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1 Introduction

Total Factor Productivity (TFP) growth is among the most important variables in macroeconomics,

playing a crucial role for both short and long-run phenomena. The concept is due to Solow (1957), who

defined TFP growth as the change in output that cannot be attributed to changes in factor inputs. Despite

this clear definition, computing actual TFP growth rates is subject to several measurement challenges,

regarding inputs, outputs and the production functions relating inputs to outputs.

To overcome these issues, Solow (1957) proposed a simple method. Solow noted that if firms minimize

costs and do not make profits, the output elasticity of the production function with respect to a given

input equals that input’s factor share. Thus, one can compute TFP growth as the difference between

output growth and a weighted average of input growth rates, weighting each input by its factor share. This

simple way of computing “Solow residuals” is still widely used in the literature. In the 2000s, the state

of the art for TFP estimation was further advanced by a series of papers by Basu, Fernald and Kimball

(Basu and Fernald, 2001; Basu, Fernald and Kimball, 2006). Basu, Fernald and Kimball (henceforth,

BFK) extended Solow’s method in order to account for unobserved fluctuations in capacity utilization.

Using a dynamic model, they showed that under some assumptions, fluctuations in hours per worker are

one-to-one related to fluctuations in capacity utilization, and can therefore be used as a proxy for the

latter. This method underlies the widely used series for capacity-adjusted quarterly TFP growth in the

United States introduced by Fernald (2014b).

These methods have greatly enhanced our understanding of TFP dynamics. However, they also rely

on strong assumptions, which may not always hold. To relax these assumptions, we develop a more

general model-based estimation method that does not rely on first order approximations, and allows us

to accommodate non-zero profits and non-negligible adjustment costs. Moreover, we show that hours per

worker may be a problematic utilization proxy in some cases. Thus, we instead rely on a new model-based

proxy with more attractive properties. We use our method to compute industry-level and aggregate TFP

growth rates for the United States and the five largest European economies over the period 1995-2016,

and show that our estimates suggest substantially different TFP dynamics than the standard methods.

Following the Solow-BFK tradition, our analysis is based on a simple dynamic model which assumes

that firms minimize costs and take input prices as given. The first new element in our paper regards

profits. While Solow and BFK assume that long-run economic profits are zero, recent studies present
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mounting evidence for positive profits (Gutierrez and Philippon, 2017; Gutierrez, 2018; Grullon et al.,

2019; Barkai, 2020). Positive profits create a wedge between output elasticities and factor shares. We use

industry-level profit shares estimated by Gutierrez (2018) to compute this wedge, and find that in most

countries and industries, the zero-profit assumption underestimates the output elasticity of labour and

materials, and overestimates the output elasticity of capital. This is important, as capital tends to grow

faster than other inputs in the long run, and is less volatile over the business cycle. Thus, the zero-profit

assumption underestimates TFP growth in the long run, and overestimates its volatility and cyclicality.

The second new element in our paper regards adjustment costs. Adjustment costs for capital and

employment are important in many business cycle models, and constitute the leading explanation for why

firms change their level of capacity utilization over time. Furthermore, adjustment costs matter for TFP

measurement, as they change the effective growth rate of capital or labour inputs in periods with large

changes in investment or hiring (e.g., during the recovery from a deep recession, or in the early years

of a new industry). Nevertheless, Solow and BFK assume that adjustment costs are either inexistent or

negligible.1 In our paper, we instead structurally estimate adjustment cost functions. Precisely, we use

our dynamic cost minimization model, and rely on the observed volatility of capital and employment to

identify the parameters of the adjustment cost functions for these inputs.

Finally, the third new element in our paper regards unobserved fluctuations in capacity utilization.

Researchers have long acknowledged that capital stocks and hours worked do not fully reflect actual inputs

into production. For instance, firms typically use their capital equipment less and workers perform less

tasks per hour of work during a recession. As these changes are not reflected in standard input measures,

Solow residuals have a pro-cyclical bias.2 To account for this, BFK use changes in hours per worker

as a utilization proxy, arguing that - under some assumptions - cost-minimizing firms adjust hours per

worker proportionally to other unobserved production factors. However, we show that this proxy may

be problematic if there are shocks to the relative cost of hours per worker with respect to unobserved

production factors, or if average hours per worker fluctuate because of composition effects. We therefore

propose an alternative proxy: capacity utilization rates measured by firm surveys. These surveys ask
1Precisely, BFK assume that industries are close to a Balanced Growth Path on which marginal adjustment costs are zero.
2Solow was well aware of this issue. To correct for it, he assumed that the fraction of capital not used in production

was equal to the unemployment rate: “What belongs in a production function is capital in use, not capital in place. [...]
Lacking any reliable year-by-year measure of the utilization of capital I have simply reduced [the capital stock] by the fraction
of the labor force unemployed in each year, thus assuming that labor and capital always suffer unemployment to the same
percentage. This is undoubtedly wrong, but probably gets closer to the truth than making no correction at all” (Solow, 1957).
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firms to report the ratio between their actual output and their full capacity output. We show that in

our model - under some assumptions - this measure is proportional to changes in unobserved production

factors, making it an ideal proxy. Furthermore, it does not require assumptions on relative factor prices.3

To implement our new proxy and obtain our final industry-level estimates of TFP growth, we run

an instrumental variable (IV) regression of a modified Solow residual (taking into account profits and

adjustment costs) on changes in the capacity utilization survey. The residual term of this regression is

our estimate of TFP growth. This estimation approach follows the one proposed by BFK, but as explained

above, both the Solow residual and the utilization proxy are computed differently. Using data from the

BLS and from EU KLEMS, we then estimate industry-level and aggregate TFP growth rates for the

United States and the five largest European economies.

For the United States, our method implies that aggregate TFP increased by 26.8% between 1995

and 2018, a substantially higher number than the 23.0% suggested by the BFK method. This change

is entirely due to our assumption on profits: positive profits lower our estimate for the output elasticity

of capital, but capital grew substantially faster than other inputs during the period. We also find that

the widely noted slowdown in US TFP growth (Fernald, 2014a; Gordon, 2016) has been more gradual

than suggested by standard methods. Again, this is due to the fact that we revise the output elasticity

of capital downwards, and capital fell less than other inputs around the Great Recession. Thus, while

the Solow residual or the BFK measure suggest an abrupt slowdown around the year 2005, we find that

annual TFP growth decreased from 1.9% per year between 1995 and 2005 to 0.9% between 2005 and

2010, and 0.0% between 2010 and 2018. This suggests that there has been a further drop in US TFP

growth after the Great Recession. While profits are crucial, we find that adjustment costs have only a

small effect on our estimates. Finally, relying on our survey proxy or the BFK hours per worker proxy

for the utilization adjustment delivers very similar results for the United States.

In Europe, we find that TFP was essentially flat during the Great Recession and Euro crisis, while the

Solow and BFK methods suggest a substantial decrease. These results are in part driven by our assump-

tions on profits, in line with our results for the United States during the Great Recession. Adjustment

costs, in turn, only have small effects on aggregate outcomes. The main difference with respect to the

United States is that the utilization proxy now also plays a crucial role. In several countries (e.g., Spain,

France and the United Kingdom), changes in labour composition or shocks to labour market institutions
3This is a potential advantage over hours per worker, but also over other possible proxies (e.g., electricity use).
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generate fluctuations in hours per worker that are unrelated to utilization. Therefore, the BFK utilization

adjustment regressions deliver insignificant or problematic results in these countries. Our survey measure

is more robust, and delivers TFP series that are less volatile and less cyclical. For instance, our series for

aggregate TFP growth in Eurozone countries has a standard deviation that is only half as large as the one

of the BFK measure, and its correlation with real value added growth is 0.13, against 0.57 for the BFK

measure. Thus, while hours per worker may be a good utilization proxy in the United States, our survey

measure appears more suitable for measuring changes in unobserved capacity utilization in Europe.

Related literature Our paper is related to a large literature on productivity measurement. Following

Solow (1957), researchers have assembled large industry-level growth accounting datasets with many

production factors, and used these to compute Solow residuals. Leading examples for this approach are

the KLEMS project (O’Mahony and Timmer, 2009) or the studies of Jorgenson et al. (2012) for the

United States. These detailed and high-quality datasets are the basis for our empirical work. However,

their Solow residual measures do not consider profits, adjustment costs, or changes in factor utilization.4

There is a large literature on each of these aspects. As noted above, the need to adjust TFP growth

for changes in capacity utilization was already recognized in Solow (1957). In later research, Costello

(1993) and Burnside et al. (1995) propose electricity consumption (and, in the latter case, also hours per

worker) as a proxy for capital services.5 Imbs (1999) develops a alternative model-based methodology,

and Field (2012) proposes to rely on the unemployment rate. Currently, the BFK method is the leading

approach on this issue. Its application has been largely limited to US data, with only two exceptions that

we are aware of. Inklaar (2007) uses the BFK method for European countries and finds that the resulting

TFP measures remain strongly procyclical. He interprets these results as showing that hours per worker

are not a relevant utilization proxy in Europe, but does not propose an alternative.6 Huo et al. (2020) use

the BFK method to calculate utilization-adjusted TFP series for a large panel of countries (imposing that

the relation between hours per worker and utilization is the same in all countries). Our main contribution
4TFP measurement obviously faces many other challenges that we do not deal with in this paper. For instance, we abstract

from issues relating to the measurement of output growth in the presence of quality improvements and new products (Boskin
et al., 1996; Aghion et al., 2017). We also do not directly deal with intangible capital (Corrado et al., 2012). However, we
do use the latest release of the EU KLEMS dataset, which makes some efforts to deal with this latter issue.

5The major difference between their approach and BFK is that Burnside et al. (1995) assume a unit elasticity between
changes in hours per worker and capital utilization, while BFK estimate this elasticity.

6Planas et al. (2013) propose a statistical filtering method to extract trend TFP growth for European countries (also
relying on capacity utilization surveys). This approach differs from BFK and from our paper by the fact that it uses a
statistical model instead of the economic structure imposed by a cost minimization model.
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with respect to these studies is to propose a new model-based proxy, taken from firm surveys. Our proxy

does not require assumptions on relative factor prices, is robust to changes in labour composition and

labour market institutions, and appears to be relevant across a large range of countries.

Adjustment costs have also received some attention in the literature, especially regarding the issue

of TFP measurement in new industries (Berndt and Fuss, 1986; Brynjolfsson et al., 2018). For instance,

Basu et al. (2001) compute a TFP series for the United States which takes capital adjustment costs into

account. While they calibrate a capital adjustment function using external evidence and assume that there

are no adjustment costs for labour, we structurally estimate capital and labour adjustment costs by using

information on factor prices and input volatility. Finally, several recent papers have noted that positive

profits affect TFP measurement (Karabarbounis and Neiman, 2019; Meier and Reinelt, 2020). These

approaches are limited to aggregate data. To the best of our knowledge, we are to first to use detailed

industry-level estimates, and to point out that doing so has major implications for the chronology of TFP

growth around the Great Recession. Furthermore, we develop TFP measures that jointly account for

profits, adjustment costs and utilization, instead of dealing with each of these issues separately.

The remainder of this paper is structured as follows. Section 2 lays out the dynamic cost minimization

model that is the basis of our analysis. Section 3 describes our method of TFP estimation, and explains

how it differs from standard methods. Section 4 presents the data that we use for our analysis. Section 5

presents our estimates for output elasticities, adjustment costs and utilization adjustments, and Section 6

analyses our final results for TFP growth rates. Section 7 concludes.

2 A workhorse model

2.1 Assumptions

Production technology We assume that in each industry, a representative firm produces output Yt

by using capital K̃t, quasi-fixed labour LF,t, variable labour LV,t, and materials Mt. Inputs are combined

with the production function

Yt = ZtF
(
K̃t, LF,t, LV,t,Mt

)
, (1)

where Zt is a Hicks-neutral production shifter to which we refer as TFP. Note that accounting for two

types of labour will become important when we discuss the potential limitations underlying the use of
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hours per worker as a utilization proxy.7

Capital and quasi-fixed labour are subject to internal adjustment costs. The capital input holds

K̃t = KtΦ
(

It
Kt−1

− φ
)
, (2)

where Kt is the book value of the capital stock, It is investment, and φ is a positive parameter. Φ is an

inverse-U shaped function with a maximum at 0, implying that if the firm chooses an investment rate

different from φ, its effective capital input is lower than the book value of its capital stock. Similarly, the

quasi-fixed labour input is given by

LF,t = EF,tHF,tNF,tΨ
(

AF,t
NF,t−1

− ψ
)
. (3)

We define quasi-fixed labour as the labour input provided by workers with permanent and full-time

contracts. NF,t stands for the number of such workers, HF,t for the number of hours worked by each of

them, and EF,t for the number of tasks each worker undertakes in one hour (“worker effort”). Just as for

capital, there are internal adjustment costs, captured by the function Ψ, which is also inverse-U shaped

and has a maximum at 0. Adjustment costs depend on the difference between the hiring rate (defined as

the ratio of new hires AF,t to last period’s employment) and the parameter ψ.

Finally, the variable labour input is defined as the labour provided by workers with either temporary

or part-time contracts, and given by

LV,t = EV,tHV,tNV,t, (4)

where NV,t, HV,t and EV,t stand for the employment, hours and effort of these workers. Note that there

are no adjustment costs for variable labour, reflecting the fact that it is easier for firms to adjust their

temporary or part-time workforce than their full-time, permanent workforce.

Note that our specification of the production technology does not have an independent role for the

utilization rate of capital. This captures the idea that capital goods (machines, buildings, patents...) do

not produce by themselves. Thus, their utilization rate depends on all other inputs. For example, the

utilization rate of a machine depends on how often workers use it, how much electricity it consumes, and

how many material inputs it receives. The utilization rate of a bank office depends on how many clerks
7To simplify notation, we drop industry subscripts whenever this does not cause confusion.
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work in the office, and on how many customers they serve within an hour. As the utilization rate of

capital is a function of all other inputs, it does not appear in the reduced-form production function shown

in Equation (1).

If production and adjustment cost functions were known, and output and all inputs were observable,

one could immediately read off TFP growth from Equation (1). In reality, however, production and

adjustment cost functions are unknown, and some inputs such as worker effort are not observable.8

The classical approach to TFP measurement, pioneered by Solow (1957) and extended by Hall (1988)

and Basu et al. (2006), overcomes these issues by imposing additional assumptions. Most importantly, it

assumes that firms minimize costs and are price-takers in input markets. We follow this general framework,

and thus start by laying out a dynamic cost minimization problem that will be at the heart of our analysis.

This allows us to discuss both standard methods and our deviations from them.

Cost minimization We assume that the firm minimizes the discounted sum of production costs for

any possible sequence of production (Yt)t∈N, subject to stochastic shocks to TFP and to input prices. Its

cost minimization problem is then

minE0

[+∞∑
t=0

( 1
1 + r

)t (
wF,tΓF (HF,t)NF,t + wV,tΓV (HV,t)NV,t + qF,tΛF (EF,t)HF,tNF,t

+qV,tΛV (EV,t)HV,tNV,t + PM,tMt + PI,tIt

)]
such that Yt = ZtF

(
KtΦ

(
It

Kt−1
− ϕ

)
, EF,tHF,tNF,tΨ

(
AF,t
NF,t−1

− ψ
)
, EV,tHV,tNV,t,Mt

)
,

NF,t = (1− δNF )NF,t−1 +At,

Kt = (1− δK)Kt−1 + It.

(5)

Firms discount profits at the constant real interest rate r, and all input prices are stated in real terms.

The total cost in period t is composed by the cost of materials, PM,tMt (where PM,t stands for the price

of materials), the cost of investment, PI,tIt (where PI,t stands for the price of investment goods), and

labour costs. The firm owns the capital stock, which depreciates at an exogenous rate δK . It also faces

an exogenous separation rate δNF for its quasi-fixed workforce.

