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1. Introduction

While the concept of human capital theory can be traced to the writings of Adam Smith, John Stuart
Mill, Alfred Marshall and Irving Fisher, until the late 1950’s the key factors of production in standard
economic models consisted of labor, physical capital, and land (Becker, 1993). Not until Mincer (1958)
leveraged human capital to examine inequality in personal incomes did the field of human capital theory
begin to take on scientific import.1 Mincer’s work, and subsequent research from the Chicago School and
others, unlocked crucial early insights using the human capital approach, including the underpinnings
of the growth residual factor, why the ratio of capital to income had decreased over time, and why labor
earnings had risen recently despite its stagnation for much of human history (e.g. Schultz, 1961).

This early work set in motion two streams of literature. The first estimates the internal rate of return
using variation in human capital based on Becker (1964). The second, based on Ben-Porath (1967), deals
with the life-cycle of earnings as individuals trade-off building new human capital versus renting their
stock of human capital on the labor market. As these two strands of work make clear, the literature
generally considers human capital from the labor market perspective: individuals make investments
that develop their skills, and this stock of skills is optimized for generation of income. Empirically,
human capital is typically operationalized as being measured in years of schooling completed.

A related line of research on education production functions complements the human capital literature
by investigating the determinants of human capital (e.g. Cunha & Heckman, 2007; Heckman, 2008; Currie,
2009). In this literature, standardized test scores, or some other survey-based measure of cognitive
and/or executive function skills, are interpreted as proxies for skills that are valued on the labor market
(see Hanushek, 2020). This body of work can be divided into two distinct periods. The first, following
the famous Coleman Report (1966), examined the impact of specific measures of school inputs—e.g.,
student-teacher ratios, teacher experience, overall school spending, etc.—on student learning (for early
contributions see Katzman, 1967; Kiesling, 1968; Bowles, 1970).

The literature has evolved more recently in a second period to focus on an examination of specific
aspects of education production, often using data generated via field experiments (e.g. Fryer, Levitt,
& List, 2015) or methods concentrating on the effects of teacher quality on test scores (e.g. Chetty,
Friedman, & Rockoff, 2014). As Hanushek (2020) points out, this body of research formally links the
human capital literature with social science on education production functions. Thus, there is now
a useful rationale for interpreting education production estimates as reflecting the long-run economic
impacts of educational inputs.

Of course, the field of economics does not have a monopoly on insights concerning skill formation.
Foundations of the study of learning can be traced as far back as Plato and Aristotle. According to
Schunk (2020), the psychology of learning, influenced by this early philosophical work, began in earnest
late in the nineteenth century with James (1890), Dewey (1896), and Titchener (1909) (among others)
actively engaged in structuralism and functionalism. The study of human learning expanded during the
20th century, with Bandura (1986, 1997), Bruner (1961, 1966, 1985), Vygotsky (1962, 1978), and others.

In contemporary psychology of education the classical approaches have been replaced by a more so-
phisticated cognitive model that stresses the influences of a student’s perceptions and beliefs on behavior
(Carroll, 1962, 1963; Bloom, 1968; Eccles et al., 1983; Wigfield & Eccles, 2000; Eccles & Wigfield, 2002).
One particularly influential qualitative framework by Carroll (1962, 1963) began as a modeling exercise

1Interestingly, Becker quips that he was quite cautious in using the term “human capital” for the title of his book and thus
opted for a long subtitle to avoid criticism (Goldin, 2016).
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on learning foreign languages, and highlighted how aptitude, ability, and instruction type interacted
to influence a student’s choices, and in turn, her level of mastery of a new language (Carroll, 1962).
Carroll (1963) extended the model to general learning of any cognitive skill or subject matter. The model
postulates five basic classes of variables that account for individual variations in school achievement:
aptitude, opportunity, perseverance, instructor quality, and innate ability. Interestingly, while Carroll’s
qualitative model has been a basis for major programs of scientific innovation in the fields of education
(see Denham & Leiberman, 1980) and psychology of learning (Bloom, 1968; Eccles et al., 1983; Carroll,
1989; Wigfield & Eccles, 2000; Eccles & Wigfield, 2002), the economics literature to our knowledge has
made no attempt to test or build upon the framework for quantitative research.

A major goal of our study is to draw inspiration from the contemporary learning model in Carroll
(1963), as well as its predecessors and successors (e.g. Morrison, 1926; Skinner, 1954; Bruner, 1966;
Eccles et al., 1983; Wigfield, 1994; Wigfield & Eccles, 2000), to speak to the human capital and education
production function literatures. Our starting point is the emphasis on time as an important variable in
skill formation/learning. A focal point of the educational psychology literature is the idea that a child’s
learning is a function of the time needed to learn and the time actually spent on learning. Under this
formulation, Carroll (1963) famously proposed that students accumulate skill by increasing the ratio

learning =
time spent on mastering a concept
time needed to master the concept

,

either by increasing time spent (numerator) or by reducing time needed to learn (denominator), or both.
Carroll described the two key parts of the model as “aptitude” (the amount of time a student needs to
learn a given task) and “perseverance” (how willing she is to spend time learning the task). Since these
two terms have come to hold very different meanings in various social science literatures, we rename
the two unobservable student characteristics as “academic efficiency” and “time preference.”

We propose a quantitative model of learning that provides direction into the exogenous variation
necessary to quantify these two unobservable student characteristics. Our model and experimental de-
sign draw upon a novel identification framework proposed by D’Haultfoeuille and Février (2015) and
Torgovitsky (2015). Our approach to quantifying academic efficiency relies on standard panel-data meth-
ods applied to a remarkably rich dataset on children’s time inputs and learning task accomplishment.
Following this step, the identification argument for time preferences consists of using exogenous piece-
rate incentive variation to derive an empirical mapping between observable student hours worked and
their underlying type. This mapping allows us to reverse-engineer a student’s cost schedule for supply
of would-be leisure time to study, and the distribution of childrens’ individual work-time supply costs.

Our research leverages piece-rate incentives since these are the dominant forms of external motiva-
tion in academic life: a child is rewarded (or punished) based on how many homework assignments she
completes or how many test questions she correctly answers, and not on how much time her homework
took or how long she studied for an exam.2 After structurally estimating the two-dimensional unob-
served heterogeneity, we analyze the relationship between the estimated student type parameters and
observable factors, including school district, neighborhood characteristics, and demographic variables.
This approach allows us to explore, for example, how differences in motivation or study efficiency may
contribute to academic performance gaps between different demographic groups. We also can examine
how student characteristics differ across the diverse school districts in our sample.

2In a sense, this idea is implicit in the Carroll model, though education psychologists focus on learning task accomplishment
rather than on piece-rate incentives per se.
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Finally, we estimate two models of math skill production technology: one focused on short-term
learning and one on medium- to long-run learning. This exercise sheds light on how observable factors
interact with student type parameters to determine learning gains and overall human capital accumu-
lation. Importantly, this analysis relies on the quantified student unobservables from our structural
model in order to solve a classic identification problem of omitted variables and selection bias: do high-
performing schools have better outcomes because the school inputs are inherently better, or because
more academically adept children tend to self-select onto their rolls? Our estimates facilitate counterfac-
tual analyses of the link between racial achievement gaps and distributions of school quality, which are
highly correlated with race in our sample, and in the American population more broadly.

To create the experimental control, data, and variation needed to identify the model and provide
relevant policy insights, we must satisfy two necessary conditions: (i) secure a diverse set of school
district partners and (ii) design a tool that meticulously tracks student choices and effort under various
piece-rate incentive levels. For the first, after months of negotiations we concluded agreements with three
diverse school districts in the Chicagoland area that hosted nearly 1, 700 adolescent students in grades
5 and 6 (roughly ages 10 and 11). Importantly, the students come from one high performing/wealthy
school district, one middling school district, and one school district that has substantial poverty, lags in
operating budget, and where nearly every student metric is well below state averages.

In terms of the second necessary condition, a key feature of our field experiment is that we built a
website, accessible only through a login credential assigned to each student, wherein the students could
complete up to 80 mathematics modules that we constructed based on professionally developed, age-
appropriate math materials. Students had access to the website for 10 days and throughout the process
our web server monitored students’ activities and tallied successful completion of math modules. Our
web-based platform, with its automated, non-invasive tracking and Common Core math materials, was
carefully crafted to parallel day-to-day homework activities and a child’s associated effort choices. A
key to our identification strategy is that we randomized piece-rate incentives for task completion across
students, based on the number of modules they completed successfully. Combining this information
with pre- and post-experiment measured proficiency using in-classroom mathematics assessments, and
a host of other student covariates, we are able to identify the model.

We report several unique insights, which we gather into 3 areas: the student time allocation model,
the skill production technology models, and counterfactual analyses. First, our quantitative analog of
the Carroll (1963) model contributes 3 novel empirical results to the science of learning. (I) We estimate
a remarkably high degree of curvature in a child’s utility costs of giving up would-be leisure time for
study activity. The key insight is that study-time supply is quite inelastic for all but roughly the 10%
most academically inclined students. As a specific policy insight, this result suggests that altering the
numerator of Carroll’s learning ratio may be a very costly prospect for the average middle-schooler.
(I I) We observe a remarkable degree of heterogeneity across students in unobserved traits. Monetized
utility costs of 3 and 6 hours of foregone leisure time differ by a factor of nearly 7 across the 25th and 75th

percentiles among students who were active on our website. In terms of academic efficiency, average
time-to-success differed by a factor of 2.7 across the 25th and 75th percentiles among students who were
active on our website.3 (I I I) Related to the first two results, willingness to forego leisure time is not
the most important determinant of a student’s study effort and learning task accomplishment. Rather, a

3Half of our test subjects declined any activity on the website, due to time preference being too high, academic efficiency being
too low, or both. Thus, these numbers likely understate the heterogeneity across the overall sample population.
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student’s academic efficiency, which determines how effectively he can turn inputs into outputs, played
a relatively dominant role in shaping academic choices among students in our sample. As a policy
insight for an official wishing to increase human capital production, this points to the denominator of
Carroll’s equation as the location of the proverbial low-lying fruit.

The level of empirical heterogeneity in time preference and academic efficiency also permits an explo-
ration of how these traits relate to observable factors. In the raw data we find racial and gender achieve-
ment gaps in standardized math test scores across all 3 school districts. The gaps for race are largely
consistent with the literature (e.g. Fryer & Levitt, 2004; Clotfelter, Ladd, & Vigdor, 2009; Hanushek &
Rivkin, 2006, 2009; NAEP, 2019) with an interesting data pattern: observed racial gaps are largest in the
poorest school district and smallest in the wealthiest school district. The middling school district shows
an intermediate gap. Importantly, the race gap in performance is driven by differences in academic effi-
ciency, not time preferences. Indeed, we find either no significant difference in time preferences across
racial groups (i.e., between Hispanic and White/Asian students) or differences in time preferences that
suggest minority students are more motivated than non-minority students (i.e., Black students are more
willing to put in time studying than White/Asian students, all else equal).

Considering gender gaps, consonant with the literature (e.g. Hyde et al., 1990; Guiso et al., 2008;
Hyde & Mertz, 2009; Fryer & Levitt, 2010; OECD, 2015) we find that males outperform females on
standardized math tests, on average, but again there is an interesting trend across school districts. While
the gender gap is not evident in the poorest and middling school districts, we find a large gender gap
in the wealthiest school district. In terms of its underpinnings, we find that females tend to require less
incentive to spend time studying than their male counterparts: their time preference is such that they
are willing to spend hours studying, holding external incentives fixed. This difference, by itself, leads
to higher academic performance. Yet, in contrast, males tend to have higher academic efficiency, and in
net the relative size of this effect compared to observed differences in time preference yields the gender
gap observed.

Finally, we find considerable selection on unobservables across the three school districts. Even after
controlling for observable student characteristics, there is a 0.76 standard deviation gap in academic
efficiency between District 1 and District 3, which is 1.8 times the gap between grade 5 and grade 6
students. Similar patterns are not observed across districts in regards to student time preference. Yet,
interestingly, while neighborhood income has little impact on average, we do find that deprivation of
non-school developmental resources (e.g., health insurance) is a statistically and economically significant
predictor of a child being less motivated for academic pursuits.

A second area of results we report pertains to human capital accumulation and skill formation. We
find that both academic efficiency and time preference are important determinants of human capital
production, with academic efficiency being roughly three times more important than time preference in
determining the initial math proficiency of students. In terms of total factor productivity, we find strong
evidence that school quality alters input productivity in an interesting manner: high-performing school
districts have higher total factor productivity and lean more heavily on a child’s academic efficiency
trait, whereas middle- and low-performing schools have lower total factor productivity and lean more
heavily on a child’s motivation trait in order to generate math skill over time. Furthermore, we find
evidence that school quality plays an important role in conversion of learning-by-doing activities into
improvements in demonstrated math proficiency.
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An important lesson emerges when we pair the first and second area of results. Together, they suggest
that educational interventions aiming to decrease gender or racial performance gaps in mathematics by
motivating students through incentives or information about the returns to education (such as in Angrist
et al., 2009; Fryer, 2011; Fryer et al., 2015; Levitt, List, & Sadoff, 2016; Levitt, List, Neckermann, & Sadoff,
2016; Seo, 2020) might be misguided. This is because such students already tend to be more motivated
than their male or White/Asian peers, suggesting that motivation is not the primary barrier limiting their
performance. In this spirit, a policy approach based on incentivizing higher effort from such students
will struggle to overcome their relative disadvantage.

Our final area of results pertains to counterfactual exercises aimed at investigating the role of access
to high-quality education services in explaining racial achievement gaps within our sample population,
as well as the potential for incentive-based interventions to ameliorate these gaps. Several interesting
insights emerge. First, conditional on key student characteristics, racial differences in school quality
account for roughly 45% of the achievement gap between Blacks and Whites/Asians, and roughly 85%
of the achievement gap between the Hispanics and Whites/Asians in our sample. Moreover, our model
predicts that a leveling of the playing field (in terms of bringing Black/Hispanic school quality up to the
same level of White/Asian school assignment) would cause the academically most talented 5% of Black
and Hispanic students to actually overtake their 5% most talented White/Asian counterparts in terms
of exam score performance.

Second, for policy purposes, we explore two distinct approaches to achieving equality: affirmative
action and pecuniary incentives to close the achievement gap. We find that the incentive channel is rel-
atively weak, requiring large amounts of resources to affect outcomes materially. These results strongly
suggest that programs or policies to increase the motivation of struggling learners are unlikely to be a
cost-effective means of substantially closing demographic performance gaps, since the main driver of
these gaps is not a difference in motivation, but rather differences in academic efficiency (driven by fac-
tors such as differences in school quality). Moreover, we find that a narrowly-tailored affirmative action
scheme that merely un-did the systemically uneven distribution of school quality by race would have to
be quite substantial relative to the so-called “color-blind” alternative.

Overall, our results speak to several strands of the literature. First, we clarify and define exactly
what is meant by the important unobservable elements, time preference and academic efficiency, in the
skill formation context. While the broader literature has used perseverance (e.g. Carroll, 1963), grit
(e.g. Duckworth et al., 2007), intrinsic motivation, self-motivation, and other executive function skills
(such as in Cunha et al., 2010; Gneezy et al., 2019; Kosse et al., 2020; Cappelen et al., 2020), to describe
time preference, our metric is theoretically-driven, clearly defined, and quantifiable. Likewise, while
aptitude, cognitive ability, and innate ability have been used to measure academic efficiency, we develop
a theoretically-consistent metric that is easily obtained and correlates with key observables. Measuring
the two unobserved characteristic types of students is important to both the theorist and policymaker.
If the theoretical arguments as to the relative efficiency of different instruments are to be subjected to
empirical testing, it is essential to make actual measurements of them. Equally, if education policies are
to concern themselves with particular student types or school districts, it is important to understand
the optimal approaches and how far a given student can be expected to increase their output by simply
increasing time allocation or enhancing academic efficiency. We are unaware of any attempts that have
solved this problem, likely because while others have produced careful measurements of some or all
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of the inputs and outputs, they failed to combine these measurements into any satisfactory measure of
efficiency.

Second, the empirical results sharpen our understanding of a number of crucial concepts in the educa-
tion literature. For example, we often hear descriptions of unsuccessful students being “unmotivated.”
Usually in such cases, the criticizer is referring to the fact that the student does not complete home-
work assignments, show competency on tests, or engage completely within the classroom. Our results
and accompanying model call into question the traditional notion of what a “motivated” student is by
showing that this logic naively confounds two very different aspects of the child’s experience. He may
be highly willing to devote an hour (low time preference) to study, or on homework, test prep, and
classroom engagement, but if he expects that hour to be unproductive (low academic efficiency) due to
lack of high-quality instruction or other resources, then it still may not be rational to exert high effort in
response to external incentives because the time needed to perform well is unreasonably high. Or, he
might be very motivated, putting forth high effort, but because of low academic efficiency he appears
unmotivated.

In addition, our view that academic efficiency is the amount of time required by the student to
develop skills means that given enough time all students can conceivably obtain key skills. Under this
reasoning, learning is available to all, we just need to find the means to help each student. Our particular
formulation has fundamental implications for education, and guides us to recast the education problem
from one of a goal of equal achievement for all to one of equal opportunity for all, ensuring that anyone
who is willing to put in the time and work hard has the potential to succeed. Under this view, we need
to understand what policy approaches provide such student equality, rather than focus primarily on
equity considerations. A related literature in this spirit is the literature on school district quality and
moving to opportunity. Much of this literature focuses on interventions that result in children relocating
to new schools at some time during their studies, and is therefore often focused on the disruptive
effects of moving or changing school environments (e.g. Katz, Kling, & Liebman, 2001; Hanushek, Kain,
& Rivkin, 2004; Rumberger, 2015; Chetty, Hendren, & Katz, 2016; Schwartz, Stiefel, & Cordes, 2017;
Cordes, Schwartz, & Stiefel, 2019; Schwartz, Horn, Ellen, & Cordes, 2020).

In an immediate policy sense, our findings have implications for the design of programs to close
achievement gaps across demographic groups. By pinpointing the underpinnings of skill deficiencies,
we learn that many students who appear unmotivated and do not complete assignments are likely no
less willing to put in time studying than their more-successful peers, but that academic success (or even
progress) is difficult for them to achieve. This low academic inefficiency in turn discourages them from
investing time in their studies. When we consider performance gaps across demographic groups more
broadly, we show how these gaps are not due to differences in motivation—in fact, the motivation gap
either plays no role or even points in the opposite direction—but rather, are due to differences in how
efficiently students in different demographic groups convert study time into the successful completion
of academic assignments and learning gains.

