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ABSTRACT

Influenza and air pollution are significant public health risks with large economic consequences 
shared across the globe. The common etiological pathways through which they harm health 
present an interesting case of compounding risk via interacting externalities. Using regional and 
temporal variation in pollution and disease transmission, we find exposure to more air pollution 
significantly increases influenza hospitalizations. By exploiting the random deviations in 
influenza vaccine effectiveness over time, we show high influenza vaccine effectiveness 
neutralizes this relationship. This suggests seemingly disparate policy actions of pollution control 
and expanded vaccination provide greater returns than found when studied in isolation.
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Influenza (flu) and air pollution are both significant public health risks that impact nations around the world.
The flu causes an estimated 3-5 million severe cases per year and nearly half a million deaths (Lambert & Fauci
2010, Iuliano et al. 2018), and pollution causes 4.5 million annual deaths (Cohen et al. 2017), with combined
annual economic costs estimated to exceed $US 800 billion in the U.S. alone (Putri et al. 2018, Tschofen, Azevedo
& Muller 2019). While public health policies to address these issues are often considered in isolation, both share
etiological pathways through which they harm human health. We show these externalities interact to influence
population health risks, and argue that the stochastic nature of influenza severity and pollution shocks can make
public health efforts to combat each complements to one another.

Interactions between the flu and pollution also present an economic case of compounding risk from inter-
acting externalities. Influenza is an infectious disease whereby the actions of one infected individual impose
negative externalities on others by increasing risk of infection, while air pollution is a negative externality of eco-
nomic activity. Our analysis demonstrates that policies to address these externalities have significant interactive
effects: the flu vaccine can protect against certain harms from air pollution, and reduced levels of air pollution
lessen the harmful effects of influenza exposure. Thus, the seemingly disparate policy actions of pollution control
and expanded vaccination may jointly provide greater returns than when studied in isolation.

We demonstrate this interaction in two steps. First, we use hospital data from 2007-2017 across 21 U.S. states
to expand upon the cross-sectional epidemiological literature1 to establish a causal relationship between air pol-
lution and flu cases.2 We use patient-level data on inpatient hospitalizations, which allows us to focus on cases
limited to influenza. We estimate models with spatial and temporal fixed effects to control for numerous unob-
servable factors. Plausibly exogenous variation in pollution levels within county by quarter-year periods, con-
trolling for seasonality and weather, provides identification. We find pollution significantly increases flu inpa-
tient hospitalizations; a one-standard-deviation increase in the monthly Air Quality Index (10.9-unit increase in
our data) amounts to approximately 10.2% additional flu-related inpatient hospitalizations in the U.S. during
influenza season.

Second, we exploit data on influenza vaccine effectiveness to explore how the vaccine moderates the estimated
relationship above. Effectiveness of the flu vaccine varies from year to year: producers forecast viral strain match
months ahead of time, and antigenic drift or shift induces random deviations in realized match quality.3 This
makes the random draw of the viral match orthogonal to unobserved determinants of health and air pollution
levels, allowing us to identify a causal relationship between the vaccine and health harms from pollution. The
orthogonality of vaccine effectiveness also offers an additional test that pollution has a causal effect on flu admis-
sions. If a vaccine designed specifically to protect against the flu diminishes the coefficient on pollution, then it

1See, for example, Brauer et al. (2002), Wong et al. (2009), Chen et al. (2010), Liang et al. (2014) and the important economic history paper
by Clay, Lewis & Severnini (2018). In a study of the Spanish flu in 1918, Clay, Lewis & Severnini (2018) show cities with higher coal-fired
power generating capacity saw higher mortality rates, potentially through exposure to higher air pollution.

2Air pollution could affect influenza hospitalizations via both susceptibility and exposure. Like smoking (Han et al. 2019), air pollution can
impair the respiratory functioning of patients, e.g., by damaging the respiratory epithelium, thereby facilitating the progression of influenza
virus beyond the epithelial barrier into the lungs (Diamond, Legarda & Ryan 2000, Jaspers et al. 2005, Ciencewicki & Jaspers 2007, Rivas-
Santiago et al. 2015). Existing medical research finds exposing in vitro respiratory epithelial cells to air pollution increases susceptibility
and penetration of influenza (Jaspers et al. 2005), and experimental exposure of mice to air pollution before influenza infections increases
morbidity and mortality (Hahon et al. 1985, Lee et al. 2014). Like humidity and temperature (Lowen et al. 2007, Shaman & Kohn 2009,
Shaman et al. 2010, Ijaz et al. 1985, Casanova et al. 2010), air pollution particles could also impact the airborne survival of viruses outside the
body (Ijaz et al. 1985, Tellier 2009, Chen et al. 2010, Khare & Marr 2015, Lou et al. 2017, Wolkoff 2018) and thus increase the probability of
disease transmission.

3Other papers using similar variation include Ward (2014) and White (2019).
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must be the case that pollution causes influenza hospitalizations.
When we include an interaction between air pollution and vaccine effectiveness, we find the flu vaccine of-

fers significant protection from influenza-related costs of pollution. A vaccine effectiveness of 44%, close to the
highest value in our sample, fully neutralizes the relationship between pollution and flu hospitalizations. While
this measure of vaccine effectiveness is plausibly exogenous, the nature of its construction allows us to view a
percentage change in effectiveness as an equivalent change in the more policy relevant lever of vaccine take-up.
Our estimate implies that, at the average vaccine effectiveness of 37%, a 19% increase in vaccine take-up would
have the equivalent neutralizing effect.

We also explore results by race and ethnicity. Both of our main findings – that air pollution affects flu hospital-
izations and vaccine effectiveness moderates this relationship – are robust across these dimensions. Combined
with evidence of significant differences in flu incidence and severity by race (e.g. Quinn et al. 2011), our re-
sults highlight that the well-established differences in ambient pollution concentrations across racial and ethnic
groups (e.g. Banzhaf, Ma & Timmins 2019, Colmer et al. 2020, Currie, Voorheis & Walker 2020) may serve as
an important mechanism driving disparities in influenza outcomes. Moreover, since flu vaccines protect against
pollution-induced harms, the private and external benefits from vaccines is considerably higher in communities
of color disproportionately exposed to poor air quality.