For each type of labour ` ∈ {F, V }, costs have two components. The first component, w`,tΓ` (H`,t)N`,t,
8Again, as we assume that the utilization rate of capital is a function of all inputs, changes in capital utilization do not

create measurement problems as such. Problems only arise because some inputs, such as worker effort, are not observable.
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depends on employment and hours per worker. Γ` is an increasing and convex function, capturing the

fact that workers need to be paid more when they work longer hours (because of overtime premia, etc.).

w`,t is a stochastic shifter of this cost function, capturing changes in hourly wages which are not due to

changes in hours per worker. The second component is an additional cost for increasing effort per hour

worked, q`,tΛ` (E`,t)H`,tN`,t. We stay as agnostic as possible with respect to this cost. We just assume

that it is proportional to total hours worked, and increasing and convex in effort (i.e., Λ` is increasing

and convex). Effort costs are also subject to a stochastic cost shifter q`,t.

Functional forms In order to explicitly solve the model, we need to assume functional forms for the

production function F and the cost functions Γ`, Λ`, Φ and Ψ. We assume that the production function

is Cobb-Douglas with constant returns to scale:

F
(
K̃t, LF,t, LV,t,Mt

)
=
(
K̃t

)αK (LF,t)α
F
L (LV,t)α

V
L (Mt)αM ,

where αK + αFL + αVL + αM = 1. While this is obviously a strong assumption, it follows most of the

literature, as we discuss in Section 3.

The cost functions for hours and effort are given by

Γ` (H`,t) = 1 + bΓ` (H`,t)cΓ ,

Λ` (E`,t) = bΛ` (E`,t)cΛ .

The intercept in the function Γ` implies that firms need to pay workers even if they work zero hours, and

is needed for the choice of hours per worker and employment to be well defined on the Balanced Growth

Path (BGP).9 Note also that we assume the curvature of the two cost functions to be the same for the

quasi-fixed and the variable part of labour input.

Finally, we assume that the adjustment cost function for capital is

Φ
(

It
Kt−1

− φ
)

=


1− a−Φ

(
It

Kt−1
− φ

)2
if It

Kt−1
≤ φ

1− a+
Φ

(
It

Kt−1
− φ

)2
if It

Kt−1
> φ

,

9We define our model’s BGP solution as the solution obtained when output, TFP and factor prices grow at a constant
rate. Appendix A.1 provides further details, and shows that hours per worker and effort per hour are constant on the BGP.

8



where we set φ to be equal to the BGP investment rate. Accordingly, marginal adjustment costs are zero

on the BGP. The adjustment cost function for quasi-fixed employment Ψ is specified exactly analogously

to Φ. These quadratic adjustment cost functions are in line with the typical specifications used in the

literature (see, e.g., David and Venkateswaran, 2019).

2.2 Optimal input choices

Given our functional form assumptions, we can now write down the first-order optimality conditions for

the cost minimization problem specified in Equation (5). The first-order condition for materials is

PM,t = λtαM
Yt
Mt

, (6)

where λt is the Lagrange multiplier on the output constraint (which is equal, by definition, to the marginal

cost of output in period t). Equation (6) states that the firm equalizes the marginal cost of materials,

PM,t, to their marginal benefit. The marginal benefit of buying materials is that this relaxes the output

constraint by αM Yt
Mt

units, which is valued at the marginal cost λt.

We get analogous expressions for hours and effort of both types of workers:

(
w`,tΓ′` (H`,t) + q`,tΛ` (E`,t)

)
N`,t = λtα

`
L

Yt
H`,t

, (7)

q`,tΛ′` (E`,t)H`,tN`,t = λtα
`
L

Yt
E`,t

, (8)

for ` ∈ {F, V }. Finally, variable employment is pinned down by

wV,tΓV (HV,t) + qV,tΛV (EV,t)HV,t = λtα
V
L

Yt
NV,t

.

As shown in greater detail in Appendix A.1, capital and quasi-fixed employment choices are pinned

down by two Euler Equations. The Euler equation for capital is

PI,t = λt

(
1 + Kt

Kt−1

Φ′t
Φt

)
αKYt
Kt

+ 1
1 + r

Et

(
(1− δK)PI,t+1 − λt+1

(
Kt+1
Kt

)2 Φ′t+1
Φt+1

αKYt+1
Kt+1

)
. (9)

This equation shows that the firm equalizes the marginal cost of investment (the price of investment goods)

9



to its marginal benefit, composed of three terms. First, investment relaxes the output constraint, and

this is valued at the marginal cost λt. Second, investment leaves the firm with (1− δK) units of left-over

capital in the next period, valued at next period’s price of investment goods. Third, investment affects

future capital adjustment costs. When the firm expects to invest more than the BGP rate tomorrow

(implying Φ′t+1 < 0), investment today lowers tomorrow’s adjustment cost. However, when the firm

expects to invest less than the BGP rate tomorrow (implying Φ′t+1 > 0), investment today requires a

costly reversal tomorrow.

The Euler equation for quasi-fixed employment follows a similar logic, and is given by:

wF,tΓF (HF,t) + qF,tΛF (EF,t)HF,t =

λt
(
1 + NF,t

NF,t−1

Ψ′t
Ψt

)
αFLYt
NF,t

− 1
1+rEt

(
λt+1

(
NF,t+1
NF,t

)2 Ψ′t+1
Ψt+1

αFLYt+1
NF,t+1

)
,

(10)

The firm equalizes the marginal cost of hiring a quasi-fixed worker to the sum of the flow benefit of

higher employment on the output constraint, and the continuation value (or cost) of higher employment

on future employment adjustment costs. There is, however, no capital value of employment, as the firm

needs to pay its workforce again in every period.

Taking stock Using our functional form assumption for the production function, we can express TFP

growth as
dZt = dYt −

[
αK (dKt + dΦt) + αFL (dEF,t + dHF,t + dNF,t + dΨt)

+αVL (dEV,t + dHV,t + dNV,t) + αMdMt

]
.

(11)

where dXt ≡ lnXt − lnXt−1 for any variable Xt. Equation (11) summarizes the challenges that need

to be overcome in order to measure TFP growth: while growth in output, the capital stock, hours per

worker, employment and materials are observable in many standard datasets, the output elasticities α,

the adjustment cost functions Φ and Ψ, and the changes in worker effort dE are not.

In the Solow-BFK tradition, these unobservable quantities are disciplined by using the optimality

conditions of the firm’s cost minimization problem and further assumptions on firm behaviour. In the

next section, we discuss these standard methods, and show how our method deviates from them.
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3 Measuring TFP growth

3.1 Standard methods

In this section, we describe the BFK method, which nests the classical Solow (1957) method. To streamline

the discussion, we present these methods in the context of our model. In particular, we note that the

BFK estimation equation can be obtained by imposing four simplifying assumptions on our model: the

industry is always in the vicinity of the BGP, profits are zero on the BGP, all labour inputs are quasi-fixed,

and the relative price of effort with respect to hours per worker is constant.10

Adjustment costs and output elasticities As the industry is always in the vicinity of the BGP, and

marginal adjustment costs are zero on the BGP, changes in adjustment costs (dΦt and dΨt) are zero up

to the first order, and can be ignored. Evaluating the first-order conditions for materials and employment

on the BGP, we then get

µ∗
P ∗M,tM

∗
t

P ∗t Y
∗
t

= αM , (12)

µ∗

(
w∗`,tΓ∗` (H∗` ) + q∗`,tΛ∗` (E∗` )H∗`

)
N∗`,t

P ∗t Y
∗
t

= α`L, for ` ∈ {F, V } , (13)

where we denote by µ∗ ≡ P ∗t
λ∗t

the industry-level markup. Summing up Equations (12) and (13), and using

the constant returns to scale assumption, we get

µ∗

P ∗M,tM
∗
t +

∑
`∈{F,V }

(
w∗`,tΓ∗` (H∗` ) + q∗`,tΛ∗` (E∗` )H∗`

)
N∗`,t

P ∗t Y
∗
t

 = 1− αK . (14)

BFK assume that BGP profits are zero, which implies µ∗ = 1.11 Then, Equations (12) to (13) show

that the output elasticities α of materials and labour are just equal to the BGP factor shares of these

inputs (that is, the long-run average of the ratios between spending on these inputs and sales, easy to
10Basu et al. (2006) specify a dynamic cost minimization model which is similar, but not identical, to the one presented

in Section 2. However, if we impose the four simplifying assumptions stated above, as well as constant return to scale, we
obtain a measurement equation that is identical to the one in their paper. Two further points are worth noting. First, while
Basu et al. (2006) allow for non-constant returns to scale, their results provide strong evidence for constant returns to scale,
and BFK impose this assumption from the outset in later work (Basu et al., 2013; Fernald, 2014b). Second, while we directly
assume that production is Cobb-Douglas, BFK impose this restriction implicitly. Indeed, they consider a log-lineariziation of
a generic production function around the BGP, making their effective production function log-linear with constant elasticities
(i.e., Cobb-Douglas). We discuss the exact differences between our and BFK’s model in Appendix A.4.

11Constant returns to scale imply that µ∗ = 1
1−π∗ , where π∗ is the profit share of gross output.
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compute in standard datasets). Once we know the factor elasticities of materials and labour, the factor

elasticity of capital can be deduced as a residual from Equation (14).

Abstracting from unobservable changes in worker effort, these results imply that we can measure TFP

growth as a standard Solow residual. That is, as advocated by Solow (1957), TFP growth is just the

difference between output growth and a weighted average of input growth rates, weighting each input by

its factor share.12 However, as we abstract from changes in worker effort, this measure is biased. The

BFK method is designed to correct this bias, and we discuss the way it does so in the next paragraph.

Accounting for unobserved changes in worker effort To capture unobserved changes in worker

effort, BFK propose a proxy method which relies on the optimality conditions of the firm’s cost minim-

ization problem. Combining Equations (7) and (8), we get

dE`,t = 1
cΛ

(dw`,t − dq`,t) + cΓ − 1
cΛ

dH`,t, for ` ∈ {F, V } . (15)

Therefore, the total unobserved effort holds

αFLdEF,t + αVLdEV,t =
∑

`∈{V,F}

(
α`L
cΛ

(dw`,t − dq`,t) + α`L
cΓ − 1
cΛ

dH`,t

)
. (16)

BFK assume that all labour inputs are quasi-fixed (i.e., αVL = 0) and that the relative price of effort

with respect to hours per worker is constant (i.e., dwt = dqt). Then, Equation (16) simplifies to

dEt = cΓ − 1
cΛ

dHt, (17)

where Et stands for aggregate effort and Ht stands for aggregate hours per worker. That is, there is a

linear relationship between changes in effort and changes in hours. As a result, BFK can rewrite Equation

(11) as

dYt − (s∗KdKt + s∗L (dHt + dNt) + s∗MdMt) = βHdHt + dZt, (18)

where βH = αL
cΓ−1
cΛ

and s∗K , s∗L and s∗M are BGP factor shares. The left-hand side of this equation is

12To obtain this result, Solow disregarded adjustment costs from the outset and assumed perfect competition. Then, in
a much simpler setup, he also obtained the result that output elasticities are equal to factor shares. BFK consider a more
complicated dynamic setup in order to create a role for unobserved fluctuations in utilization, which their method is then
designed to address.
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a standard Solow residual. OLS estimation of the unknown coefficient βH faces a simultaneity issue, as

input choices depend on TFP growth. Thus, BFK estimate Equation (18) with instrumental variables,

using oil price shocks, fiscal policy shocks and monetary policy shocks as instruments for changes in hours

per worker. The residual of this IV regression is their measure of TFP growth dZt.

Discussion The standard methods for estimating TFP growth have greatly advanced our understand-

ing of productivity dynamics. However, as the above discussion makes clear, they also rely on strong

assumptions. In our paper, we aim to relax three assumptions that appear particularly relevant.

First, Equations (12) and (13) show that if firms make positive profits, the Solow-BFK estimates for

output elasticities are biased downwards for materials and labour, and upwards for capital. As capital

growth tends to be less volatile than material or labour growth, this could induce a procyclical bias for

TFP. Moreover, as capital tends to grow more than other inputs in the long run, the same bias could lead

to an underestimation of long-run TFP growth.

Second, the Solow-BFK assumption of zero or negligible adjustment costs could underestimate TFP

growth during large increases in investment or hiring, e.g., during the recovery from a major recession or

in the early years of new industries.

Third, relying on hours per worker as a utilization proxy may be problematic in some cases. Indeed,

Equation (15) indicates several issues. For one, if there are shocks to the relative price of hours per worker

with respect to worker effort, there is no longer a perfect correlation between both variables. Moreover,

when there are different types of workers, as in our model, aggregate hours per worker become subject to

composition effects. To make this latter point more concrete, we assume for a moment that the relative

price of hours per worker with respect to worker effort is 1, and rewrite Equation (16) as

αFLdEF,t + αVLdEV,t = cΓ − 1
cΛ

(
αLdHt − αFLd

(
Ht

HF,t

)
− αVLd

(
Ht

HV,t

))
. (19)

This shows that in the presence of worker heterogeneity, the BFK proxying equation contains two extra

terms, d
(
Ht
HF,t

)
and d

(
Ht
HV,t

)
. These terms are non-zero if aggregate hours per worker do not move in

line with hours per worker for both categories (which could happen if hours and/or employment levels

for both categories react differently to shocks). Depending on whether such changes are correlated with

changes in aggregate hours per worker and TFP shocks, this could either introduce a bias or at least some

noise in the estimation equation.
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Figure 1: Relative hours per worker
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Notes: This figure plots the ratios Ht
HF,t

and Ht
HV,t

, aggregating up employment and hours across all industries. Quasi-fixed
workers are those with a permanent and full-time contract, variable workers are all others. Data sources are described in
Section 4. Shaded areas mark recessions, defined in Appendix B.6.

Figure 1 plots Ht
HF,t

and Ht
HV,t

for the six countries analysed in this paper, aggregating hours and

employment across all industries. This figure shows that there are permanent differences in hours per

worker between categories, as quasi-fixed workers (i.e., workers with a permanent and full-time contract)
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work longer hours. Second, aggregate hours per worker do not move symmetrically to hours per worker

for each category. For example, in Spain, the ratio Ht
HF,t

falls and the ratio Ht
HV,t

increases during the

Great Recession and Euro crisis. That is, aggregate hours per worker fall more than the hours of full-time

and permanent workers, but less than the hours of workers on temporary or part-time contracts. This

is consistent with the latter workers working lower hours in general, and being the first to lose their job

during the crisis. Such systematic composition effects could introduce a bias in the BFK estimation.

All three measurement issues raised above may have important effects on estimated TFP growth rates.

The next section presents our estimation method and describes how it deals with these issues.

3.2 Our TFP estimation method

Our estimation method allows for non-zero profits and adjustment costs, and introduces a new proxy for

unobserved changes in worker effort. We first discuss our approach with respect to each of these issues

in isolation, and then present our full estimation algorithm. Here, we focus on conceptual issues, while

Section 4 contains further details on data and implementation.

Profit shares and output elasticities Equations (12) to (14) show that in each industry, output

elasticities depend only on BGP factor shares and BGP markups. To compute the latter, we rely on

industry-level estimates for profit shares from Gutierrez (2018).13 Taking simple averages of profit shares

over time, we obtain an estimate for BGP profit shares π∗, and thus for BGP markups µ∗. Combining

this with standard data on factor shares, Equations (12) to (14) pin down our estimates for the output

elasticities αM , αVL , αFL and αK .

Adjustment cost functions Our functional form assumptions imply that adjustment cost functions

for capital and quasi-fixed employment depend on four parameters, a−Φ , a
+
Φ , a

−
Ψ and a+

Ψ. We determine

these parameters by structurally estimating our dynamic cost minimization model.

To do so, we assume that shocks to output, TFP and input prices follow a multidimensional Markov

process, which we estimate from the data. We then compute model-implied input choices and compare

the standard deviations of input growth rates in the model and in the data. In particular, we target the

standard deviations of capital growth and quasi-fixed employment growth. Intuitively, these volatilities
13As explained in greater detail in Section 4, Gutierrez uses the Jorgenson (1963) method to estimate rental rates of capital.

He can then compute capital shares, and determine profit as the fraction of gross output not paid to any production factor.
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identify the magnitude of adjustment costs: for example, all else equal, a high volatility of capital growth

in the data implies low capital adjustment costs. Given our estimates for adjustment cost parameters, we

then use data on capital and quasi-fixed employment growth to compute the series dΦt and dΨt.

