## EXPECTATIONS, INFECTIONS, AND ECONOMIC ACTIVITY Martin S. Eichenbaum Miguel Godinho de Matos Francisco Lima Sergio Rebelo Mathias Trabandt WORKING PAPER 27988

## NBER WORKING PAPER SERIES

#### EXPECTATIONS, INFECTIONS, AND ECONOMIC ACTIVITY

Martin S. Eichenbaum Miguel Godinho de Matos Francisco Lima Sergio Rebelo Mathias Trabandt

Working Paper 27988 http://www.nber.org/papers/w27988

## NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 2020, Revised September 2023

This version: September 12, 2023. A previous version was titled "How do People Respond to Small Probability Events with Large, Negative Consequences?" Replication codes are available on the authors' websites. We thank Laura Murphy and Joao Guerreiro for excellent research assistance and the editor, Andrew Atkeson, for his extensive comments. In addition, we thank Eran Yashiv and two anonymous referees for their feedback. Miguel Godinho de Matos was funded by the Portuguese Foundation for Science and Technology Grant UID/GES/00407/2013. The views expressed in this article are those of the authors and do not necessarily reflect the official views of authors' institutions. The data we use is part of Statistics Portugal's project of making administrative data from the Portuguese tax authority and other public agencies available for statistical production and research. For information on how to access the data see the Statistics Portugal website.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2020 by Martin S. Eichenbaum, Miguel Godinho de Matos, Francisco Lima, Sergio Rebelo, and Mathias Trabandt. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Expectations, Infections, and Economic Activity Martin S. Eichenbaum, Miguel Godinho de Matos, Francisco Lima, Sergio Rebelo, and Mathias Trabandt NBER Working Paper No. 27988 October 2020, Revised September 2023 JEL No. E21,G51,I1

#### ABSTRACT

This paper develops a quantitative theory of how people weigh the risks of infections against the benefits of engaging in social interactions that contribute to the spread of infectious diseases. Our framework takes into account the interrelated yet distinct effects of public policies and private behavior on the spread of the disease. We evaluate the model using a novel micro data set on consumption expenditures in Portugal. The estimated model accounts for the cross-sectional consumption response of individuals of different ages at a given time, as well as the time-series response of consumption of the young and old across the first three waves of Covid. Our model highlights the critical role of expectations in shaping how human behavior influences the dynamics of epidemics.

Martin S. Eichenbaum Department of Economics Northwestern University 2003 Sheridan Road Evanston, IL 60208 and NBER eich@northwestern.edu

Miguel Godinho de Matos Catolica Lisbon School of Business and Economics Palma de Cima, Building 5, 3rd Floor Reception 1649-023 Lisbon-Portugal miguel.godinhomatos@ucp.pt

Francisco Lima CEG-IST, Instituto Superior Tecnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal and Statistics Portugal francisco.lima@ist.utl.pt Sergio Rebelo Northwestern University Kellogg School of Management Department of Finance Leverone Hall Evanston, IL 60208-2001 and CEPR and also NBER s-rebelo@northwestern.edu

Mathias Trabandt Goethe University Frankfurt Theodor-W.-Adorno-Platz 3 60323 Frankfurt am Main Germany and IWH mathias.trabandt@gmail.com

# 1 Introduction

It is now widely recognized that human behavior influences the dynamics of epidemics. But how should we incorporate the impact of human actions into quantitative epidemiological models?

In our view, a successful approach requires a quantitative theory of how people weigh the risks of infections against the benefits of engaging in social interactions that contribute to the spread of infectious diseases. The resulting model should also account for the interrelated yet distinct effects of public policies and private behavior on the spread of the disease.

We develop such a model and evaluate its plausibility using a novel micro data set on consumption expenditures in Portugal. In so doing, we encounter two key challenges. The first is to account for the cross-sectional consumption response of individuals of different ages at a given point in time. This response is consistent with a full-information, rational expectations (FIRE) model in which the old rationally fear that they are more likely than the young to die from an infectious disease. The second challenge is to account for the timeseries response of consumption of the young and old across the first three waves of Covid. The consumption responses in the first and third waves are similar, but deaths per capita were much larger in the third wave than in the first. At the same time, government-imposed containment measures were similar in the first and third waves. These observations are inconsistent with a simple FIRE model.

We develop a quantitative model that meets the challenges discussed above. In so doing, we face a set of difficulties likely to be encountered by any researcher modeling an epidemic in a specific location and the observed behavioral responses to disease threats over extended time horizons. These difficulties include how to (i) model the evolution over time of individual beliefs about the risks presented by a new disease; (ii) model the evolution over time of beliefs that individuals have about the persistence of this risk; (iii) model individual beliefs about the impact of the actions that they can take to mitigate the risks of infection; (iv) isolate the separate roles of risk aversion (uncertainty over health outcomes) and intertemporal substitution in shaping behavior; (v) model the extent to which individuals care about dying (the value of bequests versus the value of living); (vi) reconcile the large short-run impact of Covid on consumption expenditures with the small corresponding impact of the secular decline in mortality from infectious diseases and (vii) separate the quantitative impacts of public policy such as lockdowns and private behavior on economic and disease outcomes. We model lockdowns as a wedge in the consumers utility and assume that the magnitude of this wedge is proportional to an index of the severity of lockdowns in Portugal constructed by an external source. We estimate and judge the importance of lockdowns by the impact of changes in the proportionality factor on model fit. Our approach to modeling containment is equivalent, in many contexts, to an absolute prohibition on purchases of certain goods (see Appendix B.3).

Our answers to the previous questions are not definitive. But we hope our analysis is a useful step in quantifying the different forces at work that any behavioral epidemiological model will have to incorporate.

Our paper makes five specific contributions to the literature. First, we use micro data to document the empirical response of consumption expenditures to Covid by people of different ages, comorbidity statuses, and incomes.

Second, we estimate our structural model using micro data on consumption expenditures. The key parameters that we estimate include old and young people's prior beliefs about casefatality rates and the speed with which they change their views. We find that all people had pessimistic prior beliefs about case-fatality rates but learned the actual case-fatality rates over time.

Third, we highlight the importance of deviations from full-information rational expectations in accounting for the empirical response of consumption to the Covid epidemic.

Fourth, we use the empirically validated model to assess how much people of different ages and incomes would be willing to pay to avoid the epidemic. Naturally, peoples expectations about mortality rates play a crucial role in their willingness to pay. We also explore the distinct roles of intertemporal substitution and risk aversion in determining the willingness to pay.

Fifth, we suggest a way to reconcile the large short-run and small long-run effects on consumption of changes in mortality rates associated with contagious diseases. Our suggestion highlights the critical role of expectations about case-fatality rates in such a reconciliation. To keep our analysis tractable, we abstract from long-run supply issues possibly arising from changes in fertility and education decisions.

Our paper is organized as follows. Section 2 briefly reviews the related literature. Section 3 describes our data. Section 4 contains our empirical results. Section 5 presents a simple model used to develop intuition about the mechanisms at work in our quantitative model. Section 6 describes the quantitative model and estimation procedure. Section 7 summarizes

our estimation results. Section 8 contains a general equilibrium model of endemic Covid. This model extends our partial-equilibrium analysis along three dimensions. First, we embed it in a general equilibrium framework with endogenous labor supply and capital accumulation. Second, we allow for vaccination. Third, we modify the epidemiology assumptions so that people who have natural immunity or are vaccinated lose their immunity over time. We conclude in Section 9.

# 2 Related literature

There is, by now, an extensive literature on the macroeconomic impact of epidemics. Examples include Alvarez, Argente, and Lippi (2020), Eichenbaum, Rebelo, and Trabandt (2021), Faria-e-Castro (2021), Farboodi, Jarosch, and Shimer (2021), Krueger, Uhlig, and Xie (2020), Jones, Philippon, and Venkateswaran (2021), Krueger, Uhlig, and Xie (2020), Guerrieri, Lorenzoni, Straub, and Werning (2022), Piguillem and Shi (2022), and Toxvaerd (2020). There is also a sizable epidemiology literature on the interaction between Covid and age. Examples include Dessie et al. (2021), Doerre and Doblhammer (2022), and Sorensen et al. (2022). We do not attempt to survey these literatures here. Instead, we discuss the papers most closely related to ours in the sense that they study the impact of age on people's consumption behavior. The three key papers are as follows.

Glover et al. (2021) analyze a two-sector model (essential and luxury) with young workers and retirees. The epidemic creates significant distributional effects because the luxury sector contracts more than the essential sector. In addition, containment measures redistribute welfare from the young to the old. The old benefit from the reduced risk of infection produced by containment, while the young suffer the adverse employment consequences.

Brotherhood et al. (2021) use a calibrated model of the pandemic that features age heterogeneity and individual choice, allowing agents to choose rationally how much social distancing to undertake, considering future infection risk, and prospects for vaccine arrival.

Acemoglu et al. (2021) study targeted lockdowns in a multi-group SIR model where infection, hospitalization, and fatality rates vary between groups—in particular between the young, middle-aged, and old.

# 3 Data

Our dataset comes from Statistics Portugal, the national statistical authority. A software system called "e-fatura" which the Portuguese government adopted in 2013 to reduce tax evasion, generates the data. The decree-law no. 198/2012 published on August 24, 2012, requires firms to report their invoice data electronically. This decree covers all individuals or legal entities with headquarters, stable establishment, or tax domicile in Portuguese territory that conduct operations subject to value-added tax (VAT). Durable goods purchases, such as cars, refrigerators, and televisions, are included in our dataset because they are subject to VAT. However, we cannot separate purchases of durable and non-durable goods because we cannot access itemized invoices that specify the nature of the goods purchased.

Goods and services exempt from VAT are excluded from the data.<sup>1</sup> The most important exempt categories are health services provided by medical doctors, childcare services provided by kindergartens, residential homes, day centers for the elderly, rent and property investments, and services provided by non-profit organizations that operate facilities for art, sports, or recreation activities. Our data covers approximately 75 percent of the per capita consumption expenses included in the national income accounts.

Our data includes anonymized information for five hundred thousand Portuguese people randomly sampled from a set of 6.3 million people who meet two criteria. First, they were at least 20 years old in 2020. Second, they filed income taxes as Portuguese residents in 2017. The data set includes a person's age, income bracket, and gender. In addition, for a subset of people, the data includes education and occupation in 2017.

For every person in our sample, we construct total monthly consumption expenditures using the electronic receipts that firms provide to the tax authority as part of their valueadded tax (VAT) reporting. Each receipt is matched to a particular person using their anonymized fiscal number. We also compute individual pharmacy expenditures, which we use as a proxy for comorbidity.

Portuguese consumers have four incentives to include their fiscal number in expenditure receipts. First, they can deduct from their income taxes, up to a limit, expenditures on health, education, lodging, nursing homes, and general-household spending. Second, the government rebates 15 percent of the VAT from documented expenditures on public transportation passes, lodging, restaurants, and automobile and motorcycle shops. Third, for

<sup>&</sup>lt;sup>1</sup>See article nine of the VAT code for an exhaustive list.

every ten euros of reported spending, consumers receive a coupon for a weekly lottery in which the prize is a one-year treasury bond with a face value of 35 thousand euros. Fourth, the law obliges consumers to request invoices for all purchases of goods and services. Consumers who fail to comply are subject to fines ranging from 75 to 2,300 euros.

Young people might have purchased goods and services for their parents and reported them under their own fiscal number. But it is in general not in their interest to do so because there are caps on the VAT rebates that taxpayers can receive and on the VAT expenses that taxpayers can deduct from their income taxes.

The data includes online purchases from Portuguese businesses but excludes online purchases from foreign companies. The latter types of purchases are likely to be small and not negatively affected by Covid. Since young people are more likely to engage in such purchases, including them would likely strengthen the result, documented below, that older people cut their consumption by more than young people.

We exclude from the sample in a given month people who do not have any receipts associated with their fiscal number for that month. We also remove from the sample 21,814 people who were unemployed or inactive in 2017. These people are unlikely to pay taxes, so they have less incentive to include their fiscal number in receipts. Finally, we dropped all persons older than 80 from the sample because their expenditure patterns suggest that many of them live in nursing homes. We also exclude people younger than 20 because they make few independent consumption decisions. The resulting dataset contains 421,337 people and 12,218,773 person-month observations aggregated over 97,363,250 buyer-seller pairs.

We identify two groups in our sample whose incomes are likely to have been relatively unaffected by the Covid recession: public servants (58,598 people) and retirees (93,839 people). These groups overlap because we do not exclude retirees from the population of public servants. There are roughly 22,000 retired public servants in our sample.<sup>2</sup>

Our sample covers the period from January 2018 to April 2021. We end our sample in April 2021 for two reasons. First, vaccines became available to the general population after April 2021. Before April, only the elderly and people with comorbidities were vaccinated first. Second, according to CISAID data, there were no reported cases of the delta variant, which was arguably more contagious than previous variants.<sup>3</sup>

 $<sup>^{2}</sup>$ In 2011, Portugal entered into an adjustment program with the International Monetary Fund, the European Central Bank, and the European Commission (see Eichenbaum, Rebelo, and Resende (2017) for a discussion). This reduction led to a large increase in the number of retired public servants.

<sup>&</sup>lt;sup>3</sup>Data downloaded from https://covariants.org

Table 6 in the appendix reports descriptive statistics for monthly expenses net of VAT. For public servants, the average per capita monthly expenditure on consumption goods and services is 687.8 euros, of which 25.6 euros is spent on pharmacy items. These expenditures are roughly similar for the sample of the population as a whole: the average per capita monthly expenditure on consumption goods and services is 629.3 euros, of which 17.9 euros is spent on pharmacy items. Retirees have lower levels of overall expenditure. They spend, on average, 437.8 euros on consumption goods and services, of which 24.3 euros is spent on pharmacy items.

Table 7 in the appendix reports the same statistics as Table 6 broken down by income and age groups. Income groups are based on the 2017 income-tax brackets used by Portugal's Internal Revenue Service (IRS). We group people according to their ages so that they have similar Covid case-fatality rates. Our estimates of this risk are based on the statistics reported by the Portuguese health authority (DGS) on July 28, 2020. Table 1 displays case-fatality rates (the ratio of Covid deaths to people infected) by age cohort for Portugal. Two key results emerge from Table 1. First, people aged 20 to 49 all have low case-fatality rates. Second, case-fatality rates rise non-linearly with age for people older than 50.

| Age Group | Infected  | Deceased | Infection-<br>fatality rate |
|-----------|-----------|----------|-----------------------------|
| [0; 9]    | 672       | 0        | 0.0%                        |
| [0; 19]   | $1,\!085$ | 0        | 0.0%                        |
| [20; 29]  | 4,245     | 1.5      | 0.03%                       |
| [30; 39]  | 4,869     | 0.6      | 0.01%                       |
| [40; 49]  | $5,\!420$ | 15.3     | 0.28%                       |
| [50; 59]  | $5,\!336$ | 43.6     | 0.82%                       |
| [60; 69]  | $3,\!519$ | 122.1    | 3.5%                        |
| [70; 79]  | $2,\!576$ | 265.9    | 10.3%                       |
| $\geq 80$ | 4,522     | 926      | 20.5%                       |

Table 1: Covid infection-fatality rates (averages May 14-June 14, 2020)

Computed with data from the Portuguese Health Authority.

# 4 Empirical results

This section has two parts. In the first subsection, we provide an overview of the evolution of the epidemic in Portugal and the government's containment measures. We also discuss the evolution of per capita consumption expenditures in our sample. In the second subsection, we present formal econometric evidence of how Covid impacted the consumption expenditures of people of different ages and comorbidity conditions.

## 4.1 The epidemic in Portugal

Figure 1 depicts the weekly time series of infected people and Covid deaths in Portugal. We refer to March 2020 through April 2021 as the "epidemic dates." There were three waves of Covid deaths during this period. The peaks of these waves occur in April 2020, December 2020, and January 2021. The broad pattern of Covid cases is consistent with the facts documented by Atkeson et al. (2020) for a cross-section of countries.



Figure 1: Covid-19 cases and deaths reported by the Portuguese Health Authority (May 20, 2021).

The vaccination campaign started on January 8, 2021. The initial campaign focused on people over 80 with comorbidities. Vaccination of the general population began on April 23, 2021, very close to the end of our sample (April 30, 2021).

Over the period from March 2020 to April 2021, the government implemented various containment measures. These measures vary in intensity and sectoral coverage. For concreteness, we summarize the severity of these measures using an index of the full or partial closing of non-essential shops, restaurants, and cafés.<sup>4</sup> Figure 2 displays this containment index. Containment rose quickly in mid-March 2020 and started to decline at the beginning of May 2020. It then dropped to low levels in the summer of 2020. In mid-November 2020, containment was partially reimposed in response to the second wave. The third epidemic wave led to the strengthening of containment measures from January to March 2021. As the number of infections waned, containment measures were eased. Note that the peak containment rates are the same in the first and third waves.



Figure 2: Severity of Covid-19 containment measures over time.

Figure A.1 in the appendix depicts the average logarithm of public servants' monthly consumption expenditures from January 2018 to April 2021. Three features emerge from this figure. First, there are pronounced drops in consumption around the peak months of the first and third waves. There is a more muted decline in consumption during the months around the peak of the second wave. Second, there is a clear seasonal pattern in the pre-Covid sample. This pattern is similar in 2018 and 2019. Third, per-capita spending was growing before the Covid shock. Our econometric procedure considers the latter two features in creating a counterfactual for what spending would have been in 2020 absent the Covid shock. We estimate a seasonal effect and time trend for each age and income group using data from January 2018 to February 2020.

<sup>&</sup>lt;sup>4</sup>To construct this index, we use data from https://ourworldindata.org and https://dre.pt/legislacaocovid-19-upo. We attribute the values 1, 0.5, 2/7, and zero to full closing, partial closing, closing on weekends, and open. The containment index is the average of the indexes for non-essential shops and restaurants and cafés.

## 4.2 Age and the impact of Covid on consumer expenditures

Our empirical specification focuses on the differential consumption response by people of different ages. This specification is given by:

$$\ln(Expenses_{it}) = \Lambda \times Year_t + \sum_{m=Feb}^{Dec} \lambda_m \mathbf{1}\{Month_t = m\} + \boldsymbol{\theta}_i + \Psi_{it} + \epsilon_{it}$$
(1)  
$$\sum_{d=Mar,2020}^{Apr,2021} \Delta_d After_t \times \mathbf{1}\{Date_t = d\} + \sum_{d=Mar,2020}^{Apr,2021} \sum_{g \in AgeGroup \setminus [20;49]} \delta_{dg}After_t \times \mathbf{1}\{Date_t = d\} \times \mathbf{1}\{AgeGroup_i = g\}.$$

Subscripts *i* and *t* denote person *i* and calendar month *t*, respectively. The coefficient  $\Lambda$  represents a linear growth trend in consumption expenditures.  $Year_t$  is a variable that takes the value 1 + t for year 2018 + *t* for t = 0, 1, 2, 3. The coefficients  $\lambda_m$  control for seasonality in consumption. The vector  $\Psi_{it}$  includes interaction terms that allow seasonal effects to vary with individual characteristics (age, income bracket, gender, education, and occupation). The coefficients  $\theta_i$  denote time-invariant individual fixed effects. After<sub>t</sub> is a dummy variable equal to one during the epidemic dates (beginning March 2020). The coefficients  $\Delta_d$  represent the change in spending for people in the reference group (aged 20-49) during the epidemic date *d*. The coefficient  $\delta_{dg}$  measures the additional change in spending for age group *g* in epidemic date d.<sup>5</sup> The variable  $\epsilon_{it}$  is an idiosyncratic error term. As long as the inflation rate for the consumption baskets of different age cohorts is the same, any inflation effects cancel out from the difference in nominal responses, and we are left with the real differential response. We estimate equation (1) using a fixed effects (FE) estimator and cluster standard errors by person, as suggested in Bertrand et al. (2004).<sup>6</sup>

Column 4 of Table 14 reports our parameter estimates. Figure 3 displays our estimates of the impact of Covid on consumption expenditures of different age groups ( $\Delta_d$  for the reference group and  $\Delta_d + \delta_{dg}$  for the other groups) obtained from estimating equation (1). The bars around the point estimates represent 95 percent confidence intervals. Our key findings are as follows. First, all consumers reduced their expenditures during the three waves of the epidemic. Second, older people cut their expenditures by much more than younger people.

<sup>&</sup>lt;sup>5</sup>We keep age groups constant based on a person's age in 2020.

<sup>&</sup>lt;sup>6</sup>Because of our large sample size, we estimate the FE models using the method of alternating projections implemented in R by Gaure (2013) and in STATA by Guimaraes and Portugal (2010) and Correia (2016).

The non-linear effect of age on consumer expenditures mirrors the non-linear dependency of case-fatality rates on age. Third, the decline in consumption for each age group was similar in the first and third waves.



Figure 3: Changes in expenditures of public servants during the epidemic relative to a counterfactual without Covid.

# 4.3 The response of people with different income

The economic model discussed in Section 6 implies that high-income people cut their expenditures by more than low-income people to reduce the risk of infection. According to the model's logic, rich people have more to lose from becoming infected than poor people. Since older people might have a higher income than younger people, the results reported in Section 4.2 might conflate the effect of age and income.

Table 15 in Appendix A reports our parameter estimates. Figure 4 displays our estimates of the impact of Covid on consumption expenditures of different age groups ( $\Delta_d$  for the reference group and  $\Delta_d + \delta_{dg}$  for the other groups) obtained from estimating equation (1) for separate income groups. Two key results emerge from this figure. First, our results about the impact of age on consumption expenditures are very robust to controlling for income. Older people cut their expenditures by much more than younger people for all income groups. Second, controlling for age, high-income people reduce their consumption by more than low-income people.

The finding that expenditure cuts are an increasing function of income complements the



Figure 4: Changes in expenditures of public servants in different income groups during the epidemic relative to a counterfactual without Covid.

evidence in Chetty et al. (2020) and Carvalho et al. (2020), which relies on home-address ZIP codes to proxy for income.

#### 4.4 Robustness

In Appendix A, we report the results of six robustness checks. First, we provide evidence in favor of the assumption that the seasonal effects for January 2020 through April 2021 are the same as for the 2018-19 period.

Second, we redo our benchmark analysis allowing for different monthly expenditure time trends for each age cohort. We find a similar pattern for the impact of age on the response of expenditures to the Covid shock.

Third, we redo our empirical analysis for retirees instead of public servants. Retirees are another group whose income is likely to have remained relatively stable during the epidemic. Our results are similar to those that we obtain for public servants. We find that conditioning on age, the consumption expenditures of civil servants and retirees respond similarly to Covid.

Fourth, we find that our results are robust to running regression (1) using the year-onyear growth rate  $(\ln(Expenses_{it}/Expenses_{it-12}))$  instead of the log-level of expenditures as the dependent variable.

Fifth, we study a potential reason why the consumption expenditures of old and young people responded differently to Covid: these groups purchase different goods and services that were differentially affected by lockdowns. To investigate this possibility, we estimate the change in consumption expenditures for different age groups in sectors of the economy that were least affected by lockdowns. We base this sector classification on the information reported in the appendix to law 78-A/2020 approved September 29, 2020. Figure A.4, which is the analog to Figure 3, presents our results. Two features are worth noting. First, all groups cut their consumption expenditures by about the same amount in the epidemic's first and third waves. Second, the old cut their consumption by more than the young in the epidemic's first, second, and third waves.

Sixth, we re-do our analysis excluding two sectors where adaptations were most likely to have reduced the risk of infections: restaurants (people could order take out instead of eating at the restaurant) and supermarkets (people could ask for delivery instead of going to the store). Figures A.5 and A.6 in Appendix A show that our results are robust to excluding these two expenditure categories. Finally, we use data on expenditures on pharmaceutical drugs to investigate the effect of comorbidities that increase the risk of dying from COVID. We find that people with comorbidities cut their consumption more than those without comorbidities.

# 5 A simple model of mortality risk and consumption decisions

In this section, we consider a simple two-period model to develop intuition about the key features of our quantitative model presented in Section 6. Consistent with the latter, we make three assumptions. First, the probability of dying depends on current consumption. Second, people derive utility from leaving a bequest when they die. Third, people's utility has the recursive form proposed by Kreps and Porteus (1978), Weil (1989), and Epstein and Zin (1991). These preferences allow us to study the different roles that risk aversion and intertemporal substitution play in our model.

In the first period of their life, a person receives an endowment, y, which they can consume in period one  $(c_1)$  or two  $(c_2)$ . Their resource constraint is:

$$y = c_1 + c_2.$$
 (2)

The period-one utility is given by the following version of equation (8) in Section 6,

$$U_1(y) = \left\{ (1-\beta)c_1^{1-\rho} + \beta [E(U_2^{1-\alpha})]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)}.$$
(3)

The certainty equivalent of period-two utility is

$$\left[E(U_2^{1-\alpha})\right]^{1/(1-\alpha)} = \left\{\left[1-\delta(c_1)\right]c_2^{1-\alpha} + \delta(c_1)(\omega_0+\omega_1b^{\mu})^{1-\alpha}\right\}^{1/(1-\alpha)},$$

where  $\delta(c_1)$  is the probability of dying before consuming in period two. To capture the basic mechanism at work in our epidemiological model, we assume that  $\delta(c_1)$  is an increasing, linear function of  $c_1$ 

$$\delta(c_1) = \Gamma_0 + \Gamma_1 c_1, \tag{4}$$

where  $\Gamma_0$  and  $\Gamma_1$  are positive constants. A person who survives in period two consumes  $c_2$ . A person who dies leaves their planned consumption,  $c_2$ , as a bequest:  $b = c_2$ . The representative person chooses  $c_1$ ,  $c_2$ , and b to maximize (3) subject to (2), (4), and  $b = c_2$ .

To derive the first-order conditions, it is useful to consider the following monotonic transformation of the Epstein-Zin utility function:  $V_1 = \frac{U_1^{1-\rho}}{1-\rho}$ . The first-order conditions are as follows:

$$(1-\beta)c_1^{-\rho} + \frac{\beta}{1-\alpha} \left[ E(U_2^{1-\alpha}) \right]^{(1-\rho)/(1-\alpha)-1} \delta'(c_1) \left[ (\omega_0 + \omega_1 c_2^{\mu})^{1-\alpha} - c_2^{1-\alpha} \right] = \lambda,$$
  
$$\beta \left[ E(U_2^{1-\alpha}) \right]^{(1-\rho)/(1-\alpha)-1} \left\{ \left[ 1-\delta(c_1) \right] c_2^{-\alpha} + \delta(c_1)(\omega_0 + \omega_1 c_2^{\mu})^{-\alpha} \mu \omega_1 c_2^{\mu-1} \right\} = \lambda,$$

where  $\beta$  is the discount factor,  $\alpha$  is the coefficient of relative risk aversion for static gambles, and  $\rho$  is the inverse of the elasticity of intertemporal substitution (EIS) with respect to deterministic income changes. The case of  $\rho = \alpha$  and z = 0 corresponds to standard timeseparable expected discounted utility.

In the absence of death ( $\Gamma_0 = \Gamma_1 = 0$ ), the optimal value of the ratio  $c_2/c_1$  is

$$\frac{c_2}{c_1} = \left(\frac{\beta}{1-\beta}\right)^{1/\rho}.$$
(5)

As  $\rho$  goes to infinity (zero EIS),  $c_2$  converges to  $c_1$ . Suppose that  $\beta > 0.5$ , so people place a larger weight on the future than on the present. When  $\rho$  goes to zero (infinite EIS),  $c_1$ converges to zero and  $c_2$  to y, that is, all consumption takes place in period 2.

For positive values of  $\Gamma_0$  and  $\Gamma_1$ , the model has no analytical solution. We explore the key mechanisms using a series of numerical examples. We choose parameters so that  $c_2 > \omega_0 + \omega_1 b^{\mu}$ . This condition, emphasized by Bommier et al. (2020, 2021), implies that people prefer to live rather than die in the second period of their lives.

The benchmark parameters in our example are as follows:  $\rho = 1/1.5$ ,  $\alpha = 2$ ,  $\mu = 1 - \rho$ ,  $\omega_0 = 0.0865$ ,  $\omega_1 = 0.1276$ ,  $\Gamma_0 = 0.02$ ,  $\Gamma_1 = 0.5462$ . We normalize the initial income, y, to one. Since period two represents the future, we choose  $\beta = 0.6$  so that more consumption occurs in the future than in the present. Given our choices of  $\beta$  and  $\rho$ ,  $c_2/c_1$  is equal to 1.8.

The benchmark values of  $\rho$ ,  $\alpha$ , and  $\mu$  are the same as in our quantitative model. The rationale for these values is discussed in Section 6.1. We choose  $\omega_0$  and  $\omega_1$  so that the following ratios coincide with the corresponding values for a weighted average of recovered young and old people in the estimated benchmark model:

$$\frac{\omega_0}{\omega_0 + \omega_1 b^{\mu}} = 0.44, \qquad \frac{c_2}{\omega_0 + \omega_1 b^{\mu}} = 3.38.$$
(6)

To illustrate the impact of the probability of dying on consumption, we choose values of  $\Gamma_0$  and  $\Gamma_1$  that are sufficiently large that the results of our experiment are clearly visible in Figure 5. In our simple example, the probability of dying, evaluated at the optimum level of consumption, is quite high (20 percent) as is the endogenous component ( $\Gamma_1c_1$ ) of



Note:  $100^*(y-\overline{y})/y$  denotes percent of income someone is willing to pay to remain in  $\delta=0$  economy instead of going to  $\delta>0$  economy.

Figure 5: Two-period example.

the probability of dying (90 percent). In our quantitative model, both of these numbers are much lower.

Figure 5 shows the effects of varying the EIS and risk aversion in the simple model. For each value of  $\rho$  and  $\alpha$  we recompute the values of  $\omega_0$  and  $\omega_1$  so that conditions (6) hold. The red line corresponds to the case in which the probability of dying in period two is zero ( $\Gamma_0 = \Gamma_1 = 0$ ). The blue line corresponds to the case where the probability of dying is positive and a function of  $c_1$  ( $\Gamma_0$ ,  $\Gamma_1 > 0$ ).

The upper left-hand entry of Figure 5 shows how  $c_1$  varies with the inverse of the EIS,  $\rho$ . The dotted vertical line corresponds to the  $\rho$  value in our benchmark calibration. In general, there are two forces at work governing the impact of  $\rho$  on  $c_1$ . First, if a person dies, they leave a bequest equal to their planned period-two consumption. The utility of leaving this bequest is lower than that of consuming in period two. When the EIS is high, a person reacts to the risk of dying in period two by reducing planned  $c_2$  and increasing  $c_1$ . The higher is the EIS, the larger this effect is. Second, because  $\delta$  is endogenous, people have an incentive to cut  $c_1$  to reduce the probability of dying in period two. In our example, the second effect dominates the first effect so that, for all values of  $\rho$ ,  $c_1$  is lower than when  $\delta = 0$ , that is the blue line is below the red line.

The upper right-hand entry of Figure 5 shows how  $c_1$  varies with the coefficient of relative risk aversion,  $\alpha$ . When  $\delta = 0$ , there is no risk, so  $c_1$  does not depend on  $\alpha$  (the red line is flat). When  $\Gamma_0$ ,  $\Gamma_1 > 0$ , there are two forces governing the impact of  $\alpha$  on  $c_1$ . First, people respond to the risk of death by raising  $c_1$  relative to the  $\delta = 0$  case. The higher is risk aversion, the higher is  $c_1$ . The reason is that deferring consumption to period two is a risky gamble relative to consuming in period one. This effect is emphasized in Bommier et al. (2020). Second, in our model people have an incentive to lower  $c_1$  to reduce  $\delta$ . For moderate degrees of risk aversion, the second effect dominates, so  $c_1$  is lower than when  $\delta = 0$ . As risk aversion gets larger, the first effect dominates, so  $c_1$  is higher than when  $\delta = 0$ .

