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The familiar dynamic efficiency condition is 7>g, where r is a real rate of return and g is
a rate of economic growth, for example, of real GDP. This condition applies to the steady state
of the infinite-horizon neoclassical growth model, as developed in Cass (1965) and Koopmans
(1965) and elaborated in Barro and Sala-i-Martin (2004, Ch. 2). The condition rules out
excessive saving and investment; specifically, capital is not accumulated in the long run beyond
the golden-rule level described in Phelps (1961). In contrast, ¥<g is possible in the steady state
of the overlapping-generations model developed by Diamond (1965), so that reduced saving and
investment can be Pareto improving. In this OLG environment, expansions of public debt and
enlargement of pay-as-you-go social security systems may be welfare enhancing. The condition
r>g was highlighted in Abel, et al. (1989), and it arises in many analyses of wealth accumulation
and public debt, such as the recent studies by Piketty (2011) and Blanchard (2019).

Whether »>g applies empirically depends mainly on how one defines ». The bottom line
from the available data since 1870 for 14 OECD countries, shown in Table 1, is that the
condition holds if 7 is gauged by the average of the realized real rate of return on equity and does
not hold if 7 equals the average of the realized real rate of return on short-term government bills.!
The latter variable likely approximates the average of safe real interest rates. Since the r>g
condition holds when r is based on risky returns (on equity) but not when r is based on safe

returns (approximated by government bills), a key underlying element is the large gap between

the expected real rate of return on equity and the safe real interest rate; that is, the equity

IThis perspective is consistent with the discussion in Abel, et al. (1989, p.2), who considered estimates of the
marginal product of capital but did not look at rates of return on equity. The results accord with the returns data
presented in Barro and Ursua (2008, Table 5), which appear in updated form in Table 1. The underlying numbers
come mostly from Global Financial Data. Longer-term patterns are studied in Homer and Sylla (1996) and
Schmelzing (2020).



premium. This substantial premium provides a lot of space in which g can fit, so that g can be
simultaneously below the risky rate and above the safe rate.

The r-g condition depends also on the definition of g, which is typically based on the
long-run growth rate of real GDP. In the usual version of the neoclassical growth model, the
relevant transversality condition involves the growth rate of the level of real macroeconomic
aggregates, not quantities per capita. This result emerges from a specification in which
individuals currently alive are connected as parents to members of future generations; for
example, through altruistic linkages. In this case, current households consider the asymptotic
present value of all future real income, whether growing per capita or because of population
growth.

To be more specific on the long-term empirical patterns, Table 1 shows the means since
1870 (or a more recent year when earlier data are missing) of real rates of return and growth rates
for 14 OECD countries with available data. The returns refer to averages of realized arithmetic
real rates of return on stocks (based on broad indices such as the S&P 500), short-term bills
(analogous to Treasury Bills), and government bonds (around 10-year maturity). The growth
rates refer to real GDP per capita, real personal consumer expenditure per capita, and population
(which enables calculations of growth rates of levels of real GDP and consumer expenditure).
When averaging over the 14 countries, the average annual real rates of return were 7.0% on
stocks, 1.1% on bills, and 2.6% on bonds. Averages for annual growth rates were 1.9% for per
capita GDP, 1.7% for per capita consumer expenditure, and 0.9% for population. Hence, for

levels, the average annual growth rates were 2.8% for GDP and 2.6% for consumer expenditure.>

2Results are similar if samples start in 1960, rather than 1870. In the 1960 case, the averages over the 14 countries
were 7.8% for stock returns, 1.4% for bill returns, 3.5% for bond returns, 2.1% for per capita GDP, 2.0% for per
capita consumer expenditure, and 0.7% for population.



These numbers show that, over the long term, the growth rates of GDP and consumer
expenditure were clearly below the real rate of return on equity and above that on bills. In
contrast, real rates of return on bonds were close to the growth rates of GDP and consumer
expenditure.

To understand what measure of 7-g matters, one needs a theoretical model that can
explain a large equity premium. The standard neoclassical growth model is unsatisfactory for
this purpose because, in its deterministic setting, there is a single real rate of return and no equity
premium. A satisfactory framework requires uncertainty that is sufficient to generate a large
equity premium; that is, to resolve the equity-premium puzzle of Mehra and Prescott (1985). 1
use a simple representative-agent model with disaster risk, following Barro (2009), which built
on Rietz (1988) and Barro (2006). The analysis could be pursued in alternative frameworks that
can generate a large equity premium, such as the long-run risks model of Bansal and Yaron
(2004)* and the heterogeneous-consumers model of Constantinides and Duffie (1996). Models
without aggregate risk, such as Aiyagari’s (1994) setting with idiosyncratic shocks to individual
labor earnings, do not work because the rate of return on equity would equal the safe real interest

rate.

I. Fruit-tree Model with Stochastic Depreciation

I use the simplest representative-agent model I have thought of that has sufficient
aggregate uncertainty to generate a realistic equity premium and that also determines
endogenously the rate of economic growth and the investment/saving decision. The model is an

“AK” version of the Lucas fruit-tree model:

3This model features variations in the mean and volatility of long-run growth rates. Other models, such as Gabaix
(2012), allow for volatility of disaster risk.



