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ABSTRACT

The Covid epidemic had a large impact on economic activity. In contrast, the dramatic decline in 
mortality from infectious diseases over the past 120 years had a small economic impact. We 
argue that people’s response to successive Covid waves helps reconcile these two findings. Our 
analysis uses a unique administrative data set with anonymized monthly expenditures at the 
individual level that covers the first three Covid waves. Consumer expenditures fell by about the 
same amount in the first and third waves, even though the risk of getting infected was larger in 
the third wave. We find that people had pessimistic prior beliefs about the case-fatality rates that 
converged over time to the true case-fatality rates. Using a model where Covid is endemic, we 
show that the impact of Covid is small when people know the true case-fatality rate but large 
when people have empirically-plausible pessimistic prior beliefs about the case-fatality rate. 
These results reconcile the large economic impact of Covid with the small effect of the secular 
decline in mortality from infectious diseases estimated in the literature.
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1 Introduction

The Covid epidemic had a large impact on economic activity. In the U.S., the peak-to-trough
decline in real GDP in the Covid recession is seven times larger than in the average pre-2008
recession and about three times larger than in the Great Recession (see Eichenbaum et al.
(2022a)). In contrast, the dramatic decline in mortality from infectious diseases over the past
120 years had a small impact on economic activity.1 For example, Acemoglu and Johnson
(2007) argue that the large increases in life expectancy associated with lower mortality rates
had a relatively small impact on per capita income.2

How can we reconcile the large economic impact of Covid with the small effect of the
secular decline in mortality from infectious diseases? We argue that people’s response to
successive Covid waves provides an important clue to answering this question. Using admin-
istrative data from Portugal, we analyze the response of consumption expenditures to the
three waves of Covid infections that peaked in April 2020, December 2020, and January 2021.
Our key empirical finding is that consumer expenditures fell by about the same amount in
the first and third waves, even though the risk of getting infected was much larger in the
third wave. We also find that, across both waves, older consumers reduce their spending by
more than younger consumers.

Standard models in which people know the actual case-fatality rate at the beginning
of the epidemic cannot account for our key finding. These models imply that the drop in
consumption should have been higher in the third wave. We argue that a model in which
people have pessimistic beliefs about case-fatality rates and learn over time can account for
the behavior of consumption expenditures by old and young in different Covid waves.

This argument underlies our explanation of why the economic impact of Covid was large,
but the effect of the secular decline in mortality from infectious diseases was small. It is
hard for people to initially estimate the health consequences of a once-in-a-century event
like Covid. Because people had pessimistic prior beliefs about Covid case-fatality rates,
they reduced consumption dramatically at the beginning of the epidemic. Our model-based
estimates imply that people did learn about case-fatality rates by the third wave. This result
suggests that people can estimate and internalize the health consequences of gradual, secular
declines in mortality rates. As it turns out, a version of our model in which Covid is endemic

1See, e.g., Armstrong et al. (1999) and Hansen et al. (2016) for evidence on the decline of mortality rates.
2See also Bleakley (2018), who argues that the effect of lower mortality rates on income via an increased

incentive to invest in human capital is relatively small.
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implies that the steady-state effects of endemic Covid are small as long as people know
Covid’s true case-fatality rate. But those costs would be very large if people’s perceptions
of the case-fatality rate corresponded to those we estimate in the Portuguese data.

To formally establish our argument about the importance of expectations, we proceed
as follows. We estimate a structural model in which old and young people are uncertain
about case-fatality rates and update their beliefs using a parsimonious constant-gain learn-
ing algorithm. People of all ages can reduce the probability of becoming infected by cutting
expenditures on goods and services that require social contact. We analyze people’s con-
sumption decisions using a partial-equilibrium approach. This approach allows us to confront
people of different ages and health statuses with real wages, real interest rates, and infection
probabilities that mimic those observed in the data using a minimal set of assumptions.
We estimate the key parameters of the model, including people’s prior beliefs and the gain
parameter, using a variant of the Bayesian procedure in Christiano et al. (2010), Christiano
et al. (2016), and Fernández-Villaverde et al. (2016).

We find that people’s belief about their case-fatality rate at the beginning of the epidemic
greatly exceeds objective case-fatality rates.3 The posterior mode of the gain parameter
is large enough so that people’s beliefs about their case-fatality rates essentially converge
from above to their actual values by the beginning of the third wave. So, even though the
probability of infection was much larger in the third wave than in the first wave, the actual
decline in consumption expenditures is roughly the same in the two waves.

To help establish the importance of learning, we also estimate a version of the model
in which people know their true case-fatality rates at the beginning of the epidemic. The
performance of this version of the model, as measured by the marginal log-likelihood, is much
worse than that of the learning model. This deterioration reflects the no-learning model’s
counterfactual prediction that the drop in consumption expenditures of young and old is
larger in the third wave than in the first wave.

Our results suggest that the overall economic impact of Covid is small once people’s
beliefs about case-fatality rates have converged to their true values. To formally investi-
gate this conjecture, we extend our partial-equilibrium model along three dimensions. First,
we embed it in a general equilibrium framework with endogenous labor supply and capital
accumulation. Second, we allow for vaccination. Third, we modify the epidemiology as-

3This notion is consistent with is large literature that highlights the difficulties that people have in
assessing and responding to low probability events (see, e.g. Slovic (2000) and Sunstein (2003)).
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sumptions so that people who have natural immunity or are vaccinated lose their immunity
over time. With this modification, Covid is endemic: there is a strictly positive fraction of
the population that is infected in the steady state.

We compute the steady-state impact of Covid on economic activity under two scenarios.
In the first scenario, we assume that people’s beliefs about case-fatality rates are equal to
the objective case-fatality rates. This assumption is natural given the large estimated value
of the gain parameter of our partial-equilibrium model’s learning algorithm and our focus
on steady-state properties. Our key finding is that Covid reduces life expectancy at birth by
3.2 percent and reduces aggregate output by 1.1 percent relative to the pre-epidemic steady
state. Taking sampling uncertainty into account, this effect is consistent with the Acemoglu
and Johnson (2007)’s estimates of the impact of increases in life expectancy on real GDP.

In the second scenario, we assume that people’s beliefs about case-fatality rates are equal
to their prior beliefs at the beginning of the epidemic. Here, Covid has large steady-state
effects on aggregate economic activity. Output falls by about 12 percent relative to the
pre-epidemic steady state. These results reconcile the large economic impact of Covid with
the small response to the secular decline in mortality from infectious diseases.

Our paper is organized as follows. Section 2 describes our data set. Section 3 contains
our empirical results. Section 4 describes our partial-equilibrium model. Section 5 describes
our estimation algorithm. Section 6 describes our empirical results. Section 7 discusses a
general equilibrium model of endemic Covid. We conclude in section 8.

2 Data

Our dataset comes from Statistics Portugal (the national statistical authority). It covers
the period from January 2018 to April 2021 and includes anonymized data for five hundred
thousand Portuguese people randomly sampled from a set of 6.3 million people who meet
two criteria. First, they were at least 20 years old in 2020. Second, they filed income taxes
as Portuguese residents in 2017. The data set includes a person’s age, income bracket, and
gender. In addition, for a subset of people, the data also includes education and occupation
in 2017.

For every person in our sample, we construct total monthly consumption expenditures,
using the electronic receipts that firms provide to the tax authority as part of their value-
added tax (VAT) reporting. Each receipt is matched to a particular person using their
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anonymized fiscal number.4 We also compute individual pharmacy expenditures, which we
use as a proxy for comorbidity.

Portuguese consumers have three incentives to include their fiscal number in expendi-
ture receipts. First, they can then deduct from their income taxes expenditures on health,
education, lodging, nursing homes, and general-household spending, up to a limit. Second,
the government rebates 15 percent of the VAT from documented expenditures on public
transportation passes, lodging, restaurants, and automobile and motorcycle shops. Third,
for every ten euros of reported spending, consumers receive a coupon for a lottery in which
the prize is a government bond with a face value of either 35 or 50 thousand euros.

The data includes online purchases from Portuguese businesses but excludes online pur-
chases from foreign companies. The latter types of purchases are likely to be small and not
negatively affected by Covid. Since young people are more likely to engage in such purchases,
including them would likely strengthen the result, documented below, that older people cut
their consumption by more than young people.

We exclude from the sample in a given month people who do not have any receipts
associated with their fiscal number for that month. We also remove from the sample 21,814
people who were unemployed or inactive in 2017. These people are unlikely to pay taxes, so
they have less incentive to include their fiscal number in receipts. Finally, we dropped from
the sample all persons older than 80 because their expenditure patterns suggest that many
of them live in nursing homes. We also exclude people younger than 20 years old because
they make few independent consumption decisions. The resulting dataset contains 421,337
people and 12,218,773 person-month observations aggregated over 97,363,250 buyer-seller
pairs.

We identify two groups in our sample whose incomes are likely to have been relatively
unaffected by the Covid recession: public servants (58,598 people) and retirees (93,839 peo-
ple). These groups overlap because we do not exclude retirees from the population of public
servants. There are roughly 22,000 retired public servants in our sample.5

Table 1 reports descriptive statistics for monthly expenses net of VAT. For public servants,
4Our dataset does not include information on rent expenditures, mortgage, and other personal loan

payments that are not subject to VAT.
5In 2011, Portugal entered into an adjustment program with the International Monetary Fund, the

European Central Bank, and the European Commission (see Eichenbaum et al. (2017) for a discussion).
The program called for annual reductions in the number of civil servants (one percent per year in the central
government and two percent per year in the local and regional governments). This reduction led to a large
increase in the number of retired public servants.

4



average per capita monthly expenditure on consumption goods and services is 687.8 euros,
of which 25.6 euros is spent on pharmacy items. These expenditures are roughly similar for
the sample of the population as a whole: the average per capita monthly expenditure on
consumption goods and services is 629.3 euros, of which 17.9 euros is spent on pharmacy
items. Retirees have lower levels of overall expenditure. They spend, on average, 437.8 euros
on consumption goods and services, of which 24.3 euros is spent on pharmacy items.

Table 2 reports the same statistics as Table 1 broken down by income and age groups.
Income groups are based on the 2017 income-tax brackets used by Portugal’s Internal Rev-
enue Service (IRS). We group people according to their ages so that they have similar Covid
case-fatality rates. Our estimates of this risk are based on the statistics reported by the
Portuguese health authority (DGS) on July 28, 2020. Table 3 displays case-fatality rates
(the ratio of Covid deaths to people infected) by age cohort for Portugal. Two key results
emerge from Table 3. First, people aged 20 to 49 all have low case-fatality rates. Second,
case-fatality rates rise non-linearly with age for people older than 50.

Table 1: Descriptive statistics, January 2018 - December 2019

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)
All People
Expense p. month (All) 629.3 2,164.7 121.0 284.1 572.6
Expense p. month (Pharmacy) 17.9 35.4 0.0 4.9 24.0

Public Servants
Expense p. month (All) 687.8 1,681.0 214.7 423.2 742.6
Expense p. month (Pharmacy) 25.6 42.3 0.0 11.7 35.6

Retirees
Expense p. month (All) 437.8 1,696.1 79.5 189.5 417.8
Expense p. month (Pharmacy) 24.3 41.5 0.0 12.4 34.5
Note: Pctl() denotes percentile and St. Dev. the standard deviation

3 Empirical results

This section has two parts. In the first subsection, we provide an overview of the evolution of
the epidemic in Portugal and the government’s containment measures. We also discuss the
evolution of per capita consumption expenditures in our sample. In the second subsection, we
present formal econometric evidence of how Covid impacted the consumption expenditures
of people of different ages and comorbidity conditions.
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Table 2: Distribution of monthly expenses by age and income, January 2018 - December
2019

Group N Mean St. Dev Pctl(25) Median. Pctl(75)
All People

Age [20;49] 190,036 642.0 2051.1 135.3 310.7 591.8
Age [50;59] 85,305 680.2 2405.3 122.3 299.1 616.4
Age [60;69] 74,390 619.4 2269.8 98.6 249.5 547.4
Age [70;79] 71,605 436.7 1839.5 66.5 172.3 397.1

Income [0;7,091] 114,295 289.2 1085.7 43.9 125.4 286.6
Income ]7,091;20,261] 217,381 477.3 1425.6 123.5 265.8 490.7
Income ]20,261;40,522] 64,593 913.0 2093.7 316.8 557.7 922.4
Income ]40,522;80,640] 19,377 1592.4 3185.1 474.2 851.1 1,529.6
Income ≥80,640 5,690 5404.7 1,1044.1 712.6 1,659.2 5,745.6

Public Servants

Age [20;49] 10,007 779.9 1,944.0 291.0 504.7 804.5
Age [50;59] 15,367 730.0 1,668.9 255.3 477.5 797.1
Age [60;69] 18,837 675.8 1,647.4 197.4 399.7 725.7
Age [70;79] 14,387 566.7 1,494.9 147.2 316.0 613.2

Income [0;7,091] 1,620 251.8 734.0 53.1 126.4 265.4
Income ]7,091;20,261] 24,250 435.0 1,139.7 140.7 277.4 486.8
Income ]20,261;40,522] 25,651 772.3 1,694.9 306.2 528.2 836.5
Income ]40,522;80,640] 6,194 1,158.4 2,347.2 446.9 762.4 1,221.9
Income ≥80,640 883 2,224.0 4,582.2 649.2 1,159.2 2,014.7

Retirees
Age [20;49] 935 232.6 981.6 17.7 78.6 206.3
Age [50;59] 3,114 286.4 1,112.0 32.4 108.7 279.1
Age [60;69] 26,920 428.7 1,463.5 77.1 197.8 436.2
Age [70;79] 63,467 422.6 1,764.6 67.2 172.8 394.3

Income [0;7,091] 37,998 161.5 564.3 27.3 79.5 172.1
Income ]7,091;20,261] 38,328 360.0 941.2 107.1 217.0 402.5
Income ]20,261;40,522] 13,925 741.7 1,685.1 253.2 470.3 803.2
Income ]40,522;80,640] 3,351 1,346.0 2,587.1 436.3 787.5 1,392.8
Income ≥80,640 834 5,636.9 12,115.9 732.0 1,749.2 5,819.6

Note: Pctl() denotes percentile and St. Dev. the standard deviation

3.1 The epidemic in Portugal

Figure 1 depicts the weekly time series of infected people and Covid deaths in Portugal.
We refer to March 2020 through April of 2021 as the “epidemic dates.” There were three
waves of Covid deaths during this period. The peaks of these waves occur in April 2020,
December 2020, and January 2021. The broad pattern of Covid cases is consistent with the
facts documented by Atkeson et al. (2020) for a cross-section of countries.
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Table 3: Case-fatality Rates, COVID-19 (averages May 14-June 14, 2020)

Age Group Infected Deceased Case-fata-
lity Rate

[0; 9] 672 0 0.0%
[0; 19] 1,085 0 0.0%
[20; 29] 4,245 1.5 0.03%
[30; 39] 4,869 0.6 0.01%
[40; 49] 5,420 15.3 0.28%
[50; 59] 5,336 43.6 0.82%
[60; 69] 3,519 122.1 3.5%
[70; 79] 2,576 265.9 10.3%
≥ 80 4,522 926 20.5%

Source: Computed with data from the Portuguese Health Au-
thority.

The vaccination campaign started on January 8, 2021. The initial campaign focused on
people over 80 with comorbidities. Vaccination of the general population began on April 23,
2021, very close to the end of our sample (April 30, 2021).
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Figure 1: COVID-19 cases and deaths reported by the Portuguese Health Authority (May
20, 2021).
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Over the period March 2020 to April 2021, the government implemented various contain-
ment measures. These measures vary in intensity and sectoral coverage. For concreteness,
we summarize the severity of these measures using an index of the full or partial closing
of non-essential shops, restaurants and cafés.6 Figure 2 displays this containment index.
Containment rose quickly in mid-March 2020 and started to decline at the beginning of May
2020. It then dropped to low levels in the summer of 2020. In mid-November 2020, contain-
ment was partially reimposed in response to the second wave. The third epidemic wave led
to the strengthening of containment measures from January to March 2021. As the number
of infections waned, containment measures were eased. Note that the peak containment
rates are the same in the first and third waves.

Figure 2: Severity of COVID-19 containment measures over time.