We now turn to the question of how risk aversion and the EIS affects people's willingness to pay to eliminate the risk of death. To compute the willingness to pay, we solve the following equation,  $U_1(y) = \overline{U}_1(\overline{y})$ , where  $\overline{U}_1$  is lifetime utility in an economy with  $\delta = 0$ . The level of  $\overline{y}$  that solves this equation is

$$\bar{y} = \frac{U_1(y)}{(1-\beta)^{1/(1-\rho)} \left(1 + \left[\beta/(1-\beta)\right]^{1/\rho}\right)^{\frac{\rho}{1-\rho}}}.$$

The bottom left-hand entry of Figure 5 displays the fraction of income  $(y - \bar{y})/y$  that

people would be willing to pay to eliminate the risk of death as a function of the EIS. People's willingness to pay is low when the EIS is high (low value of  $\rho$ ) because it is less costly to reduce the probability of death by cutting  $c_1$ . For values of  $\rho$  exceeding one, the willingness to pay is insensitive to the EIS.

The bottom right-hand entry of Figure 5 reports the analog results as we vary the coefficient of relative risk aversion,  $\alpha$ . Not surprisingly, the willingness to pay is monotonically increasing in  $\alpha$ . The key result is that the willingness to pay to avoid the risk of death is much more sensitive to  $\alpha$  than to  $\rho$ . As we vary  $\rho$ , the willingness to pay ranges from roughly 8 percent to 22 percent. In contrast, as we vary  $\alpha$ , the willingness to pay ranges from roughly 11 percent to 65 percent.

In sum, the previous discussion highlights the key mechanisms at work in our quantitative model: risk aversion, intertemporal substitution, people's beliefs about the probability of dying, and bequest motives.

# 6 A model of consumer behavior in an epidemic

In this section, we develop a quantitative model of how people changed their consumption behavior in response to Covid. We use the model to address the question: how much would people be willing to pay to avoid the risk of death associated with Covid? Answering this question revolves around two issues. The first is people's beliefs about case-fatality rates. The second is the fraction of the drop in consumption due to people's risk-avoidance behavior as opposed to government-imposed containment measures.

We use a partial-equilibrium approach that allows us to confront people of different ages and health statuses with real wages, real interest rates, and infection probabilities that mimic those observed in the data using a minimal set of assumptions. By partialequilibrium analysis, we mean that we study the consumption decisions of people of different ages and incomes given exogenous processes for real wages, real interest rates, and infection probabilities. In Section 8, we consider a general equilibrium model in which we fully specify the environment (preferences, technology, market structure, and epidemic dynamics) and solve for the equilibrium values of real wages, real interest rates, and infection probabilities.

Consistent with the evidence in Sorensen et al. (2022), we assume that actual casefatality rates fall over time due to improvements in medical treatments (see subsection 6.1.2 for details). Throughout, we assume that people know the objective probability of becoming infected. However, they don't know their age group's actual, time-varying case-fatality rate. They begin with a prior, which they update over time. This prior and the rate at which it converges to the objective probability play a critical role in our analysis. We could have assumed that people also do not know the objective probability of becoming infected. But we could not credibly identify all the free parameters associated with this specification. As it turns out, focusing on uncertainty about the true case-fatality rate is sufficient to allow the model to account for the key features of the data.

To compute the probability of being infected, people need to form expectations about the path of infections in the economy. We assume the economy is in the pre-epidemic steady state in the first four weeks of March 2020. Then, on the 5th week of March, people learn about the first wave of the epidemic. To simplify, we assume that people have perfect foresight with respect to the first wave of infections and expect the epidemic to end in week 17 (the week of June 21, 2020). Then, in week 18 (the week of June 28, 2022), people learn that there will be two more waves. From that point on, people have perfect foresight with respect to these waves. We could allow for uncertainty about the number of infections at the cost of making the model more complex and introducing free parameters that would be difficult to identify. To add perspective on the role played by intertemporal substitution, we also consider the case in which people know there will be three waves.

We divide the population into two groups: people younger than 60 with no comorbidities and people older than 60 or younger than 60 but with comorbidities. For ease of exposition, we refer to these groups as young and old. We assume that a person in the first group joins the second group with a constant probability per period, v. This assumption makes the analysis more tractable because the model has only two types of people. With deterministic aging, we would need to keep track of 61 age cohorts (from 20 to 80 years old). The critical difference between people in the two groups is the subjective and objective risk of dying from Covid or other causes.

As in Kermack and McKendrick (1927)'s SIR model, people are in one of four possible health states: susceptible (those with no immunity against the virus), infected, recovered (those who recovered from the infection and have acquired immunity against the virus), and deceased. In studying the first three waves of the epidemic, we assume that recovered people have permanent immunity. This assumption is incorrect in light of recent mutations of the Covid virus and associated breakthrough infections. However, this possibility was not widely discussed during the first three Covid waves. So, to simplify, we assume in this section that people think that once they recover from the infection, they have permanent immunity. We relax this assumption in Section 8, in which we discuss the implications of endemic Covid.

Each period in our model represents a week. Since our empirical work relies on data for public servants, we assume that people's labor supply decisions are exogenous and the real wage rate is constant. We normalize the number of hours worked to one. The budget constraint of a person with assets  $b_t$  who consumes  $c_t$  is

$$b_{t+1} = w + (1+r)b_t - c_t,$$

where w is the real wage rate and r is the rate of return on assets. People differ in their health status, age, and initial assets. To simplify the notation, we omit in the budget constraint the subscripts a and h.

The probability of a susceptible person in age group a becoming infected at time t,  $\tau_{a,t}$ , is given by the transmission function:

$$\tau_{a,t} = \pi_1 c_{a,t}^h I_t + \pi_2 I_t, \tag{7}$$

where h denotes a person's health status and  $I_t$  is the number of infected people in the population at time t. The terms  $\pi_1 c_a^h I_t$  and  $\pi_2 I_t$  represent the probability of becoming infected through consumption- and non-consumption-related activities, respectively. As in Eichenbaum, Rebelo, and Trabandt (2021), this function embodies the assumption that people meet randomly and that susceptible people can reduce their infection probability by cutting their consumption.

People are uncertain about case-fatality rates. At the beginning of the epidemic, people believe that the case-fatality rate for a person of age a is  $\pi_{ad,0}$ . They update these beliefs using a parsimonious constant-gain learning algorithm:<sup>7</sup>

$$\pi_{ad,t} = \pi_{ad,t-1} + g_a(\pi_{ad,t}^* - \pi_{ad,t-1}).$$

Here,  $\pi_{ad,t}^*$  is the true case-fatality rate for people of age *a* at time *t*. The parameters  $g_a \in [0,1]$  control how quickly people update their beliefs.<sup>8</sup> These beliefs converge in the long run to  $\pi_{ad,t}^*$ . Implicitly, this specification assumes that, in every period, people see the

<sup>&</sup>lt;sup>7</sup>See Evans and Honkapohja (2012) and Eusepi and Preston (2011) for discussions of the properties of this learning algorithm.

<sup>&</sup>lt;sup>8</sup>In principle, one could entertain more complex information structures in which people receive noisy signals about infections and deaths in each period and use those signals optimally in solving their maximization problem. For computational reasons, we abstract from these types of information structures.

actual ratio of Covid deaths to infections and use it to update their beliefs. At each point in time, people expect the case-fatality rate to remain constant:  $\pi_{ad,t+j} = \pi_{ad,t}$ .<sup>9</sup>

The variable  $\delta_a$  denotes the time-*t* probability that a person of age *a* dies of non-Covid causes. The variable  $\pi_{ar,t}$  denotes the probability that a person of age *a* who is infected at time *t* recovers at time *t* + 1. The probability of exiting the infection state,  $\pi_{ar,t} + \pi_{ad,t}$  is constant over time, so time variation in people's beliefs about  $\pi_{ad,t}$  induces time variation in their beliefs about  $\pi_{ar,t}$ .

As in the simple model, people's utility has the recursive form proposed by Kreps and Porteus (1978), Weil (1989), and Epstein and Zin (1991). The lifetime utility of a person with age a and health status h at time t is

$$U_{a,t}^{h} = \max_{c_{a,t}^{h}, b_{t+1}} \left\{ z + \left[ (1-\beta)((1-\mu_{t})c_{a,t}^{h})^{1-\rho} + \beta \left\{ E_{t} \left[ \left( U_{a,t+1}^{h} \right)^{1-\alpha} \right] \right\}^{(1-\rho)/(1-\alpha)} \right]^{1/(1-\rho)} \right\}.$$
(8)

Here, z is a constant that influences the value of life (see Hall and Jones (2007)). The expectations operator,  $E_t$ , takes into account all the stochastic elements of the environment, including the possibility of death. People take as given the sequence of aggregate infections,  $\{I_t\}_{t=0}^{\infty}$ . We use time variation in  $\mu_t$  to model exogenous changes in consumption demand associated with government-imposed containment measures. This variable represents the consumption wedge introduced by containment measures. The higher is  $\mu_t$ , i.e., the more containment there is, the lower the marginal utility of consumption. In Appendix B.3, we show that there is an equivalence between modeling containment as a wedge on utility and a model where containment implies that some goods cannot be consumed.

The value functions for all people depend on the value of their assets,  $b_t$ , and calendar time. This time dependence reflects deterministic time variation in  $\mu_t$ ,  $I_t$ ,  $\pi_{ad,t}$ , and the person's time-t belief about the case-fatality rates for old and young. Recall that when solving their optimization problem at time t, people assume that future values of the casefatality rate equal their current beliefs.

<sup>&</sup>lt;sup>9</sup>This assumption implies that we are working with a version of Kreps (1988)' anticipated utility.

The value function of a susceptible young person at time t is<sup>10</sup>

$$U_{y,t}^{s}(b_{t}) = \max_{c_{y,t}^{s}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{y,t}^{s})^{1-\rho} + \beta \left[ (1-\tau_{y,t})(1-\delta_{y}-v)\left(U_{y,t+1}^{s}(b_{t+1})\right)^{(1-\alpha)} + (1-\tau_{y,t})v\left(U_{o,t+1}^{s}(b_{t+1})\right)^{(1-\alpha)} + \tau_{y,t}(1-\delta_{y}-v)\left(U_{y,t+1}^{i}(b_{t+1})\right)^{(1-\alpha)} + \tau_{y,t}v\left(U_{o,t+1}^{i}(b_{t+1})\right)^{1-\alpha} + \delta_{y}B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

Recall that v is the probability of a young person becoming old.  $U_{yt}^i$  and  $U_{ot}^i$  are the value functions of a young and old infected person, respectively. The value function reflects the possible changes in health and age status at time t+1. A young, susceptible person at time tcan remain in that state at time t+1 with probability  $(1 - \tau_{y,t})(1 - \delta_y - v)$ , not get infected but become old with probability  $(1 - \tau_{y,t})v$ , get infected and stay young with probability  $\tau_{y,t}(1 - \delta_y - v)$ , get infected and become old with probability  $\tau_{y,t}v$ , or die of non-Covid causes with probability  $\delta_y$ .

The function  $B(b_{t+1})$  represents the utility from leaving a bequest  $b_{t+1}$  upon death. We assume that this function takes the form:

$$B(b_{t+1}) = \omega_0 + \omega_1 (b_{t+1})^{\mu},$$

where  $\omega_0 > 0$  and  $\omega_1 > 0$ . The bequest motive allows the model to be consistent with two empirical observations. First, many people die with large asset holdings (see, e.g., Huggett (1996) and De Nardi and Yang (2014)). Second, older people's consumption expenditures are lower than younger people's. The latter pattern obtains in the model because, as people age, bequests receive a higher weight in the utility function relative to consumption. People of all ages and health statuses choose their consumption and asset holdings to maximize their expected lifetime utility. We solve their optimization problem using value function iteration. In Appendix B, we display the value functions for old, susceptible people, young infected people, old infected people, young recovered people, and old recovered people.

### 6.1 Parameters of quantitative model

We partition the parameters of our quantitative model into two sets. The first set is estimated with Bayesian methods. The second set is calibrated to micro data.

<sup>&</sup>lt;sup>10</sup>This formulation and the others in Appendix B involve a slight abuse of notation. The perceived value function  $U_{a,t+1}^h$  is computed at time t assuming that  $\pi_{ad,t+j} = \pi_{ad,t}$  for all j. The realized value function at time t + 1, is computed assuming that  $\pi_{ad,t+1+j} = \pi_{ad,t+1}$  for all j. Our notation does not distinguish between these two types of value functions. In solving the model, we do take into account this distinction.

#### 6.1.1 Econometric methodology

We estimate younger and older people's initial prior beliefs about case-fatality rates ( $\pi_{yd,0}$ ) and  $\pi_{od,0}$ ), the gain parameters ( $g_y$  and  $g_o$ ), and the parameter  $\mu$ . The latter parameter controls the impact of containment on the marginal utility of consumption. We assume that the containment wedge  $\mu_t$  is given by  $\mu_t = \mu \xi_t$ , where  $\mu$  is a scalar and  $\xi_t$  is the time series for containment measures depicted in Figure 2. The maximum value of  $\xi_t$  is normalized to one.

We calibrate the basic reproduction number,  $\mathcal{R}_0$  to equal 2.5, the value preferred by the Center for Disease Control.<sup>11</sup> In our model  $\mathcal{R}_0$  is given by:

$$\mathcal{R}_0 = \frac{\pi_1 [c_{ys} s_y + c_{os} (1 - s_y)] + \pi_2}{\pi_{yr} s_y + \pi_{or} (1 - s_y) + \pi_{yd}^* s_y + \pi_{od}^* (1 - s_y)},$$

where  $s_y$  is the pre-epidemic share of young people in the population, and  $c_{ys}$  and  $c_{os}$  are the pre-epidemic levels of consumption of susceptible young and old, respectively.

We estimate  $\kappa$ , an auxiliary parameter that represents the average share, for young and old, of infections generated by consumption activities at the beginning of the epidemic:

$$\kappa = \frac{\pi_1 [c_{ys} s_y + c_{os} (1 - s_y)]}{\pi_1 [c_{ys} s_y + c_{os} (1 - s_y)] + \pi_2}.$$

Given the value of  $\mathcal{R}_0$  and the estimate of  $\kappa$ , we solve for the implied estimates of  $\pi_1$  and  $\pi_2$ .

Let the vector  $\psi$  denote the time series of the response to Covid of the consumption expenditures of younger and older people in our model from March 2020 to April 2021. Let  $\hat{\psi}$  denote our estimate of  $\psi$  for these two groups of people obtained using regression (1). Table 12 in Appendix A reports the estimated regression parameters. The results are displayed in Figure 8 below.

Our estimation criterion focuses on the consumption response of young and old with a net wealth of 75 thousand euros. According to the Survey of Household Financial Conditions Statistics-Portugal (2017) and Costa and Farinha (2012), the average net wealth of Portuguese households over the period 2013-2017 is 150 thousand euros. We divide this number by two because there are, on average, two adults per household in Portugal.

We estimate the model's predictions for people with this level of assets for two reasons. First, we do not observe the wealth distribution for people in our sample. Second, it is

<sup>&</sup>lt;sup>11</sup>See COVID-19 Pandemic Planning Scenarios, Center for Disease Control, March 19, 2021.

computationally daunting to compute the consumption behavior of people with different wealth levels in every iteration of the estimation algorithm.

The logic of the estimation procedure is conceptually the same as in Christiano, Trabandt, and Walentin (2010). Suppose that our structural model is true. Denote the true values of the model parameters by  $\theta_0$ . Let  $\psi(\theta)$  denote the mapping from values of the model parameters to the time series of the impact of Covid on the consumption expenditures of younger and older people. The vector  $\psi(\theta_0)$  denotes the true value of the time series whose estimates are  $\hat{\psi}$ . According to standard classical asymptotic sampling theory, when the number of observations, T, is large,

$$\sqrt{T}\left(\hat{\psi}-\psi\left(\theta_{0}\right)\right) \stackrel{a}{\sim} N\left(0,W\left(\theta_{0}\right)\right).$$

It is convenient to express the asymptotic distribution of  $\hat{\psi}$  as

$$\hat{\psi} \stackrel{a}{\sim} N(\psi(\theta_0), V).$$
 (9)

Here, V is a consistent estimate of the precision matrix  $W(\theta_0)/T$ . Following Christiano, Trabandt, and Walentin (2010), Christiano, Eichenbaum, and Trabandt (2016), and Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016), we assume that V is a diagonal matrix. In our case, the diagonal elements are the variances of the percentage responses of consumption of younger and older people at each point in time, reported in Column 4 of Table 12 in Appendix A.

Our analysis treats  $\hat{\psi}$  as observed data. We specify priors for  $\theta$  and then compute the posterior distribution for  $\theta$  given  $\hat{\psi}$  using Bayes' rule. This computation requires the likelihood of  $\hat{\psi}$  given  $\theta$ . Our asymptotically valid approximation of this likelihood is motivated by (9):

$$f(\hat{\psi}|\theta, V) = (2\pi)^{-\frac{N}{2}} |V|^{-\frac{1}{2}} \exp\left[-0.5\left(\hat{\psi} - \psi(\theta)\right)' V^{-1}\left(\hat{\psi} - \psi(\theta)\right)\right].$$
 (10)

The value of  $\theta$  that maximizes this function is an approximate maximum likelihood estimator of  $\theta$ . It is approximate for two reasons. First, the central limit theorem underlying (9) only holds exactly as  $T \to \infty$ . Second, our proxy for V is guaranteed to be correct only for  $T \to \infty$ .

Treating the function f as the likelihood of  $\hat{\psi}$ , it follows that the Bayesian posterior of  $\theta$  conditional on  $\hat{\psi}$  and V is:

$$f\left(\theta|\hat{\psi},V\right) = \frac{f\left(\hat{\psi}|\theta,V\right)p\left(\theta\right)}{f\left(\hat{\psi}|V\right)}.$$
(11)

Here,  $p(\theta)$  denotes the prior distribution of  $\theta$  and  $f(\hat{\psi}|V)$  denotes the marginal density of  $\hat{\psi}$ :

$$f\left(\hat{\psi}|V\right) = \int f\left(\hat{\psi}|\theta,V\right) p\left(\theta\right) d\theta.$$

Because the denominator is not a function of  $\theta$ , we can compute the mode of the posterior distribution of  $\theta$  by maximizing the value of the numerator in (11). We compute the posterior distribution of the parameters using a standard Monte Carlo Markov chain (MCMC) algorithm. We evaluate the relative empirical performance of different models by comparing their implications for the marginal likelihood of  $\hat{\psi}$  computed using the Laplace approximation.

We assume uniform [0, 7/14] priors for  $\pi_{yd,0}$  and  $\pi_{od,0}$ , and uniform [0, 1] priors for  $\mu$ ,  $g_y$ ,  $g_o$ , and  $\kappa$ . We assume that it takes on average 14 days to either die or recover from an infection, so  $\pi_{yd,0} + \pi_{yr,0} = 7/14$  and  $\pi_{od,0} + \pi_{or,0} = 7/14$ .

#### 6.1.2 Calibration

In addition to  $\mathcal{R}_0$ , we calibrate the following parameters:  $\pi_{yd,t}^*$ ,  $\pi_{od,t}^*$ , r,  $\alpha$ ,  $\rho$ ,  $\beta$ ,  $\delta_y$ ,  $\delta_o$ , z,  $\omega_0$ , and  $\omega_1$ . We set the actual weekly case-fatality rates ( $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$ ) for the week of July 26, 2020 to  $7 \times 0.001/14$  and  $7 \times 0.035/14$ , respectively. These values correspond to the case-fatality rates for the median younger (age 39.5) and older (age 64.5) person (see Table 1).

Sorensen et al. (2022) estimate the population-wide time trend in the infection-fatality rate from April 2020 to January 2021. These estimates imply that the infection-fatality rate fell by 36 percent between March 2022 and April 2021. We use these estimates to compute the values of  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$  for periods before and after July 26, 2020. We assume that the values of  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$  are such that, on average, infected people recover or die in two weeks ( $\pi_{or,t}^* + \pi_{od,t}^* = \pi_{yr,t}^* + \pi_{yd,t}^* = 7/14$ ). We make the same assumption for the beliefs of case-fatality rates, i.e.,  $\pi_{or,t} + \pi_{od,t} = \pi_{yr,t} + \pi_{yd,t} = 7/14$ . The blue-dashed lines in Figure 7 show the resulting time series for  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$ . See subsection B.4 of the Appendix for a more detailed description of how we incorporate the Sorensen et al. (2022) estimates into our calibration.

The annual real interest rate, r, is set to 1 percent. This value corresponds roughly to the realized real yield on 10-year Portuguese government bonds from March 2020 to April 2021.

We use the life-expectancy tables produced by Statistics Portugal to calibrate non-COVID-related mortality rates for younger and older people. We obtain  $\delta_y = 1/(51 \times 52)$  and  $\delta_o = 1/(13 \times 52)$ . Since the average age difference between old and young people is 28 years, we set the weekly probability of aging,  $\nu$ , to  $1/(28 \times 52)$ . Consistent with Portuguese demographic data, we assume that the population between 20 and 59 years old is 70 percent of the population between 20 and 79 years old.

We set the coefficient of relative risk aversion ( $\alpha$ ) to 2 and the EIS (1/ $\rho$ ) to 1.5. These parameter values correspond to the estimates in Albuquerque et al. (2016), obtained using data on the equity premium and other moments of financial-market data. These data are particularly relevant to our analysis because they reflect people's attitudes toward risk. The weekly discount factor,  $\beta$ , is set equal to  $0.97^{1/52}$ , which is consistent with the values used in the literature on dynamic stochastic general equilibrium models (see, e.g., Christiano et al. (2005)).

The level parameter in the utility function (z) and the two parameters that control the utility of bequests ( $\omega_0$  and  $\omega_1$ ) are chosen so that the model is consistent with three features of the Portuguese data. First, the ratio of younger to older people's consumption is roughly 1.2. Second, the average savings rate is 6.7 percent. Third, the value of life is about 900 thousand euros, which is consistent with the value used in cost-benefit analyses of Portuguese public works (see, e.g., Ernst and Young (2015)). These conditions imply that  $\omega_0 = 159.51$ ,  $\omega_1 = 4.88$ , and z = 2.66. A value of life of 900 thousand euros equals 6.8 times annual consumption. For comparison, Hall, Jones, and Klenow (2020), henceforth HJK, consider values of life measured in units of consumption ranging from 5 to 7.

In our sample, the average after-tax income of people younger and older than 60 in 2018 is very similar (18,900 and 19,400 euros, respectively). To simplify, we assume that both groups earn 19,000 euros per year.

# 7 Empirical results

Figure 6 depicts priors and posteriors for the parameters we estimate. The figure shows that the data is very informative relative to our priors. Table 2 reports the mean and 95 percent probability intervals for the priors and posterior of the estimated parameters.

Several features are worth noting. First, the posterior modes of  $\pi_{yd,0}$  and  $\pi_{od,0}$  are 0.089 and 0.428, respectively. Recall that case-fatality rates for young and old are  $\pi_{yd} = 7 \times 0.001/14 = 0.0005$  and  $\pi_{od} = 7 \times 0.035/14 = 0.0175$ , respectively. So, according to the model, both younger and older people greatly overestimated their case-fatality rates at the



Figure 6: Priors and posteriors of estimated parameters.

Table 2: Priors and Posteriors of Parameters: Baseline Model vs. FIRE/no learning Model.

|                                                     |                            | Baseline<br>Model        | FIRE/no learning<br>Model |
|-----------------------------------------------------|----------------------------|--------------------------|---------------------------|
|                                                     | Prior Distribution         | Posterior Distribution   | Posterior Distribution    |
|                                                     | D, Mean, [2.5-97.5%]       | Mode, $[2.5-97.5\%]$     | Mode, $[2.5-97.5\%]$      |
|                                                     |                            |                          |                           |
| Initial belief, mortality rate, young, $\pi_{yd,0}$ | $U, 0.50, [0.025 \ 0.975]$ | 0.089, [0.075 0.100]     | -                         |
| Initial belief, mortality rate, old, $\pi_{od,0}$   | $U, 0.50, [0.025 \ 0.975]$ | 0.428, [0.371, 0.474]    | -                         |
| Learning speed parameter, young, $g_y$              | $U, 0.50, [0.025 \ 0.975]$ | $0.069, [0.066 \ 0.072]$ | -                         |
| Learning speed parameter, old, $g_o$                | $U, 0.50, [0.025 \ 0.975]$ | $0.092, [0.088 \ 0.098]$ | -                         |
| Initial share of consbased infections, $\kappa$     | $U, 0.50, [0.025 \ 0.975]$ | $0.046, [0.041 \ 0.054]$ | $0.069, [0.065 \ 0.074]$  |
| Containment parameter, $\mu$                        | $U, 0.50, [0.025 \ 0.975]$ | $0.380, [0.366 \ 0.391]$ | $0.525, [0.518 \ 0.532]$  |
|                                                     |                            |                          |                           |
| Memo Item                                           |                            |                          |                           |
| Log Marginal Likelihood (Laplace):                  |                            | -532.5                   | -1704.9                   |

Notes: For model specifications where particular parameter values are not relevant, the entries in this table are blank. Posterior mode and parameter distributions are based on a standard MCMC algorithm with a total of 500,000 draws (10 chains, 10 percent of draws used for burn-in, draw acceptance rates about 0.2).

U denotes the prior for the uniform distribution for which the mean is reported instead of the mode.

beginning of the epidemic. Second, the posterior mode of the gain parameters,  $g_y$  and  $g_o$ , are 0.069 and 0.092, respectively. Figure 7 displays the implied time series of  $\pi_{yd,t}$  and  $\pi_{od,t}$ . By the end of the sample,  $\pi_{yd,t}$  and  $\pi_{od,t}$  have essentially converged to their true values. As discussed below, this feature is critical to the model's ability to account for the data. Third, the posterior mode of the parameter  $\mu$  is equal to 0.380. So, at their peak, containment measures reduced the marginal utility of consumption by roughly 38 percent. Fourth,  $\kappa$ , the fraction of infections associated with consumption activities is 4.6 percent. Taken together, these values imply that  $\pi_1 = 0.000170$  and  $\pi_2 = 1.1921$ .



Figure 7: Evolution over time of beliefs about case-fatality rates of old and young.

The dashed red and blue lines in Figure 8 display our regression-based estimates of how the consumption of old and young people responded to Covid. The bars around point estimates represent the 95 percent confidence intervals. The solid red and blue lines are the corresponding model implications computed using the posterior mode of the estimated parameters. These implications are computed by comparing the model's dynamics with and without Covid.

Figure 8 shows that the model does quite well at accounting for the consumption behavior of older people over the entire sample. In particular, the model generates the steep decline during the first wave, the recovery in the summer of 2020, the subsequent reduction beginning in the fall of 2020, as well as the recovery in the winter of 2021. Critically, the model is consistent with the fact that consumption of the old falls by more in the first wave than in the second wave, even though the risk of infection was higher in the second and third waves.

With two exceptions, the model does quite well at accounting for the consumption behavior of the young. The first exception is that it does not fully explain the rise in consumption



Figure 8: Consumption of young and old in the epidemic. Baseline estimated model and data implications for changes in expenditures of old and young during the epidemic relative to a counterfactual without Covid.

of the young during the summer of 2020. The second exception is that the model understates the peak decline in the consumption of the young during the second wave. An important success of the model is that it implies that consumption expenditures of the young fall by more in the first wave than in the second and third waves.

We conduct the following experiment to gain insight into intertemporal substitution's role in consumption choices. In our baseline specification, the second and third waves come as a surprise to people. Suppose, instead, people knew about the second and third waves at the beginning of the epidemic. Other things equal, the more important intertemporal substitution is, the more we would expect consumption choices to be affected by this information. It turns out that in this case, people's consumption choices are very similar to the baseline case (see Figure B.8 in Appendix B).

## 7.1 Identifying $\kappa$ and $\mu$

In this subsection, we discuss the key features of the data that allow us to identify  $\kappa$  and  $\mu$ . Consider first  $\kappa$ , the fraction of infections attributed to consumption. To account for the behavior of consumers in the first and the third waves in the face of differential infections,

the model assumes that initially, people have pessimistic beliefs about case-fatality rates. These beliefs converge to the truth by the third wave (see Figure 7 and subsection 7.2). Given this convergence, the estimation algorithm chooses  $\kappa$  so that the model matches the consumption of old and young in the third wave.

To understand how our model identifies  $\mu$ , the parameter that controls the importance of containment, we proceed as follows. We re-estimate the model, setting  $\mu$  to zero. The model's fit deteriorates significantly: the marginal log likelihood falls from -532 to -2,007. Regarding parameter estimates, the main impact of setting  $\mu$  to zero is twofold. First, it increases the value of  $\kappa$ , the parameter that governs the effect of consumption on the probability of being infected. Second, it reduces  $\pi_{od,0}$ , old people's prior about the casefatality rate.

To understand these effects, suppose we set  $\mu$  to zero without changing  $\kappa$  or  $\pi_{od,0}$ . Without containment, the consumption of the young would drop by much less than in the benchmark model. The estimation algorithm increases  $\kappa$  to better fit the drop in the consumption of the young. But increasing  $\kappa$  exacerbates the decline in the consumption of the old. To offset this effect, the estimation algorithm reduces  $\pi_{od,0}$ , so that the old view Covid as less lethal. The deterioration in model fit is most notable at the end of the third wave. By then, people's priors about case-fatality rates have converged to their true values, and there are few infected people in the economy. In the absence of containment, consumption of young and old are counterfactually high.

We also re-estimated the model by fixing  $\mu$  at 10 percent higher than its estimated value. Even this small change in  $\mu$  leads to a sizable deterioration in the marginal log-likelihood, which falls from -532 to -559. This deterioration reflects the model's poor fit at the end of the sample–consumption is counterfactually low relative to the data. We experimented with larger values of  $\mu$  and found that the algorithm pushed parameters like  $\kappa$  and  $\pi_{od,0}$  to their boundary values.

An alternative way of studying the role of containment is to compute the counterfactual fall in expenditures that would have occurred if the government had imposed containment measures, but there were no infections. The difference between the consumption policy functions with and without containment allows us to estimate the impact of containment per se. This estimate relies on the assumption that, to a first order, the observed behavior of expenditures is the sum of people's response to containment and the risk of becoming infected. The solid blue line in Figure 9 displays the consumption of old and young in a version of the model with containment but no infections. In this scenario, the changes in consumption expenditures of young and old people are the same. Figure 9 shows that the containment measures in isolation would have led to a 21 percent drop in consumption of the young and the old in the trough of the first and third waves. In the data, the actual declines in consumption are much larger. So, while containment had a substantial impact, most of the decrease in consumption for both groups reflects their response to the risk of dying from Covid. These results are consistent with the findings of Arnon et al. (2020), Chetty et al. (2020), Chernozhukov et al. (2021), Goolsbee and Syverson (2020), and Villas-Boas et al. (2020).



Figure 9: Consumption of young and old in model with containment and no Covid epidemic.

Our results are also consistent with those in Sheridan et al. (2020). Denmark and Sweden were similarly exposed to the pandemic, but only Denmark imposed significant containment measures. Sheridan et al. (2020) find that consumption of the young dropped by more in Denmark, presumably because of containment measures. Consumption of the old dropped by more in Sweden, presumably because the absence of containment increased the risk of infection.

# 7.2 The importance of time-varying beliefs

Learning plays a critical role in allowing the model to account for the key patterns in the data across the different Covid waves. In the data, the troughs of consumption are the same in the first and third waves for each age group. But the risk of becoming infected is much larger in the third wave. Other things equal, a model in which people know their true case-fatality rate at the beginning of the epidemic cannot account for these facts.