An important feature of our context is that the spread of influenza and pollution are externalities, in which
risks to human harm are stochastic. As externalities, they justify government intervention in the form of policies
to increase vaccine take-up and to improve air quality.4 Insofar as pollution and flu risks have independent varia-
tion, policies to address them will be complementary; the variability in pollution levels and vaccine effectiveness
that enables our empirical identification ensures that this is true. As such, public health policies, both medical
and environmental, can play an important role in hedging against these compounding health risks and their as-
sociated economic costs. A back of the envelope calculation suggests a 10% (3.5 AQI points) reduction in the AQI
in an historically ineffective vaccine year (17% effectiveness) with an average vaccine take-up would avert 8.2% of
all influenza-associated hospitalizations across the U.S. Meanwhile a 10% improvement in vaccine take-up at the
average vaccine effectiveness (or, equivalently, a 10% improvement in vaccine effectiveness at the average vaccine
take-up) in a historically polluted year (38.2 AQI) would avert 13.2% of influenza hospitalizations.

I. Data

Hospitalizations: We use patient-level data on inpatient hospitalizations from the Health Care and Utilization
Project (HCUP 2018b). We focus on severe cases specifically limited to influenza using patient level information
on diagnosed diseases per International Classification of Diseases (ICD) codes.5 We use data from 2007 to 2017,
for which we also have detailed vaccine effectiveness data available. This covers 21 U.S. states, with an average
of 5.5 years per state (see Table A.1 in Appendix A.1 for details on data availability by state and year).

Our principal outcome is the count of inpatient admissions per county-year-month where the ICD code indi-

4A similar logic applies to the more difficult task of improving vaccine effectiveness. In that case, policies are more likely to utilize the
standard push and pull mechanisms used to overcome the underinvestment problem that arises due to the public good nature of scientific
knowledge (Kremer & Williams 2010).

5We exclude patients whose zip code is from a different state than the hospital in which they are treated.
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cates influenza.6 Given the presence of primary and secondary diagnosis codes, we explore three possible ways
for classifying flu admissions: (i) limit to admissions where the only diagnosis is influenza (most restrictive);
(ii) limit to where any diagnosis is influenza (least restrictive); and (iii) limit to admissions where the primary
diagnosis is influenza. The third option reflects a middle ground and is our baseline outcome, and we present
results using the other outcomes as well.

We focus on the influenza season (October to March), but also explore results extending the season in Ap-
pendix A.2. Figure 1a shows the seasonality of inpatient hospitalizations in our data, which matches closely
with general influenza-like illnesses reported by the Centers for Disease Control and Prevention (CDC) (see
Table A.1 in Appendix A.1). Based on month of admission and patient zip code, we aggregate hospitalization
data to the county-year-month level and assign a zero value to counties in months with no reported influenza
admission.7 During the influenza season from October to March, 54% of county-year-months have no influenza-
related hospital admissions in the HCUP data. Our results are robust to inclusion or exclusion of zero valued
county-year-months.

As a falsification test, we use primary ICD codes associated with osteoarthritis as an outcome variable, which
is unlikely to be affected by air quality and influenza.8 In Appendix A.2, we use outpatient data from emergency
departments (HCUP 2018a) instead of the inpatient data, with the same strategy of counting patients with a
primary diagnosis of influenza as above.

Air quality: We combine hospital admission data with air pollution readings of local ground monitors across
the U.S. As our measure of pollution, we use the U.S. Environmental Protection Agency’s (EPA 2020) Air Quality
Index (AQI) at the daily county level, which we aggregate to county-by-year-by-month to match hospitalization
outcomes.9 We focus on the AQI because it is a summary measure of overall air quality, based on the primary
criteria pollutants specified in the Clean Air Act.10

Weather controls: We use monthly weather averages from Xia et al. (2012), Mocko & NASA/GSFC/HSL (2012),
including temperature, specific humidity, wind speed, and precipitation at the 0.125 by 0.125 degree level, and
aggregate up to the county-by-year-by-month level.

Vaccine effectiveness and take-up: We obtain measures of vaccine effectiveness by influenza season and age
group from the studies underlying CDC estimates (CDC 2019), available beginning in the 2007/2008 season
(Belongia et al. 2011, Griffin et al. 2011, Treanor et al. 2012, Ohmit et al. 2014, McLean et al. 2015, Gaglani et al.
2016, Zimmerman et al. 2016, Jackson et al. 2017, Flannery et al. 2019, Rolfes et al. 2019, Flannery et al. 2020) with
the exception of the 2008/2009 season.11 These studies measure vaccine effectiveness as the vaccination-induced

6We use the Clinical Classifications Software (CCS) from the Agency for Healthcare Research and Quality (AHRQ) to classify relevant
influenza ICD codes. These are all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes: 487, 488; and, for the period from
October 2015 when the system was changed to ICD-10-CM, the following 3-digit ICD-10-CM codes: J09, J10, J11.

7We only do this for counties and year-months in states that report data in that given year.
8These are all 5-digit ICD codes grouped under the following 3-digit ICD-9-CM codes: 715, V134; and the following 3-digit ICD-10-CM

code: M15, M16, M17, M18, M19.
9The EPA pre-aggregates data to the daily county level in the case of multiple monitors per county. For missing county-year-months, we

take the average value of the adjacent counties in the same month. We winsorize the AQI at the top and bottom 1% for the main analysis,
and show robust results to both data cleaning choices in Appendix A.2.

10The AQI captures pollution from particulate matter (PM2.5 or PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide
(NO2) and ozone (O3). See Appendix A.1 for descriptive statistics. The EPA provides further details on AQI calculation in EPA (2018).

11The CDC measures vaccine effectiveness across influenza seasons rather than calendar years, as seasons overlap calendar years (e.g.,
October-December for year y and January-March for year y + 1.

3



0
2

4
6

8
Av

er
ag

e 
co

un
t o

f i
nfl

ue
nz

a 
ho

sp
ita

liz
at

io
ns

 p
er

 c
ou

nt
y

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Average hospitalizations per county

(a) Seasonality of hospitalizations

0
10

20
30

40
50

60

Age ≤8 Age 9-17 Age 19-49 Age 50-64 Age ≥ 65

Share in hospitalizations (%) Vaccine take-up (%)

(b) Hospitalizations and vaccination by age

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
Va

cc
in

e 
ef

fe
ct

ivn
es

s 
by

 a
ge

 g
ro

up

07/08 08/09 09/10 10/11 11/12 12/13 13/14 14/15 15/16 16/17 17/18
Influenza season

Weighted Age ≥ 65 Age 50-65 Age 18-49 Age 9-17 Age ≤ 8

(c) Age-specific vaccine effectiveness

Figure 1: Descriptive figures on influenza inpatient hospitalizations and vaccine take-up and effectiveness
Notes: The left Panel (a) shows the average count of influenza inpatient hospitalizations per county-month in the HCUP (2018b) data. The middle Panel (b)
shows the age group shares of influenza inpatient admissions, as well as age group specific vaccine take-up, both pooled across states and time. The right Panel
(c) plots (raw) vaccine effectiveness for each age group over influenza seasons (with the exception of 08/09 where no data is available). The thick black line plots
our weighted overall vaccine effectiveness.

percentage reduction in the odds of testing positive for influenza conditional on having influenza like symptoms.
One can interpret vaccine effectiveness as the approximate share of vaccinated people who do not test positive
but would have absent the vaccine.12

Figure 1c plots age-specific vaccine effectiveness against influenza seasons, showing variation both across
seasons and across age groups. Across seasons, the match between circulating viral strains and the vaccines
based on forecasts is imperfect and varies due to antigenic drift. Within a season, the match can be of different
quality for different age groups due to “original antigenic sin” (Francis 1960); the first influenza strain to which
the immune system is exposed imprints immunological memory with that specific strain, such that different
generations with different antigenic imprints respond differently to new vaccines and strains.