Figure 3 depicts the average logarithm of public servants’ monthly consumption expen-
ditures from January 2018 to April 2021. Because of the large sample size, the 95 percent
confidence intervals are indistinguishable from the point estimates. The vertical dashed line
denotes the beginning of the Covid epidemic in 2020. Three features emerge from Figure 3.
First, there are pronounced drops in consumption around the peak months of the first and
third waves. There is a more muted decline in consumption during the months around the
peak of the second wave. Second, there is a clear seasonal pattern in the pre-Covid sample.
This pattern is similar in 2018 and 2019. Third, per-capita spending was growing before

6To construct this index, we use data from https://ourworldindata.org and https://dre.pt/legislacao-
covid-19-upo. We attribute the values 1, 0.5, 2/7, and zero to full closing, partial closing, closing on weekends,
and open. The containment index is the average of the indexes for non-essential shops and restaurants and
cafés.
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the Covid shock. Our econometric procedure considers the latter two features in creating
a counterfactual for what spending would have been in 2020 absent the Covid shock. We
estimate a seasonal effect and time trend for each age and income group using data from
January 2018 to February 2020.
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Figure 3: Average of the logarithm of public servants’ monthly expenditures.

3.2 Age and the impact of Covid on consumer expenditures

Our empirical specification focuses on the differential consumption response by people of
different ages. This specification is given by:

log(Expensesit) = Λ× Y eart +
Dec∑

m=Feb

λm1{Montht = m}+ θi +Ψit+

Apr,2021∑
d=Mar,2020

∆dAftert × 1{Datet = d}+

Apr,2021∑
d=Mar,2020

∑
g∈AgeGroup\[20;49]

δdgAftert × 1{Datet = d} × 1{AgeGroupi = g}+ ϵit.

(1)

Subscripts i and t denote person i and calendar month t, respectively. The coefficient Λ

represents a linear growth trend in consumption expenditures. Y eart is a variable that
takes the value 1 + t for year 2018 + t for t = 0, 1, 2, 3. The coefficients λm control for
seasonality in consumption. The vector Ψit includes interaction terms that allow seasonal
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effects to vary with individual characteristics (age, income bracket, gender, education, and
occupation). The coefficients θi denote time-invariant individual fixed effects. Aftert is
a dummy variable equal to one during the epidemic dates (beginning March 2020). The
coefficients ∆d represent the change in spending for people in the reference group (aged 20-
49) during epidemic date d. The coefficient δdg measures the additional change in spending
for age group g in epidemic date d.7 The variable ϵit is an idiosyncratic error term. As long
as the inflation rate for the consumption baskets of different age cohorts is the same, any
inflation effects cancel out from the difference in nominal responses, and we are left with the
real differential response. We estimate equation 1 using a fixed effects (FE) estimator and
cluster standard errors by person, as suggested in Bertrand et al. (2004).8

Column 4 of Table 12 reports our parameter estimates. Figure 4 displays our estimates
of the impact of Covid on consumption expenditures of different age groups (∆d for the
reference group and ∆d + δdg for the other groups) obtained from estimating equation 1.
The bars around the point estimates represent 95 percent confidence intervals. Our key
findings are as follows. First, all consumers reduced their expenditures during the three
waves of the epidemic. Second, older people cut their expenditures by much more than
younger people. The non-linear effect of age on consumer expenditures mirrors the non-
linear dependency of case-fatality rates on age. On average, over the whole sample, people
aged 20-49 and those in their 50s, 60s, and 70s cut their expenditures by 10.3, 10.7, 14.6, and
18.7 percent, respectively. The difference between the expenditures of consumers older than
60 and those younger than 49 is statistically significant at a 5 percent level. The difference
between the consumption expenditures of people in their 50s and people younger than 49
is not statistically significant at a 10 percent level in most months (see column 4 of Table
12. Third, the decline in consumption for each age group was similar in the first and third
waves. At the peak of the first wave, people aged 20-49 and those in their 50s, 60s, and 70s
cut their expenditures by 31.6, 32.6, 39.3, and 45.4 percent, respectively. At the peak of the
third wave, people aged 20-49 and those in their 50s, 60s, and 70s cut their expenditures by
29.6, 29.6, 33.7, and 39.8 percent.

One potential reason why the consumption expenditures of old and young people re-
sponded differently to Covid is that these groups purchase different goods and services that
were differentially affected by lockdowns. To investigate this possibility, we estimate the

7We keep age groups constant based on a persons’ age in the year 2020.
8Because of our large sample size, we estimate the FE models using the method of alternating projections

implemented in R by Gaure (2013) and in STATA by Guimaraes and Portugal (2010) and Correia (2016).
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Figure 4: Changes in expenditures of public servants during the epidemic relative to a
counterfactual without Covid.

change in consumption expenditures for different age groups in sectors of the economy that
were least affected by lockdowns. We base this sector classification on the information re-
ported in the appendix to the law 78-A/2020 approved on September 29, 2020. Figure 5,
which is the analog to Figure 4, presents our results. Two features are worth noting. First,
all groups cut their consumption expenditures by about the same in the first and the third
waves of the epidemic. Second, the old cut their consumption by more than the young in
the epidemic’s first, second, and third waves.

3.3 The response of people with different income

The economic model discussed in Section 4 implies that to reduce the risk of infection, high-
income people cut their expenditures by more than low-income people. According to the
model’s logic, rich people have more to lose from becoming infected than poor people. Since
older people might have a higher income than younger people, the results reported in Section
3.2 might conflate the effect of age and income.

Table 13 in the appendix reports our parameter estimates. Figure 6 displays our estimates
of the impact of Covid on consumption expenditures of different age groups (∆d for the
reference group and ∆d + δdg for the other groups) obtained from estimating equation 1 for
separate income groups. Two key results emerge from this figure. First, our results about the
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Figure 5: Changes in expenditures of public servants in the sectors least affected by lockdowns
during the epidemic relative to a counterfactual without Covid.

impact of age on consumption expenditures are very robust to controlling for income. Older
people cut their expenditures by much more than younger people for all income groups.
Second, controlling for age, high-income people reduce their consumption by more than
low-income people.

The finding that expenditure cuts are an increasing function of income complements the
evidence in Chetty et al. (2020) and Carvalho et al. (2020) which relies on home-address ZIP
codes to proxy for income.

3.4 The effect of comorbidity

People with underlying health conditions such as heart problems, cancer, obesity, and type-2
diabetes are at greater risk of dying from Covid.9 A natural question is whether people with
comorbidities react to that risk by reducing consumption more than people who do not have
comorbidities.

9See the Center for Disease Control (https://www.cdc.gov/coronavirus/2019-ncov/
need-extra-precautions/evidence-table.html) for a thorough review of these comorbidities.
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Figure 6: Changes in expenditures of public servants in different income groups during the
epidemic relative to a counterfactual without Covid.

We do not have the health history of people in our sample. But we do have data on
how much they spend on pharmaceutical drugs. So, we use these expenditures as a proxy
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for comorbidities. We split the sample into two. The comorbidity sample consists of people
whose pharmaceutical drug expenditures are in the top decile of the 2018 distribution of
these expenditures for the person’s age group. The non-comorbidity sample consists of all
of the other people.

Individuals with comorbidities received priority in the Portuguese vaccination process.
Most got the two doses of the vaccine before the peak of the third wave at the end of January
2021. For this reason, we restrict our sample to the period from January 2018 to December
2020.

Table 14 in the Appendix reports our parameter estimates. The key result is displayed
in Figure 7. People with comorbidities cut their consumption by more than people without
comorbidities. In April 2020, at the peak of the first wave of infections, people younger than
49 with no comorbidities cut their consumption by 25.5 percent. In contrast, people younger
than 49 who have comorbidities dropped their consumption expenditures by 32.2 percent.

There are no statistically significant interactions between age and comorbidity: the im-
pact of comorbidity is the same for young and older people.

Interestingly, even after controlling for comorbidity, age continues to be a key driver
of consumption behavior. From March 2019 to December 2020, people younger than 49
with no comorbidities cut their expenditures on average by 7.9 percent. People with no
comorbidities who are in their 50s, 60s, and 70s cut consumption expenditures on average
during the epidemic dates by an additional 8.2, 12.1, and 15.9 percent, respectively.

These results support the view that people’s consumption decisions respond to the per-
ceived risk of dying from Covid.

3.5 Robustness

In the Appendix, we report the results of four robustness checks. First, we provide evidence
in favor of the assumption that the seasonal effects for January 2020 through April 2021 are
the same as for the 2018-19 period. Second, we re-do our benchmark analysis allowing for
different monthly expenditure time trends for each age cohort. We find a similar pattern
for the impact of age on the response of expenditures to the Covid shock. Third, we re-do
our empirical analysis for retirees instead of public servants. Retirees are another group of
people whose income is likely to have remained relatively stable during the epidemic. Our
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Figure 7: Changes in the expenditures of public servants during the epidemic relative to a
counterfactual without Covid for people with and without comorbidity.

results are similar to those that we obtain for public servants.10 We find that conditioning on
age, the consumption expenditures of civil servants and retirees respond similarly to Covid.

10The average retiree in the overall population is older than the average civil servant. There is also less
age dispersion in the pool of retirees than in the pool of civil servants. See Table 2.
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4 A model of risk-taking behavior

In this section, we focus our model-based analysis on two questions. First, what role do
people’s beliefs about their case-fatality rate play? Second, what fraction of the drop in
consumption is due to people’s risk-avoidance behavior as opposed to government-imposed
containment measures?

To answer these questions, we use a partial-equilibrium approach that allows us to con-
front people of different ages and health statuses with real wages, real interest rates, and
infection probabilities that mimic those observed in the data using a minimal set of assump-
tions.

Throughout, we assume that people know the objective probability of becoming infected.
However, they don’t know their age group’s true case-fatality rate. They begin with a prior
which they update over time. This prior and the rate at which it converges to the objective
probability play a critical role in our analysis. We could have assumed that people also do
not know the objective probability of becoming infected. But we could not hope to credibly
identify all the free parameters associated with this specification. As it turns out, focusing
on uncertainty about the true case-fatality rate is sufficient to allow the model to account
for the key features of the data.

To compute the probability of being infected, people need to form expectations about
the path of infections in the economy. We assume that the economy is in the pre-epidemic
steady state in the first four weeks of March 2020. Then, on the 5th week of March, people
learn about the first wave of the epidemic. To simplify, we assume that people have perfect
foresight with respect to the first wave of infections and expect the epidemic to end in week
17 (the week of June 21, 2020). Then, in week 18 (the week of June 28, 2022), people learn
that there will be two more waves. From that point on, people have perfect foresight with
respect to these waves. We could, in principle, allow for uncertainty about the number of
infections at the cost of making the model more complex and introducing free parameters
that would be difficult to identify.

We divide the population into two groups: people younger than 60 with no comorbidities
and people older than 60 or younger than 60 but with comorbidities. We refer to these
groups as young and old for ease of exposition. We assume that a person in the first group
joins the second group with a constant probability per period, v. This assumption makes
the analysis more tractable because there are only two types of people in the model. With
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deterministic aging, we would need to keep track of 61 age cohorts (from 20 to 80 years old).
The critical difference between people in the two groups is the subjective and objective risk
of dying from Covid or other causes.

As in Kermack and McKendrick (1927)’s SIR model, people are in one of four possible
health states: susceptible (those with no immunity against the virus), infected, recovered
(those who recovered from the infection and have acquired immunity against the virus), and
deceased. In studying the first three waves of the epidemic, we assume that recovered people
have permanent immunity. This assumption is incorrect in light of recent mutations of the
Covid virus and associated breakthrough infections. However, this possibility was not widely
discussed during the first three Covid waves. So to simplify, we assume in this section that
people think that, once they recover from the infection, they have permanent immunity. We
relax this assumption in Section 7 in which we discuss the implications of endemic Covid.

Each period represents a week. Since our empirical work relies on data for public servants,
we assume that people’s labor supply decisions are exogenous and that the real wage rate
is constant. We normalize the number of hours worked to one. The budget constraint of a
person with age a is given by

ba,t+1 = w + (1 + r)ba,t − ca,t,

where w is the real wage rate and ba,t is the amount invested in an asset that yields a real
interest rate r.

The probability of a susceptible person in age group a becoming infected at time t, τa,t,
is given by the transmission function:

τa,t = π1c
h
a,tIt + π2It, (2)

where h denotes a person’s health status and It is the number of infected people in the pop-
ulation at time t. The terms π1chaIt and π2It represent the probability of becoming infected
through consumption- and non-consumption-related activities, respectively. As in Eichen-
baum et al. (2021), this function embodies the assumption that people meet randomly and
that susceptible people can reduce their infection probability by cutting their consumption.

People are uncertain about their case-fatality rate. At the beginning of the epidemic,
people of age a believe that the case-fatality rate is πad,0. They update these beliefs using a
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parsimonious constant-gain learning algorithm.11

πad,t = πad,t−1 + ga(π
∗
ad − πad,t−1).

Here, π∗
da is the true case-fatality rate for people of age a. The parameters ga ∈ [0, 1] control

how quickly people update their beliefs.12 These beliefs converge in the long run to π∗
da.

Implicitly, this specification assumes that, in every period, people see the actual ratio of
Covid deaths to infections and use it to update their beliefs. At each point in time, people
expect the case-fatality rate to remain constant:

Et (πad,t+j) = πad,t.

The variable δa denotes the time-t probability that a person of age a dies of non-Covid
causes. The variable πar,t denotes the probability that a person of age a who is infected at
time t recovers at time t + 1. The probability of exiting the infection state, πar,t + πad,t is
constant over time, so time variation in people’s beliefs about πad,t induces time variation
in their beliefs about πar,t. Consistent with this assumption, people’s expectation of the
amount of time it takes to resolve a Covid infection is constant over time.

We assume that people’s utility has the recursive form proposed by Kreps and Porteus
(1978), Weil (1989), and Epstein and Zin (1991). A virtue of this specification is that it sepa-
rates the coefficient of relative risk aversion from the elasticity of intertemporal substitution.
The lifetime utility of a person with age a and health status h at time t is

Uh
a,t = z +

[
(1− βt)(c

h
a,t)

1−ρ + βt

{
Et

[(
Uh
a,t+1

)]1−α
}(1−ρ)/(1−α)

]1/(1−ρ)

.

Here, z is a constant that influences the value of life (see Hall and Jones (2007)), βt is the
discount factor, α is the coefficient of relative risk aversion for static gambles, and ρ is the
inverse of the intertemporal elasticity of substitution with respect to deterministic income
changes. The case of ρ = α corresponds to time-separable expected discounted utility. The
expectations operator, Et, takes into account all the stochastic elements of the environment,
including the possibility of death. People take as given the sequence of aggregate infections,
{It}∞0 .

11See Evans and Honkapohja (2012) and Eusepi and Preston (2011) for discussions of the properties of
this learning algorithm.

12In principle, one could entertain more complex information structures in which people receive noisy sig-
nals about infections and deaths in each period and use those signals optimally in solving their maximization
problem. For computational reasons, we abstract from these more complex information structures.
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We use time variation in βt to model exogenous changes in consumption demand associ-
ated with government-imposed containment measures:

(1− βt) = (1− β)(1− µt). (3)

Here, β denotes the household’s discount rate and µt represents the consumption wedge
introduced by containment measures. Equation (3) implies that the higher is µ, i.e., the
more containment there is, the lower is the marginal utility of consumption.

The value functions for all people depend on the value of their assets, bt, and calendar
time. This time dependence reflects deterministic time variation in βt, It and the person’s
time-t belief about the case-fatality rates for old and young. Recall, that when solving their
optimization problem at time t, people assume that future values of the case-fatality rate
equal their current beliefs.13

The value function of a young susceptible person at time t is

U s
y,t(bt) = z + {(1− βt)(c

s
y,t)

1−ρ + βt[(1− τy,t) (1− δy − v)
(
U s
y,t+1(bt+1)

)(1−α)
+

(1− τy,t) v
(
U s
o,t+1(bt+1)

)(1−α)
+ τy,t(1− δy − v)

(
U i
y,t+1(bt+1)

)(1−α)
+

τy,tv
(
U i
o,t+1(bt+1)

)1−α
+ δyB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).

Recall that v is the probability of a young person becoming old. U i
yt and U i

ot are the value
functions of a young and old infected person, respectively. The value function reflects the
possible changes in health and age status at time t+1. A young, susceptible person at time t
can remain in that state at time t+1 with probability (1− τy,t) (1− δy − v), not get infected
but become old with probability (1− τy,t) v, get infected and stay young with probability
τy,t(1−δy−v), get infected and become old with probability τy,tv, or die of non-Covid causes
with probability δy.