To formally substantiate this claim, we estimate a version of the model with full-information rational expectations (FIRE). In this version of the model, people know the true case-fatality rates at the beginning of the epidemic. This assumption is standard in the Covid literature (e.g., Alvarez, Argente, and Lippi (2021), Eichenbaum, Rebelo, and Trabandt (2021), and Jones, Philippon, and Venkateswaran (2021)).

In this version of the model, the only estimated parameters are  $\mu$  and  $\kappa$ . The last column of Table 2 reports the mean and 95 percent probability intervals for the prior and posterior of  $\mu$  and  $\kappa$ . Interestingly, the posterior mode of  $\mu$  and  $\kappa$  are higher than the corresponding value in the benchmark model. These higher values improve model fit during the first wave but do not help the model explain the differential response of old and young.

We evaluate the performance of this model relative to the learning model by computing its implications for the marginal log-likelihood. The marginal log-likelihood of the no-learning model is a dramatic 1,173 points lower than that of the learning model. To understand this result, consider Figure 10, which displays the implications of the re-estimated model with no learning for the consumption expenditures of young and old. First, the model substantially understates the drop in consumption expenditures of old people during the first wave of the epidemic. Second, for the period up to November 2020, the model does not account for the fact that consumption expenditures of the old dropped by much more than those of the young. After that period, the model does generate a larger consumption drop for the old compared to the young. Third, the model counterfactually predicts that the decline in consumption expenditures of the old is larger in the second and third waves than in the first wave.

# 7.3 Consumption response for different income groups

In Section 4.3, we discuss our estimates of the consumption response of different income groups to the epidemic. Recall that consumption expenditures fell more for higher-income



Figure 10: Consumption of young and old in the epidemic. Model with FIRE/no learning and data implications for changes in expenditures of young and old during the epidemic relative to a counterfactual without Covid.

groups than for lower-income groups. Our model is qualitatively consistent with this response pattern because higher-income households have a higher value of life, so they have more to lose from dying from Covid. In this subsection, we compare the quantitative implications of our model with our empirical estimates. To do so, we change the value of real labor income, w, to be consistent with the mean income of each of the three groups considered in Section 4.3 (12,481 EUR, 28,566 EUR, and 59,419 EUR). We solve and simulate the model for these three income groups, keeping all parameters equal to our baseline estimates.

Figure 11 shows the model implications and the 95 percent confidence intervals estimated in Section 4.3. This figure provides an important post-estimation check on the model because these data are not used in the estimation. Except for the lower income group during the first wave, the model fits quite well the consumption behavior of the different income groups. Introducing a subsistence level of consumption and targeted transfers to the lowest income group would help the model better fit the consumption behavior of this group during the first wave.



Figure 11: Consumption of young and old in the epidemic by income groups. Model with different levels of income and data implications for changes in expenditures of young and old with different incomes during the epidemic relative to a counterfactual without Covid.

# 7.4 The alpha variant

As a robustness check, we study the impact of alpha, the only important variant of the ancestral virus in our sample. That variant is estimated to be roughly 50 percent more contagious than the original strain (e.g., Yang and Shaman (2021) and Tabatabai et al. (2023)). Brainard et al. (2022) estimate that the alpha variant and the ancestral virus case-fatality rates are roughly the same.

According to GISAID data, this variant was detected in Portugal in the week of December 7, 2020, and consistently accounted for more than half of the sequenced viruses between February 2020 and April 2021.

To compute an upper bound on how much this variant affected consumption expenditures, we assume that there was an unanticipated increase of 50 percent in  $\pi_1$  and  $\pi_2$  after December 7, 2020. Figure B.9 in Appendix B shows that consumption by old and young falls by more in the second and third waves than in our benchmark model. This modification improves the model's fit in terms of the young's consumption expenditures and somewhat deteriorates the fit in terms of the old's consumption expenditures. Incorporating the alpha variant into the
analysis does not affect our results concerning the importance of learning about case-fatality rates.

#### 7.5 The impact of declining case-fatality rates

In this subsection, we study the impact of the decline in case-fatality rates estimated in Sorensen et al. (2022) which are embedded in our benchmark model. Recall that these estimates imply that the case-fatality rate falls 36 percent between March 2020 and January 1, 2021. We solve a version of the model where the case-fatality rate is constant and equal to the March 2020 values keeping all other model parameters at their estimated baseline values. As in the baseline model, people learn the constant true case-fatality rate over time. Figure B.10 in Appendix B displays the implications of this version of the model. The fit to the data is similar in the first wave but somewhat worse in the second and third waves. The higher case-fatality rate during the second and third waves generates slightly larger consumption drops than in the baseline model. Overall, the decline in case-fatality rates has a modest impact on the consumption dynamics implied by the model. The intuition for this result is that, while case-fatality rates declined, they did so from very low levels.

#### 7.6 Willingness to pay to avoid the epidemic

In this subsection, we study the following question: how much would people of different ages and incomes be willing to pay to avoid the epidemic? In what follows, we refer to an epidemic as including associated containment measures.

We first discuss the impact of age on the willingness to pay. The lifetime utility of a susceptible person with assets b at the beginning of the epidemic is  $U_a^s(b)$ . The lifetime utility of a person with assets b in an economy without an epidemic is  $U_a(b)$ . In general,  $U_a^s(b) < U_a(b)$ , that is, the epidemic reduces lifetime utility. We compute the value of initial assets  $\bar{b}$  in the economy without an epidemic that makes people indifferent between living in an economy with and without an epidemic:  $U_a^s(b) = U_a(\bar{b})$ .

The annual income of a person of age a at time zero,  $y_{a,0}$ , is given by:  $y_{a,0} = 52 \times (w + rb)$ . In the spirit of HJK and Murphy and Topel (2006), we report for young and old  $\Delta \equiv (b-\bar{b})/y$ , i.e., the fraction of one year's income that a person would be willing to give up to avoid the epidemic.

Table 3 contains our results. In the baseline model, young and old people are willing to give up 45 and 80 percent of a year's income to avoid the epidemic. These large values reflect the pessimistic priors implied by the consumption behavior observed in the data. Containment increases people's willingness to pay to avoid the epidemic, but this effect is relatively small in the baseline model. Removing containment reduces the willingness to pay from 45 to 40 percent for young and from 80 to 77 percent for old.

When people know their actual case fatality rate (FIRE/no learning), their willingness to pay to avoid the epidemic is significantly reduced to 9 and 15 percent of a year's income for young and old, respectively. Since the true case fatality rate is very low for the young, most of their willingness to pay to avoid the epidemic reflects their desire to avoid the containment measures associated with the epidemic. For the old, roughly half of the willingness to pay reflects the desire to avoid containment measures.<sup>12</sup>

In their analysis for the U.S., HJK compute that the willingness of the representative person to pay to avoid the epidemic in a model with FIRE, no learning, and no containment. Depending on the case fatality rate, they find that a representative person would be willing to pay between 28 and 41 percent of one year's income to avoid the epidemic. The comparable value implied by our model is 2 percent. Several differences between our model and HJK's affect people's willingness to pay. The two major differences are as follows.<sup>13</sup> First, HJK assume there is no bequest motive, so dying results in a much larger utility loss in their model. Second, HJK assume that the probability of dying increases by 0.81 of a percentage point for one year due to Covid. Their calculation corresponds to a scenario in which everybody is infected at the beginning of the epidemic and dies from Covid with probability 0.81. In our model, only a relatively small fraction of the population is infected and is at risk of dying from Covid. In our sample, the probability of dying from Covid for the overall population is 0.17 percent.

To illustrate the importance of two of these factors, we proceed as follows. First, we consider a version of the model with no bequests ( $\omega_0 = \omega_1 = 0$ ) and no containment ( $\mu_t = 0$ ). We find that the average willingness to pay is 10 percent of income (6 percent for the young and 18 percent for the old). Second, we assume that the number of infected is five times larger, so the probability of dying from Covid in the first year is 0.81 percent. We find that the average willingness to pay is 43 percent (29 percent for the young and 74 percent for the

 $<sup>^{12}</sup>$ Our results on the difference in the willingness to pay of young and old are complementary to the estimates of the value of a statistical life produced by Greenberg et al. (2021) for young people in the U.S. who enlist in the army.

<sup>&</sup>lt;sup>13</sup>Other differences, less important from a quantitative point of view, are as follows. First, the statistical value of life and income are lower in Portugal than in the U.S. Second, HJK assume no discounting of future utility ( $\beta = 1$ ) and time-separable expected discounted utility.

|                       | Baseline                           | e Model  | FIRE/no lea               | rning Model      |
|-----------------------|------------------------------------|----------|---------------------------|------------------|
| $100 \times \Delta_a$ | Epidemic &NoContainmentContainment |          | Epidemic ど<br>Containment | No $Containment$ |
| Young<br>Old          | 45<br>80                           | 40<br>77 | 9<br>15                   | 1     7          |
| Weighted Average      | 54                                 | 51       | 10                        | 2                |

Table 3: Willingness to pay to avoid the epidemic.

Table 4: Willingness to pay to avoid the epidemic by income (as a fraction of initial assets).

| Income in euros (thousands) | 12,481 | 19,000 | 28,566 | 59,490 |
|-----------------------------|--------|--------|--------|--------|
|                             |        |        |        |        |
| Euros (thousands)           |        |        |        |        |
| Young                       | 8      | 9      | 11     | 16     |
| Old                         | 14     | 16     | 18     | 25     |
| Fraction of own income      |        |        |        |        |
| Young                       | 58     | 45     | 36     | 26     |
| Old                         | 110    | 80     | 62     | 41     |
|                             |        |        |        |        |

old), a number in the range of those reported by HJK.

Table 4 shows how much people in different income groups would pay to avoid the epidemic. Three results emerge. First, for all income levels, the young are willing to pay less than the old, both in absolute terms and as a fraction of their income. This result reflects the fact that the young are less likely to die than the old due to the epidemic. Second, the higher a person's income is, the more they are willing to pay in absolute terms to avoid the epidemic. This finding reflects the fact that the value of life is increasing in income. Third, the higher a person's income, the lower the fraction of their income they are willing to pay. This result reflects the fact that preferences are non-homothetic due to the presence of two terms in the utility function (z and  $\omega_0$ ) that do not depend on income. These terms imply that the value of life as a fraction of income is a decreasing function of income.

## 8 The economic impact of endemic Covid

In this section, we explore one way to reconcile the large short-run and small long-run effects on consumption of changes in mortality rates associated with contagious diseases. To do so, we investigate the economic costs of endemic Covid in an economy where people know the actual case-fatality rates. We modify our model in three ways. First, we modify our epidemiology model so that Covid becomes endemic. As in Eichenbaum, Rebelo, and Trabandt (2022b) and Abel and Panageas (2020), we modify social dynamics so that recovered people become susceptible with probability  $\pi_s$ . This modification implies that the pool of susceptible people gets replenished, so there are always new people who can get infected. As a result, the steady-state number of infected people is positive, i.e., Covid is endemic. Second, we allow for vaccination. Third, we assume, for tractability, that people are organized into households, each with a continuum of identical members. This household structure introduces limited sharing of health risks. Fourth, we embed that model in a general equilibrium framework with endogenous labor choice and capital accumulation. The model is described in detail in Appendix C.

Our analysis focuses on the economy's steady state, where it seems natural to assume that people's posteriors about case-fatality rates have converged to their actual values. As might be anticipated from our previous results, this assumption has a major impact on the model's implications for the economic consequences of endemic Covid. We compare the economic costs of Covid in this model with a counterfactual in which people have high prior values for  $\pi_{yd,0}$  and  $\pi_{od,0}$  and do not update them.

#### 8.0.1 Steady-state results

The first column of Table 5 compares consumption and hours worked in the pre-epidemic steady state with the steady state in which Covid is endemic. Aggregate output, hours worked, and consumption fall by about 0.26 percent relative to the pre-epidemic steady state. Consumption falls by 0.86 percent for old people and barely falls for young people. Hours worked fall by 0.72 percent for older people and only 0.07 percent for younger people.

The lower response of consumption relative to the partial equilibrium model discussed in Section 7 reflects four factors. First, people know the true case-fatality rate. Second, consistent with the estimates in Sorensen et al. (2022), this rate is 36 percent lower than at the beginning of the epidemic. Third, this model includes vaccines that reduce the probability

|                        | Case-fatality rate equal to |                           |  |  |  |
|------------------------|-----------------------------|---------------------------|--|--|--|
|                        | Actual long-run value       | Initial estimated beliefs |  |  |  |
| Percent change of      |                             |                           |  |  |  |
| Aggregate output       | -0.26                       | -4.93                     |  |  |  |
| Aggregate consumption  | -0.26                       | -4.93                     |  |  |  |
| Aggregate hours worked | -0.26                       | -4.93                     |  |  |  |
| Consumption young      | -0.003                      | -4.16                     |  |  |  |
| Consumption old        | -0.86                       | -6.74                     |  |  |  |
| Hours worked young     | -0.07                       | -4.20                     |  |  |  |
| Hours worked old       | -0.72                       | -6.65                     |  |  |  |
| Capital stock          | -0.26                       | -4.93                     |  |  |  |
|                        |                             |                           |  |  |  |

Table 5: Effect of case-fatality rate on percent change of allocations in endemic Covid steady state relative to pre-epidemic steady state.

of infection. Fourth, there are no containment measures.

We interpret these results as an upper bound on the economic cost of endemic Covid. The reason is that our model abstracts from ways in which economies can adapt to Covid. Examples include the adoption of remote work and e-commerce (see Jones et al. (2021) and Krueger et al. (2020) for discussions).

The steady-state economic impact of endemic Covid is minimal compared to the massive decline in economic activity experienced in 2020. In the steady state Covid reduces life expectancy at birth by 1.5 percent and reduces aggregate output by 0.26 percent relative to the pre-epidemic steady state.

Interpreted through the lens of our model, the differential short- and long-run impact of endemic Covid on economic activity reflects people's beliefs about case-fatality rates. The steady-state calculations above assume that people's beliefs correspond to the objective casefatality rate. Our empirical results indicate that in early 2020 people's initial beliefs about case-fatality rates were much higher than the true case-fatality rates.

To quantify the impact of people's beliefs on economic activity, we re-solve for the steady state assuming that people make decisions based on our estimates of their March 2020 beliefs. The objective case-fatality rates drive actual population dynamics. Technically, in the firstorder conditions for  $i_{a,t+1}$ , the values of  $\pi_{ad}$  and  $\pi_{ar}$  are set to the estimated initial beliefs in Section 6.1.

The second column of Table 5 compares consumption and hours worked in this steady state and the pre-epidemic steady state. We see large falls in consumption and hours worked relative to the pre-epidemic steady state. Aggregate consumption, hours worked, and physical capital fall by 4.93 percent. Consumption falls by 6.74 percent for old people and 4.2 percent for young people. Hours worked fall by 6.65 percent for older people and only 4.2 percent for younger people.

Taken together, our results suggest a way of reconciling the large economic impact of Covid relative to the historical evidence presented by Acemoglu and Johnson (2007). Our reconciliation highlights the critical role of expectations about case-fatality rates in determining the dynamic economic impact of an epidemic.

## 9 Conclusion

Our analysis highlights the importance of expectations in determining the economic impact of infectious diseases like Covid. According to our estimates, people's prior beliefs about Covid case-fatality rates were very pessimistic. These pessimistic prior beliefs led to sizable consumption declines in the first wave of the epidemic. People's beliefs converged to the true case-fatality rates by the third wave of the epidemic. So, even though the risk of becoming infected was much larger in the third wave, consumption expenditures fell by about the same as in the first wave.

The fact that estimated expectations converged is important for thinking about the economic consequences of the secular declines in the mortality rate associated with infectious diseases. We expect people to eventually learn about these declines and adjust their behavior accordingly. Once this learning occurs, the impact of infectious diseases is relatively small. Our model is consistent with the large impact of Covid on economic activity and the small effect of the secular fall in mortality rates associated with other infectious diseases.

If the government and consumers have full information, rational expectations about casefatality rates, then there is a clear argument for implementing some form of containment. As discussed, for example, in Eichenbaum, Rebelo, and Trabandt (2021), there is an externality associated with market activities that can be corrected with containment measures. However, suppose that consumers overestimate case-fatality rates at the beginning of an epidemic. If the government had better information than consumers, containment might be a mistake. The reason is that consumers are overreacting to the possibility of getting infected, and market activity is falling by more than warranted by the objective case-fatality rate. Introducing containment could further exacerbate this overreaction.

It is unclear to us that the government had better information about case-fatality rates at the beginning of the epidemic than consumers. To the extent that the government understands that it does not know the actual case-fatality rates, optimal policy design should draw on the insights of the literature on decision-making under Knightian uncertainty (see, e.g., Gilboa and Schmeidler (1989) and Cosmin and Schneider (2022) for a recent review).

## References

- Abel, Andrew B. and Stavros Panageas. "Social Distancing, Vaccination and the Paradoxical Optimality of an Endemic Equilibrium." NBER Working Paper (2020).
- [2] Acemoglu, Daron and Simon Johnson. "Disease and development: the effect of life expectancy on economic growth." Journal of Political Economy 115 (2007): 925–985.
- [3] Acemoglu, Daron, Victor Chernozhukov, Iván Werning, and Michael D. Whinston. "Optimal Targeted Lockdowns in a Multigroup SIR Model." *American Economic Review: Insights* 3, no. 4 (2021): 487-502.
- [4] Albuquerque, Rui, Martin Eichenbaum, Victor Xi Luo, and Sergio Rebelo. "Valuation risk and asset pricing." The Journal of Finance 71 (2016): 2861–2904.
- [5] Alvarez, Fernando, David Argente, and Francesco Lippi. "A simple planning problem for COVID-19 lock-down, testing, and tracing." American Economic Review: Insights 3 (2021): 367–82.
- [6] Arnon, Alexander, John Ricco, and Kent Smetters. "Epidemiological and economic effects of lockdown." Brookings Papers on Economic Activity 2020, no. 3 (2020): 61-108.
- [7] Atkeson, Andrew, Karen Kopecky, and Tao Zha. Four Stylized Facts about COVID-19. Technical report, National Bureau of Economic Research, 2020.

- [8] Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. "How much should we trust differences-in-differences estimates?." The Quarterly Journal of Economics 119 (2004): 249–275.
- [9] Bommier, Antoine, Daniel Harenberg, François Le Grand, and Cormac O'Dea "Recursive Preferences, the Value of Life, and Household Finance," manuscript, Yale University, ETH Zurich, 2020.
- [10] Bommier, Antoine, Daniel Harenberg, and François Le Grand "Recursive Preferences and the Value of Life: A Clarification," manuscript, 2021.
- [11] Brotherhood, Luiz, Philipp Kircher, Cezar Santos and Michele Tertilt, "An economic model of the Covid-19 epidemic: The importance of testing and age-specific policies," manuscript, Bank of Portugal, April 2021.
- [12] Brainard, J., Grossi Sampedro, C.M., Sweeting, A. et al. "Was Alpha deadlier than wild-type COVID? Analysis in rural England." *Infection* 50, 11711178 (2022).
- [13] Carvalho, Vasco, Juan Ramón Garcia, Stephen Hansen, Alvaro Ortiz, Tomasa Rodrigo, José V Rodriguez Mora, and Pep Ruiz. "Tracking the COVID-19 crisis through the lens of 1.4 billion transactions." VoxEU. org 27 (2020).
- [14] Chernozhukov, Victor, Hiroyuki Kasahara, and Paul Schrimpf. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the US." *Journal of Econometrics* 220, no. 1 (2021): 23-62.
- [15] Chetty, Raj, John N Friedman, Nathaniel Hendren, Michael Stepner, et al. The economic impacts of COVID-19: Evidence from a new public database built using private sector data. Technical report, National Bureau of Economic Research, 2020.
- [16] Christiano, Lawrence J, Martin Eichenbaum, and Charles L Evans. "Nominal rigidities and the dynamic effects of a shock to monetary policy." Journal of Political Economy 113 (2005): 1–45.
- [17] Christiano, Lawrence J, Martin S Eichenbaum, and Mathias Trabandt. "Unemployment and business cycles." *Econometrica* 84 (2016): 1523–1569.

- [18] Christiano, Lawrence J, Mathias Trabandt, and Karl Walentin. "DSGE models for monetary policy analysis." Handbook of Monetary Economics. Volume 3 . Elsevier, 2010. 285–367.
- [19] Cosmin L. Ilut, , and Martin Schneider. "Modeling uncertainty as ambiguity: a review," working paper N. 29915, National Bureau of Economic Research, 2022.
- [20] Correia, Sergio. "A feasible estimator for linear models with multi-way fixed effects." Preprint (2016).
- [21] Costa, Sónia and Luísa Farinha. "Inquérito à Situação Financeira das Famílias: metodologia e principais resultados." Banco de Portugal Occasional Papers 1 (2012): 2012.
- [22] De Nardi, Mariacristina and Fang Yang. "Bequests and heterogeneity in retirement wealth." European Economic Review 72 (2014): 182–196.
- [23] Dessie, Zelalem G., and Temesgen Zewotir. "Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients." BMC infectious diseases 21, no. 1 (2021): 855.
- [24] Doerre, Achim, and Gabriele Doblhammer. "The influence of gender on COVID-19 infections and mortality in Germany: Insights from age-and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic." Plos one 17, no. 5 (2022): e0268119.
- [25] Eichenbaum, Martin, Sergio Rebelo, and Carlos de Resende. "The Portuguese crisis and the IMF." Background papers on the IMF and the crises in Greece, Ireland, and Portugal, edited by MJ Schwartz and S. Takagi (2017): 363–447.
- [26] Eichenbaum, Martin S, Sergio Rebelo, and Mathias Trabandt. "The macroeconomics of epidemics." The Review of Financial Studies 34 (2021): 5149–5187.
- [27] Eichenbaum, Martin S, Sergio Rebelo, and Mathias Trabandt. "Epidemics in the neoclassical and new Keynesian models." Journal of Economic Dynamics and Control (2022).
- [28] Eichenbaum, Martin S, Sergio Rebelo, and Mathias Trabandt. "The macroeconomics of testing and quarantining." Journal of Economic Dynamics and Control (2022).

- [29] Epstein, Larry G and Stanley E Zin. "Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis." Journal of Political Economy 99 (1991): 263–286.
- [30] Ernst and Young. Análise Custo-Benefício, Metro do Porto: Extensão Santo Ovídio D. João II. Technical report, Ernst and Young, 2015.
- [31] Eusepi, Stefano and Bruce Preston. "Expectations, Learning, and Business Cycle Fluctuations." American Economic Review 101 (2011): 2844–72.
- [32] Evans, George W and Seppo Honkapohja. Learning and expectations in macroeconomics. Princeton University Press, 2012.
- [33] Farboodi, Maryam, Gregor Jarosch, and Robert Shimer. "Internal and external effects of social distancing in a pandemic." Journal of Economic Theory 196 (2021): 1052-93
- [34] Faria-e-Castro, Miguel. "Fiscal policy during a pandemic." Journal of Economic Dynamics and Control 125 (2021): 1040-88.
- [35] Fernández-Villaverde, Jesús, Juan Francisco Rubio-Ramírez, and Frank Schorfheide. "Solution and estimation methods for DSGE models." Handbook of Macroeconomics. Volume 2. Elsevier, 2016. 527–724.
- [36] Gaure, Simen. "Ife: Linear group fixed effects." The R Journal 5 (2013): 104–117.
- [37] Gilboa, Itzhak, and David Schmeidler "Maxmin Expected Utility with Non-unique Prior," Journal of Mathematical Economics, 18, 141–153, 1989.
- [38] Glover, Andrew, Jonathan Heathcote, Dirk Krueger, and José-Víctor Ríos-Rull. Health versus wealth: On the distributional effects of controlling a pandemic. No. w27046. National Bureau of Economic Research, 2020.
- [39] Goolsbee, Austan and Chad Syverson. Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020. Technical report, National Bureau of Economic Research, 2020.
- [40] Greenberg, Kyle, Michael Greenstone, Stephen P. Ryan, and Michael Yankovich "The Heterogeneous Value of a Statistical Life: Evidence from U.S. Army Reenlistment Decisions," Manuscript, University of Chicago, 2021.

- [41] Guerrieri, Veronica, Guido Lorenzoni, Ludwig Straub, and Iván Werning. "Macroeconomic implications of COVID-19: Can negative supply shocks cause demand shortages?." American Economic Review 112, no. 5 (2022): 1437-74.
- [42] Guimaraes, Paulo and Pedro Portugal. "A simple feasible procedure to fit models with high-dimensional fixed effects." The Stata Journal 10 (2010): 628–649.
- [43] Hall, Robert E and Charles I Jones. "The value of life and the rise in health spending." The Quarterly Journal of Economics 122 (2007): 39–72.
- [44] Hall, Robert E and Charles I Jones and J Klenow, "Trading Off Consumption and COVID-19 Deaths." Federal Reserve Bank of Minneapolis, Quarterly Review, Vol. 42, No.1, June 2020.
- [45] Hansen, Victoria, Eyal Oren, Leslie K Dennis, and Heidi E Brown. "Infectious disease mortality trends in the United States, 1980-2014." Jama 316 (2016): 2149–2151.
- [46] Huggett, Mark. "Wealth distribution in life-cycle economies." Journal of Monetary Economics 38 (1996): 469–494.
- [47] Jones, Callum, Thomas Philippon, and Venky Venkateswaran. "Optimal mitigation policies in a pandemic: Social distancing and working from home." The Review of Financial Studies 34 (2021): 5188–5223.
- [48] Kermack, William Ogilvy and Anderson G McKendrick. "A contribution to the mathematical theory of epidemics." Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character 115 (1927): 700–721.
- [49] Kreps, David M. "Anticipated utility and dynamic choice." Econometric Society Monographs 29 (1998): 242-274.
- [50] Kreps, David M and Evan L Porteus. "Temporal resolution of uncertainty and dynamic choice theory." Econometrica (1978): 185–200.
- [51] Krueger, Dirk, Harald Uhlig, and Taojun Xie. "Macroeconomic dynamics and reallocation in an epidemic: evaluating the "Swedish solution"." Economic Policy (2020).

- [52] Lopes, João Carlos, José Carlos Coelho, and Vítor Escária. "Labour productivity, wages and the functional distribution of income in Portugal: A sectoral approach." Society and Economy 43 (2021): 331–354.
- [53] Murphy, Kevin M., and Robert H. Topel. "The value of health and longevity," Journal of Political Economy 114, no. 5 (2006): 871-904.
- [54] Piguillem, Facundo, and Liyan Shi. "Optimal COVID-19 quarantine and testing policies." The Economic Journal 132, no. 647 (2022): 2534-2562.
- [55] Sheridan, Adam, Asger Lau Andersen, Emil Toft Hansen, and Niels Johannesen "Social distancing laws cause only small losses of economic activity during the COVID-19 pandemic in Scandinavia," PNAS, 117 (34) 20468-20473, August 3, 2020.
- [56] Sorensen et al., "Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis.", Lancet (2022); 399: 1469– 88
- [57] Statistics-Portugal. O Inquérito à Situação Financeira da Famílias (ISFF). Technical report, 2017.
- [58] Tabatabai, Mohammad, Paul D. Juarez, Patricia Matthews-Juarez, Derek M. Wilus, Aramandla Ramesh, Donald J. Alcendor, Niki Tabatabai, and Karan P. Singh. "An Analysis of COVID-19 Mortality During the Dominancy of Alpha, Delta, and Omicron in the USA. "Journal of Primary Care and Community Health 14 (2023).
- [59] Toxvaerd, F. M. O. "Equilibrium social distancing." (2020).
- [60] Villas-Boas, Sofia B, James Sears, Miguel Villas-Boas, and Vasco Villas-Boas. "Are We Staying Home to Flatten the Curve?" Technical report, University of Berkeley, 2020.
- [61] Weil, Philippe. "The equity premium puzzle and the risk-free rate puzzle." Journal of Monetary Economics 24 (1989): 401–421.
- [62] Yang, Wan, and Jeffrey Shaman "Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern." Nature Communications 12, 5573 (2021).

## Appendices

| $\mathbf{A}$ | App | bendix A: empirical results                                                                                        | <b>48</b> |
|--------------|-----|--------------------------------------------------------------------------------------------------------------------|-----------|
|              | A.1 | Descriptive statistics                                                                                             | 48        |
|              | A.2 | Seasonality effects                                                                                                | 48        |
|              | A.3 | Robustness of empirical results                                                                                    | 50        |
|              | A.4 | The effect of comorbidity                                                                                          | 56        |
|              | A.5 | Empirical results for old                                                                                          | 60        |
|              | A.6 | Regression tables used to build the figures                                                                        | 62        |
| в            | Ap  | pendix B: partial-equilibrium model                                                                                | 66        |
|              | B.1 | Value functions                                                                                                    | 66        |
|              | B.2 | Computing consumption per capita in partial equilibrium model                                                      | 68        |
|              | B.3 | Equivalence between two ways of modeling containment                                                               | 69        |
|              | B.4 | Calibration of case-fatality rates                                                                                 | 72        |
|              | B.5 | Perfect foresight solution                                                                                         | 72        |
|              | B.6 | Gauging the effect of alpha variant $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$        | 74        |
|              | B.7 | Model with constant case-fatality rate                                                                             | 74        |
| С            | App | pendix C: Model of endemic Covid                                                                                   | 75        |
|              | C.1 | Model                                                                                                              | 75        |
|              |     | C.1.1 The household problem                                                                                        | 77        |
|              |     | C.1.2 The firms' problem $\ldots$ | 79        |
|              |     | C.1.3 Equilibrium in goods and factor markets                                                                      | 79        |
|              |     | C.1.4 Calibration of endemic Covid model                                                                           | 80        |
|              | C.2 | First-order conditions and computational algorithm $\ldots \ldots \ldots \ldots \ldots \ldots$                     | 81        |
|              |     | C.2.1 Firm problem                                                                                                 | 83        |
|              |     | C.2.2 Equilibrium in goods and factor markets                                                                      | 84        |
|              |     | C.2.3 Population dynamics                                                                                          | 84        |
|              |     | C.2.4 Steady state                                                                                                 | 84        |
|              |     | C.2.5 Pre-epidemic steady state                                                                                    | 87        |
|              |     | C.2.6 Calibration of transmission function parameters $\ldots$ $\ldots$ $\ldots$                                   | 88        |

## A Appendix A: empirical results

This appendix is organized as follows. The first subsection contains tables with descriptive statistics. The second subsection provides evidence of the empirical plausibility of the assumption used in our empirical specification that seasonal effects for January through April 2021 are the same as the common seasonal effects in 2018 and 2019. The third subsection provides results estimated by age cohort and results obtained using data for retirees instead of public servants. The fourth subsection reports results regarding the impact of comorbidities on consumption behavior. The fifth subsection provides results estimated to contrast with the economic model of consumer behavior. The final subsection provides the regression results that support the construction of the figures we present in the main body of the paper.

#### A.1 Descriptive statistics

| Statistic                   | Mean  | St. Dev.    | Pctl(25) | Median | Pctl(75) |
|-----------------------------|-------|-------------|----------|--------|----------|
| All People                  |       |             |          |        |          |
| Expense p. month (All)      | 629.3 | 2,164.7     | 121.0    | 284.1  | 572.6    |
| Expense p. month (Pharmacy) | 17.9  | 35.4        | 0.0      | 4.9    | 24.0     |
| Public Servants             |       |             |          |        |          |
| Expense p. month (All)      | 687.8 | $1,\!681.0$ | 214.7    | 423.2  | 742.6    |
| Expense p. month (Pharmacy) | 25.6  | 42.3        | 0.0      | 11.7   | 35.6     |
| Retirees                    |       |             |          |        |          |
| Expense p. month (All)      | 437.8 | $1,\!696.1$ | 79.5     | 189.5  | 417.8    |
| Expense p. month (Pharmacy) | 24.3  | 41.5        | 0.0      | 12.4   | 34.5     |

Table 6: Descriptive statistics, January 2018 - December 2019.