Utilization adjustment To proxy for unobserved changes in worker effort, we rely on firm surveys

on capacity utilization. Such surveys are well-established in many countries. In the United States,

the Census Bureau regularly asks plants to compute their capacity utilization rate, defined as the ratio

between current output and full capacity output. Full capacity output is defined as “the maximum level

of production that [...] could reasonably [be] expect[ed] under normal and realistic operating conditions

fully utilizing the machinery and equipment in place”.14 European surveys, coordinated by the European

Commission, instead ask firms to directly provide an estimate of their capacity utilization rate.15

To map this survey to changes in worker effort, we need to define full capacity output in our model.

We assume that for every industry, full capacity output is the output obtained with (i) the current level

of capital and quasi-fixed employment, (ii) the BGP level of effort and hours per worker and (iii) a level of

other variable inputs that is scaled up proportionally to overall production. The third condition implies

that there are constants γVN and γM which hold NFull
V,t

NV,t
=
(
Y Full
t
Yt

)γVN
and MFull

t
Mt

=
(
Y Full
t
Yt

)γM
. With these

assumptions, the survey capacity utilization measure in our model is

SModel
t = Yt

Y Full
t

=
(
EV,tHV,t

E∗VH
∗
V

)αVL (EF,tHF,t

E∗FH
∗
F

)αFL ( Yt

Y Full
t

)αVL γVN+αMγM
(20)

From this, it is easy to deduce that changes in worker effort satisfy

αVLdEV,t + αFLdEF,t =
(
1− αVLγVN − αMγM

)
dSModel

t − αVLdHV,t − αFLdHF,t. (21)

This equation shows that the survey can be used as a proxy for unobserved changes in worker effort. In

particular, we can rewrite Equation (11) as

dYt −
[
αK (dKt + dΦt) + αFL (dNF,t + dΨt) + αVLdNV,t + αMdMt

]
= βSdS

Data
t + dZt, (22)

14The Census questionnaire (https://www2.census.gov/programs-surveys/qpc/technical-documentation/
questionnaires/instructions.pdf) also specifies that to compute full capacity output, respondents should consider
an unchanged capital stock, a “number of shifts, hours of plant operations, and overtime pay [that] can be sustained under
normal conditions and a realistic work schedule”, and that “labor, materials, utilities, etc. are fully available”.

15For an example of a European survey, see https://www.ifo.de/DocDL/ifo_Beitraege_z_Wifo_88.pdf.
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where βS = 1−αVLγVN −αMγM . This is our analogue to the BFK estimation equation (18). Following

BFK, we estimate the utilization adjustment coefficient βS with an IV regression, and take the residual

of this regression as our estimate of TFP growth. Instruments and further implementation details are

discussed in Section 4.

Equation (22) summarizes our method. Compared to BFK, we differ both with respect to our measure

of non-adjusted TFP growth (the left-hand side of the equation) and our utilization proxy. First, our

left-hand side variable takes into account profits (through the output elasticities α) and adjustment costs.

Furthermore, it does not include changes in hours per worker. Indeed, according to our model, the

survey already fully reflects changes in hours per worker, so that including them would amount to double-

counting. In Section 4, we consider a robustness check for this assumption. Second, as argued above,

we believe that our survey-based utilization proxy may have advantages over hours per worker (or other

proxies), as it is unaffected by shocks to relative factor prices or composition effects.

The estimation algorithm Our structural estimation of adjustment costs and our utilization ad-

justment regression are not independent: to estimate adjustment cost functions, we need to know TFP

shocks, and to estimate our utilization adjustment regression, we need to know adjustment cost functions.

Therefore, our estimation uses an iterative algorithm described below.

Step 1 We make an initial guess for the parameters of the adjustment cost functions. With this, we

compute the left-hand side of Equation (22) and run an IV regression to obtain a preliminary estimate

for the utilization adjustment coefficient βS and TFP growth rates dZt.16

Step 2 Now, we jointly estimate the adjustment cost parameters a−Φ , a
+
Φ , a

−
Ψ and a+

Ψ. We also

estimate the curvature parameters for the effort and hours cost functions, cΛ and cΓ, as there is no

external evidence to discipline these parameters. Our estimation targets eight moments: the standard

deviation of capital growth (unconditional, and for positive/negative observations, in order to identify

asymmetries in the capital adjustment cost function), quasi-fixed employment growth (unconditional, and

for positive/negative observations), growth in hours per worker and growth in the capacity utilization

16Our functional forms imply that Φt = 1 − a−Φ

(
Kt
Kt−1

− K∗
t

K∗
t−1

)2
if capital growth is lower than its BGP value, and

Φt = 1 − a+
Φ

(
Kt
Kt−1

− K∗
t

K∗
t−1

)2
if capital growth is higher than its BGP value. We assume that the BGP growth rate of

capital, K∗
t

K∗
t−1

, is equal to the average growth rate observed in the data. Thus, in order to compute dΦt, we only need data
on capital growth. The same expressions apply for dΨt, which only depends on quasi-fixed employment growth.
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survey.17 Here, we only briefly sketch the structural estimation algorithm. Appendix A.2 provides further

details. Our procedure follows three steps.

(a) We determine the series of output, TFP and input price shocks faced by the firm during the sample

period. We directly take series for output Yt, material prices PM,t and investment good prices PI,t from

the data, and we have obtained a series for TFP Zt in Step 1. However, wage and effort cost shifters (w`,t

and q`,t) are not observable. In order to discipline these, we assume that cost shifters for both categories

of workers are perfectly correlated. Our model then imposes a relationship between (observable) changes

in the wage bill, employment and hours, and (unobservable) wage shifters, which we use to compute the

latter. Finally, we assume that effort cost shifters are constant throughout. These assumptions yield the

path of shocks faced by the firm over the sample period. To discipline expectations, we assume that shocks

follow a discrete multidimensional Markov process, whose parameters we estimate from the realizations

during the sample period.

(b) Given our estimates for output elasticities, the current guess for adjustment cost parameters,

calibrated values for the parameters r and δK , and the stochastic process for shocks, we solve our model,

using a Generalized Stochastic Simulation Algorithm inspired by Maliar et al. (2011).18 This yields a

series for the firm’s optimal input choices given the sequence of shocks observed in the data, which we

use to compute the standard deviation of input growth rates predicted by our model.

(c) If the distance between standard deviations in the model and in the data is sufficiently small, the

estimation has converged. Otherwise, we update our guess for parameters and return to Step (a).

Step 3 If the adjustment cost parameters obtained in Step 2 are sufficiently close to our guess in

Step 1, the algorithm has converged. If not, we update our guess for the adjustment cost parameters and

return to Step 1.

This completes the description of our estimation method. We are now ready to study its implications

for industry-level and aggregate TFP growth in the United States and in Europe. The next section

discusses the data that we use, as well as some further implementation details.
17To solve our model, we express all variables in deviations from their BGP values, and compute growth rates by using

log changes (see Appendix A.2). To be consistent with this, we compute data growth rates in the same way, defining the
BGP growth rate of a variable to be equal to the sample average growth rate. To compare model and data for the capacity
utilization survey, we rely on Equation (21). We compute the standard deviation of αVL (dEV,t + dHV,t)+αFL (dEF,t + dHF,t)
in our model, and compare it to the standard deviation of βSdSData

t , where βS is the coefficient estimated in Step 1.
18We set r = 0.03, and calibrate δK using data on capital depreciation rates from EU KLEMS. As shown in Appendix

A.2, other model parameters are irrelevant for input growth rates, and therefore do not need to be calibrated.
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4 Data and implementation details

4.1 Data sources

We estimate TFP growth for the United States and for the five largest European economies (Germany,

Spain, France, Italy and the United Kingdom). In this section, we briefly describe our main data sources.

Appendix B contains further details, as well as plots of key variables.

Growth accounting data Growth accounting data for European countries comes from the November

2019 release of EU KLEMS (O’Mahony and Timmer, 2009; Adarov and Stehrer, 2019).19 EU KLEMS

provides annual industry-level data for the growth rates of output, inputs and factor prices between 1995

and 2016, as well as factor shares and capital depreciation rates. We restrict our attention to the non-farm,

non-mining market economy, leaving us with 19 distinct industries.

For the United States, we use industry-level multifactor productivity data provided by the Bureau of

Labor Statistics (BLS), which contains the same type of information as EU KLEMS.20 We aggregate the

60 industries in the dataset to 21 broader industries, comparable to the ones in the European data.

Labour composition While KLEMS and the BLS productivity data provide time series for employ-

ment and hours worked, they do not contain information on the two worker types considered in our

paper (i.e., workers with full-time and permanent contracts, and workers with part-time or temporary

contracts).21 Therefore, we need to rely on other data sources.

For European countries, we use micro-level data from the European Union Labour Force Survey (EU

LFS), which allows us to compute the share of employment and total hours worked represented by both

categories. We then apply these shares to the KLEMS data on employment and total hours worked to

obtain time series. Our estimation also requires information on the relative BGP wages of quasi-fixed and

variable labour, for which we rely on the European Union’s Structure of Earnings Survey (EU SES). As

there are no comprehensive time series on wages for both categories, we use the average hourly wages of

workers with limited and unlimited duration contracts in 2006, roughly the midpoint of our sample.

In the United States, there is no strong distinction between permanent and temporary work contracts.

Therefore, we just identify quasi-fixed labour with full-time employment, and variable labour with part-
19EU KLEMS data can be downloaded at https://euklems.eu/.
20BLS data can be downloaded at https://www.bls.gov/mfp/mprdload.htm.
21KLEMS does contain a split of employment by gender, education and age, but not by type of contract.
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time employment. We use micro-level data from the BLS Current Population Survey (CPS) to compute

the share of full-time and part-time workers in employment and hours worked and apply these shares

to the BLS productivity data to obtain time series. Information on the relative wage of full-time and

part-time workers also comes from the BLS.

Profit shares Our profit shares come from Gutierrez (2018), who estimates industry-level profit shares

for European countries (with KLEMS data) and the United States (with BEA data). Following Jorgenson

(1963), Gutierrez estimates an industry-specific rental rate of capital by using an arbitrage condition that

equalizes the return to capital in a given industry (depending on the rental rate, the relative price of

investment goods, and depreciation), to the “normal” return on another asset (defined as the sum of the

risk-free rate and the spread on corporate BBB bonds). Knowing the rental rate, one can easily compute

the profit share as the share of gross output that is not paid to labour, materials or capital. For each

industry, we define the BGP profit share as the average of annual profit shares over our sample period.

Table 1 lists average industry-level BGP profit shares (weighted by value added) for all countries of

our sample. Profit shares are high in the United States, Spain, France and Italy, and low in Germany

and in the United Kingdom.22

Table 1: Profit shares
United
States

Germany Spain France Italy United
Kingdom

Average profit share 5.7% 2.2% 6.2% 5.0% 6.6% −1.2%

Notes: Annual industry-level profit data is from Gutierrez (2018). We compute an average of annual profit shares to obtain
BGP values. The table reports a value added weighted average across all industries in a country.

Capacity utilization surveys For European countries, our survey measure of firm capacity utilization

comes from the European Commission’s Harmonised Business and Consumer Surveys. We mainly rely

on the quarterly manufacturing survey, which asks firms “At what capacity is your company currently

operating (as a percentage of full capacity)?”. The Commission provides quarterly time series for 24

manufacturing industries, which we aggregate up to the yearly frequency using simple averages, and to

EU KLEMS industries by using value added weights.
22Gutierrez finds negative profit shares in some industries. While this is a priori no issue for our methodology, we show in

Section 6.4 that our results are virtually unchanged if we assume that profits shares are bounded below by zero.
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For the United States, we use the Federal Reserve Board’s reports on Industrial Production and Ca-

pacity Utilization. These are mainly based on the Census Bureau’s Quarterly Survey of Plant Capacity,

which asks plants to report their current level of production and their full production capacity, defined as

“the maximum level of production that this establishment could reasonably expect to attain under normal

and realistic operating conditions fully utilizing the machinery and equipment in place”. Capacity utiliza-

tion is defined as the ratio between current and full production. The Federal Reserve provides time series

for 17 manufacturing industries, which we aggregate to BLS industries with value-added weights.

These two surveys do not cover the non-manufacturing sector. However, the European Commission has

been conducting a separate survey on capacity utilization in service industries since 2011 (see Appendix

B.3 for further details). For our baseline results, we use this service data in all years in which it is available,

and backcast the industry-level series by projecting them on average capacity utilization in manufacturing

for all earlier years. In the United States, there is no independent data for service industries, and we use

the manufacturing average as a proxy for all non-manufacturing industries.

Table 2 shows that in Europe, average capacity utilization in service industries is strongly correlated

with average capacity utilization in manufacturing. This fact provides support for our backcasting method.

Table 2: Capacity utilization in manufacturing and services

Germany Spain France Italy United
Kingdom

Correlation coeff. 0.75 0.83 0.68 0.67 0.61
Observations 27 25 24 31 25

Notes: The table gives the correlation coefficients between the quarter-on-quarter growth rates of average capacity utilization
in service industries and average capacity utilization in manufacturing, over the period in which there is data for both.

Instruments Our baseline estimation uses four instruments: oil price shocks, monetary policy shocks,

economic policy uncertainty shocks, and shocks to financial conditions. Recall that in order to valid,

instruments should be correlated with changes in our utilization proxy, but uncorrelated with TFP shocks.

Following Basu et al. (2006), we compute oil price shocks as the log difference between the current

quarterly real oil price and the highest real oil price in the preceding four quarters. We define the annual

oil price shock as the sum of the four quarterly shocks, and use the shock in year t− 1 as an instrument

for changes in utilization in year t.
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For members of the European Monetary Union, we take monetary policy shocks from Jarocinski and

Karadi (2018), who rely on surprise movements in Eonia interest rate swaps after ECB policy announce-

ments to identify monthly monetary policy shocks starting in March 1999. We take simple averages of

these shocks to obtain an annual series.23 For the United Kingdom, we follow Cesa-Bianchi et al. (2016),

who identify monetary policy shocks through changes in the price of 3-month Sterling future contracts

after policy announcements by the Bank of England. Finally, for the United States, we use narratively

identified monetary policy shocks from Romer and Romer (2004), as updated in Wieland and Yang (2016).

For all countries, we use the shock in year t− 1 as an instrument for changes in utilization in year t.

For economic policy uncertainty (EPU), we use the measure of Baker, Bloom and Davis (2016). In

Europe countries, this measure is a monthly index based on newspaper articles on policy uncertainty. In

the United States, EPU also considers the number of federal tax code provisions set to expire in future

years and disagreement among economic forecasters. For all countries, we use the log change in the EPU

index in year t− 1 as an instrument for changes in utilization in year t.

Finally, we measure financial conditions using the excess bond premium introduced by Gilchrist and

Zakrajšek (2012).24 This measure is computed as the difference between the actual spread of unsecured

bonds of US firms and the predicted spread based on firm-specific default risk and bond characteristics.

Thus, it captures variation in the average price of US corporate credit risk, above and beyond the com-

pensation for expected defaults. We aggregate the monthly excess bond premium to its annual average,

and use its change in year t− 1 as our instrument for changes in utilization in year t.

Data availability Table 3 summarizes data availability. Note that the binding constraint on extending

our time series backwards is data on labour composition (the EU LFS and BLS series start in 1995) and

on capacity utilization (European surveys start between 1991 and 1994).

Table 3: Data availability
United
States

Germany Spain France Italy United
Kingdom

First year 1995 1995 1995 1995 1995 1995
Last year 2018 2016 2016 2016 2015 2016

Notes: This table lists all years for which we observe growth rates of output, inputs, input prices and capacity utilization.

23Moreover, we backcast monetary policy shocks for the years 1995-1999 by projecting them on the other instruments.
Our results are unchanged when we instead estimate our regressions for a shorter time period starting in 1999.

24An updated time series for this measure is available at http://people.bu.edu/sgilchri/Data/data.htm.
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4.2 Implementation details and aggregation

Pooled estimation and detrending We estimate industry-level TFP growth rates by using our

method described in Section 3.2. Two implementation details are worth noting.

First, to increase the statistical power of the estimation, we follow BFK and divide industries into three

broad sectors (durable manufacturing, non-durable manufacturing, and non-manufacturing), assuming

that all industries in a sector j share the same utilization adjustment coefficient βjS .

Second, while hours per worker are stationary in our model, they have a downward trend in the data.