The function B(bt+1) represents the utility from leaving a bequest bt+1 upon death. We
assume that this function takes the form:

B(bt+1) = ω0 + ω1(bt+1)
1−ρ,

where ω0 > 0 and ω1 > 0. The bequest motive allows the model to be consistent with three
empirical observations. First, many people die with large asset holdings (see e.g. Huggett
(1996) and De Nardi and Yang (2014)). Second, the consumption expenditures of older

13To simplify the notation, we do not explicitly index value functions by a person’s current belief about
case-fatality rates.
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people are lower than those of younger people. The latter pattern obtains in the model
because, as people get older, bequests receive a higher weight in the utility function relative
to consumption. Third, bequests are a superior good. The latter observation is consistent
with the model when ω0 > 0.

The value function of an old, susceptible person at time t, U s
o,t(bt), is

U s
o,t(bt) = z + {(1− βt)(c

s
o,t)

1−ρ + βt[(1− τo,t)(1− δo)
(
U s
o,t+1(bt+1)

)1−α

+τo,t(1− δo)
(
U i
o,t+1(bt+1)

)1−α
+ δoB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).

With probability δo the person dies of non-Covid causes. With probability (1− τo,t)(1− δo),
this person survives and does not get infected, remaining a susceptible old person. With
probability τo,t(1−δo), the person survives but gets infected, becoming an infected old person.

The value function of a young, infected person at time t, U i
y,t(bt), is

U i
y,t(bt) = z + {(1− βt)(c

i
y,t)

1−ρ + βt[(1− πyrt − πydt)(1− δy − v)
(
U i
y,t+1(bt+1)

)1−α

+(1− πyrt − πydt)v
(
U i
o,t+1(bt+1)

)1−α
+ πyrt(1− δy − v)

(
U r
y,t+1(bt+1)

)1−α

+πyrtv
(
U r
o,t+1(bt+1)

)1−α
+ [δy + πydt(1− δy)]B(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).

A person who is young and infected at time t remains in that state at time t + 1 with
subjective probability (1 − πyrt − πydt)(1 − δy − v), remains infected and becomes old with
subjective probability (1− πyrt − πydt)v, recovers and stays young with probability πyrt(1−
δy−v), recovers and ages with probability τy,tv, and dies of non-Covid causes with probability
δy.

The value function of an old infected person at time t, U i
o,t(bt), is

U i
o,t(bt) = z + {(1− βt)(c

i
o,t)

1−ρ + βt[(1− πort − πodt)(1− δo)
(
U i
o,t+1(bt+1)

)1−α

+πort(1− δo)
(
U r
o,t+1(bt+1)

)1−α
+ [δo + πodt(1− δo)]B(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).

A person who is old and infected at time t remains in that state at time t+1 with subjective
probability (1−πort−πodt)(1− δo), recovers with probability πort(1− δo), dies of Covid with
probability (1− δ0)πodt, and dies of non-Covid causes with probability δo.

The value function of a young recovered person at time t, U r
y,t(bt), is

U r
y,t(bt) = z + {(1− βt)[(c

r
y,t)

1−ρ + βt[(1− δy − v)
(
U r
y,t+1(bt+1)

)1−α

+v
(
U r
o,t+1(bt+1)

)1−α
+ δyB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).
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This person is immune from the virus but still faces two sources of uncertainty: aging with
probability v and dying from non-viral causes with probability δy.

The value function of an old recovered person at time t, U r
o,t(bt), is

U r
o,t(bt) = z+{(1−βt)(cro,t)1−ρ+βt[(1−δo)

(
U r
o,t+1(bt+1)

)1−α
+δoB(bt+1)

1−α](1−ρ)/(1−α)}1/(1−ρ).

This person faces only one source of uncertainty, which is dying of of non-Covid causes with
probability δo.

5 Model parameters

We partition the model’s parameters into two sets. The first set is estimated with Bayesian
methods discussed in Christiano et al. (2010), Christiano et al. (2016), and Fernández-
Villaverde et al. (2016). The second set is calibrated to micro data.

5.1 Econometric methodology

We estimate younger and older people’s initial prior beliefs about case-fatality rates (πyd0
and πod0), the gain parameters (gy and go), and the parameter µ. This parameter controls
the impact of containment on the marginal utility of consumption. We assume that the
containment wedge µt defined in equation (2) is given by

µt = µξt,

where µ is a scalar and ξt is the time series for containment measures depicted in Figure 2.
The maximum value of ξt is normalized to one.

Let the vector ψ denote the time series of the response to Covid of the consumption
expenditures of younger and older people in our model from March 2020 to April 2021.
Let ψ̂ denote our estimate of ψ for these two groups of people obtained using regression 1.
Appendix A.3 reports the estimated regression parameters. We construct our estimates of
ψ̂ using the estimated regression parameters, netting out the effects of the time trend, sea-
sonal effects, individual fixed effects, and interactions between seasonal effects and individual
characteristics:
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ψ̂t =

Apr,2021∑
m=Mar,2020

∆̂mAftert × 1{Montht = m}+

Apr,2021∑
m=Mar,2020

δ̂mgAftert × 1{Montht = m} × 1{AgeGroupi = old}.

(4)

The dashed blue and red lines of Figure 8 display the values of ψ̂ for young and old
people. The bars around point estimates represent 95 percent confidence intervals.
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Figure 8: Changes in the expenditures of public servants during the epidemic relative to a
counterfactual without Covid for people younger and older than 60.

Our estimation criterion focuses on the consumption response of people who have a net
wealth of 75 thousand euros. According to the Survey of Household Financial Conditions
Statistics-Portugal (2017); Costa and Farinha (2012), the average net wealth of Portuguese
households over the period 2013-2017 is 150 thousand euros. We divide this number by two
because there are, on average, two adults per household in Portugal.

We estimate the model’s predictions for people with this level of assets for two reasons.
First, we do not observe the wealth distribution for people in our sample. Second, it is
computationally daunting to compute in every iteration of the estimation algorithm the
consumption behavior of people with different wealth levels.14

14It takes about 1.5 seconds to simulate the model on a 2.3 GHz Quad-Core Intel Core i7 CPU machine
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The logic of the estimation procedure is as follows. Suppose that our structural model
is true. Denote the true values of the model parameters by θ0. Let ψ (θ) denote the map-
ping from values of the model parameters to the time series of the impact of Covid on the
consumption expenditures of younger and older people. The vector ψ (θ0) denotes the true
value of the time series whose estimates are ψ̂. According to standard classical asymptotic
sampling theory, when the number of observations, T , is large,

√
T
(
ψ̂ − ψ (θ0)

)
a∼ N (0,W (θ0)) .

It is convenient to express the asymptotic distribution of ψ̂ as

ψ̂
a∼ N (ψ (θ0) , V ) . (5)

Here, V is a consistent estimate of the precision matrix W (θ0) /T . Following Christiano
et al. (2010), Christiano et al. (2016), and Fernández-Villaverde et al. (2016), we assume
that V is a diagonal matrix. In our case, the diagonal elements are the variances of the
percentage responses of consumption of younger and older people at each point in time,
reported in Column 4 of Table 10.

In our analysis, we treat ψ̂ as observed data. We specify priors for θ and then compute
the posterior distribution for θ given ψ̂ using Bayes’ rule. This computation requires the
likelihood of ψ̂ given θ.Our asymptotically valid approximation of this likelihood is motivated
by (5):

f
(
ψ̂|θ, V

)
= (2π)−

N
2 |V |−

1
2 exp

[
−0.5

(
ψ̂ − ψ (θ)

)′
V −1

(
ψ̂ − ψ (θ)

)]
. (6)

The value of θ that maximizes this function is an approximate maximum likelihood estimator
of θ. It is approximate for two reasons. First, the central limit theorem underlying (5) only
holds exactly as T → ∞. Second, our proxy for V is guaranteed to be correct only for
T → ∞.

Treating the function f as the likelihood of ψ̂, it follows that the Bayesian posterior of θ
conditional on ψ̂ and V is:

f
(
θ|ψ̂, V

)
=
f
(
ψ̂|θ, V

)
p (θ)

f
(
ψ̂|V

) . (7)

with 32 gigabytes of RAM for a given wealth level. With the full state space (150 grid points for assets) it
takes roughly 4 minutes to simulate the model. We use a standard MCMC algorithm to compute the mode
and posterior distribution of the parameters using 100.000 draws (11 chains, 10 percent of draws used for
burn-in, draw acceptance rates around 0.2).

23



Here, p (θ) denotes the prior distribution of θ and f
(
ψ̂|V

)
denotes the marginal density of

ψ̂:
f
(
ψ̂|V

)
=

∫
f
(
ψ̂|θ, V

)
p (θ) dθ.

Because the denominator is not a function of θ, we can compute the mode of the posterior
distribution of θ by maximizing the value of the numerator in (7). We compute the poste-
rior distribution of the parameters using a standard Monte Carlo Markov chain (MCMC)
algorithm. We evaluate the relative empirical performance of different models by comparing
their implication for the marginal likelihood of ψ̂ computed using the Laplace approximation.

We assume uniform [0, 7/14] priors for π0yd and π0od and uniform [0, 1] priors for µ, gy
and go. We assume that it takes on average 14 days to either die or recover from an infection,
so πdy + πry = 7/14 and πdo + πro = 7/14.

5.1.1 Calibration

The set of parameters that we calibrate is given by: π1, π2, πdy, πdo, r, α, ρ, β, δy, δo, z,
ω0, and ω1. We begin by discussing the calibration procedure for π1 and π2. It is common
in epidemiology to assume that the relative importance of different modes of transmission
is similar across viruses that cause respiratory diseases. Ferguson et al. (2006) argue that,
in the case of influenza, 30 percent of transmissions occur in the household, 33 percent in
the general community, and 37 percent in schools and workplaces. To map these estimates
into our transmission parameters, we proceed as follows. We use the Statistics Portugal 1999
Survey of Time Use to estimate the percentage of time spent on general community activities
devoted to consumption. We compute the latter as the fraction of time spent purchasing
goods and services or eating and drinking outside the home. To estimate the time spent
eating and drinking outside the home, we multiply the time spent eating and drinking by
the fraction of total food expenditures on food away from home in 2019. We estimate this
fraction as the ratio of expenditures in restaurants and hotels to the sum of expenditures in
restaurants and hotels and on food, drink and tobacco (42 percent). These considerations
imply that the fraction of time spent on general community activities related to consumption
is 48 percent. Since 33 percent of transmissions occur in the general community, we estimate
that roughly one-sixth of transmissions are related to consumption (0.33 × 0.48, which is
approximately one-sixth).

The parameter π1 is set so that one-sixth of initial infections are due to consumption-
related interactions. We set the parameter π2 so that the basic reproduction number, R0, is
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2.5 when consumption equals its steady state value. This value of R0 is the one preferred
by the Center for Disease Control.15

The annual real interest rate, r, is set to 1 percent. This value corresponds roughly to
the realized real yield on 10-year Portuguese government bonds from March 2020 to April
2021.

We use the life-expectancy tables produced by Statistics Portugal to calibrate non-
COVID-related mortality rates for younger and older people. We obtain δo = 1/(13 × 52)

and δy = 1/(51 × 52). Since the average age difference between old and young people is 28
years, we set the weekly probability of aging, ν, to 1/(28× 52). Consistent with Portuguese
demographic data, we assume that the population between 20 and 59 years old is 70 percent
of the population between 20 and 79 years old. We set the actual weekly case-fatality rates
πdy and πdo to 7× 0.001/14 and 7× 0.035/14, respectively. These values correspond to the
case fatality rates for the median younger (age 39.5) and older (age 64.5) person (see Table
3).

We set the coefficient of relative risk aversion (α) to 2 and the intertemporal elasticity
of substitution (1/ρ) to 1.5. These parameter values correspond to the estimates in Albu-
querque et al. (2016), obtained using data on the equity premium and other moments of
financial-market data. These data are particularly relevant to our analysis because they
reflect people’s attitudes towards risk. The weekly discount factor, β, is set equal to 0.971/52

which is consistent with the values used in the literature on dynamic stochastic general
equilibrium models (see, e.g., Christiano et al. (2005)).

The level parameter in the utility function (z) and the two parameters that control the
utility of bequests (ω0 and ω1) are chosen so that the model is consistent with three features
of the Portuguese data. First, the ratio of younger to older people’s consumption is roughly
1.2. Second, the average savings rate is 6.7 percent. Third, the value of life is about 900

thousand euros, which is consistent with the value used in cost-benefit analyses of Portuguese
public works (see, e.g., Ernst and Young (2015)). These conditions imply that ω0 = 120,
ω1 = 4, and z = 2.

In our sample, the average after-tax income of people younger and older than 60 in 2018

is very similar (18, 900 and 19, 400 euros, respectively). To simplify, we assume that both
groups earn 19, 000 euros per year.

15See COVID-19 Pandemic Planning Scenarios, Center for Disease Control, March 19, 2021.
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Figure 9: Priors and posteriors of estimated parameters.

6 Empirical results

Figure 9 shows the priors and the posteriors for the parameters we estimate. This figure
shows that the data is very informative relative to our priors. Table 4 reports the mean and
95 percent probability intervals for the priors and posterior of the estimated parameters.

Several features are worth noting. First, the posterior modes of πdy0 and πdo0 are 0.059 and
0.312, respectively. Recall that case-fatality rates for young and old are πdy = 7×0.001/14 =

0.0005 and πdo = 7 × 0.035/14 = 0.0175, respectively. So, according to the model, both
younger and older people greatly overestimated their case-fatality rates at the beginning of
the epidemic.

Second, the posterior mode of the gain parameters, gy and go, are 0.073 and 0.133,
respectively. Figure 10 displays the implied time series of πdyt and πdot. By the end of the
sample, πdyt and πdot have essentially converged to their true values. As discussed below,
this feature is critical to the model’s ability to account for the data. Third, the posterior
mode of the parameter µ is equal to 0.129. So, at their peak, containment measures reduced
the marginal utility of consumption by roughly 13 percent.
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Table 4: Priors and Posteriors of Parameters: Baseline Model vs. No-Learning Model
Baseline Model No Learning Model

Prior Distribution Posterior Distribution Posterior Distribution
D,Mean,[2.5-97.5%] Mode, [2.5-97.5%] Mode, [2.5-97.5%]

Initial belief, mortality rate U , 0.25, [0.013 0.488] 0.059, [0.054 0.064]
of the young,π0dy

Initial belief, mortality U , 0.25, [0.013 0.488] 0.312, [0.296 0.336]
rate of the old,π0do

Learning speed parameter U , 0.50, [0.025 0.975] 0.073, [0.070 0.076]
of the young, gy
Learning speed parameter U , 0.50, [0.025 0.975] 0.133, [0.126 0.140]
of the old,go
Containment parameter µ U , 0.50, [0.025 0.975] 0.129, [0.124 0.133] 0.205, [0.202 0.208]
Log Marginal -495.3 -1777.1
Likelihood (Laplace)
Notes: For model specifications where particular parameter values are not relevant, the entries in
this table are blank. Posterior mode and parameter distributions are based on a standard MCMC
algorithm with a total of 100,000 draws (11 chains, 10 percent of draws used for burn-in, draw
acceptance rates about 0.2).U denotes uniform distribution.

The dashed red and blue lines in Figure 11 display our regression-based estimates of
how the consumption of old and young people responded to Covid. The bars around point
estimates represent the 95 percent confidence intervals. The solid red and blue lines are
the corresponding model implications computed using the posterior mode of the estimated
parameters.

Figure 11 shows that the model does quite well at accounting for the consumption be-
havior of older people over the entire sample. In particular, the model generates the steep
decline during the first wave, the recovery in the summer of 2020, the subsequent reduction

Figure 10: Evolution over time of beliefs about case-fatality rates of old and young.
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Figure 11: Baseline model and data implications for changes in the expenditures of public
servants during the epidemic relative to a counterfactual without Covid.
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beginning in the fall of 2020, as well as the recovery in the winter of 2021. Critically, the
model is consistent with the fact that consumption of the old falls by more in the first wave
than in the second wave, even though the risk of infection was higher in the second and third
waves.

With two exceptions, the model does quite well at accounting for the consumption behav-
ior of the young. The first exception is that it does not fully explain the rise in consumption
of the young during the summer of 2020. The second exception is that the model understates
the peak decline in the consumption of the young during the second wave. An important
success of the model is that it implies that consumption expenditures of the young fall by
more in the first wave than in the second and third waves.