Note: Pctl() denotes percentile and St. Dev. the standard deviation

Because of the large sample size, the 95 percent confidence intervals are indistinguishable from the point estimates. The vertical dashed line denotes the beginning of the Covid epidemic in 2020.

#### A.2 Seasonality effects

Equation (1) assumes that, in the absence of the epidemic, the seasonal effects for January through April 2021 ( $\lambda_m$ ) are the same as the common seasonal effects in 2018 and 2019. To assess the empirical plausibility of this assumption, we estimated the following specification

| Group                       | Ν           | Mean        | St. Dev      | Pctl(25) | Median.     | Pctl(75)    |
|-----------------------------|-------------|-------------|--------------|----------|-------------|-------------|
| All People                  |             |             |              |          |             |             |
| Age [20:49]                 | 190,036     | 642.0       | 2051.1       | 135.3    | 310.7       | 591.8       |
| $Age_{[50;59]}$             | $85,\!305$  | 680.2       | 2405.3       | 122.3    | 299.1       | 616.4       |
| $Age_{[60;69]}$             | $74,\!390$  | 619.4       | 2269.8       | 98.6     | 249.5       | 547.4       |
| $Age_{[70;79]}$             | $71,\!605$  | 436.7       | 1839.5       | 66.5     | 172.3       | 397.1       |
| Income [0;7,091]            | 114,295     | 289.2       | 1085.7       | 43.9     | 125.4       | 286.6       |
| Income [7,091;20,261]       | $217,\!381$ | 477.3       | 1425.6       | 123.5    | 265.8       | 490.7       |
| $Income_{[20,261;40,522]}$  | $64,\!593$  | 913.0       | 2093.7       | 316.8    | 557.7       | 922.4       |
| Income $_{]40,522;80,640]}$ | $19,\!377$  | 1592.4      | 3185.1       | 474.2    | 851.1       | 1,529.6     |
| $Income \ge 80,640$         | $5,\!690$   | 5404.7      | $1,\!1044.1$ | 712.6    | $1,\!659.2$ | 5,745.6     |
| Public Servants             |             |             |              |          |             |             |
| Age [20:49]                 | 10,007      | 779.9       | 1,944.0      | 291.0    | 504.7       | 804.5       |
| $Age_{[50;59]}$             | $15,\!367$  | 730.0       | $1,\!668.9$  | 255.3    | 477.5       | 797.1       |
| $Age_{[60;69]}$             | $18,\!837$  | 675.8       | $1,\!647.4$  | 197.4    | 399.7       | 725.7       |
| $Age_{[70;79]}$             | $14,\!387$  | 566.7       | $1,\!494.9$  | 147.2    | 316.0       | 613.2       |
| Income [0;7,091]            | 1,620       | 251.8       | 734.0        | 53.1     | 126.4       | 265.4       |
| Income [7,091;20,261]       | $24,\!250$  | 435.0       | $1,\!139.7$  | 140.7    | 277.4       | 486.8       |
| $Income_{[20,261;40,522]}$  | $25,\!651$  | 772.3       | $1,\!694.9$  | 306.2    | 528.2       | 836.5       |
| Income $_{]40,522;80,640]}$ | $6,\!194$   | $1,\!158.4$ | $2,\!347.2$  | 446.9    | 762.4       | $1,\!221.9$ |
| $Income \ge 80,640$         | 883         | 2,224.0     | 4,582.2      | 649.2    | $1,\!159.2$ | 2,014.7     |
| Retirees                    |             |             |              |          |             |             |
| $Age_{[20:49]}$             | 935         | 232.6       | 981.6        | 17.7     | 78.6        | 206.3       |
| $Age_{[50:59]}$             | $3,\!114$   | 286.4       | 1,112.0      | 32.4     | 108.7       | 279.1       |
| $Age_{[60;69]}$             | 26,920      | 428.7       | 1,463.5      | 77.1     | 197.8       | 436.2       |
| $Age_{[70;79]}$             | 63,467      | 422.6       | 1,764.6      | 67.2     | 172.8       | 394.3       |
| Income [0:7.091]            | 37,998      | 161.5       | 564.3        | 27.3     | 79.5        | 172.1       |
| Income [7,091;20,261]       | $38,\!328$  | 360.0       | 941.2        | 107.1    | 217.0       | 402.5       |
| $Income_{[20,261;40.522]}$  | $13,\!925$  | 741.7       | $1,\!685.1$  | 253.2    | 470.3       | 803.2       |
| $Income_{]40,522;80,640]}$  | $3,\!351$   | $1,\!346.0$ | $2,\!587.1$  | 436.3    | 787.5       | $1,\!392.8$ |
| $Income \ge 80,640$         | 834         | $5,\!636.9$ | $12,\!115.9$ | 732.0    | 1,749.2     | $5,\!819.6$ |

Table 7: Distribution of monthly expenses by age and income, January 2018 - December 2019.

Note: Pctl() denotes percentile and St. Dev. the standard deviation



Figure A.1: Average of the logarithm of public servants' monthly expenditures.

using data from January 2018 through December 2019:

$$Log(Expense_{it}) = \Lambda_{2019} \mathbf{1} \{Year_t = 2019\} + \sum_{m=Feb}^{Dec} \lambda_m \mathbf{1} \{Month_t = m\} + \sum_{m=Feb}^{Dec} \phi_m \mathbf{1} \{Month_t = m\} \times \mathbf{1} \{Year_t = 2019\} + \boldsymbol{\theta}_i + \epsilon_{it}$$
(A.1)

The  $\phi_m$  coefficients measure the difference between seasonal effects in 2019 and 2018. Under the null hypothesis that these effects are identical in both years, all  $\phi_m$  coefficients should be zero. Table 8 presents the regression coefficients.

Figure A.2 displays our estimates of  $\phi_m$  along with 95 percent confidence intervals. Regardless of which age we focus on, most estimates of  $\phi_m = 0$  are not statistically different from zero at a 95 percent confidence level. We reject the null hypothesis that  $\phi_m s$  are jointly zero for the overall sample that includes all ages. However, the estimates of  $\phi_m$  are small, especially when compared to the changes in consumption expenditures after the Covid shock.

### A.3 Robustness of empirical results

In this subsection, we report the results of additional robustness checks. First, we estimate separate versions of equation (1) for each age cohort. We consider versions with total expen-

|                                                                                 | Dependent variable: |                     |                      |                     |                |  |  |
|---------------------------------------------------------------------------------|---------------------|---------------------|----------------------|---------------------|----------------|--|--|
|                                                                                 |                     | -                   | $Log(Expenses_{it})$ | )                   |                |  |  |
|                                                                                 | All                 | [20;49]             | [50;59]              | [60;69]             | [70;79]        |  |  |
|                                                                                 | (1)                 | (2)                 | (3)                  | (4)                 | (5)            |  |  |
| Feb $(\lambda_{Feb})$                                                           | $-0.080^{***}$      | $-0.078^{***}$      | $-0.074^{***}$       | $-0.095^{***}$      | $-0.068^{***}$ |  |  |
|                                                                                 | (0.004)             | (0.008)             | (0.007)              | (0.007)             | (0.008)        |  |  |
| Mar $(\lambda_{Mar})$                                                           | $0.031^{***}$       | $0.022^{**}$        | $0.037^{***}$        | $0.018^{**}$        | $0.049^{***}$  |  |  |
|                                                                                 | (0.004)             | (0.008)             | (0.007)              | (0.006)             | (0.008)        |  |  |
| Apr $(\lambda_{Apr})$                                                           | -0.013              | -0.005              | -0.003               | -0.026              | -0.013         |  |  |
| $Max(\lambda x c)$                                                              | (0.004)<br>0.054*** | (0.009)<br>0.061*** | (0.007)<br>0.061***  | (0.007)<br>0.040*** | 0.058***       |  |  |
| Way (XMay)                                                                      | (0.004)             | (0.001)             | (0.001)              | (0.040)             | (0.008)        |  |  |
| Jun $(\lambda_{Ium})$                                                           | $0.033^{***}$       | $0.043^{***}$       | 0.043***             | $0.026^{***}$       | $0.026^{**}$   |  |  |
| ( ··· <i>j un</i> )                                                             | (0.004)             | (0.009)             | (0.007)              | (0.007)             | (0.009)        |  |  |
| Jul $(\lambda_{Jul})$                                                           | 0.101***            | $0.117^{***}$       | $0.117^{***}$        | 0.092***            | 0.083***       |  |  |
|                                                                                 | (0.004)             | (0.009)             | (0.007)              | (0.007)             | (0.008)        |  |  |
| Aug $(\lambda_{Aug})$                                                           | $0.011^{**}$        | $0.042^{***}$       | $0.042^{***}$        | $-0.014^{+}$        | -0.012         |  |  |
|                                                                                 | (0.004)             | (0.009)             | (0.008)              | (0.007)             | (0.009)        |  |  |
| $\mathrm{Sep} \; (\lambda_{Sep})$                                               | $-0.044^{***}$      | $-0.025^{**}$       | -0.005               | $-0.070^{***}$      | $-0.064^{***}$ |  |  |
|                                                                                 | (0.004)             | (0.009)             | (0.007)              | (0.007)             | (0.009)        |  |  |
| $Oct (\lambda_{Oct})$                                                           | $0.020^{+++}$       | 0.013               | $0.017^{*}$          | (0.004)             | $0.049^{****}$ |  |  |
| $N_{OV}()$                                                                      | (0.004)             | (0.009)             | (0.007)<br>0.047***  | (0.007)             | (0.009)        |  |  |
| NOV $(\lambda_{Nov})$                                                           | (0.039)             | (0.032)             | (0.047)              | (0.034)             | (0.042)        |  |  |
| $Dec(\lambda_{D-1})$                                                            | $0.124^{***}$       | $0.140^{***}$       | 0.150***             | 0.111***            | 0.101***       |  |  |
| 200 (ND6C)                                                                      | (0.004)             | (0.009)             | (0.007)              | (0.007)             | (0.009)        |  |  |
| $1{Year_t = 2019} (\Lambda_{2019})$                                             | $0.042^{***}$       | $0.064^{***}$       | $0.051^{***}$        | 0.033***            | $0.027^{**}$   |  |  |
|                                                                                 | (0.004)             | (0.009)             | (0.007)              | (0.007)             | (0.008)        |  |  |
| $1{Year_t = 2019} \times \text{Feb} \ (\phi_{Feb})$                             | -0.001              | -0.013              | -0.002               | 0.009               | -0.005         |  |  |
|                                                                                 | (0.005)             | (0.011)             | (0.009)              | (0.009)             | (0.011)        |  |  |
| $1{Year_t = 2019} \times Mar(\phi_{Mar})$                                       | $-0.022^{***}$      | -0.005              | -0.014               | $-0.017^{+}$        | $-0.048^{***}$ |  |  |
|                                                                                 | (0.005)             | (0.011)             | (0.009)              | (0.009)             | (0.011)        |  |  |
| $1{Year_t = 2019} \times \operatorname{Apr}(\phi_{Apr})$                        | 0.019***            | $0.022^{+}$         | 0.018*               | 0.024**             | 0.009          |  |  |
|                                                                                 | (0.005)             | (0.012)             | (0.009)              | (0.009)             | (0.011)        |  |  |
| $1{Year_t = 2019} \times \text{May}(\phi_{May})$                                | $-0.009^{+}$        | -0.004              | -0.009               | -0.009              | -0.013         |  |  |
|                                                                                 | (0.005)             | (0.012)             | (0.009)              | (0.009)             | (0.011)        |  |  |
| $1{Year_t = 2019} \times \operatorname{Jun}(\phi_{Jun})$                        | $-0.035^{***}$      | $-0.020^{+}$        | -0.011               | $-0.046^{***}$      | $-0.057^{***}$ |  |  |
| $1 \left\{ V_{cam} = 2010 \right\} \times \text{Jul} \left( \phi_{cam} \right)$ | (0.005)<br>0.014**  | (0.012)             | (0.009)              | (0.009)             | (0.011)        |  |  |
| $I \{ I \ eur_t = 2019 \} \times Jul (\phi J_{ul})$                             | (0.014)             | (0.041)             | (0.022)              | (0.000)             | (0.012)        |  |  |
| $1{Year_t = 2019} \times \text{Aug}(\phi_{Aug})$                                | -0.008              | 0.001               | -0.007               | 0.0003              | $-0.026^{*}$   |  |  |
| -[                                                                              | (0.005)             | (0.012)             | (0.010)              | (0.010)             | (0.012)        |  |  |
| $1{Year_t = 2019} \times \text{Sep}(\phi_{Sep})$                                | 0.006               | 0.017               | -0.007               | 0.012               | 0.005          |  |  |
|                                                                                 | (0.005)             | (0.012)             | (0.010)              | (0.010)             | (0.012)        |  |  |
| $1{Year_t = 2019} \times \text{Oct} (\phi_{Oct})$                               | 0.003               | -0.005              | 0.002                | 0.012               | -0.002         |  |  |
|                                                                                 | (0.005)             | (0.012)             | (0.010)              | (0.010)             | (0.012)        |  |  |
| $1{Year_t = 2019} \times \text{Nov} (\phi_{Nov})$                               | $-0.014^{**}$       | -0.012              | -0.005               | $-0.018^{+}$        | $-0.021^{+}$   |  |  |
|                                                                                 | (0.005)             | (0.013)             | (0.010)              | (0.010)             | (0.012)        |  |  |
| $1{Year_t = 2019} \times \text{Dec} (\phi_{Dec})$                               | -0.002              | 0.001               | 0.007                | 0.003               | $-0.022^{+}$   |  |  |
|                                                                                 | (0.005)             | (0.012)             | (0.010)              | (0.010)             | (0.012)        |  |  |
| Constant                                                                        | 5.892               | (0.010)             | (0.008)              | 5.8(5)              | 5.054          |  |  |
|                                                                                 | (0.003)             | (0.010)             | (0.000)              | (0.008)             | (0.010)        |  |  |
| $\chi^{2} (\phi_{Feb} = 0,, \phi_{Dec} = 0)$                                    | 59.100              | 16.853              | 9.880                | 28.203              | 24.052         |  |  |
| p-value                                                                         | 0.000               | 0.112               | 0.541                | 0.003               | 0.013          |  |  |
| Observations                                                                    | $1,\!392,\!370$     | 238,965             | 366,102              | $447,\!699$         | $339,\!604$    |  |  |
| $\mathbb{R}^2$                                                                  | 0.003               | 0.005               | 0.004                | 0.003               | 0.002          |  |  |
| Adjusted $\mathbb{R}^2$                                                         | 0.003               | 0.005               | 0.004                | 0.002               | 0.002          |  |  |
| Residual Std. Error                                                             | 1.103               | 0.964               | 1.026                | 1.130               | 1.182          |  |  |

Table 8: Contrasting the month trends of years 2018 and 2019.

Note:

 $\begin{array}{c} + \ p{<}0.1; \ ^* \ p{<}0.05; \ ^{**} \ p{<}0.01; \ ^{***} \ p{<}0.001\\ \mbox{All columns estimated with person fixed effects}\\ \mbox{Cluster robust standard errors in (); Errors clustered by person} \end{array}$ 



Figure A.2: Seasonality effects for different age groups.

ditures (Table 9) as well as a version with comorbidity (Table 10). This split-sample-by-age approach allows each cohort to have different yearly growth trends and monthly seasonality in the relevant measure of consumption expenditures. We find a similar pattern for the impact of age on the response of expenditures to the Covid shock.

We re-do our main empirical analysis for retirees as opposed to public servants. Our results are similar to those we obtain for public servants. Table 11 is the analogue of Table 14. We see that the consumption expenditures of older retirees fall much more than those of younger retirees. In addition, spending declines are particularly pronounced in April, the peak month of the epidemic.

Fourth, we run regression (1) using the year-on-year growth rate  $(\ln(Expenses_{it}/Expenses_{it-12}))$ instead of the log-level of expenditures as the dependent variable. Figure A.3 shows that the results are similar to those obtained in our baseline specification.

Figure A.4 displays the estimates of the change in consumption expenditures for different age groups in sectors of the economy that were least affected by lockdowns.

We run our baseline regression excluding restaurant expenditures since people could have switched from eating in the restaurant to ordering take out. We display the results in Figure A.5. We also exclude restaurant and supermarket expenditures. People could have switched from shopping at supermarkets to using home delivery. Figure A.6 displays our results.

|                                         |                | Dependen       | t variable:    |                |
|-----------------------------------------|----------------|----------------|----------------|----------------|
|                                         |                | log(Exp        | $penses_{it})$ |                |
|                                         | [20;49]        | [50;59]        | [60;69]        | [70;79]        |
|                                         | (1)            | (2)            | (3)            | (4)            |
| $After_t \times 1\{Month_t = Mar20\}$   | $-0.124^{***}$ | $-0.124^{***}$ | $-0.123^{***}$ | $-0.158^{***}$ |
|                                         | (0.008)        | (0.006)        | (0.006)        | (0.007)        |
| $After_t \times 1\{Month_t = Apr20\}$   | $-0.322^{***}$ | $-0.327^{***}$ | $-0.390^{***}$ | $-0.453^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = May20\}$   | $-0.222^{***}$ | $-0.205^{***}$ | $-0.239^{***}$ | $-0.272^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = Jun20\}$   | $-0.015^{+}$   | $-0.029^{***}$ | $-0.054^{***}$ | $-0.080^{***}$ |
|                                         | (0.008)        | (0.007)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = Jul20\}$   | $0.020^{*}$    | $0.037^{***}$  | 0.008          | $-0.044^{***}$ |
|                                         | (0.010)        | (0.008)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = Aug20\}$   | $0.016^{+}$    | 0.023**        | $-0.012^{+}$   | $-0.031^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = Sep20\}$   | 0.012          | -0.004         | $-0.011^{+}$   | $-0.019^{*}$   |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.008)        |
| $After_t \times 1\{Month_t = Oct20\}$   | $-0.071^{***}$ | $-0.069^{***}$ | $-0.107^{***}$ | $-0.158^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.009)        |
| $After_t \times 1{Month_t = Nov20}$     | $-0.046^{***}$ | $-0.066^{***}$ | $-0.092^{***}$ | -0.133***      |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.009)        |
| $After_t \times 1\{Month_t = Dec20\}$   | $-0.146^{***}$ | $-0.147^{***}$ | $-0.161^{***}$ | $-0.179^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.009)        |
| $After_t \times 1{Month_t = Jan21}$     | $-0.293^{***}$ | $-0.290^{***}$ | $-0.342^{***}$ | $-0.400^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.009)        |
| $After_t \times 1{Month_t} = Feb21$     | $-0.204^{***}$ | $-0.213^{***}$ | $-0.251^{***}$ | $-0.262^{***}$ |
|                                         | (0.009)        | (0.007)        | (0.007)        | (0.009)        |
| $After_t \times 1{Month_t = Mar21}$     | $-0.084^{***}$ | $-0.085^{***}$ | $-0.095^{***}$ | $-0.101^{***}$ |
|                                         | (0.010)        | (0.008)        | (0.008)        | (0.010)        |
| $After_t \times 1{Month_t = Apr21}$     | $-0.076^{***}$ | $-0.079^{***}$ | -0.080***      | -0.082***      |
|                                         | (0.010)        | (0.008)        | (0.008)        | (0.010)        |
| $Y ear_t$                               | 0.110***       | 0.037          | 0.045***       | 0.045***       |
|                                         | (0.027)        | (0.028)        | (0.012)        | (0.009)        |
| Month FE                                | Yes            | Yes            | Yes            | Yes            |
| Individual FE                           | Yes            | Yes            | Yes            | Yes            |
| Income Group $\times Year_t(\Psi_{it})$ | Yes            | Yes            | Yes            | Yes            |
| Observations                            | 398,086        | 609,606        | 744,262        | 563.048        |
| $\mathbb{R}^2$                          | 0.560          | 0.618          | 0.636          | 0.639          |
| Adjusted $\mathbb{R}^2$                 | 0.548          | 0.608          | 0.626          | 0.630          |
| Residual Std. Error                     | 0.654          | 0.647          | 0.697          | 0.731          |
|                                         |                |                |                |                |

Table 9: Impact of age on consumption expenditure.

\*p<0.1; \*\*p<0.05; \*\*\*p<0.01 + p<0.1; \* p<0.05; \*\* p<0.01; \*\*\* p<0.001

Cluster robust standard errors in (); Errors clustered by person

Note:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Dependent                | t variable:           |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|-----------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | log(Exp                  | enses:+)              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [20.49]             | [50·59]                  | [60:69]               | [70.79]             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [20,45]             | [30,39]                  | [00,09]               | [10,15]             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)                 | (2)                      | (3)                   | (4)                 |
| $After_t \times 1\{Month_t = Mar20\}(\Delta_{Mar20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.115              | $-0.120^{-0.12}$         | -0.121                | -0.153              |
| $After_t \times 1\{Month_t = Apr20\}(\Delta_{Apr20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.305^{***}$      | $-0.316^{***}$           | $-0.379^{***}$        | $-0.442^{***}$      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.009)             | (0.007)                  | (0.007)               | (0.009)             |
| $After_t \times 1\{Month_t = May20\}(\Delta_{May20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.214^{***}$      | $-0.197^{***}$           | $-0.229^{***}$        | $-0.261^{***}$      |
| $Af_{+} \times 1(M_{+} + I_{} + 0)(A_{})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.009)             | (0.007)                  | (0.007)               | (0.008)             |
| $After_t \times 1\{Month_t = Jun20\}(\Delta_{Jun20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.005              | $-0.020^{-1}$            | -0.043                | -0.069              |
| $After_{t} \times 1\{Month_{t} = Jul20\}(\Delta_{Iul20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026*              | 0.044***                 | $0.014^+$             | $-0.041^{***}$      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010)             | (0.008)                  | (0.008)               | (0.009)             |
| $After_t \times 1{Month_t} = Aug20{(\Delta_{Aug20})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.023^{*}$         | $0.032^{***}$            | -0.004                | $-0.021^{*}$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.009)             | (0.007)                  | (0.007)               | (0.009)             |
| $After_t \times 1\{Month_t = Sep20\}(\Delta_{Sep20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.019)             | (0.002)                  | -0.004                | -0.009              |
| $After_t \times 1\{Month_t = Oct20\}(\Delta_{Oct20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.068^{***}$      | $-0.065^{***}$           | $-0.103^{***}$        | $-0.151^{***}$      |
| j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.009)             | (0.008)                  | (0.007)               | (0.009)             |
| $After_t \times 1\{Month_t = Nov20\}(\Delta_{Nov20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.038^{***}$      | -0.058***                | $-0.088^{***}$        | $-0.124^{***}$      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010)             | (0.008)                  | (0.007)               | (0.009)             |
| $After_t \times \mathbf{I}\{Month_t = Dec20\}(\Delta_{Dec20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.142<br>(0.010)   | -0.143<br>(0.008)        | -0.152<br>(0.008)     | -0.164<br>(0.010)   |
| $After_t \times 1\{Month_t = Jan21\}(\Delta_{Jan21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.287^{***}$      | $-0.291^{***}$           | $-0.343^{***}$        | $-0.401^{***}$      |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010)             | (0.008)                  | (0.008)               | (0.010)             |
| $After_t \times 1\{Month_t = Feb21\}(\Delta_{Feb21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-0.192^{***}$      | $-0.200^{***}$           | $-0.238^{***}$        | $-0.243^{***}$      |
| $A ften \times 1 [Month - Mar 21] (A \dots)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.010)<br>0.074*** | (0.008)<br>0.070***      | (0.008)               | (0.010)<br>0.083*** |
| $A_{f}ier_{t} \wedge 1_{1}Monint_{t} = Mar21f(\Delta Mar21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.011)             | (0.008)                  | (0.008)               | (0.010)             |
| $After_t \times 1\{Month_t = Apr21\}(\Delta_{Apr21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.068***           | $-0.075^{***}$           | $-0.076^{***}$        | -0.066***           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.011)             | (0.008)                  | (0.008)               | (0.010)             |
| $After_t \times 1{Month_t = Mar20} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.068^{***}$      | $-0.027^{+}$             | -0.013                | $-0.032^{*}$        |
| After v 1 (Marth Anno) v Camarhidita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.018)             | (0.014)                  | (0.014)               | (0.016)             |
| After $t \times \mathbf{I}\{Month t = Apr20\} \times Combrotally$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.020)             | (0.014)                  | (0.016)               | -0.008<br>(0.019)   |
| $After_t \times 1{Month_t = May20} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.062^{**}$       | -0.060***                | $-0.070^{***}$        | -0.069***           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.020)             | (0.015)                  | (0.015)               | (0.017)             |
| $After_t \times 1\{Month_t = Jun20\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.068^{***}$      | $-0.061^{***}$           | $-0.079^{***}$        | $-0.065^{***}$      |
| $A fter_{+} \times 1 \{Month_{+} - Iul20\} \times Comorbiditu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.019)<br>-0.044*  | (0.015)<br>$-0.048^{**}$ | (0.015)<br>$-0.041^*$ | (0.017)<br>-0.023   |
| $\Pi_{j} = I = I = I = I = I = I = I = I = I = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.022)             | (0.018)                  | (0.017)               | (0.019)             |
| $After_t \times 1{Month_t = Aug20} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.050^{**}$       | $-0.062^{*'**}$          | $-0.058*^{***}$       | $-0.063^{*'**}$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.019)             | (0.016)                  | (0.016)               | (0.018)             |
| $After_t \times 1\{Month_t = Sep20\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.049              | -0.043                   | -0.050                | -0.062              |
| $After_{t} \times 1\{Month_{t} = Oct20\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.019)<br>-0.026   | $-0.029^+$               | $-0.028^+$            | $-0.045^{*}$        |
| $\Pi_{j} \cup I_{l} \land \Pi_{l} \cap I_{l} \cup I_{l$ | (0.020)             | (0.016)                  | (0.015)               | (0.018)             |
| $After_t \times 1{Month_t = Nov20} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.054^{**}$       | $-0.055^{***}$           | $-0.027^{+}$          | $-0.053^{**}$       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.020)             | (0.016)                  | (0.016)               | (0.018)             |
| $After_t \times 1\{Month_t = Dec20\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.032              | -0.026                   | $-0.060^{***}$        | $-0.096^{***}$      |
| $After_{*} \times 1\{Month_{*} = Jan21\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.020)<br>-0.042*  | (0.017)<br>0.007         | (0.016)<br>0.004      | (0.019)<br>0.004    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.020)             | (0.016)                  | (0.016)               | (0.019)             |
| $After_t \times 1{Month_t = Feb21} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.087^{*'**}$     | $-0.091^{*'**}$          | $-0.089^{***}$        | $-0.116^{*'**}$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.021)             | (0.017)                  | (0.017)               | (0.020)             |
| $After_t \times 1\{Month_t = Mar21\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.068^{+++}$      | $-0.039^{*}$             | $-0.053^{***}$        | $-0.113^{+++}$      |
| $After_{t} \times 1\{Month_{t} = Apr21\} \times Comorbidity$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.058^{**}$       | $-0.033^{*}$             | -0.026                | $-0.099^{***}$      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.019)             | (0.016)                  | (0.016)               | (0.020)             |
| Month FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                 | Yes                      | Yes                   | Yes                 |
| Individual FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                 | Yes                      | Yes                   | Yes                 |
| Income Group $\times Year_t (\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                 | Yes                      | Yes                   | Yes                 |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 398,086             | 609,606                  | 744,262               | 563,048             |
| $\mathbf{R}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.560               | 0.618                    | 0.636                 | 0.639               |
| Adjusted R <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.548               | 0.608                    | 0.626                 | 0.630               |
| nesiqual Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.654               | 0.047                    | 0.697                 | 0.731               |

Table 10: Impact of age on consumption expenditure.

