.716* 0.487 0.370
(0.813) (0.355) (0.719) (0.402) (0.312) (0.483)

Observations 837 184 176 184 176 160
First-stage F-statistic 3.5 51.8 4.0 6.8 7.0 1.9

Notes: Utilization adjustment coefficients βH are estimated using 2SLS on Equation (31). Instruments for
hours per worker are oil, monetary policy, uncertainty and financial shocks. The table reports Kleibergen-Paap
rk Wald F statistics. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

Results for these regressions are more mixed. In the United States, Germany, France

and Italy, we find positive coefficients, but these are sometimes insignificant (e.g., in the US

and Italian non-manufacturing sectors). In Spain and in the United Kingdom, we find a

weak first stage, with F-statistics below 5 in all sectors, and mostly insignificant coefficients.

In some cases, point estimates are even negative, which implies that firms increase worker
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effort when they reduce hours per worker. This is inconsistent with the spirit of the BFK

method, which emphasizes a positive co-movement between these two margins.

What explains the differences between the results of our estimation and the BFK one?

To shed some light on this issue, Figure 1 plots for each country changes in hours per worker

(the BFK utilization proxy) against changes in the capacity utilization (our utilization proxy).
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Notes: This figure plots log changes in (band-pass filtered) hours per worker against log changes in capacity
utilization surveys. Both statistics are computed at the industry level and aggregated using value added
weights. Shaded areas mark recessions, defined in Appendix B.7.

Figure 1: Hours per worker and capacity utilization

In the countries in which the BFK regressions performed best, both series are positively
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correlated, especially during the Great Recession. However, the correlation is not perfect,

and there are sometimes significant deviations. The most striking of these occurs in France

in the mid-2000s, which have seen substantial movements in hours per worker while

capacity utilization was flat. The dynamics of hours per worker in these years might be due

to the implementation of the 35-hour work week (introduced between 2000 and 2002 but

weakened by subsequent reforms in 2003 and 2005). Thus, the BFK adjustment might give

misleading results for France in the 2000s, as changes in hours per worker could reflect

shocks to their relative cost rather than unobserved changes in worker effort.

In Spain and in the United Kingdom, the two series behave quite differently, especially

during the Great Recession. In both countries, the survey indicates a sharp drop in capacity

utilization in 2009 and a subsequent recovery. However, hours per worker fell only slightly

(in the United Kingdom) or actually increased (in Spain). The Spanish case is interesting,

because it reflects the role of composition effects. Indeed, the Spanish labour market

is characterized by a high fraction of workers with temporary, low-hours contracts. As

the employment of these workers is highly cyclical, overall hours per worker become

countercyclical through a composition effect (i.e., during a crisis, firing of workers with

low hours contracts mechanically increases overall hours per worker). These systematic

movements weaken the effectiveness of hours per worker as a utilization proxy, and could

explain the problems of the BFK regressions in Spain.

Summing up, our estimation results suggest that the relevance of hours per worker as

a utilization proxy is country-specific. In some countries (including the United States, for

which BFK proposed this proxy), hours per worker deliver generally positive and significant

utilization adjustment coefficients, and have a reasonably strong first stage. In other

countries, such as Spain or the United Kingdom, they deliver insignificant and sometimes

counter-intuitive results. In contrast, our survey-based proxy performs more evenly across

countries. Thus, it may be more robust, possibly because it is not affected by shocks to

relative factor prices or country-specific idiosyncrasies in labour market institutions.

6 TFP growth in the United States and in Europe

6.1 Aggregate TFP growth

We are now ready to analyse the implications of different estimation methods for TFP

dynamics. To begin, Figure 2 shows cumulated aggregate TFP growth rates for the United
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States and for an aggregate of the four Eurozone countries in our sample.34 Dotted black

lines refer to a standard Solow residual, red dashed lines refer to the measure obtained

with the BFK method, and solid green lines refer to our measure.
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Figure 2: Cumulated TFP growth in the United States and in the Eurozone

Figure 2 illustrates some trends that are common across all TFP measures. First, TFP

growth since the early 1990s has been substantially higher in the United States than in the

Eurozone. Second, there has been a marked slowdown in TFP growth in the second half of

the sample. Both trends have been widely noted in the literature (see van Ark, O’Mahoney

and Timmer, 2008; Bloom, Sadun and Reenen, 2012; Fernald, 2014b; Gordon, 2016).

However, there are also important differences between the three TFP measures. In the

United States, we find that TFP grew by 35.6% (0.305 log points) between 1989 and 2018,

as opposed to the 33.6% and 32.7% implied by the BFK and Solow methods. Moreover, our

series suggests that the slowdown in TFP growth was more gradual than the one implied by

the standard measures. Indeed, the Solow residual and the BFK measure both suggest a

sharp break in TFP growth around the year 2005. Our measure instead implies that TFP

growth did slow down between 2005 and 2009, but that there was a further slowdown

after the Great Recession. This suggests that the Great Recession may have played some

role for the productivity slowdown.35 We will investigate the origins of these differences

between TFP series in Section 6.3.

In the Eurozone, Figure 2 indicates that our measure of TFP growth is substantially

34Precisely, this is a value-added weighted average of TFP growth in Germany, Spain, Italy and France.
35A potential mechanism accounting for this effect could be the drop in technology adoption and R&D

investment observed during the recession (Anzoategui, Comin, Gertler and Martinez, 2019; Queralto, 2019).
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less volatile and less cyclical than the others. In particular, we find that Eurozone TFP is

essentially flat during the Great Recession and the Euro crisis, while the Solow residual and

the BFK method indicate a strong fall and a subsequent recovery. Again, we will investigate

the sources of these differences in Section 6.3.

The aggregate Eurozone series masks substantial underlying heterogeneity. Figure 3

plots TFP growth in individual Eurozone countries, as well as in the United Kingdom.
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Notes: This figure plots cumulated TFP growth, normalized to 0 in the first year of the sample for each
country. Shaded areas mark recessions, defined in Appendix B.7.

Figure 3: Cumulated TFP growth in European countries

Figure 3 illustrates the widely noted long-run decline of TFP in Italy and Spain, and the
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better performance of the United Kingdom, Germany and France (Gopinath, Kalemli-Özcan,

Karabarbounis and Villegas-Sanchez, 2017; García-Santana, Moral-Benito, Pijoan-Mas and

Ramos, 2020; Schivardi and Schmitz, 2020). While these trends are common across TFP

measures, there are also striking differences between the different TFP series for each

country. For example, in Italy, standard methods suggest that TFP fell by more than 6

percentage points between 2007 and 2011, while we find TFP to be virtually unchanged.

We find similar albeit less extreme effects in the other European countries. In all of them,

our TFP series appear to be less volatile and less cyclical than the standard ones.

Table 8 summarizes the medium and long-run properties of TFP series in a more formal

way, by listing average growth rates during the whole sample and for selected subperiods.

Table 8: Average TFP growth rates

USA EZ Germany Spain France Italy UK

Overall sample

Solow residual 0.94 0.04 0.56 -1.03 0.34 -0.25 0.97

BFK method 0.97 0.05 0.52 -0.98 0.34 -0.24 1.03

Our method 1.02 0.08 0.39 -0.99 0.39 -0.17 0.99

Subperiods, our method

1989-2005 1.46 . . . . . .

2005-2009 0.73 . . . . . .

2009-2018 0.31 . . . . . .

1995-2007 . 0.20 0.53 -1.58 0.87 -0.21 1.62

2008-2015 . -0.13 0.15 -0.02 -0.44 -0.09 -0.09

Notes: EZ stands for Eurozone, a value-added weighted average of TFP growth in Germany, Spain, France
and Italy. TFP growth rates are expressed as log changes multiplied by 100.

The first panel of table 8 shows that our method implies higher average TFP growth

rates than the Solow or BFK methods for most countries, especially in the United States,

France and Italy. The second panel lists TFP growth rates over subperiods, confirming the

insights conveyed by Figure 2. In the United States, we find a gradual TFP slowdown:

annual TFP growth decreased from 1.5% per year between 1989 and 2005 to 0.7% between

2005 and 2009, and 0.3% between 2009 and 2018. In contrast, the BFK measure declines
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more sharply from 1.4% per year in 1989-2005 to -0.1% in 2005-2009, and then increases

to 0.6% in 2009-2018. For the Eurozone, in turn, there appears to be a TFP slowdown

starting with the onset of the Great Recession: aggregate TFP growth declines from 0.2%

per year before 2007 to -0.1% per year after 2007. There are, however, notable exceptions

for Spain and Italy, where the Great Recession ends or at least dampens a long TFP decline.

Tables A.7 to A.12 in the Appendix provide further detail, by listing aggregate TFP growth

rates for every single year and country.

Finally, Table 9 summarizes the cyclical implications of our results. The first panel lists

the standard deviations of different TFP series (expressed as a fraction of the standard

deviation of real value added growth in the respective country). In the United States,

standard deviations are roughly similar across TFP series. However, for all five European

countries, our TFP series is less volatile than the Solow residual or the series obtained

with the BFK method. Differences are often substantial: for the Eurozone as a whole, the

standard deviation of our TFP measure is less than one third as large as that of the Solow

residual, and less than half as large as that of the BFK series.