6.1 The importance of time-varying beliefs

Learning plays a critical role in allowing the model to account for the key patterns in the
data across the different Covid waves. In the data consumption of older and younger people
is similar in the first and third wave. But the risk of becoming infected is much larger in the
third wave. A model in which people know their true case-fatality rate at the beginning of
the epidemic cannot account for this feature of the data.

To formally substantiate this claim, we estimate a version of the model in which people
know the true case-fatality rates at the beginning of the epidemic. This assumption is
standard in the Covid literature (e.g., Alvarez et al. (2021), Eichenbaum et al. (2021), and
Jones et al. (2021)).

In this version of the model, the only estimated parameter is µ. The last column of
Table 4 reports the mean and 95 percent probability intervals for the prior and posterior
of µ. Interestingly, the posterior mode of µ is higher than the corresponding value in the
benchmark model. This higher value improves the model’s fit during the first wave but does
not help the model explain the differential response of the old and the young.

We evaluate the performance of this model relative to the learning model by computing
its implications for the marginal likelihood. The marginal log likelihood of the no-learning
model is a dramatic 1, 282 points lower than that of the learning model. To understand this
result, consider Figure 12, which displays the implications of the re-estimated model with
no learning for the consumption expenditures of younger and older people.

First, the model substantially understates the drop in the consumption expenditures of
old people during the first wave of the epidemic. Second, for the period up to November
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Figure 12: Model with no learning and data implications for changes in the expenditures of
public servants during the epidemic relative to a counterfactual without Covid.
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2020, the model does not account for the fact that consumption expenditures of the old
dropped by much more than those of the young. After that, the model does generate a larger
consumption drop for the old compared to the young. Third, the model counterfactually
predicts that the decline in consumption expenditures of the old is larger in the second and
third waves than in the first wave.

6.2 The impact of containment

A natural way to understand the impact of containment measures on consumption expen-
ditures would be to solve the model setting containment rates to zero. But, to do so, one
would have to construct the counterfactual path for aggregate infections that would obtain
in the absence of containment. Doing so would require a general equilibrium model that
would embed a host of additional assumptions. Instead, we compute the counterfactual
fall in expenditures that would have taken place if the government had imposed contain-
ment measures but there were no infections. The difference between the consumption policy
functions with and without containment allows us to estimate the impact of containment
per se. This estimate relies on the assumption that, to a first order, the observed behavior
of expenditures is the sum of people’s response to containment and the risk of becoming
infected.

The solid blue line in Figure 13 displays the consumption of old and young in a version of
the model with containment but no infections. In this scenario, the changes in consumption
expenditures of young and old people are the same. Figure 13 shows that the containment
measures in isolation would have led to an 18 percent drop in consumption of the young
and the old in the trough of the first and third waves. In the data, the actual declines
in consumption are much larger. So, while containment had a substantial impact, most of
the decline in consumption for both groups reflects their response to the risk of dying from
Covid. These results are consistent with the findings of Chetty et al. (2020), Goolsbee and
Syverson (2020), and Villas-Boas et al. (2020).

7 The economic impact of endemic Covid

This section investigates the economic costs of endemic Covid in an economy where people
know the actual case-fatality rates. Doing so requires changing our model in three ways.
First, we modify our epidemiology model so that Covid becomes endemic. Second, we
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Figure 13: Model with only containment and data implications for changes in the expendi-
tures of public servants during the epidemic relative to a counterfactual without Covid.
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allow for vaccination. Third, we embed that model in a general equilibrium framework with
endogenous labor choice and capital accumulation.

Our analysis focuses on the economy’s steady state where it seems natural to assume that
people’s posteriors about case-fatality rates have converged to their true values. As might
be anticipated from our previous results, this assumption has a major impact on the model’s
implications for the economic consequences of endemic Covid. We compare the economic
costs of Covid in this model with a counterfactual in which people have high prior values for
πdy0 and πdo0 and do not update them.

7.1 Endemic Covid

As in Eichenbaum et al. (2022b) and Abel and Panageas (2020), we modify social dynamics
so that recovered people become susceptible with probability πs. This modification implies
that the pool of sustainable people gets replenished, so there are always new people who can
get infected. As a result, the steady-state number of infected people is positive, i.e., Covid
is endemic.

In our partial-equilibrium analysis, we abstract from births because we focus on a short
period. Here we study steady-state properties, so we modify the model to ensure that the
total population and the shares of younger and older people are constant. We assume that
in each period By,t young people without comorbidities are born. In addition, Bo,t people
are born with comorbidities.

The number of newly infected people with age a is given by the following transmission
function

Ta,t = π1Sa,t(1− ϕa)C
s
a,t(Iy,tC

i
y,t + Io,tC

i
o,t) + π2Sa,t(1− ϕa)N

s
a,t(Iy,tN

I
y,t + Io,tN

I
o,t) (8)

+π3Sa,t(1− ϕa) (Iy,t + Io,t) .

The variables Cs
a,t and Ci

a,t represent the consumption of susceptible and infected people of
age a, respectively. The variables N s

t and N i
t represent total hours worked of susceptible

and infected people of age a, respectively.
Susceptible younger and older people are vaccinated with probability ϕy and ϕo, re-

spectively. Susceptible people who are vaccinated acquire immunity to the virus without
becoming infected. Critically, we assume that both people who have been vaccinated and
have acquired immunity by becoming infected lose, on average, their immunity after 1/πs

weeks, becoming susceptible again.
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The number of newly infected people with age a that results from consumption-related
interactions is given by π1Sa,t(1− ϕa)C

s
a,t(Iy,tC

i
y,t + Io,tC

i
o,t). The term Sa,t(1− ϕa)C

s
a,t is the

total consumption of susceptible people with age a who have not been vaccinated. The term
Iy,tC

i
y,t + Io,tC

i
o,t represents total consumption of infected people. The parameter π1 reflects

both the amount of time spent in consumption activities and the probability of becoming
infected as a result of those activities.

The number of newly infected people that results from interactions at work is given by
π2Sa,t(1 − ϕa)N

s
a,t(Iy,tN

I
y,t + Io,tN

I
o,t). The term Sa,t(1 − ϕa)N

s
a,t is the total hours worked

by susceptible people with age a who have not been vaccinated. The term Iy,tN
I
y,t + Io,tN

I
o,t

represents total hours worked by infected people. The parameter π2 reflects the probability
of becoming infected as a result of work interactions.

Susceptible and infected people can meet in ways unrelated to consuming or working.
The number of random meetings between susceptible people with age a who have not been
vaccinated and infected people is Sa,t(1−ϕa) (Iy,t + Io,t). These meetings result in π3Sa,t(1−
ϕa) (Iy,t + Io,t) newly infected people with age a.

The number of young and old susceptible people at time t+ 1 is given by:

Sy,t+1 = [Sy,t(1− ϕy)− Ty,t](1− δy − v) + πsRy,t +By,t, (9)

So,t+1 = [So,t(1− ϕo)− To,t](1− δo) + [Sy,t(1− ϕy)− Ty,t]v + πsRo,t +Bo,t. (10)

The number of young and old infected people at time t+ 1 is given by:

Iy,t+1 = Iy,t(1− πyr − πyd)(1− δy − v) + Ty,t(1− δy − v), (11)

Io,t+1 = Io,t(1− πor − πod)(1− δo) + Ty,tv + To,t(1− δo) + Iy,t(1− πyr − πyd)v. (12)

The number of young and old recovered people at time t+ 1 is given by:

Ry,t+1 = Ry,t(1− δy − v − πs) + ϕySy,t(1− δy − v) + Iy,tπyr(1− δy − v), (13)

Ro,t+1 = Ro,t(1− δo − πs) + ϕoSo,t(1− δo) + vϕySy,t +Ry,tv + Iy,tπyrv + Io,tπor(1− δo). (14)

7.2 The household problem

For tractability, we assume that people are organized into households, each with a continuum
of identical members. This household structure introduces limited sharing of health risks.
Without the household structure, the asset holdings of a person would depend on how long
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they had a particular health status. So, as time goes by, we would have to keep track of an
increasing number of types of people.

At time zero, a household has a continuum of measure one of family members. The law
of large numbers applies and has two implications. First, the demographic composition of
the household is the same as the composition of the population, i.e., it includes the same
fraction of people of different ages and health statuses. Second, the household problem is
deterministic,

We modify the utility specification in Section 4 to allow for endogenous labor supply.
The household’s lifetime utility is given by

Ut = z +mt + β
(
EtU

1−α
t+1

)1/(1−α)
= z +mt + βUt+1, (15)

where mt is a weighted average of the momentary utility of the household members:

mt =
∑

a∈{o,y}

[sa,tu(c
s
a,t, n

s
a,t) + ia,tu(c

i
a,t, n

i
a,t) + ra,tu(c

r
a,t, n

r
a,t)].

The variables sa,t, ia,t, and ra,t denote the number of family members with age a who are
susceptible, infected, and recovered, respectively. The variables cha,t and nh

a,t denote the
consumption and hours worked of people with age a and health status h, respectively. The
utility function of a person with age a and health status h is

u(cha,t, n
h
a,t) =

(
cha,t

)1−ρ − 1

1− ρ
− θ

2

(
nh
a,t

)2 .

The household budget constraint is given by∑
a∈{o,y}

(sa,tc
s
a,t+ia,tc

i
a,t+ra,tc

r
a,t)+kt+1−(1−δk)kt = wt

∑
a∈{o,y}

(sa,tn
s
a,t+ia,tn

i
a,t+ra,tn

r
a,t)+R

k
t kt.

(16)
Here, kt denotes the stock of capital, δk the depreciation rate, wt the real wage rate, and Rk

t

the real rental rate of capital.
The number of newly infected people of age a is given by:

τa,t = π1sa,t(1− ϕa)c
s
a,t(Iy,tC

I
y,t + Io,tC

I
o,t) + π2sa,t(1− ϕa)n

s
a,t(Iy,tN

I
y,t + Io,tN

I
o,t) (17)

+π3sa,t(1− ϕa) (Iy,t + Io,t) .

The household can affect τa,t through its choice of csa,t and ns
a,t. However, the household

takes economy-wide aggregates Iy,tCI
y,t + Io,tC

I
o,t, and Iy,tN

I
y,t + Io,tN

I
o,t as given, i.e. it does

not internalize the impact of its choices on economy-wide infection rates.
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To simplify, we assume that a fraction ϕo of old susceptibles and a fraction ϕy of young
susceptibles get vaccinated. The fraction of the initial family that is susceptible, infected
and recovered at time t+ 1 is given by:

sy,t+1 = [sy,t(1− ϕy)− τy,t](1− δy − v) + πsry,t + by,t, (18)

so,t+1 = [so,t(1− ϕo)− τo,t](1− δo) + [sy,t(1− ϕy)− τy,t]v + πsro,t + bo,t, (19)

iy,t+1 = iy,t(1− πyr − πyd)(1− δy − v) + τy,t(1− δy − v), (20)

io,t+1 = io,t(1− πor − πod)(1− δo) + τy,tv + τo,t(1− δo) + iy,t(1− πyr − πyd)v, (21)

ry,t+1 = ry,t(1− δy − v − πs) + ϕysy,t(1− δy − v) + iy,tπyr(1− δy − v), (22)

ro,t+1 = ro,t(1− δo − πs) + so,tϕo(1− δo) + vϕysy,t + ry,tv + iy,tπyrv + io,tπor(1− δo). (23)

The household maximizes (15) subject to the budget constraint (16) and to the laws
of motion for the health status of family members (equations (17)-(23)). The first-order
conditions for the consumption of people with age a are(

csa,t
)−ρ − λbt + λτa,tπ1(1− ϕa)(Iy,tC

I
y,t + Io,tC

I
o,t) = 0,(

cia,t
)−ρ − λbt = 0,(

cra,t
)−ρ − λbt = 0.

The first-order conditions for hours worked of people with age a are

−θns
a,t + wtλ

b
t + λτa,tπ2(1− ϕa)(Iy,tN

I
y,t + Io,tN

I
o,t) = 0,

−θni
a,t + wtλ

b
t = 0,

−θnr
a,t + wtλ

b
t = 0.

The first-order condition for kt+1 is

λbt = βλbt+1(R
k
t+1 + 1− δk).

It is useful to define the following derivatives

dUt

dsa,t
=

(
csa,t

)1−ρ − 1

1− ρ
− θ

2

(
ns
a,t

)2 ,

dUt

dia,t
=

(
cia,t

)1−ρ − 1

1− ρ
− θ

2

(
ni
a,t

)2 ,

36



dUt

dra,t
=

(
cra,t

)1−ρ − 1

1− ρ
− θ

2

(
nr
a,t

)2 ,

dUt

dUt+1

= β.

The first-order condition for sy,t+1, so,t+1, iy,t+1, io,t+1, ry,t+1, ro,t+1, τy,t, and τo,t are

dUt

dUt+1

dUt+1

dsy,t+1
+ βλb

t+1(wt+1n
s
y,t+1 − csy,t+1)− λs

y,t + βλs
y,t+1(1− ϕy)(1− δy − v) +

βλr
y,t+1ϕy(1− δy − v) + βλr

o,t+1vϕy + βλs
o,t+1(1− ϕy)v +

βλτ
y,t+1(1− ϕy)[π1c

s
y,t+1(Iy,t+1C

I
y,t+1 + Io,t+1C

I
o,t+1)

+π2n
s
y,t+1(Iy,t+1N

I
y,t+1 + Io,t+1N

I
o,t+1) + π3 (Iy,t+1 + Io,t+1)] = 0,

dUt

dUt+1

dUt+1

dso,t+1
+ βλb

t+1(wt+1n
s
o,t+1 − cso,t+1)− λs

o,t + βλs
o,t+1(1− ϕo)(1− δo) + βλr

o,t+1ϕo(1− δo)

+βλτ
o,t+1(1− ϕo)[π1c

s
o,t+1(Iy,t+1C

I
y,t+1 + Io,t+1C

I
o,t+1) + π2n

s
o,t+1(Iy,t+1N

I
y,t+1 + Io,t+1N

I
o,t+1) +

π3 (Iy,t+1 + Io,t+1)] = 0,

dUt

dUt+1

dUt+1

diy,t+1
+ βλb

t+1(wt+1n
i
y,t+1 − ciy,t+1)− λi

y,t + βλi
y,t+1(1− πyr − πyd)(1− δy − v) +

βλi
o,t+1(1− πyr − πyd)v + βλr

y,t+1πyr(1− δy − v) + βλr
o,t+1πyrv = 0,

dUt

dUt+1

dUt+1

dio,t+1

+ βλbt+1(wt+1n
i
o,t+1 − cio,t+1)− λio,t + βλio,t+1(1− πor − πod)(1− δo) +

βλro,t+1πor(1− δo) = 0,

dUt

dUt+1

dUt+1

dry,t+1

+βλbt+1(wt+1n
r
y,t+1−cry,t+1)+βλ

s
y,t+1πs−λry,t+βλry,t+1(1−δy−v−πs)+βλro,t+1v = 0,

dUt

dUt+1

dUt+1

dro,t+1

+ βλbt+1(wt+1n
r
o,t+1 − cro,t+1) + βλso,t+1πs − λro,t + βλro,t+1(1− δo − πs) = 0,

−λsy,t(1− δy − v)− λso,tv + λiy,t(1− δy − v) + λio,tv − λτy,t = 0,

−λso,t(1− δo) + λio,t(1− δo)− λτo,t = 0.
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7.3 The firms’ problem

Output is produced by a continuum of measure one of competitive firms each of whom
produces the final good with a Cobb-Douglas production function that combines capital
(Kt) and labor (Nt). Firms maximize their profits, given by

π = AK1−γ
t Nγ

t −Rk
tKt − wtNt.

The first-order conditions for the firm’s problem are:

(1− γ)AK−γ
t Nγ

t = Rk
t ,

γAK1−γ
t Nγ−1

t = wt.

7.4 Equilibrium in goods and factor markets

In equilibrium, households and firms solve their maximization problems and the market for
consumption, hours worked, and output clear,

Ct =
∑

a∈{o,y}

[
Sa,tC

s
a,t + Ia,tC

i
a,t +Ra,tC

r
a,t

]
,

Nt =
∑

a∈{o,y}

[
Sa,tN

s
a,t + Ia,tN

i
a,t +Ra,tN

r
a,t

]
,

Ct +Kt+1 = AK1−γ
t Nγ

t + (1− δk)Kt.

