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Following the great financial crisis (GFC), apparent arbitrage opportunities emerged

in financial markets. These arbitrage opportunities, such as the gap between the

federal funds rate and the interest on excess reserves (IOER) rate, or violations of

covered interest rate parity (CIP), are notable in part because they have persisted

for years after the peak of the financial crisis. Authors such as Du et al. (2018) have

argued that macro-prudential regulations put in place after the GFC have enabled

these arbitrages to exist and persist. If these apparent arbitrages opportunities are

made possible by macro-prudential regulations, does that imply that there is some-

thing wrong with the regulations? More generally, what can be learned from the

patterns of arbitrage across assets induced by regulation? Can we use these patterns

to assess whether macro-prudential regulations are having their intended effects?

Suppose we observe the price of an asset a that is traded by both intermediaries

and households, and the price of another asset a′ with identical payoffs that is traded

by intermediaries only. If the prices of a and a′ are not equal, an apparent arbitrage

exists. Such an opportunity can exist in equilibrium if intermediaries are bound

by a constraint that treats a and a′ differently (say, because it treats derivatives and

cash assets differently). Let us further suppose that this constraint exists because of

regulation– it is a leverage constraint, capital control, or some other kind of policy.

Now imagine that a household approaches an intermediary and wishes to buy

asset a. The intermediary contemplates selling asset a to the household and hedging

by purchasing asset a′. If the price of a is higher than the price of a′, this arbitrage

trade is profitable; the intermediary would execute the trade if unconstrained. From

this we can infer, as outside observers, that regulation is constraining the extent to

which the intermediary can sell the asset a to the household. That is, the regulation
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is keeping the risks associated with asset a within the intermediary sector instead

of allowing those risks to be transferred to the household sector. We can then adopt

a macro-prudential viewpoint and ask whether or not it is desirable, from a social

perspective, to shift the holdings of asset a from households to intermediaries.

In this paper I develop a formal, multi-asset version of the argument above. The

procedure I develop takes the form of a revealed preference exercise. I ask: what ex-

ternalities would justify the distortions in risk-sharing I infer from various arbitrage

opportunities? Equivalently, what risks are pushed by regulation into the interme-

diary sector and what risks are pushed by regulation into the household sector? The

key step in the analysis is the construction of what I call the “externality-mimicking

portfolio.” This portfolio’s returns are an estimate of the externalities that would

justify the observed patterns of arbitrage, or equivalently an estimate of the effect

of regulation on risk-sharing between households and intermediaries.

I construct this portfolio using CIP violations. In the context of CIP violations,

the assets a and a′ are combinations of bond and exchange rate transactions. Em-

pirically, the sign of the observed arbitrage, as documented by Du et al. (2018), is

related to the direction of the carry trade– it is more expensive for the household

to execute the carry trade than it is for the intermediary to replicate the carry trade

using currency forwards. Consequently, I infer that the relevant regulatory con-

straint(s) have the effect of keeping carry trade risk within the intermediary sector,

instead of allowing intermediaries to transfer those risks to households. This result

is surprising given the risky nature of the carry trade.

The basic issue is that some CIP violations (e.g. AUD-USD and JPY-USD)

have the wrong sign. That is, because JPY appreciates and AUD depreciates vs.
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USD in bad times, optimal policy should encourage intermediaries to be long JPY

and short AUD (i.e. short the carry trade). But the signs of the CIP violations are

such that they encourage intermediaries to be long the carry trade, taking on more

macro-economic risk. I speculate that this issue arises from an interaction between

leverage constraints (which do not consider the “sign” of a trade) and demand from

customers, as suggested by Du et al. (2018).

This conclusion does not rely on specific assumptions about which regulations

are binding in the case of CIP violations. This is desirable in light of the “alpha-

bet soup” of potentially relevant post-crisis regulations.1 That is, the methodology

developed in this paper is relatively model-agnostic and does not require strong as-

sumptions about the nature of the relevant regulation; in contrast, the traditional

approach of using a fully specified model necessarily involves such assumptions.

The procedure I develop has two key limitations. First, it assumes that the arbi-

trages under consideration are caused by regulation. The “anomalies” described by

Lamont and Thaler (2003) are violations of the law of one price between long-lived

assets, and can become larger before converging. Non-regulatory limits to arbitrage

(as in Shleifer and Vishny (1997)) might prevent intermediaries from eliminating

these anomalies. For this reason, I restrict my empirical analysis to short-dated

arbitrages (with a one-month or shorter horizon) which were insignificant prior to

the GFC. Second, the externality mimicking portfolio estimates the overall macro-

prudential effect of existing regulation, without identifying which regulations are

relevant. Some regulations, such as a leverage constraint, might be justified on

1In the context of CIP violations, Du et al. (2018) discuss leverage ratios, risk-weighted asset
calculations, stress tests, value-at-risk, the Volcker rule, liquidity coverage ratios, and the recent
money market reform; most of these are implemented differently across jurisdictions, and some are
currency- or country-specific for multi-national banks.
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micro-prudential grounds, and yet have macro-prudential effects; likewise, redis-

tributive policies can have macro-prudential effects. When I use the returns of the

externality-mimicking portfolio to study the optimality of policy, I am implicitly

assuming that policymakers have a rich enough set of macro-prudential tools to

achieve their desired outcomes, even if that requires offsetting the macro-prudential

effects of non-macro-prudential policies.

I start from the general equilibrium with incomplete markets (GEI) framework

of Farhi and Werning (2016), which encompasses many existing studies of macro-

prudential policy.2 I augment this framework by distinguishing between two classes

of agents, “households” and “intermediaries,” as is standard when studying arbi-

trage (as in, e.g., Gromb and Vayanos (2002)). In this framework, optimal policy

equates the marginal benefits of addressing externalities with the marginal cost of

distorting risk-sharing. Under some additional assumptions about how policy is im-

plemented, these risk-sharing distortions will manifest themselves as arbitrage op-

portunities. To clarify the underlying mechanism and provide a concrete example,

I develop the example of capital controls, building on Fanelli and Straub (2019).

The central contribution of the paper uses the relationship between arbitrages

and externalities to construct what I call the “externality-mimicking portfolio.” The

returns of this portfolio are the projection of the externalities that would rational-

ize existing regulations onto the space of returns. Equivalently, they describe the

direction of the marginal risk-transfer between households and intermediaries un-

2I simplify the Farhi and Werning (2016) in several respects to clarify the exposition, but the
procedure I develop is applicable to the general framework. This framework is quite general, but
does not span the set of all possible models. Appendix D briefly discusses how hidden trade, private
information, moral hazard, and other sources of inefficiency would affect the main results of the
present paper.
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der existing regulation. The portfolio can also be thought of as representing the

minimum difference between the household and intermediary SDFs necessary to

explain observed arbitrages (an analog of Hansen and Richard (1987)), or as the

portfolio that maximizes what I call the “Sharpe ratio due to arbitrage” (an analog

of Hansen and Jagannathan (1991)).

Using data on interest rates, foreign exchange spot and forward rates, and for-

eign exchange options, I construct an externality-mimicking portfolio. The weights

in this portfolio are entirely a function of asset prices; no estimation is required. If

policy is optimal, this portfolio’s returns track the externalities the social planner

perceives when considering transfers of wealth between the households and inter-

mediaries in various states of the world. Irrespective of whether policy is optimal,

the returns describe the direction of risk transfer between household and intermedi-

aries induced by policy. When its returns are positive (negative), the planner must

perceive positive (negative) externalities when transferring wealth from intermedi-

aries to households to rationalize existing policy. In “bad times,” we would expect

this portfolio to have negative returns, consistent with the idea that the planner

would like to encourage intermediaries to hold more wealth in these states.

I consider two definitions of “bad times.” First, intuitively, bad times can be

defined as times in which the intermediaries have a high marginal utility of wealth.

Using this definition, I show that it is sufficient to study the expected returns of the

externality-mimicking portfolio, and test if they are positive. Second, I define “bad

times” using the stress test scenarios developed by the Federal Reserve. I argue

that these tests are statements about when the Fed would like intermediaries to

have more wealth, and as a result the returns of the externality-mimicking portfolio
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should be negative in the stress test scenarios.

However, I find that the expected return of the externality-mimicking portfolio

is generally negative, and that its returns in the stress tests are often positive. This

implies that the externalities that would justify current regulation are positive in bad

times; put another way, existing regulations are having the effect of retaining risk

within the intermediary sector. This is inconsistent with intuition and suggests that

regulations are not having their desired effect.

My theoretical framework builds on the GEI framework of Geanakoplos and

Polemarchakis (1986) and Farhi and Werning (2016). My example of capital con-

trols resembles both Fanelli and Straub (2019) and example 5.4 of Farhi and Wern-

ing (2016). In most theoretical models of macro-prudential policy (such as Farhi

and Werning (2016) and Dávila and Korinek (2017)), a planner can implement pol-

icy using quantity constraints, agent-state-good-specific taxes, or some combination

thereof. In this paper, I focus on quantity constraints, which is both realistic, in the

sense that most regulation of banks takes this form, and enables the empirical ex-

ercise that follows. This paper is also related to Davila et al. (2012); both papers

attempt to measure how close existing allocations are to constrained efficiency.

My empirical work considers short-term arbitrages such as the fed funds/IOER

spread (Bech and Klee, 2011) and CIP violations (Du et al., 2018), and hence this

paper lies at the intersection of the theoretical literature mentioned above and the

empirical literature on arbitrage opportunities. The central and most surprising re-

sult of the paper is, in effect, that this intersection exists. The techniques I use to

characterize the externality-mimicking portfolio that links the theory with the data

build on Hansen and Richard (1987) and Hansen and Jagannathan (1991). There
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is also a significant literature that studies CIP violations in the context of particu-

lar models (as opposed to the general GEI framework). Examples include Amador

et al. (2017); Andersen et al. (2019); Du et al. (2020); Gabaix and Maggiori (2015);

Ivashina et al. (2015). The framework I develop allows for the empirical analysis of

CIP violations within a relatively minimal theoretical structure, and hence enables

more general conclusions about the optimality or sub-optimality of policy.

1 Externalities and Arbitrage

I begin by outlining an endowment economy version of the economy studied by

Farhi and Werning (2016),3 with a specific asset structure that I will introduce be-

low. I will describe only the key aspects of the GEI framework; a more formal

presentation of the model can be found in appendix section C.