Vaccine effectiveness for two age groups, 65 years and older and 8 years and younger, is particularly important.
Figure 1b shows both hospitalization incidence and vaccination rates are highest for these two age groups.13 To
generate an overall measure of vaccine effectiveness, we weight age-specific vaccine effectiveness (Figure 1c) by
both vaccination rates by age groups and shares of influenza hospitalizations by age groups (Figure 1b). We
calculate influenza hospitalization shares directly from our HCUP data, and we use data on vaccination rates by
influenza season and age group from Lu et al. (2013), Schiller & Euler (2009), CDC (2009, 2015, 2020). Vaccine
effectiveness (V Es) in influenza season s weights raw vaccine effectiveness (V Eraw

sa ) in season s and age group
a by vaccination rates (V Ra) and hospitalization shares (HSa) as follows:

V Es =
1∑

a

(
V Ra ×HSa

) ∑
a

V Eraw
sa × V Ra ×HSa, (1)

12The odds ratio is approximately the relative risk due to a small number of influenza positive cases (Zhang & Kai 1998).
13We use these age cutoffs because they coincide with the common age cutoffs in vaccine effectiveness studies.
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where V Ra and HSa are simple averages across influenza seasons s, e.g. V Ra = 1
S

∑
s V Rsa, and the first term

1∑
a(V Ra×HSa)

ensures that the age weights sum to one such that overall vaccine take-up or hospitalizations do not
affect our values of vaccine effectiveness. As we use time-averaged hospitalization shares and vaccination rates,
vaccine effectiveness is the only source of temporal variation in our final measure. This provides a single overall
measure of vaccine effectiveness (V Es) we use for analysis.14 Figure 1c shows weighted vaccine effectiveness
ranges between 0.17 and 0.51 during our study period.

II. Empirical Strategy

We estimate the relationship between the count of influenza-related inpatient hospitalizations Hcym and the
lagged air quality index AQIcym−1 at the county c by year y by calendar month m level using a Poisson Pseudo
Maximum Likelihood (PPML) count data model15:

Hcym = exp(βAQIcym−1 +X
′
cymδ + γcsy + µym + εcym). (2)

We lag the AQI one month to capture exposure to air pollution before hospital admission. We control for a wide
variety of both regional and temporal controls. Our preferred specification includes county-by-season-by-year
(γcsy) and year-by-month fixed effects (µym). Since each influenza season s spans October through March and
overlaps calendar years y and y + 1, the county-by-season-by-year fixed effects (γcsy) are effectively county by
three-month period fixed effects.16 While county-by-season-by-year fixed effects capture the bulk of climatic
differences across counties, we also include weather controls Xcym to address the link between both influenza
and weather (temperature and humidity can influence influenza transmission rates) and weather and pollution
(different climatic conditions can lead to different levels of air quality) within county-season-years.17

A central challenge is that actual influenza hospitalizations can differ from our observed measure of diagnosed
influenza hospitalizations. For example, there may be differences in diagnostic testing for influenza. Our fixed
effects absorb bias from discrepancy between actual and observed hospitalizations as long as the ratio between
actual and observed hospitalization varies across county-season-years and/or year-months.18

County-by-season-by-year effects γcsy similarly control for differences in unobserved confounders that influ-
ence pollution exposure and health outcomes across counties separately for every three months, such as demo-
graphics, socio-economic factors, or health care access and protocols. Year-by-month fixed effects control for

14For our regressions with age-specific outcomes in Table 2, we only use the raw vaccine effectiveness of the corresponding age groups for
constructing our overall measure of vaccine effectiveness.

15We estimate all models with a PPML estimator (Correia, Guimarães & Zylkin 2019) and show robustness using Ordinary Least Squares
(OLS). The PPML point estimates are consistent as long as the conditional mean is correctly specified, irrespective of the distribution of the
outcome or errors (Gourieroux et al. 1984). The PPML estimator performs well with a large number of zeros and over- or under-dispersion
in the data (Silva & Tenreyro 2006, 2011).

16The county-by-season-by-year fixed effects (γcsy) are equivalent to including county-by-year and county-by-season fixed effects sepa-
rately.

17This includes information on temperature, specific humidity, precipitation, and wind speed. Temperature and humidity have been shown
to affect both virus survival (Lowen et al. 2007, Shaman & Kohn 2009, Shaman et al. 2010, Casanova et al. 2010, Harper 1961) and air pollution
(Ijaz et al. 1985, Lou et al. 2017, Greenburg et al. 1967). In our baseline model we include five quintile bins for temperature (C), five quintile
bins of specific humidity, and linear terms for precipitation and wind speed.

18Suppose actual (unobserved) influenza hospitalizations Hactual
cym and measured diagnosed influenza hospitalizations Hcym relate in

the following way: Hactual
cym = Hcym × Rcsy × Rym, where Rcsy × Rym captures arbitrary discrepancy between actual and observed

hospitalizations. If we insert this relationship in Equation (2), we can multiply both sides by exp(log(Rcsy) + log(Rym)) such that our
estimation recovers the effect on the unobserved Hactual

cym as dependent variable, and the fixed effects absorb exp(log(Rcsy) + log(Rym)).
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seasonality and general monthly trends within each year in both influenza and pollution. For example, two com-
mon lung irritants included in the AQI, particulate matter and carbon monoxide, peak in winter months much
like influenza admissions; year-by-month fixed effects capture such seasonality. In robustness checks, we show
models using varied fixed effects.