Table 9: Cyclical behaviour of different TFP measures

USA EZ Germany Spain France Italy UK

Relative standard deviation

Solow residual 0.72 0.70 0.82 0.45 0.72 0.72 0.79

BFK method 0.57 0.44 0.51 0.56 0.83 0.56 0.75

Our method 0.63 0.21 0.38 0.41 0.45 0.35 0.63

Correlation with real VA growth

Solow residual 0.57 0.90 0.94 0.15 0.86 0.83 0.88

BFK method 0.24 0.52 0.37 0.04 0.54 0.54 0.83

Our method 0.16 0.14 0.20 -0.26 0.41 0.08 0.39

Correlation between TFP series

BFK TFP, Our TFP 0.56 0.42 0.57 0.71 0.43 0.45 0.34

Notes: TFP growth rates are expressed as log changes multiplied by 100. Standard deviations are normalized
by the standard deviations of growth in real value added.
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The second panel of Table 9 shows that the Solow residual is strongly procyclical in all

countries (with the exception of Spain). Our TFP measure is in turn roughly acyclical: the

correlation coefficient of TFP and real value added growth is 0.16 in the United States, 0.14

in the Eurozone, and 0.39 in the United Kingdom. The BFK series is also less correlated

with the cycle than the Solow residual, and moderately correlated with our series. However,

in every single country, the BFK series has a higher correlation with real value added growth

than our series (with the most striking differences being observed in Germany, Spain, Italy

and the United Kingdom).

The fact that our series are less volatile and less cyclical is consistent with the idea that

the BFK hours per worker proxy does not fully control for unobserved cyclical changes in

worker effort, especially in Europe. Our survey proxy appears to be more successful at

accounting for these. We will return to this issue in Section 6.3.

6.2 Industry-level TFP growth rates

In the previous section, we focused on aggregate TFP growth, which is probably the

most important outcome of our analysis. However, aggregate figures are built upon a large

number of disaggregate industry-level TFP growth series. Appendix C provides an overview

of these, by plotting TFP growth rates for nearly all industries in our sample.

Table 10: Cyclical behaviour of different TFP measures at the industry level

USA Germany Spain France Italy UK

Relative standard deviation

Solow residual 0.70 0.54 0.31 0.43 0.35 0.38

BFK method 0.78 0.51 0.38 0.50 0.37 0.41

Our method 0.71 0.49 0.30 0.41 0.32 0.36

Correlation with real GO growth

Solow residual 0.32 0.63 0.26 0.54 0.67 0.72

BFK method 0.17 0.38 0.13 0.39 0.47 0.65

Our method 0.12 0.32 0.11 0.26 0.31 0.55

Notes: Standard deviations of industry TFP growth are normalized by the standard deviations of industry
real gross output growth. Reported values are value-added weighted averages across industries.
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Here, we limit ourselves to noting that the main findings discussed above also hold

at the industry level. To show this, we compute the standard deviations of industry-level

TFP measures, as well as their correlation with industry-level output growth. We report

a value-added weighted average of these statistics in Table 10. This shows that for the

average industry, our TFP series are somewhat less volatile and substantially less cyclical

than the ones obtained with standard methods.

Our discussion thus far shows that our TFP series differ from those obtained with

standard methods. In the next section, we investigate the reasons behind these differences.

To do so, we separately consider each of the new aspects introduced in our paper.

6.3 Decomposing differences between TFP estimates

Profits Figure 4 illustrates the impact of profits on estimated TFP growth. It compares

our baseline measure of aggregate TFP growth with an alternative measure obtained

when setting profits to zero (i.e., setting output elasticities to their Solow-BFK values), but

keeping adjustment costs and utilization adjustment coefficients at their baseline values.

We aggregate industry-level series with our baseline cost-based Tornqvist-Domar weights.36

In most countries, profits make a key difference. As discussed earlier, positive profits

reduce the output elasticity of capital and increase the output elasticities of other inputs.

However, capital generally grew faster than other inputs during our sample period. For

instance, in the United States, capital grew on average by 3.0% per year across all industries

between 1989 and 2018, while labour input grew by 0.7% and material input by 2.1%.

Thus, reducing the output elasticity of capital attributes less of output growth to capital

and more to TFP. In total, our baseline estimate for cumulative US TFP growth during

1989-2018 is 4.4 percentage points higher than the zero-profit estimate. This accounts for

the entire difference in long-run growth between our series and the standard ones.

There is also a cyclical dimension to this issue, as capital fell less than other inputs

around the Great Recession. Thus, for the period 2005-2009, our estimate for yearly US

TFP growth is substantially higher than the zero-profit estimate (0.73% vs. 0.48%). This

upward revision partly explains why our method yields a more gradual TFP slowdown.37

Profits have a similar impact on TFP measurement in Europe. In Germany, profits shift

up measured TFP throughout. However, the most striking results can be observed in Italy

and Spain. In both countries, our estimates for profit shares are high (see table 3), and

36In principle, this is inconsistent, and we should use sales-based weights for the zero-profit series. However,
our approach helps to distinguish the direct effect of profits from their indirect effect through aggregation.

37Karabarbounis and Neiman (2019) and Crouzet and Eberly (2021) have already noted that accounting
for profits increases US TFP growth. However, they do not comment upon this cyclical implication.
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capital fell substantially less than labour or material inputs during the Great Recession and

Eurozone crisis. Accordingly, profits imply a substantial upward revision of TFP growth

after 2007, amounting to 3-5 percentage points. In France, we see a similar effect, although

smaller in magnitude. Thus, our treatment of profits is one key reason for us finding a

stabilization rather than a large decrease in European TFP after 2007.
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure that assumes
zero profits. The zero-profit series keeps adjustment costs and utilization adjustment coefficients at their
baseline values, and aggregates industry-level series with the same cost-based Tornqvist-Domar weights as in
the baseline. Shaded areas mark recessions, defined in Appendix B.7.

Figure 4: The impact of profits on estimated TFP growth
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Adjustment costs Figure 5 illustrates the impact of our assumptions on adjustment costs.

They compare our baseline measure of TFP growth to an alternative measure obtained

when setting adjustment costs to zero (i.e., assuming dΦt = dΨt = 0), but keeping output

elasticities and utilization adjustment coefficients at their baseline levels, and aggregating

industry-level series with the baseline cost-based Tornqvist-Domar weights.

0
.0

5
.1

.1
5

.2
.2

5
.3

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
Year

No adjustment costs

Baseline series

United States

−
.0

4
−

.0
2

0
.0

2
.0

4
.0

6
.0

8
.1

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
Year

No adjustment costs

Baseline series

Germany

−
.2

5
−

.2
−

.1
5

−
.1

−
.0

5
0

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

No adjustment costs

Baseline series

Spain

0
.0

2
.0

4
.0

6
.0

8
.1

.1
2

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
Year

No adjustment costs

Baseline series

France

−
.0

4
−

.0
3

−
.0

2
−

.0
1

0
.0

1
.0

2

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013
Year

No adjustment costs

Baseline series

Italy

0
.0

5
.1

.1
5

.2

C
u

m
u

la
te

d
 G

ro
w

th
 (

lo
g

 c
h

a
n

g
e

s
)

1995 1998 2001 2004 2007 2010 2013
Year

No adjustment costs

Baseline series

United Kingdom

Notes: This figure plots our baseline measure of TFP growth against an alternative measure without
adjustment costs. The “no adjustment costs” series keeps profit shares and utilization adjustment coefficients
at their baseline values, and aggregates industry-level series with the same cost-based Tornqvist-Domar
weights as in the baseline. Shaded areas mark recessions, defined in Appendix B.7.

Figure 5: The impact of adjustment costs on estimated TFP growth
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The aggregate impact of adjustment costs is limited, and mostly due to capital ad-

justment costs. These show up during episodes with exceptionally high investment or

disinvestment (such as the late 1990s in the United States or the Great Recession in Spain),

where they trigger a small upward revision in TFP growth. Overall, however, the quan-

titative importance of adjustment costs is limited. As discussed earlier, this is due to the

interaction of their direct and indirect effects: if firms do not adjust capital much because of

adjustment costs, then adjustment costs have only a small impact on effective capital input.

Utilization proxy Figure 6 compares our baseline measure of TFP growth to an alternative

measure obtained by using hours per worker as a utilization proxy (i.e., keeping output

elasticities and adjustment costs at their baseline levels, but estimating Equation (30) by

using dH
j,Cycle
i,t rather than dCU

j
i,t as the right-hand side variable).38 We still aggregate

industry-level series with the baseline Tornqvist-Domar weights.

Figure 6 shows that in the United States, both series track each other relatively closely.

There are some differences, however. First, the hours proxy yields a dip in TFP growth in

1993-1994, where hours per worker increase much more than the survey (see Figure 1).

Second, the hours proxy yields a lower utilization adjustment around the Great Recession:

our baseline series increases by 0.73% per year during 2005-2009, while the series using

the hours proxy increases only by 0.22% per year. Jointly with our assumption on profits,

this explains why we find a more gradual slowdown of TFP growth after 2005.

In Europe, there are generally stronger differences between the series obtained with

both proxies. Some of the most striking differences occur after 2007, during the Great

Recession and the Euro Crisis: here, the survey proxy delivers stagnating TFP series, while

the hours proxy implies a decline in TFP. For Italy and Germany, there are also differences in

the mid-1990s, where both countries saw increases in capacity utilization, but no or much

lower increases in hours per worker (see Figure 1). In France, the large movements in hours

per worker in the aftermath of the introduction of the 35-hour workweek are clearly visible

in the series obtained with the hours proxy, while the baseline series is much more smooth.