(1) Y, = AK;,
where Y; is output (of fruit or seeds) and K; is the capital stock in the form of trees. The model is
constructed in discrete time but the length of the period is allowed to approach zero. The timing
is specified so that K; represents the capital stock available at the start of period ¢ and Y; the
output produced during period ¢#. The productivity level, A>0, is assumed constant but
productivity shocks can be introduced. These shocks would be analogous to the stochastic
depreciation introduced below. A simplifying assumption is that the marginal product of capital
(equal to the average product) does not diminish as capital is accumulated. This absence of
diminishing returns seems most plausible when capital stock and capital services are interpreted
broadly to encompass human capital, household durables, intangible capital, etc.

During period ¢, output can be consumed as fruit, C;, or invested as seed, /;, so that

) Ci=Y-1,=A4K,- 1.
The creation of new trees through planting seeds (that is, gross investment) is assumed to be
rapid enough so that, as in the conventional one-sector production framework, the fruit price of a
unit of capital is pegged at a price normalized to one.* Therefore, in the simplest setting, the
price, Py, of equity—in the sense of a claim on all of the trees—always equals K. This result
corresponds to “Tobin’s ¢” equaling one. In terms of changes over time, the equity price ratio,
P1/P,, would equal the capital-stock ratio, K+1/K;, which equals the output ratio, Y:+1/Y..
Therefore, the volatilities of equity prices and output would be the same. In contrast, empirically
observed equity prices are far more volatile than output, gauged by real GDP.

In practice, there are many reasons that equity valuations for businesses would depart

from the reproduction cost of the underlying capital stock. As an example, the price of goods

“Irreversibility of investment would affect this result if the constraint that gross investment cannot be negative is
sometimes binding. However, in the present model, gross investment is always chosen to be positive.
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sold might be a variable markup, /+u;, of the underlying cost of production, and variations in u;
would generate fluctuations in P; independently of those in K; and Y. Another possibility is that
the cost of shifting between consumables and new capital goods in the production process does
not stay fixed (at unity), and a further idea is that the productivity of old capital might vary
stochastically relative to that of new capital.

To capture these types of effects, the price ratio for equity, P1/P;, is allowed to deviate

from that for the capital stock by an independent random term, &, :

Pri1 _ Keta
) Py K¢

The shock &;,4 is assumed to have zero mean, serial independence, and to be distributed
independently of K;+;/K;. This specification means that an epsilon shock, possibly representing a
change in markups or a shift in the rate of transformation between consumables and capital on
the production side, has a permanent effect on the level of the equity price. For asset-pricing
purposes, an important condition is that &, 4 will be distributed independently of consumption
growth, C;,1/C; (because &, 1s assumed to be independent of capital-stock growth, K; 1 /K).
In this case, the epsilon shock will not influence asset pricing in the model’s baseline
specification but will allow for the equity price to be more volatile than capital stock and output.

The model allows for rare disasters by having stochastic depreciation of the capital stock;
that is, destruction of trees. The capital stock evolves because of gross investment and
depreciation, J;+:K::

4 Kiv = Ki + L= 6+1K..
The depreciation rate, d,+;, is stochastic and equal to

(5) Ore1 = 0 + Ure 1 + Virl,



where 0<d<1. The wu+; shock, normally distributed with mean 0, variance ¢°, and serial
independence, represents normal economic fluctuations. This shock has a permanent effect on
depreciation and, therefore, on the level of the capital stock. (Since u;+; can be negative, it is
possible that d,+; would be negative.) The v:+; shock represents rare disasters, modeled as large-
scale destruction of trees. With probability 1-p, v/+;/=0, and with probability p, vi+;=-d;+;; that is,
the fraction d;+; (0< d;+;<1) of the trees is (permanently) destroyed in a disaster event. The
proportionate disaster size, d;+1, is subject to a time-invariant probability distribution. (This
disaster shock is one-sided because there are no bonanzas associated with the sudden appearance
of new trees.) There is assumed to be no upper bound less that one on the fraction of capital that
can be destroyed in a period, so there is no positive lower bound on the capital that remains.
This property holds, for example, with the power-law distribution of disaster sizes considered in
Barro and Jin (2011). A natural extension, as in Gabaix (2012), would allow for stochastic
variations in disaster probability, p, or in the distribution of disaster sizes, d.

One part of tree output is paid out as dividends, which correspond to consumption of fruit
by owners. The other part is retained within the tree business to finance investment in new trees.
From the standpoint of equity holders, the first part of the return on equity is the dividend yield,
which equals the ratio of consumption, C;, to the capital stock, K;.°> The second part consists of
equity price appreciation, P;+;/P;, given in equation (3). Therefore, using equation (2), the gross

one-period return on equity, Ry, is

1 K,
1+Et+1 =A__t+ t+1+€t+1.

e _ Ct | Ky
©) RE =S4 Lyt

Kt Kt

Equations (4) and (5) imply that the growth of the capital stock is given by

SWith a markup ratio /+u, the dividend payout in value terms is (1+u)-C; and the equity price is (1+w) K.
Therefore, a change in u does not affect the dividend yield.
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Substitution of equation (7) into the right-hand side of equation (6) yields:

(8) RE=1+A—06—Uy1 — Vty1 + &1
so that the net rate of return, rf = Rf — 1, is

) E=A—08— U1 — Vg1t Epq1

In equation (9), the shocks u;,; and &;,, have zero mean, and the disaster shock v;,; has
mean p - E(d). Therefore, the expectation of the one-period net rate of return is

(10) E(rf)=A—-6 —p-E(d).