Several econometric challenges exist in evaluating how the influenza vaccine alters the effect of pollution on
large-scale infection rates. Vaccinated individuals may reduce avoidance behavior, or be more likely to get the
vaccine in seasons with more reported influenza cases, both of which attenuate the raw effect of the vaccine.
Selection bias in vaccine take-up is another problem: only the most susceptible might seek out vaccines, or only
the most cautious. Instead of using variation in vaccination rates19, our identifying variation exploits the natural
variation in vaccine effectiveness, determined by the random variations in the quality of the match between
the influenza vaccine and the viral strain in circulation.20 Effectiveness based on antigenic drift is, in principle,
orthogonal to both air pollution and unobserved determinants of health. This provides insights into how vaccines
affect the pollution-induced spread of influenza and provides a test of the effects of pollution on influenza. If
vaccine effectiveness moderates the effect of pollution on influenza, it must be that pollution causes influenza.21

To estimate the impact of our vaccine effectiveness measure on the pollution-hospitalization relationship, we
include an interaction term AQIcym−1 × V Es:

Hcym = exp(β1AQIcym−1 + β2 (AQIcym−1 × V Es) +X
′
cymδ + γcsy + µym + εcym). (3)

While random variation in vaccine effectiveness provides a compelling identification strategy, vaccine take-up
rates may be more amenable to policy intervention. Fortunately, we can use our estimates on vaccine effectiveness
to infer the effect of increased take-up. The key insight is that the CDC bases measures of vaccine effectiveness on
the number of vaccinated individuals that nonetheless contract the flu in a given season, (see data section). This
is conceptually akin to a measure of take-up for a fully effective vaccine. More formally, we define a population
measure of the protective effects of the vaccine, which we will refer to as the “effective vaccine take-up” (EV T ),
as a measure of raw vaccine take-up rates (V R) adjusted for vaccine effectiveness (V E):

EV Ts = V Rs × V Es. (4)

If 50% of people are vaccinated, but the vaccine is only effective for 30% of them, the effective vaccine take-up
(EV T ) is the same as when only 30% of people are vaccinated but the vaccine is effective in 50% of cases. Equation
(4) shows a 10% increase in vaccine effectiveness (V E) has the same effect on EV T and influenza infection rates
as a 10% increase in vaccine take-up rates (V R). Therefore, we convert estimated absolute changes in V Es into
relative changes and, together with β2, infer the effect of changes in vaccine take-up rates.

We cluster standard errors at the county level to allow for arbitrary heteroskedasticity and serial correlation,

19Note vaccination take-up rates enter as time-invariant weights in our construction of vaccine effectiveness only to weight the different
(raw) vaccine effectiveness values across age groups. Overall take-up does not affect our measure of vaccine effectiveness.

20See also Ward (2014) and White (2019) who, however, calculate vaccine effectiveness based on the names of the viral strains in the
vaccine and in circulation, which in contrast to our measure, do not take into account variations in vaccine effectiveness across age groups
and imperfectly map into clinical measures of effectiveness.

21We cannot distinguish between whether the vaccine is: (i) reducing the probability any pollution-harmed individual is exposed to the
flu due to external benefits from vaccination of others, or (ii) changing the probability that a pollution-harmed individual contracts a severe
case of flu when exposed.
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Table 1: The effect of air pollution on severe influenza cases

Influenza is:
Primary ICD code Any ICD code Only ICD code

(1) (2) (3) (4) (5) (6)

AQI 0.0089*** 0.039*** 0.0095*** 0.035*** 0.015*** 0.045**
(0.0028) (0.008) (0.0027) (0.0072) (0.0056) (0.02)

AQI X Vaccine
Effectiveness

-0.088*** -0.075*** -0.095
(0.024) (0.022) (0.059)

Observations 17831 17831 20224 20224 3998 3998
Mean of outcome 4.04 4.04 8.34 8.34 0.13 0.13
Mean of AQI predictor 34.46 34.46 34.46 34.46 34.52 34.52
Mean of vac. eff. - 0.37 - 0.37 - 0.37

Notes: The dependent variable in Columns (1-2) is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-month.
The dependent variable in Columns (3-4) is the count of inpatient hospital admissions with influenza as any (primary or secondary) diagnosis within a county-
year-month. The dependent variable in Columns (5-6) is the count of inpatient hospital admissions with influenza as only diagnosis within a county-year-month.
We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009
where vaccine effectiveness data is not available. Vaccine effectiveness is weighted by average vaccination rates and hospitalization shares across age groups
and is measured between 0 (low) and 1 (high). The results are from a Poisson Pseudo-Maximum Likelihood regression with county-by-season-by-year and
year-by-month fixed effects as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and
linear terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month
and a higher AQI means worse air quality. The number of included observations can vary across different outcomes due to fixed effects and varied counts in
each county-year-month cell. Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent
level, * significant at the 10 percent level.

and show robustness to two-way clustering at the added state-year-month level.

III. Results and Discussion

A. Influenza Hospitalizations

Table 1 shows estimates from our PPML regressions. Coefficients represent the AQI semi-elasticity of the count
of inpatient hospitalizations with primary diagnosis influenza within a county-year-month, or an approximate
percentage change in inpatient counts per unit of AQI. Estimates from Column (1) correspond to Equation (1)
and imply a 1-unit increase in the monthly AQI results in a 0.89% increase in influenza inpatient admissions. To
put this estimate in national context, a one-standard-deviation increase in AQI (10.9-unit increase in our data)
amounts to approximately 7,760 (10.2%) additional inpatient hospitalizations for a 6-month influenza season in
the U.S.22

To explore the moderating role of vaccine effectiveness, Figure 2 shows the regression-adjusted relationship
between AQI and influenza admissions separately in seasons of low vaccine effectiveness in Panel (a) and high
vaccine effectiveness in Panel (b), as determined by an effectiveness median (0.38) sample split. The relationship
between air quality and admissions rates is positively sloped in Panel (a), indicating the AQI affects flu admis-
sions when the vaccine is ineffective. This relationship flattens completely in seasons of high vaccine effectiveness,
shown in Panel (b), suggesting an effective vaccine nullifies the relationship between pollution and the flu. This
does not imply a high vaccine effectiveness eliminates all influenza hospitalizations. Rather, a sufficiently high
vaccine effectiveness eliminates flu cases attributable to pollution.