This insight highlights that under-represented minority students are struggling compared to their
peers, not because they are unwilling to spend time studying, but because they are more likely to lack
the foundation (e.g., literacy and numeracy skills, study skills, high-quality school inputs, support at
home) on which academic progress can be built more easily. This means that initiatives to close perfor-
mance gaps by increasing motivation among under-performing groups, whether through information or
incentives, are very much not addressing the primary barriers holding these groups back. Such programs
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that encourage greater effort from marginalized groups, who we show are already at least as willing to
put in time studying than others, is unlikely to substantially close any performance gaps. Real change
will more likely come from efforts to better understand and address the reasons why these groups are
less able to effectively convert their study efforts into learning gains. We show that much of the racial
performance gap in mathematics comes from differences in school quality and resource deprivation due
to poverty, which may influence their foundational literacy and numeracy skills, limiting learning and
discouraging effort, even among those eager to learn.

The remainder of our study is structured as follows. Section 2 outlines the quantitative theoretical
framework that underpins our research design and empirical strategy. Section 3 discusses model identi-
fication, with an emphasis on how experimental variation can enable us to generate the requisite set of
observables to uniquely quantify unobserved student characteristics and other structural primitives. The
identification argument provides a number of insights regarding how the experiment must be designed
to achieve the proper variation in the data. Section 3 also presents our research design, focusing on
the crafting of an organic learning scenario, incentives variation, and how subjects were chosen. Sec-
tion 4 presents estimator details. Section 5 presents both reduced-form and structural results. Section 6
presents a counterfactual simulation exercise to explore variation in school quality as well as two distinct
public policies that have been used to lessen racial and gender achievement gaps: affirmative action and
pecuniary incentives. Section 7 concludes. An appendix contains additional technical details, graphs,
and tables.

2. Theoretical Framework

Causal inference on educational outcomes has always been impeded by the canonical identifica-
tion dilemma of unobserved student characteristics. It is well documented that students who attend
better-resourced primary, secondary, and post-secondary schools have better academic outcomes such
as grades, exam scores, college placement, jobs, etc. What is much less understood is the extent to
which these better outcomes are driven by selection of students who would have been high achievers
anywhere, or whether differences in actual school quality are responsible for observed achievement gaps.
In the United States, with K-12 education financed primarily by local property taxes, this confounding
of selection and treatment effects is particularly daunting from a researcher’s perspective, and yet par-
ticularly important to understand for policymakers. We take a novel approach to solving this problem
by developing an empirical framework that allows the researcher to individually quantify students’ un-
observable characteristics related to both motivation and underlying learning ability. This advance, in
turn, allows for these characteristics to be included as explicit controls when investigating the role of
school quality in shaping student proficiency.

Our quantitative model of knowledge and skill formation is closely related to the qualitative expectancy-
value theory used extensively to assess study effort in the education and psychology literatures (e.g.,
Carroll, 1963; Eccles et al., 1983; Wigfield, 1994; Eccles & Wigfield, 2002; Wang & Degol, 2013). The two
key components of the expectancy-value model of achievement are (i) a student’s perceptions about her
ability at a particular task, and (ii) a combination of the intrinsic value and cost they experience while
engaging in the task (Wigfield & Eccles, 2000). This literature typically assesses these characteristics
using Likert-scale survey questions about how good a student is at learning new concepts in math and
how much they enjoy working on math relative to other activities. Here we propose a framework for
estimating these characteristics from observable behavior using the principle of revealed preference. The
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two primary parameters in our model are similar to the expectancy-value model: students’ achievement
in math is a function of their ability to complete learning tasks and their perception of the costs/benefits
of allocating time to math relative to other activities. Our contribution is in formalizing a quantitative
model of student choice and proposing a new method to elicit these parameters in a way that is more
closely tied to individual decisions, thus enabling informative counterfactual analysis.

2.1. Unobserved Student Heterogeneity. Our model formalizes adolescent skill formation as the result
of a production process whose form may vary by school attended or other environmental factors. Indi-
vidual student characteristics serve as the principal productive inputs in this process. For simplicity of
discussion we focus on subject-specific proficiency in mathematics, though it is straightforward to gener-
alize beyond a single subject. Each student is characterized by two unobserved traits: academic efficiency,
denoted θe—which governs the idiosyncratic rate at which learning-by-doing tasks are accomplished—
and time preference, denoted θl—which governs a child’s motivation or willingness to substitute a fixed
unit of time away from the next best option and toward math activities. Both characteristics represent
costs in either the time or utility dimension, so that higher values of θe imply more time required to com-
plete a given learning task, and higher values of θl imply greater dis-utility of spending time practicing
math.

When formalizing the roles of these two characteristics it is important to recognize that piece-rate
incentives are the predominant mode of reward and punishment in real-world educational settings. For
example, students are rewarded with good grades or exam scores based on how many homework assign-
ments they complete, or how many questions they answer correctly in a timed examination. Conditional
on homework completion or exam performance, these rewards are unaffected by how many hours of
homework or study time it required. As such, academic labor-leisure choices are not dictated solely by
time preferences: holding θl and external piece-rate incentives fixed, a reduction in θe implies that each
unit of a student’s time is more valuable. Therefore, both student traits play a central role in decision
making.

Idiosyncratic differences in θl may be driven by either opportunity costs of foregone leisure time, the
quality and variety of outside options, or by direct psychic costs of working on mathematics problems.
Heterogeneity in θe may reflect either differences in a child’s initial proficiency level, or differences in a
child’s study process, academic support network, or innate ability that affect how quickly she regularly
completes assignments. Since both traits are a mixture of innate and environmental components, for
each student i we allow them to evolve with changing circumstances according to the following

log(θei) = Xeiβe + ηei, and log(θli) = X liβl + ηli, (1)

where Xei = [1, xe1i, . . . , xekei] and X li =
[
1, xl1i, . . . , xlkl i

]
are vectors of environmental characteristics

including school quality, family academic support, socioeconomic variables and other factors. The ηei

and ηli terms represent the truly idiosyncratic portions of student i’s unobserved traits (θei, θli). Going
forward, we assume the following about the joint distribution of unobserved student traits:

Assumption 1. The two idiosyncratic components follow a bivariate normal distribution (ηei, ηli) ∼ BVN (0, Σi),
where the variance-covariance matrix Σi may potentially vary by observable student characteristics.

It is important to understand that the notion of human capital itself has several distinct aspects. While
(θei, θli) may be considered forms of human capital themselves, they represent a collection of factors
outside of the student’s control, at least over a short-run horizon. However, (θei, θli) govern decisions
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and rate of progress in the short-run which are under a child’s control, and over time accumulate
into her stock of invested human capital. Forms of invested human capital are often measured by or
reflected in demonstrated ability on standardized assessments. Measured mathematics proficiency, θei,
and θli are all different aspects of human capital: the first reflects one’s current stock of task-specific skill
and the latter two govern one’s ability to acquire new task-specific skill. Moving forward, we describe
this distinction by using the terms math skill or proficiency to refer to demonstrated performance on
standardized assessments, and the term characteristics to refer to a student’s underlying type variables,
(θei, θli). The maintained assumption behind our framework and research design is that characteristics
can be treated as fixed over the short-run, while skills and proficiency are malleable over relatively
shorter periods of time.

2.2. Student Choice Model. Consider child i’s choice of study time and the resulting volume of learning
tasks that are successfully completed with that time investment. These are endogenously determined
by a decision process that hinges on both θl and θe in the presence of piece-rate incentives. Formally,
achieving gains in math proficiency over the short-run is a process of performing repeated, discrete,
learning-by-doing tasks (e.g., homework assignments). Each student chooses Qi, representing how many
learning activities to complete. Since Qi is a means to an end (i.e., expanding one’s permanent skill set
in mathematics), we will sometimes refer to it as interim output. A piece-rate payoff function Pi(q)
represents the external benefits received by student i from completing q units of learning activities. Of
course, producing interim output requires that the student give up some quantity of her time Ti, which
could otherwise be used for the best outside option (e.g., video games, sports, other tasks, socializing
with friends, etc.). Academic efficiency θei shapes the mapping between Ti and Qi through the following
relation: Ti(Qi) = ∑Qi

qi=1 τi(qi; θei), where

τi(qi; θei) = θei × τ0 × q−γ
i × uqi , θei, τ0, γ, uqi > 0. (2)

In equation (2), τi(qi; θei) represents the time spent by student i on completing her qth
i unit of interim

output. τi(·) has several components: τ0 is the mean initial production time on the first unit across
all individuals, while the term q−γ

i is an experience curve that allows for a student’s rate of progress to
increase with additional work (when γ > 0) or for it to deteriorate through exhaustion (when γ < 0). The
student’s academic efficiency θei scales this mean production curve up or down, relative to her average
classmate, and uqi is a transitory iid shock to production time, representing unpredictable fluctuations
in difficulty level across tasks, mental state, distractions, etc.

Assumption 2. The (potentially heteroskedastic) unit-specific production shock Uqi follows distribution Fu|θei
(u|θei)

with continuous density fu|θei
that is bounded away from zero on support [u, u] ⊂ R+.

Finally, student i experiences dis-utility of shifting time from the outside option to math study accord-
ing to the following differentiable cost function

C(Ti; θli) = θlic (Ti) , θli > 0, (3)

where dis-utility is denominated in the same units as the piece-rate payoff schedule Pi(q). Note that
multiplicative separability is a non-trivial assumption in the model, as it will be central to our identi-
fication strategy (see Section 3 below). We also assume the following regularity conditions to ensure a
well-behaved decision problem for student i:
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Assumption 3. Costs and marginal costs are increasing, c′(t) > 0, and c′′(t) > 0 ∀t ∈ R+; marginal costs c′(t)
are unbounded, and we impose scale and location normalizations of c(0) = 0 and c′(0) = 1.

Combining the costs and benefits of practice activities implies an optimal stopping problem. After
successfully completing (q− 1) learning tasks, a student decides the maximum time t∗ she is willing to
spend on the qth unit of interim output, according to

t∗ ≡ argmax
t≥0

{
Pr
(
qth success|t, (q− 1)

)[
Pi(q)− Pi(q− 1)

]
−
[
θlic(Ti(q− 1) + t)− θlic(Ti(q))

]}
. (4)

In words, after completing each unit of interim output, student i makes a mental calculation of how
much additional work would cause the marginal cost of additional time to swamp the marginal benefit
of one more successfully completed learning task. Here, the probability that she succeeds on task q given
t units of time spent depends on the distribution of the production shock Uqi : Pr

(
qth success|t, (q− 1)

)
=

Fu|θei

(
t

θeiτ0(q−1)−γ

∣∣∣θei

)
. If she is able to achieve the qth success with some work time t < t∗, then she re-

optimizes decision rule (4) with a comparison of q versus (q + 1) achieved successes, and continues on.
Otherwise, she discontinues effort and the final values of Ti and Qi that enter her short-run incremental
production function are determined by her optimal stopping point.

The above model makes it clear why both student traits θe and θl contribute to a students’ supply of her
time to math studies. Academic efficiency θe determines how burdensome a given level of achievement
is in the time dimension, and θl determines how costly the expended time and effort are in the utility
dimension. In public debate about academic policy, students are often labeled as “more motivated” when
they complete more homework assignments on time, but the model illustrates how this way of thinking
actually conflates two very different aspects of the student experience when piece-rate incentives are
in play. Student i may be highly motivated relative to student j in the sense of willingness to re-
allocate leisure time toward math activities (i.e., θli < θl j), and yet may still complete fewer homework
assignments if the academic efficiency difference between them (θl j − θli > 0) is large enough, due to
asymmetric resource allocations, such as school quality, tutors, support network, etc.

From a policy perspective, when we observe a student performing poorly on an exam, this may be due
to either high time costs (i.e., high θl), a lack of foundational math and study skills (i.e., high θe), or some
combination of the two. A deeper understanding of how these two factors interact at the student level
may help practitioners to achieve more efficient, individually-tailored allocation of scarce resources: do
Bobby or Suzie need tutors, or do they simply need someone to convince them that math is enjoyable,
relevant, or at least not onerous? At the group level, understanding the distributions of these two
characteristics and their relation to educational resources can produce crucial insights for policymakers
interested in remediation of demographic achievement gaps.

2.3. Initial Math Skill. Since (θe, θl) determine a child’s short-run choices and task accomplishment
which accumulate into long-run outcomes, we model a student’s initial math proficiency level Si as the
outcome of a Cobb-Douglass production process with θei and θli as its principal inputs. Specifically,

Si = Ai × θαei
ei × θαli

li × εi, (5)

where Ai is total factor productivity (TFP), and εi is an idiosyncratic, multiplicative shock. Total factor
productivity and the Cobb-Douglas production shares (αei, αli) are allowed to be idiosyncratic, depend-
ing on observable student covariates:

log(Ai) = W iα0, αei = W iαe, and αli = W iαl , (6)
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with W i = [1, w1i, . . . , wki] including school quality, family learning support, socioeconomic variables,
and other factors.4 The error term εi accounts for the cumulative impact of transitory shocks to the
production process over time as well as noise in the exam instrument used to measure a student’s math
proficiency level.

2.4. Incremental Gains in Math Skill. Over a short-run horizon—a period spanning weeks—we pro-
pose a separate but related production model in which student i’s study time Ti and successful com-
pletion of learning tasks Qi contribute to gains in her mathematics proficiency level. Let ∆Si denote the
short-run improvement in a student’s measured math proficiency,

∆Si = ∆0i + ∆1iTi + ∆2iT2
i + ∆3iQi + ∆4iQ2

i + ∆5i(Ti ×Qi) + ε i, (7)

where ε i is an idiosyncratic, transitory shock. Similarly as in initial math skill production, the short-run
production parameters depend on a vector of individual covariates,

∆ji = V iδj, j = 0, . . . , 5, (8)

where V i = [W i, Si, θei, θli]. Note that by including unobserved student traits in V i we are allowing for
them to play a dual role in shaping a child’s ability to acquire new skill: first, they underlay choices of Ti

and Qi, and second, they may alter the rate at which learning activities translate into knowledge gains.
Including Si as a control allows for the possibility of a decreasing-returns-to-scale technology where
incremental gains of a fixed size become more difficult as a student achieves greater subject mastery.

Note that our student choice model provides a micro-foundation for our model of short-run skill
formation, where (θei, θli) determine (Ti, Qi), which in turn drive incremental gains in i’s measured
mathematics proficiency. The short-run skill formation technology is also consistent with the long-run
technology for initial math skill: both are fundamentally driven by the interplay between individual
student inputs and developmental resources of various types. The biggest difference between model
(5) and model (7) is that fine-grained information on time inputs and task accomplishment are feasible
for researchers to collect over short-run horizons, but much more difficult over longer spans of time.
Therefore, in absence of ideal observables, model (5) uses student traits (θei, θli) as a stand-in for the
terms (θei, θli, Ti, Qi) in model (7). Of principal interest for policymakers is the question of school quality,
which may impact student outcomes through three distinct channels in our model: (i) it may influence
the long-run evolution of student characteristics θei and θli, (ii) school quality may have a direct impact
on the level of math skill development (through the intercept terms in equations (5) and (7)), and (iii)
it may indirectly alter the manner in which the production technology converts its primary inputs into
new learning (through the slope terms in equations (5) and (7)).

3. Research Design

3.1. Experimental Motivation and Causal Identification Overview. Our research design builds on our
study-choice and skill-formation framework to bring together experimental and structural methods to
quantify unobserved student characteristics. Our strategy uses the student choice model as a basis for
an econometric framework, where field experimental methods shape a data-generating process with the
requisite sets of observables and variation to enable identification of the structural parameters (θe, θl)

at the individual level. This data-generating process is also carefully crafted to be as true to students’

4Substituting equation (6) into equation (5), the long-run production model is equivalent to a regression of log(Si) on θei, θli,
W i, and a complete set of pair-wise interactions between (θei, θli) and the variables in W i.
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everyday academic choices and experiences as possible. With this in mind, we conducted the field
experiment among 5th- and 6th-grade students in three Illinois school districts. We offered varying
monetary incentives for completion of extra-curricular learning activities on a math study website that
we developed. Our approach to quantifying unobserved student traits builds on standard panel-data
methods (for θe), and on recent advances by Torgovitsky (2015) and D’Haultfoeuille and Février (2015)
on the use of discrete instruments to identify continuous, individual-level heterogeneity (for θl).

To develop basic intuition for how our method quantifies two-dimensional student traits, consider
a hypothetical “ideal” experiment (from a research perspective) where feasibility constraints are non-
existent. Consider two students, Bobby and Suzie, who perform poorly on a standardized math exam.
The exam score alone indicates that each student is struggling, but it does not offer insights as to why.
To answer this question, the researcher first obtains identical copies of the two students, call them
Bobby∗ and Suzie∗—i.e., identical in biology, ability, preferences, attitudes, etc.—and places each of the
4 students into individual observation rooms for a period of two weeks.

Inside each room is a desk with a notepad, pencil, and mathematics textbook, and there is also a
couch with a TV and a video gaming system, a smart phone connected to social media, and other
leisure opportunities. Upon entering the observation room, the researcher presents piece-rate wage
offer p to Bobby and Suzie and p∗ > p to Bobby∗ and Suzie∗ for working through a series of discrete
math assignments and demonstrating proficiency in each according to some well-defined criterion. The
researcher explains that the children are free to allocate their time in any way, working through as many
or as few math exercises as they wish, with piece-rate payments to be delivered for the number of
exercises successfully completed at the end of two weeks.

Suppose further that over 2 weeks Bobby and Suzie complete 5 and 10 math assignments, respectively,
whereas Bobby∗ and Suzie∗ complete 7 and 13. The research team measures average rates of progress
across math assignments for each child, and can infer θe,Bobby and θe,Suzie as student fixed effects. This
information implies effective mean hourly wage rates for each of the four children. For example, sup-
pose that, given Bobby’s average rate of progress, his effective hourly wage rate is $15/hour, whereas
Suzie works somewhat slower and has an effective hourly wage rate of $12/hour instead. Note that
all differences in mean hourly wage between Suzie and Suzie∗ are due solely to their piece-rate offers
p < p∗, since they are identical and have the same θe,Suzie trait. Since Suzie/Suzie∗ produced more out-
put than their same-piece-rate counterparts Bobby/Bobby∗, this is an indication that Suzie is more easily
motivated to allocate time from other activities to math than Bobby (i.e., θl,Suzie < θl,Bobby).