Note:

+ p<0.1; \* p<0.05; \*\* p<0.01; \*\*\* p<0.001 Cluster robust standard errors in (); Errors clustered by person

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                         |                      |                           |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|---------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Dependen             | t variable:               |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | log(Exp              | $pense_{it})$             |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)                       | (2)                  | (3)                       | (4)                       |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Aae_i < 60\}(\Delta_{Mar20} < 60 + \delta_{Mar20} < 60\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.018                    | -0.043**             | -0.043**                  | -0.043**                  |
| Mar20,<60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.014)                   | (0.015)              | (0.015)                   | (0.015)                   |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i \ge 60\}(\Delta_{Mar20, \ge 60} + \delta_{Mar20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.086^{***}$            | $-0.085^{***}$       | $-0.085^{***}$            | $-0.085^{***}$            |
| $After \times 1[Merth = Aer20] \times 1[Aer < c0]/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.003)                   | (0.003)              | (0.003)                   | (0.003)                   |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i < 60\}(\Delta_{Apr20, <60} + \delta_{Apr20, <60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.192                    | -0.216 (0.016)       | -0.216 (0.016)            | -0.216 (0.016)            |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i > 60\}(\Delta_{Apr20} > 60 + \delta_{Apr20} > 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-0.321^{***}$            | $-0.320^{***}$       | $-0.320^{***}$            | $-0.320^{***}$            |
| <i>v v v v v v v v v v</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.003)                   | (0.003)              | (0.003)                   | (0.003)                   |
| $After_{t} \times 1\{Month_{t} = May20\} \times 1\{Age_{i} < 60\}(\Delta_{May20, < 60} + \delta_{May20, < 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.126^{***}$            | $-0.151^{***}$       | $-0.151^{***}$            | $-0.151^{***}$            |
| $After \times 1[Month = May20] \times 1[Aaa > 60](A = 1 + \delta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.014)<br>0.100***       | (0.015)<br>0.108***  | (0.015)<br>0.108***       | (0.015)<br>0.108***       |
| $After_t \times \mathbf{I}\{Montht = Mag20\} \times \mathbf{I}\{Age_t \ge 00\}(\Delta_{Mag20}, \ge 60 + 0Mag20, \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.003)                   | (0.003)              | (0.003)                   | (0.003)                   |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i < 60\}(\Delta_{Jun20, <60} + \delta_{Jun20, <60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.013                     | -0.012               | -0.012                    | -0.012                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.015)                   | (0.016)              | (0.016)                   | (0.016)                   |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i \ge 60\}(\Delta_{Jun20, \ge 60} + \delta_{Jun20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.047^{***}$            | $-0.046^{***}$       | $-0.046^{***}$            | $-0.046^{***}$            |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_t < 60\}(\Delta_{T_{train}} \otimes e_0 + \delta_{T_{train}} \otimes e_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.003)<br>0.023          | (0.003)<br>-0.002    | (0.003)<br>-0.002         | (0.003)<br>-0.002         |
| $-J_{120} = -J_{120} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.016)                   | (0.017)              | (0.017)                   | (0.017)                   |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i \ge 60\}(\Delta_{Jul20, \ge 60} + \delta_{Jul20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.037^{***}$            | $-0.036^{***}$       | $-0.036^{***}$            | $-0.036^{***}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.003)                   | (0.003)              | (0.003)                   | (0.003)                   |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i < 60\}(\Delta_{Aug20, < 60} + \delta_{Aug20, < 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(0.058^{+++})$           | $(0.033^{\circ})$    | $(0.033^{\circ})$         | $(0.033^{\circ})$         |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i \ge 60\}(\Delta_{Aug20} \ge 60 + \delta_{Aug20} \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.022^{***}$            | $-0.021^{***}$       | $-0.021^{***}$            | $-0.021^{***}$            |
| $= 1 - Aug_{20} \ge 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.003)                   | (0.003)              | (0.003)                   | (0.003)                   |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i < 60\}(\Delta_{Sep20, <60} + \delta_{Sep20, <60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.022                     | -0.003               | -0.003                    | -0.003                    |
| $After \times 1[Merth - Ser20] \times 1[Aer > 60] (A + Ser20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.015)                   | (0.016)              | (0.016)                   | (0.016)                   |
| $Astert \times 1\{Month_t = Sep_{20}\} \times 1\{Age_i \ge 60\}(\Delta_{Sep_{20},\geq 60} + \delta_{Sep_{20},\geq 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.024                    | -0.023               | -0.023                    | -0.023                    |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i < 60\}(\Delta_{Oct20} < 60 + \delta_{Oct20} < 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-0.076^{***}$            | $-0.101^{***}$       | $-0.101^{***}$            | $-0.101^{***}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.016)                   | (0.017)              | (0.017)                   | (0.017)                   |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i \ge 60\}(\Delta_{Oct20, \ge 60} + \delta_{Oct20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.151^{***}$            | $-0.149^{***}$       | $-0.149^{***}$            | $-0.149^{***}$            |
| After, $\times 1\{Month, -Nov20\} \times 1\{Aae < 60\}(\Lambda_{12}, \dots, \bot, \bot, \lambda_{2n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.004)                   | (0.004)<br>-0.038*   | (0.004)<br>-0.038*        | (0.004)<br>-0.038*        |
| $A_{J} = t \wedge 1_{1} = M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U t + 1 M O U U U t + 1 M O U U U t + 1 M O U U U t + 1 M O U U U t + 1 M O U U U t + 1 M O U U U U U U U U U U U U U U U U U U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.013)                   | (0.016)              | (0.016)                   | (0.016)                   |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i \ge 60\}(\Delta_{Nov20, > 60} + \delta_{Nov20, > 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-0.106^{***}$            | $-0.105^{***}$       | $-0.105^{***}$            | $-0.105^{***}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.004)                   | (0.004)              | (0.004)                   | (0.004)                   |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i < 60\}(\Delta_{Dec20, < 60} + \delta_{Dec20, < 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.103^{***}$            | $-0.128^{***}$       | $-0.128^{***}$            | $-0.128^{***}$            |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_t \ge 60\}(\Delta p_{t-2} \circ p_{t-2} \circ p_{t-2} \circ p_{t-2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.018)<br>$-0.143^{***}$ | (0.018)<br>-0.142*** | (0.018)<br>$-0.142^{***}$ | (0.018)<br>$-0.142^{***}$ |
| $\Pi_{f} = D = 20 \int \langle \Pi_{f} \Pi_{$ | (0.004)                   | (0.004)              | (0.004)                   | (0.004)                   |
| $After_t \times 1\{Month_t = Jan21\} \times 1\{Age_i < 60\}(\Delta_{Jan21, < 60} + \delta_{Jan21, < 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.188^{***}$            | $-0.230^{***}$       | $-0.230^{***}$            | $-0.230^{***}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.017)                   | (0.020)              | (0.020)                   | (0.020)                   |
| $After_t \times 1\{Month_t = Jan21\} \times 1\{Age_i \ge 60\}(\Delta_{Jan21, \ge 60} + \delta_{Jan21, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.377^{***}$            | $-0.375^{***}$       | $-0.374^{***}$            | $-0.374^{***}$            |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_t \le 60\}(\Delta_{F_t}   o_t \le c_0 + \delta_{F_t}   o_t \le c_0\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.004)<br>-0.066***      | (0.004)<br>-0.108*** | (0.004)<br>-0.109***      | (0.004)<br>-0.109***      |
| $-5 - c_{i} = c_{i} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.016)                   | (0.020)              | (0.020)                   | (0.020)                   |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_i \ge 60\}(\Delta_{Feb21, \ge 60} + \delta_{Feb21, > 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.201^{*'**}$           | $-0.199^{***}$       | $-0.199^{*'**}$           | $-0.199^{*'**}$           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.004)                   | (0.004)              | (0.004)                   | (0.004)                   |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i < 60\}(\Delta_{Mar21, < 60} + \delta_{Mar21, < 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.019                     | -0.023               | -0.023                    | -0.023                    |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i \ge 60\}(\Delta_{Mar21} \ge 60 + \delta_{Mar21} \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.055^{***}$            | $-0.053^{***}$       | $-0.053^{***}$            | $-0.053^{***}$            |
| $J = (J = Mar_{21}, 200) + Mar_{21}, 200)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.004)                   | (0.004)              | (0.004)                   | (0.004)                   |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i > \}(\Delta_{Apr21, <60} + \delta_{Apr21, <60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.041^{*}$               | -0.002               | -0.002                    | -0.002                    |
| $After \times 1[Merth = Aer21] \times 1[Ae > c0]/A = 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.017)                   | (0.020)              | (0.020)                   | (0.020)                   |
| $A_{fter_{t}} \times 1_{\{Month_{t} = Apr21\}} \times 1_{\{Age_{i} \ge 60\}} (\Delta_{Apr21, \ge 60} + \delta_{Apr21, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.044                    | -0.043               | -0.043                    | -0.043                    |
| Month FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.004)<br>Vaa            | V                    | V                         | V~~                       |
| Individual FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                       | res<br>Yes           | Yes                       | Yes                       |
| Age Group $\times Year_t (\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No                        | Yes                  | Yes                       | Yes                       |
| Income Group $\times Year_t(\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                        | No                   | Yes                       | Yes                       |
| Age Group × Income Group × Year <sub>t</sub> ( $\Psi_{it}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                        | No                   | No                        | Yes                       |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3,\!583,\!123$           | 3,583,123            | 3,583,123                 | $3,\!583,\!123$           |
| $\mathbb{R}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.689                     | 0.689                | 0.689                     | 0.689                     |
| Adjusted K~<br>Besidual Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.680                     | 0.680                | 0.681<br>0.775            | 0.681<br>0.775            |
| itesituai prd. Elloi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.770                     | 0.770                | 0.770                     | 0.170                     |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + 1                       | o<0.1; * p<0.0       | 5; ** p<0.01;             | *** p<0.001               |

Table 11: Impact of age heterogeneity on spending for retirees.

+ p < 0.1; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001Cluster robust standard errors in (); Errors clustered by person



Figure A.3: Estimation results for growth rate specification.

### A.4 The effect of comorbidity

People with underlying health conditions such as heart problems, cancer, obesity and type-2 diabetes are at greater risk of dying from Covid.<sup>A.1</sup> A natural question is whether people with comorbidities react to that risk by reducing consumption more than people who do not have comorbidities.

We do not have the health history of the people in our sample. But we do have data on how much they spend on pharmaceutical drugs. So, we use these expenditures as a proxy for comorbidities. We split the sample into two. The comorbidity sample consists of people whose pharmaceutical drug expenditures are in the top decile of the 2018 distribution of these expenditures for the person's age group. The non-comorbidity sample consists of all of the other people.

Individuals with comorbidities received priority in the Portuguese vaccination process. Most got the two doses of the vaccine before the peak of the third wave at the end of January

<sup>&</sup>lt;sup>A.1</sup>See the Center for Disease Control (https://www.cdc.gov/coronavirus/2019-ncov/ need-extra-precautions/people-with-medical-conditions.html) for a thorough review of these comorbidities.



Figure A.4: Changes in expenditures of public servants in the sectors least affected by lockdowns during the epidemic relative to a counterfactual without Covid.



Figure A.5: Estimation results excluding restaurant expenditures.



Figure A.6: Estimation results excluding restaurant and supermarket expenditures.

2021. For this reason, we restrict our sample to the period from January 2018 to December 2020.

Table 16 in Appendix A reports our parameter estimates. The key result is displayed in Figure A.7. People with comorbidities cut their consumption by more than people without comorbidities. In April 2020, at the peak of the first wave of infections, people younger than 49 with no comorbidities cut their consumption by 25.5 percent. In contrast, people younger than 49 with comorbidities dropped their consumption expenditures by 32.2 percent.

There are no statistically significant interactions between age and comorbidity: the impact of comorbidity is the same for young and older people.

Interestingly, even after controlling for comorbidity, age remains a key driver of consumption behavior. From March 2019 to December 2020, people younger than 49 with no comorbidities cut their expenditures on average by 7.9 percent. People with no comorbidities who are in their 50s, 60s, and 70s cut consumption expenditures on average during the epidemic dates by an additional 8.2, 12.1, and 15.9 percent, respectively.

These results support the view that people's consumption decisions respond to the perceived risk of dying from Covid.



Figure A.7: Changes in expenditures of public servants in different income groups during the epidemic relative to a counterfactual without Covid for people with and without comorbidity.

### A.5 Empirical results for old

In our quantitative model, there are only two groups, old and young. In this subsection, we report our empirical results when people are classified into two age groups: 20-59 and 60-80.

We construct our estimates of  $\hat{\psi}$  using the estimated regression parameters, netting out the effects of the time trend, seasonal effects, individual fixed effects, and interactions between seasonal effects and individual characteristics:

$$\hat{\psi_t} = \sum_{\substack{m=Mar,2020\\m=Mar,2020}}^{Apr,2021} \hat{\Delta}_m After_t \times \mathbf{1}\{Month_t = m\} +$$
(A.2)  
$$\sum_{\substack{m=Mar,2020\\m=Mar,2020}}^{Apr,2021} \hat{\delta}_{mg} After_t \times \mathbf{1}\{Month_t = m\} \times \mathbf{1}\{AgeGroup_i = old\}.$$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | Dependen                       | t variable:                    |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | log(Exp                        | $pense_{it})$                  |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FE<br>(1)            | FE<br>(2)                      | FE<br>(2)                      | FE                             |
| $\frac{1}{After_{1} \times 1[Month_{1} - Mar^{2}\Omega](\Delta M_{1}, \alpha)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.101***            | -0.127***                      | (3)                            | -0.127***                      |
| $After t \land 1 \{Month t = Mar 20\}(\Delta_{Mar 20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.005)              | (0.005)                        | (0.005)                        | (0.005)                        |
| $After_t \times 1\{Month_t = Apr20\}(\Delta_{Apr20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.297^{***}$       | $-0.322^{***}$                 | $-0.322^{***}$                 | $-0.322^{***}$                 |
| $After_t \times 1\{Month_t = May20\}(\Delta_{May20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.185^{***}$       | $-0.211^{***}$                 | $-0.211^{***}$                 | $-0.211^{***}$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.005)              | (0.005)                        | (0.005)                        | (0.005)                        |
| $After_t \times 1\{Month_t = Jun20\}(\Delta_{Jun20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(0.014^{**})$       | $-0.012^{-1}$<br>(0.005)       | $-0.012^{*}$<br>(0.005)        | $-0.012^{*}$<br>(0.005)        |
| $After_t \times 1\{Month_t = Jul20\}(\Delta_{Jul20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.072***             | 0.046***                       | 0.046***                       | 0.046***                       |
| $After_{t} \times 1\{Month_{t} = Aug20\}(\Delta Aug20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.006)<br>0.071***  | (0.006)<br>0.046***            | (0.006)<br>0.046***            | (0.006)<br>0.046***            |
| $\frac{11}{100} \frac{11}{100} \frac{11}{100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.005)              | (0.005)                        | (0.005)                        | (0.005)                        |
| $After_t \times 1\{Month_t = Sep20\}(\Delta_{Sep20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.050^{***}$        | $0.024^{***}$                  | $0.024^{***}$                  | $0.024^{***}$                  |
| $After_t \times 1\{Month_t = Oct20\}(\Delta_{Oct20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.058^{***}$       | $-0.084^{***}$                 | $-0.084^{***}$                 | $-0.084^{***}$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.005)              | (0.005)                        | (0.005)                        | (0.005)                        |
| $After_t \times 1\{Month_t = Nov20\}(\Delta_{Nov20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.033<br>(0.005)    | (0.005)                        | (0.005)                        | (0.005)                        |
| $After_t \times 1\{Month_t = Dec20\}(\Delta_{Dec20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.101^{***}$       | $-0.127^{***}$                 | $-0.127^{***}$                 | $-0.127^{***}$                 |
| $After_{1} \times 1 \{Month_{1} - Ian^{2}\} (\Lambda_{1}, \alpha_{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.005)<br>-0.252*** | (0.005)<br>-0.296***           | (0.005)<br>-0.296***           | (0.005)<br>-0.296***           |
| $\frac{1}{2} \int \frac{1}{2} \int \frac{1}$ | (0.005)              | (0.006)                        | (0.006)                        | (0.006)                        |
| $After_t \times 1\{Month_t = Feb21\}(\Delta_{Feb21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.168^{***}$       | $-0.212^{***}$                 | $-0.212^{***}$                 | $-0.212^{***}$                 |
| $After_t \times 1\{Month_t = Mar21\}(\Delta_{Mar21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-0.039^{***}$       | $-0.083^{***}$                 | $-0.083^{***}$                 | $-0.083^{***}$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)              | (0.006)                        | (0.006)                        | (0.006)                        |
| $After_t \times 1\{Month_t = Apr21\}(\Delta_{Apr21})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.028 (0.006)       | -0.072 (0.006)                 | -0.072 (0.006)                 | -0.072 (0.006)                 |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i \ge 60\}(\delta_{Mar20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.055^{***}$       | -0.009                         | -0.009                         | -0.009                         |
| $After > 1[Month = Anr20] > 1[Age > 60](\delta = -1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.006)<br>-0.142*** | (0.006)<br>-0.097***           | (0.006)<br>-0.097***           | (0.006)<br>-0.097***           |
| $After_t \land \mathbf{I}\{Month t = Aft 20\} \land \mathbf{I}\{Age_i \ge 00\}(^{0}Apr20, \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.007)              | (0.007)                        | (0.007)                        | (0.007)                        |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i \ge 60\}(\delta_{May20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.088^{***}$       | $-0.043^{***}$                 | $-0.043^{***}$                 | $-0.043^{***}$                 |
| $After_{1} \times 1\{Month_{1} = Jun20\} \times 1\{Aae_{1} \ge 60\}(\delta_{1} = 20 \ge c_{0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)<br>-0.108*** | (0.006)<br>-0.062***           | (0.006)<br>-0.062***           | (0.006)<br>-0.062***           |
| $11joot_l \times 1(110000l_l = 0.0020j \times 1(1190l_l \ge 00)(0jun_{20}, \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.006)              | (0.006)                        | (0.006)                        | (0.006)                        |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i \ge 60\}(\delta_{Jul20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.118^{***}$       | $-0.073^{***}$                 | $-0.073^{***}$                 | $-0.073^{***}$                 |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i \ge 60\} (\delta_{Aug20} \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.131^{***}$       | $-0.086^{***}$                 | $-0.086^{***}$                 | $-0.086^{***}$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)              | (0.007)                        | (0.007)                        | (0.007)                        |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i \ge 60\}(\delta_{Sep20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.101^{***}$       | $-0.056^{***}$                 | $-0.056^{***}$                 | $-0.056^{***}$                 |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i \ge 60\}(\delta_{Oct20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.081^{***}$       | $-0.035^{***}$                 | $-0.035^{***}$                 | $-0.035^{***}$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)              | (0.007)                        | (0.007)                        | (0.007)                        |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i \ge 60\}(\delta_{Nov20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.095               | $-0.050^{-0.007}$              | $-0.050^{+++}$                 | $-0.050^{+++}$                 |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i \ge 60\}(\delta_{Dec20, \ge 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.103^{***}$       | $-0.057^{***}$                 | $-0.057^{***}$                 | $-0.057^{***}$                 |
| $A ften \times 1[Month = Ian21] \times 1[Aaa > 60](\delta = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.007)              | (0.007)<br>0.067***            | (0.007)                        | (0.007)                        |
| $After_t \land 1\{Month_t = Jan21\} \land 1\{Age_i \ge 00\}(0Jan21, \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.007)              | (0.008)                        | (0.008)                        | (0.008)                        |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_i \geq 60\}(\delta_{Feb21, \geq 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-0.120^{***}$       | $-0.042^{***}$                 | $-0.042^{***}$                 | $-0.042^{***}$                 |
| $After \times 1[Month - Mar 21] \times 1[Aae > 60](\delta + \dots + \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.007)<br>-0.093*** | (0.008)<br>-0.015 <sup>+</sup> | (0.008)<br>-0.015 <sup>+</sup> | (0.008)<br>-0.015 <sup>+</sup> |
| $After_t \land 1\{Month_t = Mar21\} \land 1\{Age_i \ge 00\}(0Mar21, \ge 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.006)              | (0.008)                        | (0.008)                        | (0.008)                        |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i \geq 60\}(\delta_{Apr21, \geq 60})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.091***            | -0.013                         | -0.013                         | -0.013                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)              | (0.008)                        | (0.008)                        | (0.008)                        |
| Month FE<br>Individual FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes<br>Yes           | Yes<br>Yes                     | Yes<br>Yes                     | Yes<br>Yes                     |
| Age Group×Year <sub>t</sub> ( $\Psi_{it}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                   | Yes                            | Yes                            | Yes                            |
| Income Group $\times Year_t(\Psi_{it})$<br>Age Group $\times$ Income Group $\times Year_t(\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No<br>No             | No<br>No                       | Yes                            | Yes                            |
| Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.315 002            | 2.315 002                      | 2.315 002                      | 2.315 002                      |
| $\mathbb{R}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.633                | 0.633                          | 0.633                          | 0.633                          |
| Adjusted R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.623                | 0.623                          | 0.624                          | 0.624                          |
| Residual Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.686                | 0.686                          | 0.686                          | 0.686                          |

Table 12: Impact of age on expenditures (for model estimation).

Note:

+ p<0.1; \* p<0.05; \*\* p<0.01; \*\*\* p<0.001

#### Regression tables used to build the figures A.6

|                                                                                       | Dependent variable:                 |                                     |                                     |                                     |                                     |
|---------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                                                                       | $log(Expenses_{it})$                |                                     |                                     |                                     | (*)                                 |
| Aftert                                                                                | (1)<br>-0.138***                    | (2)                                 | (3)                                 | (4)                                 | (5)                                 |
| $A fter_* \times 1{Age_* = [20; 49]}$                                                 | (0.002)                             | -0.067***                           | -0.103***                           | -0.103***                           | -0.103***                           |
| $After \times 1 \{Aee = [50; 50]\}$                                                   |                                     | (0.004)<br>0.087***                 | (0.005)                             | (0.005)                             | (0.005)                             |
| $A_{f} = \{A_{f} \in A_{f} \in A_{f} \in A_{f} \in A_{f} \in A_{f} \in A_{f} \}$      |                                     | (0.004)                             | (0.004)                             | (0.004)                             | (0.004)                             |
| $After_t \times 1\{Age_i = [60; 69]\}$                                                |                                     | (0.003)                             | (0.004)                             | (0.004)                             | (0.004)                             |
| $After_t \times 1\{Age_i = [70; 79]\}$                                                |                                     | $-0.223^{***}$<br>(0.004)           | $-0.187^{***}$<br>(0.005)           | $-0.187^{***}$<br>(0.005)           | $-0.187^{***}$<br>(0.005)           |
| $1\{Month_t = Feb\}$                                                                  | $-0.050^{***}$<br>(0.002)           | $-0.050^{***}$<br>(0.002)           | $-0.050^{***}$<br>(0.002)           | $-0.050^{***}$<br>(0.002)           | $-0.050^{***}$<br>(0.002)           |
| $1\{Month_t = Mar\}$                                                                  | $0.081^{***}$<br>(0.002)            | $0.081^{***}$<br>(0.002)            | $0.081^{***}$<br>(0.002)            | $0.081^{***}$<br>(0.002)            | $0.081^{***}$<br>(0.002)            |
| $1\{Month_t = Apr\}$                                                                  | -0.002                              | -0.002                              | -0.002                              | -0.002                              | -0.002                              |
| $1\{Month_t = May\}$                                                                  | 0.065***                            | 0.065***                            | 0.065***                            | 0.065***                            | 0.065***                            |
| $1\{Month_t = Jun\}$                                                                  | 0.094***                            | 0.094***                            | 0.094***                            | 0.094***                            | 0.094***                            |
| $1{Month_t = Jul}$                                                                    | 0.203***                            | 0.203***                            | 0.203***                            | 0.203***                            | 0.203***                            |
| $1\{Month_t = Aug\}$                                                                  | (0.002)<br>$0.098^{***}$            | (0.002)<br>$0.098^{***}$            | (0.002)<br>$0.098^{***}$            | (0.002)<br>$0.098^{***}$            | (0.002)<br>$0.098^{***}$            |
| $1{Month_t = Sep}$                                                                    | (0.003)<br>$0.048^{***}$            | (0.003)<br>$0.048^{***}$            | (0.003)<br>$0.048^{***}$            | (0.003)<br>$0.048^{***}$            | (0.003)<br>$0.048^{***}$            |
| $1\{Month_t = Oct\}$                                                                  | (0.002)<br>$0.079^{***}$<br>(0.002) | (0.002)<br>$0.080^{***}$<br>(0.002) | (0.002)<br>$0.080^{***}$<br>(0.002) | (0.002)<br>$0.079^{***}$<br>(0.002) | (0.002)<br>$0.079^{***}$<br>(0.002) |
| $1\{Month_t = Nov\}$                                                                  | 0.095***                            | 0.095***                            | 0.095***                            | 0.095***                            | 0.095***                            |
| $1\{Month_t = Dec\}$                                                                  | 0.161***                            | 0.161***                            | 0.161***                            | 0.161***                            | 0.161***                            |
| $Y ear_t$                                                                             | (0.003)<br>$0.041^{***}$<br>(0.001) | (0.003)<br>$0.041^{***}$<br>(0.001) | (0.003)<br>$0.062^{***}$<br>(0.002) | (0.003)<br>$0.088^{***}$<br>(0.007) | (0.003)<br>$0.105^{***}$<br>(0.027) |
| $Year_t \times 1 \{ Age_i = [50; 59] \}$                                              | (0.001)                             | (0.001)                             | -0.002                              | $-0.008^{*}$                        | (0.027)<br>$-0.071^+$<br>(0.038)    |
| $Year_t \times 1 \{ Age_i = [60; 69] \}$                                              |                                     |                                     | -0.026***                           | -0.026***                           | $-0.056^+$                          |
| $Year_t \times 1 \{ Age_i = [70; 79] \}$                                              |                                     |                                     | $-0.043^{***}$                      | $-0.046^{***}$                      | (0.029)<br>$-0.050^+$<br>(0.028)    |
| $Year_t \times 1\{Income_i = ]7,091;20,261]\}$                                        |                                     |                                     | (0.003)                             | (0.003)<br>-0.007<br>(0.007)        | (0.028)<br>-0.023<br>(0.027)        |
| $Year_t \times 1\{Income_i = ]20, 261; 40, 522]\}$                                    |                                     |                                     |                                     | -0.036***                           | (0.027)<br>$-0.054^{*}$             |
| $Year_t \times 1\{Income_i = ]40, 522; 80, 640]\}$                                    |                                     |                                     |                                     | $-0.054^{***}$                      | (0.027)<br>$-0.071^{*}$<br>(0.028)  |
| $Year_t \times 1\{Income_i => 80, 640\}$                                              |                                     |                                     |                                     | $-0.070^{***}$                      | $-0.167^{***}$                      |
| $Year_t \times 1 \{ Age_i = [50; 59] \} \times 1 \{ Income_i = ]7, 091; 20, 261] \}$  |                                     |                                     |                                     | (0.010)                             | 0.064                               |
| $Year_t \times 1 \{ Age_i = [60; 69] \} \times 1 \{ Income_i = ]7, 091; 20, 261] \}$  |                                     |                                     |                                     |                                     | 0.028                               |
| $Year_t \times 1 \{ Age_i = [70; 79] \} \times 1 \{ Income_i = ]7, 091; 20, 261] \}$  |                                     |                                     |                                     |                                     | 0.0002                              |
| $Year_t \times 1 \{ Age_i = [50; 59] \} \times 1 \{ Income_i = ]20, 261; 40, 522] \}$ |                                     |                                     |                                     |                                     | $0.065^+$                           |
| $Year_t \times 1 \{ Age_i = [60; 69] \} \times 1 \{ Income_i = ]20, 261; 40, 522] \}$ |                                     |                                     |                                     |                                     | 0.033                               |
| $Year_t \times 1 \{ Age_i = [70;79] \} \times 1 \{ Income_i = ]20,261;40,522] \}$     |                                     |                                     |                                     |                                     | (0.001)                             |
| $Year_t \times 1 \{ Age_i = [50; 59] \} \times 1 \{ Income_i = ]40, 522; 80, 640] \}$ |                                     |                                     |                                     |                                     | 0.058                               |
| $Year_t \times 1 \{ Age_i = [60; 69] \} \times 1 \{ Income_i = ]40, 522; 80, 640] \}$ |                                     |                                     |                                     |                                     | 0.032                               |
| $Year_t \times 1 \{ Age_i = [70;79] \} \times 1 \{ Income_i = ]40,522;80,640] \}$     |                                     |                                     |                                     |                                     | 0.005                               |
| $Year_t \times 1 \{ Age_i = [50; 59] \} \times 1 \{ Income_i > 80, 640 \}$            |                                     |                                     |                                     |                                     | (0.050)<br>$0.145^{**}$<br>(0.051)  |
| $Year_t \times 1 \{ Age_i = [60; 69] \} \times 1 \{ Income_i > 80, 640 \}$            |                                     |                                     |                                     |                                     | 0.106**                             |
| $Year_t \times 1 \{ Age_i = [70;79] \} \times 1 \{ Income_i > 80,640 \}$              |                                     |                                     |                                     |                                     | 0.108**<br>(0.040)                  |
| Individual FE                                                                         | Yes                                 | Yes                                 | Yes                                 | Yes                                 | Yes                                 |
| Observations<br>R <sup>2</sup>                                                        | 2,315,002<br>0.629                  | 2,315,002<br>0.630                  | 2,315,002<br>0.630                  | 2,315,002<br>0.630                  | 2,315,002<br>0.630                  |
| Adjusted R <sup>2</sup><br>Residual Std. Error                                        | 0.620<br>0.689                      | 0.620<br>0.689                      | $0.621 \\ 0.689$                    | 0.621<br>0.688                      | $0.621 \\ 0.688$                    |

Table 13: Impact of age on consumption expenditures.