To test for the moderating role of vaccine effectiveness, we present estimates of Equation (3) using the con-

22We use the 10.9-unit increase and the coefficient 0.0089 for the relative increase (exp(0.0089 ∗ 10.9)− 1 = 0.1019, and multiply it by the
average inpatient admissions per county-year-month (4.04), the total number of US county equivalents according to the US Census Bureau
(3142) (Bureau 2018) and by the 6 months within a influenza season. We only count cases with primary diagnosis influenza, making this
estimate of absolute numbers a lower bound. Using hospitalization with any influenza diagnosis (shown in Column (3)) more than doubles
the additional predicted cases because the base of hospital admissions is much larger.
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Figure 2: Air quality, vaccine effectiveness and influenza hospitalizations and charges
Notes: Panels (a) and (b) show binned scatterplots with 30 bins and a linear regression on the underlying data. Each shows the correlation net of county-by-
season-by-year and month fixed effects as well as weather controls, where the vertical axis shows the residuals from a Poisson regression and the horizontal axis
the residuals from a linear regression. The panels show the relationship for seasons with below (a) and above (b) median vaccine effectiveness. Panel (c) shows
a contour plot of additional inpatient hospitalization charges for different weighted vaccine effectiveness and AQI levels. The contour lines indicate the additional
charges in billion $US aggregated across the U.S. per influenza season from October to March. They are calculated from our PPML estimates in Column 2 of
Table 1, the average hospital charges per county-year-month (117 th. $US), the count of U.S. county equivalents (3142) and months in an influenza season (6).
The charges are additional compared to a zero average AQI, conditional on our controls and fixed effects.

tinuous measure of vaccine effectiveness in Column (2) of Table 1. Vaccine effectiveness substantially affects
pollution driven influenza cases. Our negative interaction coefficient in Column (2) implies a weighted vaccine
effectiveness of 44%, close to the maximum of 51% in our sample, is sufficient to nullify the link between air
pollution and influenza hospitalizations.23 Due to the equivalence of the relative effects of vaccine effectiveness
and take-up rates, this implies that, based on an average vaccine effectiveness of 37%, a 19% increase in vaccine
take-up would cause the full neutralizing effect. The 25th percentile of vaccine effectiveness (26%) would re-
quire a 69% increase in vaccine take-up to neutralize pollution effects. For a vaccine effectiveness over the 75th
percentile, the effects of pollution are completely nullified for an average level of vaccine take-up.

In our baseline specifications in Columns 1 and 2, we include only cases where the primary diagnosis is in-
fluenza, thus ignoring occurrences of influenza in secondary diagnoses. This likely misses some influenza-related
hospitalizations, but is arguably more robust to over-counting cases that might arise by including patients who
suffer from different health conditions triggered by air pollution (e.g. asthma) and then happen to be tested for
influenza upon hospital admission due to health protocols. To show robustness to different counting strategies,
Columns 3 and 4 repeat our analysis but count patients that have any (primary or secondary) influenza diagno-
sis. The average number of influenza admissions per county-year-month is roughly double (8.34) compared with
our baseline approach (4.04). The estimated coefficients, however, are close to baseline results both for the level
effect of AQI as well as the interaction with vaccine effectiveness. In Columns 5 and 6, we use a more restrictive
condition by only counting hospital admissions where the only diagnosis is influenza. This reduces the average
count of admissions per county-year-month to 0.13 (the majority of influenza hospital admissions have further

23There is evidence of thresholds in influenza vaccination where the positive external benefits are large enough to almost eliminate influenza
spread even at incomplete vaccination take-up and effectiveness (Boulier, Datta & Goldfarb 2007, Ward 2014).
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Table 2: Heterogeneity by age and race

≤ 17y 18-64y ≥ 65y Black/Hispanic White
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AQI 0.0094*** 0.02* 0.011*** 0.026*** 0.0054** 0.025*** 0.01* 0.049*** 0.01*** 0.037***
(0.003) (0.012) (0.0037) (0.0068) (0.0027) (0.0057) (0.0056) (0.015) (0.0024) (0.0075)

AQI X Vaccine
Effectiveness

-0.023 -0.04** -0.068*** -0.11*** -0.079***
(0.024) (0.019) (0.021) (0.04) (0.023)

Observations 11428 11428 13752 13752 13746 13746 7819 7819 15699 15699
Mean of outcome 0.89 0.89 1.33 1.33 1.82 1.82 0.94 0.94 2.66 2.66
Mean of AQI predictor 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46
Mean of vac. eff. - 0.48 - 0.4 - 0.3 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-month. The columns
indicate which age or race subgroups are counted in the dependent variable. We limit analysis to the influenza intensive months of October through March and
our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. Vaccine effectiveness is weighted
by average vaccination rates and hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a Poisson Pseudo-
Maximum Likelihood regression with county-by-season-by-year and year-by-month fixed effects as well as weather controls. Weather controls consist of five
bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are based on
county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. The number of included observations
can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are clustered at the
county level. *** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.

influenza-induced complications, e.g., pneumonia). The estimated coefficients are, however, also comparable to
our baseline estimates, though with larger standard errors given the considerable drop in sample size.

We explore heterogeneity by age and race in Table 2. Columns 1 through 6 show results for three distinct
age groups: children and adolescents (≤ 17 years), adults under age 65, and adults over age 65. Patterns across
groups are similar, with overlapping confidence intervals on our estimates. The interaction with vaccine effective-
ness is largest in magnitude for the 65 years and older group. As Figure 1b shows, this group also has the highest
vaccination rate. A higher vaccine take-up driving a larger direct impact of vaccine effectiveness is consistent
with the larger coefficient on the interaction for this group.24

Estimates are similar across racial and ethnic groups (Blacks/Hispanics and Whites in Columns 7 through
10), with overlapping confidence intervals. The magnitude of the protective effect of the vaccine is slightly higher
for Blacks/Hispanics. Given racial and ethnic differences in pollution exposure (Banzhaf, Ma & Timmins 2019,
Colmer et al. 2020, Currie, Voorheis & Walker 2020), this aligns with vaccines yielding greater returns for those
in more polluted areas, where additional pollution may generate disproportionate health harms and vaccines
disproportionate benefits accordingly. Higher levels of pollution exposure amongst Black and Hispanic com-
munities could also help explain historically higher influenza burdens experienced by those communities (e.g.
Quinn et al. 2011). Our results suggest air quality control could be an additional policy lever to help reduce
severe influenza cases among highly affected groups.