More concretely, the hourly wage differences under p and p∗ can be used to compute labor-supply
elasticities for Bobby and Suzie, respectively. With this information in hand, and since θl,Bobby and θl,Suzie

both interact with a common cost schedule c(t), differences across the children’s choices and labor-
supply elasticities can be used to make inference about its form, independent of Bobby’s and Suzie’s
idiosyncratic traits. For example, Bobby’s output increased by 40% while Suzie’s output under the same
proportional wage increase rose by only 30%, indicating that marginal costs must be higher from Suzie’s
baseline output of 10 assignments, relative to Bobby’s baseline of 5 assignments. Moreover, feasible
inference on the form of the common cost schedule become richer as the experiment is repeated with an
increasingly larger set of Bobby’s and Suzie’s classmates, Jill, Tommy, etc. With a complete picture of the
shape of the common cost schedule c(t), the researcher can then separately infer each child’s individual
leisure preference

{
θl,Bobby, θl,Suzie, θl,Jill , θl,Tommy, . . .

}
.
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While informative as a thought exercise, much is obviously infeasible or unethical about the above
“ideal” experiment. However, using field experimental methods and modern web-based technologies,
one can capture the essential elements of the above scenario while maintaining a level of realism and
familiarity that would be impossible within a controlled laboratory setting. Rather than cloning students,
one can easily clone groups of students through individual-level randomization. This ensures that, while
no two groups will contain identical copies of the same child, the overall distributions of unobserved
characteristics will be the same.

Similarly, rather than sealing students into observation rooms, one can move extra-curricular learning
materials online, where a web server can meticulously monitor activities in a much less invasive way.
One challenge to this web-based alternative is that the researcher cannot control for the role of a stu-
dent’s regular educational activities such as classroom instruction and graded homework assignments
for school. However, this does not threaten model identification per se, provided that the distributions
of regular educational activities are uncorrelated with treatment assignment.5 Rather, it merely changes
the interpretation of the structural parameters somewhat. In the hypothetical, infeasible experiment
above, a child’s willingness to allocate time toward math activity is judged relative to the baseline of
zero activity, while in our web-based setup θli represents marginal willingness to allocate extra time on the
margin, above and beyond their regular schoolwork.

The web-based tracking setup has two considerable advantages as well. It allows students to engage
in academic decision-making against the backdrop of the myriad outside options for their time—sports,
clubs, music activities, informal play with friends, chores, etc.—that form a natural part of their normal
life routine. Our web-based research design also provides a general proof of concept for powerful new
diagnostic tools cheaply available to education practitioners at scale given recent, dramatic increases in
K-12 educational materials being moved to online formats.

In the following sections, we provide specific detail on the design of our field experiment, including
recruitment, randomization, incentive variation, math proficiency assessment, website structure, and
data collection. Our intuitive discussion above also glosses over an important issue of sample selection:
how would identification be affected if Bobby spent no time on math under p, while his alter-ego Bobby∗

produced positive interim output under p∗? Holding piece-rate incentives fixed, there will be a region
of 2-dimensional characteristic space where either θl or θe (or both) are prohibitively large to rationalize
any amount of positive effort. To solve this problem, we use Assumption 1 on joint log-normality,
further discussed in Section 4 below, to perform a sample-selection correction which extrapolates into
the unidentified region similarly as the traditional method pioneered by Heckman (1979).

3.2. Study Sample. We partnered with three public school districts in the Chicago-Naperville-Elgin
MSA during academic year 2013-2014. A total of 1,676 5th- and 6th-grade students participated in the
experiment, with 46% of them drawn from District 1, and 27% each coming from District 2 and District
3.6 The three districts differed widely by local population and administrative characteristics. These
differences are described in Table 1. Relative to the state of Illinois, which is demographically most rep-
resentative of the national population among all 50 U.S. states, District 1 was above-average on faculty

5Individual randomization ensures that treatments are independent of school. A possible threat to identification would be if
students responded to extra-curricular incentives by neglecting regular schoolwork. We could not access children’s academic
records due to privacy concerns, but in multiple conversations administrators and teachers universally expressed a strong
impression that no reduction in homework completion rates occurred during the sample period. We also find evidence in our
survey data consistent with their reports (see Section 3.4 below).
6Our data exclude children in special education, though all were permitted to participate in the incentives program.
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Table 1. SCHOOL DISTRICT CHARACTERISTICS, AY2013-14

Variable STATE OF ILLINOIS DISTRICT 1 DISTRICT 2 DISTRICT 3

FINANCES

% Revenue from Local Property Tax 61.7% 85% 70% 35%

Operating Budget Per Pupil $12,521 $14,500 $12,500 $13,500

% Spending on Instruction 48.7% 52% 48% 48%

FACULTY

Avg. Administrator Salary $100,720 $130,000 $105,000 $100,000

Avg. Teacher Salary $62,609 $75,000 $60,000 $60,000

% Teachers w/Master’s & Above: 61.1% 80% 65% 55%

Pupil-Teacher Ratio: 18.5 17 16 17

Pupil-Administrator Ratio: 173.3 210 140 130

STUDENT POPULATION & OUTCOMES

% Low Income: 54.2% 0% 50% 90%

% Limited English Proficient: 10.3% 2% 4% 24%

% Meeting/Exceeding Expectations
on State Standardized Math Exam (AY2014-15): 27.1% 60% 30% 10%

Notes: Data retrieved from the Illinois District Report Cards archive, 2015. District-specific numbers are rounded to preserve anonymity.
%Revenue from Local Property Tax is rounded to the nearest 5 pp. Operating Budget Per Pupil is rounded to the nearest $500. %Spending
on Instruction is rounded to the nearest 2 pp. Avg. Teacher Salary and Avg. Administrator Salary are rounded to the nearest $5K. %Teachers
with Master’s & Above is rounded to the nearest 5 pp. Pupil-Teacher Ratio is rounded to the nearest full number. Pupil-Administrator
Ratio is rounded to the nearest 10. %Low Income is rounded to the nearest 10 pp and primarily represents students who are either from
families receiving public aid or are eligible to receive free or reduced-price lunches. %Limited English Proficient is rounded to the nearest 2
pp. %Meeting Expectations is rounded to the nearest 10 pp and represents the average percentage across 5thand 6thgrades.

compensation, teacher qualifications, fraction of budget spent on instruction, and student performance.
District 1 was also well above the rest of the state in terms of its overall financial resources per pupil.
District 2 was remarkably close to the state averages on these dimensions, while District 3 lagged con-
siderably in terms of student academic performance. This was despite District 3 having higher than
average per-student operating budget, but this budget also includes spending on social workers, guid-
ance counselors, building maintenance, lunch subsidies, non-instructional support programs, etc.

The populations these three districts serve are similarly ordered in terms of socioeconomics. District
1’s student population is substantially more affluent by both income and wealth—with all but 15% of
its operating budget derived from local property taxes—and has only a negligible burden of teaching
curriculum to children with limited English language proficiency. District 2 is once again closest to the
state means, while District 3 is considerably less affluent by income and wealth, and has a relatively large
fraction of students with limited English language proficiency (including many Hispanic immigrant
families). Finally, the other striking difference across the districts is the racial profiles of the communities
they serve (see Table 2 below). District 2 has a racially diverse student body, while District 1 has few
Black or Hispanic students and District 3 is almost entirely comprised of Blacks and Hispanics.

3.3. Field Experiment Details. We worked closely with 5th- and 6th-grade math teachers across the three
participating school districts to implement the field experiment. The major research advantage to this
partnership was that participation in the study was on an opt-out basis, allowing the research team to
achieve a sample that was much more representative of the local populations our partner schools serve.7

7Prior to the study, parents were informed and given the opportunity to opt their child out of participation. On the first
day of the study, when a diagnostic math pre-test was given in class, individual students were also given opportunity to opt
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A primary feature of the experiment was a website on which the students could complete up to 80
mathematics modules, referred to as “quizzes,” across five general topics. Students had access to the
website for 10 days and could complete as many of the quizzes as they chose. Throughout the process,
our web server monitored students’ activities and tallied successful completion of quizzes. Piece-rate
incentives were offered for task completion on the website, based on the number of quizzes completed
successfully, rather than on time spent. We also measured proficiency using in-classroom mathematics
assessments. This section provides more specific details about the experimental process.

3.3.1. Math Proficiency Assessment and Other Student-Level Data. Prior to being randomly assigned into
a treatment group, students were given a standardized math pre-test by their teachers during regular
classroom time to obtain a baseline measure of proficiency. Teachers administered a similar post-test
following the experiment to gauge learning progress over the course of the study. Both assessments
were designed by our research team from professionally developed, age-appropriate math materials.
We obtained copies of 46 different standardized exams used by various U.S. states over the preceding
decade, of which 30 were developed for 5th-graders and 16 were developed for 6th-graders.8 The exams
were then split into individual math problems, resulting in a bank of 370 unique grade-5 problems and
302 unique grade-6 problems. All 672 problems were pooled to expose both 5th- and 6th-graders to the
same materials. This facilitated an even comparison between age groups, allowing us to cleanly estimate
the effect of an additional year of schooling on skill formation.

We used Common Core Math Standards definitions to categorize each problem into one of 5 subject
categories: (i) equations and algebraic thinking, (ii) fractions, proportions, and ratios, (iii) geometry, (iv)
measurement and probability, and (v) number system.9 For the pre-test and post-test, we randomly selected
a large subset of problems from the math question bank and further categorized them as easy, medium,
or hard, depending on their complexity level or number of steps required to solve. Finally, to ensure
uniformity of subject content and difficulty level, both the pre-test and post-test were populated with
similar sets of 36 questions: 8 each from subjects (i), (iii), and (v), and 6 each from subjects (ii) and (iv).
Of the 36 questions, 20 were selected from 6th-grade materials and the other 16 from 5th-grade materials,
and the easy, medium, and hard categories were represented by 15, 12, and 9 questions respectively,
spread evenly across each exam. We computed pre-test scores S1i and post-test scores S2i by awarding
one point for each correct answer, subtracting one quarter point for each incorrect answer (questions all
had four possible choices), and neither adding nor subtracting points for answers left blank.

The exams were coupled with surveys to collect additional relevant information about students. Class
periods were 45 minutes long; students were given 35 minutes to complete as much of the exam as they
could (and the scoring rule was explained in intuitive terms), with the remainder of the time allocated
to filling out a survey. Survey questions covered a child’s attitudes and preferences (most/least favorite
academic subjects and extrinsic vs. intrinsic motivation); family learning environment (# of academic
helpers in the child’s family/friend network and parental permissiveness for weekday video gaming and
recreational internet use); and consumption/leisure options (# of video gaming systems at the child’s

themselves out of participation. Parents and students appeared generally enthusiastic about the study, and opt-out rates were
negligible (< 5%) across all schools and classrooms partnering in the study.
8These state standardized math exams included the California Standards Test (2009), Illinois Standards Achievement Test (2003,
2006-2011, 2013), Minnesota Comprehensive Assessments-Series III, New York State Testing Program (2005-2010), Ohio Achievement
Test (2005), State of Texas Assessments of Academic Readiness (2011, 2013), Texas Assessment of Knowledge and Skills (2009), and
Wisconsin Knowledge and Concepts Examinations Criterion-Referenced Test (2005).
9Common Core subject definitions for 5thand 6thgrades (http://www.corestandards.org/wp-content/uploads/Math accessible as of Sep-
tember 2020) differ slightly; our 5-subject classification represents a merging of the two.

http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
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home, fraction of peer social time under adult supervision, and enrollment in organized sports, music
activities, and/or clubs). We also gathered socioeconomic indicators from the American Community
Survey for each of the ≈160 (rounded to nearest 10 to preserve anonymity) US Census block groups
where our test subjects resided, each of which can be thought of as a neighborhood. Within each
neighborhood we collected mean household income (a proxy for affluence), and the fraction of minors
with no private health insurance (a proxy for deprivation of non-school developmental resources).10

3.3.2. Website Structure. Our website was accessible through a login credential assigned to each student.11

This meant that our web server could automatically track activities and measure progress for each child
without affecting user experience in any perceivable way. The primary component of the website was
a set of 80 math modules, each consisting of a set of 6 multiple-choice questions from our bank of
age-apropriate materials.12 The passing criterion for successful completion of each quiz was at least
5 out of 6 questions answered correctly. Each student was allowed unlimited attempts at each quiz,
but for each new attempt the ordering of the questions and the ordering of the choices was randomly
perturbed. Adolescent pilot study participants reported a feeling that these measures were enough to
make attempts at gaming the system (i.e., repeatedly guessing in rapid succession) unprofitable, and
that either thinking through questions or giving up were relatively better options.

Incentivized modules on the website were organized into 55 general-topic quizzes (with balanced
portfolios of the 5 math topics mentioned above), and 25 topic-specific quizzes (5 per topic). Aside from
balancing topical content, math questions were selected at random from our bank of math problems,
so that relative difficulty was impossible to predict from one quiz to the next. After each quiz attempt,
an automated, interactive feature provided optional feedback, which the student could choose to skip
through or learn from.13 The web server tracked time spent on each quiz (across all attempts) by
recording a timestamp for each unique page view. Since only one math problem appears per page view
within each quiz, this resulted in a high-frequency log of work times for each child.14 The website
logged successful completions into a database, and visually tracked current earnings and progress for
the user by color-coding passed quizzes differently from those not passed. The site also included a
prominent reminder of the child’s piece-rate incentives. Through a combination of these capabilities

10The ACS contains many other socioeconomic indicators (e.g., mean home values) but when reported at the neighborhood
level, multicollinearity problems arise due to high correlations of within-neighborhood means across different measures. We
included mean neighborhood income and uninsured minor rate because the two seemed most different in what they represent
and had the lowest pair-wise correlation among available indicators.
11Usernames and passwords were based on the child’s first name, last name, grade level, and/or teacher’s name. The research
team maintained a tech support email throughout the study, with someone on-call 24/7 to quickly resolve any login problems.
These turned out to be few, given the intuitive nature of the login credentials.
12Six was chosen because adolescent pilot study participants generally expressed the feeling that more than 6 was too much
for the piece-rates we had in mind.
13The website also included an instructive component built from math textbook glossaries (generously furnished by the Uni-
versity of Chicago School Math Project, ucsmp.uchicago.edu) and practice materials by state boards of education. It contained
glossary terms organized by math topic and a number of guided, interactive examples chosen to be representative of the paid
materials on the site. This instructive component was clearly marked as non-incentivized to users, but it provided an option
for students to invest in their income generation capability. However, less than 2% of overall page-view time was logged on
the instructive portion of the website.
14One technical concern was how to deal with a small number of spurious page-view times that resulted when a child closed
her web browser in the middle of a quiz attempt without logging off. We truncate this small number of spurious work time
observations using a simple adjustment proposed by (Cotton, Hickman, & Price, 2020a, Online Appendix) based on failures of
a full support condition in the subject-specific work-time distributions.

ucsmp.uchicago.edu
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and students’ labor-leisure choices, we were able to derive our principal observables: Qi, total quizzes

passed by student i; Ti, total time worked; and
{
{τqi}

Qi
qi=1

}N

i=1
, a panel of student-unit work times.

Some important distinctions between our website data and our in-class mathematics assessment data
are worth emphasizing. Although information collected from both sources measures some aspect of a
child’s rate of task progress through time, exam scores reflect proficiency in a controlled (i.e., subject
to time constraints) and un-monitored (i.e., with no real-time feedback) environment whereas website
data reflect rate of progress through quality-monitored practice activities in absence of binding time con-
straints. Thus, the measures derived from these two data sources—current skill stock versus academic
efficiency—represent distinct aspects of a child’s learning process.

3.3.3. Piece-Rate Incentives and Randomization. Our experimental design centers on randomized incen-
tives. We adopted a linear piece-rate schedule Pi(q) = (bi + piq)1(q ≥ 2) with a constant marginal piece-
rate that would be easy for adolescents to understand. We varied both the base payment bi, for showing
up and completing the minimum amount of work, and the marginal piece-rate payment pi. No payments
are offered until a child has passed 2 quizzes, which ensures a within-student panel for each individual
i. Each student was randomly assigned to one of three possible contract groups: (b∗1 , p∗1) = ($15, $0.75),
(b∗2 , p∗2) = ($10, $1.00), and (b∗3 , p∗3) = ($5, $1.25).15 Assignment was at the individual level, resulting in
treatment variation within school, grades, and classrooms.

More specifically, our randomization algorithm first separated students into race-gender-school-grade
bins. Within each bin it balanced on pre-test scores by ordering students according to their score and
randomly assigning consecutive blocks of 3 similar-score students to contract groups 1, 2, and 3. The
algorithm then repeated this process thousands of times, and selected the random assignment that
minimized overall correlations between treatment status and balance variables. A balance table (Table
9) in the Online Supplemental Appendix presents correlations between gender, individual race groups,
grade level, and pre-test score. This table verifies that our final treatment assignment was independent of
all balancing variables. Although not reported in the table, treatment assignments were also independent
of school district, by construction, as explained above.

Our pre-exam materials were produced and organized in such a way that they could be collected
from teachers and rapidly processed so as to allow for balancing on initial math proficiency during
randomization. Exams were administered to students toward the end of the school week, and they
were processed, randomization executed, and personalized instruction materials for each student were
produced over the weekend for in-classroom delivery by math teachers the following Monday. Each
student participant received a personalized letter in a sealed envelope, containing login credentials,
instructions for accessing the website, and their individual piece-rate incentive contract. They were also
promised prompt delivery of payments within 2 weeks following the end of the experiment (which
actually happened).

The structure of our incentives had several advantages that encouraged effort from the students so we
could better infer the two central parameters of our model (θe, θl). First, we incentivized successful com-
pletion of learning tasks rather than the time spent on these tasks. This is consistent with actual school
environments where students are typically rewarded or punished based on whether they complete as-
signments. Furthermore, we incentivized short-run tasks (analogous to a short homework assignment)

15Base payments varied inversely with marginal wage only to mitigate possible concerns of fairness on the part of participant
households. A pilot study indicated an expected average output of ≈ 20 quizzes per student, at which point total payments
across all three contracts are equal.
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rather than long-term outcomes such as year-end grades, making the decisions faced by students in our
sample more consistent with their frequent decisions day-to-day.