Let S1 be the set of future states, let s0 be the initial state, and define S = S1∪

{s0}. Let Js be the set of goods in each state s∈ S. The model will feature two sets of

agents, I (intermediaries) and H (households). An intermediary i ∈I will have

income Ii
s in state s ∈ S, and face prices {Pj,s} j∈Js , resulting in an indirect utility

in state s of V i(Ii
s,{Pj,s} j∈Js;s). Likewise, a household h ∈H will have income

Ih
s and indirect utility V h(Ih

s ,{Pj,s} j∈Js;s). Each agent evaluates her expected utility

using a full-support “reference” probability measure {πr
s}s∈S1 .4

The simplest interpretation of this setup is as a two-date model with multiple

goods in the second date, in which case these indirect utility functions are the result

3For simplicity, I also assume flexible prices and simpler constraints on transfers.
4This probability measure is arbitrary; any differences between an agent’s subjective beliefs and

these probabilities can be incorporated into the state-dependent indirect utility function V .
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of a standard consumer problem. The model can also be interpreted as having more

than two dates and a single consumption good at each date, in which case each

j ∈ Js corresponds to consumption at some date.5 The key assumption is that there

is at least one relative price in the future states s ∈ S1.

The incomes Ii
s and Ih

s are determined by the agents’ endowments and the al-

location of a set of assets. Let A be the set of assets in the economy, and let

Za,s({Pj,s} j∈Js) denote the payoff of asset a ∈ A in state s ∈ S1, given the goods

prices {Pj,s} j∈Js .
6 Let Qa be the price of asset a ∈ A.

Intermediaries and households differ with respect to their ability to trade assets

in two ways. First, intermediaries can trade certain assets (the set AI ⊂ A) that

households cannot. Second, households cannot trade directly with each other, only

via intermediaries.7 Both features are standard in models of financial intermediation

such as Gromb and Vayanos (2002).

Consider a planner who can regulate asset allocations for each agent (denoted

Di
a and Dh

a) and transfer wealth between agents in the initial state s0 (denoted T i and

T h).8 By regulating the asset allocations of and transfers to each agent, the planner

can influence the incomes Ih
s and Ii

s. Define the income of household h in state s as

5See Farhi and Werning (2016) for several examples along these lines.
6I adopt the convention that all assets are ’ex-dividend’ (have zero payoff in state s0), and that all

asset payoffs are homogenous of degree one in the goods prices.
7Formally, A\AI is the union of a set of disjoint sets {Ah}h∈H , each containing assets tradable

by the household h and the intermediaries (but not other households). Note that multiple households
can trade “the same” asset in the sense of payoffs; this formalism is simply a way of preventing
households from trading directly with each other.

8The ability of the planner to transfer income in state s0 isolates the macro-prudential motives
of the planner (correcting externalities) from redistributive motives. This captures the idea that gov-
ernments can use taxes and transfers for redistributive purposes while at the same time using macro-
prudential regulations to correct externalities. See Appendix D for a discussion of the interpretation
of the results in the absence of this assumption.
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the sum of her endowment income, asset payoffs, and transfers,

Ih
s = ∑

j∈Js

Pj,sY h
j,s + ∑

a∈A
Dh

aZa,s({Pj,s} j∈Js)+T h1{s = s0},

where Y h
j,s is the endowment of good j for household h in state s. Intermediary

income Ii
s is defined in similar fashion.

Regulations and Arbitrage Suppose that the planner regulates the trades of in-

termediaries but not households, and moreover does not constrain trade in the

intermediary-only assets AI for some intermediary i∗ ∈I . I will show below that

this is without loss of generality, in the sense that any optimal policy can be imple-

mented this fashion. For now, however, let us consider any regulations of this form,

optimal or sub-optimal.

Consider an asset tradable by households, a ∈ A \AI , and suppose there is an

asset tradable only by intermediaries, a′ ∈ AI , with identical cashflows (Za,s(·) =

Za′,s(·)). The household’s SDF will price the assets a ∈ A \AI . That is, for any

a ∈ A\AI , there exists an h ∈H such that

Qa = ∑
s∈S1

π
r
s Mh,r

s Za,s({Pj,s} j∈Js), (1)

where Mh,r
s denotes the household’s SDF.9 In contrast, regulations might constrain

intermediaries’ trade in a, in which case the intermediaries’ SDF will not price a.

9πr
s Mh,r

s is the ratio of h’s marginal utility of income in state s ∈ S1, ∂

∂ IV
h(I,{Pj} j∈Js ;s)|I=Ih

s
,

relative to the marginal utility of income in state s ∈ S0. I have adopted the convention that the
subjective discount factor and subjective state probabilities are incorporated into the indirect utility
function.
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The asset a′ ∈ AI , however, is priced by i∗,

Qa′ = ∑
s∈S1

π
r
s Mi∗,r

s Za′,s({Pj,s} j∈Js), (2)

where Mi∗,r
s is the SDF of i∗, and not necessarily by any household’s SDF.

If the regulations on intermediaries do not bind with respect to asset a, the inter-

mediaries’ SDF will price both assets, and the prices of a and a′ will be identical.

If regulations are binding with respect to asset a, meaning (by the definition of a

constraint ’binding’) that the intermediaries’ SDF does not price asset a, then the

prices of the assets a and a′ will not be identical. That is, an apparent arbitrage

opportunity (specifically, a law-of-one-price violation) will exist.

Apparent arbitrage opportunities of this form are driven by the difference be-

tween the household and intermediary SDFs,

Qa′−Qa = ∑
s∈S1

π
r
s (M

i∗,r
s −Mh,r

s )Za,s({Pj,s} j∈Js). (3)

This equation can be used in two ways. First, given a set of arbitrages (pairs

a ∈ A\AI and a′ ∈ AI with observable prices Qa and Qa′), it is possible to construct

an estimate of Mi∗,r
s −Mh,r

s . This is one interpretation of what I call the “externality-

mimicking portfolio,” described in section 3 below. Second, given an estimate of

Mi∗,r
s −Mh,r

s and an observable asset price Qa, this equation can be used to predict

Qa′ , even for assets without an intermediary-only replicating asset.10 That is, this

equation makes it possible to extrapolate the effects of regulation from assets for

10I use the terms replicating asset and replicating portfolio to describe an asset or portfolio with
the same payoffs, which may or may not have the same price.
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which it is easily observed (e.g. CIP violations) to other traded assets. The differ-

ence between the SDFs, Mi∗,r
s −Mh,r

s , summarizes the direction in which regulation

is pushing trade at the margin; if Qa′ < Qa, intermediaries are being discouraged by

regulation from selling asset a to households.

Before proceeding, I will note that these conclusions do not depend on the op-

timality of policy, only that policy is implemented by regulating intermediaries as

opposed to households, and by regulating trades between intermediaries and house-

holds but not between intermediaries. I view both of these assumptions as ap-

proximations of real world policy. First, macro-prudential regulations are usually

implemented by regulating banks, as opposed to attempting to directly regulate

the portfolios of households. Second, banks’ trades in products such as deriva-

tives are far less regulated than trades with households and firms. Interpreting the

intermediary-only assets as derivatives, the arbitrage arises due to the household’s

inability to trade derivatives and the regulatory constraints facing intermediaries,

exactly as suggested by e.g. Du et al. (2018).

This discussion has assumed that in the absence of regulation, intermediaries

would be free to trade both assets until their prices equalized. In the real world, it

is possible that non-regulatory constraints prevent arbitrage. In the fully specified

model of appendix section C, I consider this possibility, and conclude that the ar-

gument above holds for assets for which non-regulatory constraints do not bind. In

my empirical exercise, I address this issue by focusing on arbitrages that are short

maturity (circumventing limits-to-arbitrage issues) and absent prior to the GFC.

Lastly, observe that the logic above extends without modification from assets to

portfolios of assets. I will call an asset a ∈ A \AI “arbitrage-able” if there exists
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a portfolio of assets in AI that replicate its payoff, regardless of the goods prices

that occur in equilibrium. That is, for any arbitrage-able asset, there exists portfolio

weights wa′(a) such that, for all states s ∈ S1 and all price levels {Pj,s},

Za,s({Pj,s}) = ∑
a′∈AI

wa′(a)Za′,s({Pj,s}).

Let A∗ denote the set of arbitrage-able securities.

Optimal Policy Let us now consider what pattern of arbitrage should exist under

an optimal policy. Suppose that the planner can choose any asset allocations, trans-

fers, and goods prices for each state, subject to market clearing constraints for goods

and assets, a constraint that transfers sum to zero, and the constraints on feasible

asset allocations. Under these conditions and subject to a participation constraint

for intermediaries, suppose the planner maximizes household welfare. For a formal

definition of the problem, see definition 3 in appendix section C.

Let us consider in particular the market clearing constraint for good j in state s.

Let Xh
j,s(I

h
s ,{Pj′,s} j′∈Js) denote the demand function for good j by household h in

state s, and define X i
j,s(·) as the same for intermediaries. Market clearing requires

that for each state s ∈ S and good j ∈ Js,

∑
h∈H

(Xh
j,s(I

h
s ,{Pj′,s} j′∈Js)−Y h

j,s) = ∑
i∈I

(X i
j,s(I

i
s,{Pj′,s} j′∈Js)−Y i

j,s).

Let µ j,s be the multiplier on this constraint, scaled to the units of prices,11 and let

P∗j,s be the price chosen by the planner for good j in state s. The multiplier µ j,s can

11Converting from social marginal utility to price units requires scaling by a Pareto weight and an
agent’s marginal utility; see section 2 below for an example.
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be interpreted as the additional social cost of good j in state s above the price P∗j,s.

If the prices that clear markets are also the prices that maximize social welfare

(e.g. if the classic welfare theorems apply), the ratio of the social cost P∗j,s +µ j,s to

the private cost P∗j,s will be the same for all goods j ∈ Js within each state s ∈ S.12

In this case, the agents’ and the planner’s preferences are perfectly aligned, and the

solution to the constrained planner’s problem is also a competitive equilibrium.

However, if markets are incomplete, then generically, the solution to the con-

strained planner’s problem will not coincide with a competitive equilibrium (Geanako-

plos and Polemarchakis (1986)). If prices are rigid, or if there are constraints on

agents’ goods allocations that depend on prices, pecuniary externalities will lead

to generic constrained inefficiency regardless of whether markets are complete or

incomplete (Farhi and Werning (2016)). In these cases, the multipliers µ j,s are non-

zero, and the ratio of P∗j,s+µ j,s to P∗j,s is not the same for all goods within each state.

In what follows, I will focus on the incomplete markets case, but the results I derive

will hold regardless of whether the underlying source of inefficiency is incomplete

markets, nominal rigidities, prices in constraints, or some combination thereof.

To quantify these inefficiencies, I define “wedges” (following Farhi and Wern-

ing (2016)). The wedge τr
j,s is the difference between the social/private cost ratio

for the good j ∈ Js in state s ∈ S1 and the average ratio for all goods in that state,13

π
r
s τ

r
j,s =−

P∗j,s +µ j,s

P∗j,s
+

1
|Js| ∑

j′∈Js

P∗j′,s +µ j′,s

P∗j′,s
.