Table 3 explores robustness of our main results. In Columns 1 and 2, we replace our county-by-season-by-year
fixed effects with coarser county-by-influenza season effects. Data are on a calendar year basis, so these coarser
fixed effects capture fewer discrepancies across reporting years, which introduces error and appears to attenuates
our main results. Including the VE interaction term causes all terms to be statistically significant again, further
highlighting the benefit of this additional source of variation. In Columns 3 and 4 we instead add state-by-month
(e.g., New York in February) fixed effects to our baseline to allow seasonality to vary by state. The coefficient on
the level effect of AQI is smaller than in our baseline and no longer statistically significant, but the specification

24Since vaccines have private but also external benefits, vaccine take-up of any one group generates positive spillovers to other groups.
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Table 3: The effect of air pollution on severe influenza cases: robustness and falsification

Fewer FE More FE Two-way clus. SE Osteoarthritis
(1) (2) (3) (4) (5) (6) (7) (8)

AQI 0.00051 0.025*** 0.0024 0.022*** 0.0089** 0.039*** -0.00046 -0.000055
(0.0036) (0.0089) (0.0024) (0.0069) (0.0044) (0.013) (0.00032) (0.0008)

AQI X Vaccine
Effectiveness

-0.069*** -0.055*** -0.088** -0.001
(0.026) (0.02) (0.035) (0.0023)

Observations 21482 21482 17831 17831 17831 17831 24562 24562
Mean of outcome 4.04 4.04 4.04 4.04 4.04 4.04 40.06 40.06
Mean of AQI predictor 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46
Mean of vac. eff. - 0.37 - 0.37 - 0.37 - 0.37
FE County X Inf. Seas. Yes Yes Yes Yes Yes Yes Yes Yes
FE County X Year No No Yes Yes Yes Yes Yes Yes
FE State X Month No No Yes Yes No No No No
FE Month X Year Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable in Columns (1-6) is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-month.
The dependent variable in Columns (7-8) is the count of inpatient hospital admissions with osteoarthritis as primary diagnosis within a county-year-month.
Columns (1-2) and (3-4) have different sets of fixed effects than our baseline which contains county-by-season-by-year and year-by-month fixed effects. Columns
(5-6) contains standard errors in parentheses that are two-way clustered at the county level and the state-by-year-by-month level. We limit analysis to the influenza
intensive months of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine effectiveness data
is not available. Vaccine effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured between 0 (low)
and 1 (high). The results are from a Poisson Pseudo-Maximum Likelihood regression with included fixed effects county-by-season-by-year as indicated as well
as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation
and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month and a higher AQI means
worse air quality. The number of included observations can vary across different outcomes due to fixed effects and varied counts in each county-year-month cell.
Standard errors in parentheses are clustered at the county level except for Columns (5-6). *** Significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.

with the interaction remains close to our baseline estimates. In Columns 5 and 6 we calculate standard errors
by two-way clustering on county and state-by-year-by-month to allow for more spatial correlation. This only
slightly increases our standard errors. Finally, to further bolster our causal claims, we perform a falsification test
by repeating our analysis using osteoarthritis as a health outcome, which should not correlate with air quality,
influenza, or vaccine effectiveness. Both Column (7) and Column (8) indicate precise zero coefficients on the
effect of AQI and the interaction with vaccine effectiveness.

Appendix A.2 includes further robustness checks: (i) including off-season (Apr-Sep) county-year-months
with positive influenza hospitalizations, (ii) using missing values instead of zeros for county-year-months with
no hospital admissions, (iii) using OLS instead of the PPML estimator, (iv) using different or no weather controls,
and (v) different winsorization or interpolation of the raw AQI data. All have little effect on our estimates. We
also show the effects on emergency department outpatient hospitalizations, which are more frequent but also
less severe, are similar to those for inpatient hospitalizations.

B. Medical Charges and Policy Implications

We next calculate the additional hospital charges attributable to influenza to get a sense of the costs generated by
air pollution.25 We use our estimates from Column 1 of Table 1, together with the average charges per county-
year-month ($US 117 thousand), to draw a contour plot of additional hospital charges spanning the support of
AQI and vaccine effectiveness in our data, shown in Figure 2c. Contour lines show pollution-induced influenza
inpatient hospitalization charges at various levels of AQI (decreasing along the horizontal axis so as to represent

25Hospital charges are around $US 29 thousand per patient per influenza diagnosed inpatient hospitalization, so $US 117 thousand per
county-year-month. Note hospital charges are distinct from hospital costs, which are notoriously difficult to ascertain because they differ sig-
nificantly across institutions and units within institutions. Further, these estimates ignore indirect costs to patients, such as forgone earnings.
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an improvement in air quality) and vaccine effectiveness (increasing along the vertical axis) during an influenza
seasons across the U.S. in billions of $US. Contour lines are similar to isocost curves, but instead of measuring
levels of charges, they represent additional charges compared to an AQI of zero.

Figure 2c illustrates our main results in terms of additional hospital charges. First, at the top of the figure,
when vaccine effectiveness is high, an increase in AQI – no matter how large – has no impact on flu hospital-
izations charges because of the protective nature of the vaccine.26 In contrast, at the bottom of the figure when
vaccine effectiveness is low, even small changes in the AQI generate large increases in additional influenza-specific
hospitalization charges. Going from an AQI of 40 to 50 generates roughly 2 billion $US in additional influenza
inpatient hospitalization charges at a vaccine effectiveness of 0.15. Second, at the right of the figure, for good air
quality (low AQI), a drop in vaccine effectiveness generates little additional pollution-driven influenza hospital-
ization charges (though influenza cases that are not pollution driven still might be greatly affected). A drop from
0.4 to 0.2 effectiveness only generates around 0.5 billion $US in additional pollution-driven influenza charges. On
the left of the figure for high AQI values, however, the same drop in vaccine effectiveness from 0.4 to 0.2 generates
around 7 billion $US in additional pollution-induced influenza hospital charges.

Are vaccine and air quality policies substitutes or complements in preventing pollution-induced influenza
cases? The answer depends on the stochastic nature of the two health shocks. From any given point in the space
of 2c, the ex-ante marginal benefit from improving vaccine effectiveness or air quality decreases in the level of
the other variable. If both cleaner air quality and vaccine effectiveness were deterministic policy outcomes, they
would serve as substitutes. Vaccine effectiveness, however, is a stochastic outcome due to unforeseen and random
antigenic drift and high variability from season to season (see Figure 1c). Air quality is also inherently stochastic
because of imperfect control of emissions, variations in activities that cause emissions, the role weather plays
in converting emissions to pollution, and natural sources of emissions, such as wildfires. Random variations in
both vaccine effectiveness and air quality results in a higher ex-post marginal benefit of the other variable. The
stochastic nature of both factors thus introduces complementarities between pollution control and vaccination
policy.

For seasons with poor vaccine effectiveness, improved air quality can provide an important hedge to reduce
influenza cases. Similarly, for seasons with higher local air pollution, effective vaccines or higher vaccine take-up
rates (see Equation (4)) can provide protective effects from pollution-driven influenza. A back of the envelope
calculation suggests that a 10% (3.5 AQI points) reduction in the AQI in an historically bad vaccine year (17%
effectiveness) would avert 6,146 (8.2%) hospitalizations across the U.S. or $US 178 million in influenza medical
charges, while a 10% improvement in either vaccine take-up or vaccine effectiveness from average vaccine take-
up or effectiveness in a historically polluted year (38.2 AQI) would avert 8,908 (13.2%) of hospitalizations, or
$US 292 million.