An assumption is that A>0+p-E(d) and, hence, E(rf) > 0. Since productivity, 4, disaster
probability, p, and mean disaster size, E(d), are time invariant, E (1) is constant over time.

The next step concerns the determination of the ratio of gross investment to the capital
stock, I/K;. Gross investment equals gross saving (for a closed economy with no government
sector) and can be determined from dynamic conditions for consumer optimization.

Barro (2009) uses a specification of preferences for the representative consumer based on
the analysis of Epstein and Zin (1989) and Weil (1990), described as EZW preferences. This
specification, corresponding to Barro (2009, equation [10]), features constant values of the rate
of time preference, p, the coefficient of relative risk aversion, y, and the intertemporal elasticity
of substitution (/ES), 1/6, where =y holds in the standard power-utility formulation. The
condition y>1 is required for the model to have a chance of generating an equity premium in the
neighborhood of that observed empirically. In that case, the standard representation would
require 6>/ and, hence, /ES<I. Barro (2009) followed Bansal and Yaron (2004) to argue that
the property /ES<I generates counter-factual predictions regarding equity pricing. In the present

analysis, y>1 is crucial, but </ is less important.



In general, EZW preferences do not allow for simple formulas for pricing assets.
However, when the underlying shocks are i.i.d., as in the present model, the analysis simplifies
dramatically. Specifically, Barro (2009, equations [12] and [13]) used results from Giovannini
and Weil (1989, appendix) to show that a standard-looking asset-pricing condition applies:

1
I+ p*

(11) 7= )-E (R -CJ),

where R; is the gross return on any asset between dates ¢ and ¢+/. Two features that differ from
those in the standard power-utility model (where y=6) are worth noting. First, the exponents on
Crand Ci+7 in equation (11) involve y, the coefficient of relative risk aversion, not 8, which is the
reciprocal of the /ES. Second, the effective rate of time preference, p*, differs from p when y

and 6 diverge. The formula for p* is, if y#1,
(12) pr=p— =0 {E@) —(3) vo? = () [EQ - D' —1-(y - 1) - Ed}.
The term E(g;) is the economy’s expected growth rate and is derived below.
Because the shocks u;+; and v+; are 1.1.d. (permanent to the levels of capital stock and
output), the ratio of gross saving to the capital stock will be optimally chosen as a constant,
denoted by v. The value of v can be determined by applying the consumption-based asset-

pricing formula in equation (11) to the gross return on equity, given in equation (8). The result

(applying as the length of the period approaches zero) is:®

(13) v=5+(%){A—5—p—(%)y(1—8)-02—p-(]l/;_i)[E(l—d)l‘V—l]}.

®For equation (13) to be valid, the associated level of consumption has to be positive, corresponding to v<A.
Equation (13) implies that this condition can be expressed as:

1 -
p>-0)fa-6-(3)yo? - CEDIEQ - D' - 11},
If this inequality does not hold, the optimization problem is not well defined because the attainable expected utility

is unbounded. The inequality is satisfied for the parameter values assumed later. (An analogous inequality
condition applies in the standard deterministic neoclassical growth model, where ¢ and p equal zero.)

9



Equation (13) implies that, if y>0, the sign of the effect of uncertainty (g, p, or the
distribution of d) on the gross saving ratio, v, depends on the /ES, 1/0, not the degree of risk
aversion, y. If 6<I, so that the IES exceeds /, the “substitution effect” dominates, and more
uncertainty (higher o or p or an outward shift of the d-distribution) decreases v. For the
parameter values used subsequently to calibrate the model (in Table 2), the main effect from
uncertainty on the saving ratio comes from disaster risk—the term involving p on the far right of
equation (13). The term involving ¢° in this calibration is unimportant.

In the present model, the growth rates of the macroeconomic variables—capital stock,
output, and consumption—are always the same. This common growth rate, denoted by g;, is

given from equation (7) as

K
(14) gt=%_1=U_6_ut+1_vt+1a

where recall that u;+; is the normal shock and v;+; is the disaster shock. A higher gross saving
ratio, v, in equation (13) implies a higher growth rate in equation (14).

The expected growth rate is constant and given from equation (14) by

(15) E(gr) =v—6—p-E(d).
An assumption is that the parameters imply E(g,)>0, given that v-0 is determined from
equation (13).

The relationship between the expected rate of return on equity, E () from equation (10),
and the expected growth rate, E(g;) from equation (15), is given by

(16) E(rf) — E(g)) = A—v.

10



Therefore, if A>v—meaning that output exceeds gross investment and, hence, that consumption
is positive (see n. 6)—the expected rate of return on equity exceeds the expected growth rate.” In
other words, the »>g condition holds in the model when the r applies to the expected rate of
return on equity (that is, on ownership of capital).