We assume that only cyclical variation in hours per worker is reflected in firms’ answers to the capacity

utilization survey, while long-run trends are not. Thus, we include long-run trends in hours per worker

(but not cyclical changes) in our left-hand side measure of non-adjusted TFP growth. Just like BFK (who

face the same issue when using hours per worker as their utilization proxy), we detrend the logarithm of

hours per worker with a Christiano and Fitzgerald (2003) band-pass filter, isolating frequencies between

2 and 8 years, and take the first differences in the resulting series as our measure of cyclical changes.25

Summing up, to implement Equation (22), we pool all industries i of sector j, and estimate

dY j
i,t − dX

j
i,t = κji + βjSdS

j,Data
i,t + εji,t,

where dXj
i,t ≡ α

j
Ki

(
dKj

i,t + dΦj
i,t

)
+ αFjLi

(
dN j

F i,t + dΨj
i,t + dHj,T

F i,t

)
+αV jLi

(
dN j

V i,t + dHj,T
V i,t

)
+ αjMidM

j
i,t.

(23)

In this specification, κji is a dummy variable for industry i of sector j, and dHj,T
`i,t stands for the trend

growth of hours per worker of category `. We estimate the coefficient βjS by using the instruments listed

in Section 4.1. Our measure of TFP growth for industry i is then given by dZji,t = κji + εji,t.

For comparison purposes, we also estimate TFP growth using the BFK method for all industries and

countries in our sample. To that effect, we estimate

dY j
i,t − dX

j,BFK
i,t = κji + βjHdH

j,C
i,t + εji,t,

where dXj,BFK
i,t ≡ sjKidK

j
i,t + sLi

(
dN j

i,t + dHj
i,t

)
+ sjMidM

j
i,t.

(24)

The left-hand side of the BFK estimation equation is a standard Solow residual. On the right-hand side,

cyclical changes in hours per worker dHj,C
i,t (computed with a band-pass filter) serve as the utilization

25In the United States, the capacity utilization survey also has a downward trend (Pierce and Wisniewski, 2018). Thus,
we also detrend it, using again the band-pass filter. European surveys do not have a trend.
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proxy. We estimate the utilization coefficients βjH with the same instruments as in our baseline.

Aggregation We compute aggregate TFP growth rates by using Tornqvist weights. The Tornqvist

weight for industry i in year t is the average of the ratios of industry gross output to aggregate value

added in year t− 1 and year t. Baqaee and Farhi (2019) show that this aggregation is problematic if the

economy is distorted (e.g., if profit shares are heterogeneous across industries) and production factors are

mobile. Thus, our results can be understood as a benchmark applying if all factors are industry-specific,

an assumption which is likely to hold in the short and medium-run. Moreover, Baqaee and Farhi (2019)

show that the dispersion of profit shares across industries is substantially smaller than within industries.

We are now ready to discuss our results, starting with our estimates for output elasticities, adjustment

costs and utilization adjustment coefficients.

5 Estimation results

5.1 Output elasticities

Table 4 lists average industry-level output elasticities and factor shares. In each country, industry-level

variables are aggregated using value-added weights.

Table 4: Average output elasticities and factor shares
United
States

Germany Spain France Italy United
Kingdom

Materials
Output elasticity 0.46 0.53 0.56 0.56 0.60 0.51
Factor share 0.44 0.52 0.53 0.53 0.56 0.51
Quasi-fixed labour
Output elasticity 0.33 0.29 0.24 0.30 0.27 0.31
Factor share 0.32 0.28 0.22 0.28 0.25 0.31
Variable labour
Output elasticity 0.05 0.05 0.09 0.05 0.04 0.03
Factor share 0.05 0.05 0.09 0.05 0.04 0.03
Capital
Output elasticity 0.15 0.13 0.10 0.08 0.09 0.15
Factor share 0.20 0.15 0.16 0.13 0.15 0.14

Notes: Reported values are value-added weighted averages across all industries. Values may not add to 1 due to rounding.
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As we have shown previously, profit shares are positive in most industries. Therefore, our estimates

for output elasticities of materials and labour are higher than their respective factor shares, and our

estimates for output elasticities of capital are lower than capital shares. Table 4 indicates that the largest

differences occur in the United States, Spain, France and Italy, where profit shares are highest.

These differences are important. Indeed, in most countries, capital grows faster than other inputs

in the long run, and contracts less than other inputs during recessions. Therefore, a lower estimate for

the output elasticity of capital leads to higher estimates of TFP growth both in the long run and during

recessions. As we will show in Section 6, these considerations significantly alter TFP dynamics.

5.2 Adjustment costs

Table 5 lists our estimates for adjustment costs to capital and quasi-fixed employment, as well as for the

curvature of the cost functions for hours per worker and worker effort. Again, we report a value-added

weighted average of industry-level estimates for each country. Table 6 summarizes the fit of the estimation,

and shows that our dynamic cost minimization model generally manages to generate volatilities which

are close to the ones observed in the data.

Table 5: Estimated adjustment cost parameters
United
States

Germany Spain France Italy United
Kingdom

Capital, down (a−Φ) 4.6 2.6 3.7 4.4 4.1 6.0
Capital, up (a+

Φ) 3.3 1.9 5.0 6.0 3.3 4.3
Quasi-fixed empl., down (a−Ψ) 0.5 0.9 1.4 0.8 1.2 0.8
Quasi-fixed empl. up (a+

Ψ) 0.6 0.7 1.5 0.8 1.8 1.6
Curvature of hours cost 4.1 4.0 4.2 3.4 4.1 4.1
Curvature of effort costs 4.4 3.7 4.5 4.1 2.6 4.1

Notes: Reported values are value-added weighted averages across all industries in a country.

Several features are worth noting. First, capital adjustment costs are higher than quasi-fixed em-

ployment adjustment costs. This is in line with the existing literature (Basu et al., 2001; Hall, 2004),

and a direct consequence of the empirical fact that capital is less volatile than quasi-fixed employment.26

26German manufacturing is the major outlier to this pattern. We find essentially zero capital adjustment costs in this
sector, because its capital series are highly volatile (see Figure A.4 in the Appendix). This reflects problems with the
underlying data: as the KLEMS team has confirmed to us in private correspondence, German industry-level capital data
relies on extrapolations of aggregate series, and is therefore less reliable. Future KLEMS updates should resolve this issue.
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Second, while estimates are positively correlated across countries, there are also interesting differences.

For instance, we find that the United States has the lowest employment adjustment costs. This may reflect

some structural features of the US labour market, such as weaker employment protection legislation.

Table 6: Standard deviations of input growth in the model and in the data

United
States

Germany Spain France Italy United
Kingdom

Capital, data 2.3 3.4 3.2 1.4 2.2 2.2
Model (pp difference) 0.4 1.0 0.7 0.3 0.5 0.9

Quasi-fixed emp., data 4.7 2.8 4.9 2.5 2.6 2.7
Model (pp difference) 1.9 0.8 0.3 0.6 0.4 0.6

Quasi-fixed hours, data 1.8 1.8 1.1 1.2 1.5 1.4
Model (pp difference) 0.6 0.6 0.8 0.3 0.6 0.3

Utilization, data 0.4 1.1 0.2 0.6 1.0 0.9
Model (pp difference) 0.4 0.6 0.5 0.1 0.5 0.4

Notes: This table lists the standard deviations of the growth rates of capital, quasi-fixed employment, quasi-fixed hours
per worker and utilization (computed as βSdSData

t ) in the data. The reported values are value-added weighted averages
across all industries in a country. All growth rates are expressed as log changes, multiplied by 100. The table also shows the
average absolute percentage-point difference between the data values and their model equivalents. Utilization in the model
is computed as αVL (dEV,t + dHV,t) + αFL (dEF,t + dHF,t).

To fix ideas on the magnitude of the estimated adjustment costs, note that our functional form

assumptions imply Φt = 1 − aΦ

(
Kt
Kt−1

− K∗t
K∗t−1

)2
. Thus, for aΦ = 4 (roughly the median estimate of

capital adjustment costs in Table 5) and a 2 percentage point deviation of capital growth from its BGP

trend (roughly the median standard deviation of capital growth in Table 6), we obtain that adjustment

costs reduce capital input by a modest 0.16%. This suggests that during normal times, adjustment costs

have minor effects on output growth (and thus on estimated TFP). We return to this issue in Section 6.3.

5.3 Utilization adjustment regressions

Table 7 lists the estimates for our survey-based utilization adjustment coefficients βS , as specified in

Equation (23). Estimates are positive in all countries and sectors, and tend to be lower in the non-

manufacturing sector. According to our model, positive estimates imply that changes in the survey are

positively correlated with changes in worker effort: when firms report low capacity utilization, workers

perform fewer tasks per hour of work. Therefore, we need to adjust TFP growth upwards in years in which

the survey indicates falling capacity utilization, and downwards in years in which the survey indicates
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Table 7: Utilization adjustment regressions (survey-based utilization proxy)

United
States

Germany Spain France Italy United
Kingdom

Non-durable manufacturing
β̂S 0.224∗∗∗ 0.562∗∗∗ 0.076∗ 0.070 0.400∗∗∗ 0.119∗

Standard error (0.08) (0.063) (0.042) (0.064) (0.074) (0.066)
Observations 115 105 105 105 100 105
First-stage F -statistic 19.6 24.5 11.7 23.3 10.8 7.0
Durable manufacturing
β̂S 0.296∗∗∗ 0.392∗∗∗ 0.096∗∗ 0.255∗∗∗ 0.337∗∗∗ 0.228∗∗∗

Standard error (0.056) (0.043) (0.046) (0.055) (0.031) (0.049)
Observations 161 105 105 105 100 105
First-stage F -statistic 32.4 74.8 10.6 35.5 35.5 21.3
Non-manufacturing
β̂S 0.106 0.122∗ 0.098 0.203∗∗∗ 0.201∗∗∗ 0.376∗∗∗

Standard error (0.084) (0.064) (0.167) (0.049) (0.057) (0.112)
Observations 207 189 189 189 180 189
First-stage F -statistic 76.1 134.4 15.5 81.7 60.3 10.0

Notes: This table reports the estimates for utilization adjustment coefficients βS , estimated using 2SLS on Equation (23).
Instruments for survey capacity utilization are oil, monetary policy, economic policy uncertainty and financial shocks, as
described in Section 4.1. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

rising capacity utilization. It is also worth noting that the first stage of our IV regressions performs well,

with F -statistics that are above the critical threshold value of 10 in almost all cases. Thus, instruments

appear to be relevant for almost all countries and sectors.

For comparison, Table 8 reports our estimates for the utilization adjustment coefficients βH estimated

using the BFK method, as specified in Equation (24). In the United States, Germany and Italy, we

find the expected results, i.e., positive and significant utilization adjustment coefficients (even though F -

statistics are somewhat lower than in the regressions using the survey proxy). Results for other countries

are more problematic. This is most striking in Spain and in the United Kingdom, where we find a

weak first stage (with F -statistics below 3 in all sectors), and utilization adjustment coefficients that

are mostly insignificant, and even negative in some cases. Negative estimates imply that firms increase

unobserved worker effort when they reduce hours per worker. This is inconsistent with the BFK model,

which emphasizes a positive comovement of hours per worker and unobserved utilization margins.
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Table 8: BFK utilization regressions (hours per worker-based utilization proxy)
United
States

Germany Spain France Italy United
Kingdom

Non-durable manufacturing
β̂H 0.949∗∗ 0.743∗∗∗ −2.407 0.217 0.580∗∗∗ 0.802
Standard error (0.375) (0.134) (1.785) (0.221) (0.145) (0.820)
Observations 115 105 105 105 100 105
First-stage F-statistic 8.3 65.5 0.4 14.5 23.3 0.6
Durable manufacturing
β̂S 1.808∗∗∗ 0.845∗∗∗ 0.872 0.685∗∗∗ 0.617∗∗∗ 2.229∗∗
Standard error (0.435) (0.068) (0.666) (0.163) (0.070) (1.073)
Observations 161 105 105 105 100 105
First-stage F-statistic 11.6 114.1 1.4 34.4 39.4 1.2
Non-manufacturing
β̂S 1.505∗ 0.752∗∗ −2.021∗ 0.706∗∗ 0.230 1.900
Standard error (0.776) (0.317) (1.174) (0.328) (0.333) (2.634)
Observations 207 189 189 189 180 189
First-stage F-statistic 8.1 33.4 2.9 8.7 4.9 0.2

Notes: This table lists the estimates for utilization adjustment coefficients βH , estimated using 2SLS on Equation (24).
Instruments for hours per worker are oil, monetary policy, economic policy uncertainty and financial shocks, as described in
Section 4.1. Robust standard errors in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.

To understand the origins of these issues, Figure 2 plots time series for both the BFK hours per

worker utilization proxy, and our survey-based utilization proxy. These series are strongly correlated

in the United States and (to a somewhat lesser extent) in Germany and in Italy. These are precisely

the countries in which the BFK regressions appear to perform best. In contrast, in Spain, France and

in the United Kingdom, both series are substantially different. In these three countries, the survey is

strongly procyclical. However, Spanish hours per worker are countercyclical, falling during the 2000-2007

boom and rising during the Great Recession. This may be due to composition effects. Indeed, temporary

and part-time work contracts are particularly prevalent in Spain. The employment of these workers

is highly cyclical, and they typically work low hours. This tends to make aggregate hours per worker

countercyclical. In the United Kingdom, hours per worker also appear to be somewhat countercyclical,

and show some erratic variation during the 2000s. Finally, in France, hours per worker exhibit some large

variation in the mid-2000s, which appears unrelated to the business cycle and is probably due to the

implementation of the 35-hour work week (mandatory for all firms from January 2002, but weakened by

subsequent reforms). As we discussed in Section 3.1, composition effects or shocks to the cost of hours

per worker reduce their effectiveness as a utilization proxy.
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Figure 2: Hours per worker and survey-based capacity utilization
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Notes: This figure plots changes in aggregate (detrended) hours per worker, and changes in aggregate capacity utilization.
Capacity utilization surveys are aggregated across industries using value-added weights. Shaded areas mark recessions,
defined in Appendix B.6.

Summing up, our estimation results suggest that the relevance of hours per worker as a utilization

proxy is country-specific. In some countries (including the United States, for which BFK developed this

proxy), hours per worker deliver positive and significant utilization adjustment coefficients, and have a

reasonably strong first stage. In these countries, BFK regression results also appear to be qualitatively
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in line with our survey-based regression results (we turn to a quantitative assessment of this issue in Sec-

tion 6.3). In other countries, such as Spain or the United Kingdom, hours per worker deliver insignificant

and sometimes counter-intuitive results. In contrast, our survey-based measure performs more evenly

across countries. This suggests that it may be a more robust proxy, possibly because it is not affected by

shocks to relative factor prices or country-specific idiosyncrasies in labour market institutions.

6 TFP growth in the United States and in Europe

6.1 Aggregate TFP growth

We are now ready to analyse the implications of different estimation methods for TFP dynamics. To

begin, Figure 3 shows cumulated aggregate TFP growth rates for the United States and for an aggregate

of the four Eurozone countries in our sample.27 Dotted black lines refer to a standard Solow residual,

red dashed lines refer to the measure obtained with the BFK method, and full green lines refer to the

measure obtained with our method.

Figure 3: Cumulated TFP growth in the United States and in the Eurozone
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Notes: This figure plots cumulated TFP growth, normalized to 0 in the first year of the sample for each country. Shaded
areas mark recessions, defined in Appendix B.6.

Figure 3 illustrates some important trends that hold for all TFP measures. First, cumulated TFP

growth between 1995 and 2015 was substantially higher in the United States than in the Eurozone. Second,
27Eurozone TFP growth is computed as a value-added weighted average of the TFP growth rates of Germany, Spain, Italy

and France.
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there was a marked slowdown in TFP growth in the second half of the sample, both in the United States

and in the Eurozone. Both of these trends have been widely noted (see, e.g., van Ark et al. (2008) or

Bloom et al. (2012) for the first, and Fernald (2014a) and Gordon (2016) for the second).

However, Figure 3 also indicates important differences between the three TFP measures. In the

United States, we find that TFP grew by a cumulated 26.8% between 1995 and 2018, rather than the

23.0% implied by the series obtained with the BFK method. Moreover, our series suggests that the

slowdown in TFP growth was more gradual than the one implied by the standard measures. Indeed,

the Solow residual and the BFK measure both suggest a sharp break in TFP growth around the year

2005. Our measure instead implies that TFP growth remained relatively robust between 2005 and 2010

(and especially between 2007 and 2010), falling to essentially zero only after 2010, i.e., after the Great

Recession. This suggests that the Great Recession played some role for the productivity slowdown.28 We

will investigate the origins of these differences between TFP series in Section 6.3.