Second, we kept the window of effort short, in terms of both the size of incentivized tasks and in
terms of payment delivery, to minimize the temporal gap between effort and reward. Our website
continually reported total earnings increases each time a student passed a new quiz, and promised
payments followed promptly after the post-exam. Incentives are more effective when rewards follow
actions as soon as possible.16 Third, we allow students multiple opportunities to attempt to pass each
quiz. Thus, failed attempts can still motivate students to exert additional effort to achieve the intended
result (Berger & Pope, 2011). High-frequency feedback on performance is also a key aspect of helping
students learn about their own ability to convert time on task into academic achievement.

3.3.4. Experiment Timeline. In summary, the experiment took place as follows.

(1) Students took a pre-test and survey administered by their teachers in class.
(2) Students were randomly assigned a wage contract, and provided with information about the

experiment, including the website and their earnings potential.
(3) For the next 10 days, student work on the website counted towards their compensation. Following

the 10 day period, they were paid based on the number of quizzes successfully completed during
that time.

(4) Students took a post-test and a second survey administered by their teachers in class.

3.4. Descriptive Statistics. Table 2 presents descriptive statistics by demographic sub-group. In what
follows, we adopt the terminology of referring to Blacks and Hispanics collectively as “under-represented
minorities” (URMs). This convention follows the higher education literature, where Blacks and Hispan-
ics are known to be proportionally under-represented at post-secondary education institutions generally,
and especially under-represented at elite colleges and universities. By contrast, Asian students, although
a statistical demographic minority group, are proportionally over-represented at colleges generally, and
particularly so at elite colleges, like their White counterparts. Thus, Asians do not satisfy the definition
of a “URM” group. For ease of discussion, we will often refer to URMs as simply “minorities” for short,
while recognizing this important caveat.

On average, Black students in our sample live in neighborhoods with mean incomes moderately above
that of the average student in Illinois ($71,602; see Online Appendix A), and Hispanic students in our
sample live in neighborhoods with significantly lower mean incomes. White and Asian students in our
sample live in neighborhoods with significantly higher incomes than the state average. The correlation
between socioeconomics and race is also starkly apparent in uninsured minor rates, being higher among
Blacks than Whites/Asians by a factor of 5.3, and higher among Hispanics by a factor of 8.6.

From survey responses we also see racial differences in terms of access to homework help, video
game/internet usage, and participation in extra-curricular activities. Whites/Asians have access to more
adult academic helpers (including parents, grandparents, and tutors) and were more likely to be enrolled
in sports and music. Black and Hispanic students are more likely to report that math is either their fa-
vorite or least favorite subject relative to their White/Asian peers. Minority students also self-reported

16Bettinger (2012) found evidence that incentives announced at the start of the year for performance on the end-of-year test
have little impact, while Levitt, List, and Sadoff (2016) found that incentives offered immediately before students take a test
have a large impact (and, likewise, delaying payment after the test can have large effects on effort). Minimizing temporal
distance between the required effort and the delivered reward can be particularly helpful for groups that have high discount
rates according to Bettinger and Slonim (2007).
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Table 2. DESCRIPTIVE STATISTICS: SURVEY & SOCIOECONOMIC VARIABLES BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/ASIAN
HEADCOUNT/FRACTION OF TOTAL: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394

SCHOOL DISTRICT & NEIGHBORHOOD SOCIOECONOMICS

Nbhd Mean Income $108,917 $108,917 $108,917 $80,774 $45,687 $132,038
(std. dev.) (41,470) (41,107) (41,871) (32,390) (23,175) (24,602)
Nbhd Uninsured Minor Rate 0.252 0.253 0.252 0.378 0.616 0.072
(std. dev.) (0.297) (0.297) (0.297) (0.293) (0.231) (0.129)
District 1 0.465 0.475 0.455 0.007 0.044 0.843
(std. dev.) (0.499) (0.500) (0.499) (0.081) (0.205) (0.364)
District 2 0.268 0.260 0.276 0.650 0.103 0.136
(std. dev.) (0.443) (0.439) (0.447) (0.478) (0.304) (0.343)
District 3 0.267 0.266 0.269 0.344 0.854 0.021
(std. dev.) (0.443) (0.442) (0.444) (0.475) (0.354) (0.144)

FAMILY & RECREATIONAL TIME-USE VARIABLES
# Adult Academic Helpers 1.140 1.163 1.117 1.128 0.615 1.328
(std. dev.) (0.848) (0.821) (0.875) (0.892) (0.724) (0.789)
# Peer Academic Helpers 0.789 0.907 0.666 0.852 0.887 0.728
(std. dev.) (0.783) (0.792) (0.756) (0.825) (0.766) (0.765)
# Video Gaming Systems at Home 1.570 1.474 1.660 1.648 1.480 1.554
(std. dev.) (1.135) (1.130) (1.133) (1.299) (1.096) (1.056)
Parental Permission for
Video Gaming on Weekdays 0.878 0.882 0.874 0.809 0.888 0.909
(std. dev.) (0.327) (0.322) (0.332) (0.393) (0.316) (0.287)
Weekday Daily Recreational
Internet Use (hrs) 1.766 1.790 1.740 1.908 1.788 1.694
(std. dev.) (1.201) (1.166) (1.236) (1.290) (1.210) (1.150)
Enrollment in Sports 0.669 0.639 0.700 0.548 0.455 0.807
(std. dev.) (0.471) (0.481) (0.458) (0.498) (0.499) (0.395)
Enrollment in Music 0.383 0.462 0.302 0.295 0.196 0.493
(std. dev.) (0.487) (0.499) (0.459) (0.457) (0.398) (0.500)
Enrollment in Clubs/
Other Activities 0.410 0.438 0.381 0.337 0.315 0.480
(std. dev.) (0.492) (0.496) (0.486) (0.473) (0.465) (0.500)
Fraction of Peer Social Time
In Adult-Supervised Activities 0.351 0.356 0.345 0.317 0.274 0.392
(std. dev.) (0.172) (0.172) (0.171) (0.167) (0.181) (0.158)

ACADEMIC PREFERENCES & ATTITUDE VARIABLES
Math is Favorite Subject 0.361 0.319 0.404 0.431 0.439 0.302
(std. dev.) (0.480) (0.466) (0.491) (0.496) (0.497) (0.460)
Math is Least Favorite Subject 0.216 0.254 0.176 0.277 0.212 0.189
(std. dev.) (0.411) (0.435) (0.381) (0.448) (0.410) (0.392)
Extrinsic Motiv. Score (standardized) 0 -0.023 0.024 -0.222 -0.030 0.122
(std. dev.) (1) (0.989) (1.011) (1.016) (1.005) (0.971)
Intrinsic Motiv. Score (standardized) 0 0.056 -0.058 0.010 0.150 -0.059
(std. dev.) (1) (1.005) (0.992) (1.047) (1.057) (0.949)

EXAM SCORES
Pre-Test Score 13.40 12.71 14.11 7.93 7.94 18.07
(std. dev.) (8.96) (8.23) (9.62) (6.13) (6.10) (8.35)
Change in Score (Post-Pre) 1.55 1.94 1.14 0.88 0.49 2.20
(std. dev.) (5.00) (5.03) (4.94) (5.01) (4.89) (4.94)

Notes: Adult Academic Helpers included parents, grandparents, and tutors; Peer Academic Helpers included siblings and friends. Numbers reported for
Neighborhood Mean Income represent the median across all students in the sample. All other figures represent sample means, with sample standard deviations
in parentheses and italics. Fifth-graders make up 47.3% of the total sample, with 6th-graders comprising the other 52.7%. Sub-sample proportions are close to that
ratio for all gender and race groups.

higher levels of intrinsic motivation when completing school work, while White/Asian students are
more likely to report being motivated by extrinsic factors such as satisfying parental or teacher expecta-
tions, or to earn a reward for satisfactory performance.17 Females in our sample also self-reported higher
levels of intrinsic motivation, and lower levels of extrinsic motivation, relative to males.

Finally, Table 2 shows average pre-test scores by sub-group. The average male student correctly
answered 1.4 additional questions on the assessment compared to the average female student. This
corresponds to 0.16 SD higher score for males. The gender gap is relatively small compared to racial
gaps in scores. White/Asian students performed substantially higher on the standardized mathematics

17For intrinsic/extrinsic motivation indexes, we included two questions each on the pre-survey and post-survey asking students
about their biggest motivations for completing school-related work. Two external motivations were listed alongside two
intrinsic motivations, along with a fifth “none of the above” option. We then counted the number of corresponding responses
across the four questions and standardize the score by subtracting means and dividing by standard deviations.
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Figure 1. Mathematics Pre-Test Scores by Gender and Race
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pre-assessment than their Black and Hispanic peers, with the average White/Asian student correctly
answering more than 10 additional questions, as compared to the mean minority student. This is roughly
a 1.13 SD higher score for the mean White/Asian student.

Figure 1 illustrates the pre-test score distributions by gender and race. In the left panel we observe
that low-achieving females slightly outperform low-achieving males (approximately the lowest quar-
tile). Among high achievers the gender gap favors males, with a more-substantial gap among those who
perform above average on the pre-test. There is little difference in the initial proficiency distributions
of Black and Hispanic students (right panel), but there is a substantial gap between them and their
White/Asian peers. These observed performance gaps in our pre-test scores collected during the experi-
ment are consistent with evidence of substantial demographic achievement gaps from other studies (e.g.
Clotfelter et al., 2009; Hanushek & Rivkin, 2006, 2009; NAEP, 2019).

Finally, Table 3 displays descriptive statistics of students’ logged activities on our math website. Mov-
ing forward it will be helpful to define “workers” as the group of students who completed at least Qi ≥ 2
modules on the math website, and “non-workers” as students who did not. Workers constituted roughly
half of the sample population (see Figure 2 below), though it is important to keep in mind that selection
into worker status is a function of both θe and θl . The top panel of Table 3 pertains to all students,
and the middle panel to workers only. The table depicts considerable raw differences across students in
terms of willingness to spend time on math, rate of progress, and volume of learning tasks completed.
Half of students logged no time on the website, while 4% of them completed all 80 learning modules.
The highly skewed distributions of different measures have medians all being well below the means,
and standard deviations generally being near or well above the means.

To place these figures in context, first note that website activity was above and beyond a child’s regular
schoolwork regimen. For a basis of comparison, we compiled data on school homework time per-day
in our pre-survey and post-survey.18 Importantly, the daily homework measure covers time spent on all
school subjects, not just math. One possible threat to our identification strategy would be if students
responded to our financial incentives by neglecting their schoolwork in proportion to the strength of the
incentives offered. However, in multiple conversations with administrators and teachers they universally
reported back to us a firm impression that the kids displayed no change in how much homework they
were actually turning in during our study period. Our survey data appear to corroborate this claim: for

18To obtain this information, we asked students on the pre-survey: “How many hours do you usually spend on homework on
a typical weekday (Monday through Thursday)?,” and then we asked the same question applied to “...a typical weekend day
(Friday-Sunday)?”. To make it easy for children to think about the appropriate answer to this question, available responses
were multiple choice: “a. None; b. Less than one hour per day; c. Between one hour and two hours per day; d. Between
two and three hours per day; e. More than three hours per day,” and we coded a.– e. as 0, 1, 2, 3, and 4 hours, respectively.
We repeated both questions on the post-survey as well, but there we asked students to think about the previous two weeks,
specifically. We then averaged across responses on the pre- and post-surveys. Finally, for a child’s average daily time spent, we
used the formula (4/7)× weekday avg. daily homework time + (3/7)× weekend avg. daily homework time.
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Table 3. DESCRIPTIVE STATISTICS: WEBSITE ACTIVITY & DAILY HOMEWORK TIME

Contract Contract Contract
Group 1 Group 2 Group 3

Variable Mean Median Std. Dev. N Mean Mean Mean

WEBSITE ACTIVITY: ALL STUDENTS

Quizzes Passed 10.04 1 19.64 1,676 7.55 10.41 12.16
Math Problems Solved 60.25 6 117.86 1,676 45.29 62.47 72.93
Website Time Logged (minutes) 82.63 16.79 154.48 1,676 61.89 82.55 103.34
Total Pay $14.77 $0.00 $23.80 1,676 $11.94 $14.89 $17.46

WEBSITE ACTIVITY: “WORKERS” ONLY
Quizzes Passed 22.34 12 24.29 749 17.72 22.91 25.96
Math Problems Solved 134.07 72 145.73 749 106.31 137.45 155.77
Website Time Logged (minutes) 176.61 109.66 192.26 749 135.81 176.01 213.93
Within-Child Time Per Passed Quiz (minutes) 11.11 8.08 9.62 749 10.47 11.32 11.49
Total Pay $33.04 $21.75 $25.77 749 $28.29 $32.91 $37.45

SELF-REPORTED AVG. DAILY HOMEWORK TIME ACROSS ALL ACADEMIC SUBJECTS
All Students (hours) 1.248 1.214 0.681 1,676 — — —
Workers Only (hours) 1.424 1.429 0.647 749 — — —

Notes: “Workers” are the set of all students who passed at least 2 quizzes on the website and received a positive payout.

the sub-sample of worker students the homework time reports across the pre- and post-survey differed
on average by a small (≈1%) and statistically insignificant amount (p−value=0.765).

Aside from providing a robustness check, this result allows us to use daily homework time as a
useful benchmark for judging the magnitude of logged website activity. If we assume that mathematics
accounted for between 25% and 50% of daily homework time, then among workers the average (median)
website math time would have represented an increase of between 41% and 83% (26% and 51%), relative
to regular math homework. Of course, this number would understate the magnitude of learning task
volume increase relative to the average student, since non-workers have systematically lower academic
efficiencies. This can be seen in that mean time per passed quiz trends upward between contract groups
1, 2, and 3: as offered piece-rate incentives increase, a marginal group of students having higher θe’s
self-selects into the worker group.

For an alternate benchmark of math work volume, we discussed the figures on website activity for
workers (middle panel) with a mathematics education consultant employed by a state board of education
for a mid-western U.S. state. Although volume of math problems assigned varies from classroom to
classroom, the consultant expressed the opinion that 72 extra math problems solved within a 10-day
period (the median for the worker group) would be an increase of between 50% and 100% in terms
of regularly assigned homework volume for an average 5th- or 6th-grade student. Thus, overall we see
that for some students our incentives induced substantial increases of learning task volume, though the
distribution of the increase is heavily skewed.

4. Estimation Methodology

4.1. Student Time Allocation Model. Estimation of student time allocation concentrates on quantifying
three model primitives: individual-level academic efficiency, θei, individual-level time preference, θli,
and the common cost function c(t). Along the way we also estimate several parameters of secondary
interest, such as τ0, γ, and the distributions of work-time shocks.

4.1.1. Academic Efficiency and Work-Time Shock Distributions. Estimation of the academic efficiency param-
eter hinges on panel-data methods using the within-child series of observed work times,

{
{τqi}

Qi
qi=1

}
i=1

.
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Figure 2. Math Website Output and Work Time by Contract Group
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Taking logs of both sides of equation (2) provides the following equality

log(τqi) = log(τ0) + log(θei)− γ log(qi) + log(uqi), qi = 1, . . . , Qi,
{

i
∣∣i = 1, . . . , N, Qi ≥ 0

}
.

This constitutes a linear-in-parameters regression equation where individual heterogeneity enters as a
student fixed-effect and τ0 and γ, serve as an intercept and slope term. We estimate regression param-
eters through a standard differencing approach.19 A key complication is that student fixed effects can
only be inferred for the set of workers. This issue will be addressed in the next two sections.

Using regression estimates we can back out the distribution of production time shocks from the fitted
residuals ûqi = τqi /(τ̂0θ̂eiq

−γ̂
i ). We allow for heteroskedastic shocks by partitioning the support of θ̂ei into

5 sub-intervals of equal length Ij=
[
min(θ̂ei) + (j− 1)h, min(θ̂ei) + jh

]
, where h=(max(θ̂ei)−min(θ̂ei))/5

is the length of each interval j=1, . . . , 5.20 Then, we estimate conditional shock distributions by split-
ting the sample of fitted residuals into 5 sub-samples

{
ûqi |θ̂ei ∈ Ij

}
, and smoothing the corresponding

empirical CDFs using flexible B-splines Fu(u|θei∈Ij; πuj) with parameters πuj.21

4.1.2. Labor-Supply. We estimate the time preference trait and labor-supply cost function through a simu-
lated GMM approach. The identification framework proposed by Torgovitsky (2015) and D’Haultfoeuille
and Février (2015) relies on discrete instruments to create shifts in observable distributions of incen-
tivized actions across groups of agents that are otherwise identical in their distributions of unobserv-
ables. Figure 2 demonstrates that these conditions are satisfied by our field experimental controls:
contract variation induced stochastic dominance shifts in the CDFs of T and Q, while individual-level
randomization ensures that students receiving those contracts are otherwise the same. Under these con-
ditions, Torgovitsky (2015) and D’Haultfoeuille and Février (2015) show that counterfactual comparisons
across similar agents working under different incentives are enough to uniquely disentangle the shape
of the common utility function from idiosyncratic agent-level heterogeneity. Our simulated GMM esti-
mator is explicitly built upon functional representations of these counterfactual comparisons. In order to
facilitate this undertaking we start with a flexible, parametric, B-Spline specification of the common cost
function c(t; πc), having parameter vector πc (to be estimated) which uniquely determines its shape.22

19Note that the θ̂ei estimates have differing variances due to the unbalanced panel (i.e., Qi varies across students).
20We also tried a finer partition of 10 sub-intervals of the support of θe, but it made little difference in the following stage of
estimation, relative to the specification with 5 sub-intervals, while increasing computational requirements.
21We chose 4 knots, uniformly placed in quantile rank space. After constraining the endpoints—a CDF must equal 0 and 1 at
the extremes of the support—this left 5 free parameters, (πu2j, . . . , πu6j), to fit the empirical CDFs of residuals. The tight fit
between the two is depicted in Figure 16 in the online supplemental appendix.
22For the common cost function we chose 6 knots, placed evenly at the quintiles and endpoints of the sample of time worked.
We then added three extra knots, uniformly spaced in the upper quintile to target extra flexibility and deal with a long,
skewed upper tail. After imposing the two boundary conditions in Assumption 3, this left 10 free parameters to allow the
model-generated CDFs of Qi to fit their empirical analogs.
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With this parametric form, individual choices of Ti and Qi are the basis for inference on the shape of the
cost function, which in turn uniquely determines each individual’s time preference parameter θli.