To get perspective on equation (16), note that the expected net rate of return on equity is
(17) E(re) = S+ E(CE2 - 1) = 24+ E(gy),
t t t

where C, /P, is the dividend yield and E(g;) is the expected rate of capital gain. Rearranging
equation (17), assuming E (1) # E(g;), yields a formula for the price-dividend ratio of an

equity claim:

Pt_ 1
Ct  E(@E)-E(gy)

(18)
Equation (18) is usually called the “Gordon growth formula.”® This formula relates the price-
dividend ratio for equity to the reciprocal of the difference between the expected net rate of
return on equity and the expected growth rate (of dividends; that is, of C; in the present model).
Equation (18) implies that P/C; will be positive and finite only if E(rf) > E(g;), as already
noted in equation (16).

A way to think about this result is that claims on capital give owners the rights to a
stream of dividends (fruit) that is expected to rise at the rate E(g,). If this expected growth rate

were at least as high as the discount rate—which corresponds to the expected rate of return on

the asset, E (r¥)—then the present value of the claim would be infinite. This result is

"The condition A>v corresponds to the criterion for dynamic efficiency proposed in Abel, et al. (1989, p.2): ““ ... an
economy is dynamically efficient if it invests less than the return to capital ...” In the present model, 4 equals the
marginal (and average) product of capital and, therefore, corresponds to the gross return on capital.

8See Campbell (2018, p. 130). The reference to Gordon refers to Gordon and Shapiro (1956, equation [7]).
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inconsistent with an equilibrium in which consumption is chosen optimally over time. However,
this inconsistency does not arise if E(1¥) > E(g;).

Consider now the risk-free real interest rate, denoted by #/. In the model, the potential
risk-free assets are internal instruments, effectively private bonds that correspond to loans from
one agent to another.® The aggregate of risk-free assets always equals zero; that is, these assets
are in zero net supply. Section III considers government bonds, which may be in positive net
supply.

Although the aggregate quantity of risk-free assets will be zero, the model still
determines a shadow real interest rate, #/, applying to these hypothetical assets. The value of 7,
which is constant, can be determined from the asset-pricing condition in equation (11), along
with the result that Ci+,/C; equals the value g; given in equation (14). The solution is

(19) rf=4-6§—-yo?—p-E[d-(1-d)7"].

More uncertainty—higher o or p or an outward shift of the d-distribution—decreases #.'° For
the parameter values used to calibrate the model (in Table 2), the main effect from uncertainty
on # comes from the disaster term, which involves p on the far right of equation (19). With these
parameter values, including y=3.5, and for the observed histogram of disaster sizes, the term

E[d - (1 —d)7Y] equals 1.7, implying that a (once-and-for-all) rise in disaster probability, p, by
0.010 per year lowers /by a substantial 0.017 per year. The effect associated with the normal
shock, which involves ¢°, is quantitatively unimportant. Reasonable parameter values accord

with a value of #/ close to zero in equation (19). For the values specified in Table 2, the

9The assumption is that there do not exist storable goods or other real assets that yield a risk-free real rate of return
above the equilibrium 7/'that arises in the model. In Aiyagari (1994), risk-free assets can be constructed as claims on
the positive lower bound for each agent’s labor earnings. However, in that model, the absence of aggregate risk
implies that claims on the whole capital stock are safe assets.

19Since the model has i.i.d. shocks, the term structure of risk-free rates is flat; that is, #/ is the short-term and long-
term risk-free rate.
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equilibrium #is 0.001, essentially zero.!! By comparison, long-term averages for OECD
countries of realized real rates of return on government bills, as shown in Table 1, are around
0.01 per year.

The equity premium is given from equations (10) and (19) by

(20) E@®) —rf =yo? +p-E{d-[(1—-a) —1]}.
For the parameter values specified in Table 2 (which include y=3.5), the predicted equity
premium from equation (20) is around 0.06 per year. This result accords with measured equity
premia, gauged by the gap shown in Table 1 between long-run averages of realized real rates of
return on equity and short-term government bills.'?> The dominant part of the equity premium in
the model reflects disaster risk, which appears in the term in equation (20) that contains the
disaster probability, p. The other part, ya2, is quantitatively unimportant, as in the related
analysis of the equity-premium puzzle in Mehra and Prescott (1985). Note that, in the present
model, the positive effect of disaster risk on the equity premium reflects the negative impact on #
in equation (19), not an effect on the expected rate of return on equity, E (r), in equation (10).'3

The relation between # and the expected growth rate, E(g,), is given from equations (19)
and (15) by

21 = E(g)=A-v—yo?—p-E{d-[A-d)7 - 1]}

This low value of #/ reflects the fatness of the disaster tail, not the skewness, which arises from the exclusion of
bonanzas. Skewness would not apply if there were a bonanza probability, ¢, that equaled p and if the distribution of
bonanza sizes were the same as that for disasters. In this case, in turns out that the calibrated model’s equilibrium
value of # becomes 0.005, rather than 0.001. To put it another way, with a small rise in p=g, which turns out to be
from 0.040 to 0.042, the equilibrium # would still be 0.001, despite the lack of skewness. Skewness is unimportant
because, with the substantial “diminishing marginal utility” implied by y=3.5, the positive tail from bonanzas counts
little for the equilibrium #.

12The observed stock returns from Table 1 should be adjusted downward because of leverage associated with bond
financing to match up with the ¥ in the model (where equity is a full claim on the capital stock). However, taxation
of earnings at the corporate level would imply an offsetting upward adjustment to the expected net marginal product
of capital.