In the Eurozone, Figure 3 indicates that our measure of TFP growth is substantially less volatile and

less cyclical than the other two. In particular, we find that Eurozone TFP is essentially flat during the

Great Recession and the Euro crisis, while the Solow residual and the BFK method indicate a strong fall

and a subsequent recovery. Again, we will investigate the sources of these differences in Section 6.3.

Aggregate Eurozone TFP masks a lot of underlying heterogeneity. Figure 4 plots cumulative TFP

growth in individual Eurozone countries, as well as in the United Kingdom. Again, some trends are

common to all TFP measures, such as the widely noted long-run decline of TFP in Italy and Spain, and

the better performance of the United Kingdom and Germany (Gopinath et al., 2017; García-Santana

et al., 2020; Schivardi and Schmitz, 2020). However, there are also striking differences between series.

For instance, in Spain and Italy, standard methods suggest a fall in TFP by more than 5 percentage

points between 2008 and 2013, while we find TFP to be virtually unchanged. This effect is particularly

striking for Italy, where our method results in a substantial upward revision of TFP growth over the

sample period. We find a similar effect in France, even though French TFP still declines during the Great

Recession. Finally, the BFK series for the United Kingdom is very volatile, driven by the large BFK

utilization adjustment coefficients shown in Table 8, while our measure is substantially smoother.

Table 9 summarizes the medium and long-run properties of TFP series in a more formal way, by
28A potential mechanism accounting for this effect could be the drop in technology adoption and R&D investment observed

during the recession (Anzoategui et al., 2019; Queralto, 2019).
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listing average growth rates during the whole sample and for selected subperiods. The first panel of the

table shows that our method implies higher average TFP growth rates than the Solow residual or BFK

in several countries, especially in the United States, France and Italy.

Figure 4: Cumulated TFP growth in European countries
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Notes: This figure plots cumulated TFP growth, normalized to 0 in the first year of the sample for each country. Shaded
areas mark recessions, defined in Appendix B.6.

The second panel shows our TFP growth rates over subperiods, confirming the insights conveyed by

Figure 3. In the United States, we find a gradual TFP slowdown: annual TFP growth decreased from
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1.9% per year between 1995 and 2005 to 0.9% between 2005 and 2010, and 0.0% between 2010 and 2018.

In contrast, the BFK measure declines more sharply from 1.8% per year in 1995-2005 to 0.4% in 2005-2010

and 0.1% in 2010-2018. For the Eurozone, in turn, there appears to be a relatively abrupt TFP slowdown

after 2007. Aggregate TFP growth for the Eurozone declines from 0.5% per year before 2007 to 0.0% per

year after 2007. There are, however, notable exceptions for Spain and Italy, where the Great Recession

actually seems to end or at least dampen a long-run TFP decline.

Table 9: Average TFP growth rates
United
States

Eurozone Germany Spain France Italy United
Kingdom

Average TFP growth, full sample
Solow residual 0.92 0.24 0.97 -0.70 0.16 -0.36 1.01
BFK method 0.90 0.22 0.98 -0.61 0.10 -0.37 1.03
Our method 1.03 0.30 0.92 -0.62 0.25 -0.15 0.95
Average TFP growth, our method, subperiods
1995-2005 1.89
2005-2010 0.88
2010-2018 0.05
1995-2007 0.49 1.19 −0.93 0.80 −0.22 1.67
2007-2015 0.02 0.51 −0.31 −0.39 0.05 −0.02

Notes: TFP growth rates are expressed as log changes multiplied by 100.

Finally, Table 10 summarizes the cyclical implications of our results. The first panel lists the standard

deviations of different TFP series (expressed as a fraction of the standard deviation of real value added

growth in the respective country). In the United States, standard deviations are roughly identical across

TFP series. However, for all five European countries, our TFP series is less volatile than the Solow

residual or the series obtained with the BFK method. Differences are often substantial: for the Eurozone

as a whole, the standard deviation of our TFP measure is only one third as large as that of the Solow

residual, and half as large as that of the BFK series.

The second panel of Table 10 shows that the Solow residual is strongly procyclical in all countries

(with the exception of Spain). Our TFP measure is in turn roughly acyclical: the correlation coefficient

of TFP and real value added growth is 0.13 in the United States and in the Eurozone, and 0.24 in the

United Kingdom. While the BFK series is also less correlated with the cycle than the Solow residual,
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there is a substantial discrepancy in the Eurozone, where the BFK series remains quite cyclical. This

result (as well as our finding on volatilities discussed above) is consistent with the idea that in Europe,

the BFK hours per worker proxy does not fully control for unobserved cyclical changes in worker effort,

while our survey proxy is more successful at accounting for them. Relatedly, the third panel of Table 10

shows that the correlation between our measure of aggregate TFP growth and the one obtained with the

BFK method is highest in the United States.

Table 10: Cyclical behaviour of different TFP measures
United
States

Eurozone Germany Spain France Italy United
Kingdom

Standard deviation (rel. to real VA growth)
Solow residual 0.65 0.66 0.75 0.33 0.75 0.67 0.67
BFK method 0.56 0.39 0.43 0.34 0.86 0.46 1.33
Our method 0.66 0.19 0.34 0.30 0.49 0.34 0.66
Correlation with real VA growth
Solow residual 0.52 0.92 0.95 0.29 0.87 0.80 0.83
BFK method 0.15 0.57 0.33 0.15 0.54 0.57 0.29
Our method 0.13 0.13 0.24 −0.23 0.39 0.03 0.24
Correlation between TFP measures
BFK TFP, Our TFP 0.75 0.46 0.49 0.54 0.39 0.48 -0.28

Notes: TFP growth rates are expressed as log changes multiplied by 100.

6.2 Sectoral TFP growth rates

Figure 5 illustrates sectoral differences in TFP growth, by plotting US and Eurozone TFP growth in non-

durable manufacturing, durable manufacturing and outside of the manufacturing sector.29 In all countries,

TFP growth is highest in durable manufacturing.30 In the United States, differences between sectoral TFP

series obtained with different estimation methods mirror the aggregate differences shown in Figure 3. In

the Eurozone, there is more heterogeneity: we find that the TFP slowdown in manufacturing only sets in

around 2010, while non-manufacturing TFP starts declining around 2007 (although our measure indicates

a much smaller decline than the Solow residual or the BFK measure). As non-manufacturing represents

most of economic activity, this drives the aggregate dynamics shown in Figure 3.
29Sectoral growth rates are aggregated by using Tornqvist weights of industry gross output over sectoral value added.
30In the United States, this is driven by the exceptional TFP growth of a single industry, Computer and Electronic products

manufacturing (see Houseman et al., 2014).
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Figure 5: Sectoral TFP growth in the United States and in the Eurozone
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Notes: This figure plots cumulated TFP growth, normalized to 0 in the first year of the sample for each country. Shaded
areas mark recessions, defined in Appendix B.6.

The brief discussion in this section can obviously not do justice to the richness of TFP patterns across

all industries. Appendix C provides further details, by plotting industry-level time series for all countries.

So far, we have shown that our estimation delivers TFP dynamics that differ from those obtained with
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standard methods. In the next section, we investigate which of our method’s three novel aspects (profits,

adjustment costs and the new utilization proxy) matter most for these differences.

6.3 Decomposing differences between TFP estimates

To analyse the sources of differences between the three TFP measures discussed above, we separately

consider each of the three new aspects introduced in our paper.

Profit shares Figure 6 illustrates the impact of our assumptions on profit shares. To do so, we compare

our baseline measure of aggregate TFP growth with an alternative measure obtained when setting profit

shares to zero (i.e., assuming that output elasticities are equal to factor shares, but keeping adjustment

costs and the utilization adjustment coefficients βS at their baseline values).

In countries with high profit shares (such as the United States), there are important differences

between the two series. As discussed earlier, profits reduce the output elasticity of capital and increase

the output elasticities of other inputs. However, capital generally grows faster than other inputs in the

long run. For instance, in the United States, capital grew on average by 2.4% across all industries during

our sample period, while labour input grew by 0.2% and material input by 1.2%. Thus, reducing the

output elasticity of capital attributes less of output growth to capital and more to TFP.31 In total, our

baseline estimate for cumulative TFP growth during 1995-2018 is 4.0 percentage points higher than the

zero-profit estimate (while the difference between our baseline and the BFK series was 3.8 percentage

points). There is also a cyclical dimension to this issue, as capital fell less than other inputs during the

Great Recession. Thus, during 2007-2010, our estimate for cumulated TFP growth for the United States

is 1.3 percentage points higher than the zero-profit estimate. This largely explains why we find a more

gradual TFP slowdown than the BFK series (the difference between our baseline series and BFK during

2007-2010 is 1.7 percentage points). In other words, in the United States, accounting for non-zero profit

shares alone explains almost all differences between our TFP series and the one obtained with the BFK

method.

In Italy and Spain, profits are also high, and we also find that capital fell less than other inputs during

the Great Recession. Accordingly, our series implies higher TFP growth than the zero-profit series during

the recession. In France, capital evolved more in line with other inputs, so that there are only small
31This point is also made by Karabarbounis and Neiman (2019), using aggregate data and a different estimate for profit

shares. However, they do not compute industry-level or aggregate time series.
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differences between both series. Finally, in countries with low profit shares (Germany and the United

Kingdom), our assumptions on profits have only minor effects.32

Figure 6: The impact of non-zero profits on estimated TFP growth
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Notes: These figures plot our baseline measure of cumulated TFP growth against an alternative measure that assumes
profits are zero. Adjustment costs and utilization adjustment coefficients are kept at their baseline values. Shaded areas
mark recessions, defined in Appendix B.6.

32In Germany, capital grew slowly between 1995 and 2016 (only 0.4% per year, against 0.04% for labour and 2.8% for
materials). Therefore, taking into account positive profit shares actually revises German TFP growth estimates downward.
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Adjustment costs Figure 7 illustrates the impact of our assumptions on adjustment costs. They

compare our baseline measure of TFP growth to an alternative measure obtained when setting adjustment

costs to zero (i.e., assuming dΦt = dΨt = 0), but keeping output elasticities and the utilization adjustment

coefficients βS at their baseline levels.

Figure 7: The impact of adjustment costs on estimated TFP growth
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Notes: These figures plot our baseline measure of cumulated TFP growth against an alternative measure that assumes
adjustment costs are zero. Profit shares and utilization adjustment coefficients are kept at their baseline values. Shaded
areas mark recessions, defined in Appendix B.6.
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The aggregate impact of adjustment costs is limited. Indeed, while adjustment costs are most im-

portant for capital, capital is also not very volatile and has a low output elasticity. As we have shown

in Section 5.2, with typical values for adjustment costs and changes in capital growth, adjustment costs

lower capital input by just 0.16%. As the capital elasticity is around 0.15 in most industries, the impact

of this change on output (and therefore on TFP) is roughly 0.02%. The only country in which adjustment

costs have a modest impact is Spain, which combines significant employment adjustment costs and a very

large fall in employment during the Great Recession. While the United States also experienced a large

drop in employment, its estimated adjustment costs are much lower, and so this effect is negligible.

Utilization adjustments Figure 8 compares our baseline measure of TFP growth to an alternative

measure obtained by using changes in hours per worker as a utilization proxy (i.e., keeping output elast-

icities and adjustment costs at their baseline levels, but estimating Equation (23) by using dHj,C
i,t rather

than dSj,Data
i,t as the right-hand side variable).33

Strikingly, Figure 8 shows that for the United States, both series virtually coincide. That is, conditional

on taking into account non-zero profits and adjustment costs, using either hours per worker or capacity

utilization surveys as a proxy for unobserved changes in worker effort is virtually equivalent.34 In Europe,

however, the two proxies are clearly not equivalent. In all European countries, our baseline measure

appears to be less volatile and less cyclical than the one obtained by using the hours per worker proxy.

These differences become especially apparent during the Great Recession and the Euro Crisis.

Table 11 confirms these impressions, by listing the standard deviations of both series (expressed as a

fraction of the standard deviation of real value added growth), their correlation with value added growth,

and their correlation among each other. Both series of TFP growth virtually coincide for the United

States, where their correlation coefficient is 0.85. In Europe, however, there are large differences. For the

Eurozone as a whole, our baseline series is only half as volatile than the alternative series using hours

per worker, and its correlation with the business cycle is only 0.13, against 0.51 for the hours-per-worker

alternative. Together with the evidence on the limitations of hours per worker as a utilization proxy in

Europe presented in Sections 3.2 and 5.3, this suggests that in European countries, the capacity utilization
33Moreover, to compute the alternative measure, our left-hand side variable includes changes in hours per worker (which

were excluded before, as they are already reflected in the capacity utilization survey). That is, we now define dXj
i,t ≡

αjKi
(
dKj

i,t + dΦji,t
)

+ αFjLi
(
dN j

Fi,t + dΨj
i,t + dHj

Fi,t

)
+ αV jLi

(
dN j

V i,t + dHj
V i,t

)
+ αjMidM

j
i,t.

34It does appear that the survey proxy implies faster TFP growth in the immediate aftermath of recessions, but differences
are very small.
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survey is a better proxy for unobserved changes in worker effort than hours per worker.

Figure 8: The impact of different utilization proxies on estimated TFP growth
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Notes: These figures plot our baseline measure of cumulated TFP growth against an alternative measure which uses changes
in hours per worker rather than the capacity utilization survey as the right-hand side utilization proxy in Equation (23).
Profit shares and adjustment costs are kept at their baseline values. Shaded areas mark recessions, defined in Appendix B.6.

In particular, the correlation between our baseline series and the one obtained with the hours per

worker proxy is lowest in France and in the United Kingdom, two countries in which the series for hours
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per worker appeared to have some problematic properties. It is highest in Spain, but as we noted earlier,

this is due to the combination of countercyclical hours per worker and negative utilization adjustment

coefficients, two facts that are hard to square with the BFK method.

Table 11: Cyclical properties of TFP series with different utilization proxies
United
States

Eurozone Germany Spain France Italy United
Kingdom

Standard deviation (rel. to real VA growth)
Baseline 0.66 0.19 0.34 0.30 0.49 0.34 0.66
Hours per worker proxy 0.55 0.36 0.43 0.28 0.81 0.44 1.17
Correlation with real VA growth
Baseline 0.13 0.13 0.24 −0.23 0.39 0.03 0.24
Hours per worker proxy 0.17 0.51 0.30 −0.07 0.53 0.55 0.35
Correlation between TFP measures
Baseline, Hours proxy 0.85 0.49 0.51 0.82 0.43 0.51 −0.24

Notes: TFP growth rates are expressed as log changes multiplied by 100.

6.4 Robustness checks

Before concluding, we briefly verify whether our results are sensitive to reasonable variations of our various

implementation assumptions. Table 12 shows the correlation of the aggregate TFP series obtained in the

robustness checks with the baseline series.

Table 12: Robustness checks: correlations with baseline series
United
States

Eurozone Germany Spain France Italy United
Kingdom

(1) No negative profits 0.97 0.84 0.95 0.90 0.90 0.70 0.79
(2) Dep. var. includes hours 0.88 0.79 0.86 0.93 0.82 0.70 0.73
(3) Survey lin. detrended 0.96 0.92 0.99 0.97 0.98 0.72 0.83
(4) Man. avg. for services 1.00 0.96 1.00 0.98 0.98 0.85 0.88
(5) No uncertainty 1.00 1.00 1.00 1.00 1.00 1.00 0.96
(6) No uncertainty, mon. pol. 0.99 0.90 0.96 0.97 0.96 0.71 0.82

Notes: All correlations refer to growth rates, stated in log differences.

In line (1), we reconsider profit shares. As Table 1 shows, estimated profit shares are sometimes

negative. While this is not inconsistent with our estimation method, we set all negative profit shares to

zero as a robustness check. The resulting series are strongly correlated with our baseline, as negative
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profit shares are generally close to zero.