Finally, in Spain, both proxies deliver a similar utilization adjustment. Note, however, that

the Spanish hours-per-worker adjustment is the result of countercyclical hours per worker

and a negative utilization adjustment coefficient. Both of these are inconsistent with the

spirit of the BFK proxy method, but they appear to cancel each other out in this case.

38Moreover, to compute the alternative measure, our left-hand side variable includes changes in hours per
worker (which were excluded before, as they are already reflected in the capacity utilization survey). That is,
we now define dX

j
i,t ≡ α

j
Ki

(
dK

j
i,t + dΦ

j
i,t

)
+ α

Fj
Li

(
dN

Fj
i,t + dH

Fj
i,t + dΨ

j
i,t

)
+ α

Vj
Li

(
dN

Vj
i,t + dH

Vj
i,t

)
+ α

j
MidM

j
i,t.
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure which uses
changes in hours per worker as the utilization proxy in Equation (30). Profit shares and adjustment costs are
kept at their baseline values, and industry-level series are aggregated with the same cost-based Tornqvist-
Domar weights as in the baseline. Shaded areas mark recessions, defined in Appendix B.7.

Figure 6: The impact of different utilization proxies on estimated TFP growth

Table 11 confirms the insights from Figure 6, by listing the standard deviations of both

series (expressed as a fraction of the standard deviation of real value added growth), their

correlation with value added growth, and their correlation among each other. In the United

States, the correlation coefficient is relatively high, at 0.62. In Europe, however, there are

sometimes large differences. For the Eurozone as a whole, our baseline series is only half
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as volatile as the alternative series using hours per worker, and its correlation with the

business cycle is only 0.14, against 0.48 for the hours-per-worker alternative.

Summing up, Table 11 shows that the differences between the two utilization proxies

in Europe are systematic and general: in every country, the baseline series is less volatile

and less cyclical than the one obtained by using hours per worker as a utilization proxy.

Together with the evidence on the limitations of hours per worker discussed in Sections

3.2 and 5.3, this suggests that the capacity utilization survey is better suited to pick up

unobserved changes in worker effort in these countries.

Table 11: Cyclical properties of TFP series with different utilization proxies

USA EZ Germany Spain France Italy UK

Relative standard deviation

Baseline 0.63 0.21 0.38 0.41 0.45 0.35 0.63

Hours per worker proxy 0.58 0.43 0.49 0.45 0.84 0.56 0.77

Correlation with real VA growth

Baseline 0.16 0.14 0.20 -0.26 0.41 0.08 0.39

Hours per worker proxy 0.17 0.48 0.34 -0.08 0.51 0.50 0.81

Correlation between TFP series

Baseline, Hours proxy 0.62 0.41 0.58 0.89 0.45 0.47 0.62

Notes: TFP growth rates are expressed as log changes multiplied by 100.

Aggregation Finally, we investigate the role of aggregation. Figure 7 plots our baseline

estimates of aggregate TFP growth against an alternative series that uses the baseline

industry-level estimates of TFP growth, but aggregates them with standard sales-based

Tornqvist-Domar weights rather than with our cost-based ones.

Figure 7 shows that for countries with high profit shares (such as Spain, France or Italy),

consistent aggregation makes some difference. In these countries, the cost-based Domar

weights of Baqaee and Farhi (2019) imply that TFP growth in upstream industries matters

more for aggregate TFP growth. In France, where TFP growth in upstream industries is

positive, this leads to an upward revision of overall TFP growth. In Spain and Italy, where

TFP growth in upstream industries is negative, it leads to a downward revision. For other

countries, such as the United States or Germany, there are only small differences.

Summing up, while consistent aggregation is conceptually important, it has modest
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effects on aggregate TFP growth, and does not change the cyclical properties of our series. In

general, the most important elements of our method, accounting for the bulk of differences

with the standard series, are profits (through their direct effect on output elasticities) and

our survey utilization proxy.
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Notes: This figure plots our baseline measure of TFP growth against an alternative measure that uses sales-
based Tornqvist-Domar weights to aggregate industry-level TFP growth rates. Shaded areas mark recessions,
defined in Appendix B.7.

Figure 7: The impact of different aggregation methods on estimated TFP growth
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6.4 Robustness checks

We consider various robustness checks around our results. For instance, we include

the financial industry, consider different interest rates for the computation of the rental

rate of capital, explore different mappings between the capacity utilization survey in our

model and in the data, and use different sets of instruments. For brevity, we relegate a

detailed discussion of these robustness checks to Appendix C.4. Here, we only note that

our main findings are robust. As Tables A.13 to A.18 show, the correlation between the

alternative estimates for aggregate TFP growth and our baseline estimates is generally very

high. Moreover, we consistently find that our estimates are less volatile and less cyclical

than the ones obtained with standard methods.

7 Conclusions

This paper proposes a new estimation method for industry-level and aggregate TFP

growth. Our method accounts for non-zero profits and adjustment costs, and uses a new

survey-based proxy for unobserved changes in factor utilization. Applying our method to

European data, we find that our TFP growth series are substantially less volatile and less

cyclical than the ones obtained with standard methods. For the United States, in turn, we

find higher overall TFP growth between 1989 and 2018 and a more gradual TFP slowdown.

The differences between our results and the standard methods are mainly driven by our

treatment of profits and our utilization proxy.

Our results paint a new picture of recent productivity developments in some of the

largest high-income economies. Moreover, as our method is easy to implement, it can be

readily extended to other time periods (e.g., the crisis triggered by the ongoing Covid-19

pandemic) and to other countries. This could yield further insights into the dynamics of

TFP growth around the world.
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A Model Appendix

A.1 Further details on the model solution

Euler Equations The problem described in (3) has four endogenous states (Kt−1, Kt,
NF

t−1 and NF
t ), and nine exogenous states (Zt, Yt, rt, wF

t , wV
t , qF

t , qV
t , PM,t and PI,t). The value

function V holds the Bellman Equation:

Vt = min
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)
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Kt+1 = (1 − δK)Kt + It,
NF

t+1 =
(
1 − δF

N

)
NF

t + AF
t

(A.1)

where Vt ≡ V(Kt−1, Kt, NF
t−1, NF

t , Zt, Yt, rt, wF
t , wV

t , qF
t , qV

t , PM,t, PI,t). The first-order condi-
tion for Kt+1 is

PI,t + Et

(
1

1 + rt+1

∂Vt+1

∂Kt+1

)
= 0. (A.2)

For NF
t+1, we get instead

Et

(
1

1 + rt+1

∂Vt+1

∂NF
t+1

)
= 0. (A.3)

The envelope conditions for the problem are

∂Vt

∂Kt
= − (1 − δK) PI,t − λt

αKYt

Kt
(1 + εΦ,t) + Et

(
1

1 + rt+1

∂Vt+1

∂Kt

)
, (A.4)

∂Vt

∂Kt−1
= λt

αKYt

Kt−1
εΦ,t, (A.5)

∂Vt

∂NF
t

= w̃F
t − λt

αF
LYt

NF
t

(1 + εΨ,t) + Et

(
1

1 + rt+1

∂Vt+1

∂NF
t

)
, (A.6)

∂Vt

∂NF
t−1

= λt
αF

LYt

NF
t−1

εΨ,t. (A.7)

Using these expressions to substitute out the derivatives of the value function in the
first-order conditions, we obtain the Euler equations in the main text.

Balanced Growth Path solution As stated in the main text, the BGP is defined as a
situation in which output, TFP and factor prices grow at a constant rate, and the relative
price of hours per worker with respect to worker effort is constant. Note that a BGP does
not require output, TFP and factor prices to grow at the same rate. As we show in this
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section, the firm chooses capital, employment and materials to grow at a constant rate on
the BGP, and hours per worker and effort per hour to be constant.

On the BGP, the first-order condition for materials becomes

P∗
M,t = αMλ∗

t
Y∗

t

M∗
t

. (A.8)

The first-order condition for hours, effort and employment of any type ℓ ∈ {F, V} are

wℓ∗
t Γ′

ℓ

(
Hℓ∗

)
Nℓ∗

t + qℓ∗t Λℓ

(
Eℓ∗
)

Nℓ∗
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t
Y∗

t

Hℓ∗
; (A.9)
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t αℓL
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t
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; (A.10)
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(
Eℓ∗
)

Hℓ∗ = αℓLλ∗
t

Y∗
t

Nℓ∗
t

. (A.11)

Note that adjustment costs do not appear here, as BGP adjustment costs are equal to 0.
Combining these equations shows that the BGP levels of effort per hour and hours per

worker hold

Γ′
ℓ

(
Hℓ∗

)
Hℓ∗

Γℓ

(
Hℓ∗

) = 1, (A.12)
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(
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) , (A.13)

The first condition is intuitive. As there are no adjustment costs on the BGP, employment
and hours enter the production function symmetrically. The elasticity of the wage bill with
respect to employment is 1 by definition, so the firm chooses hours such that the elasticity
of the wage bill with respect to hours is 1 as well. Under some regularity conditions for the
cost functions Γ and Λ, and the assumption that wages and effort costs grow at the same
rate, these equations pin down a unique solution for BGP effort and hours.

For instance, for the functional forms used in Section 3.2, we get

Hℓ∗ =

(
1

bΓℓ
(cΓ − 1)

) 1
cΓ

.
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) 1
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.