IV. Conclusion

Using a rich longitudinal dataset, we provide evidence air pollution increases seasonal influenza hospitaliza-
tion rates, and that an effective influenza vaccine greatly diminishes this relationship. Our empirical strategy,

26This does not imply higher AQI has no impact on hospitalizations costs of any cause, but that is has no impact on influenza hospitaliza-
tions.
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based on the stochastic nature of vaccine effectiveness across influenza seasons, limits risks of confounding. We
highlight how improving air quality and increasing vaccination rates can both yield substantial social returns
for fighting influenza. This is especially important in dense urban centers around the world and developing
countries in particular, where pollution and vaccination externalities are likely highest (de Lataillade, Auvergne
& Delannoy 2009). Pollution controls provide an important hedge against the regular shocks to vaccine effec-
tiveness, while increasing vaccine uptake can hedge against the stochastic relationship between emissions and
ambient concentrations of pollution arising from complex atmospheric chemistry and external events such as
changes in prevailing wind patterns, extreme heat, and wildfires. When these policies work in conjunction, they
help reduce medical spending, avoid lost productivity, and reduce loss of life.

Our insights regarding compounding risks from pollution and flu may extend to other viral respiratory ill-
nesses with similar etiological pathways, including the current COVID-19 pandemic.27 Though research remains
preliminary, evidence suggests significant positive correlations between COVID-19 hospitalizations and pollution
levels (Wu et al. 2020). Since large scale reductions in economic activity aimed at reducing viral spread have re-
duced current air pollution (NASA 2020), the importance of this relationship may be masked in the data, even
if the pollution-COVID-19 link is causal. As economic activity resumes, pollution will increase, which may com-
pound the threat from COVID-19 infections. If governments suspend environmental regulations in an effort to
bolster the economic recovery, as has been recently seen in the U.S. (Bodine 2020), hospitalizations and deaths
from the pandemic may be further hastened. Absent a highly effective vaccine with widespread take-up, our
results suggest a different policy direction, where additional environmental controls serve as a complementary
investment to optimally manage the full harms from this current global health threat as well as potential future
pandemics.
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Correia, Sergio, Paulo Guimarães, and Thomas Zylkin. 2019. “PPMLHDFE: Fast poisson estimation with high-dimensional fixed effects.” arXiv
preprint:1903.01690.

Cui, Yan, Zuo-Feng Zhang, John Froines, Jinkou Zhao, Hua Wang, Shun-Zhang Yu, and Roger Detels. 2003. “Air pollution and case fatality of SARS in the
People’s Republic of China: an ecologic study.” Environmental Health, 2(1): 15.

Currie, Janet, John Voorheis, and Reed Walker. 2020. “What caused racial disparities in particulate exposure to fall? New evidence from the Clean Air Act and
satellite-based measures of air quality.” NBER working paper.
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A.1 Additional Descriptive Statistics

Table A.1 contains states and years with available admission months and patient zip codes in the HCUP (2018b)
inpatient hospitalization data we use. Table A.2 contains summary statistics at the county-year-month level for
inpatient hospital admissions with a primary influenza diagnosis, associated hospital charges, and the average
monthly AQI. We use the standard deviation of the AQI during the influenza season (10.9), the average inpatient
hospitalization admissions (4.04) and charges (117,000 US$) for the calculation of absolute effects based on our
Poisson Pseudo-Maximum Likelihood estimates.

To further illustrate the influenza seasonality, we use data on the timing of national influenza-like illnesses
from the Centers for Disease Control and Prevention (CDC 2020). Figure A.1 shows that the seasonality of
inpatient hospitalizations in our data matches closely with general influenza-like illnesses reported by the CDC.

The AQI is based on multiple pollutants, but for each county-day, a single pollutant is the defining pollutant
of the AQI (EPA 2018). Figure A.2 shows which pollutants are the main defining pollutants of the AQI during
the influenza season from October through March for three different intervals covering our sample. Particulate
matter (PM2.5 and PM10) and ozone are the defining pollutants in the AQI for the majority of cases in each time
period.
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Table A.1: Data coverage with available zip codes and admission months

Arizona 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Arkansas 2009
Colorado 2007,2008,2009,2010,2011,2012
Hawaii 2009
Iowa 2009
Kentucky 2007,2008,2009,2010,2011,2012,2013,2014
Maryland 2009,2010,2011,2012
Massachusetts 2007,2008,2009,2010,2011,2012,2013,2014
Michigan 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Minnesota 2014,2015,2016
Nevada 2010,2011,2012,2013,2014,2015
New Jersey 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
New York 2007,2008,2009,2010,2011,2012,2013,2014,2015
North Carolina 2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Oregon 2008,2009
Rhode Island 2007,2008,2009,2010,2011,2012,2013,2014,2015
South Dakota 2009
Utah 2009
Vermont 2009
Washington 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Wisconsin 2009

Notes: The table shows the states and years with available admission month and patient zip code used in the analysis for influenza hospitalizations.

Table A.2: Summary statistics of influenza hospitalizations and air pollution (AQI)

Mean SD Min 5th p. 10th p. 25th p. 75th p. 90th p. 95th p. Max
Hospital admissions
per county per month

Oct-Mar 4.04 16.3 0 0 0 0 2 8 17 588
Apr-Sep 0.526 3.41 0 0 0 0 0 1 2 170

Hospital charges (th. USD)
per county per month

Oct-Mar 117 567 0 0 0 0 39.1 202 503 23729
Apr-Sep 16.7 124 0 0 0 0 0 18 57.5 6883

Average AQI across
county-months

Oct-Mar 34.5 10.9 7.14 16.3 21 28 40.6 47.3 52.9 72.4
Apr-Sep 42.9 14.1 11.3 17.8 23.5 35.2 50.2 59.7 67.6 84.8

Notes: The table shows summary statistics for influenza diagnosed inpatient hospital admissions and charges, and air pollution measured by the AQI. We pool
and report data separately by the influenza season of October through March and the off season of April through September. The AQI statistics are based on the
coverage of the hospitalization sample.
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Figure A.1: Influenza-like illnesses in U.S.
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Notes: The figure shows the distribution of recorded influenza-like illnesses from CDC (2020), which includes non-hospitalized cases. Data are pooled across
the U.S. spanning 1997-2019. Not all health providers report to the Influenza-Like Illness (ILI) Network, and the number of providers reporting grew over time
so total number of cases is a lower bound of true infection rates.