The fraction of people in the family with age a who are susceptible, infected and recovered
is the same as the corresponding fraction in the population:

sa,t = Sa,t, ia,t = Ia,t, and ra,t = Ra,t.

The law of motion for the aggregate capital stock is:

Kt+1 = Xt + (1− δ)Kt.

The market for physical capital clears

Kt = kt.
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7.5 Steady-state properties

This section discusses the calibration of the model and the steady-state implications of
endemic Covid. The system of equations that defines the steady state is detailed in the
Technical Appendix available on the authors’ websites.

7.5.1 Calibration

With one exception, parameters common to the partial- and general-equilibrium model are
set to the values discussed in Section 5. The exception is z, the constant in the utility
function. This parameter is reset to −1.125 so that, as in our partial-equilibrium model, the
value of life in a pre-epidemic steady state is roughly 900 thousand dollars.

Moving to general equilibrium introduces a new set of parameters that we must calibrate.
We set γ = 2/3, which is consistent with recent estimates by Lopes et al. (2021) of the labor
share inclusive of the part of income received by self-employed workers attributable to labor.
The weekly rate of capital depreciation δk is 0.1/52.

In Section 5, we argue that roughly one-sixth of transmissions are related to consumption.
Here we use a similar procedure to estimate the fraction of infections that occur in the
workplace. Recall that Ferguson et al. (2006) argues that 37 percent of transmissions arise
in schools and workplaces. To compute the fraction of transmissions that occur in the
workplace, we weigh the number of students by ten and the number of workers by four.
These weights are the average number of contacts per day at school and work reported by
Lee et al. (2010). According to Statistics Portugal, the number of students and workers
in 2019 is 1.9 million and 5.2 million, respectively. These considerations imply that the
fraction of transmissions occurring in the workplace is 52 percent (5.2 x 4/(5.2 x 4 + 1.9 x
10)). Since 37 percent of transmissions arise in schools and workplaces, 18 percent (0.37 x
0.52) of transmissions, or roughly one-sixth, are related to work. Accordingly, we set π1 and
π2 so that 1/6 of infections in the pre-epidemic steady state are due to consumption- and
work-related activities, respectively. We set π3 so that the basic reproduction rate, R0, is
2.5. Recall that the value of R0 is the one preferred by the Center for Disease Control. The
resulting parameter values are π1 = 0.0000028153, π2 = 0.00026573 and π3 = 0.8333. We
choose πs = 1/26, which is consistent with the notion that immunity lasts on average for six
months.

We set ϕy = ϕo = 1/26 which implies that roughly 4 percent of the population gets
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vaccinated each week. This value is roughly the weekly fraction of the population vaccinated
between April 1 and September 1, 2021. We set the probability of aging v = 0.000634 so
that the pre-epidemic share of old people in the population is 0.3.

According to the Statistics Portugal 1999 Survey of Time Use, people who are employed
spend roughly 7 hours per day at work. The fraction of the population employed in 2019 is
57.6 percent. So, average hours worked per week in the population is 28 (7 ×7× 0.576). We
set θ = 0.007401 so that people work 28 hours per week in the pre-epidemic steady state. We
set A = 1.086265 so that, as in Section 5, annual income is 19, 000 Euros in the pre-epidemic
steady state.

In order for the population of young and old to be constant in the steady state, we
require an inflow of newborns. Given our other assumptions, this requirement implies that:
By,t = 0.000712 and Bo,t = 0.000063. Recall that Bo,t and By,t represent newborns with
and without comorbidities, respectively.

The steady-state distribution of people across age and health status for an economy with
endemic Covid is as follows. Fifty seven percent of the population is recovered, 42 percent
susceptible, and one percent is infected. The fraction of people that die from all causes
is 0.08 of 1 percent. Covid accounts for 8.7 percent of these deaths. A fraction 0.35 of 1
percent of the population dies from Covid each year. Average life expectancy at birth falls
on a log-percentage basis by 3.2 percent, from 76.2 to 73.8 years.

Table 5: Steady-state effect of endemic Covid

Case-fatality
Posteriors Priors

Aggregate output -1.08 -11.80
Aggregate consumption -1.08 -11.80
Aggregate hours worked -1.08 -11.80
Consumption young -0.05 -9.40
Consumption old -3.50 -17.20
Hours worked young -0.25 -8.60
Hours worked old -3.02 -19.00

The first column of Table 5 compares consumption and hours worked in the pre-epidemic
steady state with the steady state in which Covid is endemic. Aggregate output, hours
worked, and consumption fall by about 1 percent relative to the pre-epidemic steady state.
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Consumption falls by 3.5 percent for old people and barely falls for young people. Hours
worked fall by 3 percent for older people and only 0.25 percent for younger people.

We interpret these results as an upper bound on the economic cost of endemic Covid.
The reason is that our model abstracts from ways in which economies can adapt to Covid.
Examples include the adoption of remote work and e-commerce (see Jones et al. (2021) and
Krueger et al. (2020) for discussions).

It is interesting to compare the impact of endemic covid in our model with Acemoglu and
Johnson (2007)’s estimates of the effect of declines in mortality on real GDP. According to
their baseline estimates, a one percent increase in life expectancy raises real GDP by 85 basis
points (with a standard error of 28 basis points). The corresponding effect in our model is
35 basis points (Covid reduces life expectancy at birth by 3.2 percent and reduces aggregate
output by 1.1 percent relative to the pre-epidemic steady state). Taking sampling uncertainty
into account, this effect is consistent with Acemoglu and Johnson (2007)’s estimates.

The steady-state economic impact of endemic Covid is very small compared to the mas-
sive decline in economic activity experienced in 2020. Interpreted through the lens of our
model, this difference reflects people’s beliefs about case-fatality rates. The steady-state cal-
culations above assume that people’s beliefs correspond to the objective case-fatality rate.
Our empirical results indicate that in early 2020 people’s prior’s about case-fatality rates
were much higher than objective case-fatality rates.

To quantify the impact of people’s beliefs on economic activity, we re-solve for the steady
state assuming that people make decisions based on our estimates of their March 2020 prior
beliefs. The objective case-fatality rates drive actual population dynamics. Technically, in
the first-order conditions for ia,t+1, the values of πad and πar are set to the estimated initial
beliefs in Section 5.

The second column of Table 5 compares consumption and hours worked in this steady
state and in the pre-epidemic steady state. We see large falls in consumption and hours
worked relative to the pre-epidemic steady state. Aggregate consumption, hours worked,
and physical capital fall by about 12 percent. Consumption falls by 17.2 percent for old
people and 9.4 percent for young people. Hours worked fall by 19 percent for older people
and only 8.6 percent for younger people.

Taken together, our results reconcile the large economic impact of Covid relative to the
historical evidence presented by Acemoglu and Johnson (2007). Our reconciliation highlights
the critical role of expectations about case-fatality rates in determining the dynamic economic
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impact of an epidemic.

8 Conclusion

Our analysis highlights the importance of expectations in determining the economic impact
of infectious diseases like Covid. According to our estimates, people’s prior beliefs about
Covid case-fatality rates were very pessimistic. These pessimistic prior beliefs led to sizable
consumption declines in the first wave of the epidemic. People’s posteriors converged to
the true case-fatality rates by the third wave of the epidemic. So, even though the risk
of becoming infected was much larger in the third wave, consumption expenditures fell by
about the same as in the first wave.

The fact that estimated expectations converged is important for thinking about the
economic consequences of the secular declines in the mortality rate associated with infectious
diseases. We would expect people to eventually learn about these declines and adjust their
behavior accordingly. Once this learning occurs, the impact of infectious diseases is relatively
small. Our model is consistent with the large impact of Covid on economic activity and the
small effect of the secular fall in mortality rates associated with other infections diseases.
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A Appendix

This appendix is organized as follows. The first subsection provides evidence of the empirical
plausibility of the assumption used in our empirical specification, that seasonal effects for
January through April 2021 are the same as the common seasonal effects in 2018 and 2019.
The second subsection provides results estimated by age cohort and results obtained using
data for retirees instead of public servants. The third subsection provides results estimated
to contrast with the economic model of consumer behavior. The final subsection provides
the regression results that support the construction of the figures we present in the main
body of the paper.

A.1 Seasonality effects

Equation 1 assumes that, in the absence of the epidemic, the seasonal effects for the January
through April 2021 (λm) are the same as the common seasonal effects in 2018 and 2019. To
assess the empirical plausibility of this assumption, we estimated the following specification
using data from January 2018 through December 2019:

Log(Expenseit) = Λ20191{Y eart = 2019}+
Dec∑

m=Feb

λm1{Montht = m}+

Dec∑
m=Feb

ϕm1{Montht = m} × 1{Y eart = 2019}+ θi + ϵit

(24)

The ϕm coefficients measure the difference between seasonal effects in 2019 and 2018.
Under the null hypothesis that these effects are identical in both years, all ϕm coefficients
should be zero. Table 6 presents the regression coefficients.

Figure 14 displays our estimates of ϕm along with 95 percent confidence intervals. Re-
gardless of which age we focus on, most estimates of ϕm = 0 are not statistically different
from zero at a 95 percent confidence level. We reject the null hypothesis that ϕms are jointly
zero for the overall sample that includes all ages. However, the estimates of ϕm are small,
especially when compared to the changes in consumption expenditures that occur after the
Covid shock.
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Table 6: Contrasting the month trends of years 2018 and 2019
Dependent variable:
Log(Expensesit)

All [20;49] [50;59] [60;69] [70;79]
(1) (2) (3) (4) (5)

Feb (λFeb) −0.080∗∗∗ −0.078∗∗∗ −0.074∗∗∗ −0.095∗∗∗ −0.068∗∗∗
(0.004) (0.008) (0.007) (0.007) (0.008)

Mar (λMar) 0.031∗∗∗ 0.022∗∗ 0.037∗∗∗ 0.018∗∗ 0.049∗∗∗
(0.004) (0.008) (0.007) (0.006) (0.008)

Apr (λApr) −0.013∗∗∗ −0.005 −0.003 −0.026∗∗∗ −0.013
(0.004) (0.009) (0.007) (0.007) (0.008)

May (λMay) 0.054∗∗∗ 0.061∗∗∗ 0.061∗∗∗ 0.040∗∗∗ 0.058∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.008)

Jun (λJun) 0.033∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.026∗∗∗ 0.026∗∗
(0.004) (0.009) (0.007) (0.007) (0.009)

Jul (λJul) 0.101∗∗∗ 0.117∗∗∗ 0.117∗∗∗ 0.092∗∗∗ 0.083∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.008)

Aug (λAug) 0.011∗∗ 0.042∗∗∗ 0.042∗∗∗ −0.014+ −0.012
(0.004) (0.009) (0.008) (0.007) (0.009)

Sep (λSep) −0.044∗∗∗ −0.025∗∗ −0.005 −0.070∗∗∗ −0.064∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.009)

Oct (λOct) 0.020∗∗∗ 0.013 0.017∗ 0.004 0.049∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.009)

Nov (λNov) 0.039∗∗∗ 0.032∗∗∗ 0.047∗∗∗ 0.034∗∗∗ 0.042∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.009)

Dec (λDec) 0.124∗∗∗ 0.140∗∗∗ 0.150∗∗∗ 0.111∗∗∗ 0.101∗∗∗
(0.004) (0.009) (0.007) (0.007) (0.009)

1{Y eart = 2019} (Λ2019) 0.042∗∗∗ 0.064∗∗∗ 0.051∗∗∗ 0.033∗∗∗ 0.027∗∗
(0.004) (0.009) (0.007) (0.007) (0.008)

1{Y eart = 2019} × Feb (ϕFeb) −0.001 −0.013 −0.002 0.009 −0.005
(0.005) (0.011) (0.009) (0.009) (0.011)

1{Y eart = 2019} × Mar (ϕMar) −0.022∗∗∗ −0.005 −0.014 −0.017+ −0.048∗∗∗
(0.005) (0.011) (0.009) (0.009) (0.011)

1{Y eart = 2019} × Apr (ϕApr) 0.019∗∗∗ 0.022+ 0.018∗ 0.024∗∗ 0.009
(0.005) (0.012) (0.009) (0.009) (0.011)

1{Y eart = 2019} × May (ϕMay) −0.009+ −0.004 −0.009 −0.009 −0.013
(0.005) (0.012) (0.009) (0.009) (0.011)

1{Y eart = 2019} × Jun (ϕJun) −0.035∗∗∗ −0.020+ −0.011 −0.046∗∗∗ −0.057∗∗∗
(0.005) (0.012) (0.009) (0.009) (0.011)

1{Y eart = 2019} × Jul (ϕJul) 0.014∗∗ 0.041∗∗∗ 0.022∗ 0.006 −0.001
(0.005) (0.012) (0.010) (0.009) (0.012)

1{Y eart = 2019} × Aug (ϕAug) −0.008 0.001 −0.007 0.0003 −0.026∗
(0.005) (0.012) (0.010) (0.010) (0.012)

1{Y eart = 2019} × Sep (ϕSep) 0.006 0.017 −0.007 0.012 0.005
(0.005) (0.012) (0.010) (0.010) (0.012)

1{Y eart = 2019} × Oct (ϕOct) 0.003 −0.005 0.002 0.012 −0.002
(0.005) (0.012) (0.010) (0.010) (0.012)

1{Y eart = 2019} × Nov (ϕNov) −0.014∗∗ −0.012 −0.005 −0.018+ −0.021+
(0.005) (0.013) (0.010) (0.010) (0.012)

1{Y eart = 2019} × Dec (ϕDec) −0.002 0.001 0.007 0.003 −0.022+
(0.005) (0.012) (0.010) (0.010) (0.012)

Constant 5.892∗∗∗ 6.086∗∗∗ 6.010∗∗∗ 5.875∗∗∗ 5.654∗∗∗
(0.005) (0.010) (0.008) (0.008) (0.010)

χ2 ( ϕFeb = 0, ... , ϕDec = 0) 59.100 16.853 9.880 28.203 24.052
p-value 0.000 0.112 0.541 0.003 0.013
Observations 1,392,370 238,965 366,102 447,699 339,604
R2 0.003 0.005 0.004 0.003 0.002
Adjusted R2 0.003 0.005 0.004 0.002 0.002
Residual Std. Error 1.103 0.964 1.026 1.130 1.182

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
All columns estimated with person fixed effects

Cluster robust standard errors in (); Errors clustered by person
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Figure 14: Seasonality effects for different age groups.
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A.2 Robustness of Empirical Results

In this subsection, we report the results of additional robustness checks. First, we estimate
separate versions of equation 1 for each age cohort. We consider versions with total expen-
ditures (Table 7) as well as a version with co-morbidity (Table 8). This split-sample by age
approach allows each cohort to have different yearly growth trends and month seasonality in
the relevant measure of consumption expenditures. We find a similar pattern for the impact
of age on the response of expenditures to the Covid shock.