BEquation (10) implies a small negative effect from the disaster probability, p, on E (). This effect would not
arise if bonanzas were treated symmetrically with disasters, as inn. 11.
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The parameter values considered below suggest that the gap in the model between # and E (g;)
is likely to be negative (because the model’s predicted value for #/ in equation (19) is likely to be
close to zero). In any event, the model does not require the »>g condition to hold when the »
refers to the risk-free rate. Thus, there is no conflict between the theory and the empirical
observation that this condition fails to hold when 7 is measured by the average real rate of return
on government bills.

In terms of portfolio allocation, the representative agent in period ¢ holds claims on all of
the capital stock, K, at price, P;, and holds a zero net position in risk-free assets. That is, in the
equilibrium—for the distribution of ¢ implied by equation (9) and for the value of r/ given in
equation (19)—each agent is willing at all points in time to hold 100% of assets in risky capital
and 0% in risk-free claims.

Because the representative agent ends up with a zero net position in risk-free assets, the
equilibrium results would be the same if risk-free assets did not exist. However, the existence of
these assets would matter if households were heterogeneous; differing, for example, by
coefficients of relative risk aversion, y. In that case, agents with relatively high y would tend to
be net positive in safe assets, thereby lending funds on a risk-free basis to those with relatively
low y.

Consider now whether an outcome with r/ < E(g,) violates a transversality condition.
To assess this possibility, consider the representative agent, who, in equilibrium, holds all assets
as risky equity with a zero net position in safe assets. Suppose that this agent in period ¢ perturbs
his or her position by issuing the quantity B; of safe bonds and using the proceeds to raise C:.
Suppose further that the agent plans never to repay this debt; that is, the debt is rolled over in

perpetuity, so that the stock of debt grows deterministically at rate 7/. All other parts of the plan

14



for consumption and portfolio allocation subsequent to date ¢ are assumed to be unchanged (and
r/and the time path of 7€ are unaffected by an individual’s perturbation). If this plan were
feasible, the agent’s expected overall utility would rise, corresponding to the increase in C; and
unchanged values of Ci+y, ... That is, the agent would not actually have been optimizing, and the
proposed equilibrium would be invalid.

The key element is the agent’s debt, which, in the proposed perturbation, equals B,>0 at
date # and B,(1 + r/)" at date 1+N. There are two considerations that rule out this kind of
perturbation. First, since there is no positive lower bound on the value of the agent’s holdings of
capital, the borrower has a positive probability of having to default at some point. That is, the
debt cannot actually be safe. Second, the present value of the agent’s debt, computed using the
discount rate 7, is, B,>0; hence, the present value does not go to zero as N tends to infinity. In
order for the perturbation to be feasible, other agents would have to be willing to accumulate
risk-free assets so that the present value, computed using the discount rate r/, remains positive
as N tends to infinity.!* However, no agents would be willing to accumulate risk-free assets in
this manner because they would be better off using the assets at some date in finite time to raise
consumption. To reconcile this inconsistency, the credit market has to require each individual to
choose a time path of debt issue so that the present value, B, y/(1 + /)N, approaches zero as N
tends to infinity. This condition applies independently of the values of /and the economy’s

expected growth rate, E(g), and the result v/ < E(g) is possible.'

1Since the perturbation involves bond issue and holdings rising deterministically at the rate v/, the risk-free rate,
r/, is the appropriate discount rate.

'5The condition r/ > E(g,) may hold in the model. For example, if there is no uncertainty, so that p=¢°=0, then
r/would equal E (1), and both returns would exceed the expected growth rate, E(g;).
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The key condition needed to validate the equilibrium is the exclusion of a form of Ponzi
or chain-letter finance in which an individual borrows at the risk-free rate and then fully rolls
over the added debt in perpetuity. Individuals can consider an array of perturbations to the
equilibrium in which they change the amount consumed in any period ¢ and then change the
amount consumed in any other period, such as ¢+/, while shifting correspondingly the amounts
held in risk-free form during the two periods. That is, shifts in the timing of consumption
associated with the rate / are allowed among any periods within a finite horizon. These
perturbations away from the equilibrium are not optimal for the individual because equation (19)
guarantees that the first-order conditions for intertemporal choices of consumption (associated

with #) are all satisfied.

II. Illustrative Calibration of the Model

Table 2 shows how the model works quantitatively for a reasonable set of parameter
values. The most important settings in the calibration relate to disaster probability and size
distribution. The values for disaster probability, p, and the distribution of disaster sizes, d, come
from an updated version of the numbers in Barro and Ursua (2008). Specifically, peak-to-trough
disaster events of size 10% or more for per capita GDP were isolated for 185 cases,
corresponding to data for 40 countries going back as far as 1870 and up to 2012.'® This sample
shows an average proportionate disaster size, E(d), of 0.21. Taking account of the duration of
each disaster event, the implied disaster probability, p (the chance of entering into a disaster

state), is 0.04 per year. The objects E(1-d)”, E(1-d)"”, and E[d((1-d)”] equal 4.0, 2.3, and 1.7,

16Colombia is the only one of the 40 countries to experience no GDP-based contractions of size 10% or more.
Malaysia and Singapore, which have long-term GDP data, were excluded from the calculations because of the large
gaps in data around World War II.
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respectively, for a coefficient of relative risk aversion, y, of 3.5 and for the observed histogram of
disaster sizes.!” This value of y, when used in equation (17) (along with the value of p and the
size distribution of d), generates an equity premium that accords with empirically observed
values around 0.06 per year.'® The variance of the normal shock, ¢°, is set at 0.0004 per year to
accord with the observed annual volatility of real GDP growth. However, in the relevant range,
the results on the equity premium and other outcomes are insensitive to the value of &°.