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ 

Note:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | Dependen                  | t variable:                 |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FE                        | log(Exp<br>FE             | pense <sub>it</sub> )<br>FE | FE                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1)                       | (2)                       | (3)                         | (4)                    |
| $After_t \times 1{Month_t = Mar20} \times 1{Age_i = [20; 49]}(\Delta_{Mar20} [20: 49] + \delta_{Mar20} [20: 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.094***                 | -0.128***                 | -0.128***                   | -0.128***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Mar20, [50; 59]} + \delta_{Mar20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.105***                 | -0.126***                 | -0.126***                   | -0.126***              |
| $Aftert \times 1\{Montht = Mar20\} \times 1\{Aae_i = [60; 69]\}(\Delta_{Mar20}   g_0, g_0] + \delta_{Mar20}   g_0, g_0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.131***                 | -0.124***                 | -0.124***                   | $-0.124^{***}$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.005)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1{Month_t = Mar20} \times 1{Age_i = [70; 79]}(\Delta_{Mar20, [70; 79]} + \delta_{Mar20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.188***                 | $-0.151^{***}$            | $-0.151^{***}$              | -0.151***              |
| After, $\times 11Month_1 = Anr201 \times 11Age_1 = [20:49]1(\Delta_1, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.006)<br>-0.282***      | (0.007)<br>$-0.316^{***}$ | (0.007)<br>-0.316***        | (0.007)                |
| $A f ver_t \land 1 \{ M onvirt_t = A pr 20 \} \land 1 \{ A g e_t = [20, 40] \} ( \Delta A pr 20, [20; 49] + o A pr 20, [20; 49] )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.008)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Apr20} \times 1{Age_i = [50; 59]}(\Delta_{Apr20, [50; 59]} + \delta_{Apr20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.306^{***}$            | $-0.326^{***}$            | $-0.326^{***}$              | $-0.326^{***}$         |
| $A_{\text{free}} \times 1[M_{\text{ext}} + A_{\text{ex}} 20] \times 1[A_{\text{ex}} - [60, 60]](A_{\text{ex}} + \delta_{\text{ex}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [00; 09]\}(\Delta_{Apr20}, [60; 69] + \delta_{Apr20}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.399                    | (0.006)                   | -0.393                      | -0.393                 |
| $After_t \times 1{Month_t = Apr20} \times 1{Age_i = [70; 79]}(\Delta_{Apr20, [70; 79]} + \delta_{Apr20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.491^{***}$            | $-0.454^{***}$            | $-0.454^{***}$              | $-0.454^{***}$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [20; 49]\}(\Delta_{May20}, [20; 49] + \delta_{May20}, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.182                    | -0.216                    | -0.216                      | -0.216                 |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [50; 59]\}(\Delta_{May20}   50:59] + \delta_{May20}   50:59]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.187***                 | -0.208***                 | -0.208***                   | -0.208***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1{Month_t = May20} \times 1{Age_i = [60; 69]}(\Delta_{May20,[60;69]} + \delta_{May20,[60;69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.250***                 | -0.243***                 | -0.243***                   | -0.243***              |
| $After_t \times 1\{Month_t = May20\} \times 1\{Aae_t = [70; 79]\}(\Delta_{May20}   (70, 70] + \delta_{May20}   (70, 70])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.305***                 | $-0.268^{***}$            | $-0.268^{***}$              | -0.268***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1{Month_t = Jun20} \times 1{Age_i = [20; 49]}(\Delta_{Jun20, [20; 49]} + \delta_{Jun20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.032***                  | -0.001                    | -0.001                      | -0.001                 |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_t = [50; 59]\}(\Delta_t, and for for the two properties of the second secon$ | 0.002                     | -0.019**                  | -0.018**                    | -0.018**               |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jun20, [60; 69]} + \delta_{Jun20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.065***                 | -0.058***                 | -0.058***                   | -0.058* <sup>***</sup> |
| After $\times 1$ [Month = Jun 20] $\times 1$ [Acc = [70, 70]] (A = 1.5 + 8.5 + 1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $A_{f} = f_{t} + 1 \{Monint_{t} = Jun20\} + 1 \{Age_{t} = [10, 10]\} (\Delta Jun20, [70; 79] + 0 Jun20, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1{Month_t = Jul20} \times 1{Age_i = [20; 49]}(\Delta_{Jul20, [20; 49]} + \delta_{Jul20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.079***                  | 0.045***                  | 0.045***                    | 0.045***               |
| $After_{1} \times 1[Month_{1} - Iul20] \times 1[Acc [50, 50]](A + 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.008)<br>0.067***       | (0.009)<br>0.047***       | (0.009)<br>0.047***         | (0.009)<br>0.047***    |
| $A_{J} := i t \wedge 1_{\{M} : onim_{t} = Jui_{20}\} \times 1_{\{M} : ge_{i} = [50; 59]\}(\Delta Jul_{20}, [50; 59] + oJul_{20}, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0,007)                   | (0.047)                   | (0.047)                     | (0.007)                |
| $After_t \times 1{Month_t = Jul20} \times 1{Age_i = [60; 69]}(\Delta_{Jul20, [60; 69]} + \delta_{Jul20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.003                    | 0.003                     | 0.003                       | 0.003                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $A_{J}ier_{t} \times 1\{Montn_{t} = Jui_{20}\} \times 1\{Age_{i} = [70; 79]\}(\Delta_{Jul_{20}, [70; 79]} + \delta_{Jul_{20}, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.104***                 | -0.067***<br>(0.00%)      | -0.067***                   | -0.067***              |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Aug20} _{[20:40]} + \delta_{Aug20} _{[20:40]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.083***                  | 0.049***                  | 0.049***                    | 0.049***               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.007)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Aug20} \times 1{Age_i = [50; 59]}(\Delta_{Aug20, [50; 59]} + \delta_{Aug20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.064***                  | 0.043***                  | 0.043***                    | 0.043***               |
| $After_{4} \times 1\{Month_{4} = Aua20\} \times 1\{Aae_{i} = [60; 69]\}(\Delta_{4} = ac_{i}(ac_{i}c_{0}) + \delta_{4} = ac_{i}(ac_{i}c_{0})\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.030***                 | -0.023***                 | -0.023***                   | -0.023***              |
| 19101 t / 2 (111111 t 111320) / 2 (11301 t (00,001) (-Aug20,[60;69] / -Aug20,[60;69] /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1{Month_t = Aug20} \times 1{Age_i = [70; 79]}(\Delta_{Aug20, [70; 79]} + \delta_{Aug20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.099^{***}$            | $-0.062^{***}$            | $-0.062^{***}$              | $-0.062^{***}$         |
| $After_1 \times 1[Month_1 - Sen20] \times 1[Age_1 - [20:49]](\Delta e_1 = (e_1 e_2) \pm \delta e_1 = (e_1 e_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $if icre < 1 (introduct = 5cp20) < 1 (ingc_i = [20, 40]) ( \Box Sep20, [20; 49] + (Sep20, [20; 49]) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.008)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Sep20} \times 1{Age_i = [50; 59]}(\Delta_{Sep20, [50; 59]} + \delta_{Sep20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.038***                  | 0.018**                   | 0.018**                     | 0.018**                |
| $After \times 1(Month) = Ser20 \times 1(Aac) = [60, 60]](A = 1, \dots, 1, \delta, \dots, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.006)<br>0.022***       | (0.006)                   | (0.006)                     | (0.006)                |
| $A_{fielt} \times 1\{Monint = Sep_{20}\} \times 1\{Age_{i} = [00, 00]\}(\Delta Sep_{20}, [60; 69] + 0Sep_{20}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1{Month_t = Sep20} \times 1{Age_i = [70; 79]}(\Delta_{Sep20, [70; 79]} + \delta_{Sep20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.077***                 | -0.040***                 | -0.040***                   | -0.040***              |
| $A_{\text{free}} \times 1[M_{\text{ext}} + Q_{\text{e}}^{4}20] \times 1[A_{\text{ex}} - [20, 40]](A_{\text{ex}} + \delta_{\text{e}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Oct20}, [20; 49] + o_{Oct20}, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.008)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Oct20} \times 1{Age_i = [50; 59]}(\Delta_{Oct20, [50; 59]} + \delta_{Oct20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.062^{***}$            | -0.083***                 | -0.083***                   | -0.083***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Oct20}, [60; 69] + \delta_{Oct20}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.116                    | -0.110                    | -0.110                      | -0.110                 |
| $After_t \times 1{Month_t = Oct20} \times 1{Age_i = [70; 79]}(\Delta_{Oct20} [70; 79] + \delta_{Oct20} [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.168***                 | -0.131***                 | -0.131***                   | -0.131***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Nov20}, [20; 49] + \delta_{Nov20}, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.020*                   | -0.054***                 | -0.054***                   | -0.054***              |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Nov20} [50.59] + \delta_{Nov20} [50.59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.042***                 | -0.063***                 | -0.063***                   | -0.063***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.006)                   | (0.006)                   | (0.006)                     | (0.006)                |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Nov20, [60; 69]} + \delta_{Nov20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.097***                 | -0.090***                 | -0.090***                   | -0.090***              |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_t = [70; 79]\}(\Delta_{N-w20} (70, 70] + \delta_{N-w20} (70, 70])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.170***                 | -0.133***                 | -0.133***                   | -0.133***              |
| 5 ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.008)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Dec20} \times 1{Age_i = [20; 49]}(\Delta_{Dec20, [20; 49]} + \delta_{Dec20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.095***                 | -0.129***                 | -0.129***                   | -0.129***              |
| After $\times 1\{Month = Dec20\} \times 1\{Age = [50; 59]\}(\Delta p = co(50, 50] + \delta p = co(50, 50])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.008)<br>$-0.105^{***}$ | (0.008)<br>-0.125***      | (0.008)<br>$-0.125^{***}$   | (0.008)<br>-0.125***   |
| 19101 t / 2 (201001 t 2 0020) / 2 (294 t 2001) (2 Dec20, [50;59] / 2 Dec20, [50;59] /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1{Month_t = Dec20} \times 1{Age_i = [60; 69]}(\Delta_{Dec20, [60; 69]} + \delta_{Dec20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.170^{***}$            | -0.163***                 | $-0.163^{***}$              | $-0.163^{***}$         |
| $After \times 1[Month = Dec20] \times 1[Acc = [70, 70]](A = \{1, \dots, n\} + \delta_{n-1}, \dots, n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.006)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After t \times 1\{Month t = Dec20\} \times 1\{Age_i = [10, 15]\}(\Delta Dec20, [70; 79] + oDec20, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.008)                   | (0.008)                   | (0.008)                     | (0.008)                |
| $After_t \times 1{Month_t = Jan21} \times 1{Age_i = [20; 49]}(\Delta_{Jan21, [20; 49]} + \delta_{Jan21, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.238***                 | $-0.296^{***}$            | $-0.296^{***}$              | $-0.296^{***}$         |
| $A_{\text{free}} = \frac{1}{2} \left[ M_{\text{ext}} + \frac{1}{2} - \frac{1}{2} \right] \times \frac{1}{2} \left[ A_{\text{ex}} - \frac{1}{2} - \frac{1}{2} \right] (A_{\text{ex}} + \frac{1}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.008)                   | (0.009)                   | (0.009)                     | (0.009)                |
| $A_{J} := t \wedge 1_{M} : onim_{t} = Jan21J \times 1_{A} : ge_{i} = [50; 59]J(\Delta Jan21, [50; 59] + \delta Jan21, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1\{Month_t = Jan21\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jan21, [60; 69]} + \delta_{Jan21, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.348***                 | -0.337***                 | -0.337***                   | -0.337***              |
| $A = I_{0} + $              | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $A_{J} := (t \wedge 1_{1} := Jan21) \times 1_{1} := [0; 0] (\Delta_{Jan21}, [70; 79] + \delta_{Jan21}, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0,008)                   | (0.009)                   | -0.3982                     | -0.398                 |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_i = [20; 49]\}(\Delta_{Feb21, [20:49]} + \delta_{Feb21, [20:49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-0.152^{***}$            | -0.210***                 | -0.210***                   | -0.210***              |
| $A_{1}^{(1)} = \sqrt{1} \left[ M_{1}^{(1)} + K_{2}^{(2)} + M_{1}^{(2)} + M_{2}^{(2)} + M_{2}^$      | (0.008)                   | (0.009)                   | (0.009)                     | (0.009)                |
| $A_{f}ier_{t} \times 1\{Month_{t} = Feb21\} \times 1\{Age_{i} = [50; 59]\}(\Delta_{Feb21}, [50; 59] + \delta_{Feb21}, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.178***                 | -0.213****<br>(0.007)     | -0.213***                   | -0.213***              |
| $After_t \times 1{Month_t = Feb21} \times 1{Age_i = [60; 69]}(\Delta_{Feb21, [60; 69]} + \delta_{Feb21, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.264^{***}$            | -0.252***                 | -0.252***                   | $-0.252^{***}$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.006)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $A_{f}tert \times 1\{Month_{t} = Feb21\} \times 1\{Age_{i} = [70; 79]\}(\Delta_{Feb21, [70; 79]} + \delta_{Feb21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.320***                 | $-0.257^{***}$            | -0.257***                   | -0.257***              |
| $After_t \times 1{Month_t = Mar21} \times 1{Age_i = [20; 49]}(\Delta_{Mar21} (20.49] + \delta_{Mar21} (20.49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.026**                  | -0.083***                 | -0.083***                   | -0.083***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.008)                   | (0.009)                   | (0.009)                     | (0.009)                |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i = [50; 59]\}(\Delta_{Mar21, [50; 59]} + \delta_{Mar21, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.048***                 | -0.083***                 | -0.083***                   | -0.083***              |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i = [60; 69]\}(\Delta_{Mar21} _{[60, 60]} + \delta_{Mar21} _{[60, 60]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.007)<br>-0.110***      | (0.007)<br>-0.099***      | (0.007)<br>-0.099***        | (0.007)<br>-0.099***   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Mar21, [70; 79]} + \delta_{Mar21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.162***                 | -0.098***                 | -0.098***                   | -0.098***              |
| $After_t \times 1\{Month_t = Anr21\} \times 1\{Aae_t = [20, 49]\}(\Delta_{t-1}, \dots, \pm \delta_{t-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.008)                   | (0.009)<br>-0.066***      | (0.009)<br>-0.066***        | (0.009)<br>-0.066***   |
| $= (20, 40] f(\Delta Apr21, [20; 49] + oApr21, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.008)                   | (0.009)                   | (0.009)                     | (0.009)                |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i = [50; 59]\}(\Delta_{Apr21, [50; 59]} + \delta_{Apr21, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.041^{***}$            | -0.076***                 | -0.076***                   | $-0.076^{***}$         |
| $After, \times 1 Month = 4nr21 \times 1 Moe = [60, 60] (A + 1 + 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.007)<br>-0.095***      | (0.007)<br>-0.084***      | (0.007)<br>-0.084***        | (0.007)<br>-0.084***   |
| $A_{J} := t \wedge 1_{\{M,0\}} := Apr21 \} \times 1_{\{Age_i = [00; 09]\}} (\Delta_{Apr21, [60; 69]} + \delta_{Apr21, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.007)                   | (0.007)                   | (0.007)                     | (0.007)                |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Apr21, [70; 79]} + \delta_{Apr21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.151***                 | -0.087***                 | -0.087***                   | -0.087***              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.008)                   | (0.009)                   | (0.009)                     | (0.009)                |
| Month FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                       | Yes                       | Yes                         | Yes                    |
| Individual FE<br>Age Group $X Year_{t}(\Psi_{tt})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                       | Yes<br>Yes                | Yes<br>Yes                  | Yes<br>Yes             |
| Income Group $\times Year_t(\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                        | No                        | Yes                         | Yes                    |
| Age Group × Income Group × Year <sub>t</sub> ( $\Psi_{it}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                        | No                        | No                          | Yes                    |
| Observations<br>P <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,315,002                 | 2,315,002                 | 2,315,002                   | 2,315,002              |
| Adjusted R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.623                     | 0.623                     | 0.633                       | 0.633                  |
| Residual Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.686                     | 0.686                     | 0.686                       | 0.686                  |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 1                       | <0.1; * p<0.0             | 05; ** p<0.01;              | *** p<0.001            |

## Table 14: Impact of age on consumption expenditures.

+ p<0.1; \* p<0.05; \*\* p<0.01; \*\*\* p<0.001 Cluster robust standard errors in (); Errors clustered by person

# 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,061 <                  | $Log(Expenses_{it})$<br>[20, 061; 40, 522] | > 40,522                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)                       | (2)                                        | (3)                       |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Mar20, [20; 49]} + \delta_{Mar20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.100^{***}$<br>(0.011) | $-0.148^{***}$<br>(0.010)                  | $-0.153^{***}$<br>(0.029) |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Mar20, [50; 59]} + \delta_{Mar20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.082***                 | -0.147***                                  | -0.178***                 |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Mar20, [60; 69]} + \delta_{Mar20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.088^{***}$            | $-0.139^{***}$                             | $-0.185^{***}$            |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Mar20} _{70\cdot79}] + \delta_{Mar20} _{70\cdot79}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.009)<br>$-0.110^{***}$ | (0.009)<br>$-0.185^{***}$                  | (0.013)<br>$-0.237^{***}$ |
| $A f tan, \times 1 \{ Month. = Ann20 \} \times 1 \{ A an. = [20, 40] \} (A + \delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.009)<br>-0.270***      | (0.011)                                    | (0.018)<br>-0.284***      |
| $A f ter t \land 1 \{ M 0 h h h t = A f r 20 f \land 1 \{ A g e_i = [20, 40] f (\Delta_{A pr 20}, [20; 49] + 0 A pr 20, [20; 49] \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.013)                   | (0.010)                                    | (0.031)                   |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Apr20, [50; 59]} + \delta_{Apr20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.242^{***}$<br>(0.010) | $-0.362^{***}$<br>(0.009)                  | $-0.444^{***}$<br>(0.020) |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Apr20, [60; 69]} + \delta_{Apr20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.303***                 | -0.451***                                  | -0.495***                 |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Apr20, [70; 79]} + \delta_{Apr20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.010)<br>$-0.362^{***}$ | (0.010)<br>$-0.555^{***}$                  | (0.015)<br>$-0.584^{***}$ |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_t = [20; 49]\}(\Delta_{Max20}   20, 40] + \delta_{Max20}   20, 40]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010)<br>$-0.177^{***}$ | (0.014)<br>-0.241***                       | (0.020)<br>$-0.253^{***}$ |
| = 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(32, 12) + 1(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.013)                   | (0.010)                                    | (0.029)                   |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [50; 59]\}(\Delta_{May20, [50; 59]} + \delta_{May20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.136 (0.010)            | -0.238 (0.008)                             | -0.303 (0.019)            |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [60; 69]\}(\Delta_{May20, [60; 69]} + \delta_{May20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.172^{***}$<br>(0.009) | $-0.275^{***}$<br>(0.009)                  | $-0.354^{***}$<br>(0.015) |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [70; 79]\}(\Delta_{May20, [70; 79]} + \delta_{May20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.219^{***}$            | -0.309***                                  | -0.378***                 |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Jun20} [20:49] + \delta_{Jun20} [20:49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.010)<br>0.016          | (0.012)<br>-0.015                          | (0.020)<br>-0.005         |
| $A fton: \times 1 \{Month. = Jun 20\} \times 1 \{Aaa. = [50, 50]\} (A = 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.012)                   | (0.010)                                    | (0.030)<br>-0.094***      |
| $A_{f}ver_{t} \times 1\{Monun_{t} = Jun20\} \times 1\{Age_{i} = [50; 59]\}(\Delta Jun20, [50; 59] + \delta Jun20, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010)                   | (0.008)                                    | (0.019)                   |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jun20, [60; 69]} + \delta_{Jun20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.020^{*}$<br>(0.009)   | $-0.080^{***}$<br>(0.009)                  | $-0.109^{***}$<br>(0.014) |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Jun20, [70; 79]} + \delta_{Jun20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.080***                 | -0.101***                                  | -0.154***                 |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Jul20} _{20:49]} + \delta_{Jul20} _{20:49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.010)<br>$0.085^{***}$  | (0.012)<br>0.029*                          | (0.020)<br>$-0.077^*$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.014)                   | (0.012)                                    | (0.030)                   |
| $Aftert \times 1\{Month_{t} = Jul20\} \times 1\{Age_{i} = [50; 59]\}(\Delta_{Jul20, [50; 59]} + \delta_{Jul20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.066 (0.012)            | (0.009)                                    | -0.037 '<br>(0.020)       |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jul20, [60; 69]} + \delta_{Jul20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.042^{***}$<br>(0.011)  | $-0.022^{*}$<br>(0.011)                    | $-0.044^{**}$<br>(0.015)  |
| $After_t \times 1{Month_t = Jul20} \times 1{Age_i = [70; 79]}(\Delta_{Jul20, [70; 79]} + \delta_{Jul20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.035^{**}$             | -0.085***                                  | $-0.135^{***}$            |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Aug20} _{20:49} + \delta_{Aug20} _{20:49})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.011)<br>$0.038^{**}$   | (0.013)<br>0.057***                        | (0.020)<br>0.024          |
| $A fter, \times 1 \{Month. = Auc20\} \times 1 \{Acc. = [50; 50]\} (A + \delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.013)<br>0.024*         | (0.010)                                    | (0.030)                   |
| $After_{t} \times 1\{Month_{t} = Aug_{20}\} \times 1\{Age_{i} = [50; 59]\}(\Delta_{Aug_{20}}, [50; 59] + \delta_{Aug_{20}}, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.024)                   | (0.008)                                    | (0.021)                   |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Aug20, [60; 69]} + \delta_{Aug20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006                     | $-0.042^{***}$<br>(0.010)                  | $-0.051^{***}$<br>(0.015) |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Aug20, [70; 79]} + \delta_{Aug20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.032**                  | -0.082***                                  | -0.139***                 |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Sep20} _{20:49} + \delta_{Sep20} _{20:49})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.010)<br>0.038**        | (0.012)<br>0.029**                         | (0.021)<br>0.022          |
| $A_{f_{1}} = \sqrt{1} \left( M_{e_{1}} + h_{e_{2}} - g_{e_{2}} + g_{e_{2}} \right) \times \left( M_{e_{2}} + g_{e_{2}} - g_{e_{2}} + g_{e_{2}} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.013)                   | (0.010)                                    | (0.030)                   |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Sep20}, [50; 59] + o_{Sep20}, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.019)                   | (0.008)                                    | (0.020)                   |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Sep20, [60; 69]} + \delta_{Sep20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.002 (0.010)             | $-0.032^{***}$<br>(0.009)                  | $-0.073^{***}$<br>(0.014) |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Sep20, [70; 79]} + \delta_{Sep20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.026^{*}$              | -0.050***                                  | $-0.074^{***}$            |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Oct20} _{20:49} + \delta_{Oct20} _{20:49})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.011)<br>$-0.063^{***}$ | (0.012)<br>$-0.094^{***}$                  | (0.020)<br>$-0.144^{***}$ |
| $Aften \times 1[Month = Oct20] \times 1[Acc = [50; 50]](A = acc + b = acc +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.013)<br>-0.080***      | (0.011)                                    | (0.031)<br>-0.122***      |
| $After_{t} \times 1\{Mbnint = Oci20\} \times 1\{Age_{i} = [50; 59]\}(\Delta_{Oct20}, [50; 59] + b_{Oct20}, [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.011)                   | (0.009)                                    | (0.019)                   |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Oct20, [60; 69]} + \delta_{Oct20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.089^{***}$<br>(0.010) | $-0.116^{***}$<br>(0.010)                  | $-0.150^{***}$<br>(0.015) |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Oct20, [70; 79]} + \delta_{Oct20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.138***                 | -0.107***                                  | -0.175***                 |
| $After_t \times 1{Month_t = Nov20} \times 1{Age_i = [20; 49]}(\Delta_{Nov20, [20; 49]} + \delta_{Nov20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.011)<br>0.001          | (0.013)<br>$-0.089^{***}$                  | (0.020)<br>$-0.117^{***}$ |
| $Aften \times 1[Month = Nor20] \times 1[Aac = [50, 50]](A = 1, \dots, m + \delta_{12}, \dots, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.013)<br>-0.045***      | (0.011)<br>- 0.062***                      | (0.034)<br>-0.125***      |
| $A_{1} = \{x \in [1, 0], x \in [1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.011)                   | (0.009)                                    | (0.020)                   |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Nov20, [60; 69]} + \delta_{Nov20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.063^{***}$<br>(0.010) | -0.096*** (0.010)                          | $-0.145^{***}$<br>(0.015) |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Nov20, [70; 79]} + \delta_{Nov20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.106***                 | -0.156***                                  | -0.192***                 |
| $After_t \times 1{Month_t = Dec20} \times 1{Age_i = [20; 49]}(\Delta_{Dec20, [20; 49]} + \delta_{Dec20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.011)<br>$-0.096^{***}$ | (0.013)<br>$-0.153^{***}$                  | (0.021)<br>$-0.146^{***}$ |
| $A ftan \times 1 \{Month = Dac20\} \times 1 \{Aac = [50, 50]\} (A - 1) + (A - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.014)<br>-0.110***      | (0.011)                                    | (0.032)<br>-0.128***      |
| $A field \times \{A field + B f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.012)                   | (0.009)                                    | (0.020)                   |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Dec20, [60; 69]} + \delta_{Dec20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.126^{***}$<br>(0.010) | -0.184***<br>(0.010)                       | $-0.216^{***}$<br>(0.015) |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Dec20, [70; 79]} + \delta_{Dec20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.184***                 | -0.221***                                  | -0.284***                 |
| $After_t \times 1{Month_t = Jan21} \times 1{Age_i = [20; 49]}(\Delta_{Jan21, [20; 49]} + \delta_{Jan21, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.012)<br>$-0.270^{***}$ | (0.013)<br>$-0.298^{***}$                  | (0.021)<br>$-0.413^{***}$ |
| $After_{4} \times 1\{Month_{4} = Jan21\} \times 1\{Age_{1} = [50; 59]\}(\Delta_{1} = a_{1}r_{2}r_{2} + \delta_{1} = a_{1}r_{2}r_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.016)<br>-0.267***      | (0.012)<br>-0.304***                       | (0.037)<br>$-0.360^{***}$ |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$                                                                                                                                                      | (0.013)                   | (0.009)                                    | (0.022)                   |
| $After_t \times 1\{Month_t = Jan21\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jan21}, [60; 69] + \delta_{Jan21}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.303 (0.012)            | (0.012)                                    | -0.384<br>(0.017)         |
| $After_t \times 1\{Month_t = Jan21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Jan21, [70; 79]} + \delta_{Jan21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.382^{***}$            | -0.408***                                  | $-0.441^{***}$            |
| $After_t \times 1{Month_t = Feb21} \times 1{Age_i = [20; 49]}(\Delta_{Feb21, [20; 49]} + \delta_{Feb21, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.155^{***}$            | $-0.241^{***}$                             | $-0.308^{***}$            |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_i = [50; 59]\}(\Delta_{Feb21} (50.50] + \delta_{Feb21} (50.50])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.015)<br>$-0.150^{***}$ | (0.012)<br>$-0.239^{***}$                  | (0.038)<br>$-0.295^{***}$ |
| $A_{f_{1}} = \sqrt{1} \left( M_{1} + K_{1} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 20 \right) \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 \right) \times 1 \left( A_{2} + F_{2} + 21 $ | (0.013)                   | (0.009)                                    | (0.022)                   |
| $After_t \times 1\{Montn_t = Feb21\} \times 1\{Age_i = [00; 09]\}(\Delta_{Feb21}, [60; 69] + \sigma_{Feb21}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.011)                   | (0.011)                                    | (0.017)                   |
| $After_t \times 1\{Month_t = Feb21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Feb21, [70; 79]} + \delta_{Feb21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.216^{***}$<br>(0.013) | $-0.293^{***}$<br>(0.015)                  | $-0.345^{***}$<br>(0.023) |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i = [20; 49]\}(\Delta_{Mar21, [20; 49]} + \delta_{Mar21, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.026^{+}$              | -0.118***                                  | -0.178***                 |
| $After_{t} \times 1\{Month_{t} = Mar21\} \times 1\{Age_{i} = [50; 59]\}(\Delta_{Mar21}   (50.50] + \delta_{Mar21}   (50.50])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.015)<br>-0.022         | (0.012)<br>$-0.104^{***}$                  | (0.038)<br>$-0.206^{***}$ |
| $A ften, \times 1[Month. = Man21] \times 1[A [a0, a0])/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.013)                   | (0.010)                                    | (0.023)                   |
| $s_{f} = (00; 09) \{(\Delta Mar21, [60; 69] + 0Mar21, [60; 69])\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.012)                   | (0.012)                                    | (0.017)                   |
| $After_t \times 1\{Month_t = Mar21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Mar21, [70; 79]} + \delta_{Mar21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.063^{***}$<br>(0.013) | $-0.119^{***}$<br>(0.015)                  | $-0.190^{***}$<br>(0.024) |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i = [20; 49]\}(\Delta_{Apr21, [20; 49]} + \delta_{Apr21, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.019                    | -0.097***                                  | -0.117**                  |
| $After_t \times 1{Month_t = Apr21} \times 1{Age_i = [50; 59]}(\Delta_{Apr21, [50; 59]} + \delta_{Apr21, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.016)<br>$-0.045^{***}$ | (0.012)<br>$-0.088^{***}$                  | (0.039)<br>$-0.135^{***}$ |
| $After_{1} \times 1[Month_{1} - 4nr21] \times 1[Ann_{2} - [60, 60]]/A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.013)<br>-0.040***      | (0.010)                                    | (0.023)<br>$-0.124^{***}$ |
| $A_{pr21} = \{00, 09\} (09) (09) (09) (00) + 0 A_{pr21} (60;69) + 0 A_{pr21} (60;69) )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.012)                   | (0.012)                                    | (0.017)                   |
| $After_t \times 1\{Month_t = Apr21\} \times 1\{Age_i = [70; 79]\}(\Delta_{Apr21, [70; 79]} + \delta_{Apr21, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-0.054^{***}$<br>(0.013) | $-0.110^{***}$<br>(0.016)                  | $-0.166^{***}$<br>(0.024) |
| Month FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                       | Yes                                        | Yes                       |
| Individual FE<br>Age Group× $Year_t(\Psi_{it})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes<br>Yes                | Yes<br>Yes                                 | Yes<br>Yes                |
| Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25838                     | 25556                                      | 7000                      |
| Jbservations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,018,346                 | 1,017,717                                  | 278,939<br>0.537          |
| R-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                     | 0.000                                      | 0.001                     |

 $\begin{array}{l} + {\rm p}{<}0.1; \ ^*{\rm p}{<}0.05; \ ^{**}{\rm p}{<}0.01; \ ^{***}{\rm p}{<}0.001\\ {\rm All \ columns \ estimated \ with \ person \ fixed \ effects}\\ {\rm Cluster \ robust \ standard \ errors \ in \ (); \ Errors \ clustered \ by \ person \ } \end{array}$ 

## Table 16: Impact of age and comorbidity on consumption expenditures (maps to figure A.7).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dependent variable:       |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | log(Ex<br>Comorbidity = 0 | $pense_{it}$ )<br>Comorbiditu = 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)                       | (2)                               |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Mar20, [20; 49]} + \delta_{Mar20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.070***                 | -0.099***                         |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Mar20, [50; 59]} + \delta_{Mar20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.007) \\ -0.070^{***}$ | (0.016)<br>$-0.072^{***}$         |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Mar20, [60; 69]} + \delta_{Mar20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.006) \\ -0.060^{***}$ | (0.013)<br>$-0.046^{***}$         |
| $After_t \times 1\{Month_t = Mar20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Mar20}, [70; 79] + \delta_{Mar20}, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.005)<br>$-0.080^{***}$ | $(0.012) \\ -0.067^{***}$         |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Apr20, [20; 49]} + \delta_{Apr20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.007)<br>$-0.255^{***}$ | (0.014)<br>$-0.332^{***}$         |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Apr20, [50; 59]} + \delta_{Apr20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.008)<br>$-0.268^{***}$ | $(0.018) \\ -0.317^{***}$         |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Apr20}, [60; 69] + \delta_{Apr20}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.006)<br>$-0.323^{***}$ | $(0.014) \\ -0.375^{***}$         |
| $After_t \times 1\{Month_t = Apr20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Apr20}, [70; 79] + \delta_{Apr20}, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.006)<br>$-0.381^{***}$ | $(0.014) \\ -0.403^{***}$         |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [20; 49]\}(\Delta_{May20}   20:49] + \delta_{May20}   20:49]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.008)<br>$-0.148^{***}$ | $(0.016) \\ -0.173^{***}$         |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [50; 59]\}(\Delta_{May20} [50; 59] + \delta_{May20} [50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.008)<br>$-0.137^{***}$ | $(0.018) \\ -0.174^{***}$         |
| $After_t \times 1\{Month_t = May20\} \times 1\{Age_i = [60; 69]\}(\Delta_{May20}, [60; 60] + \delta_{May20}, [60; 60])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.006)<br>-0.160***      | (0.014)<br>-0.206***              |
| $After_{t} \times 1\{Month_{t} = May20\} \times 1\{Aae_{t} = [70; 79]\}(\Delta May20, [00, 00] + May20, [00, 00])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.006)<br>-0.180***      | (0.014)<br>-0.207***              |
| $After, \times 1[Month, = Jun20] \times 1[Age = [20, 49]](\Delta x = ge (ge (x) + \delta x = ge (ge (x))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.007)<br>0.066***       | (0.015)<br>0.042*                 |
| $Aften \times 1[Month_{t} = Jun20] \times 1[Age_{t} = [50, 50]](A_{2} = un20, [20; 49] + \delta Jun20, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.008)                   | (0.018)                           |
| $A_{fiest} = 1 \{M_{0}, M_{0}, M_{1}, M_{1}, M_{2}, M_{2}, M_{1}, M_{2}, M_{2},$ | (0.006)                   | (0.013)                           |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jun20}, [60; 69] + \delta_{Jun20}, [60; 69])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.006)                   | -0.024<br>(0.013)                 |
| $After_t \times 1\{Month_t = Jun20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Jun20}, [70; 79] + \delta_{Jun20}, [70; 79])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.009<br>(0.007)         | -0.025<br>(0.015)                 |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Jul20, [20; 49]} + \delta_{Jul20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.110***<br>(0.009)       | 0.103***<br>(0.020)               |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Jul20, [50; 59]} + \delta_{Jul20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.116***<br>(0.007)       | 0.091***<br>(0.016)               |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Jul20, [60; 69]} + \delta_{Jul20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.082***<br>(0.007)       | 0.066***<br>(0.016)               |
| $After_t \times 1\{Month_t = Jul20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Jul20, [70; 79]} + \delta_{Jul20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.013^+$<br>(0.008)      | $0.034^{*}$<br>(0.016)            |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Aug20, [20; 49]} + \delta_{Aug20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.109***                  | 0.137***                          |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Aug20, [50; 59]} + \delta_{Aug20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.108***                  | 0.109***                          |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Aug20, [60; 69]} + \delta_{Aug20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.052***                  | 0.058***                          |
| $After_t \times 1\{Month_t = Aug20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Aug20, [70; 79]} + \delta_{Aug20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.018*                    | 0.039*                            |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Sep20, [20; 49]} + \delta_{Sep20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.098***                  | 0.099***                          |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Sep20, [50; 59]} + \delta_{Sep20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.084***                  | 0.077***                          |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Sep20, [60; 69]} + \delta_{Sep20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.053***                  | (0.014)<br>0.039**<br>(0.013)     |
| $After_t \times 1\{Month_t = Sep20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Sep20, [70; 79]} + \delta_{Sep20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.045***                  | (0.013)<br>0.039*                 |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Oct20, [20; 49]} + \delta_{Oct20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.007)<br>-0.023**       | (0.015)<br>-0.010                 |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Oct20, [50; 59]} + \delta_{Oct20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.008)<br>$-0.016^*$     | (0.017)<br>-0.021                 |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Oct20, [60; 69]} + \delta_{Oct20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.006) - 0.033^{***}$   | $(0.014) - 0.035^{**}$            |
| $After_t \times 1\{Month_t = Oct20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Oct20, [70; 79]} + \delta_{Oct20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.006) \\ -0.047^{***}$ | $(0.014) \\ -0.048^{**}$          |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Nov20, [20; 49]} + \delta_{Nov20, [20; 49]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.008)<br>0.013          | (0.015)<br>-0.002                 |
| $After_t \times 1\{Month_t = Nov20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Nov20, [50; 59]} + \delta_{Nov20, [50; 59]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.008)<br>0.007          | (0.017)<br>-0.023                 |
| $After_{t} \times 1\{Month_{t} = Nov20\} \times 1\{Age_{i} = [60; 69]\}(\Delta_{Nov20, [60; 69]} + \delta_{Nov20, [60; 69]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(0.006) \\ -0.014^*$     | (0.014)<br>-0.014                 |
| $After_{t} \times 1\{Month_{t} = Nov20\} \times 1\{Age_{i} = [70; 79]\}(\Delta_{Nov20, [70; 79]} + \delta_{Nov20, [70; 79]})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.006)<br>-0.049***      | (0.014)<br>-0.056***              |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [20; 49]\}(\Delta_{Dec20}, [20; 49] + \delta_{Dec20}, [20; 49])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.008) \\ -0.067^{***}$ | $(0.015) \\ -0.053^{**}$          |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [50; 59]\}(\Delta_{Dec20}   50; 59] + \delta_{Dec20}   50; 59])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.008) \\ -0.061^{***}$ | (0.017)<br>$-0.055^{***}$         |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [60; 69]\}(\Delta_{Dec20} [60; 60] + \delta_{Dec20} [60; 60])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(0.007) \\ -0.083^{***}$ | $(0.015) \\ -0.110^{***}$         |
| $After_t \times 1\{Month_t = Dec20\} \times 1\{Age_i = [70; 79]\}(\Delta_{Dec20}, [70, 70] + \delta_{Dec20}, [70, 70])$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(0.006) \\ -0.121^{***}$ | $(0.014) \\ -0.165^{***}$         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.008)                   | (0.016)                           |
| Month FE<br>Individual FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes<br>Yes                | Yes<br>Yes                        |
| $\begin{array}{l} \text{Income Group} \times I \ eart \ (\Psi_{it}) \\ \text{Acceleration} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                       | Yes                               |
| Age Group × Income Group × Yeart $(\Psi_{it})$<br>Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes<br>1.972.669          | Yes<br>342,333                    |
| $R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.631                     | 0.568                             |
| Adjusted K <sup>2</sup><br>Residual Std. Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.621<br>0.696            | 0.557<br>0.635                    |
| Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + p<0.1; * p<0.05; *      | * p<0.01; *** p<0.001             |

+ p<0.1; \* p<0.05; \*\* p<0.01; \*\*\* p<0.001 Cluster robust standard errors in (); Errors clustered by person

## **B** Appendix B: partial-equilibrium model

In this appendix, we display the value functions of people of different ages and health statuses and our method for computing the aggregate consumption of young and old.