Finally, the Euler equation for capital is

R∗ = αKλ∗
t

Y∗
t

P∗
I,t−1K∗

t

. (A.14)
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On the BGP, total costs of production for factors used in period t are

TC∗
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t NF∗
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t NV∗
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∗
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(A.15)

Note that cost for capital at time t appear twice in the firm’s intertemporal cost, once
at time t − 1, where the capital is bought (at a price PI,t−1) and once at t, where the
non-depreciated part of the capital is sold and has retained some value.

Replacing Equations (A.8), (A.11) and (A.14) into this expression, and using the
definition of the rental rate, it comes immediately that total cost is

TC∗
t = λ∗

t Y∗
t (A.16)

Thus, on the balanced growth path, average cost is equal to marginal cost. Using this result
together with the BGP first order conditions for materials, employment and labour, we
immediately get equations (11) to (13) in the main text.

A.2 A comparison between our model and standard frameworks

As we have stated in the main text, our model nests the standard growth accounting
framework of Solow (1957) and is closely related to the dynamic cost minimization model
of Basu et al. (2006). In this section, we discuss the differences between these models and
ours in greater detail.

Solow The standard growth accounting framework developed by Solow (1957) is a
simplified version of our framework that assumes that there are no adjustment costs
(Φ = Ψ = 1) and no changes in worker effort (EF

t = EV
t = 1). In that case, cost-minimizing

firms do not face a dynamic problem. The first-order conditions of their cost minimization
problem imply

αM =
PM,tMt

PtYt
and αℓL =

w̃ℓ
t Nℓ

t

PtYt
. (A.17)

In the main text, we stated the balanced growth path version of these equations in
equation (22). These are exactly equivalent to the above (A.17) in the model: under
Solow’s assumption of perfect competition, factor shares must be unchanged over time (as
long as the production function does not change).

In the data, of course, factor shares do change somewhat over time. Data providers who
compute Solow residuals generally interpret this as time variation in output elasticities.39

However, as these changes in factor shares are not very large, this choice does not make an
important difference for the final series.

BFK Basu and Fernald (2001) and Basu et al. (2006) use a dynamic cost minimization

39Conceptually, the fact that output elasticities vary over time is justified by assuming a translog production
function rather than the Cobb-Douglas production function of Solow (see e.g. O’Mahony and Timmer, 2009).
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model which is similar, but not exactly identical, to the one presented in Section 2.
The most important difference between our model and the BFK model is that the latter

allows for non-constant returns to scale. Thus, Basu et al. (2006) actually estimate two
parameters for every industry: a returns to scale parameter and a utilization adjustment
parameter. However, their results indicate that most industries are close to constant
returns to scale. Therefore, they impose this restriction from the outset in later work. For
instance, the famous quarterly series for utilization-adjusted TFP growth in the United
States introduced in Fernald (2014b) assumes constant returns to scale from the outset.

Besides the assumption on returns to scale, all other differences between our model
and the BFK model are not fundamental. That is, when imposing constant returns to
scale, our model delivers the exact same measurement equation as in BFK (as we have
shown in Section 3.2). For the sake of completeness, we nevertheless shortly discuss the
non-fundamental differences between the two models in the remainder of this section.

First, while we explicitly assume that production is Cobb-Douglas, BFK impose this re-
striction implicitly: they consider a log-linearization of a generic production function around
the BGP, making their effective production function log-linear with constant elasticities (i.e.,
Cobb-Douglas).

Second, we specify adjustment costs to be internal, so that they reduce the effective
capital and labour input of the firm. BFK instead consider external adjustment costs (i.e.,
firms need to pay a monetary cost to some external supplier for increasing capital or
employment). As BFK assume that adjustment costs are negligible, this choice is obviously
irrelevant for their results. In Basu et al. (2001), where the authors explicitly consider
non-negligible capital adjustment costs, they also model them as internal.

Third, BFK consider the utilization rate of capital as an independent production factor
that has a wage cost (i.e., firms need to pay higher wages when they use capital more
intensely, even if they do not change employment, hours worked or effort). As noted in
the main text, our model instead considers the utilization rate of capital as an outcome
that depends on the relative use of labour and materials with respect to the capital stock.
Intuitively, this captures the idea that machines and buildings do not produce by them-
selves. As we consider capital utilization to be a function of all other inputs, it does not
appear in our reduced-form production function F. These theoretical considerations are,
however, irrelevant for measurement: the BFK measurement equation with one unobserved
production factor derived in Section 3.2 is exactly the same as the measurement equation
with two unobserved production factors in Basu et al. (2006).

A.3 Aggregation

Our aggregation equation (29) follows Proposition 1 in Baqaee and Farhi (2019). As
shown in their paper, with I industries and F production factors, the cost-based Domar
weights λ̃t are given by

[λ̃t, Λ̃t] = b
′
t

(
I − Ω̃t

)−1
. (A.18)

Here, bt is an (I + F)× 1 vector. Its I first entries contain the share of each industry in
total consumption (i.e., element i is pitcit/∑

I
j=1 pjtcjt). The last F entries are equal to 0.
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Ω̃t, in turn, is a cost-based input-output matrix. That is, it is an (I + F)× (I + F) matrix
in which the element in line l and column c is equal to the share of costs of industry l spend
on output (or factor) c. The last F rows of the matrix are equal to 0. That is, factors are
treated like industries which do not use any inputs.

Performing the matrix operation described in equation (A.18) yields a (I + F) × 1

vector, whose first I elements are the cost-based industry Domar weights λ̃t. The last F
elements, denoted Λ̃t, are the cost-based factor Domar weights, which we do not need for
our aggregation.

When implementing this formula, we assume that Ω̃t does not change over time. This is
due to data limitations, as we do not have input-output tables for every year of our sample.
Thus, for each industry, we set the cost shares of the different factors to their BGP levels.
We then split up total spending on materials (i.e., intermediate inputs) into spending on
inputs from different industries by using the input shares from country-specific input-output
tables for the year 2010.

To compute consumption shares, in turn, we compute consumption for each industry as
the difference between the industry’s gross output and the use of that output as an input
for other industries. To compute the latter, we compute the level of intermediate output
spending of each industry i on goods from another industry j in year t by multiplying the
total spending on intermediates of industry i in year t (from the BLS or EU KLEMS) with
the share of intermediate spending of industry i which goes to goods from industry j (from
the IO tables).40

Note that our computations for the aggregation implicitly assume that there are no
imports of intermediate goods, that is, that all intermediate inputs come from domestic
sources. Relaxing this assumption and taking into account international linkages is beyond
the scope of this paper.

40In the rare cases in which we obtain negative values for consumption, we set these to zero.
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B Data Appendix

B.1 Growth accounting data

B.1.1 EU KLEMS

Basic data For the five European countries, our main data source is the July 2018 update
of EU KLEMS (available online at http://www.euklems.net/). EU KLEMS provides
industry-level growth accounting data. Industries are classified according to the Statistical
classification of economic activities in the European Community (NACE, Revision 2).

We restrict our attention to industries in the market economy, defined by KLEMS as
including all industries except public administration and defence, social security, education,
health and social work, household activities, activities of extraterritorial bodies, and real
estate.41 From this sample, we further drop agriculture (NACE Code A), forestry and
fishing, mining and quarrying (NACE Code B), manufacturing of coke and refined petroleum
products (NACE Code 19) and financial and insurance activities (NACE Code K). This leaves
us with 18 industries in our baseline analysis, listed in Table A.1. In the robustness checks
discussed in Section 6.4, we show that including financial and insurance activities does not
affect our main results.

Table A.1: Industry list for European countries (KLEMS, NACE Rev. 2)

Non-durable manufacturing NACE Code
Food products, beverages and tobacco C10-C12
Textiles, wearing apparel, leather and related products C13-C15
Wood and paper products; printing and reproduction of recorded media C16-C18
Chemicals and chemical products C20-C21
Rubber and plastics products, and other non-metallic mineral products C22-C23
Durable manufacturing NACE Code
Basic metals and fabricated metal products, exc. machinery and equipment C24-C25
Electrical and optical equipment C26-C27
Machinery and equipment n.e.c. C28
Transport equipment C29-C30
Other manufacturing; repair and installation of machinery and equipment C31-C33
Non-manufacturing NACE Code
Electricity, gas and water supply D-E
Construction F
Wholesale and retail trade; Repair of motor vehicles and motorcycles G
Transportation and storage H
Accommodation and food service activities I
Information and communication J
Professional, scientific, technical, administrative and support service activities M-N
Arts, entertainment, recreation and other service activities R-S

We use eleven KLEMS time series, all defined annually and at the industry-level:

41We exclude real estate because, as noted by O’Mahony and Timmer (2009), “for the most part the output
of the real estate sector [..] is imputed rent on owner-occupied dwellings”. This makes productivity measures
hard to interpret.
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nominal gross output (GO), the price index for gross output (GO_P), nominal expenditure
on intermediate inputs (II), the price index for intermediate inputs (II_P), the KLEMS index
for capital input (CAP_QI), the nominal capital stock (K_GFCF), the KLEMS index for labour
input (LAB_QI), the nominal wage bill (LAB), the total number of persons engaged (EMP),
total hours worked by persons engaged (H_EMP), and the price index for investment goods
(Ip_GFCF).42

Older releases For most countries, the coverage of the July 2018 release of EU KLEMS
starts in 1995. In order to extend the data backwards to the early 1990s, we therefore
combine the 2018 release with the 2011 and 2012 releases of the KLEMS dataset. To do so,
we compute growth rates for all variables in the older releases, and use them to backcast
the data from the 2018 release.

