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1 Introduction

It is now widely recognized that human behavior influences the dynamics of epidemics. But

how should we incorporate the impact of human actions into quantitative epidemiological

models?

In our view, a successful approach requires a quantitative theory of how people weigh the

risks of infections against the benefits of engaging in social interactions that contribute to the

spread of infectious diseases. The resulting model should also account for the interrelated

yet distinct effects of public policies and private behavior on the spread of the disease.

We develop such a model and evaluate its plausibility using a novel micro data set on

consumption expenditures in Portugal. In so doing, we encounter two key challenges. The

first is to account for the cross-sectional consumption response of individuals of different

ages at a given point in time. This response is consistent with a full-information, rational

expectations (FIRE) model in which the old rationally fear that they are more likely than

the young to die from an infectious disease. The second challenge is to account for the time-

series response of consumption of the young and old across the first three waves of Covid.

The consumption responses in the first and third waves are similar, but deaths per capita

were much larger in the third wave than in the first. At the same time, government-imposed

containment measures were similar in the first and third waves. These observations are

inconsistent with a simple FIRE model.

We develop a quantitative model that meets the challenges discussed above. In so doing,

we face a set of difficulties likely to be encountered by any researcher modeling an epidemic

in a specific location and the observed behavioral responses to disease threats over extended

time horizons. These difficulties include how to (i) model the evolution over time of individual

beliefs about the risks presented by a new disease; (ii) model the evolution over time of beliefs

that individuals have about the persistence of this risk; (iii) model individual beliefs about

the impact of the actions that they can take to mitigate the risks of infection; (iv) isolate

the separate roles of risk aversion (uncertainty over health outcomes) and intertemporal

substitution in shaping behavior; (v) model the extent to which individuals care about dying

(the value of bequests versus the value of living); (vi) reconcile the large short-run impact

of Covid on consumption expenditures with the small corresponding impact of the secular

decline in mortality from infectious diseases and (vii) separate the quantitative impacts of

public policy such as lockdowns and private behavior on economic and disease outcomes.
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We model lockdowns as a wedge in the consumers utility and assume that the magnitude of

this wedge is proportional to an index of the severity of lockdowns in Portugal constructed

by an external source. We estimate and judge the importance of lockdowns by the impact of

changes in the proportionality factor on model fit. Our approach to modeling containment is

equivalent, in many contexts, to an absolute prohibition on purchases of certain goods (see

Appendix B.3).

Our answers to the previous questions are not definitive. But we hope our analysis is a

useful step in quantifying the different forces at work that any behavioral epidemiological

model will have to incorporate.

Our paper makes five specific contributions to the literature. First, we use micro data to

document the empirical response of consumption expenditures to Covid by people of different

ages, comorbidity statuses, and incomes.

Second, we estimate our structural model using micro data on consumption expenditures.

The key parameters that we estimate include old and young people’s prior beliefs about case-

fatality rates and the speed with which they change their views. We find that all people had

pessimistic prior beliefs about case-fatality rates but learned the actual case-fatality rates

over time.

Third, we highlight the importance of deviations from full-information rational expecta-

tions in accounting for the empirical response of consumption to the Covid epidemic.

Fourth, we use the empirically validated model to assess how much people of different ages

and incomes would be willing to pay to avoid the epidemic. Naturally, peoples expectations

about mortality rates play a crucial role in their willingness to pay. We also explore the

distinct roles of intertemporal substitution and risk aversion in determining the willingness

to pay.

Fifth, we suggest a way to reconcile the large short-run and small long-run effects on con-

sumption of changes in mortality rates associated with contagious diseases. Our suggestion

highlights the critical role of expectations about case-fatality rates in such a reconciliation.

To keep our analysis tractable, we abstract from long-run supply issues possibly arising from

changes in fertility and education decisions.

Our paper is organized as follows. Section 2 briefly reviews the related literature. Section

3 describes our data. Section 4 contains our empirical results. Section 5 presents a simple

model used to develop intuition about the mechanisms at work in our quantitative model.

Section 6 describes the quantitative model and estimation procedure. Section 7 summarizes
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our estimation results. Section 8 contains a general equilibrium model of endemic Covid.

This model extends our partial-equilibrium analysis along three dimensions. First, we embed

it in a general equilibrium framework with endogenous labor supply and capital accumula-

tion. Second, we allow for vaccination. Third, we modify the epidemiology assumptions so

that people who have natural immunity or are vaccinated lose their immunity over time. We

conclude in Section 9.

2 Related literature

There is, by now, an extensive literature on the macroeconomic impact of epidemics. Ex-

amples include Alvarez, Argente, and Lippi (2020), Eichenbaum, Rebelo, and Trabandt

(2021), Faria-e-Castro (2021), Farboodi, Jarosch, and Shimer (2021), Krueger, Uhlig, and

Xie (2020), Jones, Philippon, and Venkateswaran (2021), Krueger, Uhlig, and Xie (2020),

Guerrieri, Lorenzoni, Straub, and Werning (2022), Piguillem and Shi (2022), and Toxvaerd

(2020). There is also a sizable epidemiology literature on the interaction between Covid and

age. Examples include Dessie et al. (2021), Doerre and Doblhammer (2022), and Sorensen

et al. (2022). We do not attempt to survey these literatures here. Instead, we discuss the

papers most closely related to ours in the sense that they study the impact of age on people’s

consumption behavior. The three key papers are as follows.

Glover et al. (2021) analyze a two-sector model (essential and luxury) with young workers

and retirees. The epidemic creates significant distributional effects because the luxury sector

contracts more than the essential sector. In addition, containment measures redistribute

welfare from the young to the old. The old benefit from the reduced risk of infection produced

by containment, while the young suffer the adverse employment consequences.

Brotherhood et al. (2021) use a calibrated model of the pandemic that features age

heterogeneity and individual choice, allowing agents to choose rationally how much social

distancing to undertake, considering future infection risk, and prospects for vaccine arrival.

Acemoglu et al. (2021) study targeted lockdowns in a multi-group SIR model where

infection, hospitalization, and fatality rates vary between groups—in particular between the

young, middle-aged, and old.
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3 Data

Our dataset comes from Statistics Portugal, the national statistical authority. A software

system called “e-fatura” which the Portuguese government adopted in 2013 to reduce tax

evasion, generates the data. The decree-law no. 198/2012 published on August 24, 2012,

requires firms to report their invoice data electronically. This decree covers all individuals or

legal entities with headquarters, stable establishment, or tax domicile in Portuguese territory

that conduct operations subject to value-added tax (VAT). Durable goods purchases, such

as cars, refrigerators, and televisions, are included in our dataset because they are subject

to VAT. However, we cannot separate purchases of durable and non-durable goods because

we cannot access itemized invoices that specify the nature of the goods purchased.

Goods and services exempt from VAT are excluded from the data.1 The most impor-

tant exempt categories are health services provided by medical doctors, childcare services

provided by kindergartens, residential homes, day centers for the elderly, rent and property

investments, and services provided by non-profit organizations that operate facilities for art,

sports, or recreation activities. Our data covers approximately 75 percent of the per capita

consumption expenses included in the national income accounts.

Our data includes anonymized information for five hundred thousand Portuguese people

randomly sampled from a set of 6.3 million people who meet two criteria. First, they were at

least 20 years old in 2020. Second, they filed income taxes as Portuguese residents in 2017.

The data set includes a person’s age, income bracket, and gender. In addition, for a subset

of people, the data includes education and occupation in 2017.

For every person in our sample, we construct total monthly consumption expenditures

using the electronic receipts that firms provide to the tax authority as part of their value-

added tax (VAT) reporting. Each receipt is matched to a particular person using their

anonymized fiscal number. We also compute individual pharmacy expenditures, which we

use as a proxy for comorbidity.

Portuguese consumers have four incentives to include their fiscal number in expenditure

receipts. First, they can deduct from their income taxes, up to a limit, expenditures on

health, education, lodging, nursing homes, and general-household spending. Second, the

government rebates 15 percent of the VAT from documented expenditures on public trans-

portation passes, lodging, restaurants, and automobile and motorcycle shops. Third, for

1See article nine of the VAT code for an exhaustive list.
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every ten euros of reported spending, consumers receive a coupon for a weekly lottery in

which the prize is a one-year treasury bond with a face value of 35 thousand euros. Fourth,

the law obliges consumers to request invoices for all purchases of goods and services. Con-

sumers who fail to comply are subject to fines ranging from 75 to 2,300 euros.

Young people might have purchased goods and services for their parents and reported

them under their own fiscal number. But it is in general not in their interest to do so because

there are caps on the VAT rebates that taxpayers can receive and on the VAT expenses that

taxpayers can deduct from their income taxes.

The data includes online purchases from Portuguese businesses but excludes online pur-

chases from foreign companies. The latter types of purchases are likely to be small and not

negatively affected by Covid. Since young people are more likely to engage in such purchases,

including them would likely strengthen the result, documented below, that older people cut

their consumption by more than young people.

We exclude from the sample in a given month people who do not have any receipts

associated with their fiscal number for that month. We also remove from the sample 21,814

people who were unemployed or inactive in 2017. These people are unlikely to pay taxes, so

they have less incentive to include their fiscal number in receipts. Finally, we dropped all

persons older than 80 from the sample because their expenditure patterns suggest that many

of them live in nursing homes. We also exclude people younger than 20 because they make

few independent consumption decisions. The resulting dataset contains 421,337 people and

12,218,773 person-month observations aggregated over 97,363,250 buyer-seller pairs.

We identify two groups in our sample whose incomes are likely to have been relatively

unaffected by the Covid recession: public servants (58,598 people) and retirees (93,839 peo-

ple). These groups overlap because we do not exclude retirees from the population of public

servants. There are roughly 22,000 retired public servants in our sample.2

Our sample covers the period from January 2018 to April 2021. We end our sample in

April 2021 for two reasons. First, vaccines became available to the general population after

April 2021. Before April, only the elderly and people with comorbidities were vaccinated

first. Second, according to CISAID data, there were no reported cases of the delta variant,

which was arguably more contagious than previous variants.3

2In 2011, Portugal entered into an adjustment program with the International Monetary Fund, the
European Central Bank, and the European Commission (see Eichenbaum, Rebelo, and Resende (2017) for
a discussion). This reduction led to a large increase in the number of retired public servants.

3Data downloaded from https://covariants.org
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Table 6 in the appendix reports descriptive statistics for monthly expenses net of VAT.

For public servants, the average per capita monthly expenditure on consumption goods and

services is 687.8 euros, of which 25.6 euros is spent on pharmacy items. These expenditures

are roughly similar for the sample of the population as a whole: the average per capita

monthly expenditure on consumption goods and services is 629.3 euros, of which 17.9 euros

is spent on pharmacy items. Retirees have lower levels of overall expenditure. They spend,

on average, 437.8 euros on consumption goods and services, of which 24.3 euros is spent on

pharmacy items.

Table 7 in the appendix reports the same statistics as Table 6 broken down by income and

age groups. Income groups are based on the 2017 income-tax brackets used by Portugal’s

Internal Revenue Service (IRS). We group people according to their ages so that they have

similar Covid case-fatality rates. Our estimates of this risk are based on the statistics

reported by the Portuguese health authority (DGS) on July 28, 2020. Table 1 displays

case-fatality rates (the ratio of Covid deaths to people infected) by age cohort for Portugal.

Two key results emerge from Table 1. First, people aged 20 to 49 all have low case-fatality

rates. Second, case-fatality rates rise non-linearly with age for people older than 50.

Table 1: Covid infection-fatality rates (averages May 14-June 14, 2020)

Age Group Infected Deceased Infection-
fatality rate

[0; 9] 672 0 0.0%
[0; 19] 1,085 0 0.0%

[20; 29] 4,245 1.5 0.03%
[30; 39] 4,869 0.6 0.01%
[40; 49] 5,420 15.3 0.28%
[50; 59] 5,336 43.6 0.82%
[60; 69] 3,519 122.1 3.5%
[70; 79] 2,576 265.9 10.3%
≥ 80 4,522 926 20.5%

Computed with data from the Portuguese Health Authority.

4 Empirical results

This section has two parts. In the first subsection, we provide an overview of the evolution of

the epidemic in Portugal and the government’s containment measures. We also discuss the
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evolution of per capita consumption expenditures in our sample. In the second subsection, we

present formal econometric evidence of how Covid impacted the consumption expenditures

of people of different ages and comorbidity conditions.

4.1 The epidemic in Portugal

Figure 1 depicts the weekly time series of infected people and Covid deaths in Portugal. We

refer to March 2020 through April 2021 as the “epidemic dates.” There were three waves of

Covid deaths during this period. The peaks of these waves occur in April 2020, December

2020, and January 2021. The broad pattern of Covid cases is consistent with the facts

documented by Atkeson et al. (2020) for a cross-section of countries.
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Figure 1: Covid-19 cases and deaths reported by the Portuguese Health Authority (May 20,
2021).

The vaccination campaign started on January 8, 2021. The initial campaign focused on

people over 80 with comorbidities. Vaccination of the general population began on April 23,

2021, very close to the end of our sample (April 30, 2021).

Over the period from March 2020 to April 2021, the government implemented various

containment measures. These measures vary in intensity and sectoral coverage. For con-

creteness, we summarize the severity of these measures using an index of the full or partial
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closing of non-essential shops, restaurants, and cafés.4 Figure 2 displays this containment

index. Containment rose quickly in mid-March 2020 and started to decline at the beginning

of May 2020. It then dropped to low levels in the summer of 2020. In mid-November 2020,

containment was partially reimposed in response to the second wave. The third epidemic

wave led to the strengthening of containment measures from January to March 2021. As

the number of infections waned, containment measures were eased. Note that the peak

containment rates are the same in the first and third waves.
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Figure 2: Severity of Covid-19 containment measures over time.

Figure A.1 in the appendix depicts the average logarithm of public servants’ monthly

consumption expenditures from January 2018 to April 2021. Three features emerge from

this figure. First, there are pronounced drops in consumption around the peak months of

the first and third waves. There is a more muted decline in consumption during the months

around the peak of the second wave. Second, there is a clear seasonal pattern in the pre-

Covid sample. This pattern is similar in 2018 and 2019. Third, per-capita spending was

growing before the Covid shock. Our econometric procedure considers the latter two features

in creating a counterfactual for what spending would have been in 2020 absent the Covid

shock. We estimate a seasonal effect and time trend for each age and income group using

data from January 2018 to February 2020.

4To construct this index, we use data from https://ourworldindata.org and https://dre.pt/legislacao-
covid-19-upo. We attribute the values 1, 0.5, 2/7, and zero to full closing, partial closing, closing on weekends,
and open. The containment index is the average of the indexes for non-essential shops and restaurants and
cafés.
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4.2 Age and the impact of Covid on consumer expenditures

Our empirical specification focuses on the differential consumption response by people of

different ages. This specification is given by:

ln(Expensesit) = Λ× Y eart +
Dec∑

m=Feb

λm1{Montht = m}+ θi + Ψit + εit (1)

Apr,2021∑

d=Mar,2020

∆dAftert × 1{Datet = d}+

Apr,2021∑

d=Mar,2020

∑

g∈AgeGroup\[20;49]
δdgAftert × 1{Datet = d} × 1{AgeGroupi = g}.

Subscripts i and t denote person i and calendar month t, respectively. The coefficient

Λ represents a linear growth trend in consumption expenditures. Y eart is a variable that

takes the value 1 + t for year 2018 + t for t = 0, 1, 2, 3. The coefficients λm control for

seasonality in consumption. The vector Ψit includes interaction terms that allow seasonal

effects to vary with individual characteristics (age, income bracket, gender, education, and

occupation). The coefficients θi denote time-invariant individual fixed effects. Aftert is

a dummy variable equal to one during the epidemic dates (beginning March 2020). The

coefficients ∆d represent the change in spending for people in the reference group (aged

20-49) during the epidemic date d. The coefficient δdg measures the additional change in

spending for age group g in epidemic date d.5 The variable εit is an idiosyncratic error term.

As long as the inflation rate for the consumption baskets of different age cohorts is the same,

any inflation effects cancel out from the difference in nominal responses, and we are left with

the real differential response. We estimate equation (1) using a fixed effects (FE) estimator

and cluster standard errors by person, as suggested in Bertrand et al. (2004).6

Column 4 of Table 14 reports our parameter estimates. Figure 3 displays our estimates of

the impact of Covid on consumption expenditures of different age groups (∆d for the reference

group and ∆d + δdg for the other groups) obtained from estimating equation (1). The bars

around the point estimates represent 95 percent confidence intervals. Our key findings are

as follows. First, all consumers reduced their expenditures during the three waves of the

epidemic. Second, older people cut their expenditures by much more than younger people.

5We keep age groups constant based on a person’s age in 2020.
6Because of our large sample size, we estimate the FE models using the method of alternating projections

implemented in R by Gaure (2013) and in STATA by Guimaraes and Portugal (2010) and Correia (2016).
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The non-linear effect of age on consumer expenditures mirrors the non-linear dependency of

case-fatality rates on age. Third, the decline in consumption for each age group was similar

in the first and third waves.
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Figure 3: Changes in expenditures of public servants during the epidemic relative to a
counterfactual without Covid.

4.3 The response of people with different income

The economic model discussed in Section 6 implies that high-income people cut their ex-

penditures by more than low-income people to reduce the risk of infection. According to

the model’s logic, rich people have more to lose from becoming infected than poor people.

Since older people might have a higher income than younger people, the results reported in

Section 4.2 might conflate the effect of age and income.

Table 15 in Appendix A reports our parameter estimates. Figure 4 displays our estimates

of the impact of Covid on consumption expenditures of different age groups (∆d for the

reference group and ∆d + δdg for the other groups) obtained from estimating equation (1)

for separate income groups. Two key results emerge from this figure. First, our results

about the impact of age on consumption expenditures are very robust to controlling for

income. Older people cut their expenditures by much more than younger people for all

income groups. Second, controlling for age, high-income people reduce their consumption

by more than low-income people.

The finding that expenditure cuts are an increasing function of income complements the
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Figure 4: Changes in expenditures of public servants in different income groups during the
epidemic relative to a counterfactual without Covid.
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evidence in Chetty et al. (2020) and Carvalho et al. (2020), which relies on home-address

ZIP codes to proxy for income.

4.4 Robustness

In Appendix A, we report the results of six robustness checks. First, we provide evidence in

favor of the assumption that the seasonal effects for January 2020 through April 2021 are

the same as for the 2018-19 period.

Second, we redo our benchmark analysis allowing for different monthly expenditure time

trends for each age cohort. We find a similar pattern for the impact of age on the response

of expenditures to the Covid shock.

Third, we redo our empirical analysis for retirees instead of public servants. Retirees

are another group whose income is likely to have remained relatively stable during the

epidemic. Our results are similar to those that we obtain for public servants. We find that

conditioning on age, the consumption expenditures of civil servants and retirees respond

similarly to Covid.

Fourth, we find that our results are robust to running regression (1) using the year-on-

year growth rate (ln(Expensesit/Expensesit−12)) instead of the log-level of expenditures as

the dependent variable.

Fifth, we study a potential reason why the consumption expenditures of old and young

people responded differently to Covid: these groups purchase different goods and services

that were differentially affected by lockdowns. To investigate this possibility, we estimate

the change in consumption expenditures for different age groups in sectors of the economy

that were least affected by lockdowns. We base this sector classification on the information

reported in the appendix to law 78-A/2020 approved September 29, 2020. Figure A.4, which

is the analog to Figure 3, presents our results. Two features are worth noting. First, all

groups cut their consumption expenditures by about the same amount in the epidemic’s

first and third waves. Second, the old cut their consumption by more than the young in the

epidemic’s first, second, and third waves.

Sixth, we re-do our analysis excluding two sectors where adaptations were most likely

to have reduced the risk of infections: restaurants (people could order take out instead of

eating at the restaurant) and supermarkets (people could ask for delivery instead of going to

the store). Figures A.5 and A.6 in Appendix A show that our results are robust to excluding

these two expenditure categories.
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Finally, we use data on expenditures on pharmaceutical drugs to investigate the effect

of comorbidities that increase the risk of dying from COVID. We find that people with

comorbidities cut their consumption more than those without comorbidities.

5 A simple model of mortality risk and consumption

decisions

In this section, we consider a simple two-period model to develop intuition about the key

features of our quantitative model presented in Section 6. Consistent with the latter, we

make three assumptions. First, the probability of dying depends on current consumption.

Second, people derive utility from leaving a bequest when they die. Third, people’s utility

has the recursive form proposed by Kreps and Porteus (1978), Weil (1989), and Epstein and

Zin (1991). These preferences allow us to study the different roles that risk aversion and

intertemporal substitution play in our model.

In the first period of their life, a person receives an endowment, y, which they can consume

in period one (c1) or two (c2). Their resource constraint is:

y = c1 + c2. (2)

The period-one utility is given by the following version of equation (8) in Section 6,

U1(y) =
{

(1− β)c1−ρ1 + β[E(U1−α
2 )](1−ρ)/(1−α)

}1/(1−ρ)
. (3)

The certainty equivalent of period-two utility is

[
E(U1−α

2 )
]1/(1−α)

= {[1− δ(c1)] c1−α2 + δ(c1)(ω0 + ω1b
µ)1−α}1/(1−α),

where δ(c1) is the probability of dying before consuming in period two. To capture the basic

mechanism at work in our epidemiological model, we assume that δ(c1) is an increasing,

linear function of c1

δ(c1) = Γ0 + Γ1c1, (4)

where Γ0 and Γ1 are positive constants. A person who survives in period two consumes

c2. A person who dies leaves their planned consumption, c2, as a bequest: b = c2. The

representative person chooses c1, c2, and b to maximize (3) subject to (2), (4), and b = c2.

To derive the first-order conditions, it is useful to consider the following monotonic trans-

formation of the Epstein-Zin utility function: V1 =
U1−ρ
1

1−ρ . The first-order conditions are as
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follows:

(1− β)c−ρ1 +
β

1− α
[
E(U1−α

2 )
](1−ρ)/(1−α)−1

δ′(c1)[(ω0 + ω1c
µ
2)1−α − c1−α2 ] = λ,

β
[
E(U1−α

2 )
](1−ρ)/(1−α)−1 {[1− δ(c1)] c−α2 + δ(c1)(ω0 + ω1c

µ
2)−αµω1c

µ−1
2 } = λ,

where β is the discount factor, α is the coefficient of relative risk aversion for static gambles,

and ρ is the inverse of the elasticity of intertemporal substitution (EIS) with respect to

deterministic income changes. The case of ρ = α and z = 0 corresponds to standard time-

separable expected discounted utility.

In the absence of death (Γ0 = Γ1 = 0), the optimal value of the ratio c2/c1 is

c2
c1

=

(
β

1− β

)1/ρ

. (5)

As ρ goes to infinity (zero EIS), c2 converges to c1. Suppose that β > 0.5, so people place

a larger weight on the future than on the present. When ρ goes to zero (infinite EIS), c1

converges to zero and c2 to y, that is, all consumption takes place in period 2.

For positive values of Γ0 and Γ1, the model has no analytical solution. We explore

the key mechanisms using a series of numerical examples. We choose parameters so that

c2 > ω0 + ω1b
µ. This condition, emphasized by Bommier et al. (2020, 2021), implies that

people prefer to live rather than die in the second period of their lives.

The benchmark parameters in our example are as follows: ρ = 1/1.5, α = 2, µ = 1− ρ,

ω0 = 0.0865, ω1 = 0.1276, Γ0 = 0.02, Γ1 = 0.5462. We normalize the initial income, y, to

one. Since period two represents the future, we choose β = 0.6 so that more consumption

occurs in the future than in the present. Given our choices of β and ρ, c2/c1 is equal to 1.8.