#### **B.1** Value functions

The value function of a susceptible young person at time t is<sup>B.2</sup>

$$U_{y,t}^{s}(b_{t}) = \max_{c_{y,t}^{s}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{y,t}^{s})^{1-\rho} + \beta \left[ (1-\tau_{y,t})(1-\delta_{y}-v)\left(U_{y,t+1}^{s}(b_{t+1})\right)^{(1-\alpha)} + (1-\tau_{y,t})v\left(U_{o,t+1}^{s}(b_{t+1})\right)^{(1-\alpha)} + \tau_{y,t}(1-\delta_{y}-v)\left(U_{y,t+1}^{i}(b_{t+1})\right)^{(1-\alpha)} + \tau_{y,t}v\left(U_{o,t+1}^{i}(b_{t+1})\right)^{1-\alpha} + \delta_{y}B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

The value function of an old, susceptible person at time  $t, U_{o,t}^s(b_t)$ , is

$$U_{o,t}^{s}(b_{t}) = \max_{c_{o,t}^{s}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{o,t}^{s})^{1-\rho} + \beta \left[ (1-\tau_{o,t})(1-\delta_{o}) \left( U_{o,t+1}^{s}(b_{t+1}) \right)^{1-\alpha} + \tau_{o,t}(1-\delta_{o}) \left( U_{o,t+1}^{i}(b_{t+1}) \right)^{1-\alpha} + \delta_{o}B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

With probability  $\delta_o$  the person dies of non-Covid causes. With probability  $(1 - \tau_{o,t})(1 - \delta_o)$ , this person survives and does not get infected, remaining a susceptible old person. With probability  $\tau_{o,t}(1 - \delta_o)$ , the person survives but gets infected, becoming an infected old person.

The value function of a young, infected person at time  $t, U_{u,t}^i(b_t)$ , is

$$U_{y,t}^{i}(b_{t}) = \max_{c_{y,t}^{i}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{y,t}^{i})^{1-\rho} + \beta \left[ (1-\pi_{yr,t}-\pi_{yd,t})(1-\delta_{y}-v) \left( U_{y,t+1}^{i}(b_{t+1}) \right)^{1-\alpha} + (1-\pi_{yr,t}-\pi_{yd,t})v \left( U_{o,t+1}^{i}(b_{t+1}) \right)^{1-\alpha} + \pi_{yr,t}(1-\delta_{y}-v) \left( U_{y,t+1}^{r}(b_{t+1}) \right)^{1-\alpha} + \pi_{yr,t}v \left( U_{o,t+1}^{r}(b_{t+1}) \right)^{1-\alpha} + \left[ \delta_{y} + \pi_{yd,t}(1-\delta_{y}) \right] B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

A person who is young and infected at time t remains in that state at time t + 1 with subjective probability  $(1 - \pi_{yr,t} - \pi_{yd,t})(1 - \delta_y - v)$ , remains infected and becomes old with subjective probability  $(1 - \pi_{yr,t} - \pi_{yd,t})v$ , recovers and stays young with probability  $\pi_{yr,t}(1 - \delta_y - v)$ , recovers and ages with probability  $\tau_{y,t}v$ , and dies of non-Covid causes with probability  $\delta_y$ .

<sup>&</sup>lt;sup>B.2</sup>This formulation and the others below involve a slight abuse of notation. The perceived value function  $U_{a,t+1}^h$  is computed at time t assuming that  $\pi_{ad,t+j} = \pi_{ad,t}$  for all j. The realized value function at time t+1, is computed assuming that  $\pi_{ad,t+1+j} = \pi_{ad,t+1}$  for all j. Our notation does not distinguish between these two types of value functions. In solving the model, we do take into account this distinction.

The value function of an old infected person at time  $t, U_{o,t}^i(b_t)$ , is

$$U_{o,t}^{i}(b_{t}) = \max_{c_{o,t}^{i}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{o,t}^{i})^{1-\rho} + \beta \left[ (1-\pi_{or,t}-\pi_{od,t})(1-\delta_{o}) \left( U_{o,t+1}^{i}(b_{t+1}) \right)^{1-\alpha} + \pi_{or,t}(1-\delta_{o}) \left( U_{o,t+1}^{r}(b_{t+1}) \right)^{1-\alpha} + \left[ \delta_{o} + \pi_{od,t}(1-\delta_{o}) \right] B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

A person who is old and infected at time t remains in that state at time t+1 with subjective probability  $(1 - \pi_{or,t} - \pi_{od,t})(1 - \delta_o)$ , recovers with probability  $\pi_{or,t}(1 - \delta_o)$ , dies of Covid with probability  $(1 - \delta_0)\pi_{od,t}$ , and dies of non-Covid causes with probability  $\delta_o$ .

The value function of a young recovered person at time  $t, U_{y,t}^r(b_t)$ , is

$$U_{y,t}^{r}(b_{t}) = \max_{c_{y,t}^{r}, b_{t+1}} \left\{ z + \left\{ (1-\beta)((1-\mu_{t})c_{y,t}^{r})^{1-\rho} + \beta \left[ (1-\delta_{y}-v) \left( U_{y,t+1}^{r}(b_{t+1}) \right)^{1-\alpha} + v \left( U_{o,t+1}^{r}(b_{t+1}) \right)^{1-\alpha} + \delta_{y} B(b_{t+1})^{1-\alpha} \right]^{(1-\rho)/(1-\alpha)} \right\}^{1/(1-\rho)} \right\}.$$

This person is immune from the virus but still faces two sources of uncertainty: aging with probability v and dying from non-viral causes with probability  $\delta_y$ .

The value function of an old recovered person at time  $t, U_{o,t}^r(b_t)$ , is

$$U_{o,t}^{r}(b_{t}) = \max_{c_{o,t}^{r}, b_{t+1}} \left\{ \begin{array}{c} z + \{(1-\beta)((1-\mu_{t})c_{o,t}^{r})^{1-\rho} \\ +\beta[(1-\delta_{o})\left(U_{o,t+1}^{r}(b_{t+1})\right)^{1-\alpha} + \delta_{o}B(b_{t+1})^{1-\alpha}]^{(1-\rho)/(1-\alpha)}\}^{1/(1-\rho)} \end{array} \right\}.$$

This person faces only one source of uncertainty, which is dying of non-Covid causes with probability  $\delta_o$ .

The result of the maximization problems is a set of policy functions of the form  $c_{a,t}^{h}(b)$ . To compare the model implications with the data, we need to compute per capita consumption for young  $(C_{yt})$  and old  $(C_{ot})$ . These variables are given by:

$$C_{yt} = \frac{S_{yt} \int c_{yt}^s(b) f_{yt}^s(b) db + I_{yt} \int c_{yt}^i(b) f_{yt}^i(b) db + R_{yt} \int c_{yt}^r(b) f_{yt}^r(b) db}{S_{yt} + I_{yt} + R_{yt}}$$

and

$$C_{ot} = \frac{S_{ot} \int c_{yt}^{s}(b) f_{ot}^{s}(b) db + I_{ot} \int c_{ot}^{i}(b) f_{ot}^{i}(b) db + R_{ot} \int c_{ot}^{r}(b) f_{ot}^{r}(b) db}{S_{ot} + I_{ot} + R_{ot}},$$

where  $f_{at}^{h}(b)$  is the distribution assets at time t among people with age a and health status h.

We first solve for the value functions  $\bar{U}_{a,t}^h$  for a version of the model with no infections  $(I_{yt} = I_{ot} = 0)$ . As an approximation, we assume that infections are zero at the end of our sample. We use  $\bar{U}_{a,t}^h$  as the value functions at the end of our sample and recurse backward. At each point in time, we calculate the value functions conditional on the number of infections inferred from the data. For further details on the computation methods, please consult the replication materials on the authors' websites.

# B.2 Computing consumption per capita in partial equilibrium model

To compare the model's implications with the data, we need to compute per capita consumption for the young  $(C_{yt})$  and old  $(C_{ot})$ . These variables are given by:

$$C_{yt} = \frac{S_{yt} \int c_{yt}^s(b) f_{yt}^s(b) db + I_{yt} \int c_{yt}^i(b) f_{yt}^i(b) db + R_{yt} \int c_{yt}^r(b) f_{yt}^r(b) db}{S_{yt} + I_{yt} + R_{yt}},$$
(B.3)

and

$$C_{ot} = \frac{S_{ot} \int c_{yt}^{s}(b) f_{ot}^{s}(b) db + I_{ot} \int c_{ot}^{i}(b) f_{ot}^{i}(b) db + R_{ot} \int c_{ot}^{r}(b) f_{ot}^{r}(b) db}{S_{ot} + I_{ot} + R_{ot}}.$$
 (B.4)

To calculate  $C_{yt}$  and  $C_{ot}$  we need to compute the distributions of assets at time t for people with different ages and health statuses. Characterizing these distributions is feasible but computationally very intensive because asset holdings depend on people's health histories (whether and when they became infected or recovered). As time passes, the number of possible health histories increases dramatically, creating substantial heterogeneity. However, because the three epidemic waves occur over roughly one year, and people can borrow and lend at a fixed interest rate, the asset heterogeneity generated by different health histories is, in practice, quantitatively small.

To estimate the model, we have to solve it numerous times. To make estimation computationally feasible, we use the consumption of a person whose health status remained constant (as susceptible, infected, or recovered) over time to approximate the values of  $\int c_{yt}^s(b) f_{yt}^s(b) db$ ,  $\int c_{yt}^i(b) f_{yt}^i(b) db$ , and  $\int c_{yt}^r(b) f_{yt}^r(b) db$ . To show that people with the same current health status but different health histories have very similar consumption, we proceed as follows. We compare the consumption of a person who is infected at time zero and remains infected with a person infected at time t. The maximum absolute difference between the consumption of these two people is roughly six euros for young and five euros for old. We also compare the consumption of a person who recovers at time zero with a person who is infected at time t and recovers two weeks later. The maximum absolute difference between the consumption of these two people is roughly nine euros for young and ten euros for old. Since most people in the economy are susceptible and do not change their health status, the effect of our approximation on  $C_{yt}$  and  $C_{ot}$  is very small, less than two euros according to our calculations.

The equations we use to compute the values of  $S_{at}$ ,  $I_{at}$ , and  $R_{at}$  (for a = y, o) are as follows. To simplify, we split the total number of infections observed in the data between young and old according to their population shares,  $share_{y,t}$  and  $share_{o,t}$ :

$$I_{yt} = share_{y,t}I_t,$$
$$I_{ot} = share_{o,t}I_t.$$

The aggregate case fatality rate is

$$\pi_{d,t}^* = share_{y,t}\pi_{yd,t}^* + share_{o,t}\pi_{od,t}^*.$$

Let  $D_t^{covid}$  denote cumulative Covid deaths up to time t. In period t + 1 we observe new Covid deaths  $(D_{t+1}^{covid} - D_t^{covid})$ . Using these data, we compute the total number of infected people in the economy as:

$$I_{t} = \frac{D_{t+1}^{covid} - D_{t}^{covid}}{\pi_{d,t}^{*}}.$$

Since our sample period is roughly one year, we assume for simplicity that  $s_{y,t}$  and  $s_{o,t}$  are constant and equal to their values at the beginning of the sample.

Using the fact that  $R_{y,0} = R_{o,0} = D_{y,0}^{covid} = D_{o,0}^{covid} = 0$ , we compute  $R_{y,t+1}$ ,  $R_{o,t+1}$ ,  $D_{y,t+1}^{covid}$ ,  $D_{o,t+1}^{covid}$  recursively as follows:

$$R_{y,t+1} = R_{y,t}(1 - \delta_y - v) + I_{y,t}\pi_{yr}^*(1 - \delta_y - v),$$
$$R_{o,t+1} = R_{o,t}(1 - \delta_o) + R_{y,t}v + I_{y,t}\pi_{yr}^*v + I_{o,t}\pi_{or,t}^*(1 - \delta_o),$$

$$D_{y,t+1}^{covid} = D_{y,t}^{covid} + \pi_{yd,t}^* I_{y,t},$$
$$D_{o,t+1}^{covid} = D_{o,t}^{covid} + \pi_{od,t}^* I_{o,t}.$$

Finally, we compute the number of young and old susceptible people as a residual

$$S_{yt} = share_{y,t} - I_{y,t} - R_{y,t} - D_{y,t}^{covid},$$
$$S_{ot} = share_{o,t} - I_{o,t} - R_{o,t} - D_{o,t}^{covid}.$$

#### **B.3** Equivalence between two ways of modeling containment

In this subsection, we consider two models. In both models, there is containment in period one. In the first model, households cannot consume a fraction 1 - n of the goods in period one because of containment measures. In the second model, containment takes the form of a wedge in the utility function that reduces the utility of consumption in period one. We show, in a simple setting, that these two ways of modeling containment are equivalent. Model where some goods cannot be consumed in period one Consider a simple two-period problem where the objective is to maximize,

$$U = \log(C_1) + \beta \log(C_2),$$

Consumption is given by a continuum of differentiated goods combined according to a Dixit-Stiglitz aggregator,

$$C_t = \left(\int_0^{n_t} x_{it}^{\alpha} di\right)^{1/\alpha},$$

where  $\alpha < 1$ . The household's budget constraint is

$$\int_0^{n_1} p_{i1} x_{i1} di + (1+r)^{-1} \int_0^1 p_{i2} x_{i2} di = Y,$$

where Y denotes household income. In period 1, there is containment, so households can only consume the first  $n_1 < 1$  goods. There is no containment in period 2, so  $n_2 = 1$ .

To simplify, we assume that  $\beta = (1+r)^{-1}$  and that

$$p_{i1} = p_{i2} = p.$$

In this case,

$$C_1 = n_1^{1/\alpha} x_1$$
$$C_2 = x_2$$

We can rewrite the utility function as,

$$U = \log\left(n_1^{1/\alpha}x_1\right) + \beta \log(x_2),$$

and the budget constraint as,

$$n_1 p x_1 + (1+r)^{-1} p x_2 = Y.$$

The first-order conditions for  $x_1$  and  $x_2$  are

$$x_1^{-1} = \lambda n_1 p,$$
  
 $\beta x_2^{-1} = \lambda (1+r)^{-1} p,$ 

where  $\lambda$  is the Lagrange multiplier associated with the budget constraint. Combining,

$$\frac{x_2}{x_1} = n_1$$
Using the budget constraint, we obtain,

$$x_{1} = \frac{1}{1 + (1 + r)^{-1}} \frac{Y}{n_{1}p},$$
$$x_{2} = \frac{1}{1 + (1 + r)^{-1}} \frac{Y}{p},$$
$$\frac{C_{2}}{C_{1}} = n_{1}^{1 - 1/\alpha}.$$

Model with a wedge in utility The objective is to maximize

$$U = (1 - \mu)\log(C_1) + \beta\log(C_2),$$

subject to the budget constraint

$$C_1 + (1+r)^{-1}C_2 = Y.$$

The first-order conditions are

$$\frac{1-\mu}{C_1} = \lambda,$$
  
$$\beta \frac{1}{C_2} = \lambda (1+r)^{-1}.$$

Combining these two equations,

$$\frac{C_2}{C_1} = \frac{1}{1 - \mu}.$$

For each value of n in the first economy, we can always choose a wedge  $\mu$  in the second economy such that households choose the same consumption in the two economies,

$$(1-\mu)^{-1} = n_1^{1-1/\alpha}.$$

We can rewrite this expression as,

$$\mu = 1 - n_1^{1/\alpha - 1} > 0.$$

The smaller is n, the fraction of goods that can be consumed in the first economy, the larger is  $\mu$ , the utility wedge in the second economy. These results can easily be generalized to other environments.

### **B.4** Calibration of case-fatality rates

Sorensen et al. (2022) estimate the population-wide time trend in the infection-fatality rate from April 2020 to January 2021 for Portugal. According to Table 2 (page 1479) in Sorensen et al. (2022), the point estimates for the infection fatality rates on April 15, 2020, July 15, 2020, October 15, 2020, and January 1, 2021, are 2.683%, 2.085%, 1.805% and 1.708%, respectively. We discuss below how we convert infection-fatality rates into case-fatality rates.

Given that our sample ranges from March 1, 2020 through May 15, 2021, we assume that the infection-fatality rate on March 1 is the same as on April 15, 2020, i.e., 2.683%. Likewise, we assume that the infection-fatality rate after May 15, 2021 (the last date of our sample) is the same as on January 1, 2021, i.e., 1.708%.

We assume that the weekly time profile of the infection-fatality rates is flat, i.e., the infection-fatality rates decline stepwise over time with discrete steps at the above dates. We normalize the resulting time series of the infection fatality rates by its value on July 26, 2020. The resulting time series has the value of unity on July 26, a value of 1.2868 on March 1, 2020, and a value of 0.8192 on May 15, 2021, with discrete stepwise declines at the dates listed above and flat time profiles in between the dates listed above.

Note that  $100 \times (1 - 0.8192/1.2868) = 36.3382$  implies that the infection fatality rate on May 15, 2021, is about 36% lower than on March 1, 2020. Finally, we multiply the normalized time series for infection fatality rates from Sorensen et al. (2022) with the July 26, 2020 estimates of the case-fatality rates for young and old  $\pi_{yd}^*$  and  $\pi_{od}^*$ . This calculation results in time series for  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$  that have a downward trend (with stepwise declines at the dates listed above and flat time profiles in between the dates). The blue-dashed lines in Figure 7 show the resulting time series for  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$ . Finally, we assume that the values of  $\pi_{yd,t}^*$  and  $\pi_{od,t}^*$  are such that, on average, infected people recover or die in two weeks ( $\pi_{or,t}^* + \pi_{od,t}^* = \pi_{yr,t}^* + \pi_{yd,t}^* = 7/14$ ). We make the same assumption for the beliefs of case-fatality rates, i.e.,  $\pi_{or,t} + \pi_{od,t} = \pi_{yr,t} + \pi_{yd,t} = 7/14$ .

### **B.5** Perfect foresight solution

This figure corresponds to a version of the model in which people know about the second and third waves at the beginning of the epidemic.



Figure B.8: Perfect foresight solution.

## B.6 Gauging the effect of alpha variant

The figure below illustrates the impact of assuming that the alpha variant was fifty percent more contagious than the ancestral Covid virus. This variant was detected in Portugal in the week of December 7, 2020, so we assume that  $\pi_1$  and  $\pi_2$  increase by 50 percent from that week on.



Figure B.9: Higher infectiousness starting in the week of December 6, 2020.

### B.7 Model with constant case-fatality rate

The figure below shows results for a version of the model in which the true case-fatality rates are constant over time.



Figure B.10: Consumption of young and old in the epidemic. Model with constant case fatality rates and data implications for changes in expenditures of young and old during the epidemic relative to a counterfactual without Covid.

# C Appendix C: Model of endemic Covid

In this appendix, we first describe the model of endemic Covid. Then we discuss the computational algorithm and the model parameterization.

### C.1 Model

In our partial-equilibrium analysis, we abstract from births because we focus on a short period. Here we study steady-state properties, so we modify the model to ensure that the total population and the shares of younger and older people are constant. We assume that in each period  $\mathfrak{B}_{y,t}$  young people without comorbidities are born. In addition,  $\mathfrak{B}_{o,t}$  people are born with comorbidities.

The number of newly infected people with age a is given by the following transmission

function

$$T_{a,t} = \pi_1 S_{a,t} (1 - \phi_a) C^s_{a,t} (I_{y,t} C^i_{y,t} + I_{o,t} C^i_{o,t}) + \pi_2 S_{a,t} (1 - \phi_a) N^s_{a,t} (I_{y,t} N^i_{y,t} + I_{o,t} N^i_{o,t}) C.5) + \pi_3 S_{a,t} (1 - \phi_a) (I_{y,t} + I_{o,t}) .$$

The variables  $C_{a,t}^s$  and  $C_{a,t}^i$  represent the consumption of susceptible and infected people of age a, respectively. The variables  $N_t^s$  and  $N_t^i$  represent the total hours worked by susceptible and infected people of age a, respectively. Susceptible people of age a are vaccinated with probability  $\phi_a$ . Susceptible people who are vaccinated acquire immunity to the virus without becoming infected. Critically, we assume that both people who have been vaccinated and have acquired immunity by becoming infected lose, on average, their immunity after  $1/\pi_s$  weeks, becoming susceptible again.

The number of newly infected people with age *a* that results from consumption-related interactions is given by  $\pi_1 S_{a,t}(1-\phi_a)C_{a,t}^s(I_{y,t}C_{y,t}^i+I_{o,t}C_{o,t}^i)$ . The term  $S_{a,t}(1-\phi_a)C_{a,t}^s$  is the total consumption of susceptible people with age *a* who have not been vaccinated. The term  $I_{y,t}C_{y,t}^i + I_{o,t}C_{o,t}^i$  represents total consumption of infected people. The parameter  $\pi_1$  reflects both the amount of time spent in consumption activities and the probability of becoming infected due to those activities.

The number of newly infected people that results from interactions at work is given by  $\pi_2 S_{a,t}(1-\phi_a)N_{a,t}^s(I_{y,t}N_{y,t}^i+I_{o,t}N_{o,t}^i)$ . The term  $S_{a,t}(1-\phi_a)N_{a,t}^s$  is the total hours worked by susceptible people with age a who have not been vaccinated. The term  $I_{y,t}N_{y,t}^i+I_{o,t}N_{o,t}^i$  represents total hours worked by infected people. The parameter  $\pi_2$  reflects the probability of infection due to work interactions.

Susceptible and infected people can meet in ways unrelated to consuming or working. The number of random meetings between susceptible people with age a who have not been vaccinated and infected people is  $S_{a,t}(1-\phi_a)(I_{y,t}+I_{o,t})$ . These meetings result in  $\pi_3 S_{a,t}(1-\phi_a)(I_{y,t}+I_{o,t})$  newly infected people with age a.

The timing is as follows. The changes in health status caused by the epidemic occur at the beginning of the period. Aging and natural death occur at the end of the period.

The number of young and old susceptible people at time t + 1 is given by:

$$S_{y,t+1} = [S_{y,t}(1 - \phi_y) - T_{y,t}](1 - \delta_y - v) + \pi_s R_{y,t} + \mathfrak{B}_{y,t},$$
(C.6)

$$S_{o,t+1} = [S_{o,t}(1-\phi_o) - T_{o,t}](1-\delta_o) + [S_{y,t}(1-\phi_y) - T_{y,t}]v + \pi_s R_{o,t} + \mathfrak{B}_{o,t}.$$
 (C.7)

The number of young and old infected people at time t + 1 is given by:

$$I_{y,t+1} = I_{y,t}(1 - \pi_{yr} - \pi_{yd}^*)(1 - \delta_y - v) + T_{y,t}(1 - \delta_y - v),$$
(C.8)

$$I_{o,t+1} = I_{o,t}(1 - \pi_{or} - \pi_{od}^*)(1 - \delta_o) + T_{y,t}v + T_{o,t}(1 - \delta_o) + I_{y,t}(1 - \pi_{yr} - \pi_{yd}^*)v.$$
(C.9)

The number of young and old recovered people at time t + 1 is given by:

$$R_{y,t+1} = R_{y,t}(1 - \delta_y - v - \pi_s) + \phi_y S_{y,t}(1 - \delta_y - v) + I_{y,t}\pi_{yr}(1 - \delta_y - v),$$
(C.10)

$$R_{o,t+1} = R_{o,t}(1 - \delta_o - \pi_s) + \phi_o S_{o,t}(1 - \delta_o) + v\phi_y S_{y,t} + R_{y,t}v + I_{y,t}\pi_{yr}v + I_{o,t}\pi_{or}(1 - \delta_o).$$
(C.11)

New deaths at the end of period t are given by

$$D_{y,t+1} - D_{y,t} = I_{y,t}\pi_{yd}^* - \pi_{yd}^*vI_{y,t} + \delta_y[S_{y,t} + I_{y,t}(1 - \pi_{yd}^*) + R_{y,t}],$$
  
$$D_{o,t+1} - D_{o,t} = \delta_o S_{o,t} + \delta_o I_{o,t}(1 - \pi_{od}^*) + \pi_{od}^*I_{o,t} + \delta_o R_{o,t} + I_{y,t}\pi_{yd}^*v.$$

The number of births that keeps the population constant is

$$\mathfrak{B}_{y,t} = D_{y,t+1} - D_{y,t},$$
$$\mathfrak{B}_{o,t} = D_{o,t+1} - D_{o,t}.$$

#### C.1.1 The household problem

For tractability, we assume that people are organized into households, each with a continuum of identical members. This household structure introduces limited sharing of health risks. Without the household structure, the asset holdings of a person would depend on how long they had a particular health status. As time goes by, we would have to keep track of an increasing number of types of people.

At time zero, a household has a continuum of measure one of family members. The law of large numbers applies and has two implications. First, the demographic composition of the household is the same as the composition of the population, i.e., it includes the same fraction of people of different ages and health statuses. Second, the household problem is deterministic.

We modify the utility specification in Section 6 to allow for endogenous labor supply. The household's lifetime utility is given by

$$U_t = z + m_t + \beta \left( E_t U_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}, \qquad (C.12)$$

where  $m_t$  is a weighted average of the momentary utility of the household members:

$$m_t = \sum_{a \in \{o, y\}} [s_{a,t}u(c_{a,t}^s, n_{a,t}^s) + i_{a,t}u(c_{a,t}^i, n_{a,t}^i) + r_{a,t}u(c_{a,t}^r, n_{a,t}^r)].$$

The variables  $s_{a,t}$ ,  $i_{a,t}$ , and  $r_{a,t}$  denote the number of family members with age a who are susceptible, infected, and recovered, respectively. The variables  $c_{a,t}^h$  and  $n_{a,t}^h$  denote the consumption and hours worked by people with age a and health status h, respectively. The utility function of a person with age a and health status h is

$$u(c_{a,t}^{h}, n_{a,t}^{h}) = \frac{\left(c_{a,t}^{h}\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(n_{a,t}^{h}\right)^{2}.$$

Since the household faces no uncertainty,  $U_{t+1} = (E_t U_{t+1}^{1-\alpha})^{1/(1-\alpha)}$ , and we can rewrite household utility as

$$U_t = z + m_t + \beta U_{t+1}.$$

The household budget constraint is given by

$$\sum_{a \in \{o,y\}} (s_{a,t}c_{a,t}^s + i_{a,t}c_{a,t}^i + r_{a,t}c_{a,t}^r) + k_{t+1} - (1 - \delta_k)k_t = w_t \sum_{a \in \{o,y\}} (s_{a,t}n_{a,t}^s + i_{a,t}n_{a,t}^i + r_{a,t}n_{a,t}^r) + R_t^k k_t.$$
(C.13)

Here,  $k_t$  denotes the stock of capital,  $\delta_k$  the depreciation rate,  $w_t$  the real wage rate, and  $R_t^k$  the real rental rate of capital.

The number of newly infected people of age a is given by:

$$\tau_{a,t} = \pi_1 s_{a,t} (1 - \phi_a) c^s_{a,t} (I_{y,t} C^i_{y,t} + I_{o,t} C^i_{o,t}) + \pi_2 s_{a,t} (1 - \phi_a) n^s_{a,t} (I_{y,t} N^i_{y,t} + I_{o,t} N^i_{o,t}) C.14) + \pi_3 s_{a,t} (1 - \phi_a) (I_{y,t} + I_{o,t}) .$$

The household can affect  $\tau_{a,t}$  through its choice of  $c_{a,t}^s$  and  $n_{a,t}^s$ . However, the household takes economy-wide aggregates  $I_{y,t}C_{y,t}^i + I_{o,t}C_{o,t}^i$ , and  $I_{y,t}N_{y,t}^i + I_{o,t}N_{o,t}^i$  as given, i.e., it does not internalize the impact of its choices on economy-wide infection rates.

To simplify, we assume that a fraction  $\phi_o$  of old susceptibles and a fraction  $\phi_y$  of young susceptibles get vaccinated. The fraction of the initial family that is susceptible, infected, and recovered at time t + 1 is given by:

$$s_{y,t+1} = [s_{y,t}(1-\phi_y) - \tau_{y,t}](1-\delta_y - v) + \pi_s r_{y,t} + \mathfrak{b}_{y,t},$$
(C.15)

$$s_{o,t+1} = [s_{o,t}(1-\phi_o) - \tau_{o,t}](1-\delta_o) + [s_{y,t}(1-\phi_y) - \tau_{y,t}]v + \pi_s r_{o,t} + \mathfrak{b}_{o,t},$$
(C.16)

$$i_{y,t+1} = i_{y,t}(1 - \pi_{yr} - \pi_{yd}^*)(1 - \delta_y - v) + \tau_{y,t}(1 - \delta_y - v),$$
(C.17)

$$i_{o,t+1} = i_{o,t}(1 - \pi_{or} - \pi_{od}^*)(1 - \delta_o) + \tau_{y,t}v + \tau_{o,t}(1 - \delta_o) + i_{y,t}(1 - \pi_{yr} - \pi_{yd}^*)v, \quad (C.18)$$

$$r_{y,t+1} = r_{y,t}(1 - \delta_y - v - \pi_s) + \phi_y s_{y,t}(1 - \delta_y - v) + i_{y,t}\pi_{yr}(1 - \delta_y - v),$$
(C.19)

 $r_{o,t+1} = r_{o,t}(1 - \delta_o - \pi_s) + s_{o,t}\phi_o(1 - \delta_o) + v\phi_y s_{y,t} + r_{y,t}v + i_{y,t}\pi_{yr}v + i_{o,t}\pi_{or}(1 - \delta_o).$ (C.20)

The household maximizes (C.12) subject to the budget constraint (C.13) and to the laws of motion for the health status of family members (equations (C.14)-(C.20)).