For most variables, our backcasting relies on the 2012 release, which uses the same
NACE Rev. 2 classification than the 2018 release. However, there are no series for gross
output, intermediate inputs and their respective price indexes in the 2012 release. Thus,
we need to rely on the 2011 release for those.

The 2011 release is only available in the NACE Rev. 1 format. To convert data into
NACE Rev. 2, we use the correspondence tables and instructions provided in the KLEMS
source documents for the 2012 release. For most industries, matching is unproblematic and
can be done one-to-one. For cases in which two or more NACE Rev. 1 industries are mapped
into one NACE Rev. 2 industries, we aggregate the nominal variables GO and II as the sum
of the values of subindustries, and the price indexes GO_P and II_P as weighted averages,
using Tornqvist weights based on value added. There is just one case of one NACE Rev. 1
industry corresponding to two or more NACE Rev. 2 industries, for NACE Rev. 1 industry
64 (Post and Telecommunications). Here, we follow standard KLEMS practice and map this
industry entirely into NACE Rev. 2 industry J (Information and Communication)43.

UK Capital data The capital input series (CAP_QI) for the United Kingdom in the 2018
release of the KLEMS data is very volatile, yielding erratic patterns for all TFP measures.
Therefore, we instead use an updated series on British capital services from the Office for
National Statistics (ONS).44 Note that the ONS is also the provider of British data for EU
KLEMS, and this series is therefore just an updated version of the original KLEMS series.

42For Spain and the United Kingdom, KLEMS does not provide a separate price index for gross output
and intermediate inputs. Therefore, we assume for these countries that price indeces for gross output and
intermediate inputs equal the price index for value added (VA_P). Likewise, Italy does not have separate gross
output and intermediate input price indexes for industry R-S, and we use value-added price indexes here as
well.

43Furthermore, we do some small additional adjustments for Italy. In this country, three industries (NACE
Rev. 2 31-33, M-N and R-S) have some missing observations between 1993 and 1994. We extended the data
for these industries assuming that their split between GO and II remained the same as in 1995. Note that
Spain and the United Kingdom do not have data on gross output and intermediate input deflators in the
baseline dataset, but these variables are available in the 2011 and 2012 releases. To be consistent, we do not
consider this information, and use value-added deflators in these two countries throughout.

44The data can be downloaded on the website of the ONS, at https://www.ons.gov.uk/economy/
economicoutputandproductivity/output/datasets/capitalservicesestimates.
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Correspondence between KLEMS variables and our model Table A.2 summarizes the
mapping between KLEMS variables and our model.

Table A.2: Correspondence between KLEMS variables and our model

Model variable KLEMS variable
dYt dGOt − dGO_Pt
dMt dIIt − dII_Pt
dKt dCAP_QIt

αV
L

αV
L +αF

L

(
dNV

t + dHV
t

)
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L +αF

L

(
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/PtYt LABt/GOt

Kt K_GFCFt
PI,t Ip_GFCFt

This correspondence is mostly straightforward, but two variables deserve some further
discussion. First, the KLEMS measure of capital input (CAP_QI) is an aggregate across nine
types of capital. KLEMS computes growth rates at the level of individual capital goods, and
then aggregates these up using the (estimated) shares of each capital good in total capital
compensation. In our analysis, we abstract from this heterogeneity and consider the growth
rate of CAP_QI as the growth rate of the unique capital good.

Second, the KLEMS measure of labour input (LAB_QI) is also an aggregate across 18
types of workers (differentiated by gender, three age groups and three education groups).
Again, growth rates of total hours worked are computed at the level of each individual
worker, and then aggregated using compensation weights, i.e. the share of each group of
workers in the total wage bill of the industry. Thus strictly speaking, this measure would be

equal to w̃V
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t
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)
in our model. This is not

exactly equal to the contribution of total hours worked to production, which in our model

is instead given by αV
L

αV
L +αF

L

(
dNV

t + dHV
t

)
+

αF
L

αV
L +αF

L

(
dNF

t + dHF
t

)
. However, as changes in

the relative wage bill of the two categories of workers over time are small, we ignore this
difference and use LAB_QI to measure labour, allowing us to take advantage of the full
level of detail available in the KLEMS database.

Depreciation rates KLEMS provides depreciation rates for nine types of capital goods.
Our industry-level depreciation rate δK is a weighted average of these depreciation rates,
weighted by the share of each type of capital good in the total capital of the industry.

B.1.2 BLS

Our main data source for the United States is the Multifactor Productivity (MFP)
Database of the BLS (available online at https://www.bls.gov/mfp/mprdload.htm).
This database provides industry-level growth accounting data that is comparable to KLEMS.
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Industries are classified according to the North American Industry Classification System
(NAICS). Just as in Europe, we focus on the market economy and exclude agriculture (NAICS
Code 11), mining (21), Petroleum and Coal (324), Finance and Insurance (52), Educational
Services (61), Health Care and Social Assistance (62) as well as Public Administration (92).
As in Europe, all our main results are robust to including Finance. As the BLS dataset is
more disaggregated than EU KLEMS, we have data for a total of 44 industries, listed in
Tables A.3 and A.4.

Table A.3: Industry list for the United States (NAICS)

Non-durable manufacturing NAICS Code
Food and beverage and tobacco products 311-312
Textile mills and textile product mills 313-314
Apparel and leather and allied products 315-316
Paper products 322
Printing and related support activities 323
Chemical products 325
Plastics and rubber products 326
Durable manufacturing NAICS Code
Wood products 321
Nonmetallic mineral products 327
Primary metals 331
Fabricated metal products 332
Machinery 333
Computer and Electronic products 334
Electrical Equipment, Appliances, and Components 335
Motor vehicles and Other transportation equipment 336
Furniture and related products 337
Miscellaneous manufacturing 339
Non-manufacturing NAICS Code
Utilities 22
Construction 23
Wholesale Trade 42
Retail Trade 44-45
Air transportation 481
Rail transportation 482
Water transportation 483
Truck transportation 484
Transit and ground passenger transportation 485
Pipeline transportation 486
Other transportation and support activities 487, 488, 492
Warehousing and Storage 493
Publishing industries, except internet (includes software) 511
Motion picture and sound recording industries 512
Broadcasting and telecommunications 515, 517
Data processing, internet publishing, and other information services 518-519
Rental and leasing services and lessors of intangible assets 532-533
Legal services 5411
Computer systems design and related services 5415
Miscellaneous professional, scientific, and technical services 5412-5414, 5416-5419
Management of companies and enterprises 55
Administrative and support services 561
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Table A.4: Industry list for the United States (NAICS), continued

Non-manufacturing NAICS Code
Waste management and remediation services 562
Performing arts, spectator sports, museums, and related activities 711-712
Amusements, gambling, and recreation industries 713
Accommodation 721
Food services and drinking places 722

The BLS MFP database contains the same series as EU KLEMS, with the exception
of employment and hours worked (instead, the BLS only provides a measure of total
labour input, the equivalent of the KLEMS LAB_QI variable). Thus, we obtain series for
employment and hours worked from the BLS Labor Productivity and Costs (LPC) database
(available at https://www.bls.gov/lpc/home.htm).

The BLS database follows similar conventions than EU KLEMS, and we can therefore
easily map its variables into KLEMS codes, as shown in Table A.5.

Table A.5: Correspondence between BLS and KLEMS variables

BLS variable BLS dataset KLEMS variable
Value of Production MFP GO
Price of Sectoral Output MFP GO_P
Cost of Intermediate Inputs MFP II
Price of Intermediate Input MFP II_P
Cost of Labor MFP LAB
Capital input MFP CAP_QI
Labor input MFP LAB_QI
Employment LPC EMP
Hours worked LPC H_EMP
Price deflator MFP (Capital details) Ip_GFCF
Productive Capital stock MFP (Capital details) K_GFCFt

It is worth noting, however, that BLS definitions sometimes differ from KLEMS defini-
tions (see Jäger, 2018). For instance, both datasets differ in their choices for considering
certain expenses as intermediate inputs or capital investment. This can account for some
differences in the capital series between both datasets.

B.2 Labour composition

To measure labour composition in Europe, we rely on microdata from the European
Union Labour Force Survey (EU LFS).45 The EU LFS provides industry-level annual data
on employment and total hours by contract type (permanent or temporary) and job status
(full-time or part-time).46 We define quasi-fixed labour as the labour provided by workers

45See https://ec.europa.eu/eurostat/web/microdata/european-union-labour-force-survey
for further details on the survey and data access.

46The LFS only provides information at the NACE 1-digit level. Thus, we need to assign the same
employment and hours split to all industries belonging to a 1-digit NACE group.
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with permanent and full-time contracts, and variable labour as the labour provided by all
other workers. Using these definitions, we compute the employment and hours share of
each of the two categories, and apply these shares to the KLEMS levels of employment and
hours worked to obtain a series in levels.

The EU LFS does not contain information on wages. Thus, to compute the relative wage
bill of both types of workers, we use data from the European Structure of Earnings survey
(EU SES), provided by Eurostat in 4-year intervals between 2002 and 2014. We approximate
the relative hourly wage of quasi-fixed workers with respect to variable workers with the
ratio of regular hourly earnings of workers with permanent contracts to the regular hourly
earnings of workers with temporary contracts. For all missing years, we linearly interpolate
the series.