To fix ideas, consider individual i, whose quiz output Qi was at quantile rank ri in contract group 1.
Holding fixed the cost function parameters πc, we can reverse-engineer time preference by repeatedly
simulating sequences of work times using θei and Fu(u|θei). We choose the value of θli such that, given
her actual assignment to contract (b∗1 , p∗1), optimal stopping choices in Q space (under decision problem
(4)) imply mean production time across all simulated outputs equal to i’s observed choice Ti. Moreover,
i’s choice of work volume Qi can inform us about the shape of the cost function. Specifically, Qi first
contributes to the empirical CDF of work volume under assignment to contract 1:

F̂q(q|b∗1 , p∗1) =
N

∑
j=1

1

[
Qj ≤ q & pj = p∗1

]
∑N

j=1 1
[
pj = p∗1

] .

Second, with the value of θli known, we can further simulate a sequence of counterfactual work volume
choices {Q∗2is}S

s=1 under contract 2, and {Q∗3is}S
s=1 under contract 3. These simulated values depend on

θei and Fu(u|θei), which are both fixed at this stage, and on the shape of the cost function c(·; πc) (which
also determines θli). They contribute to the model-generated CDFs of work volume under assignment
to contracts 2 and 3 through the following relationship:

F̃q(q|b∗k , p∗k ; πc) =
N

∑
j=1

S

∑
s=1

1

[
Q∗kjs ≤ q & pj 6= p∗k

]
∑N

j=1 1
[
pj 6= p∗k

]
×S

, k = 2, 3.

Thus, child i’s observed choices contribute to the empirical CDF for her actual contract assignment 1, and
they also contribute indirectly (by determining θli) to the model-generated CDFs under counterfactual
contract assignments 2 and 3. Intuitively, cost function parameters πc are then chosen to match child i’s
counterfactual projections to those of children at quantile rank ri in contract groups 2 and 3.

Although this is the basic intuitive form of the GMM estimator, there are two complications regarding
mass points at the extremes of the sample. First, we have a small mass of students who achieve full
output Qi = 80 on the website, as can be seen in Figure 2. This means that their academic efficiency trait,
θei, is known, but without extra structure their time preference trait, θli, can only be bounded from above.
This is because it is impossible to know whether a given individual would have optimally chosen exactly
Qi = 80, or Qi > 80 if given the chance. We deal with this problem by estimating a constrained quantile
function using a low-dimensional B-spline to extrapolate into the missing upper tails of the empirical
CDFs of Q. After discretizing the upper tail (for computational tractability), for each individual with full
output this renders up to 5 possibilities for optimal stopping points {Q̂i1, . . . , Q̂i5}, all being at or above
80.23 For each (θei, Q̂im) pair, m = 1, . . . , 5, we back out a time preference trait θli(Q̂im) to match Q̂im as
the optimal stopping point, and we run counterfactual simulations for each (θei, θli(Q̂im)) pair. However,
we give each of these (1/5)th weight when incorporating them into the model-generated CDFs F̃q.

The second and more challenging mass-point problem pertains to the sizeable fraction of students who
chose not to complete the minimum output for pay: those with Qi < 2. For these individuals we can

23The extrapolating B-spline quantile functions overlapped their empirical counterparts to the 85th percentile. We assumed
that no student would choose to more than double the available workload on the website, so tails were bounded from above
by Q=160. We chose a low-dimensional B-spline with 3 knots so that all parameters for the extrapolating quantile functions
could be informed by the available data. We discretized the extrapolated tails by selecting no more than 5 uniform steps (in
quantile rank space), and also requiring each step (except possibly the last one) to represent at least 5 observations of Qi = 80.
The resulting frequency tables included 3 steps under contract 1 (with the smallest upper mass point), and 5 steps each for
contracts 2 and 3. Figure 17 in the online supplement plots the extrapolated upper tails against the empirical CDFs of Q.
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only infer that their 2-dimensional traits are within a contract-specific region bounded by a decreasing
function Θl(θe; b∗k , p∗k , πc) for k = 1, 2, 3, where to the northwest of this boundary either θei was too high
or θli was too high (or both) to rationalize positive output in response to their contract (b∗k , p∗k ). For most
of these individuals, their counterfactual outputs under alternate contract assignments would likely be
zero as well. However, some fraction of them may be marginal agents where counterfactual assignment
to one of the alternative contracts k′ might induce a change to positive output. This we must correct for
when computing the simulated CDFs F̃q. To do so, we use our distributional Assumption 1 to integrate
over the non-identified portion of the space for counterfactual output simulations.

Essentially, this procedure is a 2-dimensional variant of Heckman’s (1979) classic sample-selection
correction, where the selection locus Θl(θe; b∗k , p∗k , πc) is known. More concretely, holding πc fixed, all
(θei, θli) pairs can be inferred for students with Qi ≥ 2, and the upper bound Θl(θe; b∗k , p∗k , πc) on the
identified set can be computed as the northwest boundary of the convex hull of the set {(θei, θli)|Qi ≥
2, pi = p∗k}. Next, the parameters of the bivariate log-normal distribution, (θe, θl) ∼ BVlN(µ̃, Σ̃),
are pinned down by matching the selection frequency as well as the selected means, variances, and
covariance of (θe, θl), conditional on Q ≥ 2, which adds some additional moment conditions to the
GMM objective function.24 For contract k, we denote the selected empirical moments by

M̂(πc, k) =
[
P̂(k), Ê1

e (πc, k), Ê1
l (πc, k), Ê2

e (πc, k), Ê2
l (πc, k), Ê3

el(πc, k)
]>,

(selection frequency) P̂(k) = ∑N
i=1 1[Qi≥2 & pi=p∗k ]

∑N
i=1 1[pi=p∗k ]

,

(selected raw moments) Êr
j (πc, k) = ∑N

i=1 log(θji)
r1[Qi≥2 & pi=p∗k ]

∑N
i=1 1[pi=p∗k ]

, j= e, l, r=1, 2,

(selected product moment) Ê3
el(πc, k) = ∑N

i=1 log(θei)×log(θli)1[Qi≥2 & pi=p∗k ]
∑N

i=1 1[pi=p∗k ]
,

and we denote their model-generated analogs by

M̃(µ̃, Σ̃, πc, k) =
[

P̃(µ̃, Σ̃, πc, k), Ẽ1
e (µ̃, Σ̃, πc, k), Ẽ1

l (µ̃, Σ̃, πc, k), Ẽ2
e (µ̃, Σ̃, πc, k), Ẽ2

l (µ̃, Σ̃, πc, k), Ẽ3
el(µ̃, Σ̃, πc, k)

]>.

These last moments are determined by computing the analogous integrals (using the bivariate log-
normal density) over the selected-in region. This is the reason for the dependence on the cost function
parameters πc (through their influence on the selection thresholds).

Finally, for computational tractability we perform stochastic integration when computing M̃(µ̃, Σ̃, πc, k).
We also perform stochastic integration over the non-identified region (i.e., to the northwest of the se-
lection loci Θl(θe; b∗k , p∗k , πc), k = 1, 2, 3) when simulating counterfactual choices for individuals who
chose Qi < 2 under their actual contract assignment. For stochastic integration, we simulate a sample
of independent standard normal draws, Z = [Ze, Zl ], where Zm = [zm1, . . . , zmT]

> and m = e, l. At each
iteration of the solver, these can be transformed into bivariate log-normal random variables through

(θe, θl) = exp (V Z + µ̃) , (9)

where V is the lower-triangular component of the Cholesky decomposition of the covariance matrix
Σ̃. Finally, for each k = 1, 2, 3 we discard all resulting (θe, θl) pairs to the southwest of the selection
locus for contract k, and for each remaining pair we repeatedly simulate optimal counterfactual choices

24Note that the bivariate log-normal parameters mentioned here, µ̃ and Σ̃, are different from those referenced in Assumption
1, where the means are zero and Σ is the covariance matrix of the idiosyncratic components (ηei, ηli).
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under the other two contracts, as was done for other students. This sample of simulated choices under
counterfactual contract k′ is then appropriately scaled when computing F̃q(q|b∗k′ , p∗k′ ; πc) according to the
mass of contract-k students who chose Qi = 0.

Bringing all of the above steps together, we obtain the following GMM objective function[
π̂c, ̂̃µ, ̂̃Σ]=argmin

{
ρ0

80

∑
q=2

3

∑
k=1

ωk
c (q)

(
F̂q(q|b∗k , p∗k )− F̃q(q|b∗k , p∗k ; πc)

)2

+
3

∑
k=1

(
M̂(πc, k)− M̃(µ̃, Σ̃, πc, k)

)
>ρ
(

M̂(πc, k)− M̃(µ̃, Σ̃, πc, k)
)}

s.t. c(0; πc) = 0, c′(0; πc) = 1,

(10)

Some final comments on implementation are in order. First, we used an inverse-variance weighting
scheme ωk

c (q) ≡ F̂q(q|b∗k , p∗k )(1− F̂q(q|b∗k , p∗k )), k = 1, 2, 3, that places more emphasis on matching seg-
ments of the empirical CDFs that are more precisely estimated. Second, we implemented our GMM
estimator using the mathematical programming with equilibrium constraints, or MPEC approach pioneered
in the economics literature by Su and Judd (2012). This proved to be much faster and numerically stable
than the alternative nested fixed-point approach, which would require serially optimizing the second set
of moments in equation (10) for each iteration of the cost function parameter vector. Instead, the MPEC
approach allows both πc and (µ̃, Σ̃) to update independently along the path to convergence, at which
point both sets of moment conditions are mutually optimized. The purpose of the penalty parameters
ρ0 and ρ is to ensure that both sets of moment conditions are roughly on the same order of magnitude,
and that sufficient attention is paid to crucial aspects of the selection equations.25

4.2. Decomposition of Student Characteristics. We now turn to the decomposition of student traits
into a predictable component and an idiosyncratic component:

log(θei) = Xeiβe + ηei, i = 1, . . . , N, (11)

log(θli) = X liβl + ηli, i = 1, . . . , N. (12)

The covariate vector, Xei, for the academic efficiency equation contains an intercept term and the follow-
ing variables: indicators for gender, race, grade level, and school district; the # of adult academic helpers in a
child’s social network; the # of peer academic helpers; and two socioeconomic proxies specific to the child’s
neighborhood of residence: mean household income (a proxy for affluence) and fraction of minors with no
private health insurance (a proxy for deprivation of non-school developmental resources). The covariate
vector X li for time preferences contains these same variables and adds an additional set of variables
pertaining specifically to attitudes, preferences, and outside options for time use, including indicators
for whether math is a favorite academic subject or math is a least favorite subject; extrinsic motivation score;
intrinsic motivation score; indicators for enrollment in organized sports, organized music activities, other
organized clubs; fraction of peer social time under adult supervision; # of video gaming systems at a child’s
home; parental permission for video gaming on weekdays; and weekday time spent on recreational internet use.
The idea in adding these additional factors to equation (12) is that θli represents a child’s level of moti-
vation for shifting an hour of her time away from the best outside option (e.g., gaming, internet surfing,
playing with friends) and toward math activity, which may be influenced by her attitude toward math

25We set ρ0=100 so that the primary moments are on the same order of magnitude as the selection moments, and ρ{1,1}=10,
ρ{i,j}=1, i= j >1, and ρ{i,j}=0, i 6= j, i=1, . . . , 6, j = 1, . . . , 6 in order to place particular emphasis on matching the empirical
selection frequency.
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or her responsiveness to different forms of incentives, holding her academic efficiency θei fixed. These
variables are all summarized in Table 2.

The challenge here is a basic sample truncation problem: while (Xei, X li) is known for all i = 1, . . . , N,
the outcome variables (log(θei), log(θli)) are known only for students who chose Qi ≥ 2. By adopting
Assumption 1, (ηe, ηl)∼ BVN(0, Σ), we can implement a 2-dimensional Maximum Likelihood Tobit
strategy, using the known, contract-specific selection thresholds Θl(θe; b∗k , p∗k , π̂c), k = 1, 2, 3, uncovered
in the previous stage of estimation. Moreover, we allow for our covariance structure to depend on race

and gender by adopting the following specification for Σi =

[
σ2

ei σeli

σeli σ2
li

]
:

σei =σei0 + σei1 f emi + σei2blacki + σei3hispanici

σli =σli0 + σli1 f emi + σli2blacki + σli3hispanici

σeli =σeli0 + σeli1 f emi + σeli2blacki + σeli3hispanici.

Our Tobit estimator is thus defined by optimizing the following log-likelihood function:

[
β̂e, β̂l , Σ̂

]
=argmax

{
N

∑
i=1

1(Qi ≥ 2)ωdi log
(

fηe ,ηl(Xeiβe, Xeiβe; Σi)
)

+ 1(Qi < 2)ωdi log
(

Pr
[
log(θl) > log [Θl(θe; bi, pi, π̂c)]

∣∣∣Xei, X li; βe, βl , Σi

])}
,

(13)

where the ωdi terms are inverse-variance weights: ωdi =
1/Var(θ̂ei)+1/Var(θ̂li)

2 whenever Qi ≥ 2, and ωdi=

min{ωdj|Qj≥2} whenever Qi<2. For computational tractability, we compute the probability in the Tobit
term above by simulation, similarly as we did above (see equation (9)).

4.3. Skill formation Models. The final stage of our empirical analysis is the estimation of the skill for-
mation technology. For initial math skill, taking logs of both sides of equation (5) renders the following:

log(Si) = W iα0 + θeiW iαe + θliW iαl + log(εi). (14)

For the production technology of gains in math skill, we can re-write equation (7) as:

∆Si = V iδ0 + TiV iδ1 + T2
i V iδ2 + QiV iδ3 + Q2

i V iδ4 + (Ti ×Qi)V iδ5 + ε i, (15)

where V i = [W i, Si, θei, θli].26 The covariate vector, W i, contains an intercept term and the following
variables: indicators for gender, race, grade level, and school district; neighborhood-level socioeconomic
indicators mean household income (a proxy for affluence) and fraction of minors with no private health insur-
ance (a proxy for deprivation of non-school developmental resources); and total # of academic helpers in a
child’s social network. Note that both in the model of initial math skill and in the model of incremental
skill gains, each of these factors is allowed to have a direct impact (through the intercept terms) and also
to have an indirect impact (through the slope terms) of altering the map between the principal inputs
and the final outputs.

While it has long been known that students attending schools with greater resources produce better
outcomes (e.g., standardized test scores), it is unclear whether this is due to better school inputs per
se, or whether it is attributable to selection of more academically adept students into those higher-
performing schools. In short, to what extent are higher performing schools truly adding value versus

26For numerical stability in our short-run production function analysis, we normalize T (practice time in minutes) and initial
test score S1 by subtracting means and dividing by standard deviation.
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merely shepherding gifted students through the academic pipeline? The figures in Table 1 suggest that
making this distinction is far from obvious. In terms of studying the role of school quality in skill
formation technology, a major advantage of our research design is that it first quantifies unobserved
student traits, θe and θl , and thereby solves the classic endogeneity problem of omitted variable bias.
The assumption that we require to attach a causal interpretation to estimates of parameters in the two
production function equations above is the following:

Assumption 4. E[W>
i log(εi)|θei, θli] = 0 and E[V>i ε i|θei, θli] = 0.

There remain two final challenges to be addressed. First, since the empirical model of time allocation
can only infer unique values of (θei, θli) for students who chose minimal output Qi ≥ 2 on our website,
we have a missing regressors problem in equations (14) and (15). This is fairly straightforward to address:
using the Tobit maximum likelihood results from the previous section, for each student i with Qi<2 we
can compute the conditional expectations,27(

θ̂ei, θ̂li

)
= E

[(
log(θe), log(θl)

)∣∣∣Xei, X li, Qi < 2, pi; β̂e, β̂l , Σ̂i

]
.

The second challenge is that since student traits play the role of regressors in equations (14) and (15),
sampling variability induces an errors-in-variables problem. To cope with this problem, we compute
empirical Bayes (EB) estimates of (θe, θl). This approach reduces attenuation bias by shrinking fixed effect
estimates toward their mean in proportion to the individual noise in each fixed effect. The approach has
a long history in the literatures on school quality (e.g. Kane & Staiger, 2002), and teacher value-added
(e.g. Jacob & Lefgren, 2008). One standard procedure (e.g. Morrix, 1983; Abdulkadiroglu, Pathak,
Schellenberg, & Walters, 2020) is to assume a normal prior over the true fixed effect, log(θji), and the
estimation residual, rji for j= e, l. This implies a shrinkage factor of λji = ν2

j
/(

ν2
j + ν2

rji
)
, where ν2

j is the

estimated variance of true log(θji), and ν2
rji is the estimated sampling residual variance on ̂log(θji) for

individual i’s trait j = e, l.28 This results in the following EB estimates for student characteristics to be
used as regressors for estimation of skill production technology:

log(θei)EB=λei
̂log(θei)+(1−λei)

∑N
i=1

̂log(θei)
N and log(θli)EB=λli

̂log(θli)+(1−λli)
∑N

i=1
̂log(θli)

N .

Finally, the imputation of student traits for non-workers suggests that the error terms in equations (14)
and (15) may exhibit heteroskedasticity. We formally test for this and find that the null hypothesis of
homoskedastic errors is strongly rejected. Therefore, we estimate the production parameters via feasible
generalized least squares in the familiar way as outlined by Wooldridge (2016).

4.4. Standard Errors. For the empirical model of student time allocation and for the Tobit ML decompo-
sition of student traits, we bootstrap all standard errors. Our block-bootstrap procedure is designed to
mimic our randomized sampling procedure (discussed in Section 3.3.3) which balanced on race, gender,
school district, grade level, and pre-test score. We begin by arranging all test subjects into race-gender-
district-grade bins.29 Suppose that there are K such bins in total, and that within contract j = 1, 2, 3

27This approach is in the spirit of standard methods for regression with X’s surveyed by Little (1992, Section 4.2).
28An alternative approach is to restrict the shrinkage forecast of log(θji), given ̂log(θji), to linear projections (e.g. Chetty et al.,
2014), which implies the same shrinkage factor λji. Bootstrap estimation of ν2

j and ν2
rji are discussed in Section 4.4.