The benchmark values of ρ, α, and µ are the same as in our quantitative model. The

rationale for these values is discussed in Section 6.1. We choose ω0 and ω1 so that the

following ratios coincide with the corresponding values for a weighted average of recovered

young and old people in the estimated benchmark model:

ω0

ω0 + ω1bµ
= 0.44,

c2
ω0 + ω1bµ

= 3.38. (6)

To illustrate the impact of the probability of dying on consumption, we choose values

of Γ0 and Γ1 that are sufficiently large that the results of our experiment are clearly visible

in Figure 5. In our simple example, the probability of dying, evaluated at the optimum

level of consumption, is quite high (20 percent) as is the endogenous component (Γ1c1) of
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Figure 5: Two-period example.
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the probability of dying (90 percent). In our quantitative model, both of these numbers are

much lower.

Figure 5 shows the effects of varying the EIS and risk aversion in the simple model. For

each value of ρ and α we recompute the values of ω0 and ω1 so that conditions (6) hold.

The red line corresponds to the case in which the probability of dying in period two is zero

(Γ0 = Γ1 = 0). The blue line corresponds to the case where the probability of dying is

positive and a function of c1 (Γ0, Γ1 > 0).

The upper left-hand entry of Figure 5 shows how c1 varies with the inverse of the EIS, ρ.

The dotted vertical line corresponds to the ρ value in our benchmark calibration. In general,

there are two forces at work governing the impact of ρ on c1. First, if a person dies, they

leave a bequest equal to their planned period-two consumption. The utility of leaving this

bequest is lower than that of consuming in period two. When the EIS is high, a person reacts

to the risk of dying in period two by reducing planned c2 and increasing c1. The higher is

the EIS, the larger this effect is. Second, because δ is endogenous, people have an incentive

to cut c1 to reduce the probability of dying in period two. In our example, the second effect

dominates the first effect so that, for all values of ρ, c1 is lower than when δ = 0, that is the

blue line is below the red line.

The upper right-hand entry of Figure 5 shows how c1 varies with the coefficient of relative

risk aversion, α. When δ = 0 , there is no risk, so c1 does not depend on α (the red line is

flat). When Γ0, Γ1 > 0, there are two forces governing the impact of α on c1. First, people

respond to the risk of death by raising c1 relative to the δ = 0 case. The higher is risk

aversion, the higher is c1. The reason is that deferring consumption to period two is a risky

gamble relative to consuming in period one. This effect is emphasized in Bommier et al.

(2020). Second, in our model people have an incentive to lower c1 to reduce δ. For moderate

degrees of risk aversion, the second effect dominates, so c1 is lower than when δ = 0. As risk

aversion gets larger, the first effect dominates, so c1 is higher than when δ = 0.

We now turn to the question of how risk aversion and the EIS affects people’s willingness

to pay to eliminate the risk of death. To compute the willingness to pay, we solve the

following equation, U1(y) = Ū1(ȳ), where Ū1 is lifetime utility in an economy with δ = 0.

The level of ȳ that solves this equation is

ȳ =
U1(y)

(1− β)1/(1−ρ)
(

1 + [β/(1− β)]1/ρ
) ρ

1−ρ
.

The bottom left-hand entry of Figure 5 displays the fraction of income (y − ȳ)/y that
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people would be willing to pay to eliminate the risk of death as a function of the EIS. People’s

willingness to pay is low when the EIS is high (low value of ρ) because it is less costly to

reduce the probability of death by cutting c1. For values of ρ exceeding one, the willingness

to pay is insensitive to the EIS.

The bottom right-hand entry of Figure 5 reports the analog results as we vary the coef-

ficient of relative risk aversion, α. Not surprisingly, the willingness to pay is monotonically

increasing in α. The key result is that the willingness to pay to avoid the risk of death

is much more sensitive to α than to ρ. As we vary ρ, the willingness to pay ranges from

roughly 8 percent to 22 percent. In contrast, as we vary α, the willingness to pay ranges

from roughly 11 percent to 65 percent.

In sum, the previous discussion highlights the key mechanisms at work in our quantitative

model: risk aversion, intertemporal substitution, people’s beliefs about the probability of

dying, and bequest motives.

6 A model of consumer behavior in an epidemic

In this section, we develop a quantitative model of how people changed their consumption

behavior in response to Covid. We use the model to address the question: how much would

people be willing to pay to avoid the risk of death associated with Covid? Answering this

question revolves around two issues. The first is people’s beliefs about case-fatality rates.

The second is the fraction of the drop in consumption due to people’s risk-avoidance behavior

as opposed to government-imposed containment measures.

We use a partial-equilibrium approach that allows us to confront people of different

ages and health statuses with real wages, real interest rates, and infection probabilities

that mimic those observed in the data using a minimal set of assumptions. By partial-

equilibrium analysis, we mean that we study the consumption decisions of people of different

ages and incomes given exogenous processes for real wages, real interest rates, and infection

probabilities. In Section 8, we consider a general equilibrium model in which we fully specify

the environment (preferences, technology, market structure, and epidemic dynamics) and

solve for the equilibrium values of real wages, real interest rates, and infection probabilities.

Consistent with the evidence in Sorensen et al. (2022), we assume that actual case-

fatality rates fall over time due to improvements in medical treatments (see subsection 6.1.2

for details). Throughout, we assume that people know the objective probability of becoming
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infected. However, they don’t know their age group’s actual, time-varying case-fatality rate.

They begin with a prior, which they update over time. This prior and the rate at which

it converges to the objective probability play a critical role in our analysis. We could have

assumed that people also do not know the objective probability of becoming infected. But

we could not credibly identify all the free parameters associated with this specification. As

it turns out, focusing on uncertainty about the true case-fatality rate is sufficient to allow

the model to account for the key features of the data.

To compute the probability of being infected, people need to form expectations about the

path of infections in the economy. We assume the economy is in the pre-epidemic steady state

in the first four weeks of March 2020. Then, on the 5th week of March, people learn about

the first wave of the epidemic. To simplify, we assume that people have perfect foresight

with respect to the first wave of infections and expect the epidemic to end in week 17 (the

week of June 21, 2020). Then, in week 18 (the week of June 28, 2022), people learn that

there will be two more waves. From that point on, people have perfect foresight with respect

to these waves. We could allow for uncertainty about the number of infections at the cost

of making the model more complex and introducing free parameters that would be difficult

to identify. To add perspective on the role played by intertemporal substitution, we also

consider the case in which people know there will be three waves.

We divide the population into two groups: people younger than 60 with no comorbidities

and people older than 60 or younger than 60 but with comorbidities. For ease of exposition,

we refer to these groups as young and old. We assume that a person in the first group joins

the second group with a constant probability per period, v. This assumption makes the

analysis more tractable because the model has only two types of people. With deterministic

aging, we would need to keep track of 61 age cohorts (from 20 to 80 years old). The critical

difference between people in the two groups is the subjective and objective risk of dying from

Covid or other causes.

As in Kermack and McKendrick (1927)’s SIR model, people are in one of four possible

health states: susceptible (those with no immunity against the virus), infected, recovered

(those who recovered from the infection and have acquired immunity against the virus), and

deceased. In studying the first three waves of the epidemic, we assume that recovered people

have permanent immunity. This assumption is incorrect in light of recent mutations of the

Covid virus and associated breakthrough infections. However, this possibility was not widely

discussed during the first three Covid waves. So, to simplify, we assume in this section that
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people think that once they recover from the infection, they have permanent immunity. We

relax this assumption in Section 8, in which we discuss the implications of endemic Covid.

Each period in our model represents a week. Since our empirical work relies on data

for public servants, we assume that people’s labor supply decisions are exogenous and the

real wage rate is constant. We normalize the number of hours worked to one. The budget

constraint of a person with assets bt who consumes ct is

bt+1 = w + (1 + r)bt − ct,

where w is the real wage rate and r is the rate of return on assets. People differ in their health

status, age, and initial assets. To simplify the notation, we omit in the budget constraint

the subscripts a and h.

The probability of a susceptible person in age group a becoming infected at time t, τa,t,

is given by the transmission function:

τa,t = π1c
h
a,tIt + π2It, (7)

where h denotes a person’s health status and It is the number of infected people in the

population at time t. The terms π1c
h
aIt and π2It represent the probability of becoming

infected through consumption- and non-consumption-related activities, respectively. As in

Eichenbaum, Rebelo, and Trabandt (2021), this function embodies the assumption that

people meet randomly and that susceptible people can reduce their infection probability by

cutting their consumption.

People are uncertain about case-fatality rates. At the beginning of the epidemic, people

believe that the case-fatality rate for a person of age a is πad,0. They update these beliefs

using a parsimonious constant-gain learning algorithm:7

πad,t = πad,t−1 + ga(π
∗
ad,t − πad,t−1).

Here, π∗ad,t is the true case-fatality rate for people of age a at time t. The parameters

ga ∈ [0, 1] control how quickly people update their beliefs.8 These beliefs converge in the

long run to π∗ad,t. Implicitly, this specification assumes that, in every period, people see the

7See Evans and Honkapohja (2012) and Eusepi and Preston (2011) for discussions of the properties of
this learning algorithm.

8In principle, one could entertain more complex information structures in which people receive noisy sig-
nals about infections and deaths in each period and use those signals optimally in solving their maximization
problem. For computational reasons, we abstract from these types of information structures.
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actual ratio of Covid deaths to infections and use it to update their beliefs. At each point

in time, people expect the case-fatality rate to remain constant: πad,t+j = πad,t.
9

The variable δa denotes the time-t probability that a person of age a dies of non-Covid

causes. The variable πar,t denotes the probability that a person of age a who is infected at

time t recovers at time t + 1. The probability of exiting the infection state, πar,t + πad,t is

constant over time, so time variation in people’s beliefs about πad,t induces time variation in

their beliefs about πar,t.

As in the simple model, people’s utility has the recursive form proposed by Kreps and

Porteus (1978), Weil (1989), and Epstein and Zin (1991). The lifetime utility of a person

with age a and health status h at time t is

Uh
a,t = max

cha,t,bt+1

{
z +

[
(1− β)((1− µt)cha,t)1−ρ + β

{
Et

[(
Uh
a,t+1

)1−α]}(1−ρ)/(1−α)
]1/(1−ρ)}

.

(8)

Here, z is a constant that influences the value of life (see Hall and Jones (2007)). The

expectations operator, Et, takes into account all the stochastic elements of the environment,

including the possibility of death. People take as given the sequence of aggregate infections,

{It}∞t=0. We use time variation in µt to model exogenous changes in consumption demand

associated with government-imposed containment measures. This variable represents the

consumption wedge introduced by containment measures. The higher is µt, i.e., the more

containment there is, the lower the marginal utility of consumption. In Appendix B.3, we

show that there is an equivalence between modeling containment as a wedge on utility and

a model where containment implies that some goods cannot be consumed.

The value functions for all people depend on the value of their assets, bt, and calendar

time. This time dependence reflects deterministic time variation in µt, It, πad,t, and the

person’s time-t belief about the case-fatality rates for old and young. Recall that when

solving their optimization problem at time t, people assume that future values of the case-

fatality rate equal their current beliefs.

9This assumption implies that we are working with a version of Kreps (1988)’ anticipated utility.
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The value function of a susceptible young person at time t is10

U s
y,t(bt) = max

csy,t,bt+1

{
z + {(1− β)((1− µt)csy,t)1−ρ + β[(1− τ y,t) (1− δy − v)

(
U s
y,t+1(bt+1)

)(1−α)
+

(1− τ y,t) v
(
U s
o,t+1(bt+1)

)(1−α)
+ τ y,t(1− δy − v)

(
U i
y,t+1(bt+1)

)(1−α)
+

τ y,tv
(
U i
o,t+1(bt+1)

)1−α
+ δyB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

Recall that v is the probability of a young person becoming old. U i
yt and U i

ot are the value

functions of a young and old infected person, respectively. The value function reflects the

possible changes in health and age status at time t+1. A young, susceptible person at time t

can remain in that state at time t+1 with probability (1− τ y,t) (1− δy−v), not get infected

but become old with probability (1− τ y,t) v, get infected and stay young with probability

τ y,t(1−δy−v), get infected and become old with probability τ y,tv, or die of non-Covid causes

with probability δy.

The function B(bt+1) represents the utility from leaving a bequest bt+1 upon death. We

assume that this function takes the form:

B(bt+1) = ω0 + ω1(bt+1)
µ,

where ω0 > 0 and ω1 > 0. The bequest motive allows the model to be consistent with two

empirical observations. First, many people die with large asset holdings (see, e.g., Huggett

(1996) and De Nardi and Yang (2014)). Second, older people’s consumption expenditures

are lower than younger people’s. The latter pattern obtains in the model because, as people

age, bequests receive a higher weight in the utility function relative to consumption. People

of all ages and health statuses choose their consumption and asset holdings to maximize their

expected lifetime utility. We solve their optimization problem using value function iteration.

In Appendix B, we display the value functions for old, susceptible people, young infected

people, old infected people, young recovered people, and old recovered people.

6.1 Parameters of quantitative model

We partition the parameters of our quantitative model into two sets. The first set is estimated

with Bayesian methods. The second set is calibrated to micro data.

10This formulation and the others in Appendix B involve a slight abuse of notation. The perceived value
function Uh

a,t+1 is computed at time t assuming that πad,t+j = πad,t for all j. The realized value function
at time t + 1, is computed assuming that πad,t+1+j = πad,t+1 for all j. Our notation does not distinguish
between these two types of value functions. In solving the model, we do take into account this distinction.
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6.1.1 Econometric methodology

We estimate younger and older people’s initial prior beliefs about case-fatality rates (πyd,0

and πod,0), the gain parameters (gy and go), and the parameter µ. The latter parameter

controls the impact of containment on the marginal utility of consumption. We assume that

the containment wedge µt is given by µt = µξt, where µ is a scalar and ξt is the time series

for containment measures depicted in Figure 2. The maximum value of ξt is normalized to

one.

We calibrate the basic reproduction number, R0 to equal 2.5, the value preferred by the

Center for Disease Control.11 In our model R0 is given by:

R0 =
π1[cyssy + cos(1− sy)] + π2

πyrsy + πor (1− sy) + π∗ydsy + π∗od(1− sy)
,

where sy is the pre-epidemic share of young people in the population, and cys and cos are

the pre-epidemic levels of consumption of susceptible young and old, respectively.

We estimate κ, an auxiliary parameter that represents the average share, for young and

old, of infections generated by consumption activities at the beginning of the epidemic:

κ =
π1[cyssy + cos(1− sy)]

π1[cyssy + cos(1− sy)] + π2

.

Given the value of R0 and the estimate of κ, we solve for the implied estimates of π1 and

π2.

Let the vector ψ denote the time series of the response to Covid of the consumption

expenditures of younger and older people in our model from March 2020 to April 2021.

Let ψ̂ denote our estimate of ψ for these two groups of people obtained using regression

(1). Table 12 in Appendix A reports the estimated regression parameters. The results are

displayed in Figure 8 below.

Our estimation criterion focuses on the consumption response of young and old with a

net wealth of 75 thousand euros. According to the Survey of Household Financial Condi-

tions Statistics-Portugal (2017) and Costa and Farinha (2012), the average net wealth of

Portuguese households over the period 2013-2017 is 150 thousand euros. We divide this

number by two because there are, on average, two adults per household in Portugal.

We estimate the model’s predictions for people with this level of assets for two reasons.

First, we do not observe the wealth distribution for people in our sample. Second, it is

11See COVID-19 Pandemic Planning Scenarios, Center for Disease Control, March 19, 2021.
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computationally daunting to compute the consumption behavior of people with different

wealth levels in every iteration of the estimation algorithm.

The logic of the estimation procedure is conceptually the same as in Christiano, Trabandt,

and Walentin (2010). Suppose that our structural model is true. Denote the true values

of the model parameters by θ0. Let ψ (θ) denote the mapping from values of the model

parameters to the time series of the impact of Covid on the consumption expenditures of

younger and older people. The vector ψ (θ0) denotes the true value of the time series whose

estimates are ψ̂. According to standard classical asymptotic sampling theory, when the

number of observations, T , is large,

√
T
(
ψ̂ − ψ (θ0)

)
a∼ N (0,W (θ0)) .

It is convenient to express the asymptotic distribution of ψ̂ as

ψ̂
a∼ N (ψ (θ0) , V ) . (9)

Here, V is a consistent estimate of the precision matrix W (θ0) /T . Following Christiano, Tra-

bandt, and Walentin (2010), Christiano, Eichenbaum, and Trabandt (2016), and Fernández-

Villaverde, Rubio-Ramı́rez, and Schorfheide (2016), we assume that V is a diagonal matrix.

In our case, the diagonal elements are the variances of the percentage responses of consump-

tion of younger and older people at each point in time, reported in Column 4 of Table 12 in

Appendix A.

Our analysis treats ψ̂ as observed data. We specify priors for θ and then compute

the posterior distribution for θ given ψ̂ using Bayes’ rule. This computation requires the

likelihood of ψ̂ given θ.Our asymptotically valid approximation of this likelihood is motivated

by (9):

f
(
ψ̂|θ, V

)
= (2π)−

N
2 |V |− 1

2 exp

[
−0.5

(
ψ̂ − ψ (θ)

)′
V −1

(
ψ̂ − ψ (θ)

)]
. (10)

The value of θ that maximizes this function is an approximate maximum likelihood estimator

of θ. It is approximate for two reasons. First, the central limit theorem underlying (9) only

holds exactly as T → ∞. Second, our proxy for V is guaranteed to be correct only for

T →∞.

Treating the function f as the likelihood of ψ̂, it follows that the Bayesian posterior of θ

conditional on ψ̂ and V is:

f
(
θ|ψ̂, V

)
=
f
(
ψ̂|θ, V

)
p (θ)

f
(
ψ̂|V

) . (11)
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Here, p (θ) denotes the prior distribution of θ and f
(
ψ̂|V

)
denotes the marginal density of

ψ̂:

f
(
ψ̂|V

)
=

∫
f
(
ψ̂|θ, V

)
p (θ) dθ.

Because the denominator is not a function of θ, we can compute the mode of the posterior

distribution of θ by maximizing the value of the numerator in (11). We compute the posterior

distribution of the parameters using a standard Monte Carlo Markov chain (MCMC) algo-

rithm. We evaluate the relative empirical performance of different models by comparing their

implications for the marginal likelihood of ψ̂ computed using the Laplace approximation.

We assume uniform [0, 7/14] priors for πyd,0 and πod,0, and uniform [0, 1] priors for µ,

gy, go, and κ. We assume that it takes on average 14 days to either die or recover from an

infection, so πyd,0 + πyr,0 = 7/14 and πod,0 + πor,0 = 7/14.

6.1.2 Calibration

In addition to R0, we calibrate the following parameters: π∗yd,t, π
∗
od,t, r, α, ρ, β, δy, δo, z,

ω0, and ω1. We set the actual weekly case-fatality rates (π∗yd,t and π∗od,t) for the week of

July 26, 2020 to 7× 0.001/14 and 7× 0.035/14, respectively. These values correspond to the

case-fatality rates for the median younger (age 39.5) and older (age 64.5) person (see Table

1).

Sorensen et al. (2022) estimate the population-wide time trend in the infection-fatality

rate from April 2020 to January 2021. These estimates imply that the infection-fatality rate

fell by 36 percent between March 2022 and April 2021. We use these estimates to compute

the values of π∗yd,t and π∗od,t for periods before and after July 26, 2020. We assume that

the values of π∗yd,t and π∗od,t are such that, on average, infected people recover or die in two

weeks (π∗or,t + π∗od,t = π∗yr,t + π∗yd,t = 7/14). We make the same assumption for the beliefs of

case-fatality rates, i.e., πor,t + πod,t = πyr,t + πyd,t = 7/14. The blue-dashed lines in Figure 7

show the resulting time series for π∗yd,t and π∗od,t. See subsection B.4 of the Appendix for a

more detailed description of how we incorporate the Sorensen et al. (2022) estimates into

our calibration.

The annual real interest rate, r, is set to 1 percent. This value corresponds roughly to

the realized real yield on 10-year Portuguese government bonds from March 2020 to April

2021.

We use the life-expectancy tables produced by Statistics Portugal to calibrate non-

COVID-related mortality rates for younger and older people. We obtain δy = 1/(51 × 52)
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and δo = 1/(13 × 52). Since the average age difference between old and young people is 28

years, we set the weekly probability of aging, ν, to 1/(28× 52). Consistent with Portuguese

demographic data, we assume that the population between 20 and 59 years old is 70 percent

of the population between 20 and 79 years old.

We set the coefficient of relative risk aversion (α) to 2 and the EIS (1/ρ) to 1.5. These

parameter values correspond to the estimates in Albuquerque et al. (2016), obtained using

data on the equity premium and other moments of financial-market data. These data are

particularly relevant to our analysis because they reflect people’s attitudes toward risk. The

weekly discount factor, β, is set equal to 0.971/52, which is consistent with the values used

in the literature on dynamic stochastic general equilibrium models (see, e.g., Christiano et

al. (2005)).

The level parameter in the utility function (z) and the two parameters that control the

utility of bequests (ω0 and ω1) are chosen so that the model is consistent with three features

of the Portuguese data. First, the ratio of younger to older people’s consumption is roughly

1.2. Second, the average savings rate is 6.7 percent. Third, the value of life is about 900

thousand euros, which is consistent with the value used in cost-benefit analyses of Portuguese

public works (see, e.g., Ernst and Young (2015)). These conditions imply that ω0 = 159.51,

ω1 = 4.88, and z = 2.66. A value of life of 900 thousand euros equals 6.8 times annual

consumption. For comparison, Hall, Jones, and Klenow (2020), henceforth HJK, consider

values of life measured in units of consumption ranging from 5 to 7.

In our sample, the average after-tax income of people younger and older than 60 in 2018

is very similar (18, 900 and 19, 400 euros, respectively). To simplify, we assume that both

groups earn 19, 000 euros per year.

7 Empirical results

Figure 6 depicts priors and posteriors for the parameters we estimate. The figure shows that

the data is very informative relative to our priors. Table 2 reports the mean and 95 percent

probability intervals for the priors and posterior of the estimated parameters.

Several features are worth noting. First, the posterior modes of πyd,0 and πod,0 are

0.089 and 0.428, respectively. Recall that case-fatality rates for young and old are πyd =

7 × 0.001/14 = 0.0005 and πod = 7 × 0.035/14 = 0.0175, respectively. So, according to the

model, both younger and older people greatly overestimated their case-fatality rates at the
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Figure 6: Priors and posteriors of estimated parameters.

Table 2: Priors and Posteriors of Parameters: Baseline Model vs. FIRE/no learning Model.

Baseline
Model

FIRE/no learning

Model

Prior Distribution Posterior Distribution Posterior Distribution

D, Mean, [2.5-97.5%] Mode, [2.5-97.5%] Mode, [2.5-97.5%]

Initial belief, mortality rate, young, πyd,0 U , 0.50, [0.025 0.975] 0.089, [0.075 0.100] -
Initial belief, mortality rate, old, πod,0 U , 0.50, [0.025 0.975] 0.428, [0.371 0.474] -
Learning speed parameter, young, gy U , 0.50, [0.025 0.975] 0.069, [0.066 0.072] -
Learning speed parameter, old, go U , 0.50, [0.025 0.975] 0.092, [0.088 0.098] -
Initial share of cons.-based infections, κ U , 0.50, [0.025 0.975] 0.046, [0.041 0.054] 0.069, [0.065 0.074]

Containment parameter, µ U , 0.50, [0.025 0.975] 0.380, [0.366 0.391] 0.525, [0.518 0.532]

Memo Item

Log Marginal Likelihood (Laplace): -532.5 -1704.9

Notes: For model specifications where particular parameter values are not relevant, the entries in this table

are blank. Posterior mode and parameter distributions are based on a standard MCMC algorithm with a total of

500,000 draws (10 chains, 10 percent of draws used for burn-in, draw acceptance rates about 0.2).

U denotes the prior for the uniform distribution for which the mean is reported instead of the mode.
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beginning of the epidemic. Second, the posterior mode of the gain parameters, gy and go,

are 0.069 and 0.092, respectively. Figure 7 displays the implied time series of πyd,t and πod,t.