Figure A.2: Defining pollutants of the AQI
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Notes: The figure shows each pollutant’s share in days when it was the defining pollutant for calculating the AQI at the county-day level. The shares in days are
calculated for the three to four year periods as indicated and are based on the months of the influenza season (Oct-Mar). The data on defining pollutants comes
from EPA (2020).
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A.2 Additional Robustness Checks

In this section we provide additional robustness checks for our main results. In Columns 1 and 2 of Table A.3, we
add all county-by-year-by-month cells which are non-zero valued, i.e. we include off-seasonal cells with influenza
cases. In Columns 3 and 4 of Table A.3 we instead drop all zero-valued county-by-year-by-month cells during
influenza season, which is reflected in the higher mean of the outcome. Both these results are consistent with the
results in the main paper.

In Columns 5 and 6 of Table A.3, we estimate an ordinary least squares (OLS) model instead of a Poisson
Pseudo Maximum Likelihood (PPML) model. The patterns are the same as the results in the main paper, and
the coefficients can be interpreted as a level effect instead of a semi-elasticity.

In Columns 7 and 8 of Table A.3, we use the data on outpatient hospitalizations at emergency departments
instead of inpatient hospitalizations. The mean of the outcome (34.2) is higher than our baseline (4.04), reflecting
that outpatient hospitalizations are are more common than inpatient hospitalizations, but also less severe cases.
The semi-elasticities are similar to our estimates in the main paper.

In Columns 1 to 4 of Table A.4, we use different weather controls. In Columns 1 and 2, we drop all weather
controls. In Columns 3 and 4 we use a second degree polynomial in temperature and specific humidity with
all interactions and linear terms for wind speed and precipitation. In Columns 5 to 8 we use different steps
to construct our AQI variable. In Columns 5 and 6, we do not winsorize the top and bottom 1 percent of the
AQI. In Columns 7 and 8, we do not use the average of adjacent county readings for missing AQI values at the
county-by-year-by-month level. Our main results are robust to all of these checks.
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Table A.3: Off-seasonal cases, removing zeros in outcome, OLS and outpatient hospitalizations

Incl. off-seas. cases Removing zeros OLS Outpatient hospitalizations
(1) (2) (3) (4) (5) (6) (7) (8)

AQI 0.0081*** 0.033*** 0.0091*** 0.041*** 0.041** 0.12** 0.017*** 0.049***
(0.0023) (0.0062) (0.0029) (0.0082) (0.016) (0.051) (0.0033) (0.0097)

AQI X Vaccine
Effectiveness

-0.068*** -0.094*** -0.2* -0.098***
(0.016) (0.025) (0.11) (0.031)

Observations 21860 21860 9761 9761 24742 24742 10099 10099
Mean of outcome 3.97 3.97 8.76 8.76 4.04 4.04 34.2 34.2
Mean of AQI predictor 35.68 35.68 35.81 35.81 34.46 34.46 35.13 35.13
Mean of vac. eff. - 0.37 - 0.36 - 0.37 - 0.37

Notes: The dependent variable in Columns (1-6) is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-month.
The dependent variable in Columns (7-8) is the count of outpatient hospital admissions (emergency departments) with influenza as any (primary or secondary)
diagnosis within a county-year-month. We limit analysis to the influenza intensive months of October through March and our sample spans 2007-2017 with
the exception of October 2008 to March 2009 where vaccine effectiveness data is not available. In Columns (1-2), we add all off-seasonal county-year-month
cells with non-zero admissions. In Columns (3-4) we remove all zero-valued county-year-months cells during the influenza season. Vaccine effectiveness is
weighted by average vaccination rates and hospitalization shares across age groups and is measured between 0 (low) and 1 (high). The results are from a
Poisson Pseudo-Maximum Likelihood regression in Columns (1-4,7-8) and from an OLS regression in Columns (5-6), both with county-by-season-by-year and
year-by-month fixed effects as well as weather controls. Weather controls consist of five bins of temperature quintiles, five bins of specific humidity quintiles, and
linear terms for precipitation and wind speed. All weather variables are based on county-year-month averages. The air quality index (AQI) is lagged one month
and a higher AQI means worse air quality. The number of included observations can vary across different columns due to fixed effects and varied counts in each
county-year-month cell. Standard errors in parentheses are clustered at the county level. *** Significant at the 1 percent level, ** significant at the 5 percent level,
* significant at the 10 percent level.

Table A.4: Alternative weather controls, not winsorizing or interpolating the AQI

No weather contr. Polyn. weather contr. AQI not winsorized AQI not interpolated
(1) (2) (3) (4) (5) (6) (7) (8)

AQI 0.0076*** 0.027*** 0.0072*** 0.033*** 0.0072*** 0.033*** 0.0083*** 0.035***
(0.0026) (0.0084) (0.0025) (0.0078) (0.0025) (0.0081) (0.003) (0.009)

AQI X Vaccine
Effectiveness

-0.057** -0.076*** -0.075*** -0.079***
(0.024) (0.022) (0.023) (0.027)

Observations 18062 18062 17831 17831 17831 17831 9042 9042
Mean of outcome 4.04 4.04 4.04 4.04 4.04 4.04 4.04 4.04
Mean of AQI predictor 34.46 34.46 34.46 34.46 34.62 34.62 35.35 35.35
Mean of vac. eff. - 0.37 - 0.37 - 0.37 - 0.37

Notes: The dependent variable is the count of inpatient hospital admissions with influenza as primary diagnosis within a county-year-month. We limit analysis
to the influenza intensive months of October through March and our sample spans 2007-2017 with the exception of October 2008 to March 2009 where vaccine
effectiveness data is not available. Vaccine effectiveness is weighted by average vaccination rates and hospitalization shares across age groups and is measured
between 0 (low) and 1 (high). The results are from a Poisson Pseudo-Maximum Likelihood regression with county-by-season-by-year and year-by-month fixed
effects as well as weather controls. In Columns (1-4) weather controls are included as described. In Columns (5-8) weather controls consist of five bins of
temperature quintiles, five bins of specific humidity quintiles, and linear terms for precipitation and wind speed. All weather variables are based on county-year-
month averages. The air quality index (AQI) is lagged one month and a higher AQI means worse air quality. The number of included observations can vary
across different columns due to fixed effects and varied counts in each county-year-month cell. Standard errors in parentheses are clustered at the county level.
*** Significant at the 1 percent level, ** significant at the 5 percent level, * significant at the 10 percent level.
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