Finally, we re-do our main empirical analysis for retirees as opposed to public servants.
Our results are similar to those we obtain for public servants. Table 9 is the analogue of Table
12. We see that the consumption expenditures of older retirees fall much more than those
of younger retirees. In addition, spending declines are particularly pronounced in April, the
peak month of the epidemic.
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Table 7: Impact of age on consumption expenditures

Dependent variable:
log(Expensesit)

[20;49] [50;59] [60;69] [70;79]
(1) (2) (3) (4)

Aftert × 1{Montht = Mar20} −0.124∗∗∗ −0.124∗∗∗ −0.123∗∗∗ −0.158∗∗∗
(0.008) (0.006) (0.006) (0.007)

Aftert × 1{Montht = Apr20} −0.322∗∗∗ −0.327∗∗∗ −0.390∗∗∗ −0.453∗∗∗
(0.009) (0.007) (0.007) (0.008)

Aftert × 1{Montht = May20} −0.222∗∗∗ −0.205∗∗∗ −0.239∗∗∗ −0.272∗∗∗
(0.009) (0.007) (0.007) (0.008)

Aftert × 1{Montht = Jun20} −0.015+ −0.029∗∗∗ −0.054∗∗∗ −0.080∗∗∗
(0.008) (0.007) (0.007) (0.008)

Aftert × 1{Montht = Jul20} 0.020∗ 0.037∗∗∗ 0.008 −0.044∗∗∗
(0.010) (0.008) (0.007) (0.008)

Aftert × 1{Montht = Aug20} 0.016+ 0.023∗∗ −0.012+ −0.031∗∗∗
(0.009) (0.007) (0.007) (0.008)

Aftert × 1{Montht = Sep20} 0.012 −0.004 −0.011+ −0.019∗
(0.009) (0.007) (0.007) (0.008)

Aftert × 1{Montht = Oct20} −0.071∗∗∗ −0.069∗∗∗ −0.107∗∗∗ −0.158∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Nov20} −0.046∗∗∗ −0.066∗∗∗ −0.092∗∗∗ −0.133∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Dec20} −0.146∗∗∗ −0.147∗∗∗ −0.161∗∗∗ −0.179∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Jan21} −0.293∗∗∗ −0.290∗∗∗ −0.342∗∗∗ −0.400∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Feb21} −0.204∗∗∗ −0.213∗∗∗ −0.251∗∗∗ −0.262∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Mar21} −0.084∗∗∗ −0.085∗∗∗ −0.095∗∗∗ −0.101∗∗∗
(0.010) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Apr21} −0.076∗∗∗ −0.079∗∗∗ −0.080∗∗∗ −0.082∗∗∗
(0.010) (0.008) (0.008) (0.010)

Y eart 0.110∗∗∗ 0.037 0.045∗∗∗ 0.045∗∗∗
(0.027) (0.028) (0.012) (0.009)

Month FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Income Group ×Y eart (Ψit) Yes Yes Yes Yes
Observations 398,086 609,606 744,262 563,048
R2 0.560 0.618 0.636 0.639
Adjusted R2 0.548 0.608 0.626 0.630
Residual Std. Error 0.654 0.647 0.697 0.731

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Cluster robust standard errors in (); Errors clustered by person
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Table 8: Impact of age on consumption expenditures
Dependent variable:
log(Expensesit)

[20;49] [50;59] [60;69] [70;79]
(1) (2) (3) (4)

Aftert × 1{Montht = Mar20}(∆Mar20) −0.115∗∗∗ −0.120∗∗∗ −0.121∗∗∗ −0.153∗∗∗
(0.009) (0.007) (0.006) (0.008)

Aftert × 1{Montht = Apr20}(∆Apr20) −0.305∗∗∗ −0.316∗∗∗ −0.379∗∗∗ −0.442∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = May20}(∆May20) −0.214∗∗∗ −0.197∗∗∗ −0.229∗∗∗ −0.261∗∗∗
(0.009) (0.007) (0.007) (0.008)

Aftert × 1{Montht = Jun20}(∆Jun20) −0.005 −0.020∗∗ −0.043∗∗∗ −0.069∗∗∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Jul20}(∆Jul20) 0.026∗ 0.044∗∗∗ 0.014+ −0.041∗∗∗
(0.010) (0.008) (0.008) (0.009)

Aftert × 1{Montht = Aug20}(∆Aug20) 0.023∗ 0.032∗∗∗ −0.004 −0.021∗
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Sep20}(∆Sep20) 0.019∗ 0.002 −0.004 −0.009
(0.009) (0.007) (0.007) (0.009)

Aftert × 1{Montht = Oct20}(∆Oct20) −0.068∗∗∗ −0.065∗∗∗ −0.103∗∗∗ −0.151∗∗∗
(0.009) (0.008) (0.007) (0.009)

Aftert × 1{Montht = Nov20}(∆Nov20) −0.038∗∗∗ −0.058∗∗∗ −0.088∗∗∗ −0.124∗∗∗
(0.010) (0.008) (0.007) (0.009)

Aftert × 1{Montht = Dec20}(∆Dec20) −0.142∗∗∗ −0.143∗∗∗ −0.152∗∗∗ −0.164∗∗∗
(0.010) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Jan21}(∆Jan21) −0.287∗∗∗ −0.291∗∗∗ −0.343∗∗∗ −0.401∗∗∗
(0.010) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Feb21}(∆Feb21) −0.192∗∗∗ −0.200∗∗∗ −0.238∗∗∗ −0.243∗∗∗
(0.010) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Mar21}(∆Mar21) −0.074∗∗∗ −0.079∗∗∗ −0.088∗∗∗ −0.083∗∗∗
(0.011) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Apr21}(∆Apr21) −0.068∗∗∗ −0.075∗∗∗ −0.076∗∗∗ −0.066∗∗∗
(0.011) (0.008) (0.008) (0.010)

Aftert × 1{Montht = Mar20} × Comorbidity −0.068∗∗∗ −0.027+ −0.013 −0.032∗
(0.018) (0.014) (0.014) (0.016)

Aftert × 1{Montht = Apr20} × Comorbidity −0.117∗∗∗ −0.074∗∗∗ −0.080∗∗∗ −0.068∗∗∗
(0.020) (0.016) (0.016) (0.019)

Aftert × 1{Montht = May20} × Comorbidity −0.062∗∗ −0.060∗∗∗ −0.070∗∗∗ −0.069∗∗∗
(0.020) (0.015) (0.015) (0.017)

Aftert × 1{Montht = Jun20} × Comorbidity −0.068∗∗∗ −0.061∗∗∗ −0.079∗∗∗ −0.065∗∗∗
(0.019) (0.015) (0.015) (0.017)

Aftert × 1{Montht = Jul20} × Comorbidity −0.044∗ −0.048∗∗ −0.041∗ −0.023
(0.022) (0.018) (0.017) (0.019)

Aftert × 1{Montht = Aug20} × Comorbidity −0.050∗∗ −0.062∗∗∗ −0.058∗∗∗ −0.063∗∗∗
(0.019) (0.016) (0.016) (0.018)

Aftert × 1{Montht = Sep20} × Comorbidity −0.049∗ −0.043∗∗ −0.050∗∗∗ −0.062∗∗∗
(0.019) (0.016) (0.015) (0.018)

Aftert × 1{Montht = Oct20} × Comorbidity −0.026 −0.029+ −0.028+ −0.045∗
(0.020) (0.016) (0.015) (0.018)

Aftert × 1{Montht = Nov20} × Comorbidity −0.054∗∗ −0.055∗∗∗ −0.027+ −0.053∗∗
(0.020) (0.016) (0.016) (0.018)

Aftert × 1{Montht = Dec20} × Comorbidity −0.032 −0.026 −0.060∗∗∗ −0.096∗∗∗
(0.020) (0.017) (0.016) (0.019)

Aftert × 1{Montht = Jan21} × Comorbidity −0.042∗ 0.007 0.004 0.004
(0.020) (0.016) (0.016) (0.019)

Aftert × 1{Montht = Feb21} × Comorbidity −0.087∗∗∗ −0.091∗∗∗ −0.089∗∗∗ −0.116∗∗∗
(0.021) (0.017) (0.017) (0.020)

Aftert × 1{Montht = Mar21} × Comorbidity −0.068∗∗∗ −0.039∗ −0.053∗∗∗ −0.113∗∗∗
(0.020) (0.016) (0.016) (0.019)

Aftert × 1{Montht = Apr21} × Comorbidity −0.058∗∗ −0.033∗ −0.026 −0.099∗∗∗
(0.019) (0.016) (0.016) (0.020)

Month FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Income Group ×Y eart (Ψit) Yes Yes Yes Yes
Observations 398,086 609,606 744,262 563,048
R2 0.560 0.618 0.636 0.639
Adjusted R2 0.548 0.608 0.626 0.630
Residual Std. Error 0.654 0.647 0.697 0.731

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
Cluster robust standard errors in (); Errors clustered by person
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Table 9: Impact of age heterogeneity on spending for retirees.
Dependent variable:
log(Expenseit)

(1) (2) (3) (4)
Aftert × 1{Montht = Mar20} × 1{Agei < 60}(∆Mar20,<60 + δMar20,<60) −0.018 −0.043∗∗ −0.043∗∗ −0.043∗∗

(0.014) (0.015) (0.015) (0.015)
Aftert × 1{Montht = Mar20} × 1{Agei ≥ 60}(∆Mar20,≥60 + δMar20,≥60) −0.086∗∗∗ −0.085∗∗∗ −0.085∗∗∗ −0.085∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = Apr20} × 1{Agei < 60}(∆Apr20,<60 + δApr20,<60) −0.192∗∗∗ −0.216∗∗∗ −0.216∗∗∗ −0.216∗∗∗

(0.016) (0.016) (0.016) (0.016)
Aftert × 1{Montht = Apr20} × 1{Agei ≥ 60}(∆Apr20,≥60 + δApr20,≥60) −0.321∗∗∗ −0.320∗∗∗ −0.320∗∗∗ −0.320∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = May20} × 1{Agei < 60}(∆May20,<60 + δMay20,<60) −0.126∗∗∗ −0.151∗∗∗ −0.151∗∗∗ −0.151∗∗∗

(0.014) (0.015) (0.015) (0.015)
Aftert × 1{Montht = May20} × 1{Agei ≥ 60}(∆May20,≥60 + δMay20,≥60) −0.199∗∗∗ −0.198∗∗∗ −0.198∗∗∗ −0.198∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = Jun20} × 1{Agei < 60}(∆Jun20,<60 + δJun20,<60) 0.013 −0.012 −0.012 −0.012

(0.015) (0.016) (0.016) (0.016)
Aftert × 1{Montht = Jun20} × 1{Agei ≥ 60}(∆Jun20,≥60 + δJun20,≥60) −0.047∗∗∗ −0.046∗∗∗ −0.046∗∗∗ −0.046∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = Jul20} × 1{Agei < 60}(∆Jul20,<60 + δJul20,<60) 0.023 −0.002 −0.002 −0.002

(0.016) (0.017) (0.017) (0.017)
Aftert × 1{Montht = Jul20} × 1{Agei ≥ 60}(∆Jul20,≥60 + δJul20,≥60) −0.037∗∗∗ −0.036∗∗∗ −0.036∗∗∗ −0.036∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = Aug20} × 1{Agei < 60}(∆Aug20,<60 + δAug20,<60) 0.058∗∗∗ 0.033∗ 0.033∗ 0.033∗

(0.016) (0.016) (0.016) (0.016)
Aftert × 1{Montht = Aug20} × 1{Agei ≥ 60}(∆Aug20,≥60 + δAug20,≥60) −0.022∗∗∗ −0.021∗∗∗ −0.021∗∗∗ −0.021∗∗∗

(0.003) (0.003) (0.003) (0.003)
Aftert × 1{Montht = Sep20} × 1{Agei < 60}(∆Sep20,<60 + δSep20,<60) 0.022 −0.003 −0.003 −0.003

(0.015) (0.016) (0.016) (0.016)
Aftert × 1{Montht = Sep20} × 1{Agei ≥ 60}(∆Sep20,≥60 + δSep20,≥60) −0.024∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Oct20} × 1{Agei < 60}(∆Oct20,<60 + δOct20,<60) −0.076∗∗∗ −0.101∗∗∗ −0.101∗∗∗ −0.101∗∗∗

(0.016) (0.017) (0.017) (0.017)
Aftert × 1{Montht = Oct20} × 1{Agei ≥ 60}(∆Oct20,≥60 + δOct20,≥60) −0.151∗∗∗ −0.149∗∗∗ −0.149∗∗∗ −0.149∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Nov20} × 1{Agei < 60}(∆Nov20,<60 + δNov20,<60) −0.013 −0.038∗ −0.038∗ −0.038∗

(0.016) (0.016) (0.016) (0.016)
Aftert × 1{Montht = Nov20} × 1{Agei ≥ 60}(∆Nov20,≥60 + δNov20,≥60) −0.106∗∗∗ −0.105∗∗∗ −0.105∗∗∗ −0.105∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Dec20} × 1{Agei < 60}(∆Dec20,<60 + δDec20,<60) −0.103∗∗∗ −0.128∗∗∗ −0.128∗∗∗ −0.128∗∗∗

(0.018) (0.018) (0.018) (0.018)
Aftert × 1{Montht = Dec20} × 1{Agei ≥ 60}(∆Dec20,≥60 + δDec20,≥60) −0.143∗∗∗ −0.142∗∗∗ −0.142∗∗∗ −0.142∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Jan21} × 1{Agei < 60}(∆Jan21,<60 + δJan21,<60) −0.188∗∗∗ −0.230∗∗∗ −0.230∗∗∗ −0.230∗∗∗

(0.017) (0.020) (0.020) (0.020)
Aftert × 1{Montht = Jan21} × 1{Agei ≥ 60}(∆Jan21,≥60 + δJan21,≥60) −0.377∗∗∗ −0.375∗∗∗ −0.374∗∗∗ −0.374∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Feb21} × 1{Agei < 60}(∆Feb21,<60 + δFeb21,<60) −0.066∗∗∗ −0.108∗∗∗ −0.109∗∗∗ −0.109∗∗∗

(0.016) (0.020) (0.020) (0.020)
Aftert × 1{Montht = Feb21} × 1{Agei ≥ 60}(∆Feb21,≥60 + δFeb21,≥60) −0.201∗∗∗ −0.199∗∗∗ −0.199∗∗∗ −0.199∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Mar21} × 1{Agei < 60}(∆Mar21,<60 + δMar21,<60) 0.019 −0.023 −0.023 −0.023

(0.018) (0.021) (0.021) (0.021)
Aftert × 1{Montht = Mar21} × 1{Agei ≥ 60}(∆Mar21,≥60 + δMar21,≥60) −0.055∗∗∗ −0.053∗∗∗ −0.053∗∗∗ −0.053∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Montht = Apr21} × 1{Agei >}(∆Apr21,<60 + δApr21,<60) 0.041∗ −0.002 −0.002 −0.002

(0.017) (0.020) (0.020) (0.020)
Aftert × 1{Montht = Apr21} × 1{Agei ≥ 60}(∆Apr21,≥60 + δApr21,≥60) −0.044∗∗∗ −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗

(0.004) (0.004) (0.004) (0.004)
Month FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Age Group×Y eart (Ψit) No Yes Yes Yes
Income Group ×Y eart (Ψit) No No Yes Yes
Age Group × Income Group ×Y eart (Ψit) No No No Yes
Observations 3,583,123 3,583,123 3,583,123 3,583,123
R2 0.689 0.689 0.689 0.689
Adjusted R2 0.680 0.680 0.681 0.681
Residual Std. Error 0.776 0.776 0.775 0.775

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
Cluster robust standard errors in (); Errors clustered by person
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A.3 Model Calibration

Table 10: Impact of age on expenditures (for model calibration)
Dependent variable:
log(Expenseit)

FE FE FE FE
(1) (2) (3) (4)

Aftert × 1{Montht = Mar20}(∆Mar20) −0.101∗∗∗ −0.127∗∗∗ −0.127∗∗∗ −0.127∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Apr20}(∆Apr20) −0.297∗∗∗ −0.322∗∗∗ −0.322∗∗∗ −0.322∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = May20}(∆May20) −0.185∗∗∗ −0.211∗∗∗ −0.211∗∗∗ −0.211∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Jun20}(∆Jun20) 0.014∗∗ −0.012∗ −0.012∗ −0.012∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Jul20}(∆Jul20) 0.072∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Aug20}(∆Aug20) 0.071∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Sep20}(∆Sep20) 0.050∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Oct20}(∆Oct20) −0.058∗∗∗ −0.084∗∗∗ −0.084∗∗∗ −0.084∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Nov20}(∆Nov20) −0.033∗∗∗ −0.059∗∗∗ −0.059∗∗∗ −0.059∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Dec20}(∆Dec20) −0.101∗∗∗ −0.127∗∗∗ −0.127∗∗∗ −0.127∗∗∗
(0.005) (0.005) (0.005) (0.005)