By the end of the sample, πyd,t and πod,t have essentially converged to their true values. As

discussed below, this feature is critical to the model’s ability to account for the data. Third,

the posterior mode of the parameter µ is equal to 0.380. So, at their peak, containment

measures reduced the marginal utility of consumption by roughly 38 percent. Fourth, κ, the

fraction of infections associated with consumption activities is 4.6 percent. Taken together,

these values imply that π1 = 0.000170 and π2 = 1.1921.

Figure 7: Evolution over time of beliefs about case-fatality rates of old and young.

The dashed red and blue lines in Figure 8 display our regression-based estimates of

how the consumption of old and young people responded to Covid. The bars around point

estimates represent the 95 percent confidence intervals. The solid red and blue lines are

the corresponding model implications computed using the posterior mode of the estimated

parameters. These implications are computed by comparing the model’s dynamics with and

without Covid.

Figure 8 shows that the model does quite well at accounting for the consumption behavior

of older people over the entire sample. In particular, the model generates the steep decline

during the first wave, the recovery in the summer of 2020, the subsequent reduction beginning

in the fall of 2020, as well as the recovery in the winter of 2021. Critically, the model is

consistent with the fact that consumption of the old falls by more in the first wave than in

the second wave, even though the risk of infection was higher in the second and third waves.

With two exceptions, the model does quite well at accounting for the consumption behav-

ior of the young. The first exception is that it does not fully explain the rise in consumption
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Figure 8: Consumption of young and old in the epidemic. Baseline estimated model and
data implications for changes in expenditures of old and young during the epidemic relative
to a counterfactual without Covid.

of the young during the summer of 2020. The second exception is that the model understates

the peak decline in the consumption of the young during the second wave. An important

success of the model is that it implies that consumption expenditures of the young fall by

more in the first wave than in the second and third waves.

We conduct the following experiment to gain insight into intertemporal substitution’s

role in consumption choices. In our baseline specification, the second and third waves come

as a surprise to people. Suppose, instead, people knew about the second and third waves at

the beginning of the epidemic. Other things equal, the more important intertemporal substi-

tution is, the more we would expect consumption choices to be affected by this information.

It turns out that in this case, people’s consumption choices are very similar to the baseline

case (see Figure B.8 in Appendix B).

7.1 Identifying κ and µ

In this subsection, we discuss the key features of the data that allow us to identify κ and

µ. Consider first κ, the fraction of infections attributed to consumption. To account for the

behavior of consumers in the first and the third waves in the face of differential infections,
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the model assumes that initially, people have pessimistic beliefs about case-fatality rates.

These beliefs converge to the truth by the third wave (see Figure 7 and subsection 7.2).

Given this convergence, the estimation algorithm chooses κ so that the model matches the

consumption of old and young in the third wave.

To understand how our model identifies µ, the parameter that controls the importance

of containment, we proceed as follows. We re-estimate the model, setting µ to zero. The

model’s fit deteriorates significantly: the marginal log likelihood falls from −532 to −2, 007.

Regarding parameter estimates, the main impact of setting µ to zero is twofold. First,

it increases the value of κ, the parameter that governs the effect of consumption on the

probability of being infected. Second, it reduces πod,0, old people’s prior about the case-

fatality rate.

To understand these effects, suppose we set µ to zero without changing κ or πod,0. Without

containment, the consumption of the young would drop by much less than in the benchmark

model. The estimation algorithm increases κ to better fit the drop in the consumption of

the young. But increasing κ exacerbates the decline in the consumption of the old. To

offset this effect, the estimation algorithm reduces πod,0, so that the old view Covid as less

lethal. The deterioration in model fit is most notable at the end of the third wave. By then,

people’s priors about case-fatality rates have converged to their true values, and there are

few infected people in the economy. In the absence of containment, consumption of young

and old are counterfactually high.

We also re-estimated the model by fixing µ at 10 percent higher than its estimated value.

Even this small change in µ leads to a sizable deterioration in the marginal log-likelihood,

which falls from −532 to −559. This deterioration reflects the model’s poor fit at the end of

the sample–consumption is counterfactually low relative to the data. We experimented with

larger values of µ and found that the algorithm pushed parameters like κ and πod,0 to their

boundary values.

An alternative way of studying the role of containment is to compute the counterfactual

fall in expenditures that would have occurred if the government had imposed containment

measures, but there were no infections. The difference between the consumption policy

functions with and without containment allows us to estimate the impact of containment

per se. This estimate relies on the assumption that, to a first order, the observed behavior

of expenditures is the sum of people’s response to containment and the risk of becoming

infected.
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The solid blue line in Figure 9 displays the consumption of old and young in a version of

the model with containment but no infections. In this scenario, the changes in consumption

expenditures of young and old people are the same. Figure 9 shows that the containment

measures in isolation would have led to a 21 percent drop in consumption of the young

and the old in the trough of the first and third waves. In the data, the actual declines in

consumption are much larger. So, while containment had a substantial impact, most of the

decrease in consumption for both groups reflects their response to the risk of dying from

Covid. These results are consistent with the findings of Arnon et al. (2020), Chetty et al.

(2020), Chernozhukov et al. (2021), Goolsbee and Syverson (2020), and Villas-Boas et al.

(2020).
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Figure 9: Consumption of young and old in model with containment and no Covid epidemic.

Our results are also consistent with those in Sheridan et al. (2020). Denmark and Sweden

were similarly exposed to the pandemic, but only Denmark imposed significant containment

measures. Sheridan et al. (2020) find that consumption of the young dropped by more in

Denmark, presumably because of containment measures. Consumption of the old dropped

by more in Sweden, presumably because the absence of containment increased the risk of

infection.

30



7.2 The importance of time-varying beliefs

Learning plays a critical role in allowing the model to account for the key patterns in the

data across the different Covid waves. In the data, the troughs of consumption are the

same in the first and third waves for each age group. But the risk of becoming infected is

much larger in the third wave. Other things equal, a model in which people know their true

case-fatality rate at the beginning of the epidemic cannot account for these facts.

To formally substantiate this claim, we estimate a version of the model with full-information

rational expectations (FIRE). In this version of the model, people know the true case-fatality

rates at the beginning of the epidemic. This assumption is standard in the Covid literature

(e.g., Alvarez, Argente, and Lippi (2021), Eichenbaum, Rebelo, and Trabandt (2021), and

Jones, Philippon, and Venkateswaran (2021)).

In this version of the model, the only estimated parameters are µ and κ. The last column

of Table 2 reports the mean and 95 percent probability intervals for the prior and posterior

of µ and κ. Interestingly, the posterior mode of µ and κ are higher than the corresponding

value in the benchmark model. These higher values improve model fit during the first wave

but do not help the model explain the differential response of old and young.

We evaluate the performance of this model relative to the learning model by computing its

implications for the marginal log-likelihood. The marginal log-likelihood of the no-learning

model is a dramatic 1,173 points lower than that of the learning model. To understand this

result, consider Figure 10, which displays the implications of the re-estimated model with no

learning for the consumption expenditures of young and old. First, the model substantially

understates the drop in consumption expenditures of old people during the first wave of

the epidemic. Second, for the period up to November 2020, the model does not account

for the fact that consumption expenditures of the old dropped by much more than those of

the young. After that period, the model does generate a larger consumption drop for the

old compared to the young. Third, the model counterfactually predicts that the decline in

consumption expenditures of the old is larger in the second and third waves than in the first

wave.

7.3 Consumption response for different income groups

In Section 4.3, we discuss our estimates of the consumption response of different income

groups to the epidemic. Recall that consumption expenditures fell more for higher-income
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Figure 10: Consumption of young and old in the epidemic. Model with FIRE/no learning
and data implications for changes in expenditures of young and old during the epidemic
relative to a counterfactual without Covid.

groups than for lower-income groups. Our model is qualitatively consistent with this response

pattern because higher-income households have a higher value of life, so they have more to

lose from dying from Covid. In this subsection, we compare the quantitative implications of

our model with our empirical estimates. To do so, we change the value of real labor income,

w, to be consistent with the mean income of each of the three groups considered in Section

4.3 (12, 481 EUR, 28, 566 EUR, and 59, 419 EUR). We solve and simulate the model for

these three income groups, keeping all parameters equal to our baseline estimates.

Figure 11 shows the model implications and the 95 percent confidence intervals estimated

in Section 4.3. This figure provides an important post-estimation check on the model because

these data are not used in the estimation. Except for the lower income group during the

first wave, the model fits quite well the consumption behavior of the different income groups.

Introducing a subsistence level of consumption and targeted transfers to the lowest income

group would help the model better fit the consumption behavior of this group during the

first wave.
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Figure 11: Consumption of young and old in the epidemic by income groups. Model with
different levels of income and data implications for changes in expenditures of young and old
with different incomes during the epidemic relative to a counterfactual without Covid.

7.4 The alpha variant

As a robustness check, we study the impact of alpha, the only important variant of the

ancestral virus in our sample. That variant is estimated to be roughly 50 percent more

contagious than the original strain (e.g., Yang and Shaman (2021) and Tabatabai et al.

(2023)). Brainard et al. (2022) estimate that the alpha variant and the ancestral virus

case-fatality rates are roughly the same.

According to GISAID data, this variant was detected in Portugal in the week of December

7, 2020, and consistently accounted for more than half of the sequenced viruses between

February 2020 and April 2021.

To compute an upper bound on how much this variant affected consumption expenditures,

we assume that there was an unanticipated increase of 50 percent in π1 and π2 after December

7, 2020. Figure B.9 in Appendix B shows that consumption by old and young falls by more

in the second and third waves than in our benchmark model. This modification improves the

model’s fit in terms of the young’s consumption expenditures and somewhat deteriorates the

fit in terms of the old’s consumption expenditures. Incorporating the alpha variant into the
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analysis does not affect our results concerning the importance of learning about case-fatality

rates.

7.5 The impact of declining case-fatality rates

In this subsection, we study the impact of the decline in case-fatality rates estimated in

Sorensen et al. (2022) which are embedded in our benchmark model. Recall that these

estimates imply that the case-fatality rate falls 36 percent between March 2020 and January

1, 2021. We solve a version of the model where the case-fatality rate is constant and equal to

the March 2020 values keeping all other model parameters at their estimated baseline values.

As in the baseline model, people learn the constant true case-fatality rate over time. Figure

B.10 in Appendix B displays the implications of this version of the model. The fit to the data

is similar in the first wave but somewhat worse in the second and third waves. The higher

case-fatality rate during the second and third waves generates slightly larger consumption

drops than in the baseline model. Overall, the decline in case-fatality rates has a modest

impact on the consumption dynamics implied by the model. The intuition for this result is

that, while case-fatality rates declined, they did so from very low levels.

7.6 Willingness to pay to avoid the epidemic

In this subsection, we study the following question: how much would people of different

ages and incomes be willing to pay to avoid the epidemic? In what follows, we refer to an

epidemic as including associated containment measures.

We first discuss the impact of age on the willingness to pay. The lifetime utility of a

susceptible person with assets b at the beginning of the epidemic is U s
a(b). The lifetime

utility of a person with assets b in an economy without an epidemic is Ua(b). In general,

U s
a(b) < Ua(b), that is, the epidemic reduces lifetime utility. We compute the value of initial

assets b̄ in the economy without an epidemic that makes people indifferent between living in

an economy with and without an epidemic: U s
a(b) = Ua(b̄).

The annual income of a person of age a at time zero, ya,0, is given by: ya,0 = 52×(w + rb).

In the spirit of HJK and Murphy and Topel (2006), we report for young and old ∆ ≡ (b−b̄)/y,

i.e., the fraction of one year’s income that a person would be willing to give up to avoid the

epidemic.

Table 3 contains our results. In the baseline model, young and old people are willing

to give up 45 and 80 percent of a year’s income to avoid the epidemic. These large values
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reflect the pessimistic priors implied by the consumption behavior observed in the data.

Containment increases people’s willingness to pay to avoid the epidemic, but this effect is

relatively small in the baseline model. Removing containment reduces the willingness to pay

from 45 to 40 percent for young and from 80 to 77 percent for old.

When people know their actual case fatality rate (FIRE/no learning), their willingness to

pay to avoid the epidemic is significantly reduced to 9 and 15 percent of a year’s income for

young and old, respectively. Since the true case fatality rate is very low for the young, most

of their willingness to pay to avoid the epidemic reflects their desire to avoid the containment

measures associated with the epidemic. For the old, roughly half of the willingness to pay

reflects the desire to avoid containment measures.12

In their analysis for the U.S., HJK compute that the willingness of the representative

person to pay to avoid the epidemic in a model with FIRE, no learning, and no containment.

Depending on the case fatality rate, they find that a representative person would be willing to

pay between 28 and 41 percent of one year’s income to avoid the epidemic. The comparable

value implied by our model is 2 percent. Several differences between our model and HJK’s

affect people’s willingness to pay. The two major differences are as follows.13 First, HJK

assume there is no bequest motive, so dying results in a much larger utility loss in their model.

Second, HJK assume that the probability of dying increases by 0.81 of a percentage point

for one year due to Covid. Their calculation corresponds to a scenario in which everybody is

infected at the beginning of the epidemic and dies from Covid with probability 0.81. In our

model, only a relatively small fraction of the population is infected and is at risk of dying

from Covid. In our sample, the probability of dying from Covid for the overall population

is 0.17 percent.

To illustrate the importance of two of these factors, we proceed as follows. First, we

consider a version of the model with no bequests (ω0 = ω1 = 0) and no containment (µt = 0).

We find that the average willingness to pay is 10 percent of income (6 percent for the young

and 18 percent for the old). Second, we assume that the number of infected is five times

larger, so the probability of dying from Covid in the first year is 0.81 percent. We find that

the average willingness to pay is 43 percent (29 percent for the young and 74 percent for the

12Our results on the difference in the willingness to pay of young and old are complementary to the
estimates of the value of a statistical life produced by Greenberg et al. (2021) for young people in the U.S.
who enlist in the army.

13Other differences, less important from a quantitative point of view, are as follows. First, the statistical
value of life and income are lower in Portugal than in the U.S. Second, HJK assume no discounting of future
utility (β = 1) and time-separable expected discounted utility.
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Table 3: Willingness to pay to avoid the epidemic.

Baseline Model FIRE/no learning Model

100×∆a
Epidemic &
Containment

No
Containment

Epidemic &
Containment

No
Containment

Young 45 40 9 1
Old 80 77 15 7

Weighted Average 54 51 10 2

Table 4: Willingness to pay to avoid the epidemic by income (as a fraction of initial assets).

Income in euros (thousands) 12, 481 19, 000 28, 566 59, 490

Euros (thousands)
Young 8 9 11 16
Old 14 16 18 25

Fraction of own income
Young 58 45 36 26
Old 110 80 62 41

old), a number in the range of those reported by HJK.

Table 4 shows how much people in different income groups would pay to avoid the epi-

demic. Three results emerge. First, for all income levels, the young are willing to pay less

than the old, both in absolute terms and as a fraction of their income. This result reflects

the fact that the young are less likely to die than the old due to the epidemic. Second, the

higher a person’s income is, the more they are willing to pay in absolute terms to avoid the

epidemic. This finding reflects the fact that the value of life is increasing in income. Third,

the higher a person’s income, the lower the fraction of their income they are willing to pay.

This result reflects the fact that preferences are non-homothetic due to the presence of two

terms in the utility function (z and ω0) that do not depend on income. These terms imply

that the value of life as a fraction of income is a decreasing function of income.

36



8 The economic impact of endemic Covid

In this section, we explore one way to reconcile the large short-run and small long-run effects

on consumption of changes in mortality rates associated with contagious diseases. To do so,

we investigate the economic costs of endemic Covid in an economy where people know the

actual case-fatality rates. We modify our model in three ways. First, we modify our epi-

demiology model so that Covid becomes endemic. As in Eichenbaum, Rebelo, and Trabandt

(2022b) and Abel and Panageas (2020), we modify social dynamics so that recovered people

become susceptible with probability πs. This modification implies that the pool of suscep-

tible people gets replenished, so there are always new people who can get infected. As a

result, the steady-state number of infected people is positive, i.e., Covid is endemic. Second,

we allow for vaccination. Third, we assume, for tractability, that people are organized into

households, each with a continuum of identical members. This household structure intro-

duces limited sharing of health risks. Fourth, we embed that model in a general equilibrium

framework with endogenous labor choice and capital accumulation. The model is described

in detail in Appendix C.

Our analysis focuses on the economy’s steady state, where it seems natural to assume

that people’s posteriors about case-fatality rates have converged to their actual values. As

might be anticipated from our previous results, this assumption has a major impact on the

model’s implications for the economic consequences of endemic Covid. We compare the

economic costs of Covid in this model with a counterfactual in which people have high prior

values for πyd,0 and πod,0 and do not update them.

8.0.1 Steady-state results

The first column of Table 5 compares consumption and hours worked in the pre-epidemic

steady state with the steady state in which Covid is endemic. Aggregate output, hours

worked, and consumption fall by about 0.26 percent relative to the pre-epidemic steady

state. Consumption falls by 0.86 percent for old people and barely falls for young people.

Hours worked fall by 0.72 percent for older people and only 0.07 percent for younger people.

The lower response of consumption relative to the partial equilibrium model discussed

in Section 7 reflects four factors. First, people know the true case-fatality rate. Second,

consistent with the estimates in Sorensen et al. (2022), this rate is 36 percent lower than at

the beginning of the epidemic. Third, this model includes vaccines that reduce the probability
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Table 5: Effect of case-fatality rate on percent change of allocations in endemic Covid steady
state relative to pre-epidemic steady state.

Case-fatality rate equal to...
Actual long-run value Initial estimated beliefs

Percent change of ...

Aggregate output -0.26 -4.93
Aggregate consumption -0.26 -4.93
Aggregate hours worked -0.26 -4.93
Consumption young -0.003 -4.16
Consumption old -0.86 -6.74
Hours worked young -0.07 -4.20
Hours worked old -0.72 -6.65
Capital stock -0.26 -4.93

of infection. Fourth, there are no containment measures.

We interpret these results as an upper bound on the economic cost of endemic Covid.

The reason is that our model abstracts from ways in which economies can adapt to Covid.

Examples include the adoption of remote work and e-commerce (see Jones et al. (2021) and

Krueger et al. (2020) for discussions).

The steady-state economic impact of endemic Covid is minimal compared to the massive

decline in economic activity experienced in 2020. In the steady state Covid reduces life

expectancy at birth by 1.5 percent and reduces aggregate output by 0.26 percent relative to

the pre-epidemic steady state.

Interpreted through the lens of our model, the differential short- and long-run impact of

endemic Covid on economic activity reflects people’s beliefs about case-fatality rates. The

steady-state calculations above assume that people’s beliefs correspond to the objective case-

fatality rate. Our empirical results indicate that in early 2020 people’s initial beliefs about

case-fatality rates were much higher than the true case-fatality rates.

To quantify the impact of people’s beliefs on economic activity, we re-solve for the steady

state assuming that people make decisions based on our estimates of their March 2020 beliefs.

The objective case-fatality rates drive actual population dynamics. Technically, in the first-

order conditions for ia,t+1, the values of πad and πar are set to the estimated initial beliefs in
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Section 6.1.

The second column of Table 5 compares consumption and hours worked in this steady

state and the pre-epidemic steady state. We see large falls in consumption and hours worked

relative to the pre-epidemic steady state. Aggregate consumption, hours worked, and phys-

ical capital fall by 4.93 percent. Consumption falls by 6.74 percent for old people and 4.2

percent for young people. Hours worked fall by 6.65 percent for older people and only 4.2

percent for younger people.

Taken together, our results suggest a way of reconciling the large economic impact of

Covid relative to the historical evidence presented by Acemoglu and Johnson (2007). Our

reconciliation highlights the critical role of expectations about case-fatality rates in deter-

mining the dynamic economic impact of an epidemic.

9 Conclusion

Our analysis highlights the importance of expectations in determining the economic impact

of infectious diseases like Covid. According to our estimates, people’s prior beliefs about

Covid case-fatality rates were very pessimistic. These pessimistic prior beliefs led to sizable

consumption declines in the first wave of the epidemic. People’s beliefs converged to the true

case-fatality rates by the third wave of the epidemic. So, even though the risk of becoming

infected was much larger in the third wave, consumption expenditures fell by about the same

as in the first wave.

The fact that estimated expectations converged is important for thinking about the

economic consequences of the secular declines in the mortality rate associated with infectious

diseases. We expect people to eventually learn about these declines and adjust their behavior

accordingly. Once this learning occurs, the impact of infectious diseases is relatively small.

Our model is consistent with the large impact of Covid on economic activity and the small

effect of the secular fall in mortality rates associated with other infectious diseases.

If the government and consumers have full information, rational expectations about case-

fatality rates, then there is a clear argument for implementing some form of containment.

As discussed, for example, in Eichenbaum, Rebelo, and Trabandt (2021), there is an exter-

nality associated with market activities that can be corrected with containment measures.

However, suppose that consumers overestimate case-fatality rates at the beginning of an epi-

demic. If the government had better information than consumers, containment might be a
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mistake. The reason is that consumers are overreacting to the possibility of getting infected,

and market activity is falling by more than warranted by the objective case-fatality rate.

Introducing containment could further exacerbate this overreaction.

It is unclear to us that the government had better information about case-fatality rates

at the beginning of the epidemic than consumers. To the extent that the government un-

derstands that it does not know the actual case-fatality rates, optimal policy design should

draw on the insights of the literature on decision-making under Knightian uncertainty (see,

e.g., Gilboa and Schmeidler (1989) and Cosmin and Schneider (2022) for a recent review).
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A Appendix A: empirical results

This appendix is organized as follows. The first subsection contains tables with descriptive

statistics. The second subsection provides evidence of the empirical plausibility of the as-

sumption used in our empirical specification that seasonal effects for January through April

2021 are the same as the common seasonal effects in 2018 and 2019. The third subsection

provides results estimated by age cohort and results obtained using data for retirees instead

of public servants. The fourth subsection reports results regarding the impact of comorbidi-

ties on consumption behavior. The fifth subsection provides results estimated to contrast

with the economic model of consumer behavior. The final subsection provides the regression

results that support the construction of the figures we present in the main body of the paper.

A.1 Descriptive statistics

Table 6: Descriptive statistics, January 2018 - December 2019.