In the United States, there is no direct equivalent to the European notion of permanent
and temporary employment contracts. Therefore, we define quasi-fixed labour as labour
provided by workers with full-time contracts, and variable labour as labour provided by
workers with part-time contracts. We obtain time series on employment and hours for these
two types of workers from unpublished occupation and industry tables from the Current
Population Survey (CPS), kindly provided to us by the BLS. In turn, data for the relative
wage of full and part-time workers is taken from the FRED database of the Federal Reserve
of St. Louis.47

As noted in the main text, the split of employment and hours is not available before
1994 (in the United States) or 1995 (in Europe). For these years, we assume that growth
in employment and hours per worker for both categories is equal to growth in overall
employment or overall hours per worker. This has only a very limited impact on our results.
First, for European countries, it applies to at most one or two years of data. Second, as
explained above, our measure of labour input is LAB_QI, which is available for all years.
Data for the two types of labour are only needed to compute trend growth in hours and
adjustment costs to quasi-fixed employment (which are small in practice).

B.3 Capacity utilization surveys

Europe Our European data on capacity utilization comes from the Joint Harmonised EU
Programme of Business and Consumer Surveys.48 All manufacturing data comes from the
quarterly Industry survey, which asks firms “At what capacity is your company currently
operating (as a percentage of full capacity)?” The firm then has to fill out the blank in the
following sentence, “The company is currently operating at __ % of full capacity”. We obtain
an annual measure of capacity utilization by taking a simple average of these quarterly
measures. The survey provides data for 24 NACE industries, which we aggregate to the 10
KLEMS manufacturing industries by using value added weights.

Finally, starting in 2011, the Services Sector survey measures capacity utilization for

47Precisely, we use the FRED series LES1252881500Q (https://fred.stlouisfed.org/
series/LES1252881500Q) and LEU0262881500Q (https://fred.stlouisfed.org/series/
LEU0262881500Q).

48See https://ec.europa.eu/info/business-economy-euro/indicators-statistics/

economic-databases/business-and-consumer-surveys_en.
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service industries. Firms are asked “If the demand addressed to your firm expanded, could
you increase your volume of activity with your present resources? If so, by how much?” The
Commission interprets the hypothetical level of activity that a firm could reach as that firm’s
full capacity output (Gayer, 2013). Capacity utilization is defined as the ratio of current
output to full capacity output. We use data from this survey, whenever available, in our
baseline analysis.49 To extend the series for years before 2011, we backcast industry-level
series by projecting them on average capacity utilization in manufacturing.

United States US capacity utilization data comes from the Federal Reserve Board’s
monthly reports on Industrial Production and Capacity Utilization (G.17).50

The data is constructed by the Federal Reserve on the basis of the Census Bureau’s
Quarterly Survey of Plant Capacity (QSPC). The QSPC is carried out at the plant level. Plants
are first asked to report the value of current production: “Report the value of production
based on estimated sales price(s) of what was produced during the quarter, not quarter sales”.
Second, they should report their full production capacity, defined as “the maximum level of
production that this establishment could reasonably expect to attain under normal and realistic
operating conditions fully utilizing the machinery and equipment in place”. In the detailed
instruction that plant managers are given about how they should calculate this number, it is
noteworthy that the Census suggests that “if you have a reliable or accurate estimate of your
plant’s sustainable capacity utilization rate, divide your market value of production at actual
operations [..] by your current rate of capacity utilization [to get full production capacity”.
Finally, firms are asked to report the ratio between current and full production, which is
capacity utilization. Once they have done so, firms are asked “Is this a reasonable estimate
of your utilization rate for this quarter? Mark (X) yes or no. If no, please review your full
production capability estimate. If yes, continue with the next item”. For our purposes, we use
the annual version of the Federal Reserve’s database, which provides data for 17 NAICS
manufacturing industries, as well as for Electric and Gas utilities.

The United States does not have a survey on capacity utilization in service industries.
Therefore, we use average capacity utilization in manufacturing as a utilization proxy for
all service industries.

B.4 Instruments

Oil shocks Data on nominal oil prices are from World Bank Commodity Price Data (The
Pink Sheet), and deflated with country-specific CPIs from OECD.Stat. Following Basu et al.
(2006), we compute oil price shocks as the log difference between the current quarterly
real oil price and the highest real oil price in the preceding four quarters. We define the
annual oil price shock as the sum of the four quarterly shocks.

49Utilities (D-E), Construction (F) and Wholesale and Retail Trade (G) are not covered by this survey. For
Wholesale and Retail, we use the average capacity utilization in all service industries which have data, and for
Utilities and Construction, the manufacturing average. Our results are unchanged when using the services
average instead for these latter industries.

50The data can be accessed at https://www.federalreserve.gov/releases/G17/Current/

default.htm.
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Monetary policy shocks For members of the European Monetary Union, we take mone-
tary policy shocks from Jarocinski and Karadi (2018), who rely on surprise movements in
Eonia interest rate swaps after ECB policy announcements to identify monthly monetary
policy shocks starting in March 1999. We take simple averages of these shocks to obtain an
annual series. For the United Kingdom, we follow Cesa-Bianchi et al. (2020), who identify
monetary policy shocks through changes in the price of 3-month Sterling future contracts
after policy announcements by the Bank of England. Finally, for the United States, we use
narratively identified monetary policy shocks from Romer and Romer (2004), as updated in
Wieland and Yang (2020).51

Financial shocks We measure financial shocks by using the excess bond premium intro-
duced by Gilchrist and Zakrajšek (2012).52 This measure is computed as the difference
between the actual spread of unsecured bonds of US firms and the predicted spread based
on firm-specific default risk and bond characteristics. Thus, it captures variation in the
average price of US corporate credit risk, above and beyond the compensation for expected
defaults. We aggregate the monthly excess bond premium to its annual average to obtain
our shock series.

Uncertainty shocks Our measure of Economic Policy Uncertainy (EPU) was developed
by Baker et al. (2016), and is regularly updated at http://www.policyuncertainty.
com. For European countries, the measure is a monthly index based on newspaper articles
on policy uncertainty (articles containing the terms uncertain or uncertainty, economic or
economy, and one or more policy–relevant terms, in the native language of the respective
newspaper). The number of economic uncertainty articles is then normalized by a measure
of the number of articles in the same newspaper and month, and the resulting newspaper-
level monthly series is standardized to unit standard deviation prior to 2011. Finally, the
country-level EPU series is obtained as the simple average of the series for the country’s
newspapers, and normalized to have a mean of 100 prior to 2011.53 For the United States,
measurement is more sophisticated, considering not only newspaper articles, but also the
number of federal tax code provisions set to expire in future years and disagreement among
economic forecasters.

In order to obtain an annual series, we take a simple average of monthly values. In
Europe, the index is available since 1987 for France, 1993 for Germany, 1997 for Italy and
the United Kingdom, and 2001 for Spain. If there is no available data for a country during
a given period, we use the change in the European EPU series (which is the simple average
of the series of for five European countries considered in our analysis).

51For all cited papers, the authors provide this data in their replication files. These
are available at https://www.aeaweb.org/articles?id=10.1257%2Fmac.20180090, https:

//sites.google.com/site/ambropo/publications and https://sites.google.com/site/

johannesfwieland/.
52An updated series is available at https://www.federalreserve.gov/econresdata/notes/

feds-notes/2016/updating-the-recession-risk-and-the-excess-bond-premium-20161006.

html.
53The newspapers used are Le Monde and Le Figaro for France, Handelsblatt and Frankfurter Allgemeine

Zeitung for Germany, Corriere Della Sera and La Repubblica for Italy, and El Mundo and El Pais for Spain.
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B.5 Interest rates

In our baseline computation of rental rates, we define the interest rate as the sum of the
interest rate on 10-year government bonds and the spread on Moody’s Baa US bonds with a
maturity of 20 years or more, as in Gutierrez (2018). We take government bond rates from
the OECD, while Moody’s Baa yields are from the FRED database of the Federal Reserve of
St. Louis.54

For a robustness check, we alternatively use Standard & Poor’s yields for BBB-rated
corporate bonds with a 10-year maturity. We obtain these from the commercial provider
Datastream (using the series SPUIG3B for the United States, SPEIB3E for the Eurozone and
SPUKI3B for the United Kingdom). For another robustness check, we also use equity risk
premia from Datastream (series USASERP, ITASERP, ESASERP, FRASERP, UKASERP and
BDASERP), corporate tax rates from the OECD and debt-to-asset ratios from Compustat
Global.

B.6 Input-Output tables

For European countries, we obtain country-specific input-output tables from the Eurostat
FIGARO tables.55 We use tables for the year 2010, and drop all transactions with foreign
countries and with industries not covered in our sample. For the United States, we instead
rely on the “Use” tables of the BEA.56 Likewise, we drop all transactions with industries not
covered by our sample.

B.7 Recession definitions

In all graphs, shaded areas mark recessions. Recession dates are taken from the NBER
for the United States, the Euro Area Business Cycle Network for the Eurozone, and the
Conference Board for the United Kingdom. We consider a year to be a recession year if at
least 6 months of the year are defined as a recession by these institutions.

B.8 Plots of key variables

Figures A.1 to A.4 summarize the behaviour of some of the key time series used in
our analysis. To generate these plots, we have aggregated real gross output, real spending
on materials and employment across the three broad sectors covered by our analysis. For
capital, instead, we have taken value-added weighted averages of the CAP_QI variable.

These graphs clearly show that in most countries, capital grows more than other inputs.
At the same time, capital growth is much less volatile. This is a key mechanism driving the
profit adjustment in our estimated TFP series.