In line (2), we reconsider our interpretation of the capacity utilization survey. In the baseline, we follow

our model, which suggests that answers to the survey include cyclical variation in hours per worker (which

is why the dependent variable of our estimation equation (23) does not include this cyclical variation).

Here, we abstract from this and instead use as dependent variable a measure of unadjusted TFP growth

that includes cyclical variation in hours per worker.35

In lines (3) to (4), we consider different specifications for the survey proxy. In line (3), instead of

detrending only the survey for the United States with a band-pass filter, we detrend the surveys for all

countries using a linear filter. In line (4), we use the average of the manufacturing survey as a proxy for

capacity utilization in non-manufacturing industries throughout. This latter robustness check does not

affect our numbers for the United States, where we already use the manufacturing average in the baseline.

Finally, in lines (5) and (6), we consider robustness checks with respect to the instruments included

in our IV estimation. In line (5), we drop the economic policy uncertainty instrument, and in line (6), we

drop both economic policy uncertainty and monetary policy shocks.

For all robustness checks, the resulting TFP series are highly correlated with the baseline estimates,

showing that our findings are robust to reasonable variations regarding the implementation details of our

method. Appendix C.2 provides further details.

7 Conclusions

In this paper, we have proposed new estimates for industry-level and aggregate TFP growth. Our estim-

ates take into account economic profits and adjustment costs, and rely on a new survey-based proxy for

unobserved changes in factor utilization. We find that TFP growth in the United States between 1995 and

2018 was higher, and that the slowdown in TFP growth in recent years was more gradual than what is

suggested by standard methods. These differences are almost exclusively driven by the fact that we adjust

output elasticities for non-zero profits. In Europe, our estimated TFP growth series are substantially less

volatile and less cyclical than the ones obtained with standard methods. Here, differences are due both

to our adjustment for non-zero profits and to our use of a survey-based proxy for factor utilization, which

appears to be more relevant in Europe than the hours per worker proxy used by standard methods.
35That is, we set dXj

i,t ≡ αjKi
(
dKj

i,t + dΦji,t
)

+ αFjLi
(
dN j

Fi,t + dΨj
i,t + dHj

Fi,t

)
+ αV jLi

(
dN j

V i,t + dHj
V i,t

)
+ αjMidM

j
i,t.
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Our estimation method can easily be generalized to other countries or time periods, as it only requires

standard growth accounting data, survey-based data on capacity utilization, and an estimate of profit

shares.36 This could yield further insights into the dynamics of TFP growth around the world.
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A Model Appendix

A.1 Further details on the model solution

A.1.1 Euler Equations

The problem described in (5) admits the following Bellman Equation:

V (Kt−1, NF,t−1,Xt) = min (wF,tΓF (HF,t)NF,t + wV,tΓV (HV,t)NV,t + qF,tΛF (EF,t)HF,tNF,t

+qV,tΛV (EV,t)HV,tNV,t + PM,tMt + PI,tIt + Et(V (Kt,NF,t,Xt+1))
1+r

)
such that Yt = ZtF

(
KtΦ

(
It

Kt−1
− ϕ

)
, EF,tHF,tNF,tΨ

(
AF,t
NF,t−1

− ψ
)
, EV,tHV,tNV,t,Mt

)
,

NF,t = (1− δN )NF,t−1 +At,
Kt = (1− δK)Kt−1 + It.

(A.1)
where Xt ≡ (Zt, Yt, wF,t, wV,t, qF,t, qV t, PM,t, PI,t) is a vector containing all exogenous state variables.
The first-order condition for next period’s capital is

PI,t + 1
1 + r

Et
(
∂Vt+1
∂Kt

)
= λt

(
Φt + Kt

Kt−1
Φ′t
)
αKYt
KtΦt

, (A.2)

where we denote ∂Vt+1
∂Kt

≡ ∂V
∂Kt

(Kt, NF,t,Xt+1). For next period’s quasi-fixed employment, we get

wF,tΓF (HF,t) + qF,tΛF (EF,t)HF,t + 1
1 + r

Et

(
∂Vt+1
∂NF,t

)
= λt

(
Ψt + NF,t

NF,t−1
Ψ′t

)
αFLYt
NF,tΨt

. (A.3)

Next, we can derive the envelope conditions for the problem. These are given by

∂Vt
∂Kt−1

= − (1− δK)PI,t + λt

(
Kt

Kt−1

)2
Φ′t
αKYt
KtΦt

, (A.4)

∂Vt
∂NF,t−1

= λt

(
Nt

Nt−1

)2
Ψ′t

αFLYt
NF,tΨt

. (A.5)

Using these envelope conditions to substitute out the derivatives of the value function in the first-order
conditions, we immediately obtain the Euler equations shown in Equations (9) to (10).

A.1.2 The Balanced Growth Path solution

As stated in the main text, the BGP is defined as a situation in which output, TFP and factor prices
grow at a constant rate forever, and the relative price of hours per worker with respect to worker effort is
constant. Note that a BGP does not require output, TFP and factor prices to grow at the same rate. As
we show in this section, the firm chooses capital, employment and materials to grow at a constant rate
on the BGP, and hours per worker and effort per hour to be constant.

On the BGP, the first-order condition for materials becomes

P ∗M,t = αMλ
∗
t

Y ∗t
M∗t

. (A.6)

This condition must hold both at time t and at time t + 1. Dividing the expressions in both periods by
each other, we get

dM∗ = dλ∗ + dY ∗ − dP ∗M , (A.7)
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where dx∗ ≡ ln x∗t+1 − ln x∗t stands for the balanced growth rate of variable x.
The first-order condition for hours becomes

w∗`,tΓ′` (H∗` )N∗`,t + q∗`,tΛ` (E∗` )N∗`,t = α`Lλ
∗
t

Y ∗t
H∗`

, (A.8)

for ` ∈ {F, V }. Using our assumption that w∗`,t+1
w∗
`,t

= q∗`,t+1
q∗
`,t

, this implies

dN∗` = dλ∗ + dY ∗ − dw∗` . (A.9)

The Euler equation for capital investment becomes

P ∗I,t

(
1− 1− δK

1 + r
dP ∗I

)
= αKλ

∗
t

Y ∗t
K∗t

, (A.10)

where we have used the fact that Φ∗′ = 0. This equation implies

dK∗ = dλ∗ + dY ∗ − dP ∗I . (A.11)

Finally, the output constraint implies that

dY ∗ = dZ∗ + αKdK
∗ + αFLdN

∗
F + αVLdN

∗
V + αMdM

∗. (A.12)

Combining Equations (A.7), (A.9), (A.11) and (A.12), we get

dλ∗ = αKdP
∗
I + αFLdw

∗
F + αVLdw

∗
V + αMdP

∗
M − dZ∗. (A.13)

Because of constant returns to scale, growth in marginal cost does not depend on output growth. Replacing
Equation (A.13) into Equations (A.7), (A.9) and (A.11) then yields the balanced growth rates of capital,
variable and quasi-fixed employment and materials as a function of parameters.

Hours and effort are constant on the BGP. To see this, note that the optimal choice of employment
holds

w∗`,tΓ` (H∗` ) + q∗`,tΛ` (E∗` )H∗` = α`Lλ
∗
t

Y ∗t
N∗`,t

, for ` ∈ {F, V } . (A.14)

Combining Equation (A.8) with Equation (A.14), we get

Γ′` (H∗` )H∗`
Γ`
(
H∗`
) = 1, (A.15)

which pins down the BGP level of hours per worker. This condition is intuitive. As there are no adjustment
costs on the BGP, employment and hours enter the production function exactly symmetrically. The
elasticity of the wage bill with respect to employment is 1 by definition, so the firm chooses hours such
that the elasticity of the wage bill with respect to hours is 1 as well. With our chosen function form,

H∗` =
(

1
bΓ` (cΓ − 1)

) 1
cΓ
.

Finally, on the BGP, the first-order condition for effort is

q∗`,tΛ′` (E∗` )H∗`N∗`,t = λ∗tα
`
L

Y ∗t
E∗`

. (A.16)
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Combining this with the previous results, we get

E∗` =
(
w∗`,t
q∗`,t

bΓ`cΓ (H∗` )cΓ−1

bΛ` (cΛ − 1)

) 1
cΛ
.

A.2 Numerical solution of the model

This section describes how we solve our model. Section A.2.1 restates all optimality conditions in devi-
ations from the BGP, in order to obtain a stationary problem. Section A.2.2 describes our assumptions
regarding the stochastic shock process faced by the firm. Section A.2.3 describes the solution algorithm,
and Section A.2.4 discusses some features of the obtained policy functions.

A.2.1 Normalized optimality conditions

For any variable X, we denote X̂t ≡ Xt
X∗t

. Then, the first-order conditions for materials, hours and effort
become

M̂t = λ̂tŶt

P̂M,t

, (A.17)

(
cΛ − 1
cΛ

ŵ`,t
(
Ĥ`,t

)cΓ−1
+ 1
cΛ
q̂`,t

(
Ê`,t

)cΛ)
Ĥ`,tN̂`,t = λ̂tŶt. (A.18)

q̂`,t
(
Ê`,t

)cΛ
Ĥ`,tN̂`,t = λ̂tŶt. (A.19)

The first-order condition for the hiring of variable workers is(
cΛ − 1
cΛ

ŵV,t

(
cΓ − 1
cΓ

+ 1
cΓ

(
ĤV,t

)cΓ)+ 1
cΛ
q̂V,tĤV,t

(
ÊV,t

)cΛ)
N̂V,t = λ̂tŶt. (A.20)

By combining Equations (A.18) to (A.20) for variable labour inputs, it comes that ĤV,t = 1. This is
unsurprising: as there are no adjustment costs to employment, there is no reason for firms to vary hours

per worker for variable workers. The effort of variable workers is given by ÊV,t =
(
q̂V,t
ŵV,t

) 1
cΛ . That is,

effort of variable workers only changes when there are shocks to the relative cost of effort. In the absence
of such shocks, the firm also leaves variable workers’ effort levels unchanged, carrying out all adjustments
through the employment margin.

The Euler equation for investment becomes

P̂I,t −
1− δK
1 + r

Et
(
exp (dP ∗I ) P̂I,t+1

)
=
(

1− 1− δK
1 + r

exp (dP ∗I )
)
·(1 + exp (dK∗) K̂t

K̂t−1

Φ′t
Φt

)
λ̂tŶt

K̂t

− 1
1 + r

Et

exp (2dK∗ + dP ∗I )
(
K̂t+1

K̂t

)2 Φ′t+1
Φt+1

λ̂t+1Ŷt+1

K̂t+1

 (A.21)

The Euler equation for hiring of quasi-fixed workers becomes

cΛ − 1
cΛ

ŵF,t

(
cΓ − 1
cΓ

+ 1
cΓ

(
ĤF,t

)cΓ)+ 1
cΛ
q̂F,tĤF,t

(
ÊF,t

)cΛ =(
1 + exp (dN∗F ) N̂F,t

N̂F,t−1

Ψ′t
Ψt

)
λ̂tŶt

N̂F,t

− 1
1 + r

Et

exp (2dN∗F + dw∗F )
(
N̂F,t+1

N̂F,t

)2 Ψ′t+1
Ψt+1

λ̂t+1Ŷt+1

N̂F,t+1

 . (A.22)
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Finally, the output constraint can be rewritten as

Ŷt = Ẑt
(
K̂tΦt

)αK (
ÊV,tĤV,tN̂V,t

)αVL (
ÊF,tĤF,tN̂F,tΨt

)αFL (
M̂t

)αM
. (A.23)

At this point, it is useful to note that by replacing Equations (A.17) to (A.20) into the output constraint
(A.23), we get

λ̂tŶt =

 Ŷt
Ẑt

(
ŵ

cΛ−1
cΛ

V,t q̂
1
cΛ
V,t

)αVL (
P̂M,t

)αM(K̂tΦt

)−αK (
ŵ

cΛ−1
cΓcΛ
F,t

(
N̂F,t

)c̃−1
q̂

1
cΛ
F,tΨt

)αFL
1

αM+αV
L

+c̃αF
L

,

(A.24)
where c̃ ≡ cΓ+cΛ−1

cΓcΛ
. λ̂tŶt captures the cost of output in period t, valued at the margin. This cost

is decreasing in the quasi-fixed capital and employment stocks, and increasing in output and the price
of variable inputs. The parameter c̃ captures how variable the quasi-fixed labour input actually is. If
cΓ = cΛ = 1, c̃ = 1: the marginal cost of increasing hours and effort is constant, and therefore, it is as
if quasi-fixed labour were variable (the firm will only adjust hours and effort, and not employment). If
instead cΓ, cΛ → +∞, c̃→ 0: hours and effort margins are infinitely costly, so the firm never uses them,
and all changes to quasi-fixed labour input entail adjustment costs.

Equation (A.24) is useful because it allows us to reduce the number of exogenous state variables.
Indeed, substituting this equation into the Euler equations for capital and quasi-fixed employment, we
can remark that only four exogenous state variables appear in these equations: P̂I,t, ŵF,t, q̂F,t and

B̂t ≡ Ŷt
Ẑt

(
ŵ

cΛ−1
cΛ

V,t q̂
1
cΛ
V,t

)αVL (
P̂M,t

)αM , which is a summary statistic for the effect of shocks to output, TFP

and variable input prices.37 Thus, the firm only needs to form expectations with respect to these four
variables.

A.2.2 Stochastic shock processes

Time series for shocks We directly observe time series for the growth rates of output Yt, material
prices PM,t and investment good prices PI,t, and we estimate growth rates of TFP dZt. Using this data,
we construct time series for Ŷt, P̂M,t, P̂I,t and Ẑt, assuming that these variables are at their BGP level
in the first period (i.e., Ŷ1 = P̂M,1 = P̂I,1 = Ẑ1 = 1) and that their balanced growth rate is equal to the
average growth rate observed over the sample.38

However, there is no observable series corresponding to the wage shifters ŵ`,t and effort cost shifters
q̂`,t in our model. To determine these, we need to use the structure imposed by our model and make
additional assumptions. Let us denote by W`,t the wage bill paid by the firm to employees of type ` in
period t (that is, W`,t ≡ w`,tΓ` (H`,t)N`,t + q`,tΛ` (E`,t)H`,tN`,t). Then, using Equation (15), we get that
the total wage bill Wt holds

Ŵt =
∑

`∈{V,F}

(
W ∗`,t
W ∗t

(
ŵ`,tN̂`,t

(
1− c̃+ c̃

(
Ĥ`,t

)cΓ)))
. (A.25)

Imposing the assumption ŵV,t = ŵF,t, Equation (A.25) shows us that we can use data on the wage bill,
employment and hours per worker of both types of labour, and the BGP wage bill shares, to deduce a

37Note that the endogenous intratemporal variables appearing in the Euler Equation for employment (hours and effort)
are in turn only functions of these four exogenous state variables, and of the level of capital and quasi-fixed employment.

38Under these assumptions, it is straightforward to see that X̂t = exp (dXt − dX∗) X̂t−1.
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time series for wage shifters.39 Obviously, these results are conditional upon the parameters cΓ and cΛ.
Finally, regarding effort cost shocks, we impose q̂V t = q̂Ft = 1. This reduces the number of exogenous

state variables in our problem to just three: P̂I,t, ŵF,t, and B̂t.

Estimating a driving process Given the time series obtained above, we can now compute the series
for the composite variable B̂t. We then estimate a first-order VAR for the three exogenous state variables
P̂I,t, ŵF,t, and B̂t, and approximate this VAR with a multidimensional Markov chain, using six grid points
for every exogenous state variable.

A.2.3 Solution algorithm

We solve our model using an algorithm inspired by the Generalized Stochastic Simulation Algorithm
(GSSA) developed by Maliar et al. (2011). The key insight of this methodology is that one can achieve
important gains in speed by computing policy functions only in the most relevant regions of the state
space. To further speed up the code, we precompute expectations as suggested in Judd et al. (2017).

In the algorithm, policy functions for capital and employment are approximated by polynomials,
defined by their degree D and a vector of parameters bK and bN . To solve for these polynomials, we use
the following steps.

Initialization

(a) Set a simulation length T and draw a realization
(
X̂t

)T
t=1

for the path of exogenous state variables.
We choose T = 100′000.

(b) Choose an initial condition for the state variables, K̂−1 and N̂F,−1 . We initialize these variables
at their BGP levels, such that K̂−1 = N̂F,−1 = 1.