The deterministic part of the depreciation rate, o, is set at 0.05 per year, the average BEA
number from 1948 to 2018 for fixed assets (including government assets but excluding consumer
durables other than residential housing). The value set for 4, 0.12 per year, is chosen to generate
realistic levels of the real rates of return, which turn out to be 0.062 per year for £(7°) and 0.001
per year for #/. The values of p=0.04 per year and 0=0.5 determine the gross saving and
investment ratio, v, to be 0.090 per year'® and the expected growth rate, E(g), to be 0.032 per
year (the long-run average U.S. growth rate of real GDP).

The implied ratio of gross investment to GDP is v/4=0.75. An interpretation of this high
ratio is that, as mentioned before, the underlying AK production function should be interpreted in

terms of a broad definition of what constitutes capital and investment.

III. Government Bonds

17An alternative approach, pursued in Barro and Jin (2011), assumes that disaster sizes follow a power-law
distribution. The results are similar to those based on the observed histogram.

'3This calculation views each disaster event as permanent for the level of real per capita GDP. Barro, Nakamura,
Steinsson, and Urstia (2013) and Barro and Jin (2020) assume, instead, that disasters are only partly permanent. The
estimated eventual recovery fraction is about 50% of the initial contraction. An allowance for the partly temporary
nature of macroeconomic disasters raises the value of y required to match the observed equity premium.

The values of p and 6 both contribute to v and E(g). The value of § would also affect the sensitivity of the gross
saving rate to dimensions of uncertainty—p, the size distribution of d, and ¢°, as in equation (13). However, in the
present analysis, these uncertainty parameters are assumed to be fixed. Therefore, the results shown for outcome
variables in Table 2 could be generated with alternative combinations of p and 6.
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Let BYbe the real quantity of government bonds outstanding at the start of period +.
These bonds are assumed to be analogous to the safe short-term bonds that private agents were
able to issue. The real interest rate applicable to government bonds is assumed to be 7/, the same
rate as that for private bonds. This assumption of equal interest rates is not far from reality for
the United States if one identifies private bonds with prime corporate obligations. For example,
from 1920 (which has the first data on securities comparable to U.S. Treasury Bills) to 2019, the
average of annual nominal yields was 0.034 for 3-month Treasury Bills and 0.041 for 90-day
commercial paper; that is, the spread was only 0.007. The average annual real rate of return on
10-year U.S. government bonds over this period was 0.029, whereas that on Moody’s AAA
corporate bonds was 0.036, again a spread of 0.007.

The government collects real taxes net of transfers of 7; during period ¢. The quantity 7;
is treated as a random variable. Neglecting government purchases of goods and services
(government consumption and investment), the government’s budget constraint is:

(22) B —Bf=r/-B?—T,.

Hence, the budget deficit equals the excess of spending (for interest and transfers) over revenue
(from taxes). The real interest rate r/is assumed to be constant and known in period ¢, as in the
model worked out before without a government sector. Net taxes, 77+, in each future

period (j>1) are stochastic from the perspective of period ¢, and the evolution of these net taxes
determines the future quantities of government bonds, B?, ., BY, 5, ... These quantities are random
from the perspective of period ¢, but the realizations of these quantities is linked to the

realizations of net taxes from the government’s budget constraint in equation (22).
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The equilibrium involves the present value of net taxes, computed using as a discount
rate the safe real interest rate, /. Iterating equation (22) into the future for N>/ periods yields
an intertemporal budget constraint for the government:

(23) S A[Terjor/(L+17)] = BS =BG, /(L + TN,

Therefore, aside from the final term on the right-hand side, the present value of future net taxes,
computed as of period ¢, is non-stochastic and pinned down to equal the stock of government
bonds, B at the start of period .

The previous infinite-horizon model corresponds to N tending to infinity. A key issue is
how the final term on the right-hand side of equation (23), BY, /(1 + /)N, behaves as N
approaches infinity. The asymptotic behavior of this term is analogous to the Ponzi-type
borrowing considered before for an individual agent in the model without government. One
argument in the previous setting was that the term had to approach zero because private agents
would be unwilling to hold bonds with an asymptotically positive present value.?’ The same
result applies now to government bonds: the term Btﬂ N/ (1 + /)N has to approach zero as N
approaches infinity because private agents are unwilling to hold bonds with asymptotically
positive present value.?! This result rules out Ponzi borrowing by the government, and
equation (23) becomes, when expressed over an infinite horizon:

(24) 21 [Tesj-1/(1 + )] = B/.