�p2`�;2 T2` +�TBi� KQMi?Hv 2tT2M/Bim`2 QM +QMbmKTiBQM ;QQ/b �M/ b2`pB+2b Bb e3dX3 2m`Qb-
Q7 r?B+? k8Xe 2m`Qb Bb bT2Mi QM T?�`K�+v Bi2KbX h?2b2 2tT2M/Bim`2b �`2 `Qm;?Hv bBKBH�` 7Q`
i?2 b�KTH2 Q7 i?2 TQTmH�iBQM �b � r?QH2, i?2 �p2`�;2 T2` +�TBi� KQMi?Hv 2tT2M/Bim`2 QM
+QMbmKTiBQM ;QQ/b �M/ b2`pB+2b Bb ekNXj 2m`Qb- Q7 r?B+? RdXN 2m`Qb Bb bT2Mi QM T?�`K�+v
Bi2KbX _2iB`22b ?�p2 HQr2` H2p2Hb Q7 Qp2`�HH 2tT2M/Bim`2X h?2v bT2M/- QM �p2`�;2- 9jdX3 2m`Qb
QM +QMbmKTiBQM ;QQ/b �M/ b2`pB+2b- Q7 r?B+? k9Xj 2m`Qb Bb bT2Mi QM T?�`K�+v Bi2KbX

h�#H2 k `2TQ`ib i?2 b�K2 bi�iBbiB+b �b h�#H2 R #`QF2M /QrM #v BM+QK2 �M/ �;2 ;`QmTbX
AM+QK2 ;`QmTb �`2 #�b2/ QM i?2 kyRd BM+QK2@i�t #`�+F2ib mb2/ #v SQ`im;�HǶb AMi2`M�H _2p@
2Mm2 a2`pB+2 UA_aVX q2 ;`QmT T2QTH2 �++Q`/BM; iQ i?2B` �;2b bQ i?�i i?2v ?�p2 bBKBH�` *QpB/
+�b2@7�i�HBiv `�i2bX Pm` 2biBK�i2b Q7 i?Bb `BbF �`2 #�b2/ QM i?2 bi�iBbiB+b `2TQ`i2/ #v i?2
SQ`im;m2b2 ?2�Hi? �mi?Q`Biv U.:aV QM CmHv k3- kykyX h�#H2 j /BbTH�vb +�b2@7�i�HBiv `�i2b
Ui?2 `�iBQ Q7 *QpB/ /2�i?b iQ T2QTH2 BM72+i2/V #v �;2 +Q?Q`i 7Q` SQ`im;�HX hrQ F2v `2bmHib
2K2`;2 7`QK h�#H2 jX 6B`bi- T2QTH2 �;2/ ky iQ 9N �HH ?�p2 HQr +�b2@7�i�HBiv `�i2bX a2+QM/-
+�b2@7�i�HBiv `�i2b `Bb2 MQM@HBM2�`Hv rBi? �;2 7Q` T2QTH2 QH/2` i?�M 8yX

h�#H2 R, .2b+`BTiBp2 bi�iBbiB+b- C�Mm�`v kyR3 @ .2+2K#2` kyRN

ai�iBbiB+ J2�M aiX .2pX S+iHUk8V J2/B�M S+iHUd8V
�HH S2QTH2
1tT2Mb2 TX KQMi? U�HHV ekNXj k-Re9Xd RkRXy k39XR 8dkXe
1tT2Mb2 TX KQMi? US?�`K�+vV RdXN j8X9 yXy 9XN k9Xy

Sm#HB+ a2`p�Mib
1tT2Mb2 TX KQMi? U�HHV e3dX3 R-e3RXy kR9Xd 9kjXk d9kXe
1tT2Mb2 TX KQMi? US?�`K�+vV k8Xe 9kXj yXy RRXd j8Xe

_2iB`22b
1tT2Mb2 TX KQMi? U�HHV 9jdX3 R-eNeXR dNX8 R3NX8 9RdX3
1tT2Mb2 TX KQMi? US?�`K�+vV k9Xj 9RX8 yXy RkX9 j9X8
LQi2, S+iHUV /2MQi2b T2`+2MiBH2 �M/ aiX .2pX i?2 bi�M/�`/ /2pB�iBQM

j 1KTB`B+�H `2bmHib
h?Bb b2+iBQM ?�b irQ T�`ibX AM i?2 }`bi bm#b2+iBQM- r2 T`QpB/2 �M Qp2`pB2r Q7 i?2 2pQHmiBQM Q7
i?2 2TB/2KB+ BM SQ`im;�H �M/ i?2 ;Qp2`MK2MiǶb +QMi�BMK2Mi K2�bm`2bX q2 �HbQ /Bb+mbb i?2
2pQHmiBQM Q7 T2` +�TBi� +QMbmKTiBQM 2tT2M/Bim`2b BM Qm` b�KTH2X AM i?2 b2+QM/ bm#b2+iBQM- r2
T`2b2Mi 7Q`K�H 2+QMQK2i`B+ 2pB/2M+2 Q7 ?Qr *QpB/ BKT�+i2/ i?2 +QMbmKTiBQM 2tT2M/Bim`2b
Q7 T2QTH2 Q7 /Bz2`2Mi �;2b �M/ +QKQ`#B/Biv +QM/BiBQMbX

8

Because of the large sample size, the 95 percent confidence intervals are indistinguishable

from the point estimates. The vertical dashed line denotes the beginning of the Covid

epidemic in 2020.

A.2 Seasonality effects

Equation (1) assumes that, in the absence of the epidemic, the seasonal effects for January

through April 2021 (λm) are the same as the common seasonal effects in 2018 and 2019. To

assess the empirical plausibility of this assumption, we estimated the following specification
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Table 7: Distribution of monthly expenses by age and income, January 2018 - December
2019.

h�#H2 k, .Bbi`B#miBQM Q7 KQMi?Hv 2tT2Mb2b #v �;2 �M/ BM+QK2- C�Mm�`v kyR3 @ .2+2K#2`
kyRN

:`QmT L J2�M aiX .2p S+iHUk8V J2/B�MX S+iHUd8V
�HH S2QTH2

Age [20;49] RNy-yje e9kXy ky8RXR Rj8Xj jRyXd 8NRX3
Age [50;59] 38-jy8 e3yXk k9y8Xj RkkXj kNNXR eReX9
Age [60;69] d9-jNy eRNX9 kkeNX3 N3Xe k9NX8 89dX9
Age [70;79] dR-ey8 9jeXd R3jNX8 eeX8 RdkXj jNdXR

Income [0;7,091] RR9-kN8 k3NXk Ry38Xd 9jXN Rk8X9 k3eXe
Income ]7,091;20,261] kRd-j3R 9ddXj R9k8Xe RkjX8 ke8X3 9NyXd
Income ]20,261;40,522] e9-8Nj NRjXy kyNjXd jReX3 88dXd NkkX9
Income ]40,522;80,640] RN-jdd R8NkX9 jR38XR 9d9Xk 38RXR R-8kNXe
Income ≥80,640 8-eNy 89y9Xd R-Ry99XR dRkXe R-e8NXk 8-d98Xe

Sm#HB+ a2`p�Mib

Age [20;49] Ry-yyd ddNXN R-N99Xy kNRXy 8y9Xd 3y9X8
Age [50;59] R8-jed djyXy R-ee3XN k88Xj 9ddX8 dNdXR
Age [60;69] R3-3jd ed8X3 R-e9dX9 RNdX9 jNNXd dk8Xd
Age [70;79] R9-j3d 8eeXd R-9N9XN R9dXk jReXy eRjXk

Income [0;7,091] R-eky k8RX3 dj9Xy 8jXR RkeX9 ke8X9
Income ]7,091;20,261] k9-k8y 9j8Xy R-RjNXd R9yXd kddX9 93eX3
Income ]20,261;40,522] k8-e8R ddkXj R-eN9XN jyeXk 8k3Xk 3jeX8
Income ]40,522;80,640] e-RN9 R-R83X9 k-j9dXk 99eXN dekX9 R-kkRXN
Income ≥80,640 33j k-kk9Xy 9-83kXk e9NXk R-R8NXk k-yR9Xd

_2iB`22b
Age [20;49] Nj8 kjkXe N3RXe RdXd d3Xe kyeXj
Age [50;59] j-RR9 k3eX9 R-RRkXy jkX9 Ry3Xd kdNXR
Age [60;69] ke-Nky 9k3Xd R-9ejX8 ddXR RNdX3 9jeXk
Age [70;79] ej-9ed 9kkXe R-de9Xe edXk RdkX3 jN9Xj

Income [0;7,091] jd-NN3 ReRX8 8e9Xj kdXj dNX8 RdkXR
Income ]7,091;20,261] j3-jk3 jeyXy N9RXk RydXR kRdXy 9ykX8
Income ]20,261;40,522] Rj-Nk8 d9RXd R-e38XR k8jXk 9dyXj 3yjXk
Income ]40,522;80,640] j-j8R R-j9eXy k-83dXR 9jeXj d3dX8 R-jNkX3
Income ≥80,640 3j9 8-ejeXN Rk-RR8XN djkXy R-d9NXk 8-3RNXe

LQi2, S+iHUV /2MQi2b T2`+2MiBH2 �M/ aiX .2pX i?2 bi�M/�`/ /2pB�iBQM

jXR h?2 2TB/2KB+ BM SQ`im;�H

6B;m`2 R /2TB+ib i?2 r22FHv iBK2 b2`B2b Q7 BM72+i2/ T2QTH2 �M/ *QpB/ /2�i?b BM SQ`im;�HX
q2 `272` iQ J�`+? kyky i?`Qm;? �T`BH Q7 kykR �b i?2 ǳ2TB/2KB+ /�i2bXǴ h?2`2 r2`2 i?`22
r�p2b Q7 *QpB/ /2�i?b /m`BM; i?Bb T2`BQ/X h?2 T2�Fb Q7 i?2b2 r�p2b Q++m` BM �T`BH kyky-
.2+2K#2` kyky- �M/ C�Mm�`v kykRX h?2 #`Q�/ T�ii2`M Q7 *QpB/ +�b2b Bb +QMbBbi2Mi rBi? i?2
7�+ib /Q+mK2Mi2/ #v �iF2bQM 2i �HX UkykyV 7Q` � +`Qbb@b2+iBQM Q7 +QmMi`B2bX

e
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i?2 *QpB/ b?Q+FX Pm` 2+QMQK2i`B+ T`Q+2/m`2 +QMbB/2`b i?2 H�ii2` irQ 72�im`2b BM +`2�iBM;
� +QmMi2`7�+im�H 7Q` r?�i bT2M/BM; rQmH/ ?�p2 #22M BM kyky �#b2Mi i?2 *QpB/ b?Q+FX q2
2biBK�i2 � b2�bQM�H 2z2+i �M/ iBK2 i`2M/ 7Q` 2�+? �;2 �M/ BM+QK2 ;`QmT mbBM; /�i� 7`QK
C�Mm�`v kyR3 iQ 62#`m�`v kykyX
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6B;m`2 j, �p2`�;2 Q7 i?2 HQ;�`Bi?K Q7 Tm#HB+ b2`p�MibǶ KQMi?Hv 2tT2M/Bim`2bX

jXk �;2 �M/ i?2 BKT�+i Q7 *QpB/ QM +QMbmK2` 2tT2M/Bim`2b

Pm` 2KTB`B+�H bT2+B}+�iBQM 7Q+mb2b QM i?2 /Bz2`2MiB�H +QMbmKTiBQM `2bTQMb2 #v T2QTH2 Q7
/Bz2`2Mi �;2bX h?Bb bT2+B}+�iBQM Bb ;Bp2M #v,

log(Expensesit) = Λ × Y eart +

Dec∑

m=Feb

λm1{Montht = m} + θi + Ψit+

Apr,2021∑

d=Mar,2020

∆dAftert × 1{Datet = d}+

Apr,2021∑

d=Mar,2020

∑

g∈AgeGroup\[20;49]

δdgAftert × 1{Datet = d} × 1{AgeGroupi = g} + εit.

URV

am#b+`BTib i �M/ t /2MQi2 T2`bQM i �M/ +�H2M/�` KQMi? t- `2bT2+iBp2HvX h?2 +Q2{+B2Mi Λ

`2T`2b2Mib � HBM2�` ;`Qri? i`2M/ BM +QMbmKTiBQM 2tT2M/Bim`2bX Y eart Bb � p�`B�#H2 i?�i
i�F2b i?2 p�Hm2 1 + t 7Q` v2�` 2018 + t 7Q` t = 0, 1, 2, 3X h?2 +Q2{+B2Mib λm +QMi`QH 7Q`
b2�bQM�HBiv BM +QMbmKTiBQMX h?2 p2+iQ` Ψit BM+Hm/2b BMi2`�+iBQM i2`Kb i?�i �HHQr b2�bQM�H

N

Figure A.1: Average of the logarithm of public servants’ monthly expenditures.

using data from January 2018 through December 2019:

Log(Expenseit) = Λ20191{Y eart = 2019}+
Dec∑

m=Feb

λm1{Montht = m}+

Dec∑

m=Feb

φm1{Montht = m} × 1{Y eart = 2019}+ θi + εit

(A.1)

The φm coefficients measure the difference between seasonal effects in 2019 and 2018.

Under the null hypothesis that these effects are identical in both years, all φm coefficients

should be zero. Table 8 presents the regression coefficients.

Figure A.2 displays our estimates of φm along with 95 percent confidence intervals. Re-

gardless of which age we focus on, most estimates of φm = 0 are not statistically different

from zero at a 95 percent confidence level. We reject the null hypothesis that φms are jointly

zero for the overall sample that includes all ages. However, the estimates of φm are small,

especially when compared to the changes in consumption expenditures after the Covid shock.

A.3 Robustness of empirical results

In this subsection, we report the results of additional robustness checks. First, we estimate

separate versions of equation (1) for each age cohort. We consider versions with total expen-
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Table 8: Contrasting the month trends of years 2018 and 2019.h�#H2 e, *QMi`�biBM; i?2 KQMi? i`2M/b Q7 v2�`b kyR3 �M/ kyRN
.2T2M/2Mi p�`B�#H2,
Log(Expensesit)

�HH (kyc9N) (8yc8N) (eyceN) (dycdN)
URV UkV UjV U9V U8V

62# UλF ebV −yXy3y∗∗∗ −yXyd3∗∗∗ −yXyd9∗∗∗ −yXyN8∗∗∗ −yXye3∗∗∗
UyXyy9V UyXyy3V UyXyydV UyXyydV UyXyy3V

J�` UλMarV yXyjR∗∗∗ yXykk∗∗ yXyjd∗∗∗ yXyR3∗∗ yXy9N∗∗∗
UyXyy9V UyXyy3V UyXyydV UyXyyeV UyXyy3V

�T` UλAprV −yXyRj∗∗∗ −yXyy8 −yXyyj −yXyke∗∗∗ −yXyRj
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyy3V

J�v UλMayV yXy89∗∗∗ yXyeR∗∗∗ yXyeR∗∗∗ yXy9y∗∗∗ yXy83∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyy3V

CmM UλJunV yXyjj∗∗∗ yXy9j∗∗∗ yXy9j∗∗∗ yXyke∗∗∗ yXyke∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyyNV

CmH UλJulV yXRyR∗∗∗ yXRRd∗∗∗ yXRRd∗∗∗ yXyNk∗∗∗ yXy3j∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyy3V

�m; UλAugV yXyRR∗∗ yXy9k∗∗∗ yXy9k∗∗∗ −yXyR9+ −yXyRk
UyXyy9V UyXyyNV UyXyy3V UyXyydV UyXyyNV

a2T UλSepV −yXy99∗∗∗ −yXyk8∗∗ −yXyy8 −yXydy∗∗∗ −yXye9∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyyNV

P+i UλOctV yXyky∗∗∗ yXyRj yXyRd∗ yXyy9 yXy9N∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyyNV

LQp UλNovV yXyjN∗∗∗ yXyjk∗∗∗ yXy9d∗∗∗ yXyj9∗∗∗ yXy9k∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyyNV

.2+ UλDecV yXRk9∗∗∗ yXR9y∗∗∗ yXR8y∗∗∗ yXRRR∗∗∗ yXRyR∗∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyyNV

1{Y eart = 2019} UΛ2019V yXy9k∗∗∗ yXye9∗∗∗ yXy8R∗∗∗ yXyjj∗∗∗ yXykd∗∗
UyXyy9V UyXyyNV UyXyydV UyXyydV UyXyy3V

1{Y eart = 2019} × 62# UφF ebV −yXyyR −yXyRj −yXyyk yXyyN −yXyy8
UyXyy8V UyXyRRV UyXyyNV UyXyyNV UyXyRRV

1{Y eart = 2019} × J�` UφMarV −yXykk∗∗∗ −yXyy8 −yXyR9 −yXyRd+ −yXy93∗∗∗
UyXyy8V UyXyRRV UyXyyNV UyXyyNV UyXyRRV

1{Y eart = 2019} × �T` UφAprV yXyRN∗∗∗ yXykk+ yXyR3∗ yXyk9∗∗ yXyyN
UyXyy8V UyXyRkV UyXyyNV UyXyyNV UyXyRRV

1{Y eart = 2019} × J�v UφMayV −yXyyN+ −yXyy9 −yXyyN −yXyyN −yXyRj
UyXyy8V UyXyRkV UyXyyNV UyXyyNV UyXyRRV

1{Y eart = 2019} × CmM UφJunV −yXyj8∗∗∗ −yXyky+ −yXyRR −yXy9e∗∗∗ −yXy8d∗∗∗
UyXyy8V UyXyRkV UyXyyNV UyXyyNV UyXyRRV

1{Y eart = 2019} × CmH UφJulV yXyR9∗∗ yXy9R∗∗∗ yXykk∗ yXyye −yXyyR
UyXyy8V UyXyRkV UyXyRyV UyXyyNV UyXyRkV

1{Y eart = 2019} × �m; UφAugV −yXyy3 yXyyR −yXyyd yXyyyj −yXyke∗
UyXyy8V UyXyRkV UyXyRyV UyXyRyV UyXyRkV

1{Y eart = 2019} × a2T UφSepV yXyye yXyRd −yXyyd yXyRk yXyy8
UyXyy8V UyXyRkV UyXyRyV UyXyRyV UyXyRkV

1{Y eart = 2019} × P+i UφOctV yXyyj −yXyy8 yXyyk yXyRk −yXyyk
UyXyy8V UyXyRkV UyXyRyV UyXyRyV UyXyRkV

1{Y eart = 2019} × LQp UφNovV −yXyR9∗∗ −yXyRk −yXyy8 −yXyR3+ −yXykR+
UyXyy8V UyXyRjV UyXyRyV UyXyRyV UyXyRkV

1{Y eart = 2019} × .2+ UφDecV −yXyyk yXyyR yXyyd yXyyj −yXykk+
UyXyy8V UyXyRkV UyXyRyV UyXyRyV UyXyRkV

*QMbi�Mi 8X3Nk∗∗∗ eXy3e∗∗∗ eXyRy∗∗∗ 8X3d8∗∗∗ 8Xe89∗∗∗
UyXyy8V UyXyRyV UyXyy3V UyXyy3V UyXyRyV

χ2 U φF eb = 0- XXX - φDec = 0V 8NXRyy ReX38j NX33y k3Xkyj k9Xy8k
T@p�Hm2 yXyyy yXRRk yX89R yXyyj yXyRj
P#b2`p�iBQMb R-jNk-jdy kj3-Ne8 jee-Ryk 99d-eNN jjN-ey9
_2 yXyyj yXyy8 yXyy9 yXyyj yXyyk
�/Dmbi2/ _2 yXyyj yXyy8 yXyy9 yXyyk yXyyk
_2bB/m�H ai/X 1``Q` RXRyj yXNe9 RXyke RXRjy RXR3k

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
�HH +QHmKMb 2biBK�i2/ rBi? T2`bQM }t2/ 2z2+ib

*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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Figure A.2: Seasonality effects for different age groups.

ditures (Table 9) as well as a version with comorbidity (Table 10). This split-sample-by-age

approach allows each cohort to have different yearly growth trends and monthly seasonality

in the relevant measure of consumption expenditures. We find a similar pattern for the

impact of age on the response of expenditures to the Covid shock.

We re-do our main empirical analysis for retirees as opposed to public servants. Our

results are similar to those we obtain for public servants. Table 11 is the analogue of Table

14. We see that the consumption expenditures of older retirees fall much more than those

of younger retirees. In addition, spending declines are particularly pronounced in April, the

peak month of the epidemic.

Fourth, we run regression (1) using the year-on-year growth rate (ln(Expensesit/Expensesit−12))

instead of the log-level of expenditures as the dependent variable. Figure A.3 shows that the

results are similar to those obtained in our baseline specification.

Figure A.4 displays the estimates of the change in consumption expenditures for different

age groups in sectors of the economy that were least affected by lockdowns.

We run our baseline regression excluding restaurant expenditures since people could have

switched from eating in the restaurant to ordering take out. We display the results in Figure

A.5. We also exclude restaurant and supermarket expenditures. People could have switched

from shopping at supermarkets to using home delivery. Figure A.6 displays our results.
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Table 9: Impact of age on consumption expenditure.h�#H2 d, AKT�+i Q7 �;2 QM +QMbmKTiBQM 2tT2M/Bim`2b

.2T2M/2Mi p�`B�#H2,
log(Expensesit)

(kyc9N) (8yc8N) (eyceN) (dycdN)
URV UkV UjV U9V

Aftert × 1{Montht = Mar20} −yXRk9∗∗∗ −yXRk9∗∗∗ −yXRkj∗∗∗ −yXR83∗∗∗

UyXyy3V UyXyyeV UyXyyeV UyXyydV
Aftert × 1{Montht = Apr20} −yXjkk∗∗∗ −yXjkd∗∗∗ −yXjNy∗∗∗ −yX98j∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyy3V
Aftert × 1{Montht = May20} −yXkkk∗∗∗ −yXky8∗∗∗ −yXkjN∗∗∗ −yXkdk∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyy3V
Aftert × 1{Montht = Jun20} −yXyR8+ −yXykN∗∗∗ −yXy89∗∗∗ −yXy3y∗∗∗

UyXyy3V UyXyydV UyXyydV UyXyy3V
Aftert × 1{Montht = Jul20} yXyky∗ yXyjd∗∗∗ yXyy3 −yXy99∗∗∗

UyXyRyV UyXyy3V UyXyydV UyXyy3V
Aftert × 1{Montht = Aug20} yXyRe+ yXykj∗∗ −yXyRk+ −yXyjR∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyy3V
Aftert × 1{Montht = Sep20} yXyRk −yXyy9 −yXyRR+ −yXyRN∗

UyXyyNV UyXyydV UyXyydV UyXyy3V
Aftert × 1{Montht = Oct20} −yXydR∗∗∗ −yXyeN∗∗∗ −yXRyd∗∗∗ −yXR83∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyyNV
Aftert × 1{Montht = Nov20} −yXy9e∗∗∗ −yXyee∗∗∗ −yXyNk∗∗∗ −yXRjj∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyyNV
Aftert × 1{Montht = Dec20} −yXR9e∗∗∗ −yXR9d∗∗∗ −yXReR∗∗∗ −yXRdN∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyyNV
Aftert × 1{Montht = Jan21} −yXkNj∗∗∗ −yXkNy∗∗∗ −yXj9k∗∗∗ −yX9yy∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyyNV
Aftert × 1{Montht = Feb21} −yXky9∗∗∗ −yXkRj∗∗∗ −yXk8R∗∗∗ −yXkek∗∗∗

UyXyyNV UyXyydV UyXyydV UyXyyNV
Aftert × 1{Montht = Mar21} −yXy39∗∗∗ −yXy38∗∗∗ −yXyN8∗∗∗ −yXRyR∗∗∗

UyXyRyV UyXyy3V UyXyy3V UyXyRyV
Aftert × 1{Montht = Apr21} −yXyde∗∗∗ −yXydN∗∗∗ −yXy3y∗∗∗ −yXy3k∗∗∗

UyXyRyV UyXyy3V UyXyy3V UyXyRyV
Y eart yXRRy∗∗∗ yXyjd yXy98∗∗∗ yXy98∗∗∗

UyXykdV UyXyk3V UyXyRkV UyXyyNV
JQMi? 61 u2b u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV u2b u2b u2b u2b
P#b2`p�iBQMb jN3-y3e eyN-eye d99-kek 8ej-y93
_2 yX8ey yXeR3 yXeje yXejN
�/Dmbi2/ _2 yX893 yXey3 yXeke yXejy
_2bB/m�H ai/X 1``Q` yXe89 yXe9d yXeNd yXdjR

LQi2, ∗T<yXRc ∗∗T<yXy8c ∗∗∗T<yXyR
Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR

*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
8R
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Table 10: Impact of age on consumption expenditure.h�#H2 3, AKT�+i Q7 �;2 QM +QMbmKTiBQM 2tT2M/Bim`2b
.2T2M/2Mi p�`B�#H2,
log(Expensesit)

(kyc9N) (8yc8N) (eyceN) (dycdN)
URV UkV UjV U9V

Aftert × 1{Montht = Mar20}(∆Mar20) −yXRR8∗∗∗ −yXRky∗∗∗ −yXRkR∗∗∗ −yXR8j∗∗∗
UyXyyNV UyXyydV UyXyyeV UyXyy3V

Aftert × 1{Montht = Apr20}(∆Apr20) −yXjy8∗∗∗ −yXjRe∗∗∗ −yXjdN∗∗∗ −yX99k∗∗∗
UyXyyNV UyXyydV UyXyydV UyXyyNV