Aftert × 1{Montht = Jan21}(∆Jan21) −0.252∗∗∗ −0.296∗∗∗ −0.296∗∗∗ −0.296∗∗∗
(0.005) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Feb21}(∆Feb21) −0.168∗∗∗ −0.212∗∗∗ −0.212∗∗∗ −0.212∗∗∗
(0.005) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Mar21}(∆Mar21) −0.039∗∗∗ −0.083∗∗∗ −0.083∗∗∗ −0.083∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Apr21}(∆Apr21) −0.028∗∗∗ −0.072∗∗∗ −0.072∗∗∗ −0.072∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Mar20} × 1{Agei ≥ 60}(δMar20,≥60) −0.055∗∗∗ −0.009 −0.009 −0.009
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Apr20} × 1{Agei ≥ 60}(δApr20,≥60) −0.142∗∗∗ −0.097∗∗∗ −0.097∗∗∗ −0.097∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = May20} × 1{Agei ≥ 60}(δMay20,≥60) −0.088∗∗∗ −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Jun20} × 1{Agei ≥ 60}(δJun20,≥60) −0.108∗∗∗ −0.062∗∗∗ −0.062∗∗∗ −0.062∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Jul20} × 1{Agei ≥ 60}(δJul20,≥60) −0.118∗∗∗ −0.073∗∗∗ −0.073∗∗∗ −0.073∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Aug20} × 1{Agei ≥ 60}(δAug20,≥60) −0.131∗∗∗ −0.086∗∗∗ −0.086∗∗∗ −0.086∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Sep20} × 1{Agei ≥ 60}(δSep20,≥60) −0.101∗∗∗ −0.056∗∗∗ −0.056∗∗∗ −0.056∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Oct20} × 1{Agei ≥ 60}(δOct20,≥60) −0.081∗∗∗ −0.035∗∗∗ −0.035∗∗∗ −0.035∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Nov20} × 1{Agei ≥ 60}(δNov20,≥60) −0.095∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Dec20} × 1{Agei ≥ 60}(δDec20,≥60) −0.103∗∗∗ −0.057∗∗∗ −0.057∗∗∗ −0.057∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jan21} × 1{Agei ≥ 60}(δJan21,≥60) −0.145∗∗∗ −0.067∗∗∗ −0.067∗∗∗ −0.067∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Feb21} × 1{Agei ≥ 60}(δFeb21,≥60) −0.120∗∗∗ −0.042∗∗∗ −0.042∗∗∗ −0.042∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Mar21} × 1{Agei ≥ 60}(δMar21,≥60) −0.093∗∗∗ −0.015+ −0.015+ −0.015+
(0.006) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Apr21} × 1{Agei ≥ 60}(δApr21,≥60) −0.091∗∗∗ −0.013 −0.013 −0.013
(0.006) (0.008) (0.008) (0.008)

Month FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Age Group×Y eart (Ψit) No Yes Yes Yes
Income Group ×Y eart (Ψit) No No Yes Yes
Age Group × Income Group ×Y eart (Ψit) No No No Yes
Observations 2,315,002 2,315,002 2,315,002 2,315,002
R2 0.633 0.633 0.633 0.633
Adjusted R2 0.623 0.623 0.624 0.624
Residual Std. Error 0.686 0.686 0.686 0.686

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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A.4 Regression Tables used to Build the Figures in the Paper

Table 11: Impact of age on consumption expenditures
Dependent variable:
log(Expensesit)

(1) (2) (3) (4) (5)
Aftert −0.138∗∗∗

(0.002)
Aftert × 1{Agei = [20; 49]} −0.067∗∗∗ −0.103∗∗∗ −0.103∗∗∗ −0.103∗∗∗

(0.004) (0.005) (0.005) (0.005)
Aftert × 1{Agei = [50; 59]} −0.087∗∗∗ −0.107∗∗∗ −0.107∗∗∗ −0.107∗∗∗

(0.004) (0.004) (0.004) (0.004)
Aftert × 1{Agei = [60; 69]} −0.154∗∗∗ −0.146∗∗∗ −0.146∗∗∗ −0.146∗∗∗

(0.003) (0.004) (0.004) (0.004)
Aftert × 1{Agei = [70; 79]} −0.223∗∗∗ −0.187∗∗∗ −0.187∗∗∗ −0.187∗∗∗

(0.004) (0.005) (0.005) (0.005)
1{Montht = Feb} −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗ −0.050∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Mar} 0.081∗∗∗ 0.081∗∗∗ 0.081∗∗∗ 0.081∗∗∗ 0.081∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Apr} −0.002 −0.002 −0.002 −0.002 −0.002

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = May} 0.065∗∗∗ 0.065∗∗∗ 0.065∗∗∗ 0.065∗∗∗ 0.065∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Jun} 0.094∗∗∗ 0.094∗∗∗ 0.094∗∗∗ 0.094∗∗∗ 0.094∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Jul} 0.203∗∗∗ 0.203∗∗∗ 0.203∗∗∗ 0.203∗∗∗ 0.203∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Aug} 0.098∗∗∗ 0.098∗∗∗ 0.098∗∗∗ 0.098∗∗∗ 0.098∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
1{Montht = Sep} 0.048∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.048∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Oct} 0.079∗∗∗ 0.080∗∗∗ 0.080∗∗∗ 0.079∗∗∗ 0.079∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Nov} 0.095∗∗∗ 0.095∗∗∗ 0.095∗∗∗ 0.095∗∗∗ 0.095∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
1{Montht = Dec} 0.161∗∗∗ 0.161∗∗∗ 0.161∗∗∗ 0.161∗∗∗ 0.161∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Y eart 0.041∗∗∗ 0.041∗∗∗ 0.062∗∗∗ 0.088∗∗∗ 0.105∗∗∗

(0.001) (0.001) (0.002) (0.007) (0.027)
Y eart × 1{Agei = [50; 59]} −0.009∗∗ −0.008∗ −0.071+

(0.003) (0.003) (0.038)
Y eart × 1{Agei = [60; 69]} −0.026∗∗∗ −0.026∗∗∗ −0.056+

(0.003) (0.003) (0.029)
Y eart × 1{Agei = [70; 79]} −0.043∗∗∗ −0.046∗∗∗ −0.050+

(0.003) (0.003) (0.028)
Y eart × 1{Incomei =]7, 091; 20, 261]} −0.007 −0.023

(0.007) (0.027)
Y eart × 1{Incomei =]20, 261; 40, 522]} −0.036∗∗∗ −0.054∗

(0.007) (0.027)
Y eart × 1{Incomei =]40, 522; 80, 640]} −0.054∗∗∗ −0.071∗

(0.007) (0.028)
Y eart × 1{Incomei => 80, 640} −0.070∗∗∗ −0.167∗∗∗

(0.010) (0.036)
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]7, 091; 20, 261]} 0.064

(0.039)
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]7, 091; 20, 261]} 0.028

(0.030)
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]7, 091; 20, 261]} 0.0002

(0.029)
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]20, 261; 40, 522]} 0.065+

(0.039)
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]20, 261; 40, 522]} 0.033

(0.030)
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]20, 261; 40, 522]} 0.001

(0.029)
Y eart × 1{Agei = [50; 59]} × 1{Incomei =]40, 522; 80, 640]} 0.058

(0.040)
Y eart × 1{Agei = [60; 69]} × 1{Incomei =]40, 522; 80, 640]} 0.032

(0.031)
Y eart × 1{Agei = [70; 79]} × 1{Incomei =]40, 522; 80, 640]} 0.005

(0.030)
Y eart × 1{Agei = [50; 59]} × 1{Incomei > 80, 640} 0.145∗∗

(0.051)
Y eart × 1{Agei = [60; 69]} × 1{Incomei > 80, 640} 0.106∗∗

(0.039)
Y eart × 1{Agei = [70; 79]} × 1{Incomei > 80, 640} 0.108∗∗

(0.040)
Individual FE Yes Yes Yes Yes Yes
Observations 2,315,002 2,315,002 2,315,002 2,315,002 2,315,002
R2 0.629 0.630 0.630 0.630 0.630
Adjusted R2 0.620 0.620 0.621 0.621 0.621
Residual Std. Error 0.689 0.689 0.689 0.688 0.688

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Cluster robust standard errors in (); Errors clustered by person
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Table 12: Impact of age on consumption expenditures
Dependent variable:
log(Expenseit)

FE FE FE FE
(1) (2) (3) (4)

Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −0.094∗∗∗ −0.128∗∗∗ −0.128∗∗∗ −0.128∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −0.105∗∗∗ −0.126∗∗∗ −0.126∗∗∗ −0.126∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −0.131∗∗∗ −0.124∗∗∗ −0.124∗∗∗ −0.124∗∗∗
(0.005) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −0.188∗∗∗ −0.151∗∗∗ −0.151∗∗∗ −0.151∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −0.282∗∗∗ −0.316∗∗∗ −0.316∗∗∗ −0.316∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −0.306∗∗∗ −0.326∗∗∗ −0.326∗∗∗ −0.326∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −0.399∗∗∗ −0.393∗∗∗ −0.393∗∗∗ −0.393∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −0.491∗∗∗ −0.454∗∗∗ −0.454∗∗∗ −0.454∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −0.182∗∗∗ −0.216∗∗∗ −0.216∗∗∗ −0.216∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −0.187∗∗∗ −0.208∗∗∗ −0.208∗∗∗ −0.208∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −0.250∗∗∗ −0.243∗∗∗ −0.243∗∗∗ −0.243∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −0.305∗∗∗ −0.268∗∗∗ −0.268∗∗∗ −0.268∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) 0.032∗∗∗ −0.001 −0.001 −0.001
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) 0.002 −0.019∗∗ −0.018∗∗ −0.018∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) −0.065∗∗∗ −0.058∗∗∗ −0.058∗∗∗ −0.058∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −0.132∗∗∗ −0.095∗∗∗ −0.095∗∗∗ −0.095∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) 0.079∗∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.045∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) 0.067∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.047∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) −0.003 0.003 0.003 0.003
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) −0.104∗∗∗ −0.067∗∗∗ −0.067∗∗∗ −0.067∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) 0.083∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.049∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) 0.064∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.043∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) −0.030∗∗∗ −0.023∗∗∗ −0.023∗∗∗ −0.023∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) −0.099∗∗∗ −0.062∗∗∗ −0.062∗∗∗ −0.062∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) 0.067∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.034∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) 0.038∗∗∗ 0.018∗∗ 0.018∗∗ 0.018∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) −0.032∗∗∗ −0.025∗∗∗ −0.025∗∗∗ −0.025∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) −0.077∗∗∗ −0.040∗∗∗ −0.040∗∗∗ −0.040∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −0.052∗∗∗ −0.085∗∗∗ −0.085∗∗∗ −0.085∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −0.062∗∗∗ −0.083∗∗∗ −0.083∗∗∗ −0.083∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −0.116∗∗∗ −0.110∗∗∗ −0.110∗∗∗ −0.110∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −0.168∗∗∗ −0.131∗∗∗ −0.131∗∗∗ −0.131∗∗∗
(0.007) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) −0.020∗ −0.054∗∗∗ −0.054∗∗∗ −0.054∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) −0.042∗∗∗ −0.063∗∗∗ −0.063∗∗∗ −0.063∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −0.097∗∗∗ −0.090∗∗∗ −0.090∗∗∗ −0.090∗∗∗
(0.006) (0.006) (0.006) (0.006)

Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −0.170∗∗∗ −0.133∗∗∗ −0.133∗∗∗ −0.133∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −0.095∗∗∗ −0.129∗∗∗ −0.129∗∗∗ −0.129∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −0.105∗∗∗ −0.125∗∗∗ −0.125∗∗∗ −0.125∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −0.170∗∗∗ −0.163∗∗∗ −0.163∗∗∗ −0.163∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −0.249∗∗∗ −0.212∗∗∗ −0.212∗∗∗ −0.212∗∗∗
(0.008) (0.008) (0.008) (0.008)

Aftert × 1{Montht = Jan21} × 1{Agei = [20; 49]}(∆Jan21,[20;49] + δJan21,[20;49]) −0.238∗∗∗ −0.296∗∗∗ −0.296∗∗∗ −0.296∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Jan21} × 1{Agei = [50; 59]}(∆Jan21,[50;59] + δJan21,[50;59]) −0.261∗∗∗ −0.296∗∗∗ −0.296∗∗∗ −0.296∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jan21} × 1{Agei = [60; 69]}(∆Jan21,[60;69] + δJan21,[60;69]) −0.348∗∗∗ −0.337∗∗∗ −0.337∗∗∗ −0.337∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Jan21} × 1{Agei = [70; 79]}(∆Jan21,[70;79] + δJan21,[70;79]) −0.462∗∗∗ −0.399∗∗∗ −0.398∗∗∗ −0.398∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Feb21} × 1{Agei = [20; 49]}(∆Feb21,[20;49] + δFeb21,[20;49]) −0.152∗∗∗ −0.210∗∗∗ −0.210∗∗∗ −0.210∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Feb21} × 1{Agei = [50; 59]}(∆Feb21,[50;59] + δFeb21,[50;59]) −0.178∗∗∗ −0.213∗∗∗ −0.213∗∗∗ −0.213∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Feb21} × 1{Agei = [60; 69]}(∆Feb21,[60;69] + δFeb21,[60;69]) −0.264∗∗∗ −0.252∗∗∗ −0.252∗∗∗ −0.252∗∗∗
(0.006) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Feb21} × 1{Agei = [70; 79]}(∆Feb21,[70;79] + δFeb21,[70;79]) −0.320∗∗∗ −0.257∗∗∗ −0.257∗∗∗ −0.257∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Mar21} × 1{Agei = [20; 49]}(∆Mar21,[20;49] + δMar21,[20;49]) −0.026∗∗ −0.083∗∗∗ −0.083∗∗∗ −0.083∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Mar21} × 1{Agei = [50; 59]}(∆Mar21,[50;59] + δMar21,[50;59]) −0.048∗∗∗ −0.083∗∗∗ −0.083∗∗∗ −0.083∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Mar21} × 1{Agei = [60; 69]}(∆Mar21,[60;69] + δMar21,[60;69]) −0.110∗∗∗ −0.099∗∗∗ −0.099∗∗∗ −0.099∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Mar21} × 1{Agei = [70; 79]}(∆Mar21,[70;79] + δMar21,[70;79]) −0.162∗∗∗ −0.098∗∗∗ −0.098∗∗∗ −0.098∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Apr21} × 1{Agei = [20; 49]}(∆Apr21,[20;49] + δApr21,[20;49]) −0.008 −0.066∗∗∗ −0.066∗∗∗ −0.066∗∗∗
(0.008) (0.009) (0.009) (0.009)

Aftert × 1{Montht = Apr21} × 1{Agei = [50; 59]}(∆Apr21,[50;59] + δApr21,[50;59]) −0.041∗∗∗ −0.076∗∗∗ −0.076∗∗∗ −0.076∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Apr21} × 1{Agei = [60; 69]}(∆Apr21,[60;69] + δApr21,[60;69]) −0.095∗∗∗ −0.084∗∗∗ −0.084∗∗∗ −0.084∗∗∗
(0.007) (0.007) (0.007) (0.007)

Aftert × 1{Montht = Apr21} × 1{Agei = [70; 79]}(∆Apr21,[70;79] + δApr21,[70;79]) −0.151∗∗∗ −0.087∗∗∗ −0.087∗∗∗ −0.087∗∗∗
(0.008) (0.009) (0.009) (0.009)

Month FE Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Age Group×Y eart (Ψit) No Yes Yes Yes
Income Group ×Y eart (Ψit) No No Yes Yes
Age Group × Income Group ×Y eart (Ψit) No No No Yes
Observations 2,315,002 2,315,002 2,315,002 2,315,002
R2 0.633 0.633 0.633 0.633
Adjusted R2 0.623 0.623 0.624 0.624
Residual Std. Error 0.686 0.686 0.686 0.686

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
Cluster robust standard errors in (); Errors clustered by person



Table 13: Impact of age on consumption expenditures by income group.
Dependent variable:
Log(Expensesit)

20, 061 ≤ ]20, 061; 40, 522] ≥ 40, 522

(1) (2) (3)
Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −0.100∗∗∗ −0.148∗∗∗ −0.153∗∗∗

(0.011) (0.010) (0.029)
Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −0.082∗∗∗ −0.147∗∗∗ −0.178∗∗∗

(0.010) (0.007) (0.017)
Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −0.088∗∗∗ −0.139∗∗∗ −0.185∗∗∗

(0.009) (0.009) (0.013)
Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −0.110∗∗∗ −0.185∗∗∗ −0.237∗∗∗

(0.009) (0.011) (0.018)
Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −0.270∗∗∗ −0.344∗∗∗ −0.384∗∗∗

(0.013) (0.010) (0.031)
Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −0.242∗∗∗ −0.362∗∗∗ −0.444∗∗∗

(0.010) (0.009) (0.020)
Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −0.303∗∗∗ −0.451∗∗∗ −0.495∗∗∗

(0.010) (0.010) (0.015)
Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −0.362∗∗∗ −0.555∗∗∗ −0.584∗∗∗

(0.010) (0.014) (0.020)
Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −0.177∗∗∗ −0.241∗∗∗ −0.253∗∗∗

(0.013) (0.010) (0.029)
Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −0.136∗∗∗ −0.238∗∗∗ −0.303∗∗∗

(0.010) (0.008) (0.019)
Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −0.172∗∗∗ −0.275∗∗∗ −0.354∗∗∗

(0.009) (0.009) (0.015)
Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −0.219∗∗∗ −0.309∗∗∗ −0.378∗∗∗

(0.010) (0.012) (0.020)
Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) 0.016 −0.015 −0.005