(c) Make a first guess for the path of the endogenous state variables,
(
K̂

(1)
t

)
and

(
N̂

(1)
F,t

)
. The

superscript in brackets stands for the current iteration.

Loop, Step 1 - Evaluate terms in the Euler Equations

(a) Given the path of the endogenous and exogenous state variables, Equation (A.24) pins down the level
of λ̂tŶt in every period. Then, we use Equations (A.18) to (A.19) to compute ĤF,t and ÊF,t.

(b) With this, all we need to know in order to evaluate the Euler equations for capital and quasi-
fixed employment are two expectations, which we denote by Et (QK,t+1) for capital and Et (QNF ,t+1)
for employment. These expectations are costly to compute, and we therefore follow Judd et al. (2017)
in first approximating the integrand with a polynomial in K̂t, N̂F,t and X̂t+1, and then computing the
expectation of this polynomial. To do so, we start by computing the current path of the integrands,(
Q

(i)
K,t+1

)
and

(
Q

(i)
NF ,t+1

)
. Then, for capital, we find the coefficients cK which solve

cK = arg min
cK

∥∥∥(QK,t+1)− P
((
K̂

(i+1)
t

)
,
(
N̂

(i+1)
F,t

)
,
(
X̂(i+1)
t+1

)
, cK

)∥∥∥ . (A.26)

This is essentially a regression problem, in which we find the polynomial which most closely approximates(
Q

(i)
K,t+1

)
. To solve the problem, we use an RLS-Tikhonov method, with a penalty parameter of −5 (see

Maliar and Maliar, 2014). We proceed in the same way for
(
Q

(i)
NF ,t+1

)
.

39Recall that our model is stated in real terms. Thus, we convert material prices, investment good prices and the wage
bill in our data into real series as well, by using the price deflator for the final output of the industry.
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(c) Using the polynomial functions obtained in (b), we compute the expectations Et (QK,t+1) and
Et (QN,t+1). As pointed out by Judd et al. (2017), doing so is not very costly, as K̂t and N̂F,t are known
at time t, and expectations of functions of exogenous state variables can be precomputed.40

Loop, Step 2 - Calculate Euler Equation errors

We can now update our guess for the endogenous state variables, using the Euler Equations. For capital,
we set

K̂new
t =


exp(dP ∗I )

1+r Et

(
(1− δK) P̂I,t+1 −

(
1− 1−δK

1+r exp (dP ∗I )
)(

exp (dK∗) K̂
(i)
t+1

K̂
(i)
t

)2
Φ(i)′
t+1

Φ(i)
t+1

λ̂
(i)
t+1Ŷt+1

K̂
(i)
t+1

)
P̂I,t

+

(
1− 1−δK

1+r exp (dP ∗I )
)
·
((

1 + exp (dK∗) K̂
(i)
t

K̂
(i)
t−1

Φ(i)′
t

Φ(i)
t

)
λ̂

(i)
t Ŷt

K̂
(i)
t

)
P̂I,t

 K̂(i)
t , (A.27)

where expectations are computed as described in Step 2. Note that if the Euler equation holds,
K̂new
t = K̂

(i)
t . Instead, when the marginal benefit of capital today is larger than its marginal cost (i.e.,

when the ratio in Equation (A.27) is larger than 1), our guess for capital today is adjusted upwards, and
when the marginal benefit of capital today is smaller than its marginal cost, it is adjusted downwards.

Likewise, for quasi-fixed employment, we get

N̂new
F,t =



(
1 + exp (dN∗F ) N̂

(i)
F,t

N̂
(i)
F,t−1

Ψ(i)′
t

Ψ(i)
t

)
λ̂

(i)
t Ŷt

N̂
(i)
F,t

− 1
1+rEt

exp (2dN∗F + dw∗F )
(
N̂

(i)
F,t+1

N̂
(i)
F,t

)2
Ψ(i)′
t+1

Ψ(i)
t+1

λ̂
(i)
t+1Ŷt+1

N̂
(i)
F,t+1


cΛ−1
cΛ

ŵF,t
(
cΓ−1
cΓ

+ 1
cΓ

(
Ĥ

(i)
F,t

)cΓ)+ 1
cΛ
q̂F,tĤF,t

(
Ê

(i)
F,t

)cΛ
 N̂

(i)
F,t,

(A.28)
where an analogous logic applies.41

40To illustrate this, consider a simplified case with only one endogenous state variable (K̂t) and two exogenous state
variables (B̂t and P̂I,t). Then, computing the time-t expectation of a two-dimensional polynomial in K̂t, B̂t+1 and P̂I,t+1,
we get

Et
(
c0 + c1K̂t + c2B̂t+1 + c3P̂I,t+1 + c4K̂

2
t + c5B̂

2
t+1 + c6P̂

2
I,t+1 + c7K̂tB̂t+1 + c8K̂tP̂I,t+1 + c9B̂t+1P̂I,t+1

)
= c0 + c1K̂t + c2Et

(
B̂t+1

)
+ c3Et

(
P̂I,t+1

)
+ c4K̂

2
t + c5Et

(
B̂2
t+1

)
+ c6Et

(
P̂ 2
I,t+1

)
+ c7K̂tEt

(
B̂t+1

)
+c8K̂tEt

(
P̂I,t+1

)
+ c9Et

(
B̂t+1P̂I,t+1

) .

Thus, to compute the expectation, we only need to know the time-t expectations of all polynomial terms in the exogenous
state variables. These can easily be computed once at the beginning of the loop.

41Note that as we have directly constructed a series for ŵF,t, we have not yet computed a value for dw∗F . However, doing
so is straightforward: assuming that dw∗F = dw∗V , we get that dN∗F = dN∗V = dN∗, and dw∗F = dW ∗ − dN∗.
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Loop, Step 3: Update the guesses and assess convergence

(a) We now update the guess for the policy functions, using

v(i+1) = ξvNew + (1− ξ) v(i), (A.29)

where ξ = 0.05 is a dampening parameter and v stands for the vector of endogenous state variables.
(b) We can now assess whether the loop has converged, by checking whether the condition

1
2T

T∑
t=1

 ∑
v∈{K,NF }

∣∣∣∣∣vNewt − v(i)
t

v
(i)
t

∣∣∣∣∣
 < 10−6 (A.30)

holds. If this holds, the loop has ended, if it does not, we go back to Step 1.
Note that this application of the GSSA algorithm differs from the one presented in Maliar et al. (2011)

in that we iterate on the path of endogenous variables, while Maliar et al. iterate on a polynomial policy
function. We find that this deviation considerably speeds up computing time in our application, but our
results do not change when we use the Maliar et al. policy function iteration instead.

For convenience, we do not draw shocks to exogenous state variables for the first periods, but impose
that they correspond to the exact realization of shocks in the data. Thus, we can read off our model’s
predictions for the path of inputs directly for the solution for these first periods.

A.2.4 Model solution: illustrations

Figure A.1 illustrates the solution of the problem for a given set of parameter values.

Figure A.1: Policy functions
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Policy functions are increasing in the past level of capital/employment, (slightly) concave, and have
slopes smaller than 1 (meaning that in the absence of shocks, firms tend to revert to the BGP). Higher
adjustment costs increase the slope of the policy functions, as firms optimally choose to adjust less, i.e.
keep capital/employment closer to their previous levels. The two lower panels of the figure show the
optimal choice of capital/employment as a function of the variable B̂t (roughly speaking, output, keeping
fixed material prices and part-time labour prices). Again, policy functions are increasing and concave,
and now higher adjustment costs make them flatter, as firms react less to output shocks.

A.3 The structural estimation algorithm

This section provides further details about our structural estimation of the adjustment cost parameters
a−Φ , a

+
Φ , a

−
Ψ and a+

Ψ, and the curvature parameters for the effort and hours cost functions cΛ and cΓ.
To perform the structural estimation, we use a Differential Evolution algorithm for MATLAB, devel-

oped by Markus Buehren and available for download at https://it.mathworks.com/matlabcentral/
fileexchange/18593-differential-evolution, to find the parameter set that minimizes the distance
function

D =
8∑

m=1

( |Momentm (Data)−Momentm (Model)|
0.5 · (Momentm (Data) + Momentm (Model))

)
. (A.31)

The eight data moments that we target are the standard deviation of capital growth (unconditional
and conditional on positive or negative observations), quasi-fixed employment growth (unconditional and
conditional on positive or negative observations), hours per quasi-fixed worker growth, and growth in the
capacity utilization survey (measured as βSdSData

t in the data).
For each set of adjustment cost parameters and curvature parameters, we first compute the corre-

sponding series of wage shifter shocks and estimate the Markov process for exogenous state variables, as
described in Section A.2.2. We then solve for the policy functions of the firm, compute its optimal input
choices given the path of shocks observed over the sample period, and use the latter to compute the model
equivalent of our data moments.

A.4 Differences between our model and BFK

Our model in Section 2 differs from Basu and Fernald (2001) and Basu et al. (2006) in several dimensions.
These differences are mostly not fundamental: if we impose the simplifying assumptions discussed in the
main text, both models deliver the exact same TFP measurement equation. In this section, we briefly
review the non-essential differences between the two models.

Production function We assume that production is Cobb-Douglas. BFK instead consider a general
production function, but log-linearize it around the BGP. This makes their effective production function
log-linear with constant elasticities (i.e., Cobb-Douglas).

Internal adjustment costs In our model, adjustment costs are internal, reducing the effective capital
and labour input of the firm. In BFK, adjustment costs are external, i.e., akin to another type of material
spending for firms. As BFK assume that adjustment costs are negligible, this is obviously irrelevant for
their results. In Basu et al. (2001), where the authors do not consider non-negligible adjustment costs,
they also model them as internal.

Factor utilization BFK consider the utilization rate of capital Ut as an independent production factor.
Capital utilization has a wage cost, so that the wage bill is wtG (Ht, Et)V (Ut)Nt, where G and V are
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convex functions capturing the costs of increasing hours per worker, effort and utilization. As noted in
the main text, our model instead considers the utilization rate of capital as an outcome that depends on
the relative use of labour and materials with respect to the capital stock. Intuitively, this captures the
idea that machines and buildings do not produce by themselves. For example, the utilization rate of a
machine depends on how many hours it is operated by workers, how much electricity it consumes, and
how many material inputs it receives. The utilization rate of a bank office depends on how many clerks
work in the office, and on how many customers they serve within an hour. Thus, we consider Ut to be a
function of all other inputs, which is why it does not appear in our reduced-form production function F .
Note, however, that these considerations are irrelevant for measurement: the BFK measurement equation
with one unobserved production factor is exactly the same as the BFK measurement equation with two
unobserved production factors.
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B Data Appendix

B.1 Growth accounting data

B.1.1 EU KLEMS

For the five European countries considered in this paper, our main data source is EU KLEMS.
Throughout, we restrict our attention to industries in the market economy, defined by KLEMS as

including all industries except public administration and defence, social security, education, health and
social work, household activities, activities of extraterritorial bodies, and real estate.42 From this sample,
we further drop agriculture (NACE A), forestry and fishing, mining and quarrying (NACE B), and
manufacturing of coke and refined petroleum products (NACE 19), which leaves us with 19 industries,
listed in Table A.1.

Table A.1: List of KLEMS industries
Industry NACE Code Sector

Food products, beverages and tobacco C10-C12 Non-durable manufacturing
Textiles, wearing apparel, leather and related products C13-C15 Non-durable manufacturing
Wood and paper products; printing and reproduction of recorded media C16-C18 Non-durable manufacturing
Chemicals and chemical products C20-C21 Non-durable manufacturing
Rubber and plastics products, and other non-metallic mineral products C22-C23 Non-durable manufacturing
Basic metals and fabricated metal products, exc. machinery and equipment C24-C25 Durable manufacturing
Electrical and optical equipment C26-C27 Durable manufacturing
Machinery and equipment n.e.c. C28 Durable manufacturing
Transport equipment C29-C30 Durable manufacturing
Other manufacturing; repair and installation of machinery and equipment C31-C33 Durable manufacturing
Electricity, gas and water supply D-E Non-manufacturing
Construction F Non-manufacturing
Wholesale and retail trade; Repair of motor vehicles and motorcycles G Non-manufacturing
Transportation and storage H Non-manufacturing
Accommodation and food service activities I Non-manufacturing
Information and communication J Non-manufacturing
Financial and Insurance activities K Non-manufacturing
Professional, scientific, technical, administrative and support service act. M-N Non-manufacturing
Arts, entertainment, recreation and other service activities R-S Non-manufacturing

Our analysis uses ten KLEMS time series, all defined annually and at the industry-level: nominal gross
output (GO), the price index for gross output (GO_P), nominal expenditure on intermediate inputs (II),
the price index for intermediate inputs (II_P), the KLEMS index for capital input (CAP_QI), the KLEMS
index for labour input (LAB_QI), the nominal wage bill (LAB), the total number of persons engaged
(EMP), total hours worked by persons engaged (H_EMP), and the price index for investment goods
(Ip_GFCF).43 The correspondence between KLEMS variables and variables in our model is summarized
by Table A.2.

42The latter is excluded because, as noted by O’Mahony and Timmer (2009), “for the most part the output of the real
estate sector [...] is imputed rent on owner-occupied dwellings”, making productivity measures hard to interpret.

43For Spain and the United Kingdom, KLEMS does not provide a separate price index for gross output and intermediate
inputs. Therefore, we assume for these countries that price indeces for gross output and intermediate inputs equal the price
index for value added (VA_P). Likewise, Italy does not have separate gross output and intermediate input price indexes for
industry R-S, and we use value-added price indexes here as well.
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Table A.2: Correspondence between KLEMS variables and our model
Model variable KLEMS variable

dYt dGOt − dGO_Pt
dMt dIIt − dII_Pt
dKt dCAP_QIt
WV,t

W,t
(dNV,t + dHV,t) + WF,t

W,t
(dNF,t + dHF,t) dLAB_QIt

NV,t +NF,t EMPt
HV,tNV,t +HF,tNF,t H_EMPt
PM,tMt

PtYt

IIt
GOt

Wt
PtYt

LABt
GOt

dPM,t dII_Pt − dGO_Pt
dPI,t dIp_GFCFt − dII_Pt
Wt LABt

This correspondence is mostly straightforward, but two variables deserve some further discussion.
First, the KLEMS measure of capital input (CAP_QI) is an aggregate across nine types of capital.
KLEMS computes growth rates at the level of individual capital goods, and then aggregates these up
using the (estimated) shares of each capital good in total capital compensation. In our analysis, we
abstract from this heterogeneity and consider the growth rate of CAP_QI as the growth rate of one
unique capital good.

Second, the KLEMS measure of labour input (LAB_QI) is also an aggregate across 18 types of
workers (differentiated by gender, three age groups and three education groups). Again, growth rates
of total hours worked are computed at the level of each individual worker, and then aggregated using
compensation weights, i.e. the share of each group of workers in the total wage bill of the industry.
In our model, this measure would be equal to WV,t

W,t (dNV,t + dHV,t) + WF,t

W,t (dNF,t + dHF,t). This is not
exactly equal to total labour input, which - abstracting from adjustment costs - is instead given by
αVL

αVL+αFL
(dNV,t + dHV,t)+ αFL

αVL+αFL
(dNF,t + dHF,t). As changes in the relative wage bill of the two categories

of workers over time are small, we ignore this difference and use LAB_QI to measure labour (allowing us
to take advantage of the full level of detail available in the KLEMS database).44

Finally, KLEMS provides depreciation rates for each of the nine types of capital goods it covers. In
order to obtain an industry-level depreciation rate δK , we compute an average depreciation rate, weighted
by the share of each type of capital good in the total capital of the industry. Table A.3 lists the obtained
depreciation rates.

Table A.3: Capital depreciation rates
United
States

Germany Spain France Italy United
Kingdom

Non-durable manufacturing 9.1% 11.1% 9.6% 11.3% 9.7% 9.0%
Durable manufacturing 10.5% 13.1% 10.9% 14.9% 10.6% 10.1%
Non-manufacturing 7.7% 8.3% 8.6% 9.7% 8.0% 6.5%

Notes: This table lists simple averages of industry-level capital depreciation rates across sectors.