Aftert × 1{Montht = May20}(∆May20) −yXkR9∗∗∗ −yXRNd∗∗∗ −yXkkN∗∗∗ −yXkeR∗∗∗
UyXyyNV UyXyydV UyXyydV UyXyy3V

Aftert × 1{Montht = Jun20}(∆Jun20) −yXyy8 −yXyky∗∗ −yXy9j∗∗∗ −yXyeN∗∗∗
UyXyyNV UyXyydV UyXyydV UyXyyNV

Aftert × 1{Montht = Jul20}(∆Jul20) yXyke∗ yXy99∗∗∗ yXyR9+ −yXy9R∗∗∗
UyXyRyV UyXyy3V UyXyy3V UyXyyNV

Aftert × 1{Montht = Aug20}(∆Aug20) yXykj∗ yXyjk∗∗∗ −yXyy9 −yXykR∗
UyXyyNV UyXyydV UyXyydV UyXyyNV

Aftert × 1{Montht = Sep20}(∆Sep20) yXyRN∗ yXyyk −yXyy9 −yXyyN
UyXyyNV UyXyydV UyXyydV UyXyyNV

Aftert × 1{Montht = Oct20}(∆Oct20) −yXye3∗∗∗ −yXye8∗∗∗ −yXRyj∗∗∗ −yXR8R∗∗∗
UyXyyNV UyXyy3V UyXyydV UyXyyNV

Aftert × 1{Montht = Nov20}(∆Nov20) −yXyj3∗∗∗ −yXy83∗∗∗ −yXy33∗∗∗ −yXRk9∗∗∗
UyXyRyV UyXyy3V UyXyydV UyXyyNV

Aftert × 1{Montht = Dec20}(∆Dec20) −yXR9k∗∗∗ −yXR9j∗∗∗ −yXR8k∗∗∗ −yXRe9∗∗∗
UyXyRyV UyXyy3V UyXyy3V UyXyRyV

Aftert × 1{Montht = Jan21}(∆Jan21) −yXk3d∗∗∗ −yXkNR∗∗∗ −yXj9j∗∗∗ −yX9yR∗∗∗
UyXyRyV UyXyy3V UyXyy3V UyXyRyV

Aftert × 1{Montht = Feb21}(∆F eb21) −yXRNk∗∗∗ −yXkyy∗∗∗ −yXkj3∗∗∗ −yXk9j∗∗∗
UyXyRyV UyXyy3V UyXyy3V UyXyRyV

Aftert × 1{Montht = Mar21}(∆Mar21) −yXyd9∗∗∗ −yXydN∗∗∗ −yXy33∗∗∗ −yXy3j∗∗∗
UyXyRRV UyXyy3V UyXyy3V UyXyRyV

Aftert × 1{Montht = Apr21}(∆Apr21) −yXye3∗∗∗ −yXyd8∗∗∗ −yXyde∗∗∗ −yXyee∗∗∗
UyXyRRV UyXyy3V UyXyy3V UyXyRyV

Aftert × 1{Montht = Mar20} × Comorbidity −yXye3∗∗∗ −yXykd+ −yXyRj −yXyjk∗
UyXyR3V UyXyR9V UyXyR9V UyXyReV

Aftert × 1{Montht = Apr20} × Comorbidity −yXRRd∗∗∗ −yXyd9∗∗∗ −yXy3y∗∗∗ −yXye3∗∗∗
UyXykyV UyXyReV UyXyReV UyXyRNV

Aftert × 1{Montht = May20} × Comorbidity −yXyek∗∗ −yXyey∗∗∗ −yXydy∗∗∗ −yXyeN∗∗∗
UyXykyV UyXyR8V UyXyR8V UyXyRdV

Aftert × 1{Montht = Jun20} × Comorbidity −yXye3∗∗∗ −yXyeR∗∗∗ −yXydN∗∗∗ −yXye8∗∗∗
UyXyRNV UyXyR8V UyXyR8V UyXyRdV

Aftert × 1{Montht = Jul20} × Comorbidity −yXy99∗ −yXy93∗∗ −yXy9R∗ −yXykj
UyXykkV UyXyR3V UyXyRdV UyXyRNV

Aftert × 1{Montht = Aug20} × Comorbidity −yXy8y∗∗ −yXyek∗∗∗ −yXy83∗∗∗ −yXyej∗∗∗
UyXyRNV UyXyReV UyXyReV UyXyR3V

Aftert × 1{Montht = Sep20} × Comorbidity −yXy9N∗ −yXy9j∗∗ −yXy8y∗∗∗ −yXyek∗∗∗
UyXyRNV UyXyReV UyXyR8V UyXyR3V

Aftert × 1{Montht = Oct20} × Comorbidity −yXyke −yXykN+ −yXyk3+ −yXy98∗
UyXykyV UyXyReV UyXyR8V UyXyR3V

Aftert × 1{Montht = Nov20} × Comorbidity −yXy89∗∗ −yXy88∗∗∗ −yXykd+ −yXy8j∗∗
UyXykyV UyXyReV UyXyReV UyXyR3V

Aftert × 1{Montht = Dec20} × Comorbidity −yXyjk −yXyke −yXyey∗∗∗ −yXyNe∗∗∗
UyXykyV UyXyRdV UyXyReV UyXyRNV

Aftert × 1{Montht = Jan21} × Comorbidity −yXy9k∗ yXyyd yXyy9 yXyy9
UyXykyV UyXyReV UyXyReV UyXyRNV

Aftert × 1{Montht = Feb21} × Comorbidity −yXy3d∗∗∗ −yXyNR∗∗∗ −yXy3N∗∗∗ −yXRRe∗∗∗
UyXykRV UyXyRdV UyXyRdV UyXykyV

Aftert × 1{Montht = Mar21} × Comorbidity −yXye3∗∗∗ −yXyjN∗ −yXy8j∗∗∗ −yXRRj∗∗∗
UyXykyV UyXyReV UyXyReV UyXyRNV

Aftert × 1{Montht = Apr21} × Comorbidity −yXy83∗∗ −yXyjj∗ −yXyke −yXyNN∗∗∗
UyXyRNV UyXyReV UyXyReV UyXykyV

JQMi? 61 u2b u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV u2b u2b u2b u2b
P#b2`p�iBQMb jN3-y3e eyN-eye d99-kek 8ej-y93
_2 yX8ey yXeR3 yXeje yXejN
�/Dmbi2/ _2 yX893 yXey3 yXeke yXejy
_2bB/m�H ai/X 1``Q` yXe89 yXe9d yXeNd yXdjR

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM

8k
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Table 11: Impact of age heterogeneity on spending for retirees.h�#H2 N, AKT�+i Q7 �;2 ?2i2`Q;2M2Biv QM bT2M/BM; 7Q` `2iB`22bX
.2T2M/2Mi p�`B�#H2,

log(ExpenseitV
URV UkV UjV U9V

Aftert × 1{Montht = Mar20} × 1{Agei < 60}(∆Mar20,<60 + δMar20,<60) −yXyR3 −yXy9j∗∗ −yXy9j∗∗ −yXy9j∗∗
UyXyR9V UyXyR8V UyXyR8V UyXyR8V

Aftert × 1{Montht = Mar20} × 1{Agei ≥ 60}(∆Mar20,≥60 + δMar20,≥60) −yXy3e∗∗∗ −yXy38∗∗∗ −yXy38∗∗∗ −yXy38∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = Apr20} × 1{Agei < 60}(∆Apr20,<60 + δApr20,<60) −yXRNk∗∗∗ −yXkRe∗∗∗ −yXkRe∗∗∗ −yXkRe∗∗∗

UyXyReV UyXyReV UyXyReV UyXyReV
Aftert × 1{Montht = Apr20} × 1{Agei ≥ 60}(∆Apr20,≥60 + δApr20,≥60) −yXjkR∗∗∗ −yXjky∗∗∗ −yXjky∗∗∗ −yXjky∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = May20} × 1{Agei < 60}(∆May20,<60 + δMay20,<60) −yXRke∗∗∗ −yXR8R∗∗∗ −yXR8R∗∗∗ −yXR8R∗∗∗

UyXyR9V UyXyR8V UyXyR8V UyXyR8V
Aftert × 1{Montht = May20} × 1{Agei ≥ 60}(∆May20,≥60 + δMay20,≥60) −yXRNN∗∗∗ −yXRN3∗∗∗ −yXRN3∗∗∗ −yXRN3∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = Jun20} × 1{Agei < 60}(∆Jun20,<60 + δJun20,<60) yXyRj −yXyRk −yXyRk −yXyRk

UyXyR8V UyXyReV UyXyReV UyXyReV
Aftert × 1{Montht = Jun20} × 1{Agei ≥ 60}(∆Jun20,≥60 + δJun20,≥60) −yXy9d∗∗∗ −yXy9e∗∗∗ −yXy9e∗∗∗ −yXy9e∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = Jul20} × 1{Agei < 60}(∆Jul20,<60 + δJul20,<60) yXykj −yXyyk −yXyyk −yXyyk

UyXyReV UyXyRdV UyXyRdV UyXyRdV
Aftert × 1{Montht = Jul20} × 1{Agei ≥ 60}(∆Jul20,≥60 + δJul20,≥60) −yXyjd∗∗∗ −yXyje∗∗∗ −yXyje∗∗∗ −yXyje∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = Aug20} × 1{Agei < 60}(∆Aug20,<60 + δAug20,<60) yXy83∗∗∗ yXyjj∗ yXyjj∗ yXyjj∗

UyXyReV UyXyReV UyXyReV UyXyReV
Aftert × 1{Montht = Aug20} × 1{Agei ≥ 60}(∆Aug20,≥60 + δAug20,≥60) −yXykk∗∗∗ −yXykR∗∗∗ −yXykR∗∗∗ −yXykR∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Aftert × 1{Montht = Sep20} × 1{Agei < 60}(∆Sep20,<60 + δSep20,<60) yXykk −yXyyj −yXyyj −yXyyj

UyXyR8V UyXyReV UyXyReV UyXyReV
Aftert × 1{Montht = Sep20} × 1{Agei ≥ 60}(∆Sep20,≥60 + δSep20,≥60) −yXyk9∗∗∗ −yXykj∗∗∗ −yXykj∗∗∗ −yXykj∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Oct20} × 1{Agei < 60}(∆Oct20,<60 + δOct20,<60) −yXyde∗∗∗ −yXRyR∗∗∗ −yXRyR∗∗∗ −yXRyR∗∗∗

UyXyReV UyXyRdV UyXyRdV UyXyRdV
Aftert × 1{Montht = Oct20} × 1{Agei ≥ 60}(∆Oct20,≥60 + δOct20,≥60) −yXR8R∗∗∗ −yXR9N∗∗∗ −yXR9N∗∗∗ −yXR9N∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Nov20} × 1{Agei < 60}(∆Nov20,<60 + δNov20,<60) −yXyRj −yXyj3∗ −yXyj3∗ −yXyj3∗

UyXyReV UyXyReV UyXyReV UyXyReV
Aftert × 1{Montht = Nov20} × 1{Agei ≥ 60}(∆Nov20,≥60 + δNov20,≥60) −yXRye∗∗∗ −yXRy8∗∗∗ −yXRy8∗∗∗ −yXRy8∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Dec20} × 1{Agei < 60}(∆Dec20,<60 + δDec20,<60) −yXRyj∗∗∗ −yXRk3∗∗∗ −yXRk3∗∗∗ −yXRk3∗∗∗

UyXyR3V UyXyR3V UyXyR3V UyXyR3V
Aftert × 1{Montht = Dec20} × 1{Agei ≥ 60}(∆Dec20,≥60 + δDec20,≥60) −yXR9j∗∗∗ −yXR9k∗∗∗ −yXR9k∗∗∗ −yXR9k∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Jan21} × 1{Agei < 60}(∆Jan21,<60 + δJan21,<60) −yXR33∗∗∗ −yXkjy∗∗∗ −yXkjy∗∗∗ −yXkjy∗∗∗

UyXyRdV UyXykyV UyXykyV UyXykyV
Aftert × 1{Montht = Jan21} × 1{Agei ≥ 60}(∆Jan21,≥60 + δJan21,≥60) −yXjdd∗∗∗ −yXjd8∗∗∗ −yXjd9∗∗∗ −yXjd9∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Feb21} × 1{Agei < 60}(∆F eb21,<60 + δF eb21,<60) −yXyee∗∗∗ −yXRy3∗∗∗ −yXRyN∗∗∗ −yXRyN∗∗∗

UyXyReV UyXykyV UyXykyV UyXykyV
Aftert × 1{Montht = Feb21} × 1{Agei ≥ 60}(∆F eb21,≥60 + δF eb21,≥60) −yXkyR∗∗∗ −yXRNN∗∗∗ −yXRNN∗∗∗ −yXRNN∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Mar21} × 1{Agei < 60}(∆Mar21,<60 + δMar21,<60) yXyRN −yXykj −yXykj −yXykj

UyXyR3V UyXykRV UyXykRV UyXykRV
Aftert × 1{Montht = Mar21} × 1{Agei ≥ 60}(∆Mar21,≥60 + δMar21,≥60) −yXy88∗∗∗ −yXy8j∗∗∗ −yXy8j∗∗∗ −yXy8j∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Montht = Apr21} × 1{Agei >}(∆Apr21,<60 + δApr21,<60) yXy9R∗ −yXyyk −yXyyk −yXyyk

UyXyRdV UyXykyV UyXykyV UyXykyV
Aftert × 1{Montht = Apr21} × 1{Agei ≥ 60}(∆Apr21,≥60 + δApr21,≥60) −yXy99∗∗∗ −yXy9j∗∗∗ −yXy9j∗∗∗ −yXy9j∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
JQMi? 61 u2b u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b u2b
�;2 :`QmT×Y eart UΨitV LQ u2b u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV LQ LQ u2b u2b
�;2 :`QmT × AM+QK2 :`QmT ×Y eart UΨitV LQ LQ LQ u2b
P#b2`p�iBQMb j-83j-Rkj j-83j-Rkj j-83j-Rkj j-83j-Rkj
_2 yXe3N yXe3N yXe3N yXe3N
�/Dmbi2/ _2 yXe3y yXe3y yXe3R yXe3R
_2bB/m�H ai/X 1``Q` yXdde yXdde yXdd8 yXdd8

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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Figure A.3: Estimation results for growth rate specification.

A.4 The effect of comorbidity

People with underlying health conditions such as heart problems, cancer, obesity and type-2

diabetes are at greater risk of dying from Covid.A.1 A natural question is whether people

with comorbidities react to that risk by reducing consumption more than people who do not

have comorbidities.

We do not have the health history of the people in our sample. But we do have data on

how much they spend on pharmaceutical drugs. So, we use these expenditures as a proxy

for comorbidities. We split the sample into two. The comorbidity sample consists of people

whose pharmaceutical drug expenditures are in the top decile of the 2018 distribution of

these expenditures for the person’s age group. The non-comorbidity sample consists of all

of the other people.

Individuals with comorbidities received priority in the Portuguese vaccination process.

Most got the two doses of the vaccine before the peak of the third wave at the end of January

A.1See the Center for Disease Control (https://www.cdc.gov/coronavirus/2019-ncov/
need-extra-precautions/people-with-medical-conditions.html) for a thorough review of these
comorbidities.
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Figure A.4: Changes in expenditures of public servants in the sectors least affected by
lockdowns during the epidemic relative to a counterfactual without Covid.
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Figure A.5: Estimation results excluding restaurant expenditures.
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Figure A.6: Estimation results excluding restaurant and supermarket expenditures.

2021. For this reason, we restrict our sample to the period from January 2018 to December

2020.

Table 16 in Appendix A reports our parameter estimates. The key result is displayed in

Figure A.7. People with comorbidities cut their consumption by more than people without

comorbidities. In April 2020, at the peak of the first wave of infections, people younger than

49 with no comorbidities cut their consumption by 25.5 percent. In contrast, people younger

than 49 with comorbidities dropped their consumption expenditures by 32.2 percent.

There are no statistically significant interactions between age and comorbidity: the im-

pact of comorbidity is the same for young and older people.

Interestingly, even after controlling for comorbidity, age remains a key driver of con-

sumption behavior. From March 2019 to December 2020, people younger than 49 with no

comorbidities cut their expenditures on average by 7.9 percent. People with no comorbidi-

ties who are in their 50s, 60s, and 70s cut consumption expenditures on average during the

epidemic dates by an additional 8.2, 12.1, and 15.9 percent, respectively.

These results support the view that people’s consumption decisions respond to the per-

ceived risk of dying from Covid.
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Figure A.7: Changes in expenditures of public servants in different income groups during the
epidemic relative to a counterfactual without Covid for people with and without comorbidity.
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A.5 Empirical results for old

In our quantitative model, there are only two groups, old and young. In this subsection, we

report our empirical results when people are classified into two age groups: 20-59 and 60-80.

We construct our estimates of ψ̂ using the estimated regression parameters, netting out

the effects of the time trend, seasonal effects, individual fixed effects, and interactions be-

tween seasonal effects and individual characteristics:

ψ̂t =

Apr,2021∑

m=Mar,2020

∆̂mAftert × 1{Montht = m}+ (A.2)

Apr,2021∑

m=Mar,2020

δ̂mgAftert × 1{Montht = m} × 1{AgeGroupi = old}.
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Table 12: Impact of age on expenditures (for model estimation).

�Xj JQ/2H *�HB#`�iBQM

h�#H2 Ry, AKT�+i Q7 �;2 QM 2tT2M/Bim`2b U7Q` KQ/2H +�HB#`�iBQMV
.2T2M/2Mi p�`B�#H2,

log(ExpenseitV
61 61 61 61
URV UkV UjV U9V

Aftert × 1{Montht = Mar20}(∆Mar20) −yXRyR∗∗∗ −yXRkd∗∗∗ −yXRkd∗∗∗ −yXRkd∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Apr20}(∆Apr20) −yXkNd∗∗∗ −yXjkk∗∗∗ −yXjkk∗∗∗ −yXjkk∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = May20}(∆May20) −yXR38∗∗∗ −yXkRR∗∗∗ −yXkRR∗∗∗ −yXkRR∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Jun20}(∆Jun20) yXyR9∗∗ −yXyRk∗ −yXyRk∗ −yXyRk∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Jul20}(∆Jul20) yXydk∗∗∗ yXy9e∗∗∗ yXy9e∗∗∗ yXy9e∗∗∗
UyXyyeV UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Aug20}(∆Aug20) yXydR∗∗∗ yXy9e∗∗∗ yXy9e∗∗∗ yXy9e∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Sep20}(∆Sep20) yXy8y∗∗∗ yXyk9∗∗∗ yXyk9∗∗∗ yXyk9∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Oct20}(∆Oct20) −yXy83∗∗∗ −yXy39∗∗∗ −yXy39∗∗∗ −yXy39∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Nov20}(∆Nov20) −yXyjj∗∗∗ −yXy8N∗∗∗ −yXy8N∗∗∗ −yXy8N∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Dec20}(∆Dec20) −yXRyR∗∗∗ −yXRkd∗∗∗ −yXRkd∗∗∗ −yXRkd∗∗∗
UyXyy8V UyXyy8V UyXyy8V UyXyy8V

Aftert × 1{Montht = Jan21}(∆Jan21) −yXk8k∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗
UyXyy8V UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Feb21}(∆F eb21) −yXRe3∗∗∗ −yXkRk∗∗∗ −yXkRk∗∗∗ −yXkRk∗∗∗
UyXyy8V UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Mar21}(∆Mar21) −yXyjN∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗
UyXyyeV UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Apr21}(∆Apr21) −yXyk3∗∗∗ −yXydk∗∗∗ −yXydk∗∗∗ −yXydk∗∗∗
UyXyyeV UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Mar20} × 1{Agei ≥ 60}(δMar20,≥60) −yXy88∗∗∗ −yXyyN −yXyyN −yXyyN
UyXyyeV UyXyyeV UyXyyeV UyXyyeV

Aftert × 1{Montht = Apr20} × 1{Agei ≥ 60}(δApr20,≥60) −yXR9k∗∗∗ −yXyNd∗∗∗ −yXyNd∗∗∗ −yXyNd∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = May20} × 1{Agei ≥ 60}(δMay20,≥60) −yXy33∗∗∗ −yXy9j∗∗∗ −yXy9j∗∗∗ −yXy9j∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Jun20} × 1{Agei ≥ 60}(δJun20,≥60) −yXRy3∗∗∗ −yXyek∗∗∗ −yXyek∗∗∗ −yXyek∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Jul20} × 1{Agei ≥ 60}(δJul20,≥60) −yXRR3∗∗∗ −yXydj∗∗∗ −yXydj∗∗∗ −yXydj∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Aug20} × 1{Agei ≥ 60}(δAug20,≥60) −yXRjR∗∗∗ −yXy3e∗∗∗ −yXy3e∗∗∗ −yXy3e∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Sep20} × 1{Agei ≥ 60}(δSep20,≥60) −yXRyR∗∗∗ −yXy8e∗∗∗ −yXy8e∗∗∗ −yXy8e∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Oct20} × 1{Agei ≥ 60}(δOct20,≥60) −yXy3R∗∗∗ −yXyj8∗∗∗ −yXyj8∗∗∗ −yXyj8∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Nov20} × 1{Agei ≥ 60}(δNov20,≥60) −yXyN8∗∗∗ −yXy8y∗∗∗ −yXy8y∗∗∗ −yXy8y∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Dec20} × 1{Agei ≥ 60}(δDec20,≥60) −yXRyj∗∗∗ −yXy8d∗∗∗ −yXy8d∗∗∗ −yXy8d∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jan21} × 1{Agei ≥ 60}(δJan21,≥60) −yXR98∗∗∗ −yXyed∗∗∗ −yXyed∗∗∗ −yXyed∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Feb21} × 1{Agei ≥ 60}(δF eb21,≥60) −yXRky∗∗∗ −yXy9k∗∗∗ −yXy9k∗∗∗ −yXy9k∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Mar21} × 1{Agei ≥ 60}(δMar21,≥60) −yXyNj∗∗∗ −yXyR8+ −yXyR8+ −yXyR8+

UyXyyeV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Apr21} × 1{Agei ≥ 60}(δApr21,≥60) −yXyNR∗∗∗ −yXyRj −yXyRj −yXyRj

UyXyyeV UyXyy3V UyXyy3V UyXyy3V
JQMi? 61 u2b u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b u2b
�;2 :`QmT×Y eart UΨitV LQ u2b u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV LQ LQ u2b u2b
�;2 :`QmT × AM+QK2 :`QmT ×Y eart UΨitV LQ LQ LQ u2b
P#b2`p�iBQMb k-jR8-yyk k-jR8-yyk k-jR8-yyk k-jR8-yyk
_2 yXejj yXejj yXejj yXejj
�/Dmbi2/ _2 yXekj yXekj yXek9 yXek9
_2bB/m�H ai/X 1``Q` yXe3e yXe3e yXe3e yXe3e

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR

89
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A.6 Regression tables used to build the figures

Table 13: Impact of age on consumption expenditures.