12Only relative prices matter. If j0 is the numeraire (implying µ j0,s = 0 and P∗j0,s = 1), then the
ratio of social to private cost will be the same for all goods if and only if µ j,s = 0 for all goods.

13This definition of wedges is essentially the same as the one employed by Farhi and Werning
(2016), adjusted for the difference between production and endowment economies and scaled by the
reference measure πr

s . It is not necessary in what follows to define wedges for the state s0.
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The wedge τr
j,s is scaled by the probability measure πr

s > 0. In the applications I

consider, this measure is a risk-neutral measure or the physical probability measure.

The wedges τr
j,s are defined in the context of this reference measure, and if defined

instead under an alternative reference measure πr′
s would be rescaled, τr′

j,s =
πr

s
πr′

s
τr

j,s.

The wedge is the difference between the first-order conditions of the planner and

of the agents– the latter do not account for effects of their demands on goods prices,

and these pecuniary externalities, due to market incompleteness, affect welfare. It

is positive if the social cost of a good is low relative to its price.

The wedges can be compensated for by transferring income in state s between

agents. Let h and i be two agents in the economy. Let Xh
I, j,s =

∂

∂ I Xh
j,s(I,{P∗j′,s} j′∈Js)|I=Ih∗

s

be the change in h’s consumption of good j in state s if given a marginal unit of in-

come, holding prices constant, evaluated at the income Ih∗
s and prices P∗j′,s that solve

the constrained planner’s problem, and let X i
I, j,s be the same income effect for i. If

the wedge-weighted difference of these income effects,

∆
h,i,r
s = ∑

j∈Js

P∗j,sτ
r
j,s(X

h
I, j,s−X i

I, j,s),

is positive, transferring income from i to h in state s has a benefit, from the planner’s

perspective, because it alleviates externalities. I will call ∆
h,i,r
s the “externalities”

because they summarize this benefit.14

For goods j ∈ Js with positive wedges τr
j,s, the social cost of the good is lower

than the price, and it is desirable to increase demand for the good. If Xh
I, j,s > X i

I, j,s,

then transferring income from i to h will indeed increase demand for the good. Sum-

14Farhi and Werning (2016) define an object τ i
D,s, which is closely related, πr

s ∆
h,i,r
s = τh

D,s− τ i
D,s.
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ming these effects across goods determines the marginal benefit ∆
h,i,r
s of a transfer

of income from i to h in state s.

Under optimal policy, the marginal benefit of reallocating income between i

and h across the states s ∈ S1 is offset by a marginal cost– distorting risk-sharing.

Absent regulation, agents share risks by trading assets, ignoring externalities. The

planner, in contrast, distorts risk-sharing to address these externalities.

Consider an asset a ∈ A that can be freely traded by both i and h in the solution

to the constrained planner’s problem. The planner can reallocate the asset between

these agents; as a result, the marginal benefit of such a reallocation must equal

the marginal cost under optimal policies. Reallocating the asset between h and i

has a cost if it prevents those agents from equating their valuations of the asset.

The following proposition shows how the planner equates the marginal benefit of

reducing externalities and the marginal cost of distorting risk-sharing. Let Z∗a,s =

Za,s({P∗j,s} j∈Js) be the asset payoffs and let Mh,r,∗
s and Mi,r,∗

s be the agents’ SDFs in

the solution to the planner’s problem.

Proposition 1. In the solution to the planner’s problem, for any agents h and i, and

any asset a ∈ A, if the planner is free to reallocate a between h and i, then

∑
s∈S1

π
r
s ∆

h,i,r
s Z∗a,s = ∑

s∈S1

π
r
s (M

i,r,∗
s −Mh,r,∗

s )Z∗a,s. (4)

These results holds for both the endowment economy of appendix section C and the

production economy of section 4 of Farhi and Werning (2016).

Proof. See the appendix, section F.1, or Farhi and Werning (2016).

If there is a complete market of securities that can be freely reallocated by the
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planner between h and i, then the externalities ∆
h,i,r
s must exactly equal the dif-

ference of the agents’ SDFs, Mi,r,∗
s −Mh,r,∗

s . In this case, the externalities can be

non-zero if there are other agents who cannot trade in the complete securities mar-

ket (as shown in the example of section 2 below).15 In the incomplete markets case,

the externalities ∆
h,i,r
s are equal to the difference of the agents’ SDFs within the

span of the payoff space of the assets that can be reallocated between the agents.

That is, because the planner can move these assets between the agents, the planner

must equate the marginal benefit of doing so (alleviating the externalities) with the

marginal cost (distorting risk-sharing).

Implementation The marginal cost vs. marginal benefit tradeoff just described

arises from a planning problem in which the planner allocates assets for each of the

agents. Because the planner chooses each agent’s asset allocation, asset prices do

not enter the constrained planner’s problem. I next describe how the planner can

implement optimal policy using asset markets. In this implementation, there will

be a single price for each asset, and hence I will be able to discuss asset prices.

There is tension between assuming that each asset has a single price and the

results of Proposition 1. In the presence of externalities, Proposition 1 requires that

the willingness to pay for asset a of h be different from that of i, ∑s∈S1 πr
s Mh,r,∗

s Z∗a,s 6=

∑s∈S1 πr
s Mi,r,∗

s Z∗a,s. Consequently, h and i cannot both be free to trade the asset at the

price Qa. To implement optimal policy, the planner must place constraints on one

or both of the agents’ ability to trade the asset.16 These constraints are what I will

15The externalities can also be non-zero if prices are rigid or if prices enter constraints on agents’
goods allocations, as discussed above.

16The planner could also use agent-specific taxes on asset holdings, so that the post-tax asset price
faced by the agents is different even if the pre-tax price is the same. The FDIC fees charged to US
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call macro-prudential policy; leverage restrictions are an example.

The planner has a great deal of latitude about the form of these constraints. The

agents, when trading the asset, consider both the asset price and the shadow cost of

the constraints (as in, e.g., Garleanu and Pedersen (2011) or Du et al. (2020)). As

long as these prices and shadow costs are consistent with Proposition 1, then the

resulting equilibrium will be constrained efficient. That is, the functional form of

the constraints does not matter, as long as the constraints generate the appropriate

shadow costs. In particular, the constraints could be a function of both asset prices

and portfolio choices (like a capital requirement), but this is not required.17

Under the financial intermediation structure I have assumed, proposition 2 be-

low shows it is without loss of generality for the planner to implement optimal

policy via portfolio constraints on intermediaries only. Because households trade

through intermediaries, by regulating the trade of intermediaries with each house-

hold and with each other, the planner can dictate the asset allocation for all agents.18

Now consider an arbitrage-able security a ∈ A∗, tradable by some household h.

Applying (1) to this asset and (2) to its replicating portfolio illustrates the relation-

ship between the arbitrage on asset a and the externalities.

Proposition 2. The planner can implement the solution to the constrained planning

problem using portfolio constraints on intermediaries only, and without constrain-

ing the trades of one intermediary, i∗ ∈I , in the intermediary-only assets AI .

banks are an example along these lines. I focus on quantity constraints because these appear more
common in practice.

17For a formal definition of these portfolio constraints, see the appendix, Section §C.
18This point also illustrates the limits of the Farhi and Werning (2016) framework, which does

not allow for either private information or hidden trade, both of which would limit the set of imple-
mentable allocations. I discuss in appendix section D why my basic conclusions would continue to
hold in the presence of private information or hidden trade.
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In this implementation, for any arbitrage-able asset a ∈ A∗ that is tradable by

household h and that the planner is free to reallocate between h and i∗,

−Qa + ∑
a′∈AI

wa′(a)Qa′︸ ︷︷ ︸
arbitrage violation

= ∑
s∈S1

π
r
s ∆

h,i∗,r
s Z∗a,s︸ ︷︷ ︸

expected externality-weighted payoffs

. (5)

Proof. See the appendix, section F.2.

This equation demonstrates the tight connection under optimal policy between

arbitrage and the externalities the planner attempts to correct. To correct pecuniary

externalities, the planner must distort risk-sharing. Under the assumed structure of

financial intermediation, the planner can implement the optimal risk-sharing dis-

tortions by regulating intermediaries. In this implementation, certain assets will be

priced by households (because households are not directly regulated) while others

will be priced by intermediaries (because these assets are not tradable by house-

holds). For the subset of assets that are arbitrage-able (tradable by households with

an intermediary-only replicating portfolio), this implementation of optimal policy

will lead to an apparent arbitrage opportunity.

Strikingly, arbitrage is a generic feature of constrained efficient allocations (if

the planner implements the constrained efficient allocation in the manner described

by Proposition 2).19 The absence of arbitrage is not a sign of efficiency, but rather

a sign of inefficiency in the presence of incomplete markets. More specifically,

an arbitrage-able asset should be cheap relative to its replicating portfolio if its

payoffs occur mainly in states in which the planner would like to transfer wealth

19Generically, externalities are non-zero and are in the span of the payoff space of A∗.
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from intermediaries to households.

The implementation described by Proposition 2 assumes that there exists an

intermediary who is completely unconstrained with respect to trade in the repli-

cating portfolio. This does not mean the intermediary is unregulated; it means

only that regulatory constraints do not bind for that intermediary with respect to

intermediary-only assets. Interpreting intermediary-only assets as derivatives, this

implementation assumes only that derivatives are priced by some intermediary.20

Lastly, note that these results inherit the generality of the Farhi and Wern-

ing (2016) framework. In particular, they allow for arbitrary heterogeneity across

agents in both preferences and endowments. I next provide a concrete example to

further illustrate the connection between externalities and arbitrage.

2 An Example of Externalities as Arbitrage

This section describes a version of Fanelli and Straub (2019) (see also example

5.4 of Farhi and Werning (2016)) to illustrate the meaning of Proposition 2. In

this example, a planner limits foreign-currency lending by intermediaries (i.e. uses

capital controls) to stabilize the real exchange rate. This creates a CIP violation

whose size and direction are determined by the externalities as in (5).

This example connects to the empirical exercise that follows in that it illustrates

how CIP violations can arise from optimal macro-prudential policy. However, this

example focuses on capital controls, and hence is more naturally interpreted as

concerning developing economies, whereas my empirical application focuses on

20It is likely more realistic to suppose regulations impact derivatives to a small degree; in this
case, the result should be viewed as an approximation.
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developed markets and bank regulation. I present this example because it more

transparently illustrates the principles behind the exercise.

There are two types of domestic households, Ricardians and non-participants

(H = {r,n}). In each state, there are two goods, tradable and non-tradable, Js =

{T,NT}. Both households have log utility preferences over a Cobb-Douglas aggre-

gate of tradables and non-tradables, with share parameter α on tradables.