Equation (24) says that the government can choose the timing of tax collections (and, therefore,

budget deficits), but the present value of net taxes is pinned down to equal the starting amount of

20 Another argument was that bonds issued by private agents could not be entirely safe because there is no positive
lower bound on the value of agents’ capital. In the present context, the analogous point is that government bonds
cannot be entirely safe because the government’s collateral is limited to the present value of its taxing capacity.
That is, default on sovereign debt is a possibility.

2This argument is analogous to the one applied to public debt in McCallum (1984, p. 129).
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public debt. Note that, although taxes at each date are stochastic, the present value on the left-
hand side of equation (24) is non-stochastic. This outcome applies because, for given Btg , a shift
in taxes at any future date must be accompanied by a compensating shift in the present value of
taxes at other dates.

The model described before still applies for private agents. The only new elements are
that the representative agent holds the initial stock of government bonds, Btg , and has to pay the
stream of (lump-sum) net taxes, T¢, Tr44, ... However, the present value of the latter over an
infinite horizon (evaluated at the rate r/) is pinned down from equation (24) to equal Btg .
Therefore, the net wealth of the representative agent is unaffected by the level of Btg or the timing
of taxes and budget deficits. It follows that the model satisfies Ricardian Equivalence—the
equilibrium with respect to real rates of return, investment, and economic growth is invariant
with choices related to public debt.

Another way to look at the results is in terms of quantities of safe assets. Government
bonds, Btg , are a form of safe asset, which pays the safe real interest rate, r/. However, the
present value of net taxes owed to the government amount to a safe (that is, certain) liability—
although the timing of taxes is uncertain, the overall obligation has a fixed present value when
evaluated using the rate /. Equation (24) implies that the net of the asset and liability is nil,
implying no change in the economy’s net quantity of safe assets. In this sense, the presence of
public debt does not mean that safe assets are in positive net supply.

The model can be extended to allow for a path of government purchases, G;. Future
values Gr+1, Gs+2, ... are stochastic from the perspective of period 7. These choices might reflect

war and peace, changing preferences for public programs, and so on. If Ponzi finance by the
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government is still ruled out, the government’s intertemporal budget constraint over an infinite

horizon in equation (24) becomes:

(25) Yl Tesj-1/(1 + /)] =B/ + 25alGeyja /(1 + ).

Equivalently, the current stock of public debt, B/, equals the present value of the primary
surpluses, Tty j—1-G¢4j-1, using the risk-free rate, r/, as a discount rate. Equation (25) implies
that the present value of taxes is no longer pegged to equal BY. Instead, as time evolves, the
changing present value of taxes (above Btg ) reflects randomness in the present value of
government purchases.

The equilibrium of the economy depends on the realization of G, the stochastic process
that generates future values G;+;, Gi+2, ... and the ways that government purchases affect
household utility or production. The equilibrium also takes into account that G; adds to C; and I;
as a use of current output, Y. However, Ricardian Equivalence concerns effects from changes in
public debt and taxes for a given behavior of government purchases. That is, the issue is how the
economy responds to variations in Btg and the path of taxes (and budget deficits), for a given G,
and a given process that generates G+, ... In equation (25), the probability distribution of the
present value 3721 [Gyyj—1/(1 + r/)/] is held fixed in this experiment, and the changes related
to public debt still have no impact on the net of Btg over the present value of taxes,
YiealTeaj-r/(1 + r/)7] (although this net term does not equal zero and is now random).
Therefore, as in the model that excluded government purchases, these fiscal changes have no

effect on the net wealth of the representative agent, and Ricardian Equivalence holds.

V. Summary Observations
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The empirical pattern for several OECD countries back as far as 1870 indicates that the
familiar dynamic efficient condition »>g holds when g is the average growth rate of real GDP if
r is the average real rate of return on equity, 7°. The condition does not hold if 7 is the risk-free
rate, #, proxied by the average real rate of return on Treasury Bills. This pattern accords with a
simple disaster-risk model calibrated to fit observed equity premia. The model features
stochastic depreciation of capital, with the potential for disaster events in which large portions of
capital are destroyed. This framework proxies more broadly for an economy subject to fat-tailed
disaster risk.

As long as Ponzi-type finance for private agents and the government are precluded, the
equilibrium can feature a risk-free rate, /, below the expected growth rate, E(g), and possibly
close to zero. (The model assumes that there do not exist real assets that deliver a positive, safe
real rate of return.) The result #/<E(g) does not signal dynamic inefficiency. In contrast, the
inequality E(7)>E(g) is required for dynamic efficiency, implied by the model, and consistent
with the data. The model satisfies Ricardian Equivalence for public debt because, with Ponzi
finance by the government precluded, a rise in safe assets from increased government bonds is
matched by an increase in the safe (that is, certain) present value of liabilities associated with net
taxes.