29Due to a sparsity of Blacks and Hispanics in District 1 and a sparsity of Whites and Asians in District 3, we only arrange
students into gender-district-grade bins in those two districts. District 2 subjects, who exhibit a more diverse racial mix, are
fully partitioned into race-gender-district-grade bins.
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the bins each have N1j, N2j, . . . , NKj subjects in them, respectively. Then, in order to construct a single
block-bootstrap sample, for each bin, k = 1, . . . , K, we do the following:

(1) Randomly draw a test subject (with replacement), call her “subject1,” and record which contract
j she was assigned.

(2) Select subjects from the other two contracts j′ and j′′ in that same race-gender-district-grade
bin (with replacement) whose pre-test scores are closest to subject1’s pre-test score. Break ties
randomly if multiple subjects fit that description within contract groups j′ and/or j′′. Call these
two selected individuals “subject2” and “subject3,”respectively.

(3) Add the triple (subject1, subject2, subject3) to the bootstrap sample.
(4) Repeat steps (1)–(3) above, until full bootstrap samples of size Nk1, Nk2, and Nk3 have been

constructed for bin k under contracts 1, 2, and 3, respectively.
(5) Repeat steps (1)–(4) above for each race-gender-district-grade bin, k = 1, . . . , K.

The final remaining question is how many bootstrap samples on which to generate and re-estimate
the model. The main consideration here is a trade-off between simulation error and computational
cost. Estimates of the student time allocation model generally took between 10 and 30 minutes each,
including an adaptive multiple re-starts algorithm to ensure quality of the final solution. The Tobit ML
estimator took a similar amount of time to converge for each bootstrap iterate. We chose 1,600 bootstrap
samples for the time allocation model, and 500 bootstraps for the Tobit ML model, due to a necessity of
estimating multiple specifications of the latter.

For standard errors on student fixed effects, we first bootstrap all common parameters. Then, we com-

bine the bootstrapped parameter samples,
{

τ
(s)
0 , γ(s), π

(s)
c

}1,600

s=1
, etc., with an individual’s observables,{

{τQi
qi=1}, Ti, Qi, Xei, X li

}
, to compute bootstrapped fixed effect estimates

{
θ
(s)
ei , θ

(s)
li

}S

s=1
. These within-

student bootstrap samples of fixed effects are then used to compute standard errors, inverse variance
weights, and EB shrinkage forecasts. We compute heteroskedasticity-consistent standard errors and
hypothesis tests for production technology parameters in the usual way.

5. Empirical Results

5.1. Cost Schedule, Time Preference, and Academic Efficiency Estimates. Figure 3 illustrates the esti-
mated cost function C(T; θ̂l ; π̂c) and marginal cost function, both scaled to the median value of θl among
workers. The lower panel of the figure plots the histogram and density of total time worked Ti for con-
text. Costs and marginal costs are precisely estimated for relatively low values of time expenditure,
while the 95% confidence bands widen for higher values where the data are sparse. We find that a
remarkably high degree of curvature in the common cost function c (t; π̂c) is required to rationalize the
observed distributions of work time and quiz outputs. The top panel of the figure labels cost levels at
regular intervals to illustrate this point. Relative to a 90-minute time commitment, the depicted child’s
costs roughly quadruple with a doubling to 3 hours, and an additional doubling of time commitment
slightly more than quadruples costs again (Figure 18 in the online appendix displays the goodness of fit
that our flexible B-spline cost specification achieved). Overall, the structural model does remarkably well
at matching patterns in the data, especially for contract group 2 where the richest set of counterfactual
comparisons are available (i.e., students being offered both higher and lower incentives).

Figure 4 illustrates the degree of cost variation across students. The figure depicts cost schedules scaled
to θl types at the 25th percentile, median, and 75th percentile of workers. The overall picture is one
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Figure 3. Time Supply Cost & Marginal Cost Estimates

Figure 4. Time Supply Cost Function Estimates

0 50 100 150 200 250 300 350

WORK TIME t (minutes)

0

50

100

150

200

250

C
O

S
T

 L
E

V
E

L
S

 C
(t

)

(d
o

ll
a
rs

, 
s
c
a
le

d
 t

o
 v

a
ri

o
u

s
 

l)

MEDIAN WORKER 
l

25th PERCENTILE WORKER 
l

75th PERCENTILE WORKER 
l

C(3 hr)=$20.7

C(6 hr)=$91.07

C(3 hr)=$8.34

C(6 hr)=$36.71

C(3 hr)=$56.46

C(6 hr)=$248.43

of dramatic heterogeneity in willingness to supply time to math learning activity. Costs of 3-6 hours of
foregone leisure differ by a factor of roughly 7 across the inter-.quartile range of worker types. Moreover,
since the figure restricts attention to workers only, who have lower θl values, on average, the comparison
across the 25th and 75th percentiles of the overall student distribution would be even more stark. Note,
however, that Figures 3 and 4 consider costs of effort in the time dimension only.

As the model suggests, time costs θl do not determine a student’s study effort choices alone; how
productive they expect to be with their time, academic efficiency, plays a central role too. Figure 5
provides an intuitive illustration of heterogeneity across students in terms of θe. The figure plots two
curves: the overall “mean hourly wage” gives the CDF of (total payments to child i)/(total time worked by child i) and
the “mean marginal hourly wage” is the CDF of (total piece−rate payments to child i)/(total time worked by child i). This
second measure is more conservative and ignores the fact that the first hour or so is most lucrative due
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Figure 5. Effective Hourly Wage Rates

0 5 10 15 20 25 30 35 40

DOLLARS PER HOUR OF WORK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

MEAN HOURLY WAGE RATE

MEAN MARGINAL HOURLY WAGE RATE

Notes: Mean Hourly Wage Rate is defined as (total payments to child i)/(total time worked by child i). Mean Marginal Hourly Wage Rate is

a more conservative measure which ignores base wage payments, or (total piece− rate payments to child i)/(total time worked by child i).

Table 4. TOBIT REGRESSION RESULTS: ACADEMIC EFFICIENCY

SPECIFICATION: (1) (2) (3)

DEPENDENT VARIABLE: log (θe) Estimate St. Dev. Effect Estimate St. Dev. Effect Estimate St. Dev. Effect

Female (β̂1) 0.2188*** 0.3278 0.1760*** 0.2551 0.1563*** 0.2411
(std. err.) (0.0515) (0.0499) (0.0488)

Black (β̂2) 0.7810*** 1.1702 0.6248*** 0.9054 0.5623*** 0.8677
(std. err.) (0.1093) (0.1185) (0.1037)

Hispanic (β̂3) 0.7873*** 1.1797 0.4045** 0.5863 0.3655** 0.5639
(std. err.) (0.1710) (0.1543) (0.1364)

Grade 5 (β̂4) 0.3096*** 0.438 0.2940*** 0.4620 0.2666*** 0.4114
(std. err.) (0.0562) (0.0514) (0.0517)

District 2 (β̂5) — — 0.2231** 0.3234 0.1333* 0.2057
(std. err.) (0.1038) (0.0808)

District 3 (β̂6) — — 0.7829*** 1.1346 0.4919*** 0.7590
(std. err.) (0.2031) (0.1298)

Constant (β̂0) -0.3145*** -0.3926*** -0.3359***
(std. err.) (0.0661) (0.0856) (0.0632)

Neighborhood SES Controls yes yes yes
Family Academic Support Controls no no yes

N 1, 676 1, 676 1, 676
Pseudo-R2 0.378 0.397 0.370
log-Likelihood -3684 -3664.8 -3560.6

Notes: Higher values of log(θe) imply lower academic efficiency. Neighborhood SES Controls contain log of mean income and
fraction of minors with no private health insurance. Family Academic Support Controls include (self-reported) counts of
how many adults (e.g., parent, tutor, etc.), and how many peers (e.g., friend, sibling, etc.) regularly help the student with
his/her math homework. In all model specifications, Neighborhood SES Controls individually play no statistically
significant role, and Academic Support Controls individually play no economically significant role in explaining math
academic efficiency. St. Dev. Effect represents the change in standard deviation units of log (θe) from switching the value of a
binary regressor from 0 to 1. Note that due to joint Tobit Estimation Pseudo-R2 for log(θe) need not increase monotonically
with model richness, though the sum of Pseudo-R2 for both log(θe) and log(θl) will generally rise.

to the one-time base wage payment. The median of “mean hourly wage” is $13.98/hour and the median
of “mean marginal hourly wage” is $7.22/hour. Since test subjects are 9-11 years old, our offered piece-
rate contracts translate into fairly strong incentives, on average, for children with academic efficiencies
that are not too low. In fact, worker students above the 90th percentile (i.e., in the lower decile of θe)
were making a comparable or better hourly wage to what many economics graduate students receive for
teaching duties. Note that the majority of cross-student heterogeneity in Figure 5 derives from variation
in academic efficiency, but once again, keep in mind that this figure does not incorporate a child’s time
preference θl . Our subsequent analyses will combine these two characteristics in various ways.
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5.2. Decompositions of Time Preferences and Academic Efficiency. The most-substantial demographic
differences in test scores are the racial differences between Black/ Hispanic and White/Asian students,
driven by underlying differences in the distributions of θe across the demographic groups. Tables 4
and 5 report results from Tobit regressions exploring relationships between observable characteristics of
students and their neighborhoods, and the type parameters we estimated using the structural model.

From Table 4, θe tends to be higher (i.e., lower academic efficiency) for females, Black students, and
Hispanic students, compared to their male or White/Asian peers after conrolling for socioeconomic
proxies. This means that males require less time to complete math learning activities, conditional on
attempting them. Unsurprisingly, 6th-grade students are more efficient than 5th-grade students. In
specification (1) females have average values of log(θe) that are 0.33 SD below the values of their male
peers, which is a little less than 3/4 of the gap in log(θe) between 5th- and 6th-graders. Blacks and
Hispanics tend to have values of log(θe) that are 1.2 SD below their White/Asian peers, or approximately
2.7 times as large as an additional year of schooling. When we extend this analysis to control for a
student’s school district and their adult or peer support network, we still observe substantial differences
due to gender and race. Females now lag males by 0.24 SD, which is 0.59 times the increase in log(θe)

due to an extra year of school. For the average Black (Hispanic) student in the sample log(θe) tends to
be 0.87 SD (0.56 SD) higher than the average White/Asian student, meaning their academic efficiency
disadvantages are 2.1 (1.4) times the average effect of an additional year of schooling.

Alternatively, from Table 5 we observe that θl tends to be lower (i.e., higher motivation level for
math) for females and Black students compared to their male and White/Asian peers. Hispanics also
have lower mean θl , though the difference is not significant. Thus, on average females and minority
students require fewer incentives to spend extra time working on math problems, compared to males
and Whites/Asians. Similarly, 6th-grade students require greater incentive than 5th-graders to engage in
extra math activity. This difference by grade, however, is relatively small compared to the differences
due to gender or race. In model specification (1), females tend to have values of log(θl) that are 0.59 SD
below their male peers, and Black and Hispanic students tend to have values of log(θl) that are 0.48 SD
and 0.28 SD below their White/Asian peers, respectively. When we extend this analysis (specification
(3)) to control for a student’s school district, attitudes, preferences, time-use and consumption variables,
and family/peer support network, we still observe substantial differences due to gender and race. The
average female log(θl) tends to be 0.42 SD lower than the average male log(θl), and the average Black
student log(θl) tends to be 0.38 SD below that of the average White/Asian student. With these other
controls, the effect for Hispanic students falls to only 0.05 SD below and remains insignificant.

Now we turn to the role of school quality in determining student ability and performance. In Table
4, even after controlling for observable student characteristics, attendance at a high-performing district
induces lower values of θe. In other words, one’s school enrollment predicts significant reductions in
the time required for a student to complete learning tasks. Interestingly, from the descriptive evidence
in Table 1, one might have suspected that District 1’s inputs are more advantageous to the student than
District 2’s, which are in turn more advantageous than District 3’s. This pattern plays out in the value-
added estimates from the Tobit model: switching from District 1 to District 2 or District 3 induces a
reduction in a child’s academic efficiency by 0.21 SD or 0.76 SD, respectively. The latter result is roughly
1.8 times the gap between grade-5 and grade 6-students, holding school district and all other student
observables fixed.
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Table 5. TOBIT REGRESSION RESULTS: TIME PREFERENCES

SPECIFICATION: (1) (2) (3)

DEPENDENT VARIABLE: log (θl) Estimate St. Dev. Effect Estimate St. Dev. Effect Estimate St. Dev. Effect

log(Mean Nbhd Income) (standardized) (β̂1) 0.2148* 0.1285 0.0051 0.0032 0.0898 0.0534
(std. err.) (0.1430) (0.1795) (0.1072)

Nbhd Uninsured Minor Rate (standardized) (β̂2) 0.8052*** 0.4855 0.8061*** 0.5105 0.3677*** 0.2204
(std. err.) (0.1873) (0.2416) (0.1362)

Female (β̂3) -0.9766*** -0.5882 -0.8750*** -0.5535 -0.6953*** -0.4163
(std. err.) (0.1781) (0.1588) (0.1098)

Black (β̂4) -0.7971** -0.4801 -0.5637 -0.3566 -0.6419** -0.3843
(std. err.) (0.3413) (0.3434) (0.2620)

Hispanic (β̂5) -0.4691 -0.2826 -0.0842 -0.0532 -0.0862 -0.0516
(std. err.) (0.5038) (0.5101) (0.4682)

Grade 5 (β̂6) -0.3145** -0.1894 -0.3186** -0.2015 -0.2461*** -0.1474
(std. err.) (0.1389) (0.1330) (0.0936)

District 2 (β̂7) — — -0.4204 -0.2660 -0.0864 -0.0517
(std. err.) (0.2925) (0.1732)

District 3 (β̂8) — — -1.1065 -0.7000 0.0037 0.0022
(std. err.) (0.7464) (0.4119)

Math Favorite (β̂9) — — — — -0.2535*** -0.1518
(std. err.) (0.0934)

Math Least Favorite (β̂10) — — — — 0.0411 0.0246
(std. err.) (0.1550)

Extrinsic Motiv. Score (β̂11) — — — — -0.6172*** -0.3094
(std. err.) (0.0881)

Intrinsic Motiv. Score (β̂12) — — — — -0.5469*** -0.2938
(std. err.) (0.0735)

Constant (β̂0) -6.3750*** — -6.2422*** — -4.7812*** —
(std. err.) (0.2688) (0.3475) (0.4924)

Family Academic Support Controls no no yes
Extra-Curricular Controls no no yes
Gaming & Internet Use Controls no no yes

N 1, 676 1, 676 1, 676
Pseudo-R2 0.061 0.076 0.206
log-Likelihood -3684 -3664.8 -3560.6

Notes: Higher values of log(θl) imply higher utility costs (lower willingness) of allocating time to extra math activity. The outcome variable log(θl) represents a
child’s idiosyncratic willingness to substitute away from spending time on the outside option and toward extra study of mathematics. Academic Support
Controls include self-reported tally of adults (e.g., parent, grandparent, tutor, etc.), and tally of peers (e.g., friend, sibling, etc.) that regularly help the student
with his/her math homework. Extra-Curricular Controls (dummies for enrollment in sports, music, and clubs; and fraction of social time in structured,
adult-supervised activities) individually do not play a statistically significant role in explaining leisure preferences. Family Academic Support Controls do not
play an economically significant role. Gaming & Internet Use Controls (# of video gaming systems at a student’s home, and parental permission for playing
video games or recreational internet use on weekdays) collectively play a small role in explaining leisure preferences. Adding gender-race interactions and
gender-school-district interactions to specification 3 does not meaningfully change point estimates. St. Dev. Effect represents the change in standard deviation
units of log (θl) from switching the value of a binary regressor from 0 to 1 or from increasing the value of a continuous regressor by one standard deviation.

Similar patterns do not emerge for motivation level θl , with school district having no significant effect
on time preferences beyond what is predicted by other factors such as gender, race, neighborhood so-
cioeconomic traits, and a rich set of covariates on preferences, attitudes, consumption level, and outside
options for time use. Finally, our Tobit results also speak to a classic question of whether better outcomes
at higher-performing schools are due primarily to treatment by more advantageous school inputs or to
selection of more academically adept students onto their rolls. We indeed find that higher-performing
schools benefit from significant advantageous selection on both θe and θl (see Figure 19, Online Appendix
A). Below we further investigate whether/how schools produce value added in the learning process.

There are several other insights that emerge from our decomposition of unobserved student charac-
teristics. Reporting math as a favorite subject is unsurprisingly predictive of a significant increase in
willingness to spend time on math, though it is also interesting, and perhaps reassuring, that listing
math as one’s least favorite subject is not a significant predictor of lack of motivation. We also find that
being either more intrinsically motivated or more extrinsically motivated are both strong indicators of
responsiveness to our extrinsic financial incentives for students to divert extra leisure time toward math
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activity. This forms part of a recent body of empirical work finding evidence of a synergistic role for
intrinsic and extrinsic incentives (e.g., Kremer, Miguel, & Thornton, 2009; Hedblom, Hickman, & List,
2019), rather than a conflicting role as previously thought (e.g., Gneezy & Rustichini, 2000; Bénabou &
Tirole, 2003; Leuven, Oosterbeek, & van der Klaauw, 2010).

We also assess the relationship between neighborhood socioeconomic traits and the current values of
θe and θl . We have two measures of the socioeconomic well-being of a student’s census block group,
including the log of mean neighborhood income and the share of minors without private health insur-
ance. The first is a measure of affluence, while the second is a measure of resource deprivation. While
affluence plays no meaningful role in determining θe and θl , resource deprivation is a statistically and
economically significant predictor of a child being less motivated for academic pursuits.30

Figure 6 displays the selection-corrected distributions of θl and θe by gender for the entire sample
population (regardless of worker status), using Tobit model estimates. The CDFs graphically depict the
gender differences explained above; namely, that females tend to have lower academic efficiency but
also lower time preference with regard to math activity, relative to males. Interestingly, in the case of
the gender comparison, the motivation factor dominates in terms of total work volume on our website.
While the average for males is 8.5 quizzes completed, females completed 35% more (11.5 quizzes),
despite taking longer on each. This difference is significant at conventional levels (p−value = 0.001). A
similar pattern emerges in survey data on daily homework times (all academic subjects) as well: females
self-report 1.31 hours per day on homework activities, which constitutes a significant (p−value = 0.0004)
increase of 10% relative to males, at 1.19 hours per day. In short, our descriptive and causal results
all indicate that, conditional on environmental factors, attitudes, and preferences, while males seem
to have a comparative advantage of academic efficiency in mathematics, females have a mathematics
comparative advantage in terms of work ethic.