The future state can be either good (g) or bad (b), S1 = {g,b}. Non-participants

are endowed with non-tradables YNT and tradables Y n
T,s, with Y n

T,g > Y n
T,b. Ricardian

households are endowed only with tradables Y r
T . Only Y n

T,s varies across the states;

otherwise, the states are identical. Foreign intermediaries are risk-neutral, consume

tradables only, and have a large endowment of tradables in all states. The discount

factor for both households is β < 1, and is one for the intermediaries.

The tradables price is stable in the foreign currency, and the domestic price

index is stable in the domestic currency, and I will use the tradable good as the

numeraire (PT,s = 1). The exchange rate is therefore es = (PNT,s)
1−α , Ricardians

can trade both a foreign-currency risk-free bond a f c, with Za f c,s(PNT,s) = 1, and a

domestic risk-free bond adc, with Zadc,s(PNT,s) = (PNT,s)
1−α . Intermediaries can

trade both of these bonds, an intermediary-only foreign currency risk-free bond aI ,

and a currency forward aF at exchange rate F , ZaF ,s(PNT,s) = (PNT,s)
1−α −F . The

bonds a f c and adc are both arbitrage-able: ZaI ,s(·) = Za f c,s(·) and F × ZaI ,s(·) +

ZaF ,s(·) = Zadc,s(·). Non-participants cannot trade any assets.

The planner’s problem is to maximize a weighted sum of household utility, sub-

ject to a participation constraint for the foreign intermediaries. Note that there is

a complete market traded between intermediaries and Ricardians, as the exchange
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rate will vary across S1 = {g,b} and the domestic and foreign currency bonds will

have different returns. As a result, the participation constraint of the intermediaries

creates a unified budget constraint for the Ricardians.

Let π
p
s be the physical measure,21 with π

p
s0 = 1, let Ts0 be the transfer in s0 to

non-participants, and let λ p > 0 and λ r > 0 be Pareto weights. The planner solves

max
{Ir

s≥0,In
s≥0}s∈S,{PNT,s≥0}s∈S,Ts0

∑
h∈{r,n}

λ
h
∑
s∈S

π
p
s V h

s (I
h
s ,PNT,s),

subject to non-tradable market clearing, YNT = ∑
h∈{r,p}

Xh
NT,s(I

h
s ,PNT,s),∀s ∈ S,

the non-participants budget constraints, In
s = PNT,sYNT +Y n

T,s +1{s = s0}Ts0,∀s ∈ S,

and the Ricardian budget constraint, Ir
s0
+π

p
g Ir

g +π
p
b Ir

b ≤ 2Y r
T −Ts0 .

The functional forms in this example lead to

V h
s (I

h
s ,PNT,s) =


β [ln(Ih

s )− ln(P1−α

NT,s )+(1−α) ln(1−α)] s ∈ {g,b},

ln(Ih
s )− ln(P1−α

NT,s )+(1−α) ln(1−α) s = s0,

Xh
NT,s(I

h
s ,PNT,s) = (1−α)

Ih
s

PNT,s
.

The market-clearing condition highlights the pecuniary externality present in

the model. If the Ricardian households sell a bond, reallocating income from the

states in S1 to the state s0, this will increase the price of the non-tradable good in

s0 and reduce the price in the states {g,b}. These price changes have an effect on

welfare because the poor households face incomplete (non-existent) markets. The

21Because intermediaries are risk-neutral, this is also the intermediaries’ risk-neutral measure.
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additional social cost of the non-tradable good, µNT,s, is determined by the planner’s

first-order condition with respect to PNT,s, and can be written for s ∈ S1 as

µNT,s

P∗NT,s
= β

In
s0

λ n π
p
s (

λ n +λ r

In
s + Ir

s
− λ n

In
s
),

where λ n

In
s0

µNT,s is the multiplier on the goods market clearing constraint. In states in

which the income share of non-participants, In
s

In
s +Ir

s
, is lower than the relative welfare

weight λ n

λ n+λ r , the planner would like to increase non-participant incomes. Because

non-participants are net sellers of non-tradables, it is desirable in this case to in-

crease PNT,s and the social cost of non-tradables is less than the private cost.22

The wedges are π
p
s τ

p
NT,s =−π

p
s τ

p
T,s =−

1
2

µNT,s
P∗NT,s

, and the externalities simplify to

∆
r,i,p
s =−(1−α)

µNT,s

P∗NT,sπ
p
s
= (1−α)β

In
s0

In
s
(1− λ n +λ r

λ n
In
s

In
s + Ir

s
).

Let us now consider the first-order conditions of the planner’s problem with

respect to Ricardian households’ income and with respect to the transfer Ts0 ,

βπ
p
s

λ r

Ir
s
−(1−α)

µNT,s

P∗NT,s

λ n

In
s0

= π
p
s

λ r

Ir
s0

−π
p
s (1−α)

µNT,s0

P∗NT,s0

λ n

In
s0

= π
p
s

λ n

In
s0

−π
p
s (1−α)

µNT,s0

P∗NT,s0

λ n

In
s0

.

The transfer ensures that the goods market at date zero is efficient (µNT,s0 = 0).

Combining these equations produces the complete markets analog of (4),

π
p
s (M

i,p
s −Mr,p

s ) = π
p
s ∆

r,i,p
s , (6)

22Note that I have ignored tradable goods market clearing (Walras’ law), and without loss of
generality µT,s = 0.
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where Mi,p
s = 1 and Mr,p

s = β
Ir
s0
Ir
s

are the SDFs of the intermediaries and Ricardians,

respectively. Summing this equation weighted by the payoffs Za,s(P∗NT,s) gives a

version of (4) for log-utility households and risk-neutral intermediaries.

Moreover, the externalities must be non-zero in the solution to the planner’s

problem (and hence that competitive equilibria are inefficient). If the externalities

were zero, the income shares
In
g

In
g+Ir

g
and In

b
In
b+Ir

b
would both equal λ n

λ n+λ r , by (6) the Ri-

cardian incomes would be equal, Ir
g = Ir

b, and therefore the non-participant incomes

would be equal, In
g = In

b . Market clearing in non-tradables requires that if incomes

are identical across {g,b}, so are prices. But if the non-tradable price is the same in

g and b, non-participant income cannot be equal in those states by the assumption

that Y n
T,g > Y n

T,b, and therefore the externalities must be non-zero.

More specifically, in the solution to the planner’s problem, the non-tradable

price will be lower in b than in g. Consequently, the domestic bond has a lower

return in b than in g. In the absence of regulation, in the competitive equilibrium

of this example the Ricardians will borrow from intermediaries using the foreign

currency bond (because β < 1 and the Ricardians have no income risk). The plan-

ner, to increase the price of non-tradables in state b relative to state g, would in-

stead prefer that Ricardians borrow from intermediaries using the domestic bond,

thereby increasing Ricardian income in b relative to g. A macro-prudential regula-

tion limiting the quantity of foreign-currency lending by intermediaries is one way

of implementing this outcome. Depending on parameters, the planner might also

limit the total amount of lending by intermediaries.

When the planner implements optimal policies as described in proposition 2, the

externalities ∆
r,i,p
s will manifest as arbitrages. The Ricardians will price the foreign-
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currency and domestic-currency bonds a f c and adc. The foreign intermediaries will

price the intermediary-only (i.e. offshore) foreign-currency risk-free bond aI and

the currency forward aF . The resulting arbitrages are

QaI −Qa f c = π
p
g ∆

r,i,p
g +π

p
b ∆

r,i,p
b , (7)

F×QaI +QaF −Qadc = π
p
g ∆

r,i,p
g (P∗NT,g)

1−α +π
p
b ∆

r,i,p
b (P∗NT,b)

1−α . (8)

The first is a difference between the price intermediaries use when borrowing or

lending with each other and the price they use when borrowing or lending to the

Ricardians. The second is a CIP violation that involves the domestic currency bonds

(the asset Ricardians can trade) and a replicating portfolio only intermediaries can

trade (the currency forward and the intermediary-only bond). These two arbitrages

closely resemble the arbitrages I study in the empirical exercise that follows.

3 The Externality-Mimicking Portfolio

Let us now adopt the perspective of a financial economist who observes asset prices,

and wants to know what externalities would justify the patterns of arbitrage in those

asset prices. Suppose the financial economist observes prices for a set of arbitrage-

able assets A∗ tradable by some household h, along with the prices of the corre-

sponding replicating portfolios of intermediary-only assets (e.g. derivatives). Fur-

ther suppose that the financial economist believes these arbitrages are caused by

regulation, and not by other frictions that are exogenous from the perspective of
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regulators.23 In the context of the preceding example, A∗ = {a f c,adc} (the foreign

and domestic currency bonds), and h is a Ricardian household.

Suppose regulatory policy is implemented as described in section 1; then (3)

will hold. In this section, I show how (3) can be “inverted” to recover the difference

of the household and intermediary SDFs from asset prices. When the assets in A∗

form a complete market (i.e. in the example of the previous section), we can per-

fectly recover the difference of the SDFs from asset prices. When A∗ does not form

a complete market, we will instead recover the projection of the difference of the

SDFs onto the space of returns. In both cases, we will recover the (projected) differ-

ence of the SDFs by constructing a portfolio, the “externality-mimicking portfolio.”

The externality-mimicking portfolio’s returns track the externalities that would jus-

tify existing regulation as optimal (by Proposition 1).

For simplicity, I use the space of returns, Ra,s =
Z∗a,s
Qa

, as opposed to the space

of payoffs, and therefore assume that every arbitrage-able asset and its replicating

portfolio have strictly positive prices.24 The return of an arbitrage-able asset a∈ A∗,

Ra,s, and the return of its replicating portfolio, RI
a,s, are linked by the relationship

RI
a,s = (1−χa)Ra,s, where

χa =
−Qa +∑a′∈AI wa′(a)Qa′

∑a′∈AI wa′(a)Qa′
(9)

is a scale-free measure of arbitrage. Intuitively, when the asset is cheaper than its

replicating portfolio, its returns are higher. Using this notation, we can rewrite (7)

23Plausible real-world examples include the post-GFC CIP violations (Du et al. (2018)) and the
difference between the federal funds rate and the IOER rate (Bech and Klee (2011)).