(0.012) (0.010) (0.030)
Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) 0.009 −0.022∗∗ −0.094∗∗∗

(0.010) (0.008) (0.019)
Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) −0.020∗ −0.080∗∗∗ −0.109∗∗∗

(0.009) (0.009) (0.014)
Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −0.080∗∗∗ −0.101∗∗∗ −0.154∗∗∗

(0.010) (0.012) (0.020)
Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) 0.085∗∗∗ 0.029∗ −0.077∗

(0.014) (0.012) (0.030)
Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) 0.066∗∗∗ 0.046∗∗∗ −0.037+

(0.012) (0.009) (0.020)
Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) 0.042∗∗∗ −0.022∗ −0.044∗∗

(0.011) (0.011) (0.015)
Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) −0.035∗∗ −0.085∗∗∗ −0.135∗∗∗

(0.011) (0.013) (0.020)
Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) 0.038∗∗ 0.057∗∗∗ 0.024

(0.013) (0.010) (0.030)
Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) 0.024∗ 0.058∗∗∗ 0.029

(0.011) (0.008) (0.021)
Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) 0.006 −0.042∗∗∗ −0.051∗∗∗

(0.009) (0.010) (0.015)
Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) −0.032∗∗ −0.082∗∗∗ −0.139∗∗∗

(0.010) (0.012) (0.021)
Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) 0.038∗∗ 0.029∗∗ 0.022

(0.013) (0.010) (0.030)
Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) 0.019+ 0.022∗∗ −0.014

(0.011) (0.008) (0.020)
Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) 0.002 −0.032∗∗∗ −0.073∗∗∗

(0.010) (0.009) (0.014)
Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) −0.026∗ −0.050∗∗∗ −0.074∗∗∗

(0.011) (0.012) (0.020)
Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −0.063∗∗∗ −0.094∗∗∗ −0.144∗∗∗

(0.013) (0.011) (0.031)
Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −0.080∗∗∗ −0.074∗∗∗ −0.123∗∗∗

(0.011) (0.009) (0.019)
Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −0.089∗∗∗ −0.116∗∗∗ −0.150∗∗∗

(0.010) (0.010) (0.015)
Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −0.138∗∗∗ −0.107∗∗∗ −0.175∗∗∗

(0.011) (0.013) (0.020)
Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) 0.001 −0.089∗∗∗ −0.117∗∗∗

(0.013) (0.011) (0.034)
Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) −0.045∗∗∗ −0.063∗∗∗ −0.125∗∗∗

(0.011) (0.009) (0.020)
Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −0.063∗∗∗ −0.096∗∗∗ −0.145∗∗∗

(0.010) (0.010) (0.015)
Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −0.106∗∗∗ −0.156∗∗∗ −0.192∗∗∗

(0.011) (0.013) (0.021)
Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −0.096∗∗∗ −0.153∗∗∗ −0.146∗∗∗

(0.014) (0.011) (0.032)
Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −0.110∗∗∗ −0.138∗∗∗ −0.138∗∗∗

(0.012) (0.009) (0.020)
Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −0.126∗∗∗ −0.184∗∗∗ −0.216∗∗∗

(0.010) (0.010) (0.015)
Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −0.184∗∗∗ −0.221∗∗∗ −0.284∗∗∗

(0.012) (0.013) (0.021)
Aftert × 1{Montht = Jan21} × 1{Agei = [20; 49]}(∆Jan21,[20;49] + δJan21,[20;49]) −0.270∗∗∗ −0.298∗∗∗ −0.413∗∗∗

(0.016) (0.012) (0.037)
Aftert × 1{Montht = Jan21} × 1{Agei = [50; 59]}(∆Jan21,[50;59] + δJan21,[50;59]) −0.267∗∗∗ −0.304∗∗∗ −0.360∗∗∗

(0.013) (0.009) (0.022)
Aftert × 1{Montht = Jan21} × 1{Agei = [60; 69]}(∆Jan21,[60;69] + δJan21,[60;69]) −0.303∗∗∗ −0.360∗∗∗ −0.384∗∗∗

(0.012) (0.012) (0.017)
Aftert × 1{Montht = Jan21} × 1{Agei = [70; 79]}(∆Jan21,[70;79] + δJan21,[70;79]) −0.382∗∗∗ −0.408∗∗∗ −0.441∗∗∗

(0.013) (0.016) (0.023)
Aftert × 1{Montht = Feb21} × 1{Agei = [20; 49]}(∆Feb21,[20;49] + δFeb21,[20;49]) −0.155∗∗∗ −0.241∗∗∗ −0.308∗∗∗

(0.015) (0.012) (0.038)
Aftert × 1{Montht = Feb21} × 1{Agei = [50; 59]}(∆Feb21,[50;59] + δFeb21,[50;59]) −0.150∗∗∗ −0.239∗∗∗ −0.295∗∗∗

(0.013) (0.009) (0.022)
Aftert × 1{Montht = Feb21} × 1{Agei = [60; 69]}(∆Feb21,[60;69] + δFeb21,[60;69]) −0.175∗∗∗ −0.297∗∗∗ −0.352∗∗∗

(0.011) (0.011) (0.017)
Aftert × 1{Montht = Feb21} × 1{Agei = [70; 79]}(∆Feb21,[70;79] + δFeb21,[70;79]) −0.216∗∗∗ −0.293∗∗∗ −0.345∗∗∗

(0.013) (0.015) (0.023)
Aftert × 1{Montht = Mar21} × 1{Agei = [20; 49]}(∆Mar21,[20;49] + δMar21,[20;49]) −0.026+ −0.118∗∗∗ −0.178∗∗∗

(0.015) (0.012) (0.038)
Aftert × 1{Montht = Mar21} × 1{Agei = [50; 59]}(∆Mar21,[50;59] + δMar21,[50;59]) −0.022 −0.104∗∗∗ −0.206∗∗∗

(0.013) (0.010) (0.023)
Aftert × 1{Montht = Mar21} × 1{Agei = [60; 69]}(∆Mar21,[60;69] + δMar21,[60;69]) −0.038∗∗∗ −0.128∗∗∗ −0.191∗∗∗

(0.012) (0.012) (0.017)
Aftert × 1{Montht = Mar21} × 1{Agei = [70; 79]}(∆Mar21,[70;79] + δMar21,[70;79]) −0.063∗∗∗ −0.119∗∗∗ −0.190∗∗∗

(0.013) (0.015) (0.024)
Aftert × 1{Montht = Apr21} × 1{Agei = [20; 49]}(∆Apr21,[20;49] + δApr21,[20;49]) −0.019 −0.097∗∗∗ −0.117∗∗

(0.016) (0.012) (0.039)
Aftert × 1{Montht = Apr21} × 1{Agei = [50; 59]}(∆Apr21,[50;59] + δApr21,[50;59]) −0.045∗∗∗ −0.088∗∗∗ −0.135∗∗∗

(0.013) (0.010) (0.023)
Aftert × 1{Montht = Apr21} × 1{Agei = [60; 69]}(∆Apr21,[60;69] + δApr21,[60;69]) −0.049∗∗∗ −0.099∗∗∗ −0.134∗∗∗

(0.012) (0.012) (0.017)
Aftert × 1{Montht = Apr21} × 1{Agei = [70; 79]}(∆Apr21,[70;79] + δApr21,[70;79]) −0.054∗∗∗ −0.110∗∗∗ −0.166∗∗∗

(0.013) (0.016) (0.024)
Month FE Yes Yes Yes
Individual FE Yes Yes Yes
Age Group×Y eart (Ψit) Yes Yes Yes
Groups 25838 25556 7000
Observations 1,018,346 1,017,717 278,939
R2 0.607 0.536 0.537
Adjusted R2 0.597 0.524 0.525
Residual Std. Error 0.717 0.658 0.668

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
All columns estimated with person fixed effects

Cluster robust standard errors in (); Errors clustered by person



Table 14: Impact of age and comorbidity on consumption expenditures (maps to figure 7)
Dependent variable:
log(Expenseit)

Comorbidity = 0 Comorbidity = 1

(1) (2)
Aftert × 1{Montht = Mar20} × 1{Agei = [20; 49]}(∆Mar20,[20;49] + δMar20,[20;49]) −0.070∗∗∗ −0.099∗∗∗

(0.007) (0.016)
Aftert × 1{Montht = Mar20} × 1{Agei = [50; 59]}(∆Mar20,[50;59] + δMar20,[50;59]) −0.070∗∗∗ −0.072∗∗∗

(0.006) (0.013)
Aftert × 1{Montht = Mar20} × 1{Agei = [60; 69]}(∆Mar20,[60;69] + δMar20,[60;69]) −0.060∗∗∗ −0.046∗∗∗

(0.005) (0.012)
Aftert × 1{Montht = Mar20} × 1{Agei = [70; 79]}(∆Mar20,[70;79] + δMar20,[70;79]) −0.080∗∗∗ −0.067∗∗∗

(0.007) (0.014)
Aftert × 1{Montht = Apr20} × 1{Agei = [20; 49]}(∆Apr20,[20;49] + δApr20,[20;49]) −0.255∗∗∗ −0.332∗∗∗

(0.008) (0.018)
Aftert × 1{Montht = Apr20} × 1{Agei = [50; 59]}(∆Apr20,[50;59] + δApr20,[50;59]) −0.268∗∗∗ −0.317∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = Apr20} × 1{Agei = [60; 69]}(∆Apr20,[60;69] + δApr20,[60;69]) −0.323∗∗∗ −0.375∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = Apr20} × 1{Agei = [70; 79]}(∆Apr20,[70;79] + δApr20,[70;79]) −0.381∗∗∗ −0.403∗∗∗

(0.008) (0.016)
Aftert × 1{Montht = May20} × 1{Agei = [20; 49]}(∆May20,[20;49] + δMay20,[20;49]) −0.148∗∗∗ −0.173∗∗∗

(0.008) (0.018)
Aftert × 1{Montht = May20} × 1{Agei = [50; 59]}(∆May20,[50;59] + δMay20,[50;59]) −0.137∗∗∗ −0.174∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = May20} × 1{Agei = [60; 69]}(∆May20,[60;69] + δMay20,[60;69]) −0.160∗∗∗ −0.206∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = May20} × 1{Agei = [70; 79]}(∆May20,[70;79] + δMay20,[70;79]) −0.180∗∗∗ −0.207∗∗∗

(0.007) (0.015)
Aftert × 1{Montht = Jun20} × 1{Agei = [20; 49]}(∆Jun20,[20;49] + δJun20,[20;49]) 0.066∗∗∗ 0.042∗

(0.008) (0.018)
Aftert × 1{Montht = Jun20} × 1{Agei = [50; 59]}(∆Jun20,[50;59] + δJun20,[50;59]) 0.052∗∗∗ 0.019

(0.006) (0.013)
Aftert × 1{Montht = Jun20} × 1{Agei = [60; 69]}(∆Jun20,[60;69] + δJun20,[60;69]) 0.025∗∗∗ −0.024+

(0.006) (0.013)
Aftert × 1{Montht = Jun20} × 1{Agei = [70; 79]}(∆Jun20,[70;79] + δJun20,[70;79]) −0.009 −0.025

(0.007) (0.015)
Aftert × 1{Montht = Jul20} × 1{Agei = [20; 49]}(∆Jul20,[20;49] + δJul20,[20;49]) 0.110∗∗∗ 0.103∗∗∗

(0.009) (0.020)
Aftert × 1{Montht = Jul20} × 1{Agei = [50; 59]}(∆Jul20,[50;59] + δJul20,[50;59]) 0.116∗∗∗ 0.091∗∗∗

(0.007) (0.016)
Aftert × 1{Montht = Jul20} × 1{Agei = [60; 69]}(∆Jul20,[60;69] + δJul20,[60;69]) 0.082∗∗∗ 0.066∗∗∗

(0.007) (0.016)
Aftert × 1{Montht = Jul20} × 1{Agei = [70; 79]}(∆Jul20,[70;79] + δJul20,[70;79]) 0.013+ 0.034∗

(0.008) (0.016)
Aftert × 1{Montht = Aug20} × 1{Agei = [20; 49]}(∆Aug20,[20;49] + δAug20,[20;49]) 0.109∗∗∗ 0.137∗∗∗

(0.008) (0.017)
Aftert × 1{Montht = Aug20} × 1{Agei = [50; 59]}(∆Aug20,[50;59] + δAug20,[50;59]) 0.108∗∗∗ 0.109∗∗∗

(0.006) (0.015)
Aftert × 1{Montht = Aug20} × 1{Agei = [60; 69]}(∆Aug20,[60;69] + δAug20,[60;69]) 0.052∗∗∗ 0.058∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = Aug20} × 1{Agei = [70; 79]}(∆Aug20,[70;79] + δAug20,[70;79]) 0.018∗ 0.039∗

(0.007) (0.015)
Aftert × 1{Montht = Sep20} × 1{Agei = [20; 49]}(∆Sep20,[20;49] + δSep20,[20;49]) 0.098∗∗∗ 0.099∗∗∗

(0.008) (0.017)
Aftert × 1{Montht = Sep20} × 1{Agei = [50; 59]}(∆Sep20,[50;59] + δSep20,[50;59]) 0.084∗∗∗ 0.077∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = Sep20} × 1{Agei = [60; 69]}(∆Sep20,[60;69] + δSep20,[60;69]) 0.053∗∗∗ 0.039∗∗

(0.006) (0.013)
Aftert × 1{Montht = Sep20} × 1{Agei = [70; 79]}(∆Sep20,[70;79] + δSep20,[70;79]) 0.045∗∗∗ 0.039∗

(0.007) (0.015)
Aftert × 1{Montht = Oct20} × 1{Agei = [20; 49]}(∆Oct20,[20;49] + δOct20,[20;49]) −0.023∗∗ −0.010

(0.008) (0.017)
Aftert × 1{Montht = Oct20} × 1{Agei = [50; 59]}(∆Oct20,[50;59] + δOct20,[50;59]) −0.016∗ −0.021

(0.006) (0.014)
Aftert × 1{Montht = Oct20} × 1{Agei = [60; 69]}(∆Oct20,[60;69] + δOct20,[60;69]) −0.033∗∗∗ −0.035∗∗

(0.006) (0.014)
Aftert × 1{Montht = Oct20} × 1{Agei = [70; 79]}(∆Oct20,[70;79] + δOct20,[70;79]) −0.047∗∗∗ −0.048∗∗

(0.008) (0.015)
Aftert × 1{Montht = Nov20} × 1{Agei = [20; 49]}(∆Nov20,[20;49] + δNov20,[20;49]) 0.013 −0.002

(0.008) (0.017)
Aftert × 1{Montht = Nov20} × 1{Agei = [50; 59]}(∆Nov20,[50;59] + δNov20,[50;59]) 0.007 −0.023

(0.006) (0.014)
Aftert × 1{Montht = Nov20} × 1{Agei = [60; 69]}(∆Nov20,[60;69] + δNov20,[60;69]) −0.014∗ −0.014

(0.006) (0.014)
Aftert × 1{Montht = Nov20} × 1{Agei = [70; 79]}(∆Nov20,[70;79] + δNov20,[70;79]) −0.049∗∗∗ −0.056∗∗∗

(0.008) (0.015)
Aftert × 1{Montht = Dec20} × 1{Agei = [20; 49]}(∆Dec20,[20;49] + δDec20,[20;49]) −0.067∗∗∗ −0.053∗∗

(0.008) (0.017)
Aftert × 1{Montht = Dec20} × 1{Agei = [50; 59]}(∆Dec20,[50;59] + δDec20,[50;59]) −0.061∗∗∗ −0.055∗∗∗

(0.007) (0.015)
Aftert × 1{Montht = Dec20} × 1{Agei = [60; 69]}(∆Dec20,[60;69] + δDec20,[60;69]) −0.083∗∗∗ −0.110∗∗∗

(0.006) (0.014)
Aftert × 1{Montht = Dec20} × 1{Agei = [70; 79]}(∆Dec20,[70;79] + δDec20,[70;79]) −0.121∗∗∗ −0.165∗∗∗

(0.008) (0.016)
Month FE Yes Yes
Individual FE Yes Yes
Age Group×Y eart (Ψit) Yes Yes
Income Group ×Y eart (Ψit) Yes Yes
Age Group × Income Group ×Y eart (Ψit) Yes Yes
Observations 1,972,669 342,333
R2 0.631 0.568
Adjusted R2 0.621 0.557
Residual Std. Error 0.696 0.635

Note: + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
Cluster robust standard errors in (); Errors clustered by person
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