54The OECD series is from https://data.oecd.org/interest/long-term-interest-rates.

htm, while the FRED series is from https://fred.stlouisfed.org/series/DBAA.
55Data is available at https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/

data/database.
56Data is available at https://www.bea.gov/industry/input-output-accounts-data.
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Figure A.1: Gross output growth
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Figure A.2: Material input growth
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Figure A.3: Capital input growth
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Figure A.4: Employment growth
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C Additional results and tables

C.1 Rental rates and profit shares

Table A.6 lists our estimates for capital depreciation rates. Note that depreciation rates
in the United States are substantially lower than in European countries. This does not
reflect a fundamental economic difference, but is due to the different definitions of capital
used by the BLS and EU KLEMS.

Table A.6: Capital depreciation rates

USA Germany Spain France Italy UK

Non-durable manufacturing 5.3% 11.6% 7.8% 11.3% 9.7% 9.7%

Durable manufacturing 7.0% 13.6% 9.1% 15.9% 10.3% 10.2%

Non-manufacturing 4.0% 7.6% 5.6% 10.5% 7.0% 6.1%

Notes: This table lists simple averages of industry-level capital depreciation rates across sectors.

Figure A.5 plots our estimates for rental rates of capital, obtained with equation (9). In
most countries, rental rates have a downward trend over time.
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Notes: Rental rates are computed using equation (9). Rental rates between the United States and European
countries are not directly comparable, because they are based on a different definition of capital.

Figure A.5: Rental rates
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Finally, Figure A.7 plots our estimates for profit shares. The time profile of our series
for the United States largely follows Barkai (2020), who emphasizes the upward trend
of profits over time. Note that our focus on a BGP is not necessarily a contradiction to
this trend in the data. Indeed, as shown in Karabarbounis and Neiman (2019), there was
no upward trend before the 1980s: to the contrary, estimated profit shares were high in
the 1960s and 1970s, and sharply fell in the 1980s. Thus, the data can be interpreted as
showing highly persistent fluctuations around a stable long-run average.
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Notes: This figure plots our estimated profit shares as a fraction of gross output.

Figure A.6: Profit shares

C.2 TFP growth at the industry level

In this section, we plot industry-level TFP growth rates. Given the large number of
industries in the United States, we do not plot TFP growth rates for 13 smaller industries for
this country, in order to save some space. These industries are Furniture and related products
(NAICS Code 337), miscellaneous manufacturing (339), Air transportation (481), Rail
transportation (482), Water transportation (483), Truck transportation (484), Transit and
Ground Passenger transportation (485), Pipeline transportation (486), other transportation
and support activities (487-489), Warehousing and Storage (493), Waste management
and remediation services (562), Performing Arts and Spectator sports (711-712), and
Amusements, Gambling and Recreation (713).
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Figure A.7: Industry-level TFP growth, United States, manufacturing
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Figure A.8: Industry-level TFP growth, United States, non-manufacturing
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Figure A.9: Industry-level TFP growth, Germany, manufacturing
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Figure A.10: Industry-level TFP growth, Germany, non-manufacturing
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Figure A.11: Industry-level TFP growth, Spain, manufacturing
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Figure A.12: Industry-level TFP growth, Spain, non-manufacturing
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Figure A.13: Industry-level TFP growth, France, manufacturing
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Figure A.14: Industry-level TFP growth, France, non-manufacturing
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Figure A.15: Industry-level TFP growth, Italy, manufacturing
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Figure A.16: Industry-level TFP growth, Italy, non-manufacturing
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Figure A.17: Industry-level TFP growth, United Kingdom, manufacturing
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Figure A.18: Industry-level TFP growth, United Kingdom, non-manufacturing

C.3 Aggregate TFP growth rates

In this section, we provide further detail on the aggregate TFP growth rates plotted
in the main text. Tables A.7 to A.12 list our estimates for aggregate TFP growth for all
countries and years in our sample, and compares them to the estimates obtained using the
BFK or Solow methods.
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Table A.7: TFP growth rates, United States

Solow residual BFK method Our method

1989 1.32 0.54 1.52

1990 0.45 1.95 0.50

1991 -1.50 -0.53 -0.55

1992 3.18 3.03 2.76

1993 0.98 -0.59 1.15

1994 1.24 0.13 0.95

1995 1.19 3.38 1.09

1996 2.20 3.06 2.86

1997 2.67 1.51 2.04

1998 1.51 1.71 1.89

1999 0.98 -0.12 -0.53

2000 0.43 -0.33 0.79

2001 -1.98 0.57 -0.06

2002 3.69 3.04 5.62

2003 3.16 3.47 1.03

2004 2.75 2.02 3.07

2005 1.08 1.30 0.66

2006 0.84 -0.32 1.07

2007 0.07 0.22 -1.22

2008 -0.40 0.24 0.94

2009 -3.28 -0.36 2.15

2010 3.92 0.94 -0.12

2011 0.13 -0.38 -1.43

2012 0.12 0.77 -0.42

2013 -0.17 0.34 0.48

2014 -0.11 -0.60 0.83

2015 0.54 0.92 1.48

2016 0.40 0.87 0.66

2017 1.35 1.09 1.10

2018 1.50 1.08 0.16

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.8: TFP growth rates, Germany

Solow residual BFK method Our method

1994 0.91 -0.21 -1.65

1995 0.16 0.06 -1.79

1996 -0.24 0.83 0.92

1997 1.04 0.84 -0.38

1998 -1.57 -2.87 -1.08

1999 -0.42 -0.56 0.46

2000 2.98 4.10 0.77

2001 0.96 0.97 2.12

2002 -0.46 -0.40 1.34

2003 -0.01 -0.01 -0.36

2004 1.55 1.04 0.92

2005 1.50 2.70 1.48

2006 4.44 2.63 3.54

2007 2.24 1.45 1.05

2008 -2.07 -2.42 -0.99

2009 -8.44 -1.50 -0.01

2010 5.16 0.31 0.47

2011 2.27 -0.29 -0.21

2012 0.45 2.74 0.12

2013 -0.78 -0.05 0.04

2014 1.80 1.25 1.49

2015 0.81 0.79 0.31

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.9: TFP growth rates, Spain

Solow residual BFK method Our method

1995 -1.10 -2.38 -1.87

1996 -3.28 -1.60 -2.95

1997 -2.08 -1.36 -2.85

1998 -1.92 -2.27 -2.36

1999 -0.93 -1.75 -0.57

2000 -0.97 -2.96 -1.73

2001 -1.48 0.77 -0.70

2002 -1.89 -1.30 -1.44

2003 -1.22 -0.80 -1.27

2004 -1.85 -2.06 -2.12

2005 -0.94 -2.37 -0.69

2006 -0.14 -0.63 -0.65

2007 -1.02 -2.18 -1.40

2008 -2.63 -0.61 -1.58

2009 -2.45 -0.50 0.93

2010 1.02 0.58 -0.19

2011 -0.25 -1.42 -0.06

2012 -0.42 -1.36 -0.67

2013 -1.46 -2.10 -0.94

2014 1.27 1.72 0.43

2015 2.21 4.06 1.93

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.10: TFP growth rates, France

Solow residual BFK method Our method

1994 1.36 0.93 1.20

1995 2.10 3.29 0.71

1996 -0.10 -0.34 0.35

1997 1.56 1.04 1.32

1998 2.52 2.11 2.50

1999 0.57 -0.00 0.76

2000 2.84 3.58 1.72

2001 -0.68 -0.14 -1.10

2002 1.22 2.44 1.69

2003 0.50 -0.10 1.39

2004 -0.26 -2.70 1.44

2005 0.13 0.36 0.42

2006 1.93 4.48 -0.27

2007 0.13 -1.21 0.01

2008 -1.98 -2.20 -1.29

2009 -4.86 -2.92 -0.43

2010 1.18 -0.50 -0.26

2011 0.44 -0.49 -1.47

2012 -1.47 -1.06 -0.50

2013 -0.07 0.91 0.66

2014 0.22 0.53 -0.09

2015 0.19 -0.48 -0.12

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.11: TFP growth rates, Italy

Solow residual BFK method Our method

1994 2.14 2.65 1.25

1995 3.71 3.65 -0.02

1996 -0.61 -0.83 0.80

1997 0.23 0.86 0.02

1998 -0.97 -1.88 -1.62

1999 -0.89 -0.90 0.04

2000 2.12 2.52 0.52

2001 -0.51 -0.54 -0.01

2002 -2.04 -2.34 -0.53

2003 -1.93 -1.08 -2.70

2004 0.57 -0.07 1.83

2005 -0.61 0.01 -0.34

2006 -0.22 -0.78 -1.58

2007 -0.43 -1.82 -0.55

2008 -1.90 -1.71 -0.03

2009 -6.74 -2.88 0.18

2010 3.09 0.56 0.95

2011 -0.12 -2.08 -1.80

2012 -1.74 0.39 -0.11

2013 0.54 0.71 0.17

2014 1.02 0.49 0.00

Notes: TFP growth rates are expressed as log changes multiplied by 100.
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Table A.12: TFP growth rates, United Kingdom

Solow residual BFK method Our method

1996 0.29 0.56 1.28

1997 -0.59 1.77 -2.21

1998 1.70 0.24 2.77

1999 1.79 2.13 4.45

2000 2.00 1.63 0.60

2001 1.39 0.88 3.26

2002 1.18 1.80 0.52

2003 1.94 2.31 2.23

2004 2.43 3.01 0.51

2005 2.16 0.97 3.18

2006 1.47 1.48 1.44

2007 2.13 1.52 1.41

2008 -0.44 0.54 -1.04

2009 -6.11 -5.70 -0.82

2010 4.77 4.75 2.31

2011 1.46 0.87 -1.09

2012 -1.22 -1.20 -0.11

2013 0.14 -0.33 -0.26

2014 1.91 2.25 0.41

Notes: TFP growth rates are expressed as log changes multiplied by 100.