Figure 7 depicts the selection-corrected distributions of θe and θl by race. The distribution of log(θe)

is strikingly shifted to the right for Black and Hispanic students compared to Whites/Asians; the gap
being several times larger than the analogous gender gap. The most motivated (i.e., lowest θl) Black and
Hispanic students require fewer incentives to engage in extra math study, relative to the most motivated
White/Asian students. Among the least motivated, Blacks and Whites/Asians look very similar, but the
least motivated (i.e., highest θl) two-thirds of Hispanics lag significantly behind the other two groups
in responsiveness to external incentives, for a given academic efficiency level. Two facts from Tables 1
and 2 provide a possible explanation for why: first, within our sample population Hispanics are most
heavily represented in District 3; second, District 3 has the highest proportion of students with limited
English proficiency. This is suggestive that linguistic barriers may play a significant role in reducing
academic motivation for children from Hispanic immigrant families. An exploration of linguistic barriers
is beyond the scope of this project, but it underscores an important consideration when interpreting the
race parameters in Tables 4 and 5: these terms need not represent anything innate about a child due
to his/her race, but may instead be a proxy for other cultural, social, or linguistic factors not captured
by our model. All of these considerations are important questions deserving further attention in future
research.31

30A note of caution regarding interpretation of our socioeconomic controls: since these are measured at the neighborhood
(i.e., Census block group) level rather than at the household level, this result may not represent the causal impact of health
insurance per se, but should be regarded as a stand-in for general deprivation of non-school developmental resources.
31Bodoh-Creed and Hickman (2017) structurally estimate unobserved student traits using observational data on college ad-
missions. In their data, race no longer retains predictive power for unobserved student characteristics, conditional on parents’
income, wealth, education, and marital status.
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Figure 6. Distributions of Characteristics by Gender
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Figure 7. Distributions of Characteristics by Race
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5.3. Determinants of initial math skill. In Sections 2.3 and 4.3, we formalize long-run development
of math skill (measured by a standardized pre-test) as a Cobb-Douglass production process (equation
(14)) where the principal inputs that schools use to produce new learning are student traits (θe,θl). The
total factor productivity (TFP) term and the production shares of the two main inputs are idiosyncratic
to each student i, depending on a vector of external factors W i which include school quality, gender,
race, family support controls, and socioeconomic proxies. Intuitively, holding a child’s traits (θei, θli)

fixed, each of these external factors is allowed to play a direct role in the production process—through
altering TFP Ai—as well as an indirect role—by altering the effectiveness of the primary inputs through
the production shares αei and αli.32

Empirical results are presented in Table 6. For ease of interpretation, rather than reporting coefficient
values the table reports standard deviation effects, defined as the mean size (averaged across all students
i) of a shift in log(S1) that is induced (in standard deviation units of log(S1)) by an increase in a control
variable of one standard deviation (for continuous controls) or a 0-to-1 change (for binary controls).
These standard deviation effects encapsulate influence through all channels, both direct and indirect,
but the lower caption of the table provides additional information to separate out effects on slopes.

Table 6 provides several interesting insights. First, we find that both θe and θl are important deter-
minants of initial math skill, but θe plays a clearly dominant role between the two. This insight should
be considered alongside our earlier findings that females and Black students may be considered more
motivated compared to other groups, having relatively more advantageous levels of θl , on average. To-
gether, these results suggest that educational interventions, such as Fryer (2011), Levitt et al. (2016),

32When interpreting empirical results, recall that θe and θl are both inversely related to efficiency and motivation. Therefore,
when a production share is larger in the negative direction, that is a good thing for skill development.
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Table 6. COBB-DOUGLAS PRODUCTION OF INITIAL MATH PROFICIENCY

SPECIFICATION: (1) (2) (3) (4)
DEPENDENT VARIABLE: log (S1) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.)

TFP ( ̂log(Ai)) (2.973; 0) (2.910; 0.149) (2.872; 0.207) (2.871; 0.214)

θe Prod. Share (α̂ei) (−0.453; 0) (−0.327; 0.107) (−0.283; 0.106) (−0.283; 0.105)

θl Prod. Share (α̂li) (−0.043; 0) (−0.037; 0.007) (−0.040; 0.020) (−0.040; 0.020)

Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect

log(TFP) N/A 0.3543*** 0.4935*** 0.5085***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
log(θe) -0.6435*** -0.4648*** -0.4030*** -0.4030***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
log(θl) -0.1562*** -0.1338*** -0.1448*** -0.1465***
(joint p-value)

(
3.1× 10−16

) (
4.2× 10−15

) (
<10−16

) (
8.8× 10−11

)
CONTROL VARIABLES:

District 2 (α̂01, α̂e1, α̂l1) — -0.3922*** -0.3063*** -0.2952***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
District 3 (α̂02, α̂e2, α̂l2) — -0.7704*** -0.7526*** -0.6618***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
Grade 5 (α̂03, α̂e3, α̂l3) — — -0.2267*** -0.2250***
(joint p-value)

(
4.8× 10−11

) (
1.1× 10−10

)
Female (α̂04, α̂e4, α̂l4) — — -0.0383*** -0.0649***
(joint p-value)

(
8.5× 10−6

)
(0.0001)

Black (α̂05, α̂e5, α̂l5) — — -0.2316*** -0.2157***
(joint p-value) (0.0018) (0.0026)

Hispanic (α̂06, α̂e6, α̂l6) — — -0.0555** -0.0508*
(joint p-value) (0.0263) (0.0576)

log(Mean Nbhd Income) Controls no no no yes
Nbhd Uninsured Minor Rate Controls no no no yes
# Peer & Adult Helper Controls no no no yes

N 1, 676 1, 676 1, 676 1, 676
R2 0.406 0.487 0.512 0.514
Adjusted R2 0.405 0.485 0.506 0.506

Notes: Mean St. Dev. Effect is the total impact of a variable through both TFP (direct effect) and production shares of student inputs (interactions). For discrete
variables Mean St. Dev. Effect is the mean impact (across all students) of switching value from 0 to 1 (all else fixed), in standard deviation units of log(S1). For a
continuous variable Mean St. Dev. Effect is the mean impact (across all students) of a one standard deviation increase (all else fixed), in standard deviations of
log(S1). Reported joint p-values are for the joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95% and 90% levels are
denoted by three stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e., (α̂ek , α̂lk), k=1,. . . ,6) have the following joint
p-values: 5.1× 10−6 for District 2; 1.7× 10−7 for District 3; 0.2412 for Grade 5; 0.0026 for Female; 0.1305 for Black; and 0.0343 for Hispanic.
The p-value for a joint exclusion of all neighborhood socioeconomic terms and helper terms is 0.6302.

and Fryer et al. (2020), that aim to decrease gender or racial performance gaps in mathematics by mo-
tivating students through incentives or information about the returns to education may be misguided.33

These groups already tend to be more motivated than their male or White/Asian peers, suggesting that
motivation is not the primary barrier limiting their progress. Moreover, (in specification (4)) since TFP
is 3.5 times as important as θl , and θe is 2.8 times as important, efforts to further incentivize marginal
groups (further decreasing θl) will struggle to overcome the relative disadvantages these groups face.34

We explore these considerations in more detail through counterfactual analyses in Section 6.
Second, we find strong evidence that school quality influences the production technology in important

ways. The magnitudes of the school district effects again strongly conform to the pattern one might
suspect from the suggestive evidence in Table 1: the difference between District 1 (the high performing

33Gneezy et. al. (2019) also adds important insights for inducing effort on one-off tests.
34These insights may help explain why conditional cash transfers to students or families for increases in academic performance
have often resulted in limited returns to learning (e.g., Fryer, 2011). Similarly, Levitt, List, and Sadoff (2016) find limited returns
to such conditional transfers in Chicago-area schools, which is the setting of our experiment. Leuven et al. (2010) show evidence
among university students that those who are already performing well tend to respond most to financial incentives. Levitt,
List, Neckermann, and Sadoff (2016) show that incentives are more effective when delivered immediately. Cotton, Nanowski,
Nordstrom, and Richert (2020) estimate returns from an intervention in developing countries providing girls, their families,
and communities with information about the benefits of girls’ education, while motivating the academic efforts of the girls.
They find that such interventions can have significant effects on academic progress, but at potentially prohibitive costs.
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Figure 8. Idiosyncratic Cobb-Douglas Production Parameters by School District
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district) and District 2 (the middling school district) in terms of standard deviation effects is roughly half
the difference between District 1 and District 3 (the struggling school district). Furthermore, the nature
of the differences across school districts is not merely one of levels, but of the fundamental shapes of the
production processes employed. Figure 8, which plots empirical CDFs of student-specific production
parameters, illustrates an interesting and novel finding: high-performing school districts have higher
TFP and lean more heavily on academic efficiency, whereas middle- and low-performing schools have
lower TFP and lean more heavily on a student’s motivation level to generate improvements in math skill.

Third, we also find evidence of decreasing returns to scale production technology in the sense that
−(αe+αl) is well below a value of 1 (which would indicate constant returns to scale) for all students
in the sample. This means that the extra benefit in math skill development from improving a student’s
underlying characteristics declines as those characteristics become more and more favorable.

5.4. Determinants of incremental gains in math skill. In Sections 2.4 and 4.3, we formalize improve-
ments in math skill over the short run as a flexible quadratic polynomial (see equation (15)) in time spent
on math activity (T) and volume of learning task completion (Q). Importantly, T and Q are also chosen
by the student as functions of incentives and underlying characteristics (θe, θl), being micro-founded
by the student choice model at the core of the field experimental design. The outcome variable of the
short-run production function is the change in exam score ∆S between the post-exam and the pre-test
(separated by 2-3 weeks of calendar time). Once again, we allow the intercept term and the slope co-
efficients on the primary productive inputs T and Q to be idiosyncratic, varying by the factors in W i,
plus initial math skill S1, academic efficiency θe, and time preference θl . This means that, in addition
to the interactions from before, we are also allowing for student characteristics to play a dual role of
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determining (T, Q) to begin with, and altering the rate at which learning task volume is converted into
new math skill. The results of this analysis are presented in Table 7.

We again summarize results as standard deviation effects rather than reporting long lists of (up to 78)
parameter estimates, though an adjustment is in order. In regression analysis standard deviations are
commonly used as units of “typical” shift for a random variable, but they lose that intuitive meaning as
the distribution becomes more skewed.35 Such is the case for T and Q (Table 3, Figure 2) where standard
deviations exceed the respective 80th percentiles. The usual standard deviation would constitute an
especially extreme hypothetical shift in behavior for the 50% of students who did no work on the website.
Thus, we define pseudo-standard deviation (pStDev) as pStDevj ≡ F−1

j (0.5|worker) − F−1
j (0.159|worker),

j = t, q, for computing standard deviation effects. The pStDev is defined this way because for normally-
distributed data it reduces to the usual standard deviation, and it provides a more meaningful measure
of a “typical” unit of shift for the average child in the sample. Pseudo-standard deviations for T and Q
(relative to all students, not just workers) are roughly 76 minutes of focused problem solving time and
8.4 website modules completed (i.e., 50.4 practice problems solved).

In Table 7 we find that completion of learning-by-doing tasks (and not simply time spent studying) is
primarily responsible for short-term gains in mathematics proficiency. Notably, for inputs of time larger
than the pStDev, T actually begins to play a negative role of tempering (but never swamping) the conver-
sion rate of task completion into short-term gains in measured math proficiency. For example, the mean
standard deviation effect of T, when computed relative to the usual standard deviation of time spent—
at 154.5 minutes, being slightly more than double the pStDev—is -0.36 SD of ∆S.36 These results are
suggestive once again of a decreasing-returns-to-scale pattern in learning activity volume. We also see
further evidence of a decreasing returns to scale production technology, but in a slightly different sense:
the estimated standard deviation impact of pre-test score is significant (both economically and statisti-
cally) and negative. In words, as students reach a higher level of mastery of math concepts, achieving
further improvements of a fixed size (in test score space) becomes more and more difficult. Note that
the decreasing returns to scale insights from both long-run and short-run production technologies are
also consistent with the remarkable degree of curvature that we find in the cost function: progress takes
a lot of work (especially for high-θe types), and the increasing marginal costs of foregoing leisure time
(due to θl and curvature in c(·)) can very quickly become prohibitive.

We find that θe also alters the shape of the short-run learning technology in an economically mean-
ingful way. That is, students with a more advantageous academic efficiency trait tend to not only
accomplish more learning tasks per unit of time, but they also tend to derive more progress from those
tasks in terms of measured math proficiency gains. This effect comes both directly through the intercept,
and indirectly through the slope terms. Finally, we find once again that after controlling for the rich set
of student covariates, school quality plays an important role in conversion of learning-by-doing activ-
ities into improvements in math proficiency over a short-run horizon. Moreover, the ordering among
the three school districts is consistent with results from the previous two sections, though the difference
between District 1 and District 2 is a bit smaller, relative to the District 1-District 3 comparison.

35As an extreme but illustrative counterexample, one would hesitate to interpret standard deviation as a typical unit of shift
for a Pareto-distributed random variable, which may exhibit large or infinite variance due to a small mass of extreme values.
36Importantly, one should keep in mind that all results in Table 7 are measured relative to extra-curricular math study over
a fixed time window. Thus, the interpretation is that between 1.25 and 2.6 extra hours of math problem problem solving time
within a two-week window, the role of time expenditure on learning progress switches from positive to negative.
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Table 7. PRODUCTION OF INCREMENTAL GAINS IN MATH SKILL

SPECIFICATION: (1) (2) (3) (4)
DEPENDENT VARIABLE: ∆S (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.) (Mean; St. Dev.)

Baseline 2-Week Gains w/Ti = Qi = 0
(

∆̂0i

)
(0.495; 0) (−0.217; 1.459) (0.039; 1.903) (0.0028; 1.933)

Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect Mean St. Dev. Effect

T (standardized)†
(

∆̂1i , ∆̂2i , ∆̂5i

)
-0.0013*** 0.0187*** 0.0151*** 0.0165***

(joint p-value)
(
5.5× 10−5

) (
<10−16

) (
<10−16

) (
<10−16

)
Q†

(
∆̂3i , ∆̂4i , ∆̂5i

)
0.1950*** 0.4385*** 0.5048*** 0.5378***

(joint p-value)
(
5.4× 10−8

) (
<10−16

) (
<10−16

) (
<10−16

)
S1 (standardized) (δ̂0,1, . . . , δ̂5,1) — -0.4255*** -0.4461*** -0.4401***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

)
log(θe) (δ̂0,2, . . . , δ̂5,2) — -0.2142*** -0.1776*** -0.1613***
(joint p-value)

(
7.6× 10−8

) (
3.4× 10−10

)
(0.0004)

log(θl) (δ̂0,3, . . . , δ̂5,3) — 0.0284 0.0505 0.0601*
(joint p-value) (0.1393) (0.3714) (0.0956)

District 2 (δ̂0,4, . . . , δ̂5,4) — -0.2036*** -0.2210*** -0.1286***
(joint p-value) (0.0064)

(
1.0× 10−6

)
(0.0026)

District 3 (δ̂0,5, . . . , δ̂5,5) — -0.4733*** -0.5340*** -0.4271***
(joint p-value)

(
<10−16

) (
<10−16

)
(0.0094)

Grade 5 (δ̂0,6, . . . , δ̂5,6) — — -0.2401*** -0.2430***
(joint p-value)

(
6.5× 10−7

) (
1.0× 10−6

)
Female (δ̂0,7, . . . , δ̂5,7) — — 0.0508* 0.1042**
(joint p-value) (0.0530) (0.0362)

Black (δ̂0,8, . . . , δ̂5,8) — — 0.0287*** 0.0308***
(joint p-value)

(
1.6× 10−14

) (
4.3× 10−6

)
Hispanic (δ̂0,9, . . . , δ̂5,9) — — -0.0207* 0.0051**
(joint p-value) (0.0696) (0.0152)

log(Mean Nbhd Income) Controls no no no yes
Nbhd Uninsured Minor Rate Controls no no no yes
# Peer & Adult Helper Controls no no no yes

N 1, 494 1, 494 1, 494 1, 494
R2 0.095 0.200 0.222 0.230
Adjusted R2 0.092 0.181 0.190 0.188

Notes: Mean St. Dev. Effect is the total impact of a variable through the intercept ∆0i (direct effect) and slope terms (∆1i , . . . , ∆5i) (interactions). For discrete
variables Mean St. Dev. Effect is the mean impact (across all students) of switching from 0 to 1 (all else fixed), in standard deviation units of ∆S. For a continuous
variable Mean St. Dev. Effect is the mean impact (across all students) of a one standard deviation increase (all else fixed), in standard deviations of ∆S.
Reported joint p-values are for the joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95% and 90% levels are denoted
by three stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e., (δ̂1k , . . . , δ̂5k), k=1,. . . ,9) have the following joint p-values:
9.7× 10−7 for S1 (standardized pre-test score); 0.0031 for log(θe); 0.0812 for log(θl); 0.0092 for District 2; 0.0587 for District 3; 0.0005 for Grade 5; 0.0458 for
Female; 1.9× 10−6 for Black; and 0.0135 for Hispanic.
Neighborhood socioeconomic proxies are statistically significant (joint p-values of (0.0031) and (0.0437), respectively) but play a small role: a simultaneous
one-standard-deviation improvement in both log(Mean Nbhd Income) and Nbhd Uninsured Minor Rate is predicted to result in only a 5.88% standard
deviation increase in ∆S.
†Due to heavily skewed distributions of T and Q, rather than using their standard deviations to compute Mean St. Dev. Effect, we use the pseudo-standard
deviation, (defined above) instead. For normally distributed data, pStDev and standard deviation are the same.

In interpreting the results from Table 7 regarding standard deviation effects of T and Q, one should
keep in mind that they involve many complicated interactions between variables. For example, the mean
(across all students) predicted standard deviation effect of Q is roughly 2.7 exam score points (on a 40-
point scale), or roughly 19 practice problems solved (with interactive feedback) per exam score point
of improvement. However, for children at different school districts, with different initial proficiency,
with different unobserved traits, and/or with different home background and demographic variables,
the personalized prediction can vary somewhat. One encouraging aspect of model estimates for pol-
icymakers and education practitioners is that following pStDev=8.4 completed modules of extra math
activity, the raw, pair-wise Kendall’s rank correlations between the predicted shift ∆S and θe/θl are ac-
tually positive (0.4 and 0.3, respectively), and for pre-test score the rank correlation is negative (-0.31).
In plain English, we learn an important lesson from this exercise: learning mathematics is accessible to
anyone in the sense that there are enough other mitigating factors so that having a less advantageous
latent characteristic θe or θl , or low initial math skill, need not bar any student from making progress.
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Figure 9. Counterfactual Achievement Gaps: Black vs White/Asian
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Figure 10. Counterfactual Achievement Gaps: Hispanic vs White/Asian
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Notes: for r ∈ (0.05, 0.95) Figure 9 (Figure 10) depicts the empirical and counterfactual differences in exam scores between a child at the rth

percentile within the White/Asian group and a child at the rth percentile within the Black (Hispanic) group.