24This is without loss of generality if there is a risk-free arbitrage-able security, as one could
always add some amount of the risk-free security to another other security to ensure that its price is
positive, while still ensuring that a replicating portfolio exists.
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and (8) from the example in the previous section as

χa f c

χadc

=

π
p
g RI

a f c,g π
p
b RI

a f c,b

π
p
g RI

adc,g π
p
b RI

adc,b

 ·
∆

r,i,p
g

∆
r,i,p
b

 .
Now consider the portfolio of replicating portfolios (in the example, a portfolio

of the currency forward and intermediary-only bond, expressed as weights on the

replicating portfolios of the bonds traded by Ricardian households) defined by

θ ∗a f c

θ ∗adc

=


RI

a f c,g RI
adc,g

RI
a f c,b RI

adc,b



−1

·


π

p
g RI

a f c,g π
p
b RI

a f c,b

π
p
g RI

adc,g π
p
b RI

adc,b



−1

︸ ︷︷ ︸
inverse second moment matrix of RI

a,s

·

χa f c

χadc

 .

This portfolio has returns that are equal to the externalities in each state,

∆
r,i,p
g

∆
r,i,p
b

=

RI
a f c,g RI

adc,g

RI
a f c,b RI

adc,b

 ·
θ ∗a f c

θ ∗adc

 .
This portfolio, which is externality-mimicking portfolio in the context of the capital

controls example, is the projection of the externalities onto space of returns. In this

example, which features complete markets, the portfolio’s returns are the unique set

of externalities that would justify the observed pattern of arbitrage. More generally,

in the incomplete markets case, the externality-mimicking portfolio’s returns are a

(not unique) set of externalities that would justify the observed pattern of arbitrage.

These results are analogous to (and build on) the results of Hansen and Richard

(1987), who study the projection of an SDF onto the space of returns. Those au-
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thors also show that their projection is equivalent to minimizing the variance of an

SDF, subject to the constraint that the SDF price a set of assets.25 Hansen and Ja-

gannathan (1991) then show that the portfolio whose returns are the projection of

the SDF is also the portfolio with the maximum available Sharpe ratio. Below, I

develop analogous interpretations of the externality-mimicking portfolio.

Constructing the externality-mimicking portfolio requires three ingredients:

1. A set of arbitrage-able assets A∗,

2. Prices for the arbitrage-able assets in A∗ and their replicating portfolios, and

3. Expected returns and a variance-covariance matrix for the assets in A∗.

I assume, to simplify the exposition, that A∗ includes a risk-free asset, whose

return is R f . Let RI
f = (1− χ f )R f be the return on the replicating portfolio of

the risk-free asset, and let χA∗ be the vector of scaled arbitrages χa for the risky

assets in A∗. Let µA∗,r and ΣA∗,r be the mean vector and variance-covariance matrix

of the returns Ra,s for each risky arbitrage-able asset a ∈A∗, under some measure

πr
s . Given µA∗,r and ΣA∗,r, the mean returns and variance-covariance matrix for the

returns RI
a,s, µA∗,I,r and ΣA∗,I,r, are defined by the relationship RI

a,s = (1−χa)Ra,s. I

assume there are no redundant risky arbitrage-able assets (ΣA∗,r has full rank). From

these objects, I define the externality-mimicking portfolio.

Note, by definition, that the space of returns of the arbitrage-able assets is iden-

tical to the space of returns of the replicating portfolios. As a result, the externality-

mimicking portfolio can be defined as either a portfolio of the arbitrage-able assets

or as a portfolio of replicating portfolios. It is convenient for what follows to define

it as a portfolio of replicating portfolios; for the alternative, see appendix section E.

25This equivalence holds if the constraint that the SDF be positive does not bind.
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Definition 1. The externality-mimicking portfolio is a portfolio of the replicating

portfolios of A∗, with weights on the risky replicating portfolios equal to

θ
A∗,r = (ΣA∗,I,r)−1(χA∗−χ f

µA∗,I,r

RI
f

), (10)

and a weight on the risk-free replicating portfolio equal to

θ
A∗,r
f =−(θ A∗,r)T µA∗,I,r

RI
f

+
1

(RI
f )

2 χ f . (11)

Proposition 3 below demonstrates four facts about this portfolio. The first two

facts show that this portfolio is the projection of the externalities (under the assump-

tions of proposition 2) onto the space of replicating portfolio returns (i.e. the space

of returns for assets in A∗). The third fact shows that the return of the portfolio is

the difference between the household and intermediary SDFs, projected onto the

space of returns. The fourth fact shows that the portfolio maximizes the “Sharpe

ratio due to arbitrage,” which I define next.

Given an arbitrary portfolio θ of risky assets in A∗, consider both its Sharpe

ratio, SA∗,r(θ), and the Sharpe ratio of the replicating portfolio,26

SA∗,I,r(θ) =

θ T µA∗,I,r

RI
f
−∑a∈A∗ θa

(θ T ΣA∗,I,rθ)
1
2

.

SA∗,r(θ) is defined similarly, with (µA∗,r,ΣA∗,r,R f ) in the place of (µA∗,I,r,ΣA∗,I,r,RI
f ).

26The definition of the Sharpe ratio given here is signed, and might be scaled by the inverse of
RI

f when compared to other definitions of the Sharpe ratio. Note also that the portfolio weights θ

do not need sum to one (the units of θ are “dollars”, not percentages), and that the Sharpe ratio is
homogenous of degree zero.

28



Because the prices of the replicating portfolios are not the same as the prices

of the arbitrage-able assets, an allocation in dollars to arbitrage-able assets and the

same dollar asset allocation to the replicating portfolios are in fact claims to differ-

ent cashflows.27 I instead compare portfolios that are claims to the same cashflows

but perhaps have different prices. Define the portfolio transformation θ̃(θ) by

θ̃a(θ) = (1−χa)θa.

This transformation converts an allocation in dollars at the replicating portfolio

prices to an allocation in dollars at the arbitrage-able asset prices.

I define the “Sharpe ratio due to arbitrage” as the difference between the Sharpe

ratio on a set of claims and the replicating Sharpe ratio of those same claims,

ŜA∗,I,r(θ) = SA∗,r(θ̃(θ))−SA∗,I,r(θ).

A little algebra shows that the Sharpe ratio due to arbitrage is the ratio of the excess

arbitrage, χA∗−χ f
µA∗,I,r

RI
f

, to the volatility of the portfolio,

ŜA∗,I,r(θ) =
θ T · (χA∗−χ f

µA∗,I,r

RI
f
)

(θ T ΣA∗,I,rθ)
1
2

.

I next summarize the properties of the externality-mimicking portfolio.

Proposition 3. Under the assumptions of proposition 2, the externality-mimicking

27For example, if both intermediaries and households can buy stocks at $1/share but households
pay $2/bond whereas intermediaries pay $1/bond, an allocation of $4 split equally between stocks
and bonds means two shares and two bonds for the intermediaries, but two shares and one bond for
the households.

29



portfolio has the following properties:

1. The externalities are the return on the portfolio plus a zero-mean residual,

uncorrelated with the returns of all arbitrage-able assets a ∈ A∗: for all i ∈ I,

∆
h,i∗,r
s = ∑

a∈A∗
RI

a,sθ
A∗,r
a + ε

A∗,r
s ,

∑
s∈S1

π
r
s RI

a,sε
A∗,r
s = 0 ∀a ∈ A∗.

2. The variance of the externalities, ∑s∈S1 πr
s (∆

h,i∗,r
s − χ f

RI
f
)2, is weakly greater

than the variance of the externality-mimicking portfolio’s return, (θ A∗,r)T ΣA∗,I,rθ A∗,r.

3. Let mI,r
s be any SDF that prices the replicating portfolios under the measure

πr
s . Then mr

s = mI,r
s +∑a∈A∗ RI

a,sθ
A∗,r
a is the solution to the problem:

min
m∈R|S1|

∑
s∈S1

π
r
s (ms−mI,r

s )2 subject to

∑
s∈S1

π
r
s msRa,s = 1 ∀a ∈ A∗.

4. The Sharpe ratio due to arbitrage of the externality-mimicking portfolio, ŜA∗,I,r(θ A∗,r),

is weakly greater than the Sharpe ratio due to arbitrage of any other portfolio

of replicating portfolios of the assets in A∗.

Proof. See the appendix, section F.3.

The first two claims follow from the least-squares projection. The third is the

analog of Hansen and Richard (1987), and shows that the estimated household SDF

mr
s =mI,r

s +∑a∈A∗ RI
a,sθ

A∗,r
a is the one that makes the household’s and intermediary’s

SDFs as close as possible, subject to the constraint that it price the arbitrage-able
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assets A∗ (and therefore differ sufficiently from mI,r
s , which prices the replicating

portfolios).28 The fourth claim is the analog of Hansen and Jagannathan (1991),

and shows that the externality-mimicking portfolio is also the one the maximizes

the Sharpe ratio due to arbitrage.

The externality-mimicking portfolio is a reflection of what regulation is actually

accomplishing. Consider a state s in which the externality-mimicking portfolio has

a negative 10% return. If policy is optimal, the best linear prediction of the external-

ities in this state is negative 10%. That is, the planner would be indifferent between

being able to transfer ex-post one extra dollar from households to intermediaries in

state s and receiving an additional 10%×πr
s dollars in the initial state s0.

The externality-mimicking portfolio is defined in the context of the reference

measure πr. In my empirical exercises, I focus on the intermediaries’ risk-neutral

measure, π i∗
s = π

p
s RI

f Mi∗,r
s , and consider the physical (or actual) probability mea-

sure, π p, in robustness exercises. The two corresponding externalities are the “risk-

neutral externalities” ∆
h,i∗,i∗
s and the “physical externalities” ∆

h,i∗,p
s , and are linked,

π
p
s ∆

h,i∗,p
s = π i∗

s ∆
h,i∗,i∗
s . This connection reflects the usual equivalence in asset pricing

between state-dependent preferences and beliefs. Using the risk-neutral externality-

mimicking portfolio has a particular advantage, which is that all expected returns

are equal to the risk-free rate, and hence observable. Moreover, options and quanto

option29 prices (which I presume are traded only by intermediaries) can reveal risk-

neutral variances and covariances (Kremens and Martin (2019)). If we consider

only arbitrage-able assets for which options and quantos are available (currencies

28That is, mr
s maximizes a “market integration” measure along the lines of Chen and Knez (1995).

29A quanto option is an option that involves both an exchange rate and an asset (such as the S&P
500). See appendix section A.4 or Kremens and Martin (2019) for details.
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and the S&P 500), no estimation is required when constructing the risk-neutral

externality-mimicking portfolio. Using the physical measure, in contrast, requires

estimating both expected returns and a variance-covariance matrix.