Alternative versions of the model that could be considered feature productivity shocks,
shifts in the relative cost of producing new capital goods, changes in the value (productivity) of
old capital, and variations in markup ratios. Another extension allows for heterogeneity across
agents; for example, with respect to coefficients of relative risk aversion and, as in Aiyagari
(1994), to shocks to labor earnings. The present results for a representative-agent economy

provide a baseline setting for models with heterogeneity.
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Table 1

Long-Term Rates of Return and Growth Rates for 14 OECD Countries

Country Stock Bill Govt. bond Growth rate of:
return return return
GDP per C per Population
capita capita
Australia 0.087 0.012 0.033 0.016 0.015 0.018
(1902)
Canada 0.075 0.013 0.034 0.020 0.018 0.016
(1900) (1871) (1872)
Denmark 0.058 0.029 0.040 0.018 0.015 0.007
(1874)
France 0.065 -0.008 0.008 0.018 0.015 0.004
Germany 0.053 -0.012 0.015%* 0.021 0.018 0.005
Italy 0.061 0.003 0.016 0.019 0.016 0.005
(1925)
Japan 0.082 0.004 0.023 0.026 0.024 0.009
(1886) (1883) (1871) (1871) (1875)
Netherlands 0.069 0.011 0.028 0.018 0.018 0.011
(1900)
New Zealand 0.076 0.023 0.033 0.014 0.012 0.016
(1923) (1879)
Norway 0.061** 0.016 0.030 0.021 0.018 0.007
(1915)
Sweden 0.080 0.023 0.028 0.022 0.020 0.006
(1871)
Switzerland 0.068 0.010 0.020 0.014 0.014 0.008
(1914) (1895) (1900)
United Kingdom 0.065 0.016 0.026 0.015 0.014 0.005
United States 0.083 0.012 0.028 0.021 0.018 0.014
Means 0.070 0.011 0.026 0.019 0.017 0.009
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Notes to Table 1

Stock return refers to broad stock-market indexes and includes dividends. Bill return refers to
short-term securities analogous to 3-month Treasury Bills. Bond return refers to government
bonds, typically with maturity around ten years. C refers to personal consumer expenditure.

Sample periods are 1870-2019 for annual real rates of return, 1870-2017 for annual growth rates
of per capita GDP and consumer expenditure, and 1880-2019 for population growth, unless a
different starting date for a variable is indicated in parentheses. Rates of return are calculated
arithmetically from nominal total returns divided by consumer price indexes. Data on total
nominal returns (including dividends paid on stocks) and consumer price indexes are mostly
from Global Financial Data. See the discussion of an earlier version of these data in Barro and
Ursua (2008, Table 5). The long-term data on macroeconomic variables are updated versions of
those described in Barro and Urstia (2008), available at scholar.harvard.edu/barro.

The samples are based on availability of long-term data for rates of return and macroeconomic
variables. Countries with long-term information that could not be used include Belgium and
Finland (missing information on consumer price indexes), Portugal (missing data on stock
returns and consumer price indexes), and Spain (missing data on stock returns, government bond
returns, and consumer price indexes).

For U.K. consols, the average real rate of return for 1870-2015 was 0.035. For U.S. high-grade
corporate bonds, the average real rate of return for 1870-2019 was 0.038. These results are
based on information in Global Financial Data.

*Excludes 1923.
**Based on stock-market index and estimated dividend yield, rather than a total-return index.
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Table 2
Calibration of Model

Parameter Value
Coefficient of relative risk aversion, y 3.5
Reciprocal of /ES, 6 0.5
Rate of time preference, p (per year) 0.04
Productivity, 4 (per year) 0.12
Depreciation rate, d (per year) 0.05
E(d) (mean of disaster size for depreciation) 0.21
E(1-d)” (based on observed histogram of disaster sizes) 4.0
E(1-d)"”" (based on observed histogram of disaster sizes) 2.3
E/d((1-d)”"] (based on observed histogram of disaster sizes) 1.7

p (disaster probability for depreciation, per year) 0.04
o’ (variance of normal shock to depreciation, per year) 0.0004
Implied outcome variables in model

E(r°) (expected unlevered rate of return on equity, per year) 0.062
¥ (risk-free real interest rate, per year) 0.001
v (gross saving ratio, I/K, per year) 0.090
E(g) (expected growth rate, per year) 0.032

Notes:

The disaster probability, p, and the distribution of disaster sizes, d, come from an updated
version of the numbers in Barro and Urstia (2008). Peak-to-trough contractions of real per capita
GDP of 10% or more were isolated for 185 cases, corresponding to data for 40 countries going
back as far as 1870 and up to 2012. For this sample, the average proportionate disaster size,
E(d), is 0.21 and the disaster probability, p (the chance of entering into a disaster state), is 0.040
per year. The objects E(1-d)”, E(1-d)'”, and E[d((I-d)”] equal 4.0, 2.3, and 1.7, respectively,
based on the histogram for observed disaster sizes and for a coefficient of relative risk aversion,
y, of 3.5. This value of y generates an equity premium of 0.061 per year, close to that observed
empirically. The variance of the normal shock, ¢°, is set at 0.0004 per year to accord with the
observed annual volatility of real GDP growth. The deterministic part of the depreciation rate, J,
equals 0.05 per year, the average BEA number for the depreciation rate from 1948 to 2018 for
fixed assets (including government assets but excluding consumer durables other than residential
housing). The value for 4, 0.12 per year, generates realistic levels of real rates of return, 0.062
per year for E() and 0.001 per year for /. The values p=0.04 per year and 6=0.5 determine the
gross saving and investment ratio, v, to be 0.090 per year and the expected growth rate, E(g), to
be 0.032 per year (the long-run average growth rate of U.S. real GDP). In the present setting,
where p and 0 are constant, the outcome variables could be matched with alternative
combinations of p and 6.
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