6. Counterfactual Analysis

In this penultimate section, we execute counterfactual experiments to investigate the role of access
to high-quality education services in explaining racial achievement gaps within our sample population.
For Black and Hispanic students, the profile of schools attended is heavily tilted toward middle- and
low-performing schools and away from the highest-performing school district. Holding school assign-
ment fixed for White/Asian students, we alter school assignment for Blacks and Hispanics by repeatedly
re-sampling (with replacement) from the distribution of school assignment among Whites and Asians.
Intuitively, this exercise levels the playing field by bringing Black/Hispanic school quality allocation up
to the empirical level of White/Asian school assignment, while leaving the latter fixed.37 We then use
model estimates to compute adjusted θ∗e under the new school assignments, and we simulate counter-
factual distributions of pre-exam scores and choices of T and Q under our existing incentive schemes.
For each minority student we re-simulate counterfactual school assignment many times to wash out the
role of simulation error in driving our results.

6.1. Racial Achievement Gaps. The model predicts complex changes to racial achievement gaps that
vary by a child’s percentile rank within her demographic group. These are depicted graphically in Fig-
ures 9 and 10, and numerically in Table 8. Generally, the closure of the racial achievement gaps from
academic resource equalization becomes more pronounced among higher achieving students. Indeed,
our model predicts that bringing Black/Hispanic school quality up to the same level as empirically exists

37An alternative exercise would be to simply re-allocate all existing school seats via a lottery. Both methods would hypo-
thetically level the playing field, though the one we adopted—interpretable as a new infusion of resources targeted at the
Black/Hispanic communities—doesn’t require grappling with re-distribution concerns and also has an interesting interpreta-
tion in terms of implications for affirmative action in college admissions.
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Table 8. SCHOOL-QUALITY EQUALIZATION: LONG-RUN ACHIEVEMENT GAPS

PERCENT CHANGE IN ACHIEVEMENT GAPS AT:

10th Percentile 25th Percentile Median 75th Percentile 90th Percentile Mean Integrated %Chng.

Black −36.8% −37.3% −44.7% −57.0% −84.2% −45.0%

(full schl. qual. equalization)

Black −19.2% −25.4% −36.6% −54.3% −91.9% −38.9%

(fixed (θe , θl))

Hispanic Students −83.6% −78.6% −85.8% −105.2% −137.4% −85.8%

(full schl. qual. equalization)

Hispanic Students −40.9% −44.9% −59.8% −81.2% −124.3% −60.7%

(fixed (θe , θl))

for Whites/Asians would cause the highest performing Black and Hispanic students to actually overtake
their White/Asian counterparts in terms of exam score performance. Integrating over gap closure mag-
nitudes at different percentiles generates a single aggregate summary value: holding all other student
characteristics fixed, racial differences in school quality account for roughly 45% of the achievement gap
between Blacks and Whites/Asians in our sample, and roughly 85% of the achievement gap between
Hispanics and Whites/Asians. We also ran an alternate specification of this counterfactual achievement
gap calculation, where we held underlying θe fixed, and only vary the production technology with the
counterfactual school assignment profile. This decomposition reveals that most of the achievement gap
narrowing for Blacks and Hispanics (86% and 71% of the narrowing, respectively) is due to changes in
the long-run production technology that exist at higher-quality schools, holding student traits fixed.

6.1.1. Using Affirmative Action to Offset School Quality Differences in Academic Contests. Building on the
results of the previous exercise, we also consider a hypothetical head-to-head academic competition
between all students in our sample. This hypothetical competition assumes a large-market, many-to-
many, contest structure familiar to college admissions models in Bodoh-Creed and Hickman (2018),
and Cotton, Hickman, and Price (2020a, 2020b), in which students compete for admissions to an array
of vertically-differentiated universities by investing in their observable human capital (as measured by
grades/test scores). We use the simulation results from the first counterfactual to ask, “What would the
Affirmative Action scheme have to be in order to exactly wipe out the ex-ante advantage to White/Asian
students which comes not from having better household or individual characteristics, but from simply
attending better schools?”

Intuitively, in rank-order contests like college admissions, there may exist systemic, arbitrary disad-
vantages to some competitors before the competitive human capital investment game begins. Using our
results, we can quantify the precise affirmative action scheme that would ex-post remove that systemic
disadvantage, and nothing more. The results of this calculation are displayed in Figure 11. For this
exercise we combine Blacks and Hispanics into a single, composite, underrepresented minority group
for simplicity. The horizontal axis displays URM percentiles, and the vertical axis is a point-specific
score bonus (in standard deviation units of the original pre-test scores). For comparison, the plot also
depicts a baseline rule, commonly referred to as “color-blind” admissions, which is simply a constant
zero-bonus for all minority students.38 Note that the plot zooms in on the 5-95 range since behavior in

38It is worth mentioning that the results in this section call into question the appropriateness of the common label “color-blind
admissions” for the baseline rule, given that it ignores a large asymmetry of causal value-added resources delineated by a
child’s race. We maintain the common label here simply for its familiarity within the public debate on affirmative action.
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Figure 11. School-Quality-Equalized Affirmative Action
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Notes: The figure considers a hypothetical, many-to-many college admissions contest among students in the sample. For r ∈ (0.05, 0.95) the

solid line plots an rth-percentile-specific exam score bonus needed to exactly offset handicaps for minority students due to less advantageous

school quality assignment relative to their rth-percentile counterparts in the White/Asian group. The dashed line plots the score bonus

schedule under a so-called “color-blind” admissions scheme for comparison.

the extreme tails for model simulations can be less reliable. The salient features of the equal-school-
equivalent AA scheme are (I) the score bonus is substantially above the race-blind alternative along the
entire distribution of URM students; and (I I) it trends steadily upward for the highest achievers. This
novel result based on our causal estimates of student characteristics and value-added estimates of school
inputs may have important implications for the ongoing legal debate surrounding affirmative action in
college admissions.

6.2. Incentive response counterfactuals. Finally, we seek to better understand the extent to which a
policy-maker could lean on the incentive channel alone to close achievement gaps by inducing Black
and Hispanic students to increase math activity. We also ran a similar analysis to see how hypothetical
school quality equalization would impact the answer to this question. The general take-home lesson from
this section is that, without getting more serious about equalizing the quality of public education inputs
accessible to Black and Hispanic students, the incentive lever does not appear as a terribly promising
option for a policymaker.

More concretely, Figures 12 and 13 explore what we refer to as Incentive Response Gaps. To define
that term, first note that an Incentive Response Function (IRF) is defined as the difference in the quantile
functions of Q (or T alternatively) under different contracts. For example, the White/Asian Incentive
Response Function for a contract 1-to-contract 2 shift would be

IRF(j, W/A, 1, 2) ≡ F−1
j (r|W/A, contract 2)− F−1

j (r|W/A, contract 1), j = q, t, r ∈ [0, 1], (16)

or the quantile function of Q or T for Whites/Asians under contract 2, minus the corresponding quan-
tile function for Whites/Asians under contract 1. This measures, at various percentiles of the student
distribution, how students respond to an increase in piece-rate incentives. With that definition in mind,
the Black-White/Asian Incentive Response Gap (IRG) is the IRF for Whites/Asians under a contract 1-to-
contract 2 shift, minus the IRF for Black students under the same contract 1-to-contract 2 shift. The IRG
therefore measures the difference across race groups in their responsiveness to piece-rate incentives. For
example, if IRG(0.5|j, Black, White/Asian, 1, 2) = 5, that would mean that when the median White/Asian
student is switched from contract 1 to contract 2, she increases her total output on dimension j = q, t by
5 units more than the median Black student under the same shift in incentives.
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Figure 12. Incentive Response Gaps in Learning Activities: Black vs White/Asian
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Figure 13. Incentive Response Gaps in Learning Activities: Hispanic vs White/Asian
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Notes: Incentive Response Gaps depict differences across race groups in marginal learning activities under strengthening of incentives from

contract 1 to contract 2 or contract 3. For each r ∈ (0.05, 0.95), the Figure 12 (Figure 13) depicts the difference between increased output for a

student at the rth percentile within the White/Asian group, and a student at the rth percentile within the Black (Hispanic) group. Thin lines

depict IRGs under the status quo and thick lines represent IRGs under the school-quality equalization counterfactual.

From our earlier analysis, one might believe that since Black students have systematically lower values
of time preference θl , that they would be more responsive to incentives. However, such intuition is
incomplete, and it is important to recognize that one’s study effort is determined by the interaction
between a student’s time value and how much time is needed for task completion, which is a function of
θe. While it is true that a lower θl makes it less burdensome for a student to give up an hour of would-be
leisure time, higher values of θe work in the opposite direction and make a student’s time less valuable
for earning rewards of time spent working. Moreover, due to the dramatic curvature in the utility cost
function, it turns out that θe is quite crucial for inducing students to respond to incentives and increase
learning task accomplishment.

With these ideas in mind, Figures 12 and 13 plot the IRGs under the status-quo and under school
quality equalization. The left panels shows quiz output Q and the right panels show time worked
T. Incentive responses and response gaps are fairly low until the 75th percentile (i.e., most studious)
students. In that upper region the response gaps in terms of Q are quite substantial, but are reduced
significantly by equalizing school quality, with its implied increase of academic efficiency (i.e., reduction
in θe). Note also that the incentive response gaps are smaller in terms of T, and also change less in
terms of T. This reflects the fact that because of the huge curvature of the utility cost function c(t; π̂c),
learning gains under optimal labor-leisure choice are primarily accomplished through increases in the
productivity of time, rather than through large re-allocations of a child’s time from leisure toward math.
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Figure 14. Incentive Response in Learning Activities: Black
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Figure 15. Incentive Response in Learning Activities: Hispanic
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Figures 14 and 15 consider a somewhat more drastic experimentation with piece-rate incentives. On
the horizontal axis are different simulated contract offerings, this time with no lump-sum base wages
for simplicity. Once again, the left panels plot simulated quiz output and the right panels plot labor
supply. Thin lines represent the status-quo school assignment and thick lines represent the re-sampled,
equalized, school quality regime. Each of the plots in Figures 14 and 15 depict the behavior of the
median most studious student, and the 25th (less studious) and 75th (more studious) percentiles for all
students, including both workers and non-workers in the experimental data. These figures provide the
clearest illustration of why the incentive channel is relatively weak. For example, in order to induce the
75th percentile most studious Hispanic student (Figure 15) to produce roughly 12 units of learning-by-
doing tasks (under status-quo school assignment) the policy-maker would have to offer an outlandishly
high piece rate of $16 per quiz.

To be clear, θl does matter: the 75th percentile most studious Black student (Figure 14) would produce
about 35 units of learning-by-doing tasks at $16 per quiz, and the biggest difference between the two
groups is the distribution of θl . However, for both groups overcoming their disadvantage in terms of θe

through the incentive channel alone requires very large financial incentives. Now, consider a comparison
of this outcome for the status quo setting, in which the current distribution of students across school
districts is held constant, to the outcomes from a counterfactual setting in which minority groups have
identical access to school quality as Whites/Asians. For minority students, such a shift in school district
produces large improvements in academic efficiency θe while leaving θl largely untouched. In such a
scenario, under-served minority students become dramatically more responsive to piece-rate incentives
(thick lines), as depicted in Figures 14 and 15.
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7. Conclusion

Since the 1960s, one would be hard pressed to find two disciplines within economics that have grown
more and established as many deep insights as the study of the role of human capital on economic
growth and the study of how education, learning, and skills are produced. Likewise, a perusal of
the popular press suggests that most have accepted James Mill’s dictum that "if education cannot do
everything, there is hardly anything it cannot do." Yet, even with these movements, modern economies
continue to seek ways to increase the proportion of their citizens completing higher education.

Gone are the days when societies can invest in only a small number of highly educated persons, where
the primary goal of education is to pinpoint the few students who can succeed. Such systems historically
invest a great deal more in the selection, rather than development, of students. These days, however,
investment in the development of a broader set of students is important both for creating opportunities
for the economic success and stability of individuals, and for innovation and growth within society.
Quality education is no longer a luxury for a select few elite, but rather increasingly a necessity for
anyone hoping to secure comfortable employment, let alone upward mobility within an economy.

A lesson gleaned from the work of Heckman and colleagues, as well as many others, is that in-
vestment in human capital pays off at a greater rate than does investment in physical capital, which
suggests that we must move from an economy of scarcity of educational opportunity to one of pro-
moting and developing all students over the life-cycle. A troubling observation from our raw data
that underscores the current state of developmental resource scarcity is that, while Black and Hispanic
students in our sample self-report higher preferences for studying math and science relative to other
academic subjects, they are vastly less affluent, much more likely to lack health insurance coverage, and
are almost entirely relegated to schools with average or below-average instructional budgets, faculty
salaries, and teacher degree qualifications. Their standardized test scores unsurprisingly lag far behind
their White/Asian counterparts—slightly more than a full standard deviation in our math pre-test, on
average—whose corresponding resource allocations on all the above dimensions are almost entirely at
average or above-average levels, relative to the rest of the State of Illinois. These facts together suggest
adults are successfully advertising to Black and Hispanic children that math and science education are
the way out of poverty. However, their communities, schools, and society at large are failing to follow
up on the marketing campaign by equipping them with the tools to effectively act upon this perception.

Our study contributes to the literature by providing insights into human capital formation and its
determinants during one phase of the education process. Our approach is unique in that it uses a field
experiment to identify key components of a structural model that illuminate the relationship between
time and adolescent skill formation. By designing and operating our own web-based learning platform
we are not only able to expose students to controlled variation in incentives, but we also gain a unique
window into the temporal profile of study time supplied, volume of learning task completion, and how
these inputs map into measured subject proficiency. In doing so, we discuss new interpretations of
motivation, provide a novel view of policies that are geared toward opportunity versus achievement,
and develop a contemporary view of optimal approaches to lessen racial and gender achievement gaps
during the adolescent years (see Kautz et al., 2017; Joensen & Nielsen, 2016; Joensen et al., 2020, for other
work on skill formation in the adolescent years).

There are several important lessons for education policy to come out of our analysis. At the most
fundamental level, we show that programs or policies that aim to close performance gaps by better
motivating under-performing groups, either through information or incentives, may not be addressing
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the main barriers that constrain their performance. We show that groups of students, whether defined
by race, gender, or school district, who are under-performing in mathematics tend not to be any less
motivated (and several are more motivated) compared to groups who on average perform better. Rather,
these under-performing groups tend to have lower academic efficiency, meaning that even when they
put in time studying, they struggle more than others to convert this time into academic success. Further
increasing their motivation to put in time does not address this issue, as the amount of additional
time that is required to close the performance gap is very costly to the student and likely infeasible to
achieve. The effective closure of performance gaps between under-represented minority students and
their counterparts, for example, cannot feasibly rely on efforts to better motivate students, but would
rather need to address the differences in academic efficiency, which are driven by factors such as school
quality and resource deprivation/poverty.

Of course, any particular exercise leaves much on the sidelines. In our case, we should be clear that
we believe academic efficiency and time preference are not completely stable over the long run. There
is ample evidence (Bloom, 1964; Hunt, 1961) that academic efficiency may be modified by appropriate
environmental conditions in the school and in the home. Factors such as the amount of time allowed
for learning, quality of teacher or parent instruction, and the student’s ability to understand instruction
are important in determining the arc of learning alongside our studied characteristics. Indeed, they
may serve as important complements. For example, an improvement in the quality of instruction yields
important temporal returns: the student now must commit less time for learning the same amount of
materials. Likewise, if the student lacks ability to understand the teacher instruction (which could be
due to poor previous investment), the amount of time needed to learn increases. These are the dynamic
complementarities that are a key aspect in the development of human capital (Cunha & Heckman, 2007).
We reserve these discussions for another occasion but note that they are ripe for further theoretical and
empirical inquiry.
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Appendix A. ONLINE SUPPLEMENT: Additional Tables and Figures

Table 9. BALANCE TABLE

TREATMENT FEMALE HISPANIC Black ASIAN GRADE-5 PRE-TEST #ASSIGNED
SUBJECTS

CONTRACT 1: 0.0005 -0.0054 0.0003 0.0032 -0.0014 -0.0021 557

(p-val) (0.99) (0.82) (0.99) (0.90) (0.95) (0.93)

CONTRACT 2: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 559

(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

CONTRACT 3: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 560

(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

Notes: This table displays correlations between treatment assignment and the demographic and academic variables that were
used for randomization. Treatment assignment randomization used balancing on gender, race, grade-level cohort, and pre-test
score (via stratification). P-values (for the null hypothesis of zero correlation) are listed in parentheses.

Table 10. DEMOGRAPHICS BY CENSUS BLOCK GROUP

Variable EXPERIMENTAL SAMPLE ILLINOIS STATE

Mean Nbhd Hshld Income:

weighted mean $101,698 $71,602

weighted 5-95 range [$35K,$156K] [$30K,$128K]

Mean Nbhd Home Value:

weighted mean $361,935 $198,786

weighted 5-95 range [$94K,$723K] [$69K,$432K]

HS Graduation Rate (Adults 25+):

weighted mean 0.9149 0.857

weighted 5-95 range [0.58,1] [.57,0.99]

Col Grad Rate (Adults 25+):

weighted mean 0.5364 0.294

weighted 5-95 range [0.05,0.92] [0.04,0.72]

Notes: There are 9691 block groups in the state of Illinois. Our study sample consists of 161 census block groups in total. All variables
described in this table are measured at the neighborhood (Census block group) level. Means are weighted by headcount of students residing
in each Census block group. 5-95 range is weighted by headcount of students residing in each Census block group.
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Figure 16. Conditionally Heteroskedastic Work Time Shocks
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Figure 17. Upper Tail Extrapolation
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Figure 18. Cost Model Fit
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Figure 19
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