The externality-mimicking portfolio reveals what externalities would justify ob-

served patterns of arbitrage under an optimal policy. The next step in our revealed

preference exercise is to ask whether the recovered externalities make sense. We

generally expect that externalities (and hence the mimicking portfolio returns) are

negative in “bad” states of the world. That is, governments seem tempted to bailout

intermediaries in bad states, not in good states. To test whether regulations are

consistent with this intuition, we need to define what we mean by “bad” states. I

consider two definitions, which result in two different tests. The first definition is

to define bad times as being bad for the intermediaries, which is to say that the

intermediaries’ SDF is high. The second definition involves studying a particular

situation– the “stress tests” conducted by the Federal Reserve– in which the regu-

lator is concerned about externalities, and would like intermediaries to have more

wealth. Presumably, the idea behind the stress tests is to ensure that intermediaries

have sufficient wealth in the stress scenario so as to avoid a bailout ex-post.

The first approach yields a simple test. The covariance of the intermediary SDF

and the risk-neutral externality-mimicking portfolio, under the physical measure, is

Covp(Mi∗,r
s ,∆h,i∗,i∗

s ) =
1

RI
f
(

χ f

RI
f
− ∑

s∈S1

π
p
s ∆

h,i∗,i∗
s )

=− 1
RI

f
(θ A∗,i∗)T · (µA∗,I,p−RI

f )+Covp(Mi∗,r
s ,εA∗,i∗

s ).

If the externalities are negatively correlated with the intermediaries’ SDF, the ex-
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pected excess return of the risk-neutral externality-mimicking portfolio under the

physical measure should be positive. Therefore, after constructing the externality-

mimicking portfolio, I will estimate its expected returns and ask whether or not they

are positive. The covariance term between the projection error and the intermediary

SDF shows that this test would be biased if there are components of the SDF that

are not spanned by the space of returns, and which are correlated with components

of the externalities that are also unspanned.

The second approach uses stress tests to identify a particular state (the stress test

scenario) in which externalities should be negative. The purpose of the stress test is

to verify that intermediaries have sufficient wealth in the stress scenario. To the ex-

tent that regulations achieve this goal, they must operate by inducing the intermedi-

aries to hold different assets and issue different liabilities than they otherwise would

have. Consequently, the intermediaries’ counterparties (the households) must also

hold different assets and issue different liabilities than they otherwise would have.

In other words, if the regulations act to raise intermediaries’ wealth in certain sce-

narios, they must lower the wealth of households in those scenarios (at least in

an endowment economy). That is, stress test scenarios are a statement when the

regulator perceives negative externalities associated with transferring wealth from

intermediaries to households (negative ∆
h,i,r
s ). Consequently, if the regulations are

having the desired effect, returns on the externality-mimicking portfolio in the stress

test scenario should be negative. This test is biased if the unspanned component of

the externalities is large in absolute value in the stress scenario.
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4 Data

In this section, I describe the arbitrages, data sources, and additional assumptions I

use to conduct the tests described in the previous section.

The set of arbitrage-able securities A∗ should be limited to arbitrages induced

by regulation. I therefore focus on short maturity arbitrages, to avoid issues like the

classic limits to arbitrage argument (Shleifer and Vishny (1997)) and debt overhang

(Andersen et al. (2019)). This precludes many of the arbitrages documented in the

literature. I focus on arbitrages appeared after but not before the GFC, reasoning

that these arbitrages are likely to be induced by post-crisis regulatory changes. Two

classes of arbitrage that fit these criteria are the difference between the federal funds

rate and the IOER rate and CIP violations (Bech and Klee (2011); Du et al. (2018)).

Constructing the externality-mimicking portfolio requires determining what is

the “asset” a ∈ A∗ and what is the “replicating portfolio.” My framework offers two

ways of making this distinction: assets a ∈ A∗ are tradable by households, whereas

replicating portfolios are not, and intermediaries’ trades in assets a ∈ A∗ are regu-

lated, whereas trades in the replicating portfolio are not. To a first approximation,

the difference between “cash assets” and “derivatives” lines up with both of these

distinctions: derivatives are both less accessible to households and less regulated

under various leverage and capital requirements.

Consider first the fed funds/IOER arbitrage, which is the difference of two risk-

free rates. A bank can earn interest on excess reserves held at the Fed, whereas a

household cannot. If there is no meeting of the FOMC within the next month, the

bank is essentially guaranteed to earn one month’s worth of interest at the current
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overnight rate.30 A household could instead purchase treasury bills, highly-rated

commercial paper, repo agreements (via money market funds), bank deposits, or

the like. I use 1-month OIS swap rates, which closely track the yields of one-month

maturity highly-rated commercial paper in the US, as a proxy for a risk-free rate

available to households that provides no liquidity benefits. These rates tend to be

higher than the rates on one-month constant maturity treasuries, but lower than

LIBOR rates (which may include credit risk).31 In the notation of the model, R f is

the one-month OIS swap rate, and RI
f is the interest rate on excess reserves.

Next, consider CIP violations. Here, guided by the “cash vs. derivatives” heuris-

tic, I assume that households can purchase foreign-currency bonds, but cannot trade

derivatives.32 The asset a ∈ A∗ is a claim to one euro in one month, and households

can purchase this asset by spot exchanging dollars for euros and then purchasing

a risk-free euro-denominated bond. Following Du et al. (2020), I use OIS rates as

proxies for the risk-free rates available to households in various currencies. The

replicating portfolio involves an intermediary earning the dollar IOER rate for one

month and using a one-month FX forward to lock in the dollar/euro exchange rate.33

My data sample begins on January 4, 2011, and runs through March 12, 2018.

My sample is restricted to include only days on which the settlement of the one-

month currency forward occurs before the next FOMC meeting, excluding days

30In rare circumstances, the Fed might change the IOER rate between meetings, but such changes
have low ex-ante likelihood and are unlikely to materially alter the expected interest rate.

31For example, on August 19th, 2016, the one-month constant-maturity treasury rate was 27bps,
the AA non-financial one-month commercial paper rates was 37bps, the one-month OIS rate was
40bps, the IOER rate was 50bps, and one-month LIBOR was 52bps.

32That is, either the household cannot trade derivatives, or the transactions costs on derivatives
trades for households are high enough that households cannot profitably execute the arbitrage.

33Implicitly, I am assuming that the default risk on the forward contract is negligible (or, to be
more precise, that the pricing data reflects forward rates available to a risk-free counterparty). Du
et al. (2018) argue, persuasively in my view, that this risk is negligible.
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with an FOMC meeting. Because the FOMC holds eight scheduled meetings each

year, roughly one quarter of all non-weekend days are included in the dataset.

My data on spot and forward exchange rates, FX options, and OIS rates are from

Bloomberg. I use the London closing time for all of these instruments, following

Du et al. (2018). I focus on the euro, yen, and pound, because these currencies are

major currencies that are modeled explicitly in the Federal Reserve’s stress test sce-

narios, and the Australian dollar, which plays a role in the “carry trade.” For details

of the data construction, see appendix section A.

Information on the “stress test” scenarios comes from the Federal Reserve’s

website.34 The “severely adverse” scenario described in the tests shows, among

other variables, the level of euro, yen, and pound, as well as the Dow Jones In-

dustrial Average, at a quarterly frequency. I collect both the one and four-quarter

percentage changes for each of the assets I study, and in my analysis will pretend

that these are returns that occur over a one-month horizon. For AUD, which is not

explicitly modeled in the stress test scenarios, I impute the returns in each stress

scenario by running a daily regression predicting AUD returns using the contempo-

raneous GBP, EUR, JPY, and stock returns over the preceding 720 days, and then

use these regression coefficients along with the one or four-quarter stress returns.

To conduct the tests described in the previous section, several additional as-

sumptions are required. To construct the risk-neutral externality-mimicking port-

folio, I require a full variance-covariance matrix under the risk-neutral measure. I

construct such a matrix from currency options on each currency possible currency

pair. For details, see appendix section §A. To estimate that portfolio’s expected

34https://www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm
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excess returns under the physical measure, an estimate of expected excess returns

is required. Motivated by Meese and Rogoff (1983) and the related literature, I

assume that exchange rates are random walks over my one-month horizon.

Table 1 presents the sample means and standard deviations of the arbitrage asso-

ciated with each currency and the risk-free arbitrage. Conceptually, these statistics

correspond to the term χa defined in (9). For example, for euros, it represents the

percentage difference in price, in dollars today, of purchasing a single euro one

month in the future by buying the euro at spot today and saving at OIS (the asset

a ∈ A∗), and obtaining the same euro one month in the future by savings at the

IOER rate and using a currency forward (the replicating portfolio). I also present

the difference between the dollar OIS rate and IOER (R f vs. RI
f ). The arbitrages

have a one month horizon, but are scaled to annualized values.

This table also shows the option-implied volatility and correlations of each cur-

rency (with respect to the US dollar).35 Finally, the table reports the empirical

correlations between the currencies and both the SPDR ETF and the daily He et al.

(2017) (HKM) intermediary capital factor, and the quanto-implied correlations be-

tween the currencies and the S&P 500 (as in Kremens and Martin (2019), see ap-

pendix section A for details). A positive correlation means appreciation relative to

the dollar when the S&P 500 has positive returns.

From Table 1, we can observe several notable features of the data. First, inter-

mediaries are able to earn a higher rate of interest than households (IOER vs. OIS).

However, the positive sign on the euro, pound, and yen arbitrages implies that it

35A version of the table with physical measure estimated volatilities and correlations is in ap-
pendix section B. The average volatilities and correlations are strikingly similar to their risk-neutral
counterparts.
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is more expensive for intermediaries to use derivatives to purchase e.g. a euro one

month in the future in exchange for a dollar today than it is for intermediaries to use

products also available to households. The opposite pattern holds for the Australian

dollar. Note also that the euro and Australian dollar are positively correlated with

the S&P 500 and the HKM factor, while the yen is negatively correlated with the

S&P 500. Immediately, by Proposition 2, we can observe that the AUD and JPY

CIP violations do not have the expected sign, if either the S&P 500 or the HKM

factor is a reasonable proxy for the externalities. Figure 1 shows the time series of

the “risk-neutral” excess arbitrages, χa− χ f , for Australian dollar, euro, and yen.

Using the risk-neutral excess arbitrage, as opposed to the physical measure excess

arbitrage, eliminates the dependence on an estimate of expected returns.

5 Results

I first construct the risk-neutral externality-mimicking portfolio, using the euro,

Australian dollar, and yen assets, and a risk-free asset. This portfolio can be con-

structed at daily frequency using Definition 1 and data on the arbitrages and the

risk-neutral variance-covariance matrix implied by FX options prices. Figure 2 dis-

plays the time series of the portfolio weights on the risky assets (EUR, AUD, JPY).

A few patterns in the data are apparent. First, the portfolio is generally long

yen and euro and short AUD, and long currencies overall. That is, the portfolio is

short US dollars and short the carry trade.36 The “short US dollars” part is likely

to generate positive expected returns, whereas the “short the carry trade” generates

36In the terminology of Lustig et al. (2011), the portfolio is long the “level” factor and short the
“slope” factor (the slope is with respect to interest rates).
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negative expected returns, and this latter effect will dominate (see Table 2 below).