#### C.1.2 The firms' problem

Output is produced by a continuum of measure one of competitive firms, each of whom produces the final good with a Cobb-Douglas production function that combines capital  $(K_t)$  and labor  $(N_t)$ . Firms maximize their profits, given by

$$\pi = AK_t^{1-\gamma}N_t^{\gamma} - R_t^k K_t - w_t N_t.$$

The first-order conditions for the firm's problem are:

$$(1 - \gamma)AK_t^{-\gamma}N_t^{\gamma} = R_t^k,$$
$$\gamma AK_t^{1-\gamma}N_t^{\gamma-1} = w_t.$$

#### C.1.3 Equilibrium in goods and factor markets

In equilibrium, households and firms solve their maximization problems and the market for consumption, hours worked, and output clear,

$$C_{t} = \sum_{a \in \{o, y\}} \left[ S_{a,t} C_{a,t}^{s} + I_{a,t} C_{a,t}^{i} + R_{a,t} C_{a,t}^{r} \right],$$
  

$$N_{t} = \sum_{a \in \{o, y\}} \left[ S_{a,t} N_{a,t}^{s} + I_{a,t} N_{a,t}^{i} + R_{a,t} N_{a,t}^{r} \right],$$
  

$$C_{t} + K_{t+1} = A K_{t}^{1-\gamma} N_{t}^{\gamma} + (1 - \delta_{k}) K_{t}.$$

The fraction of people in the family with age a who are susceptible, infected and recovered is the same as the corresponding fraction in the population:

$$s_{a,t} = S_{a,t}, i_{a,t} = I_{a,t}$$
, and  $r_{a,t} = R_{a,t}$ .

The market for physical capital clears

$$K_t = k_t.$$

#### C.1.4 Calibration of endemic Covid model

With one exception, parameters common to the partial- and general-equilibrium model are set to the values discussed in Section 6.1. The exception is z, the constant in the utility function. This parameter is reset to -1.125 so that, as in our partial-equilibrium model, the value of life in a pre-epidemic steady state is roughly 900 thousand euros.

Moving to general equilibrium introduces a new set of parameters that we must calibrate. We set  $\gamma = 2/3$ , which is consistent with recent estimates by Lopes et al. (2021) of the labor share inclusive of the income received by self-employed workers attributable to labor. The weekly rate of capital depreciation  $\delta_k$  is 0.1/52.

Consistent with our estimates in Section (7), we set  $\pi_1$  so that the fraction of infections in the pre-epidemic steady state due to consumption is 4.6 percent. We set  $\pi_2$  so that the fraction of infections in the pre-epidemic steady state due to work activities is also 4.6 percent. We set  $\pi_3$  so that the basic reproduction rate,  $\mathcal{R}_0$ , is 2.5. Recall that this estimate of  $\mathcal{R}_0$  is close to the one that the Center for Disease Control prefers. The resulting parameter values are  $\pi_1 = 7.8210 \times 10^{-7}$ ,  $\pi_2 = 7.3822 \times 10^{-5}$  and  $\pi_3 = 1.1342$ . We choose  $\pi_s = 1/26$ , which is consistent with the notion that immunity lasts, on average, for six months.

Recall that the weekly probabilities of dying once infected  $(\pi_{od,t}^* \text{ and } \pi_{yd,t}^*)$  decline over time, consistent with the time trend in Sorensen et al. (2022). We choose the values of  $\pi_{od,t}^*$  and  $\pi_{yd,t}^*$  equal to those obtained at the end of our sample. Consistent with our estimated model, we assume that the values of  $\pi_{or,t}$  and  $\pi_{yr,t}$  are such that, on average, infected people recover or die in two weeks  $(\pi_{or,t} + \pi_{od,t}^* = \pi_{yr,t} + \pi_{yd,t}^* = 7/14)$ .

We set  $\phi_y = \phi_o = 1/26$ , which implies that roughly 4 percent of the population gets vaccinated each week. This value is approximately the weekly fraction of the population vaccinated between April 1 and September 1, 2021. We set the probability of aging v = 0.000634 so that the population's pre-epidemic share of old people is 0.3.

According to the Statistics Portugal 1999 Survey of Time Use, employed people spend roughly 7 hours per day at work. The fraction of the population employed in 2019 is 57.6 percent. So, the average hours worked per week in the population is 28 (7 × 7 × 0.576). We set  $\theta = 0.007401$ , so people work 28 hours per week in the pre-epidemic steady state. We set A = 1.086265 so that, as in Section 6.1, annual income is 19,000 Euros in the pre-epidemic steady state.

For the population of young and old to be constant in the steady state, we require an

inflow of newborns. Given our other assumptions, this requirement implies that:  $\mathfrak{B}_{y,t} = 0.000711$  and  $\mathfrak{B}_{o,t} = 0.000054$ . Recall that  $\mathfrak{B}_{o,t}$  and  $\mathfrak{B}_{y,t}$  represent newborns with and without comorbidities, respectively.

The steady-state distribution of people across age and health status for an economy with endemic Covid is as follows: 57 percent of the population is recovered, 42 percent is susceptible, and 1 percent is infected. The fraction of people that die weekly from all causes is 0.08 of 1 percent. Covid accounts for 7.6 percent of these deaths. A fraction 0.006 of 1 percent of the population dies from Covid each week. Average life expectancy at birth falls on a log-percentage basis by 1.5 percent, from 66.7 to 65.6 years.<sup>C.3</sup>

### C.2 First-order conditions and computational algorithm

The state variables of the household problem are  $\Omega_t = \{s_t, i_t, r_t, k_t\}$ . We will omit them to simplify the notation.

Lifetime utility is given by:

$$U_t = z + m_t + \beta \left( E_t U_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

The household problem is deterministic because the law of large numbers applies: the fraction of family members in each health state follows a deterministic path. Since risk does not play a role, we can rewrite lifetime utility as

$$U_{t} = z + m_{t} + \beta U_{t+1}$$

$$m_{t} = \sum_{a \in \{o, y\}} s_{a,t} u(c_{a,t}^{s}, n_{a,t}^{s}) + i_{a,t} u(c_{a,t}^{i}, n_{a,t}^{i}) + r_{a,t} u(c_{a,t}^{r}, n_{a,t}^{r}).$$

$$u(c_{a,t}^{h}, n_{a,t}^{h}) = \frac{(c_{a,t}^{h})^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} (n_{a,t}^{h})^{2}.$$

Budget constraint

$$\sum_{a \in \{o,y\}} (s_{a,t}c_{a,t}^s + i_{a,t}c_{a,t}^i + r_{a,t}c_{a,t}^r) + k_{t+1} - (1 - \delta_k)k_t = w_t \sum_{a \in \{o,y\}} (s_{a,t}n_{a,t}^s + i_{a,t}n_{a,t}^i + r_{a,t}n_{a,t}^r) + R_t^k k_t$$

Transmission function for age a

$$\tau_{a,t} = \pi_1 s_{a,t} (1 - \phi_a) c_{a,t}^s (I_{y,t} C_{y,t}^I + I_{o,t} C_{o,t}^I) + \pi_2 s_{a,t} (1 - \phi_a) n_{a,t}^s (I_{y,t} N_{y,t}^i + I_{o,t} N_{o,t}^i)$$
  
+  $\pi_3 s_{a,t} (1 - \phi_a) (I_{y,t} + I_{o,t})$ 

<sup>&</sup>lt;sup>C.3</sup>Recall that we exclude people younger than 20 from our analysis which reduces life expectancy.

Social dynamics

$$s_{y,t+1} = [s_{y,t}(1-\phi_y) - \tau_{y,t}](1-\delta_y - v) + \pi_s r_{y,t} + \mathfrak{b}_{y,t},$$
(C.21)

$$s_{o,t+1} = [s_{o,t}(1-\phi_o) - \tau_{o,t}](1-\delta_o) + [s_{y,t}(1-\phi_y) - \tau_{y,t}]v + \pi_s r_{o,t} + \mathfrak{b}_{o,t},$$
(C.22)

$$i_{y,t+1} = i_{y,t}(1 - \pi_{yr} - \pi_{yd})(1 - \delta_y - v) + \tau_{y,t}(1 - \delta_y - v),$$
(C.23)

$$i_{o,t+1} = i_{o,t}(1 - \pi_{or} - \pi_{od})(1 - \delta_o) + \tau_{y,t}v + \tau_{o,t}(1 - \delta_o) + i_{y,t}(1 - \pi_{yr} - \pi_{yd})v, \quad (C.24)$$

$$r_{y,t+1} = r_{y,t}(1 - \delta_y - v - \pi_s) + \phi_y s_{y,t}(1 - \delta_y - v) + i_{y,t}\pi_{yr}(1 - \delta_y - v), \qquad (C.25)$$

$$r_{o,t+1} = r_{o,t}(1 - \delta_o - \pi_s) + s_{o,t}\phi_o(1 - \delta_o) + v\phi_y s_{y,t} + r_{y,t}v + i_{y,t}\pi_{yr}v + i_{o,t}\pi_{or}(1 - \delta_o).$$
(C.26)

FOCs for consumption

$$(c_{a,t}^{s})^{-\rho} - \lambda_{t}^{b} + \lambda_{a,t}^{\tau} \pi_{1} (1 - \phi_{a}) (I_{y,t} C_{y,t}^{i} + I_{o,t} C_{o,t}^{i}) = 0$$
$$(c_{a,t}^{i})^{-\rho} - \lambda_{t}^{b} = 0$$
$$(c_{a,t}^{r})^{-\rho} - \lambda_{t}^{b} = 0$$

FOCs for labor

$$\begin{split} -\theta n_{a,t}^s + w_t \lambda_t^b + \lambda_{a,t}^\tau \pi_2 (1 - \phi_a) (I_{y,t} N_{y,t}^i + I_{o,t} N_{o,t}^i) &= 0 \\ -\theta n_{a,t}^i + w_t \lambda_t^b &= 0 \\ -\theta n_{a,t}^r + w_t \lambda_t^b &= 0 \end{split}$$

FOC for  $k_{t+1}$ 

$$\lambda_{t}^{b} = \beta \lambda_{t+1}^{b} [R_{t+1}^{k} + 1 - \delta_{k}]$$

$$\frac{dU_{t}}{ds_{a,t}} = \frac{\left(c_{a,t}^{s}\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(n_{a,t}^{s}\right)^{2}$$

$$\frac{dU_{t}}{di_{a,t}} = \frac{\left(c_{a,t}^{i}\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(n_{a,t}^{i}\right)^{2}$$

$$\frac{dU_{t}}{dr_{a,t}} = \frac{\left(c_{a,t}^{r}\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(n_{a,t}^{r}\right)^{2}$$

$$\frac{dU_{t}}{dU_{t+1}} = \beta$$

The first-order condition for  $s_{y,t+1}$ ,  $s_{o,t+1}$ ,  $i_{y,t+1}$ ,  $i_{o,t+1}$ ,  $r_{y,t+1}$ ,  $r_{o,t+1}$ ,  $\tau_{y,t}$ , and  $\tau_{o,t}$  are

$$\frac{dU_t}{dU_{t+1}} \frac{dU_{t+1}}{ds_{y,t+1}} + \beta \lambda_{t+1}^b (w_{t+1} n_{y,t+1}^s - c_{y,t+1}^s) - \lambda_{y,t}^s + \beta \lambda_{y,t+1}^s (1 - \phi_y)(1 - \delta_y - v) \\
+ \beta \lambda_{y,t+1}^r \phi_y (1 - \delta_y - v) + \beta \lambda_{o,t+1}^r v \phi_y + \\
\beta \lambda_{o,t+1}^s (1 - \phi_y) v + \beta \lambda_{y,t+1}^r (1 - \phi_y) [\pi_1 c_{y,t+1}^s (I_{y,t+1} C_{y,t+1}^i + I_{o,t+1} C_{o,t+1}^i) \\
+ \pi_2 n_{y,t+1}^s (I_{y,t+1} N_{y,t+1}^i + I_{o,t+1} N_{o,t+1}^i) + \pi_3 (I_{y,t+1} + I_{o,t+1})]$$

$$= 0,$$

$$\frac{dU_t}{dU_{t+1}}\frac{dU_{t+1}}{ds_{o,t+1}} + \beta\lambda_{t+1}^b(w_{t+1}n_{o,t+1}^s - c_{o,t+1}^s) - \lambda_{o,t}^s + \beta\lambda_{o,t+1}^s(1 - \phi_o)(1 - \delta_o) 
+ \beta\lambda_{o,t+1}^r\phi_o(1 - \delta_o) 
+ \beta\lambda_{o,t+1}^\tau(1 - \phi_o) \begin{bmatrix} \pi_1 c_{o,t+1}^s(I_{y,t+1}C_{y,t+1}^i + I_{o,t+1}C_{o,t+1}^i) \\ + \pi_2 n_{o,t+1}^s(I_{y,t+1}N_{y,t+1}^I + I_{o,t+1}N_{o,t+1}^i) + \pi_3(I_{y,t+1} + I_{o,t+1}) \end{bmatrix} = 0,$$

$$\begin{split} \frac{dU_t}{dU_{t+1}} \frac{dU_{t+1}}{di_{y,t+1}} + \beta \lambda_{t+1}^b (w_{t+1} n_{y,t+1}^i - c_{y,t+1}^i) \\ -\lambda_{y,t}^i + \beta \lambda_{y,t+1}^i (1 - \pi_{yr} - \pi_{yd}) (1 - \delta_y - v) + \\ \beta \lambda_{o,t+1}^i (1 - \pi_{yr} - \pi_{yd}) v + \beta \lambda_{y,t+1}^r \pi_{yr} (1 - \delta_y - v) + \beta \lambda_{o,t+1}^r \pi_{yr} v = 0, \\ \frac{dU_t}{dU_{t+1}} \frac{dU_{t+1}}{di_{o,t+1}} + \beta \lambda_{t+1}^b (w_{t+1} n_{o,t+1}^i - c_{o,t+1}^i) - \lambda_{o,t}^i \\ + \beta \lambda_{o,t+1}^i (1 - \pi_{or} - \pi_{od}) (1 - \delta_o) + \beta \lambda_{o,t+1}^r \pi_{or} (1 - \delta_o) = 0, \\ \frac{dU_t}{dU_{t+1}} \frac{dU_{t+1}}{dr_{y,t+1}} + \beta \lambda_{t+1}^b (w_{t+1} n_{y,t+1}^r - c_{y,t+1}^r) + \beta \lambda_{y,t+1}^s - \lambda_{y,t}^r \\ + \beta \lambda_{y,t+1}^r (1 - \delta_y - v - \pi_s) + \beta \lambda_{o,t+1}^r v = 0, \\ \frac{dU_t}{dU_{t+1}} \frac{dU_{t+1}}{dr_{o,t+1}} + \beta \lambda_{t+1}^b (w_{t+1} n_{o,t+1}^r - c_{o,t+1}^r) + \beta \lambda_{o,t+1}^s \pi_s \\ -\lambda_{o,t}^r + \beta \lambda_{o,t+1}^r (1 - \delta_o - \pi_s) = 0, \\ -\lambda_{y,t}^s (1 - \delta_y - v) - \lambda_{o,t}^s v + \lambda_{y,t}^i (1 - \delta_y - v) + \lambda_{o,t}^i v - \lambda_{y,t}^r = 0, \\ -\lambda_{o,t}^s (1 - \delta_o) + \lambda_{o,t}^i (1 - \delta_o) - \lambda_{o,t}^r = 0. \end{split}$$

## C.2.1 Firm problem

$$\pi = AK_t^{1-\gamma}N_t^{\gamma} - R_t^k K_t - w_t N_t$$
$$(1-\gamma)AK_t^{-\gamma}N_t^{\gamma} = R_t^k$$
$$\gamma AK_t^{1-\gamma}N_t^{\gamma-1} = w_t$$

## C.2.2 Equilibrium in goods and factor markets

$$N_{t} = \sum_{a \in \{o, y\}} \left[ S_{a,t} N_{a,t}^{s} + I_{a,t} N_{a,t}^{i} + R_{a,t} N_{a,t}^{r} \right]$$
$$C_{t} = \sum_{a \in \{o, y\}} \left[ S_{a,t} C_{a,t}^{s} + I_{a,t} C_{a,t}^{i} + R_{a,t} C_{a,t}^{r} \right]$$
$$C_{t} + K_{t+1} = A K_{t}^{1-\gamma} N_{t}^{\gamma} + (1-\delta_{k}) K_{t}$$

## C.2.3 Population dynamics

$$T_{a,t} = \pi_1 S_{a,t} (1 - \phi_a) C^s_{a,t} (I_{y,t} C^i_{y,t} + I_{o,t} C^i_{o,t}) + \pi_2 S_{a,t} (1 - \phi_a) N^s_{a,t} (I_{y,t} N^i_{y,t} + I_{o,t} N^i_{o,t}) + \pi_3 S_{a,t} (1 - \phi_a) (I_{y,t} + I_{o,t}) .$$

Social dynamics

$$\begin{split} S_{y,t+1} &= \left( S_{y,t}(1-\phi_y) - T_{y,t} \right) \left( 1 - \delta_y - v \right) + \pi_s R_{y,t} + \mathfrak{B}_{y,t} \\ S_{o,t+1} &= \left( S_{o,t}(1-\phi_o) - T_{o,t} \right) \left( 1 - \delta_o \right) + \left( S_{y,t}(1-\phi_y) - T_{y,t} \right) v + \pi_s R_{o,t} + \mathfrak{B}_{o,t} \\ I_{y,t+1} &= I_{y,t}(1 - \pi_{yr} - \pi_{yd}) (1 - \delta_y - v) + T_{y,t}(1 - \delta_y - v) \\ I_{o,t+1} &= I_{o,t}(1 - \pi_{or} - \pi_{od}) (1 - \delta_o) + T_{y,t}v + T_{o,t}(1 - \delta_o) + I_{y,t}(1 - \pi_{yr} - \pi_{yd}) v \\ R_{y,t+1} &= R_{y,t}(1 - \delta_y - v - \pi_s) + \phi_y S_{y,t}(1 - \delta_y - v) + I_{y,t}\pi_{yr}(1 - \delta_y - v) \\ R_{o,t+1} &= R_{o,t}(1 - \delta_o - \pi_s) + \phi_o S_{o,t}(1 - \delta_o) + v\phi_y S_{y,t} + R_{y,t}v + I_{y,t}\pi_{yr}v + I_{o,t}\pi_{or}(1 - \delta_o) \end{split}$$

### C.2.4 Steady state

In the steady state, we impose

$$S_y + R_y + I_y = \omega_y$$
$$S_o + I_o + R_o = \omega_o$$
$$\omega_y + \omega_o = 1$$

Calculate:

$$R^k = \frac{1}{\beta} - 1 + \delta_k$$

Guess  $\mathfrak{B}_y$  and  $\mathfrak{B}_o.$  Calculate

$$I_y = \frac{\mathfrak{B}_y - (v + \delta_y)\,\omega_y}{(1 - v - \delta_y)\,\pi_{dy}}$$

$$T_y = \frac{1 - (1 - \pi_{yr} - \pi_{yd})(1 - \delta_y - v)}{1 - \delta_y - v} I_y$$
$$R_y = \frac{1 - v - \delta_y}{v + \delta_y + \pi_s + \phi_y (1 - v - \delta_y)} \left( I_y \pi_{ry} + \phi_y (\omega_y - I_y) \right)$$
$$S_y = \omega_y - I_y - R_y$$

and

$$I_{o} = \frac{\mathfrak{B}_{o} + v \left(R_{y} + S_{y} + (1 - \pi_{dy}) I_{y}\right)}{(1 - \delta_{o}) \pi_{do}} - \frac{\delta_{o}\omega_{o}}{(1 - \delta_{o}) \pi_{do}}$$
$$T_{o} = \frac{\left(1 - (1 - \pi_{or} - \pi_{od})(1 - \delta_{o})\right) I_{o} - v \left(T_{y} + I_{y}(1 - \pi_{yr} - \pi_{yd})\right)}{1 - \delta_{o}}$$
$$R_{o} = \frac{v \left(R_{y} + I_{y}\pi_{ry} + \phi_{y}S_{y}\right) + (1 - \delta_{o}) \left(I_{o}\pi_{or} + \phi_{o} \left(\omega_{o} - I_{o}\right)\right)}{\delta_{o} + \pi_{s} + \phi_{o} \left(1 - \delta_{o}\right)}$$
$$S_{o} = \omega_{o} - R_{o} - I_{o}$$

Guess N

$$K = \left(\frac{(1-\gamma)AN^{\gamma}}{R^k}\right)^{\frac{1}{\gamma}}$$
$$w = \gamma A K^{1-\gamma} N^{\gamma-1}$$

Guess  $C_y^i$ 

$$\lambda^{b} = (C_{y}^{i})^{-\rho}$$

$$C_{o}^{i} = C_{y}^{i}$$

$$C_{o}^{r} = C_{y}^{i}$$

$$C_{y}^{r} = C_{y}^{i}$$

$$N_{y}^{i} = \frac{w\lambda^{b}}{\theta}$$

$$N_{o}^{i} = N_{y}^{i}$$

$$N_{v}^{r} = N_{y}^{i}$$

$$N_{o}^{r} = N_{y}^{i}$$

$$C = AK^{1-\gamma}N^{\gamma} - \delta_{k}K$$

Guess  $C_y^s$  and  $N_y^s$ 

$$N_{o}^{s} = \frac{N - \sum_{a \in \{o, y\}} [I_{a}N_{a}^{i} + R_{a}N_{a}^{r}] - S_{y}N_{y}^{s}}{S_{o}}$$
$$C_{o}^{s} = \frac{C - \sum_{a \in \{o, y\}} [I_{a}C_{a}^{i} + R_{a}C_{a}^{r}] - S_{y}C_{y}^{s}}{S_{o}}$$

$$\begin{split} u(C_a^h, N_a^h) &= \frac{\left(C_a^h\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(N_a^h\right)^2 \\ m &= \sum_{a \in \{o, y\}} S_a u(C_a^s, N_a^s) + I_a u(C_a^i, N_a^i) + R_a u(C_a^r, N_a^r) \\ U &= \frac{1}{1-\beta} \left(z+m\right) \\ \frac{dU}{dS_a} &= \frac{\left(C_a^s\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(N_a^s\right)^2 \\ \frac{dU}{dI_a} &= \frac{\left(C_a^i\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(N_a^i\right)^2 \\ \frac{dU}{dR_a} &= \frac{\left(C_a^r\right)^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} \left(N_a^r\right)^2 \end{split}$$

Guess  $\lambda_o^{\tau}$ ,  $\lambda_y^{\tau}$ ,  $\lambda_o^r$  and  $\lambda_y^r$ :

$$\begin{split} \lambda_o^s &= \frac{\beta \frac{dU}{dS_o} + \beta \lambda^b (wN_o^s - C_o^s) + \beta \lambda_o^r \phi_o (1 - \delta_o)}{1 - \beta (1 - \phi_o) (1 - \delta_o)} \\ &+ \frac{\beta \lambda_o^\tau (1 - \phi_o) \left[ \pi_1 C_o^s (I_y C_y^i + I_o C_o^i) + \pi_2 N_o^s (I_y N_y^I + I_o N_o^I) + \pi_3 (I_y + I_o) \right]}{1 - \beta (1 - \phi_o) (1 - \delta_o)} \\ \lambda_y^s &= \frac{\left( \begin{array}{c} \beta \frac{dU}{dS_y} + \beta \lambda^b (wN_y^s - C_y^s) + \beta \lambda_o^s (1 - \phi_y) v + \beta \lambda_y^r \phi_y (1 - \delta_y - v) \\ + \beta \lambda_o^r v \phi_y + \beta \lambda_y^\tau (1 - \phi_y) [\pi_1 C_y^s (I_y C_y^i + I_o C_o^i) + \pi_2 N_y^s (I_y N_y^I + I_o N_o^I) + \pi_3 (I_y + I_o)] \right)}{1 - \beta (1 - \phi_y) (1 - \delta_y - v)} \\ \lambda_o^i &= \frac{\lambda_o^\tau + \lambda_o^s (1 - \delta_o)}{1 - \delta_o} \\ \lambda_y^i &= \frac{\lambda_y^\tau - \lambda_o^i v + \lambda_o^s v + \lambda_y^s (1 - \delta_y - v)}{1 - \delta_y - v} \end{split}$$

Adjust guesses for  $\mathfrak{B}_y, \mathfrak{B}_o, N, C_y^i, C_y^s, N_y^s, \lambda_o^{\tau}, \lambda_y^{\tau}, \lambda_o^r$  and  $\lambda_y^r$  to make the following equations hold:

1) 
$$T_y = (1 - \phi_y) \left( \pi_1 S_y C_y^s (I_y C_y^i + I_o C_o^i) + \pi_2 S_y N_y^s (I_y N_y^i + I_o N_o^i) + \pi_3 S_y (I_y + I_o) \right)$$
  
2)  $T_o = (1 - \phi_o) \left( \pi_1 S_o C_o^s (I_y C_y^i + I_o C_o^i) + \pi_2 S_o N_o^s (I_y N_y^i + I_o N_o^i) + \pi_3 S_o (I_y + I_o) \right)$   
3)  $\left( C_y^s \right)^{-\rho} - \lambda^b + \lambda_y^\tau \pi_1 (1 - \phi_y) (I_y C_y^i + I_o C_o^i) = 0$   
4)  $\left( C_o^s \right)^{-\rho} - \lambda^b + \lambda_o^\tau \pi_1 (1 - \phi_o) (I_y C_y^i + I_o C_o^i) = 0$   
5)  $-\theta N_y^s + w \lambda^b + \lambda_y^\tau \pi_2 (1 - \phi_y) (I_y N_y^i + I_o N_o^i) = 0$ 

$$6) - \theta N_o^s + w\lambda^b + \lambda_o^\tau \pi_2 (1 - \phi_o) (I_y N_y^i + I_o N_o^i) = 0$$

$$7) \qquad \beta \frac{dU}{dI_y} + \beta \lambda^b (w N_y^i - C_y^i) - \lambda_y^i + \beta \lambda_y^i (1 - \pi_{yr} - \pi_{yd}) (1 - \delta_y - v) + \beta \lambda_o^i (1 - \pi_{yr} - \pi_{yd}) v + \beta \lambda_y^r \pi_{yr} (1 - \delta_y - v) + \beta \lambda_o^r \pi_{yr} v = 0$$

$$8) \beta \frac{dU}{dI_o} + \beta \lambda^b (w N_o^i - C_o^i) - \lambda_o^i + \beta \lambda_o^i (1 - \pi_{or} - \pi_{od}) (1 - \delta_o) + \beta \lambda_o^r \pi_{or} (1 - \delta_o) = 0,$$

$$9) \lambda_o^r = \frac{\beta \frac{dU}{dR_o} + \beta \lambda^b (w N_o^r - C_o^r) + \beta \lambda_o^s \pi_s}{1 - \beta (1 - \delta_o - \pi_s)}$$

$$10) \lambda_y^r = \frac{\beta \frac{dU}{dR_y} + \beta \lambda^b (w N_y^r - C_y^r) + \beta \lambda_y^s \pi_s + \beta \lambda_o^r v}{1 - \beta (1 - \delta_y - v - \pi_s)}$$

### C.2.5 Pre-epidemic steady state

Assume no vaccines and no re-infections. Set

 $S_y = \omega_y$ 

Then

$$S_o = 1 - S_y$$

Set  $\mathfrak{B}_o = 0$ . Then

$$v = \frac{S_o \delta_o}{S_y}$$
$$\mathfrak{B}_y = S_y (\delta_y + v)$$

Also

$$R^k = \frac{1}{\beta} - 1 + \delta_k$$

Fix income per capita (unit mass of population in pre-epidemic steady state):

$$inc = AK^{1-\gamma}N^{\gamma}$$

Calculate

$$A = \left[\frac{inc}{\left(\frac{1-\gamma}{R^k}\right)^{\frac{1-\gamma}{\gamma}}N}\right]^{\gamma}$$

$$\begin{split} K &= \left[\frac{(1-\gamma)AN^{\gamma}}{R^{k}}\right]^{\frac{1}{\gamma}}\\ C &= AK^{1-\gamma}N^{\gamma} - \delta_{k}K\\ w &= \gamma AK^{1-\gamma}N^{\gamma-1}\\ N &= N_{s}^{s}\\ N &= N_{o}^{s}\\ C &= C_{y}^{s}\\ C &= C_{s}^{s}\\ C &= C_{o}^{s}\\ \theta &= \frac{w\lambda^{b}}{N}\\ u(C_{a}^{s}, N_{a}^{s}) &= \frac{(C_{a}^{s})^{1-\rho} - 1}{1-\rho} - \frac{\theta}{2} (N_{a}^{s})^{2}\\ m &= \sum_{a \in \{o, y\}} S_{a}u(C_{a}^{s}, N_{a}^{s})\\ U &= \frac{1}{1-\beta} (z+m) \end{split}$$

# C.2.6 Calibration of transmission function parameters

Recall that the transmission functions take the form:

$$T_{y} = (1 - \phi_{y}) \left( \pi_{1} S_{y} C_{y}^{s} (I_{y} C_{y}^{i} + I_{o} C_{o}^{i}) + \pi_{2} S_{y} N_{y}^{s} (I_{y} N_{y}^{i} + I_{o} N_{o}^{i}) + \pi_{3} S_{y} (I_{y} + I_{o}) \right)$$
$$T_{o} = (1 - \phi_{o}) \left( \pi_{1} S_{o} C_{o}^{s} (I_{y} C_{y}^{i} + I_{o} C_{o}^{i}) + \pi_{2} S_{o} N_{o}^{s} (I_{y} N_{y}^{i} + I_{o} N_{o}^{i}) + \pi_{3} S_{o} (I_{y} + I_{o}) \right)$$

Evaluate at pre-epidemic steady state (also assuming no vaccines):

$$T_y = \pi_1 S_y C^2 (I_y + I_o) + \pi_2 S_y N^2 (I_y + I_o) + \pi_3 S_y (I_y + I_o),$$

$$T_o = \pi_1 S_o C^2 (I_y + I_o) + \pi_2 S_o N^2 (I_y + I_o) + \pi_3 S_o (I_y + I_o).$$

Calibrate  $\pi_1, \pi_2$  and  $\pi_3$ :

$$1/6 = \frac{\pi_1 C^2}{\pi_1 C^2 + \pi_2 N^2 + \pi_3},$$
  

$$1/6 = \frac{\pi_2 N^2}{\pi_1 C^2 + \pi_2 N^2 + \pi_3},$$
  

$$2.5 = R_0 = \frac{\frac{T_0}{I_0}}{S_y \pi_{ry} + S_o \pi_{ro} + S_y \pi_{dy} + S_o \pi_{do}} = \frac{\pi_1 C^2 + \pi_2 N^2 + \pi_3}{S_y \pi_{ry} + S_o \pi_{ro} + S_y \pi_{dy} + S_o \pi_{do}}.$$

Solving:

$$\pi_{1} = \frac{1/6 \times 2.5 \left(S_{y} \pi_{ry} + S_{o} \pi_{ro} + S_{y} \pi_{dy} + S_{o} \pi_{do}\right)}{C^{2}},$$
  

$$\pi_{2} = \frac{1/6 \times 2.5 \left(S_{y} \pi_{ry} + S_{o} \pi_{ro} + S_{y} \pi_{dy} + S_{o} \pi_{do}\right)}{N^{2}},$$
  

$$\pi_{3} = 2.5 \times \left(S_{y} \pi_{ry} + S_{o} \pi_{ro} + S_{y} \pi_{dy} + S_{o} \pi_{do}\right) - \pi_{1} C^{2} - \pi_{2} N^{2}.$$