�X9 _2;`2bbBQM h�#H2b mb2/ iQ "mBH/ i?2 6B;m`2b BM i?2 S�T2`

h�#H2 RR, AKT�+i Q7 �;2 QM +QMbmKTiBQM 2tT2M/Bim`2b
.2T2M/2Mi p�`B�#H2,
log(Expensesit)

URV UkV UjV U9V U8V
Aftert −yXRj3∗∗∗

UyXyykV
Aftert × 1{Agei = [20; 49]} −yXyed∗∗∗ −yXRyj∗∗∗ −yXRyj∗∗∗ −yXRyj∗∗∗

UyXyy9V UyXyy8V UyXyy8V UyXyy8V
Aftert × 1{Agei = [50; 59]} −yXy3d∗∗∗ −yXRyd∗∗∗ −yXRyd∗∗∗ −yXRyd∗∗∗

UyXyy9V UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Agei = [60; 69]} −yXR89∗∗∗ −yXR9e∗∗∗ −yXR9e∗∗∗ −yXR9e∗∗∗

UyXyyjV UyXyy9V UyXyy9V UyXyy9V
Aftert × 1{Agei = [70; 79]} −yXkkj∗∗∗ −yXR3d∗∗∗ −yXR3d∗∗∗ −yXR3d∗∗∗

UyXyy9V UyXyy8V UyXyy8V UyXyy8V
1{Montht = Feb} −yXy8y∗∗∗ −yXy8y∗∗∗ −yXy8y∗∗∗ −yXy8y∗∗∗ −yXy8y∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Mar} yXy3R∗∗∗ yXy3R∗∗∗ yXy3R∗∗∗ yXy3R∗∗∗ yXy3R∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Apr} −yXyyk −yXyyk −yXyyk −yXyyk −yXyyk

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = May} yXye8∗∗∗ yXye8∗∗∗ yXye8∗∗∗ yXye8∗∗∗ yXye8∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Jun} yXyN9∗∗∗ yXyN9∗∗∗ yXyN9∗∗∗ yXyN9∗∗∗ yXyN9∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Jul} yXkyj∗∗∗ yXkyj∗∗∗ yXkyj∗∗∗ yXkyj∗∗∗ yXkyj∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Aug} yXyN3∗∗∗ yXyN3∗∗∗ yXyN3∗∗∗ yXyN3∗∗∗ yXyN3∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV UyXyyjV
1{Montht = Sep} yXy93∗∗∗ yXy93∗∗∗ yXy93∗∗∗ yXy93∗∗∗ yXy93∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Oct} yXydN∗∗∗ yXy3y∗∗∗ yXy3y∗∗∗ yXydN∗∗∗ yXydN∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Nov} yXyN8∗∗∗ yXyN8∗∗∗ yXyN8∗∗∗ yXyN8∗∗∗ yXyN8∗∗∗

UyXyykV UyXyykV UyXyykV UyXyykV UyXyykV
1{Montht = Dec} yXReR∗∗∗ yXReR∗∗∗ yXReR∗∗∗ yXReR∗∗∗ yXReR∗∗∗

UyXyyjV UyXyyjV UyXyyjV UyXyyjV UyXyyjV
Y eart yXy9R∗∗∗ yXy9R∗∗∗ yXyek∗∗∗ yXy33∗∗∗ yXRy8∗∗∗

UyXyyRV UyXyyRV UyXyykV UyXyydV UyXykdV
Y eart × 1{Agei = [50; 59]} −yXyyN∗∗ −yXyy3∗ −yXydR+

UyXyyjV UyXyyjV UyXyj3V
Y eart × 1{Agei = [60; 69]} −yXyke∗∗∗ −yXyke∗∗∗ −yXy8e+

UyXyyjV UyXyyjV UyXykNV
Y eart × 1{Agei = [70; 79]} −yXy9j∗∗∗ −yXy9e∗∗∗ −yXy8y+

UyXyyjV UyXyyjV UyXyk3V
Y eart × 1{Incomei =]7, 091; 20, 261]} −yXyyd −yXykj

UyXyydV UyXykdV
Y eart × 1{Incomei =]20, 261; 40, 522]} −yXyje∗∗∗ −yXy89∗

UyXyydV UyXykdV
Y eart × 1{Incomei =]40, 522; 80, 640]} −yXy89∗∗∗ −yXydR∗

UyXyydV UyXyk3V
Y eart × 1{Incomei => 80, 640} −yXydy∗∗∗ −yXRed∗∗∗

UyXyRyV UyXyjeV
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]7, 091; 20, 261]} yXye9

UyXyjNV
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]7, 091; 20, 261]} yXyk3

UyXyjyV
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]7, 091; 20, 261]} yXyyyk

UyXykNV
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]20, 261; 40, 522]} yXye8+

UyXyjNV
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]20, 261; 40, 522]} yXyjj

UyXyjyV
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]20, 261; 40, 522]} yXyyR

UyXykNV
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]40, 522; 80, 640]} yXy83

UyXy9yV
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]40, 522; 80, 640]} yXyjk

UyXyjRV
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]40, 522; 80, 640]} yXyy8

UyXyjyV
Y eart × 1{Agei = [50; 59]} × 1{Incomei > 80, 640} yXR98∗∗

UyXy8RV
Y eart × 1{Agei = [60; 69]} × 1{Incomei > 80, 640} yXRye∗∗

UyXyjNV
Y eart × 1{Agei = [70; 79]} × 1{Incomei > 80, 640} yXRy3∗∗

UyXy9yV
AM/BpB/m�H 61 u2b u2b u2b u2b u2b
P#b2`p�iBQMb k-jR8-yyk k-jR8-yyk k-jR8-yyk k-jR8-yyk k-jR8-yyk
_2 yXekN yXejy yXejy yXejy yXejy
�/Dmbi2/ _2 yXeky yXeky yXekR yXekR yXekR
_2bB/m�H ai/X 1``Q` yXe3N yXe3N yXe3N yXe33 yXe33

LQi2, ∗T<yXRc ∗∗T<yXy8c ∗∗∗T<yXyR
Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR

*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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Table 14: Impact of age on consumption expenditures.h�#H2 Rk, AKT�+i Q7 �;2 QM +QMbmKTiBQM 2tT2M/Bim`2b
.2T2M/2Mi p�`B�#H2,

log(ExpenseitV
61 61 61 61
URV UkV UjV U9V

Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −yXyN9∗∗∗ −yXRk3∗∗∗ −yXRk3∗∗∗ −yXRk3∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −yXRy8∗∗∗ −yXRke∗∗∗ −yXRke∗∗∗ −yXRke∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −yXRjR∗∗∗ −yXRk9∗∗∗ −yXRk9∗∗∗ −yXRk9∗∗∗

UyXyy8V UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −yXR33∗∗∗ −yXR8R∗∗∗ −yXR8R∗∗∗ −yXR8R∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −yXk3k∗∗∗ −yXjRe∗∗∗ −yXjRe∗∗∗ −yXjRe∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −yXjye∗∗∗ −yXjke∗∗∗ −yXjke∗∗∗ −yXjke∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −yXjNN∗∗∗ −yXjNj∗∗∗ −yXjNj∗∗∗ −yXjNj∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −yX9NR∗∗∗ −yX989∗∗∗ −yX989∗∗∗ −yX989∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −yXR3k∗∗∗ −yXkRe∗∗∗ −yXkRe∗∗∗ −yXkRe∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −yXR3d∗∗∗ −yXky3∗∗∗ −yXky3∗∗∗ −yXky3∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −yXk8y∗∗∗ −yXk9j∗∗∗ −yXk9j∗∗∗ −yXk9j∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −yXjy8∗∗∗ −yXke3∗∗∗ −yXke3∗∗∗ −yXke3∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) yXyjk∗∗∗ −yXyyR −yXyyR −yXyyR

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) yXyyk −yXyRN∗∗ −yXyR3∗∗ −yXyR3∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) −yXye8∗∗∗ −yXy83∗∗∗ −yXy83∗∗∗ −yXy83∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −yXRjk∗∗∗ −yXyN8∗∗∗ −yXyN8∗∗∗ −yXyN8∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) yXydN∗∗∗ yXy98∗∗∗ yXy98∗∗∗ yXy98∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) yXyed∗∗∗ yXy9d∗∗∗ yXy9d∗∗∗ yXy9d∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) −yXyyj yXyyj yXyyj yXyyj

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) −yXRy9∗∗∗ −yXyed∗∗∗ −yXyed∗∗∗ −yXyed∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) yXy3j∗∗∗ yXy9N∗∗∗ yXy9N∗∗∗ yXy9N∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) yXye9∗∗∗ yXy9j∗∗∗ yXy9j∗∗∗ yXy9j∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) −yXyjy∗∗∗ −yXykj∗∗∗ −yXykj∗∗∗ −yXykj∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) −yXyNN∗∗∗ −yXyek∗∗∗ −yXyek∗∗∗ −yXyek∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) yXyed∗∗∗ yXyj9∗∗∗ yXyj9∗∗∗ yXyj9∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) yXyj3∗∗∗ yXyR3∗∗ yXyR3∗∗ yXyR3∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) −yXyjk∗∗∗ −yXyk8∗∗∗ −yXyk8∗∗∗ −yXyk8∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) −yXydd∗∗∗ −yXy9y∗∗∗ −yXy9y∗∗∗ −yXy9y∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −yXy8k∗∗∗ −yXy38∗∗∗ −yXy38∗∗∗ −yXy38∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −yXyek∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −yXRRe∗∗∗ −yXRRy∗∗∗ −yXRRy∗∗∗ −yXRRy∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −yXRe3∗∗∗ −yXRjR∗∗∗ −yXRjR∗∗∗ −yXRjR∗∗∗

UyXyydV UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) −yXyky∗ −yXy89∗∗∗ −yXy89∗∗∗ −yXy89∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) −yXy9k∗∗∗ −yXyej∗∗∗ −yXyej∗∗∗ −yXyej∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −yXyNd∗∗∗ −yXyNy∗∗∗ −yXyNy∗∗∗ −yXyNy∗∗∗

UyXyyeV UyXyyeV UyXyyeV UyXyyeV
Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −yXRdy∗∗∗ −yXRjj∗∗∗ −yXRjj∗∗∗ −yXRjj∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −yXyN8∗∗∗ −yXRkN∗∗∗ −yXRkN∗∗∗ −yXRkN∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −yXRy8∗∗∗ −yXRk8∗∗∗ −yXRk8∗∗∗ −yXRk8∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −yXRdy∗∗∗ −yXRej∗∗∗ −yXRej∗∗∗ −yXRej∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −yXk9N∗∗∗ −yXkRk∗∗∗ −yXkRk∗∗∗ −yXkRk∗∗∗

UyXyy3V UyXyy3V UyXyy3V UyXyy3V
Aftert × 1{Montht = Jan21} × 1{Agei = [20; 49]}(∆Jan21,[20;49] + δJan21,[20;49]) −yXkj3∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Jan21} × 1{Agei = [50; 59]}(∆Jan21,[50;59] + δJan21,[50;59]) −yXkeR∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗ −yXkNe∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jan21} × 1{Agei = [60; 69]}(∆Jan21,[60;69] + δJan21,[60;69]) −yXj93∗∗∗ −yXjjd∗∗∗ −yXjjd∗∗∗ −yXjjd∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Jan21} × 1{Agei = [70; 79]}(∆Jan21,[70;79] + δJan21,[70;79]) −yX9ek∗∗∗ −yXjNN∗∗∗ −yXjN3∗∗∗ −yXjN3∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Feb21} × 1{Agei = [20; 49]}(∆F eb21,[20;49] + δF eb21,[20;49]) −yXR8k∗∗∗ −yXkRy∗∗∗ −yXkRy∗∗∗ −yXkRy∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Feb21} × 1{Agei = [50; 59]}(∆F eb21,[50;59] + δF eb21,[50;59]) −yXRd3∗∗∗ −yXkRj∗∗∗ −yXkRj∗∗∗ −yXkRj∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Feb21} × 1{Agei = [60; 69]}(∆F eb21,[60;69] + δF eb21,[60;69]) −yXke9∗∗∗ −yXk8k∗∗∗ −yXk8k∗∗∗ −yXk8k∗∗∗

UyXyyeV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Feb21} × 1{Agei = [70; 79]}(∆F eb21,[70;79] + δF eb21,[70;79]) −yXjky∗∗∗ −yXk8d∗∗∗ −yXk8d∗∗∗ −yXk8d∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Mar21} × 1{Agei = [20; 49]}(∆Mar21,[20;49] + δMar21,[20;49]) −yXyke∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Mar21} × 1{Agei = [50; 59]}(∆Mar21,[50;59] + δMar21,[50;59]) −yXy93∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗ −yXy3j∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Mar21} × 1{Agei = [60; 69]}(∆Mar21,[60;69] + δMar21,[60;69]) −yXRRy∗∗∗ −yXyNN∗∗∗ −yXyNN∗∗∗ −yXyNN∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Mar21} × 1{Agei = [70; 79]}(∆Mar21,[70;79] + δMar21,[70;79]) −yXRek∗∗∗ −yXyN3∗∗∗ −yXyN3∗∗∗ −yXyN3∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Apr21} × 1{Agei = [20; 49]}(∆Apr21,[20;49] + δApr21,[20;49]) −yXyy3 −yXyee∗∗∗ −yXyee∗∗∗ −yXyee∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
Aftert × 1{Montht = Apr21} × 1{Agei = [50; 59]}(∆Apr21,[50;59] + δApr21,[50;59]) −yXy9R∗∗∗ −yXyde∗∗∗ −yXyde∗∗∗ −yXyde∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Apr21} × 1{Agei = [60; 69]}(∆Apr21,[60;69] + δApr21,[60;69]) −yXyN8∗∗∗ −yXy39∗∗∗ −yXy39∗∗∗ −yXy39∗∗∗

UyXyydV UyXyydV UyXyydV UyXyydV
Aftert × 1{Montht = Apr21} × 1{Agei = [70; 79]}(∆Apr21,[70;79] + δApr21,[70;79]) −yXR8R∗∗∗ −yXy3d∗∗∗ −yXy3d∗∗∗ −yXy3d∗∗∗

UyXyy3V UyXyyNV UyXyyNV UyXyyNV
JQMi? 61 u2b u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b u2b
�;2 :`QmT×Y eart UΨitV LQ u2b u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV LQ LQ u2b u2b
�;2 :`QmT × AM+QK2 :`QmT ×Y eart UΨitV LQ LQ LQ u2b
P#b2`p�iBQMb k-jR8-yyk k-jR8-yyk k-jR8-yyk k-jR8-yyk
_2 yXejj yXejj yXejj yXejj
�/Dmbi2/ _2 yXekj yXekj yXek9 yXek9
_2bB/m�H ai/X 1``Q` yXe3e yXe3e yXe3e yXe3e

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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Table 15: Impact of age on consumption expenditures by income group.h�#H2 Rj, AKT�+i Q7 �;2 QM +QMbmKTiBQM 2tT2M/Bim`2b #v BM+QK2 ;`QmTX
.2T2M/2Mi p�`B�#H2,
Log(Expensesit)

20, 061 ≤ ]20, 061; 40, 522] ≥ 40, 522

URV UkV UjV
Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −yXRyy∗∗∗ −yXR93∗∗∗ −yXR8j∗∗∗

UyXyRRV UyXyRyV UyXykNV
Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −yXy3k∗∗∗ −yXR9d∗∗∗ −yXRd3∗∗∗

UyXyRyV UyXyydV UyXyRdV
Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −yXy33∗∗∗ −yXRjN∗∗∗ −yXR38∗∗∗

UyXyyNV UyXyyNV UyXyRjV
Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −yXRRy∗∗∗ −yXR38∗∗∗ −yXkjd∗∗∗

UyXyyNV UyXyRRV UyXyR3V
Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −yXkdy∗∗∗ −yXj99∗∗∗ −yXj39∗∗∗

UyXyRjV UyXyRyV UyXyjRV
Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −yXk9k∗∗∗ −yXjek∗∗∗ −yX999∗∗∗

UyXyRyV UyXyyNV UyXykyV
Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −yXjyj∗∗∗ −yX98R∗∗∗ −yX9N8∗∗∗

UyXyRyV UyXyRyV UyXyR8V
Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −yXjek∗∗∗ −yX888∗∗∗ −yX839∗∗∗

UyXyRyV UyXyR9V UyXykyV
Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −yXRdd∗∗∗ −yXk9R∗∗∗ −yXk8j∗∗∗

UyXyRjV UyXyRyV UyXykNV
Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −yXRje∗∗∗ −yXkj3∗∗∗ −yXjyj∗∗∗

UyXyRyV UyXyy3V UyXyRNV
Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −yXRdk∗∗∗ −yXkd8∗∗∗ −yXj89∗∗∗

UyXyyNV UyXyyNV UyXyR8V
Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −yXkRN∗∗∗ −yXjyN∗∗∗ −yXjd3∗∗∗

UyXyRyV UyXyRkV UyXykyV
Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) yXyRe −yXyR8 −yXyy8

UyXyRkV UyXyRyV UyXyjyV
Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) yXyyN −yXykk∗∗ −yXyN9∗∗∗

UyXyRyV UyXyy3V UyXyRNV
Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) −yXyky∗ −yXy3y∗∗∗ −yXRyN∗∗∗

UyXyyNV UyXyyNV UyXyR9V
Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −yXy3y∗∗∗ −yXRyR∗∗∗ −yXR89∗∗∗

UyXyRyV UyXyRkV UyXykyV
Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) yXy38∗∗∗ yXykN∗ −yXydd∗

UyXyR9V UyXyRkV UyXyjyV
Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) yXyee∗∗∗ yXy9e∗∗∗ −yXyjd+

UyXyRkV UyXyyNV UyXykyV
Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) yXy9k∗∗∗ −yXykk∗ −yXy99∗∗

UyXyRRV UyXyRRV UyXyR8V
Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) −yXyj8∗∗ −yXy38∗∗∗ −yXRj8∗∗∗

UyXyRRV UyXyRjV UyXykyV
Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) yXyj3∗∗ yXy8d∗∗∗ yXyk9

UyXyRjV UyXyRyV UyXyjyV
Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) yXyk9∗ yXy83∗∗∗ yXykN

UyXyRRV UyXyy3V UyXykRV
Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) yXyye −yXy9k∗∗∗ −yXy8R∗∗∗

UyXyyNV UyXyRyV UyXyR8V
Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) −yXyjk∗∗ −yXy3k∗∗∗ −yXRjN∗∗∗

UyXyRyV UyXyRkV UyXykRV
Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) yXyj3∗∗ yXykN∗∗ yXykk

UyXyRjV UyXyRyV UyXyjyV
Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) yXyRN+ yXykk∗∗ −yXyR9

UyXyRRV UyXyy3V UyXykyV
Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) yXyyk −yXyjk∗∗∗ −yXydj∗∗∗

UyXyRyV UyXyyNV UyXyR9V
Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) −yXyke∗ −yXy8y∗∗∗ −yXyd9∗∗∗

UyXyRRV UyXyRkV UyXykyV
Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −yXyej∗∗∗ −yXyN9∗∗∗ −yXR99∗∗∗

UyXyRjV UyXyRRV UyXyjRV
Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −yXy3y∗∗∗ −yXyd9∗∗∗ −yXRkj∗∗∗

UyXyRRV UyXyyNV UyXyRNV
Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −yXy3N∗∗∗ −yXRRe∗∗∗ −yXR8y∗∗∗

UyXyRyV UyXyRyV UyXyR8V
Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −yXRj3∗∗∗ −yXRyd∗∗∗ −yXRd8∗∗∗

UyXyRRV UyXyRjV UyXykyV
Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) yXyyR −yXy3N∗∗∗ −yXRRd∗∗∗

UyXyRjV UyXyRRV UyXyj9V
Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) −yXy98∗∗∗ −yXyej∗∗∗ −yXRk8∗∗∗

UyXyRRV UyXyyNV UyXykyV
Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −yXyej∗∗∗ −yXyNe∗∗∗ −yXR98∗∗∗

UyXyRyV UyXyRyV UyXyR8V
Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −yXRye∗∗∗ −yXR8e∗∗∗ −yXRNk∗∗∗

UyXyRRV UyXyRjV UyXykRV
Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −yXyNe∗∗∗ −yXR8j∗∗∗ −yXR9e∗∗∗

UyXyR9V UyXyRRV UyXyjkV
Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −yXRRy∗∗∗ −yXRj3∗∗∗ −yXRj3∗∗∗

UyXyRkV UyXyyNV UyXykyV
Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −yXRke∗∗∗ −yXR39∗∗∗ −yXkRe∗∗∗

UyXyRyV UyXyRyV UyXyR8V
Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −yXR39∗∗∗ −yXkkR∗∗∗ −yXk39∗∗∗

UyXyRkV UyXyRjV UyXykRV
Aftert × 1{Montht = Jan21} × 1{Agei = [20; 49]}(∆Jan21,[20;49] + δJan21,[20;49]) −yXkdy∗∗∗ −yXkN3∗∗∗ −yX9Rj∗∗∗

UyXyReV UyXyRkV UyXyjdV
Aftert × 1{Montht = Jan21} × 1{Agei = [50; 59]}(∆Jan21,[50;59] + δJan21,[50;59]) −yXked∗∗∗ −yXjy9∗∗∗ −yXjey∗∗∗

UyXyRjV UyXyyNV UyXykkV
Aftert × 1{Montht = Jan21} × 1{Agei = [60; 69]}(∆Jan21,[60;69] + δJan21,[60;69]) −yXjyj∗∗∗ −yXjey∗∗∗ −yXj39∗∗∗

UyXyRkV UyXyRkV UyXyRdV
Aftert × 1{Montht = Jan21} × 1{Agei = [70; 79]}(∆Jan21,[70;79] + δJan21,[70;79]) −yXj3k∗∗∗ −yX9y3∗∗∗ −yX99R∗∗∗

UyXyRjV UyXyReV UyXykjV
Aftert × 1{Montht = Feb21} × 1{Agei = [20; 49]}(∆F eb21,[20;49] + δF eb21,[20;49]) −yXR88∗∗∗ −yXk9R∗∗∗ −yXjy3∗∗∗

UyXyR8V UyXyRkV UyXyj3V
Aftert × 1{Montht = Feb21} × 1{Agei = [50; 59]}(∆F eb21,[50;59] + δF eb21,[50;59]) −yXR8y∗∗∗ −yXkjN∗∗∗ −yXkN8∗∗∗

UyXyRjV UyXyyNV UyXykkV
Aftert × 1{Montht = Feb21} × 1{Agei = [60; 69]}(∆F eb21,[60;69] + δF eb21,[60;69]) −yXRd8∗∗∗ −yXkNd∗∗∗ −yXj8k∗∗∗

UyXyRRV UyXyRRV UyXyRdV
Aftert × 1{Montht = Feb21} × 1{Agei = [70; 79]}(∆F eb21,[70;79] + δF eb21,[70;79]) −yXkRe∗∗∗ −yXkNj∗∗∗ −yXj98∗∗∗

UyXyRjV UyXyR8V UyXykjV
Aftert × 1{Montht = Mar21} × 1{Agei = [20; 49]}(∆Mar21,[20;49] + δMar21,[20;49]) −yXyke+ −yXRR3∗∗∗ −yXRd3∗∗∗

UyXyR8V UyXyRkV UyXyj3V
Aftert × 1{Montht = Mar21} × 1{Agei = [50; 59]}(∆Mar21,[50;59] + δMar21,[50;59]) −yXykk −yXRy9∗∗∗ −yXkye∗∗∗

UyXyRjV UyXyRyV UyXykjV
Aftert × 1{Montht = Mar21} × 1{Agei = [60; 69]}(∆Mar21,[60;69] + δMar21,[60;69]) −yXyj3∗∗∗ −yXRk3∗∗∗ −yXRNR∗∗∗

UyXyRkV UyXyRkV UyXyRdV
Aftert × 1{Montht = Mar21} × 1{Agei = [70; 79]}(∆Mar21,[70;79] + δMar21,[70;79]) −yXyej∗∗∗ −yXRRN∗∗∗ −yXRNy∗∗∗

UyXyRjV UyXyR8V UyXyk9V
Aftert × 1{Montht = Apr21} × 1{Agei = [20; 49]}(∆Apr21,[20;49] + δApr21,[20;49]) −yXyRN −yXyNd∗∗∗ −yXRRd∗∗

UyXyReV UyXyRkV UyXyjNV
Aftert × 1{Montht = Apr21} × 1{Agei = [50; 59]}(∆Apr21,[50;59] + δApr21,[50;59]) −yXy98∗∗∗ −yXy33∗∗∗ −yXRj8∗∗∗

UyXyRjV UyXyRyV UyXykjV
Aftert × 1{Montht = Apr21} × 1{Agei = [60; 69]}(∆Apr21,[60;69] + δApr21,[60;69]) −yXy9N∗∗∗ −yXyNN∗∗∗ −yXRj9∗∗∗