Interpreted through the lens of the model, this portfolio implies that a strong desire

to transfer wealth from households to intermediaries (negative externalities) coin-

cides with an appreciation of the US dollar and high returns for the carry trade.

If the planner would like to transfer wealth to intermediaries in “bad times,” the

first part seems sensible, in light of the safe haven role of the US dollar (see, e.g.,

Maggiori (2017)), but the second is surprising. Lustig and Verdelhan (2007) show

that negative carry trade returns are associated with falls in consumption, and we

would generally presume that these times are times when the planner would like

intermediaries to have relatively more wealth. Second, the noticeable spikes in the

euro and yen CIP deviations that occur around quarter- and year-end result in large

changes to the portfolio weight. This is not surprising, as there is no corresponding

large change in implied volatilities that would offset the effect. Interpreted through

the lens of the model, suddenly binding constraints could only be justified by large

changes in externalities, and hence in the externality-mimicking portfolio.

I next consider the predictions that this portfolio has about other arbitrages. I

deliberately excluded GBP from the set of currencies used to form the externality-

mimicking portfolio. This allows me to test whether the arbitrage predicted us-

ing the externality-mimicking portfolio is consistent with the arbitrage actually ob-

served for the dollar-pound currency pair. Formally, I compute

χGBP−χ f = Σ
A∗,I,i∗
GBP θ

A∗,i∗, (12)

where θ A∗,i∗ is the externality-mimicking portfolio in (10) and Σ
A∗,I,i∗
GBP is the co-
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variance, under the intermediaries’ risk-neutral measure, between the dollar-pound

exchange rate and the risky assets used to form the externality-mimicking portfolio

(EUR, AUD, JPY). This is equivalent to computing the excess arbitrage under the

projected externalities, which coincides with the arbitrage under the true externali-

ties if there is no covariance between the pound and the error of the projection.

Figure 3 displays the results graphically. The actual excess arbitrage in pounds

is constructed from OIS rates in dollars and pounds, and the spot and forward

dollar-pound exchange rates (using excess arbitrage eliminates the dependence on

the IOER rate). The predicted excess arbitrage is constructed entirely from those

same variables in euros, AUD, and yen, along with options prices on all possible

currency pairs, which are used to both construct the externality-mimicking portfolio

(in the matrix ΣA∗,I,i∗) and to construct the covariances Σ
A∗,I,i∗
GBP . Note that the sets

of financial instruments used to construct the actual and predicted excess arbitrages

do not overlap. Nevertheless, the predicted and actual excess arbitrages track each

other, except near the end of 2011. The R2 of a regression of the actual arbitrage on

the predicted arbitrage, with no constant, is 83%. For predictions involving other

currencies, see appendix section B.1.

I next consider the expected return of this portfolio (the first test described in

the previous section). Intuitively, because the portfolio is generally short the carry

trade, the expected return on the portfolio is negative. This contradicts the intuition

that the externalities should be negatively correlated with the SDF. Figure 4 presents

the time series of expected excess returns on the portfolio, and Table 2 formally

tests whether the average expected return over my sample is greater than or equal

to zero (a one-sided test). I show results for the full sample, only for dates for
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which the trade crosses a quarter-end, and only for dates for which the trade crosses

a year-end.37 I also formally test whether the quarter-end dates are different from

other dates, and whether the year-end dates are different from other quarter-end

dates. Both Bech and Klee (2011), for fed funds vs. IOER, and Du et al. (2018),

for CIP, have documented that the arbitrage spikes near quarter-ends. As these

results demonstrate, the problem of negative expected returns documented above is

particularly acute at quarter and year-ends.

I now turn to the second test, using the stress tests. Once per year, the Federal

Reserve describes a “severely adverse” scenario and requires banks to maintain

various leverage and capital ratios in this scenario. In Table 3, I present the returns

of the yen, euro, and stocks in the stress test scenarios, at both the one quarter and

four quarter horizons, for each stress test conducted. A general pattern emerges:

recent stress tests have involved sizable euro depreciations relative to the dollar,

and sizable yen appreciations. This pattern is consistent with the observation that,

during my sample, stock market declines tend to coincide with euro depreciation

and yen appreciation relative to the dollar, and that these sorts of correlations might

influence how the Federal Reserve constructs the stress test scenarios. The stock

return itself very negative in all of these scenarios.

The scenarios do not specify a return for the Australian dollar, presumably be-

cause it would be virtually impossible to the specify the returns of every asset a

bank might hold. I impute the return of the AUD using the stress tests returns on

euro, yen, and pounds (not shown in Table 3) and the stock market. Because of

the Australian dollar’s positive correlation with the stock market and negative cor-

37The trade crosses quarter/year end if the settlement dates of the spot and forward FX trades are
before and after the end of some quarter/year, respectively.
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relation with the yen, the imputed returns are quite negative. When banks calculate

their stress scenario returns, they likely perform a similar kind of imputation.

Each of the stress test scenarios is associated with a particular date (listed in

Table 3) which is the date at which the scenario starts. For each date in my sample

that is also within 180 calendar days of the stress test date, I report the returns

of the risk-neutral externality-mimicking portfolio under the associated stress test

scenario. Requiring that the relevant financial market data come from a day that is

within 180 days of the stress test date assigns almost all of the days in my sample

to a single stress test per date, dropping only a handful of days.

We should expect that the stress test returns of the externality-mimicking port-

folio are negative. However, this is not the case. At almost all points in time,

the portfolio is long low-interest-rate currencies (EUR and/or JPY) and short high-

interest-rate currencies (AUD), and as a result has positive returns in the stress sce-

nario, because the carry trade performs poorly in the stress scenario.

Table 4 formally tests whether returns are negative, averaging across dates near

a particular stress test. The p-values correspond to a one-sided test that the mean is

less than or equal to zero. I am able to reject the hypothesis that returns are negative

on average for all four stress test years beginning in 2014.

In summary, the risk-neutral externality-mimicking portfolio has negative ex-

pected returns and positive returns in the stress scenario, the opposite of what was

expected. On possible explanation, of course, is that the goal of regulation is to en-

courage intermediaries to take more, not less, macro-prudential risk, and regulatory

policy is accomplishing its goals. A more likely explanation, in my view, is that the

current regulatory apparatus is not accomplishing its macro-prudential objectives.
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Du et al. (2018) shows that the direction of the CIP arbitrage across currencies

is predicted by the direction of the carry trade. A simple interpretation of this fact

is that households or their proxies want to do the carry trade, and intermediaries

are induced by the arbitrage to take the other side. Leverage constraints, such as

the “supplementary leverage ratio,” prevent the intermediaries from fully satisfy-

ing households’ demands. If this story is correct, households are trying to take

macro-economic risk and insure intermediaries from those risks, but regulation (the

leverage ratio) is limiting this risk transfer, which is the exact opposite of what an

optimal policy would do. Note that, under this interpretation, existing regulation

does not by itself determine the sign of the arbitrage. Instead, the sign of the ar-

bitrage under existing regulations arises from the interaction of customer demands

and regulatory constraints. This, however, is a policy choice; instead of encourag-

ing intermediaries to take more carry trade risk, regulation could be redesigned so

as to discourage intermediaries from taking carry trade risk.

For robustness, appendix section B presents three sets of additional results. The

first set uses the physical measure externality-mimicking portfolio instead of the

risk-neutral externality-mimicking portfolio in the stress test exercise. The esti-

mated physical and risk-neutral measure covariance matrices are similar, and the

stress test results do not depend on the choice of reference measure. See appendix

sections A.2 and B.2 for details on the construction of the portfolio and the results.

The second set of results incorporates an equity-based arbitrage between the

SPDR ETF and SPY options into the risk-neutral externality-mimicking portfolio.

The purpose of this robustness exercise is to demonstrate that the puzzling results

of the main analysis are not driven by the choice of arbitrages to include in the
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portfolio. Including the SPDR-SPY arbitrage in the externality-mimicking portfo-

lio increases both the complexity and data requirements of the exercise, and the

noisiness of the results due to the imprecision in the measurement of the arbitrage.

For these reasons, I do not include it in the main analysis. With this arbitrage, the

results of the expected return test are broadly unchanged– expected returns are ro-

bustly negative, contrary to expectations. The results for the stress test are “better,”

in that more but not all of the stress returns are sharply negative.38 This effect is

driven by the combination of very negative equity returns in the stress scenario and a

small positive SPDR-SPY arbitrage (on average). The data is described in appendix

sections A.3 and A.4 and the results are presented in appendix section B.3.

The third set of results uses “carry” and “dollar” portfolios of currencies. These

results support the interpretation that the externality-mimicking portfolio is short

USD (which was expected) and short the carry trade (which was not expected). The

negative expected returns and positive returns in the stress scenario that I document

are due to the short carry aspect of the portfolio. See appendix sections A.5 and B.4

for details on the portfolios and the results.

6 Conclusion

There is a close connection between the externalities regulation attempts to ad-

dress and the arbitrage that regulation creates. Using this connection, we can assess

whether macro-prudential policies are achieving their objectives. I construct an

38These results taken together suggest that the stress returns might not be negative enough. Just
because the returns in the stress scenario are negative does not mean macro-prudential regulation is
working optimally.

44



externality-mimicking portfolio, which tracks the difference between intermediary

and household SDFs, and hence the externalities that would rationalize existing pol-

icy. I argue that these externalities should negatively covary with the SDF, and be

negative in “stress” scenarios, and develop tests demonstrating that current data is

inconsistent with basic intuitions about the nature of optimal policies.
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Tables and Figures

Figure 1: Time Series of Excess Arbitrage
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Notes: This figure plots the annualized excess arbitrage χa−χ f , as defined as in (9), for the yen, euro, and Australian dollar.
These excess arbitrages are approximately equal to the one month OIS-based CIP violation vs. USD for those currencies.
The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.

Figure 2: Externality-Mimicking Portfolio Weights
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is con-
structed using a set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The reference measure is the intermediaries’ risk-neutral measure, meaning that expected returns are equal to the IOER rate
and the variance-covariance matrix is inferred from currency options. The sample is all US trading days from Jan 4, 2011 to
March 12, 2018 that are at least one month before an FOMC meeting.
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Figure 3: Actual vs. Predicted Excess Arbitrage in Pounds
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP− χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The variance-covariance matrix used in the computation and the covariances with the pound are
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.