44This measure of labour input obviously includes cyclical changes in hours per worker. Thus, to obtain the actual measure
of labour input used in our estimation equation (23), we substract from this cyclical changes in hours per worker (for both
worker categories), computed with a band-pass filter as indicated in the main text.
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B.1.2 BLS

For the United States, we use the industry-level growth accounting database provided by the BLS. The
database can be downloaded at https://www.bls.gov/mfp/mprdload.htm. The original BLS dataset
contains 60 industries, which we aggregate to 21 industries that roughly correspond to the KLEMS
industries. The final 21 industries are listed in Table A.4.

Table A.4: List of industries, United States
Industry NAICS Code Sector

Food, Beverage and Tobacco products 311-312 Non-durable manufacturing
Textile, Apparel and Leather products 313-316 Non-durable manufacturing
Wood, Paper, Printing and related support activities 321-323 Non-durable manufacturing
Chemical and Plastic Products 325-326 Non-durable manufacturing
Nonmetallic mineral products 327 Non-durable manufacturing
Primary and fabricated metal products 331-332 Durable manufacturing
Machinery 333 Durable manufacturing
Computer and Electronic products 334 Durable manufacturing
Electrical Equipment, Appliances, and Components 335 Durable manufacturing
Transportation Equipment 336 Durable manufacturing
Furniture and related products 337 Durable manufacturing
Miscellaneous manufacturing 339 Durable manufacturing
Utilities 22 Non-manufacturing
Construction 23 Non-manufacturing
Wholesale and Retail Trade 42, 44-45 Non-manufacturing
Transportation and Storage 48-49 Non-manufacturing
Information and Communication 51 Non-manufacturing
Finance, Insurance and Real Estate 52-53 Non-manufacturing
Professional, Scientific, Administrative and Technical Services 54-56 Non-manufacturing
Arts, Entertainment, Recreation and related activities 71 Non-manufacturing
Accomodation and Food service activities 72 Non-manufacturing

The BLS growth accounting variables are defined in the same way as the ones in EU KLEMS, so we
keep using the same definitions and correspondences. The only major difference between KLEMS and
the BLS database is that the later does not contain data on employment and hours worked (instead, it
only provides a measure of total labour input, LAB_QI). Thus, we obtain measures of employment and
hours worked from the Labor Productivity and Costs (LPC) database, another database maintained by
the BLS (available at https://www.bls.gov/lpc/home.htm).

B.2 Labour composition

Europe To measure labour composition in Europe, we rely on microdata from the European Union
Labour Force Survey (EU LFS).45 The EU LFS provides industry-level annual data on employment and
total hours by contract type (permanent or temporary) and job status (full-time or part-time).46 We

45See https://ec.europa.eu/eurostat/web/microdata/european-union-labour-force-survey for further details on
the survey and data access.

46The industry classification in the LFS is less fine than in KLEMS: the LFS only provides information at the NACE
1-digit level. Thus, we need to assign the same employment and hours split to all industries belonging to a 1-digit NACE
group.
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define quasi-fixed labour as the labour provided by workers with permanent and full-time contracts, and
variable labour as the labour provided by all other workers. Using these definitions, we compute the
employment and hours share of each of the two categories, and apply these shares to the KLEMS levels
of employment and hours worked to obtain a series in levels.47

The EU LFS does not contain information on wages. Thus, to compute the relative wage bill of both
types of workers, we use data from the European Structure of Earnings survey, provided by Eurostat.
We approximate the relative hourly wage of quasi-fixed workers with respect to variable workers with the
ratio of hourly earnings of workers with “unlimited duration” contracts to the hourly earnings of workers
with “Limited duration, except apprentice and trainee” contracts. As the Structure of Earnings survey is
only carried out every four years, we measure the relative hourly wage just at one point in time, in 2006
(roughly the middle of our sample period).

United States In the United States, there is no direct equivalent to the European notion of permanent
and temporary employment contracts. Therefore, we define quasi-fixed labour as labour provided by
workers with full-time contracts, and variable labour as labour provided by workers with part-time con-
tracts. We obtain time series on employment and hours for these two types of workers from unpublished
occupation and industry tables from the Current Population Survey (CPS), kindly provided to us by the
BLS. Likewise, data on the relative wage of full and part-time workers is also taken from the BLS.

B.3 Capacity utilization surveys

Europe Our European data on capacity utilization comes from the Joint Harmonised EU Programme
of Business and Consumer Surveys.48 All manufacturing data comes from the quarterly Industry survey,
which asks firms “At what capacity is your company currently operating (as a percentage of full capacity)?”
The firm then has to fill out the blank in the following sentence, “The company is currently operating at
__ % of full capacity”. We obtain an annual measure of capacity utilization by taking a simple average
of these quarterly measures. The survey provides data for 24 NACE industries, which we aggregate to
the 10 KLEMS manufacturing industries by using value added weights.49

Data for construction firms comes from the Construction survey, which asks firms about the number
of months of activity that they can sustain with current orders and current staff. Our baseline uses this
survey to measure capacity utilization in construction, but our results do not change if we instead use the
average capacity utilization in manufacturing (results are available upon request).

Finally, starting in 2011, the Services Sector survey measures capacity utilization for service industries.
Firms are asked “If the demand addressed to your firm expanded, could you increase your volume of activity
with your present resources? If so, by how much?” The Commission interprets the hypothetical level of
activity that a firm could reach as that firm’s full capacity output (Gayer, 2013). Capacity utilization is
defined as the ratio of current output to full capacity output. We use data from this survey, whenever
available, in our baseline analysis.50 To extend the series for years before 2011, we regress industry-level

47Our assumptions imply that the change in employment adjustment costs in year t depends on the change in quasi-fixed
employment between year t − 2 and t − 1. Thus, in order to be able to compute TFP growth between 1995 and 1996, we
assume that quasi-fixed employment growth in 1994 was equal to total employment growth. As employment adjustment
costs are negligible in almost all countries and industries, this assumption has no bearing on our results.

48See https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-databases/
business-and-consumer-surveys_en.

49We also perform some limited data cleaning on the original time series. We drop industries with two or more gaps in
the original data, set all values larger than 100% in the original data to 100%, and winsorize the lowest values to the 0.1%
percentile. These changes apply to a very small number of observations.

50Utilities (D-E) and Wholesale and Retail Trade (G) are not covered, and Financial and Insurance Activities (K) are only
covered in Spain. We assign to these industries the average capacity utilization in all service industries which have data.
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series on average capacity utilization in manufacturing, and use the regression coefficients to backcast the
series. In Section 6.4, we show that our results do not change when using average capacity utilization in
manufacturing for all service industries throughout.

United States US capacity utilization data comes from the Federal Reserve Board’s monthly reports
on Industrial Production and Capacity Utilization (G.17).51 The data is constructed by the Federal
Reserve on the basis of the Census Bureau’s Quarterly Survey of Plant Capacity (QSPC).

The QSPC is carried out at the plant level. Plants are first asked to report the value of current
production: “Report the value of production based on estimated sales price(s) of what was produced during
the quarter, not quarter sales”. Second, they should report their full production capacity, defined as
“the maximum level of production that this establishment could reasonably expect to attain under normal
and realistic operating conditions fully utilizing the machinery and equipment in place”. In the detailed
instruction that plant managers are given about how they should calculate this number, it is noteworthy
that the Census suggests that “if you have a reliable or accurate estimate of your plant’s sustainable
capacity utilization rate, divide your market value of production at actual operations [..] by your current
rate of capacity utilization [to get full production capacity]”. Finally, firms are asked to report the ratio
between current and full production, which is capacity utilization. Once they have done so, firms are
asked “Is this a reasonable estimate of your utilization rate for this quarter? Mark (X) yes or no. If
no, please review your full production capability estimate. If yes, continue with the next item.” For our
purposes, we use the annual version of the Federal Reserve’s database, which provides data for 17 NAICS
manufacturing industries, as well as for Electric and Gas utilities.

The United States does not have a survey on capacity utilization in service industries. Therefore, we
use average capacity utilization in manufacturing as a utilization proxy for all service industries.

B.4 Instruments

Our instruments for monetary policy and financial shocks are fully described in the main text. Data on
nominal oil prices (used to compute oil price shocks) are from World Bank Commodity Price Data (The
Pink Sheet), and deflated with country-specific CPIs from OECD.Stat.

Our measure of Economic Policy Uncertainy (EPU) was developed by Baker, Bloom and Davis (2016),
and is regularly updated at http://www.policyuncertainty.com. For European countries, the measure
is a monthly index based on newspaper articles on policy uncertainty (articles containing the terms
uncertain or uncertainty, economic or economy, and one or more policy–relevant terms, in the native
language of the respective newspaper). The number of economic uncertainty articles is then normalized
by a measure of the number of articles in the same newspaper and month, and the resulting newspaper-
level monthly series is standardized to unit standard deviation prior to 2011. Finally, the country-level
EPU series is obtained as the simple average of the series for the country’s newspapers, and normalized to
have a mean of 100 prior to 2011.52 For the United States, measurement is more sophisticated, considering
not only newspaper articles, but also the number of federal tax code provisions set to expire in future
years and disagreement among economic forecasters.

In order to obtain an annual series, we take a simple average of monthly values. In Europe, the index
is available since 1987 for France, 1993 for Germany, 1997 for Italy and the United Kingdom, and 2001
for Spain. If there is no available data for a country during a given period, we use the change in the
European EPU series (which is the simple average of the series of for five European countries considered
in our analysis).

51The data can be accessed at https://www.federalreserve.gov/releases/G17/Current/default.htm.
52The newspapers used are Le Monde and Le Figaro for France, Handelsblatt and Frankfurter Allgemeine Zeitung for

Germany, Corriere Della Sera and La Repubblica for Italy, and El Mundo and El Pais for Spain.
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B.5 Plots of key variables

The following figures plot some key variables used in our analysis. To generate these plots, we have
aggregated industry-level growth rates across the three sectors used in our paper (using gross output
weights for gross output, materials and capital, and employment weights for employment).

Figure A.2: Gross output growth
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Figure A.3: Material input growth
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Figure A.4: Capital input growth
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Figure A.5: Employment growth
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B.6 Recession definitions

In all graphs, shaded areas mark recessions. Recession dates are taken from the NBER for the United
States, the Euro Area Business Cycle Network for the Eurozone, and the Conference Board for the United
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Kingdom. We consider a year to be a recession year if at least 6 months of the year are defined as a
recession by these institutions.

C Additional results and tables

C.1 TFP growth at the industry level

The following figures plot cumulated industry-level TFP growth rates for all industries in our sample.

Figure A.6: Industry-level cumulated TFP growth, United States, manufacturing
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Figure A.7: Industry-level cumulated TFP growth, United States, non-manufacturing
United States,22

1995 2000 2005 2010 2015

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

United States,23

1995 2000 2005 2010 2015

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
United States,42, 44-45

2000 2005 2010 2015

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

United States,48-49

1995 2000 2005 2010 2015

0

0.05

0.1

0.15

0.2
United States,51

1995 2000 2005 2010 2015

-0.05

0

0.05

0.1

0.15

0.2

0.25

United States,52-53

1995 2000 2005 2010 2015

-0.02

0

0.02

0.04

0.06

0.08

United States,54-56

1995 2000 2005 2010 2015
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
United States,71

1995 2000 2005 2010 2015

-0.04

-0.02

0

0.02

0.04

0.06

0.08

United States,72

1995 2000 2005 2010 2015
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

66



Figure A.8: Industry-level cumulated TFP growth, Germany, manufacturing
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Figure A.9: Industry-level cumulated TFP growth, Germany, non-manufacturing
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Figure A.10: Industry-level cumulated TFP growth, Spain, manufacturing
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Figure A.11: Industry-level cumulated TFP growth, Spain, non-manufacturing
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Figure A.12: Industry-level cumulated TFP growth, France, manufacturing
France,C1012
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Figure A.13: Industry-level cumulated TFP growth, France, non-manufacturing
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Figure A.14: Industry-level cumulated TFP growth, Italy, manufacturing
Italy,C1012
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Figure A.15: Industry-level cumulated TFP growth, Italy, non-manufacturing
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Figure A.16: Industry-level cumulated TFP growth, UK, manufacturing
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1995 2000 2005 2010 2015

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

United Kingdom,C1315

1995 2000 2005 2010 2015

0

0.05

0.1

0.15

0.2

0.25

United Kingdom,C1618

1995 2000 2005 2010 2015

-0.02

0

0.02

0.04

0.06

0.08

United Kingdom,C2021

1995 2000 2005 2010 2015

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
United Kingdom,C2223

1995 2000 2005 2010 2015

-0.02

0

0.02

0.04

0.06

0.08

0.1

United Kingdom,C2425

1995 2000 2005 2010 2015

0

0.05

0.1

0.15

United Kingdom,C2627

1995 2000 2005 2010 2015

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
United Kingdom,C28

1995 2000 2005 2010 2015

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

United Kingdom,C2930

1995 2000 2005 2010 2015

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

United Kingdom,C3133

1995 2000 2005 2010 2015

-0.05

0

0.05

0.1

0.15

0.2

75



Figure A.17: Industry-level cumulated TFP growth, UK, non-manufacturing
United Kingdom,DE
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C.2 Utilization adjustment estimates for robustness tests

Table A.5 lists the estimates for β̂S obtained for each of the robustness checks described in the main text.

Table A.5: Results for utilization adjustment regressions across robustness checks

United

States

Germany Spain France Italy United

Kingdom

Non-durable manufacturing

Baseline 0.224∗∗∗ 0.562∗∗∗ 0.076∗ 0.070 0.400∗∗∗ 0.119∗

(1) No negative profits 0.211∗∗∗ 0.574∗∗∗ 0.084∗ 0.078 0.410∗∗∗ 0.113∗

(2) Dep. var. includes hours 0.157∗∗ 0.405∗∗∗ 0.057 0.006 0.278∗∗∗ 0.076

(3) Survey linearly detrended 0.179∗∗∗ 0.562∗∗∗ 0.076∗ 0.070 0.400∗∗∗ 0.119∗

(5) No uncertainty 0.227∗∗∗ 0.572∗∗∗ 0.053 0.063 0.401∗∗∗ 0.052

(6) No uncertainty, mon. pol. 0.267∗∗∗ 0.583∗∗∗ 0.063 0.115 0.371∗∗∗ 0.054

Durable manufacturing

Baseline 0.296∗∗∗ 0.392∗∗∗ 0.096∗∗ 0.255∗∗∗ 0.337∗∗∗ 0.228∗∗∗

(1) No negative profits 0.289∗∗∗ 0.397∗∗∗ 0.107∗∗ 0.235∗∗∗ 0.351∗∗∗ 0.229∗∗∗

(2) Dep. var. includes hours 0.242∗∗∗ 0.291∗∗∗ 0.058 0.197∗∗∗ 0.242∗∗∗ 0.213∗∗∗

(3) Survey linearly detrended 0.242∗∗∗ 0.392∗∗∗ 0.096∗∗ 0.255∗∗∗ 0.337∗∗∗ 0.228∗∗∗

(5) No uncertainty 0.275∗∗∗ 0.377∗∗∗ 0.090∗∗ 0.236∗∗∗ 0.333∗∗∗ 0.206∗∗∗

(6) No uncertainty, mon. pol. 0.293∗∗∗ 0.381∗∗∗ 0.073 0.298∗∗∗ 0.333∗∗∗ 0.222∗∗∗

Non-manufacturing

Baseline 0.106 0.122∗ 0.098 0.203∗∗∗ 0.201∗∗∗ 0.376∗∗∗

(1) No negative profits 0.077 0.129∗ 0.104 0.186∗∗∗ 0.223∗∗∗ 0.173∗∗

(2) Dep. var. includes hours 0.067 0.121∗ 0.101 0.164∗∗∗ 0.161∗∗∗ 0.212∗∗∗

(3) Survey linearly detrended 0.066 0.129∗ 0.076 0.186∗∗∗ 0.212∗∗∗ 0.173∗∗

(4) Man. avg. for services 0.106 0.077∗∗ 0.042 0.146∗∗∗ 0.137∗∗∗ 0.112∗∗

(5) No uncertainty 0.114 0.128∗ 0.080 0.201∗∗ 0.190∗∗∗ 0.271∗∗

(6) No uncertainty, mon. pol. 0.147∗ 0.073 0.052 0.208∗∗∗ 0.212∗∗∗ 0.150∗∗
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