UyXyRkV UyXyRkV UyXyRdV
Aftert × 1{Montht = Apr21} × 1{Agei = [70; 79]}(∆Apr21,[70;79] + δApr21,[70;79]) −yXy89∗∗∗ −yXRRy∗∗∗ −yXRee∗∗∗

UyXyRjV UyXyReV UyXyk9V
JQMi? 61 u2b u2b u2b
AM/BpB/m�H 61 u2b u2b u2b
�;2 :`QmT×Y eart UΨitV u2b u2b u2b
:`QmTb k83j3 k888e dyyy
P#b2`p�iBQMb R-yR3-j9e R-yRd-dRd kd3-NjN
_2 yXeyd yX8je yX8jd
�/Dmbi2/ _2 yX8Nd yX8k9 yX8k8
_2bB/m�H ai/X 1``Q` yXdRd yXe83 yXee3

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
�HH +QHmKMb 2biBK�i2/ rBi? T2`bQM }t2/ 2z2+ib

*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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Table 16: Impact of age and comorbidity on consumption expenditures (maps to figure A.7).h�#H2 R9, AKT�+i Q7 �;2 �M/ +QKQ`#B/Biv QM +QMbmKTiBQM 2tT2M/Bim`2b UK�Tb iQ };m`2 dV
.2T2M/2Mi p�`B�#H2,

log(Expenseit)

Comorbidity = 0 Comorbidity = 1

URV UkV
Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −yXydy∗∗∗ −yXyNN∗∗∗

UyXyydV UyXyReV
Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −yXydy∗∗∗ −yXydk∗∗∗

UyXyyeV UyXyRjV
Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −yXyey∗∗∗ −yXy9e∗∗∗

UyXyy8V UyXyRkV
Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −yXy3y∗∗∗ −yXyed∗∗∗

UyXyydV UyXyR9V
Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −yXk88∗∗∗ −yXjjk∗∗∗

UyXyy3V UyXyR3V
Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −yXke3∗∗∗ −yXjRd∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −yXjkj∗∗∗ −yXjd8∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −yXj3R∗∗∗ −yX9yj∗∗∗

UyXyy3V UyXyReV
Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −yXR93∗∗∗ −yXRdj∗∗∗

UyXyy3V UyXyR3V
Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −yXRjd∗∗∗ −yXRd9∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −yXRey∗∗∗ −yXkye∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −yXR3y∗∗∗ −yXkyd∗∗∗

UyXyydV UyXyR8V
Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) yXyee∗∗∗ yXy9k∗

UyXyy3V UyXyR3V
Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) yXy8k∗∗∗ yXyRN

UyXyyeV UyXyRjV
Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) yXyk8∗∗∗ −yXyk9+

UyXyyeV UyXyRjV
Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −yXyyN −yXyk8

UyXyydV UyXyR8V
Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) yXRRy∗∗∗ yXRyj∗∗∗

UyXyyNV UyXykyV
Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) yXRRe∗∗∗ yXyNR∗∗∗

UyXyydV UyXyReV
Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) yXy3k∗∗∗ yXyee∗∗∗

UyXyydV UyXyReV
Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) yXyRj+ yXyj9∗

UyXyy3V UyXyReV
Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) yXRyN∗∗∗ yXRjd∗∗∗

UyXyy3V UyXyRdV
Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) yXRy3∗∗∗ yXRyN∗∗∗

UyXyyeV UyXyR8V
Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) yXy8k∗∗∗ yXy83∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) yXyR3∗ yXyjN∗

UyXyydV UyXyR8V
Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) yXyN3∗∗∗ yXyNN∗∗∗

UyXyy3V UyXyRdV
Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) yXy39∗∗∗ yXydd∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) yXy8j∗∗∗ yXyjN∗∗

UyXyyeV UyXyRjV
Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) yXy98∗∗∗ yXyjN∗

UyXyydV UyXyR8V
Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −yXykj∗∗ −yXyRy

UyXyy3V UyXyRdV
Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −yXyRe∗ −yXykR

UyXyyeV UyXyR9V
Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −yXyjj∗∗∗ −yXyj8∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −yXy9d∗∗∗ −yXy93∗∗

UyXyy3V UyXyR8V
Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) yXyRj −yXyyk

UyXyy3V UyXyRdV
Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) yXyyd −yXykj

UyXyyeV UyXyR9V
Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −yXyR9∗ −yXyR9

UyXyyeV UyXyR9V
Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −yXy9N∗∗∗ −yXy8e∗∗∗

UyXyy3V UyXyR8V
Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −yXyed∗∗∗ −yXy8j∗∗

UyXyy3V UyXyRdV
Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −yXyeR∗∗∗ −yXy88∗∗∗

UyXyydV UyXyR8V
Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −yXy3j∗∗∗ −yXRRy∗∗∗

UyXyyeV UyXyR9V
Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −yXRkR∗∗∗ −yXRe8∗∗∗

UyXyy3V UyXyReV
JQMi? 61 u2b u2b
AM/BpB/m�H 61 u2b u2b
�;2 :`QmT×Y eart UΨitV u2b u2b
AM+QK2 :`QmT ×Y eart UΨitV u2b u2b
�;2 :`QmT × AM+QK2 :`QmT ×Y eart UΨitV u2b u2b
P#b2`p�iBQMb R-Ndk-eeN j9k-jjj
_2 yXejR yX8e3
�/Dmbi2/ _2 yXekR yX88d
_2bB/m�H ai/X 1``Q` yXeNe yXej8

LQi2, Y T<yXRc  T<yXy8c   T<yXyRc    T<yXyyR
*Hmbi2` `Q#mbi bi�M/�`/ 2``Q`b BM UVc 1``Q`b +Hmbi2`2/ #v T2`bQM
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B Appendix B: partial-equilibrium model

In this appendix, we display the value functions of people of different ages and health statuses

and our method for computing the aggregate consumption of young and old.

B.1 Value functions

The value function of a susceptible young person at time t isB.2

U s
y,t(bt) = max

csy,t,bt+1

{
z + {(1− β)((1− µt)csy,t)1−ρ + β[(1− τ y,t) (1− δy − v)

(
U s
y,t+1(bt+1)

)(1−α)
+

(1− τ y,t) v
(
U s
o,t+1(bt+1)

)(1−α)
+ τ y,t(1− δy − v)

(
U i
y,t+1(bt+1)

)(1−α)
+

τ y,tv
(
U i
o,t+1(bt+1)

)1−α
+ δyB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

The value function of an old, susceptible person at time t, U s
o,t(bt), is

U s
o,t(bt) = max

cso,t,bt+1

{
z + {(1− β)((1− µt)cso,t)1−ρ + β[(1− τ o,t)(1− δo)

(
U s
o,t+1(bt+1)

)1−α

+τ o,t(1− δo)
(
U i
o,t+1(bt+1)

)1−α
+ δoB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

With probability δo the person dies of non-Covid causes. With probability (1− τ o,t)(1− δo),
this person survives and does not get infected, remaining a susceptible old person. With

probability τ o,t(1 − δo), the person survives but gets infected, becoming an infected old

person.

The value function of a young, infected person at time t, U i
y,t(bt), is

U i
y,t(bt) = max

ciy,t,bt+1

{
z + {(1− β)((1− µt)ciy,t)1−ρ + β[(1− πyr,t − πyd,t)(1− δy − v)

(
U i
y,t+1(bt+1)

)1−α

+(1− πyr,t − πyd,t)v
(
U i
o,t+1(bt+1)

)1−α
+ πyr,t(1− δy − v)

(
U r
y,t+1(bt+1)

)1−α

+πyr,tv
(
U r
o,t+1(bt+1)

)1−α
+ [δy + πyd,t(1− δy)]B(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

A person who is young and infected at time t remains in that state at time t + 1 with

subjective probability (1− πyr,t − πyd,t)(1− δy − v), remains infected and becomes old with

subjective probability (1−πyr,t−πyd,t)v, recovers and stays young with probability πyr,t(1−
δy−v), recovers and ages with probability τ y,tv, and dies of non-Covid causes with probability

δy.

B.2This formulation and the others below involve a slight abuse of notation. The perceived value function
Uh
a,t+1 is computed at time t assuming that πad,t+j = πad,t for all j. The realized value function at time

t+ 1, is computed assuming that πad,t+1+j = πad,t+1 for all j. Our notation does not distinguish between
these two types of value functions. In solving the model, we do take into account this distinction.



The value function of an old infected person at time t, U i
o,t(bt), is

U i
o,t(bt) = max

cio,t,bt+1

{
z + {(1− β)((1− µt)cio,t)1−ρ + β[(1− πor,t − πod,t)(1− δo)

(
U i
o,t+1(bt+1)

)1−α

+πor,t(1− δo)
(
U r
o,t+1(bt+1)

)1−α
+ [δo + πod,t(1− δo)]B(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

A person who is old and infected at time t remains in that state at time t+1 with subjective

probability (1 − πor,t − πod,t)(1 − δo), recovers with probability πor,t(1 − δo), dies of Covid

with probability (1− δ0)πod,t, and dies of non-Covid causes with probability δo.

The value function of a young recovered person at time t, U r
y,t(bt), is

U r
y,t(bt) = max

cry,t,bt+1

{
z + {(1− β)((1− µt)cry,t)1−ρ + β[(1− δy − v)

(
U r
y,t+1(bt+1)

)1−α

+v
(
U r
o,t+1(bt+1)

)1−α
+ δyB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

This person is immune from the virus but still faces two sources of uncertainty: aging with

probability v and dying from non-viral causes with probability δy.

The value function of an old recovered person at time t, U r
o,t(bt), is

U r
o,t(bt) = max

cro,t,bt+1

{
z + {(1− β)((1− µt)cro,t)1−ρ

+β[(1− δo)
(
U r
o,t+1(bt+1)

)1−α
+ δoB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ)
}

.

This person faces only one source of uncertainty, which is dying of non-Covid causes with

probability δo.

The result of the maximization problems is a set of policy functions of the form cha,t(b). To

compare the model implications with the data, we need to compute per capita consumption

for young (Cyt) and old (Cot). These variables are given by:

Cyt =
Syt
∫
csyt(b)f

s
yt(b)db+ Iyt

∫
ciyt(b)f

i
yt(b)db+Ryt

∫
cryt(b)f

r
yt(b)db

Syt + Iyt +Ryt

,

and

Cot =
Sot
∫
csyt(b)f

s
ot(b)db+ Iot

∫
ciot(b)f

i
ot(b)db+Rot

∫
crot(b)f

r
ot(b)db

Sot + Iot +Rot

,

where fhat(b) is the distribution assets at time t among people with age a and health status

h.

We first solve for the value functions Ūh
a,t for a version of the model with no infections

(Iyt = Iot = 0). As an approximation, we assume that infections are zero at the end of our

sample. We use Ūh
a,t as the value functions at the end of our sample and recurse backward. At

each point in time, we calculate the value functions conditional on the number of infections

inferred from the data. For further details on the computation methods, please consult the

replication materials on the authors’ websites.
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B.2 Computing consumption per capita in partial equilibrium
model

To compare the model’s implications with the data, we need to compute per capita con-

sumption for the young (Cyt) and old (Cot). These variables are given by:

Cyt =
Syt
∫
csyt(b)f

s
yt(b)db+ Iyt

∫
ciyt(b)f

i
yt(b)db+Ryt

∫
cryt(b)f

r
yt(b)db

Syt + Iyt +Ryt

, (B.3)

and

Cot =
Sot
∫
csyt(b)f

s
ot(b)db+ Iot

∫
ciot(b)f

i
ot(b)db+Rot

∫
crot(b)f

r
ot(b)db

Sot + Iot +Rot

. (B.4)

To calculate Cyt and Cot we need to compute the distributions of assets at time t for

people with different ages and health statuses. Characterizing these distributions is feasible

but computationally very intensive because asset holdings depend on people’s health histories

(whether and when they became infected or recovered). As time passes, the number of

possible health histories increases dramatically, creating substantial heterogeneity. However,

because the three epidemic waves occur over roughly one year, and people can borrow and

lend at a fixed interest rate, the asset heterogeneity generated by different health histories

is, in practice, quantitatively small.

To estimate the model, we have to solve it numerous times. To make estimation computa-

tionally feasible, we use the consumption of a person whose health status remained constant

(as susceptible, infected, or recovered) over time to approximate the values of
∫
csyt(b)f

s
yt(b)db,∫

ciyt(b)f
i
yt(b)db, and

∫
cryt(b)f

r
yt(b)db. To show that people with the same current health sta-

tus but different health histories have very similar consumption, we proceed as follows. We

compare the consumption of a person who is infected at time zero and remains infected with

a person infected at time t. The maximum absolute difference between the consumption of

these two people is roughly six euros for young and five euros for old. We also compare the

consumption of a person who recovers at time zero with a person who is infected at time t

and recovers two weeks later. The maximum absolute difference between the consumption

of these two people is roughly nine euros for young and ten euros for old. Since most peo-

ple in the economy are susceptible and do not change their health status, the effect of our

approximation on Cyt and Cot is very small, less than two euros according to our calculations.

The equations we use to compute the values of Sat, Iat, and Rat (for a = y, o) are as

follows. To simplify, we split the total number of infections observed in the data between
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young and old according to their population shares, sharey,t and shareo,t:

Iyt = sharey,tIt,

Iot = shareo,tIt.

The aggregate case fatality rate is

π∗d,t = sharey,tπ
∗
yd,t + shareo,tπ

∗
od,t.

Let Dcovid
t denote cumulative Covid deaths up to time t. In period t+ 1 we observe new

Covid deaths (Dcovid
t+1 −Dcovid

t ). Using these data, we compute the total number of infected

people in the economy as:

It =
Dcovid
t+1 −Dcovid

t

π∗d,t
.

Since our sample period is roughly one year, we assume for simplicity that sy,t and so,t

are constant and equal to their values at the beginning of the sample.

Using the fact that Ry,0 = Ro,0 = Dcovid
y,0 = Dcovid

o,0 = 0, we compute Ry,t+1, Ro,t+1, D
covid
y,t+1,

Dcovid
o,t+1 recursively as follows:

Ry,t+1 = Ry,t(1− δy − v) + Iy,tπ
∗
yr(1− δy − v),

Ro,t+1 = Ro,t(1− δo) +Ry,tv + Iy,tπ
∗
yrv + Io,tπ

∗
or,t(1− δo),

Dcovid
y,t+1 = Dcovid

y,t + π∗yd,tIy,t,

Dcovid
o,t+1 = Dcovid

o,t + π∗od,tIo,t.

Finally, we compute the number of young and old susceptible people as a residual

Syt = sharey,t − Iy,t −Ry,t −Dcovid
y,t ,

Sot = shareo,t − Io,t −Ro,t −Dcovid
o,t .

B.3 Equivalence between two ways of modeling containment

In this subsection, we consider two models. In both models, there is containment in period

one. In the first model, households cannot consume a fraction 1− n of the goods in period

one because of containment measures. In the second model, containment takes the form of

a wedge in the utility function that reduces the utility of consumption in period one. We

show, in a simple setting, that these two ways of modeling containment are equivalent.
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Model where some goods cannot be consumed in period one Consider a simple

two-period problem where the objective is to maximize,

U = log(C1) + βlog(C2),

Consumption is given by a continuum of differentiated goods combined according to a Dixit-

Stiglitz aggregator,

Ct =

(∫ nt

0

xαitdi

)1/α

,

where α < 1. The household’s budget constraint is

∫ n1

0

pi1xi1di+ (1 + r)−1
∫ 1

0

pi2xi2di = Y,

where Y denotes household income. In period 1, there is containment, so households can

only consume the first n1 < 1 goods. There is no containment in period 2, so n2 = 1.

To simplify, we assume that β = (1 + r)−1 and that

pi1 = pi2 = p.

In this case,

C1 = n1
1/αx1

C2 = x2

We can rewrite the utility function as,

U = log
(
n
1/α
1 x1

)
+ βlog(x2),

and the budget constraint as,

n1px1 + (1 + r)−1px2 = Y.

The first-order conditions for x1 and x2 are

x−11 = λn1p,

βx−12 = λ(1 + r)−1p,

where λ is the Lagrange multiplier associated with the budget constraint.

Combining,
x2
x1

= n1
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Using the budget constraint, we obtain,

x1 =
1

1 + (1 + r)−1
Y

n1p
,

x2 =
1

1 + (1 + r)−1
Y

p
,

C2

C1

= n
1−1/α
1 .

Model with a wedge in utility The objective is to maximize

U = (1− µ)log(C1) + βlog(C2),

subject to the budget constraint

C1 + (1 + r)−1C2 = Y.

The first-order conditions are
1− µ
C1

= λ,

β
1

C2

= λ(1 + r)−1.

Combining these two equations,
C2

C1

=
1

1− µ.

For each value of n in the first economy, we can always choose a wedge µ in the second

economy such that households choose the same consumption in the two economies,

(1− µ)−1 = n
1−1/α
1 .

We can rewrite this expression as,

µ = 1− n1/α−1
1 > 0.

The smaller is n, the fraction of goods that can be consumed in the first economy, the larger

is µ, the utility wedge in the second economy. These results can easily be generalized to

other environments.
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B.4 Calibration of case-fatality rates

Sorensen et al. (2022) estimate the population-wide time trend in the infection-fatality rate

from April 2020 to January 2021 for Portugal. According to Table 2 (page 1479) in Sorensen

et al. (2022), the point estimates for the infection fatality rates on April 15, 2020, July

15, 2020, October 15, 2020, and January 1, 2021, are 2.683%, 2.085%, 1.805% and 1.708%,

respectively. We discuss below how we convert infection-fatality rates into case-fatality rates.

Given that our sample ranges from March 1, 2020 through May 15, 2021, we assume

that the infection-fatality rate on March 1 is the same as on April 15, 2020, i.e., 2.683%.

Likewise, we assume that the infection-fatality rate after May 15, 2021 (the last date of our

sample) is the same as on January 1, 2021, i.e., 1.708%.

We assume that the weekly time profile of the infection-fatality rates is flat, i.e., the

infection-fatality rates decline stepwise over time with discrete steps at the above dates. We

normalize the resulting time series of the infection fatality rates by its value on July 26,

2020. The resulting time series has the value of unity on July 26, a value of 1.2868 on March

1, 2020, and a value of 0.8192 on May 15, 2021, with discrete stepwise declines at the dates

listed above and flat time profiles in between the dates listed above.

Note that 100 × (1 − 0.8192/1.2868) = 36.3382 implies that the infection fatality rate

on May 15, 2021, is about 36% lower than on March 1, 2020. Finally, we multiply the

normalized time series for infection fatality rates from Sorensen et al. (2022) with the July

26, 2020 estimates of the case-fatality rates for young and old π∗yd and π∗od. This calculation

results in time series for π∗yd,t and π∗od,t that have a downward trend (with stepwise declines

at the dates listed above and flat time profiles in between the dates). The blue-dashed lines

in Figure 7 show the resulting time series for π∗yd,t and π∗od,t. Finally, we assume that the

values of π∗yd,t and π∗od,t are such that, on average, infected people recover or die in two

weeks (π∗or,t + π∗od,t = π∗yr,t + π∗yd,t = 7/14). We make the same assumption for the beliefs of

case-fatality rates, i.e., πor,t + πod,t = πyr,t + πyd,t = 7/14.

B.5 Perfect foresight solution

This figure corresponds to a version of the model in which people know about the second

and third waves at the beginning of the epidemic.
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Figure B.8: Perfect foresight solution.
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B.6 Gauging the effect of alpha variant

The figure below illustrates the impact of assuming that the alpha variant was fifty percent

more contagious than the ancestral Covid virus. This variant was detected in Portugal in

the week of December 7, 2020, so we assume that π1 and π2 increase by 50 percent from

that week on.
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Figure B.9: Higher infectiousness starting in the week of December 6, 2020.

B.7 Model with constant case-fatality rate

The figure below shows results for a version of the model in which the true case-fatality rates

are constant over time.
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Figure B.10: Consumption of young and old in the epidemic. Model with constant case
fatality rates and data implications for changes in expenditures of young and old during the
epidemic relative to a counterfactual without Covid.

C Appendix C: Model of endemic Covid

In this appendix, we first describe the model of endemic Covid. Then we discuss the com-

putational algorithm and the model parameterization.

C.1 Model

In our partial-equilibrium analysis, we abstract from births because we focus on a short

period. Here we study steady-state properties, so we modify the model to ensure that the

total population and the shares of younger and older people are constant. We assume that

in each period By,t young people without comorbidities are born. In addition, Bo,t people

are born with comorbidities.

The number of newly infected people with age a is given by the following transmission
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function

Ta,t = π1Sa,t(1− φa)Cs
a,t(Iy,tC

i
y,t + Io,tC

i
o,t) + π2Sa,t(1− φa)N s

a,t(Iy,tN
i
y,t + Io,tN

i
o,t)(C.5)

+π3Sa,t(1− φa) (Iy,t + Io,t) .

The variables Cs
a,t and Ci

a,t represent the consumption of susceptible and infected people of

age a, respectively. The variables N s
t and N i

t represent the total hours worked by susceptible

and infected people of age a, respectively. Susceptible people of age a are vaccinated with

probability φa. Susceptible people who are vaccinated acquire immunity to the virus without

becoming infected. Critically, we assume that both people who have been vaccinated and

have acquired immunity by becoming infected lose, on average, their immunity after 1/πs

weeks, becoming susceptible again.

The number of newly infected people with age a that results from consumption-related

interactions is given by π1Sa,t(1− φa)Cs
a,t(Iy,tC

i
y,t + Io,tC

i
o,t). The term Sa,t(1− φa)Cs

a,t is the

total consumption of susceptible people with age a who have not been vaccinated. The term

Iy,tC
i
y,t + Io,tC

i
o,t represents total consumption of infected people. The parameter π1 reflects

both the amount of time spent in consumption activities and the probability of becoming

infected due to those activities.

The number of newly infected people that results from interactions at work is given by

π2Sa,t(1 − φa)N
s
a,t(Iy,tN

i
y,t + Io,tN

i
o,t). The term Sa,t(1 − φa)N

s
a,t is the total hours worked

by susceptible people with age a who have not been vaccinated. The term Iy,tN
i
y,t + Io,tN

i
o,t

represents total hours worked by infected people. The parameter π2 reflects the probability

of infection due to work interactions.

Susceptible and infected people can meet in ways unrelated to consuming or working.

The number of random meetings between susceptible people with age a who have not been

vaccinated and infected people is Sa,t(1−φa) (Iy,t + Io,t). These meetings result in π3Sa,t(1−
φa) (Iy,t + Io,t) newly infected people with age a.

The timing is as follows. The changes in health status caused by the epidemic occur at

the beginning of the period. Aging and natural death occur at the end of the period.

The number of young and old susceptible people at time t+ 1 is given by:

Sy,t+1 = [Sy,t(1− φy)− Ty,t](1− δy − v) + πsRy,t + By,t, (C.6)

So,t+1 = [So,t(1− φo)− To,t](1− δo) + [Sy,t(1− φy)− Ty,t]v + πsRo,t + Bo,t. (C.7)
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The number of young and old infected people at time t+ 1 is given by:

Iy,t+1 = Iy,t(1− πyr − π∗yd)(1− δy − v) + Ty,t(1− δy − v), (C.8)

Io,t+1 = Io,t(1− πor − π∗od)(1− δo) + Ty,tv + To,t(1− δo) + Iy,t(1− πyr − π∗yd)v. (C.9)

The number of young and old recovered people at time t+ 1 is given by:

Ry,t+1 = Ry,t(1− δy − v − πs) + φySy,t(1− δy − v) + Iy,tπyr(1− δy − v), (C.10)

Ro,t+1 = Ro,t(1−δo−πs)+φoSo,t(1−δo)+vφySy,t+Ry,tv+Iy,tπyrv+Io,tπor(1−δo). (C.11)

New deaths at the end of period t are given by

Dy,t+1 −Dy,t = Iy,tπ
∗
yd − π∗ydvIy,t + δy[Sy,t + Iy,t(1− π∗yd) +Ry,t],

Do,t+1 −Do,t = δoSo,t + δoIo,t(1− π∗od) + π∗odIo,t + δoRo,t + Iy,tπ
∗
ydv.