C.4 Robustness checks

In this section, we present the results of various robustness checks. Tables A.13 to A.18
summarize the results of these checks for every country in our sample.

In robustness check (1), we include the Finance industry (NACE Code K in European
countries, and NAICS codes 521-522, 523, 524 and 525 in the United States) into our
estimations. This matters most in the United States, where Finance is a large industry.
Here, average TFP growth falls from 1.02% per year in the baseline to 0.92%. Also, the
correlation between our TFP series and the one obtained with the BFK method is now
somewhat higher (0.70 instead of 0.56 in the baseline). Nevertheless, the correlation of
our baseline series with the one including the Finance industry remains high at 0.89, and is
even higher in European countries.

In robustness check (2), we assume that firms cannot make negative profits. That is,
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we set all negative BGP profit shares to zero. As there are few such industries, the impact
of this change is limited. The largest changes can be seen in the United Kingdom, where
our profit estimates are lowest. Here, the average TFP growth rate slightly increases from
0.99% per year in the baseline to 1.02%. This is in line with the intuition explained in the
main text: higher profits imply higher estimates for average TFP growth. Note, however,
that the cyclical behaviour of the TFP series is not affected. Indeed, the correlation between
the TFP growth rates obtained when setting negative profits to zero and our baseline is
equal to 1 in the United Kingdom, and in all other countries considered.57

In robustness check (3), we change the interest rate used to compute our estimates
for the rental rate of capital. In the baseline, we had used the sum of the yield on 10-year
government bonds and the spread on Moody’s US Baa bonds with a maturity of 20 years or
more. Here, we use instead the return on a country-specific portfolio of 10-year BBB bonds
from Standard & Poor’s. We find that this interest rate does not imply large changes in
profits, and therefore our estimates for aggregate TFP growth rates are virtually unchanged,
as shown in the tables.

In robustness check (4), we consider yet another interest rate. Following Barkai (2020),
we now take into account the fact that firms do not finance themselves exclusively through
debt, and that interest payments are generally deductible from corporate income taxes.
Thus, we calculate the interest rate as

rt =
D

D + E
· BBB yieldt · (1 − taxt) +

E

D + E
· (Govt Bond yieldt + ERPt),

where D/D + E is the fraction of debt in firm assets, computed using data from Compustat
Global, BBB yieldt is the yield on BBB bonds from Standard & Poor’s (identical to the one
in robustness check (3)), taxt is the corporate tax rate, Govt Bond yieldt is the return on
government bonds (the same as in the baseline) and ERPt is the equity risk premium from
Datastream. Using this interest rate has a somewhat larger impact on profits, especially in
the United States, where it leads to a further upward revision of the average growth rate.
However, the cyclical properties of the series are not affected.

In robustness check (5), we reconsider our interpretation of the capacity utilization
survey. In the baseline, we follow our model, which suggests that answers to the survey
include cyclical variation in hours per worker (which is why the dependent variable of
our estimation equation (30) does not include this cyclical variation). Here, we abstract
from this and instead use as dependent variable a measure of unadjusted TFP growth that
includes cyclical variation in hours per worker. That is, we set
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in Equation (30). The series obtained with this method continue to be very highly correlated
with our baseline series (with a correlation coefficient of at least 0.85, and 0.88 in the United
States). Thus, our main results on volatility and cyclicality are all preserved. However, we
can also note that the correlation between our series and the one obtained with the BFK
method is now somewhat higher in most countries.

57Obviously, this is due to rounding, with the actual correlation coefficients being between 0.995 and 1.
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In robustness check (6), we use a more structural interpretation of the survey. In
our baseline, we assumed that variable inputs are scaled up proportionally to output
when computing full capacity. Here, we assume that variable inputs are scaled up exactly
proportionally, as would be implied by cost minimization. That is, we set the coefficients
of proportionality γM and γV

L introduced in Section 3.1 to 1, and therefore have β =
1 − αM − αV

L . Thus, for this robustness check, we do not need to run any IV regressions.
Instead, we can directly read off the utilization adjustment coefficient β from our estimates
for factor elasticities. We find that the series obtained in this way are remarkably similar
to the baseline ones. The lowest correlation coefficient between the new series and the
baseline is 0.70 (in Spain), and in France and Italy, the correlation is 0.99. We think that
this provides further evidence that the survey is a reliable utilization indicator, and that our
interpretation of the survey question is reasonable.

Finally, in robustness check (7), we drop the monetary policy shock from our set of
instruments used to estimate adjustment costs and utilization adjustments. This has virtually
no effect on our results.

Table A.13: Robustness checks, United States

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth 1.02 0.92 1.04 1.06 1.17 1.02 1.01 1.01

Relative standard dev. 0.63 0.65 0.64 0.66 0.69 0.56 1.14 0.63

Corr. with real VA growth 0.16 0.29 0.17 0.14 0.13 0.17 -0.25 0.19

Corr. between TFP series

Baseline . 0.89 1.00 1.00 0.99 0.88 0.72 1.00

Solow residual 0.45 0.60 0.46 0.44 0.47 0.53 -0.24 0.49

BFK method 0.56 0.70 0.56 0.55 0.54 0.76 0.26 0.44

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.
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Table A.14: Robustness checks, Germany

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth 0.39 0.26 0.41 0.42 0.42 0.43 0.30 0.40

Relative standard dev. 0.38 0.41 0.38 0.38 0.38 0.38 0.53 0.38

Corr. with real VA growth 0.20 0.25 0.20 0.19 0.20 0.25 -0.43 0.31

Corr. between TFP series

Baseline . 0.95 1.00 1.00 1.00 0.93 0.78 0.99

Solow residual 0.39 0.39 0.39 0.37 0.39 0.48 -0.26 0.49

BFK method 0.57 0.53 0.57 0.55 0.56 0.79 0.26 0.65

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.
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Table A.15: Robustness checks, Spain

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth -0.99 -0.84 -0.98 -0.96 -0.96 -1.01 -1.06 -0.99

Relative standard dev. 0.41 0.34 0.41 0.46 0.44 0.42 0.79 0.41

Corr. with real VA growth -0.26 -0.09 -0.26 -0.39 -0.36 -0.30 -0.53 -0.24

Corr. between TFP series

Baseline . 0.94 1.00 0.97 0.98 0.97 0.70 1.00

Solow residual 0.71 0.58 0.72 0.68 0.69 0.71 0.05 0.74

BFK method 0.71 0.58 0.72 0.66 0.67 0.62 0.37 0.74

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.
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Table A.16: Robustness checks, France

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth 0.39 0.36 0.39 0.41 0.42 0.41 0.39 0.39

Relative standard dev. 0.45 0.49 0.44 0.46 0.46 0.47 0.44 0.45

Corr. with real VA growth 0.41 0.43 0.42 0.40 0.40 0.43 0.33 0.27

Corr. between TFP series

Baseline . 0.96 1.00 1.00 1.00 0.85 0.99 0.98

Solow residual 0.56 0.55 0.56 0.55 0.56 0.69 0.46 0.41

BFK method 0.43 0.39 0.42 0.41 0.42 0.79 0.36 0.30

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.

90



Table A.17: Robustness checks, Italy

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth -0.17 -0.11 -0.16 -0.15 -0.16 -0.16 -0.15 -0.17

Relative standard dev. 0.35 0.38 0.35 0.36 0.36 0.34 0.35 0.35

Corr. with real VA growth 0.08 0.03 0.07 0.06 0.04 0.26 -0.03 0.01

Corr. between TFP series

Baseline . 0.96 1.00 1.00 1.00 0.85 0.99 0.99

Solow residual 0.31 0.30 0.30 0.30 0.28 0.54 0.21 0.24

BFK method 0.45 0.45 0.45 0.45 0.43 0.80 0.40 0.45

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.
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Table A.18: Robustness checks, United Kingdom

Baseline (1) (2) (3) (4) (5) (6) (7)

Mean TFP growth 0.99 0.95 1.02 0.99 0.99 1.03 1.03 0.99

Relative standard dev. 0.63 0.71 0.64 0.63 0.63 0.54 0.73 0.63

Corr. with real VA growth 0.39 0.33 0.39 0.40 0.39 0.40 0.07 0.40

Corr. between TFP series

Baseline . 0.95 1.00 1.00 1.00 0.94 0.92 1.00

Solow residual 0.53 0.50 0.53 0.53 0.52 0.55 0.18 0.53

BFK method 0.34 0.11 0.33 0.34 0.34 0.44 0.01 0.29

Notes: This table reports some key statistics for our baseline series of aggregate TFP growth and for various
robustness checks. Each numbered column corresponds to a different robustness check. Robustness check (1)
includes Finance, (2) assumes that profits cannot be negative, (3) uses Standard and Poor’s country-specific
bond yields as interest rates, (4) uses interest rates that account for taxes and equity, (5) includes cyclical
variation in hours in the left-hand side of our utilization adjustment regressions, (6) computes utilization
adjustment coefficients directly from our model, and (7) drops the monetary policy instrument. All robustness
checks are explained in greater detail in the text.
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