The number of births that keeps the population constant is

By,t = Dy,t+1 −Dy,t,

Bo,t = Do,t+1 −Do,t.

C.1.1 The household problem

For tractability, we assume that people are organized into households, each with a continuum

of identical members. This household structure introduces limited sharing of health risks.

Without the household structure, the asset holdings of a person would depend on how long

they had a particular health status. As time goes by, we would have to keep track of an

increasing number of types of people.

At time zero, a household has a continuum of measure one of family members. The law

of large numbers applies and has two implications. First, the demographic composition of

the household is the same as the composition of the population, i.e., it includes the same

fraction of people of different ages and health statuses. Second, the household problem is

deterministic.

We modify the utility specification in Section 6 to allow for endogenous labor supply.

The household’s lifetime utility is given by

Ut = z +mt + β
(
EtU

1−α
t+1

)1/(1−α)
, (C.12)
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where mt is a weighted average of the momentary utility of the household members:

mt =
∑

a∈{o,y}
[sa,tu(csa,t, n

s
a,t) + ia,tu(cia,t, n

i
a,t) + ra,tu(cra,t, n

r
a,t)].

The variables sa,t, ia,t, and ra,t denote the number of family members with age a who

are susceptible, infected, and recovered, respectively. The variables cha,t and nha,t denote the

consumption and hours worked by people with age a and health status h, respectively. The

utility function of a person with age a and health status h is

u(cha,t, n
h
a,t) =

(
cha,t
)1−ρ − 1

1− ρ − θ

2

(
nha,t
)2

.

Since the household faces no uncertainty, Ut+1 =
(
EtU

1−α
t+1

)1/(1−α)
, and we can rewrite

household utility as

Ut = z +mt + βUt+1.

The household budget constraint is given by

∑

a∈{o,y}
(sa,tc

s
a,t+ia,tc

i
a,t+ra,tc

r
a,t)+kt+1−(1−δk)kt = wt

∑

a∈{o,y}
(sa,tn

s
a,t+ia,tn

i
a,t+ra,tn

r
a,t)+Rk

t kt.

(C.13)

Here, kt denotes the stock of capital, δk the depreciation rate, wt the real wage rate, and Rk
t

the real rental rate of capital.

The number of newly infected people of age a is given by:

τa,t = π1sa,t(1− φa)csa,t(Iy,tCi
y,t + Io,tC

i
o,t) + π2sa,t(1− φa)nsa,t(Iy,tN i

y,t + Io,tN
i
o,t)(C.14)

+π3sa,t(1− φa) (Iy,t + Io,t) .

The household can affect τa,t through its choice of csa,t and nsa,t. However, the household

takes economy-wide aggregates Iy,tC
i
y,t + Io,tC

i
o,t, and Iy,tN

i
y,t + Io,tN

i
o,t as given, i.e., it does

not internalize the impact of its choices on economy-wide infection rates.

To simplify, we assume that a fraction φo of old susceptibles and a fraction φy of young

susceptibles get vaccinated. The fraction of the initial family that is susceptible, infected,

and recovered at time t+ 1 is given by:

sy,t+1 = [sy,t(1− φy)− τ y,t](1− δy − v) + πsry,t + by,t, (C.15)

so,t+1 = [so,t(1− φo)− τ o,t](1− δo) + [sy,t(1− φy)− τ y,t]v + πsro,t + bo,t, (C.16)
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iy,t+1 = iy,t(1− πyr − π∗yd)(1− δy − v) + τ y,t(1− δy − v), (C.17)

io,t+1 = io,t(1− πor − π∗od)(1− δo) + τ y,tv + τ o,t(1− δo) + iy,t(1− πyr − π∗yd)v, (C.18)

ry,t+1 = ry,t(1− δy − v − πs) + φysy,t(1− δy − v) + iy,tπyr(1− δy − v), (C.19)

ro,t+1 = ro,t(1− δo − πs) + so,tφo(1− δo) + vφysy,t + ry,tv + iy,tπyrv + io,tπor(1− δo). (C.20)

The household maximizes (C.12) subject to the budget constraint (C.13) and to the laws

of motion for the health status of family members (equations (C.14)-(C.20)).

C.1.2 The firms’ problem

Output is produced by a continuum of measure one of competitive firms, each of whom

produces the final good with a Cobb-Douglas production function that combines capital

(Kt) and labor (Nt). Firms maximize their profits, given by

π = AK1−γ
t Nγ

t −Rk
tKt − wtNt.

The first-order conditions for the firm’s problem are:

(1− γ)AK−γt Nγ
t = Rk

t ,

γAK1−γ
t Nγ−1

t = wt.

C.1.3 Equilibrium in goods and factor markets

In equilibrium, households and firms solve their maximization problems and the market for

consumption, hours worked, and output clear,

Ct =
∑

a∈{o,y}

[
Sa,tC

s
a,t + Ia,tC

i
a,t +Ra,tC

r
a,t

]
,

Nt =
∑

a∈{o,y}

[
Sa,tN

s
a,t + Ia,tN

i
a,t +Ra,tN

r
a,t

]
,

Ct +Kt+1 = AK1−γ
t Nγ

t + (1− δk)Kt.

The fraction of people in the family with age a who are susceptible, infected and recovered

is the same as the corresponding fraction in the population:

sa,t = Sa,t, ia,t = Ia,t, and ra,t = Ra,t.

The market for physical capital clears

Kt = kt.
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C.1.4 Calibration of endemic Covid model

With one exception, parameters common to the partial- and general-equilibrium model are

set to the values discussed in Section 6.1. The exception is z, the constant in the utility

function. This parameter is reset to −1.125 so that, as in our partial-equilibrium model, the

value of life in a pre-epidemic steady state is roughly 900 thousand euros.

Moving to general equilibrium introduces a new set of parameters that we must calibrate.

We set γ = 2/3, which is consistent with recent estimates by Lopes et al. (2021) of the labor

share inclusive of the income received by self-employed workers attributable to labor. The

weekly rate of capital depreciation δk is 0.1/52.

Consistent with our estimates in Section (7), we set π1 so that the fraction of infections

in the pre-epidemic steady state due to consumption is 4.6 percent. We set π2 so that

the fraction of infections in the pre-epidemic steady state due to work activities is also 4.6

percent. We set π3 so that the basic reproduction rate, R0, is 2.5. Recall that this estimate

of R0 is close to the one that the Center for Disease Control prefers. The resulting parameter

values are π1 = 7.8210× 10−7, π2 = 7.3822× 10−5 and π3 = 1.1342. We choose πs = 1/26,

which is consistent with the notion that immunity lasts, on average, for six months.

Recall that the weekly probabilities of dying once infected (π∗od,t and π∗yd,t) decline over

time, consistent with the time trend in Sorensen et al. (2022). We choose the values of

π∗od,t and π∗yd,t equal to those obtained at the end of our sample. Consistent with our estimated

model, we assume that the values of πor,t and πyr,t are such that, on average, infected people

recover or die in two weeks (πor,t + π∗od,t = πyr,t + π∗yd,t = 7/14).

We set φy = φo = 1/26, which implies that roughly 4 percent of the population gets

vaccinated each week. This value is approximately the weekly fraction of the population

vaccinated between April 1 and September 1, 2021. We set the probability of aging v =

0.000634 so that the population’s pre-epidemic share of old people is 0.3.

According to the Statistics Portugal 1999 Survey of Time Use, employed people spend

roughly 7 hours per day at work. The fraction of the population employed in 2019 is 57.6

percent. So, the average hours worked per week in the population is 28 (7 ×7× 0.576). We

set θ = 0.007401, so people work 28 hours per week in the pre-epidemic steady state. We set

A = 1.086265 so that, as in Section 6.1, annual income is 19, 000 Euros in the pre-epidemic

steady state.

For the population of young and old to be constant in the steady state, we require an
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inflow of newborns. Given our other assumptions, this requirement implies that: By,t =

0.000711 and Bo,t = 0.000054. Recall that Bo,t and By,t represent newborns with and

without comorbidities, respectively.

The steady-state distribution of people across age and health status for an economy

with endemic Covid is as follows: 57 percent of the population is recovered, 42 percent is

susceptible, and 1 percent is infected. The fraction of people that die weekly from all causes

is 0.08 of 1 percent. Covid accounts for 7.6 percent of these deaths. A fraction 0.006 of 1

percent of the population dies from Covid each week. Average life expectancy at birth falls

on a log-percentage basis by 1.5 percent, from 66.7 to 65.6 years.C.3

C.2 First-order conditions and computational algorithm

The state variables of the household problem are Ωt = {st, it, rt, kt}. We will omit them to

simplify the notation.

Lifetime utility is given by:

Ut = z +mt + β
(
EtU

1−α
t+1

)1/(1−α)

The household problem is deterministic because the law of large numbers applies: the

fraction of family members in each health state follows a deterministic path. Since risk does

not play a role, we can rewrite lifetime utility as

Ut = z +mt + βUt+1

mt =
∑

a∈{o,y}
sa,tu(csa,t, n

s
a,t) + ia,tu(cia,t, n

i
a,t) + ra,tu(cra,t, n

r
a,t).

u(cha,t, n
h
a,t) =

(
cha,t
)1−ρ − 1

1− ρ − θ

2

(
nha,t
)2

.

Budget constraint

∑

a∈{o,y}
(sa,tc

s
a,t+ia,tc

i
a,t+ra,tc

r
a,t)+kt+1−(1−δk)kt = wt

∑

a∈{o,y}
(sa,tn

s
a,t+ia,tn

i
a,t+ra,tn

r
a,t)+Rk

t kt

Transmission function for age a

τa,t = π1sa,t(1− φa)csa,t(Iy,tCI
y,t + Io,tC

I
o,t) + π2sa,t(1− φa)nsa,t(Iy,tN i

y,t + Io,tN
i
o,t)

+π3sa,t(1− φa) (Iy,t + Io,t)

C.3Recall that we exclude people younger than 20 from our analysis which reduces life expectancy.
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Social dynamics

sy,t+1 = [sy,t(1− φy)− τ y,t](1− δy − v) + πsry,t + by,t, (C.21)

so,t+1 = [so,t(1− φo)− τ o,t](1− δo) + [sy,t(1− φy)− τ y,t]v + πsro,t + bo,t, (C.22)

iy,t+1 = iy,t(1− πyr − πyd)(1− δy − v) + τ y,t(1− δy − v), (C.23)

io,t+1 = io,t(1− πor − πod)(1− δo) + τ y,tv + τ o,t(1− δo) + iy,t(1− πyr − πyd)v, (C.24)

ry,t+1 = ry,t(1− δy − v − πs) + φysy,t(1− δy − v) + iy,tπyr(1− δy − v), (C.25)

ro,t+1 = ro,t(1− δo − πs) + so,tφo(1− δo) + vφysy,t + ry,tv + iy,tπyrv + io,tπor(1− δo). (C.26)

FOCs for consumption

(
csa,t
)−ρ − λbt + λτa,tπ1(1− φa)(Iy,tCi

y,t + Io,tC
i
o,t) = 0

(
cia,t
)−ρ − λbt = 0

(
cra,t
)−ρ − λbt = 0

FOCs for labor

−θnsa,t + wtλ
b
t + λτa,tπ2(1− φa)(Iy,tN i

y,t + Io,tN
i
o,t) = 0

−θnia,t + wtλ
b
t = 0

−θnra,t + wtλ
b
t = 0

FOC for kt+1

λbt = βλbt+1[R
k
t+1 + 1− δk]

dUt
dsa,t

=

(
csa,t
)1−ρ − 1

1− ρ − θ

2

(
nsa,t
)2

dUt
dia,t

=

(
cia,t
)1−ρ − 1

1− ρ − θ

2

(
nia,t
)2

dUt
dra,t

=

(
cra,t
)1−ρ − 1

1− ρ − θ

2

(
nra,t
)2

dUt
dUt+1

= β
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The first-order condition for sy,t+1, so,t+1, iy,t+1, io,t+1, ry,t+1, ro,t+1, τ y,t, and τ o,t are

dUt
dUt+1

dUt+1

dsy,t+1

+ βλbt+1(wt+1n
s
y,t+1 − csy,t+1)− λsy,t + βλsy,t+1(1− φy)(1− δy − v)

+βλry,t+1φy(1− δy − v) + βλro,t+1vφy +

βλso,t+1(1− φy)v + βλτy,t+1(1− φy)[π1c
s
y,t+1(Iy,t+1C

i
y,t+1 + Io,t+1C

i
o,t+1)

+π2n
s
y,t+1(Iy,t+1N

i
y,t+1 + Io,t+1N

i
o,t+1) + π3 (Iy,t+1 + Io,t+1)]

= 0,

dUt
dUt+1

dUt+1

dso,t+1

+ βλbt+1(wt+1n
s
o,t+1 − cso,t+1)− λso,t + βλso,t+1(1− φo)(1− δo)

+βλro,t+1φo(1− δo)

+βλτo,t+1(1− φo)
[

π1c
s
o,t+1(Iy,t+1C

i
y,t+1 + Io,t+1C

i
o,t+1)

+π2n
s
o,t+1(Iy,t+1N

I
y,t+1 + Io,t+1N

i
o,t+1) + π3 (Iy,t+1 + Io,t+1)

]

= 0,

dUt
dUt+1

dUt+1

diy,t+1

+ βλbt+1(wt+1n
i
y,t+1 − ciy,t+1)

−λiy,t + βλiy,t+1(1− πyr − πyd)(1− δy − v) +

βλio,t+1(1− πyr − πyd)v + βλry,t+1πyr(1− δy − v) + βλro,t+1πyrv = 0,

dUt
dUt+1

dUt+1

dio,t+1

+ βλbt+1(wt+1n
i
o,t+1 − cio,t+1)− λio,t

+βλio,t+1(1− πor − πod)(1− δo) + βλro,t+1πor(1− δo) = 0,

dUt
dUt+1

dUt+1

dry,t+1

+ βλbt+1(wt+1n
r
y,t+1 − cry,t+1) + βλsy,t+1πs − λry,t

+βλry,t+1(1− δy − v − πs) + βλro,t+1v = 0,

dUt
dUt+1

dUt+1

dro,t+1

+ βλbt+1(wt+1n
r
o,t+1 − cro,t+1) + βλso,t+1πs

−λro,t + βλro,t+1(1− δo − πs) = 0,

−λsy,t(1− δy − v)− λso,tv + λiy,t(1− δy − v) + λio,tv − λτy,t = 0,

−λso,t(1− δo) + λio,t(1− δo)− λτo,t = 0.

C.2.1 Firm problem

π = AK1−γ
t Nγ

t −Rk
tKt − wtNt

(1− γ)AK−γt Nγ
t = Rk

t

γAK1−γ
t Nγ−1

t = wt
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C.2.2 Equilibrium in goods and factor markets

Nt =
∑

a∈{o,y}

[
Sa,tN

s
a,t + Ia,tN

i
a,t +Ra,tN

r
a,t

]

Ct =
∑

a∈{o,y}

[
Sa,tC

s
a,t + Ia,tC

i
a,t +Ra,tC

r
a,t

]

Ct +Kt+1 = AK1−γ
t Nγ

t + (1− δk)Kt

C.2.3 Population dynamics

Ta,t = π1Sa,t(1− φa)Cs
a,t(Iy,tC

i
y,t + Io,tC

i
o,t) + π2Sa,t(1− φa)N s

a,t(Iy,tN
i
y,t + Io,tN

i
o,t)

+π3Sa,t(1− φa) (Iy,t + Io,t) .

Social dynamics

Sy,t+1 =
(
Sy,t(1− φy)− Ty,t

)
(1− δy − v) + πsRy,t + By,t

So,t+1 = (So,t(1− φo)− To,t) (1− δo) +
(
Sy,t(1− φy)− Ty,t

)
v + πsRo,t + Bo,t

Iy,t+1 = Iy,t(1− πyr − πyd)(1− δy − v) + Ty,t(1− δy − v)

Io,t+1 = Io,t(1− πor − πod)(1− δo) + Ty,tv + To,t(1− δo) + Iy,t(1− πyr − πyd)v

Ry,t+1 = Ry,t(1− δy − v − πs) + φySy,t(1− δy − v) + Iy,tπyr(1− δy − v)

Ro,t+1 = Ro,t(1− δo − πs) + φoSo,t(1− δo) + vφySy,t +Ry,tv + Iy,tπyrv + Io,tπor(1− δo)

C.2.4 Steady state

In the steady state, we impose

Sy +Ry + Iy = ωy

So + Io +Ro = ωo

ωy + ωo = 1

Calculate:

Rk =
1

β
− 1 + δk

Guess By and Bo. Calculate

Iy =
By − (v + δy)ωy
(1− v − δy) πdy
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Ty =
1− (1− πyr − πyd)(1− δy − v)

1− δy − v
Iy

Ry =
1− v − δy

v + δy + πs + φy (1− v − δy)
(
Iyπry + φy (ωy − Iy)

)

Sy = ωy − Iy −Ry

and

Io =
Bo + v (Ry + Sy + (1− πdy) Iy)

(1− δo) πdo
− δoωo

(1− δo) πdo

To =
(1− (1− πor − πod)(1− δo)) Io − v (Ty + Iy(1− πyr − πyd))

1− δo

Ro =
v
(
Ry + Iyπry + φySy

)
+ (1− δo) (Ioπor + φo (ωo − Io))

δo + πs + φo (1− δo)
So = ωo −Ro − Io

Guess N

K =

(
(1− γ)ANγ

Rk

) 1
γ

w = γAK1−γNγ−1

Guess Ci
y

λb =
(
Ci
y

)−ρ

Ci
o = Ci

y

Cr
o = Ci

y

Cr
y = Ci

y

N i
y =

wλb

θ

N i
o = N i

y

N r
y = N i

y

N r
o = N i

y

C = AK1−γNγ − δkK

Guess Cs
y and N s

y

N s
o =

N −∑a∈{o,y} [IaN
i
a +RaN

r
a ]− SyN s

y

So

Cs
o =

C −∑a∈{o,y} [IaC
i
a +RaC

r
a]− SyCs

y

So
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u(Ch
a , N

h
a ) =

(
Ch
a

)1−ρ − 1

1− ρ − θ

2

(
Nh
a

)2

m =
∑

a∈{o,y}
Sau(Cs

a, N
s
a) + Iau(Ci

a, N
i
a) +Rau(Cr

a, N
r
a)

U =
1

1− β (z +m)

dU

dSa
=

(Cs
a)

1−ρ − 1

1− ρ − θ

2
(N s

a)2

dU

dIa
=

(Ci
a)

1−ρ − 1

1− ρ − θ

2

(
N i
a

)2

dU

dRa

=
(Cr

a)
1−ρ − 1

1− ρ − θ

2
(N r

a)2

Guess λτo , λ
τ
y , λ

r
o and λry:

λso =
β dU
dSo

+ βλb(wN s
o − Cs

o) + βλroφo(1− δo)
1− β(1− φo)(1− δo)

+
βλτo(1− φo)

[
π1C

s
o(IyC

i
y + IoC

i
o) + π2N

s
o (IyN

I
y + IoN

I
o ) + π3 (Iy + Io)

]

1− β(1− φo)(1− δo)

λsy =

(
β dU
dSy

+ βλb(wN s
y − Cs

y) + βλso(1− φy)v + βλryφy(1− δy − v)

+βλrovφy + βλτy(1− φy)[π1C
s
y(IyC

i
y + IoC

i
o) + π2N

s
y (IyN

I
y + IoN

I
o ) + π3 (Iy + Io)]

)

1− β(1− φy)(1− δy − v)

λio =
λτo + λso(1− δo)

1− δo

λiy =
λτy − λiov + λsov + λsy(1− δy − v)

1− δy − v
Adjust guesses for By,Bo, N, C

i
y, C

s
y , N

s
y , λ

τ
o ,λ

τ
y , λ

r
o and λry to make the following equations

hold:

1) Ty = (1− φy)
(
π1SyC

s
y(IyC

i
y + IoC

i
o) + π2SyN

s
y (IyN

i
y + IoN

i
o) + π3Sy (Iy + Io)

)

2) To = (1− φo)
(
π1SoC

s
o(IyC

i
y + IoC

i
o) + π2SoN

s
o (IyN

i
y + IoN

i
o) + π3So (Iy + Io)

)

3)
(
Cs
y

)−ρ − λb + λτyπ1(1− φy)(IyCi
y + IoC

i
o) = 0

4) (Cs
o)
−ρ − λb + λτoπ1(1− φo)(IyCi

y + IoC
i
o) = 0

5) − θN s
y + wλb + λτyπ2(1− φy)(IyN i

y + IoN
i
o) = 0
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6) − θN s
o + wλb + λτoπ2(1− φo)(IyN i

y + IoN
i
o) = 0

7) β
dU

dIy
+ βλb(wN i

y − Ci
y)− λiy + βλiy(1− πyr − πyd)(1− δy − v) +

βλio(1− πyr − πyd)v + βλryπyr(1− δy − v) + βλroπyrv = 0

8) β
dU

dIo
+ βλb(wN i

o − Ci
o)− λio + βλio(1− πor − πod)(1− δo) +

βλroπor(1− δo) = 0,

9) λro =
β dU
dRo

+ βλb(wN r
o − Cr

o) + βλsoπs

1− β(1− δo − πs)

10) λry =
β dU
dRy

+ βλb(wN r
y − Cr

y) + βλsyπs + βλrov

1− β(1− δy − v − πs)

C.2.5 Pre-epidemic steady state

Assume no vaccines and no re-infections. Set

Sy = ωy

Then

So = 1− Sy

Set Bo = 0. Then

v =
Soδo
Sy

By = Sy(δy + v)

Also

Rk =
1

β
− 1 + δk

Fix income per capita (unit mass of population in pre-epidemic steady state):

inc = AK1−γNγ

Calculate

A =


 inc
(
1−γ
Rk

) 1−γ
γ N



γ
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K =

[
(1− γ)ANγ

Rk

] 1
γ

C = AK1−γNγ − δkK

w = γAK1−γNγ−1

N = N s
y

N = N s
o

C = Cs
y

C = Cs
o

C−ρ = λb

θ =
wλb

N

u(Cs
a, N

s
a) =

(Cs
a)

1−ρ − 1

1− ρ − θ

2
(N s

a)2

m =
∑

a∈{o,y}
Sau(Cs

a, N
s
a)

U =
1

1− β (z +m)

C.2.6 Calibration of transmission function parameters

Recall that the transmission functions take the form:

Ty = (1− φy)
(
π1SyC

s
y(IyC

i
y + IoC

i
o) + π2SyN

s
y (IyN

i
y + IoN

i
o) + π3Sy (Iy + Io)

)

To = (1− φo)
(
π1SoC

s
o(IyC

i
y + IoC

i
o) + π2SoN

s
o (IyN

i
y + IoN

i
o) + π3So (Iy + Io)

)

Evaluate at pre-epidemic steady state (also assuming no vaccines):

Ty = π1SyC
2(Iy + Io) + π2SyN

2(Iy + Io) + π3Sy (Iy + Io) ,

To = π1SoC
2(Iy + Io) + π2SoN

2(Iy + Io) + π3So (Iy + Io) .

Calibrate π1, π2 and π3:

1/6 =
π1C

2

π1C2 + π2N2 + π3

,

1/6 =
π2N

2

π1C2 + π2N2 + π3

,

2.5 = R0 =
T0
I0

Syπry + Soπro + Syπdy + Soπdo
=

π1C
2 + π2N

2 + π3

Syπry + Soπro + Syπdy + Soπdo
.
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Solving:

π1 =
1/6× 2.5 (Syπry + Soπro + Syπdy + Soπdo)

C2
,

π2 =
1/6× 2.5 (Syπry + Soπro + Syπdy + Soπdo)

N2
,

π3 = 2.5× (Syπry + Soπro + Syπdy + Soπdo)− π1C
2 − π2N

2.
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