Figure 4: Risk-Neutral EMP Expected Returns
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Notes: This figure plots the excess expected return under the physical measure of the risk-neutral externality-mimicking
portfolio (definition 1), under the assumption that currencies follow a random walk. The excess return is censored at +/-
200bps to enhance readability. The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the
yen, euro, and Australian dollar, as well as a risk-free asset. The variance-covariance matrix used in the computation is
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.
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Table 1: Summary Statistics for Arbitrage
Pounds Euros Yen Aus.

Dollar
OIS-
IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 2.8

OI Vol. (bps/year) 859 950 977 1073 -
OI Corr. with Pound/USD 1.00 0.56 0.22 0.47 -
OI Corr. with Euro/USD 0.56 1.00 0.31 0.51 -
OI Corr. with Yen/USD 0.22 0.31 1.00 0.26 -

Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 -
Implied Corr. with S&P 500 0.28 0.11 -0.29 0.50 -

N 444 444 444 444 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018 at
least one month before an FOMC meeting. Arbitrage mean χa is defined using (9) for a claim to e..g. one euro in one month,
priced in dollars today. The OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month.
Arbitrage SD is the daily standard deviation of χa. OI Vol. and OI Corr. variables for currencies are the time-series mean
of a daily series extracted from variance-covariance matrices implied by currency options. Empirical Corr. with SPDR and
Empirical Corr. with HKM are the time-series means of the correlations between the currency returns and the SPDR ETF
(which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital factor, as estimated on a rolling basis
by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on the time-series mean of the
currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.

Table 2: Risk-Neutral EMP Expected Returns
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 444 -222 25.9 ≥ 0 0.0000
Quarter-Ends 155 -431 69.7 ≥ 0 0.0000

Year-Ends 46 -1005 209.2 ≥ 0 0.0000
QE - NQE -321 = 0 0.0000

YE - NYE QE -816 = 0 0.0000
Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking
portfolio (definition 1), under the assumption that currencies follow a random walk. The portfolio is constructed from an A∗

that contains the yen, euro, and Australian dollar, as well as a risk-free asset. The variance-covariance matrix used in the
computation is inferred from currency options. The full sample is all US trading days from Jan 4, 2011 to March 12, 2018
at least one month before an FOMC meeting. The quarter-end and year-end sub-samples are restricted to days on which a
quarter- or year-end occurs between the spot FX settlement date and the one-month FX settlement date. The QE-NQE and
YE-NYE QE rows report the mean difference between quarter-end vs. non-quarter-end dates and year-end vs. non-year-end
quarter-end. Test indicates the hypothesis about the mean being tested, and P-Value reports the associated p-value.
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Table 3: Stress Test “Severely Adverse” Scenarios
Euro Stocks Yen AUD* *Imputed

Stress Test
Date

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

9/30/12 -7.7 -15.4 -19.3 -51.5 2.8 -1.0 -8.8 -24.5
9/30/13 -14.3 -21.4 -26.5 -49.5 3.1 -1.1 -17.2 -28.7
9/30/14 -12.0 -13.4 -16.3 -57.1 7.6 6.5 -5.1 -17.2

12/31/15 -7.7 -13.9 -20.2 -50.7 2.7 5.1 -7.7 -18.3
12/31/16 -9.1 -11.9 -34.0 -49.7 3.3 7.5 -17.0 -24.1
12/31/17 -6.6 -10.9 -51.3 -62.8 11.7 4.6 -23.7 -32.9

Notes: This table reports the percentage changes in the level of the euro, yen, and the Dow Jones Total Stock Market Index
(“Stocks”) during the first one or four quarters of the associated “Severely Adverse Scenario” from that year’s stress test.
These percentage changes are treated as returns in my analysis. Stress Test Date lists the date on which that year’s scenario
begins. AUD shows the imputed return for the Australian dollar, using the imputation method described in the text.

Table 4: Risk-Neutral Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 -0.8 0.3 0.9923 -1.8 1.0 0.9593
9/30/13 59 -0.9 0.4 0.9838 -2.1 0.7 0.9987
9/30/14 62 4.8 0.6 0.0000 9.9 1.0 0.0000
12/31/15 60 1.9 0.4 0.0000 4.5 0.8 0.0000
12/31/16 61 2.8 0.8 0.0000 7.0 1.2 0.0000
12/31/17 45 31.4 5.0 0.0000 28.6 4.3 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-
mimicking portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the yen, euro, and
Australian dollar, as well as a risk-free asset. The variance-covariance matrix used in the computation is computed from
currency options prices. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month
before an FOMC meeting and within 180 days of a stress test date. Each of these dates is assigned to the nearest stress test
date. N reports the number of dates assigned to each stress test, and P-Value reports the p-value associated with a one-sided
hypothesis test that the mean return is negative. Results are reported for both one-quarter (1Q) and four-return (4Q) returns
from the stress test scenarios.
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Internet Appendix (For Online

Publication)

A Details on Data Construction

A.1 The Risk-Neutral Variance-Covariance Matrix

The risk-neutral variance-covariance matrix ΣA∗,I,i∗ is defined as variance-covariance

matrix, under the intermediaries’ risk-neutral measure, of the returns RI
a,s. In the

case of currencies, these are the returns of investing at the IOER rate for one month

and using a currency forward to purchase, say, yen, and then immediately exchang-

ing back to dollars the spot rate. Let S j,t be the spot exchange rate of currency j per

dollar (e.g. euros per dollar, yen per dollar), and let Fj,t be the one-month forward

rate. The empirical analog of the return RI
a,s is

R j,t = RI
f ,t

Fj,t

S j,t+1
,

where RI
f ,t is the gross IOER rate accumulated over the one-month time horizon.

Note that, because RI
f ,t is the risk-free rate available to intermediaries, we must

have E∗t [
Fj,t

S j,t+1
] = 1 where E∗t denotes expectations taken under the intermediaries’

risk-neutral measure.

To construct the risk-neutral variance-covariance matrix of currency returns, I

use daily, London-closing at-the-money 1-month implied volatilities from Bloomberg

for each currency pair. The volatilities are “percentage” volatilities from a log-
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normal Garman and Kohlhagen (1983) model. If S j,t and S j′,t are two exchange

rates vs. the US dollar at time t (e.g. euros per dollar and yen per dollar), then

Cov∗t [∆s j,t+1,∆s j′,t+1] =
1
2
(V ∗t [∆s j,t+1]+V ∗t [∆s j′,t+1]−V ∗t [∆s j,t+1−∆s j′,t+1])

where ∆s j,t = ln(S j,t+1
S j,t

) and Cov∗ and V ∗ denote the risk-neutral variance and co-

variance, respectively. Under the assumption of log-normality,

Cov∗t [
S j,t

S j,t+1
,

S j′,t

S j′,t+1
] = E∗t [exp(−∆s j,t+1−∆s j′,t+1)]−E∗t [exp(−∆s j,t+1)]E∗t [exp(−∆s j′,t+1)]

=
S j,tS j′,t

Fj,tFj′,t
(exp(Cov∗t [∆s j,t+1,∆s j′,t+1])−1),

where F1,t and F2,t are the forward rates. It follows that

Σ
A∗,I,i
j, j′,t = (RI

f ,t)
2(exp(

1
2
(V ∗t [∆s j,t+1]+V ∗t [∆s j′,t+1]−V ∗t [∆s j,t+1−∆s j′,t+1]))−1).

In theory, I should make an adjustment to Bloomberg implied volatilities to use

a discount rate associated with the IOER rate, instead of the more standard OIS

rate. However, the difference amounts to about one basis point in the option price,

and hence is negligible. I have also experimented with more sophisticated methods

of computing the risk-neutral variance-covariance matrix (the “SVIX” method of

Martin (2017)). Such methods avoid log-normality assumptions at the expense of

additional data requirements and complexity, and have little impact on my results.
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A.2 The Physical Expected Returns and Variance-Covariance

Matrix

Expected returns under the physical measure are required both to conducted the

expected returns test described in the text and to construct the physical measure

externality-mimicking portfolio. The latter also requires an estimate of the physical

measure variance-covariance matrix of returns.

As described in the text, I assume that currencies are random walks. Specifi-

cally, I assume log-normal exchange rates and that the log-exchange rate is a martin-

gale. The expected excess return of using the IOER rate and a forward to purchase,

say, one yen one month from now, is the determined by the difference between the

forward and expected exchange rate. That is,

µ
A∗,I,p
j,t = RI

f ,tEt [
Fj,t

S j,t+1
],

where St+1 is the exchange rate in foreign currency per dollar, Ft is the one-month

forward rate, RI
f ,t is the IOER rate accumulated over the next month, and expecta-

tions are taken under the physical measure. Under the stated assumptions,

µ
A∗,I,p
j,t = RI

f ,t
Fj,t

S j,t
exp(

1
2

Vt [∆s j,t+1])

where Vt [∆st+1] is the conditional variance of the log change in the exchange rate.

Consequently, armed with an estimate for Vt [∆st+1], we can construct expected re-

turns.

I estimate a daily physical-measure variance-covariance matrix using an expo-
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nentially weighted moving average of the daily series, with a decay factor of 0.97

(a procedure known as the “RiskMetrics” methodology, see for example Alexander

(2008)). This avoids using future information to estimate the variance-covariance

matrix. I initialize my variance and covariance estimates at the beginning of 2011

with the realized variance/covariance for 2010. I then scale my daily estimated

variance-covariance matrix to a one-month horizon.39

I use this estimated variance-covariance matrix of log returns both construct my

estimates of mean returns, as above, and to construct a variance-covariance matrix

for arithmetic returns, as described in appendix section A.1, under the assumption

of log-normality. In this case,

Covt [
S j,t

S j,t+1
,

S j′,t

S j′,t+1
] = Et [exp(−∆s j,t+1−∆s j′,t+1)]−Et [exp(−∆s j,t+1)]Et [exp(−∆s j′,t+1)]

=
µ

A∗,I,p
j,t µ

A∗,I,p
j′,t

(RI
f ,t)

2

S j,tS j′,t

Fj,tFj′,t
(exp(Covt [∆s j,t+1,∆s j′,t+1])−1)

and

Σ
A∗,I,p
j, j′,t =(µA∗,I,p

j,t µ
A∗,I,p
j′,t )(exp(

1
2
(Vt [∆s j,t+1]+Vt [∆s j′,t+1]−Vt [∆s j,t+1−∆s j′,t+1]))−1).

A.3 The SPDR ETF/SPY Option Arbitrage

In this section, I describe an equity-related arbitrage that I include in a robust-

ness exercise. The arbitrage I consider is an arbitrage between the SPDR S&P

500 ETF and options on that ETF, which trade on the CBOE under the ticker SPY.

39More sophisticated approaches that incorporate higher-frequency data might yield better results.
See, for example, Ghysels et al. (2006).
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This arbitrage is closely related to the classic index-future arbitrage involving S&P

500 futures (e.g. Chung (1991); MacKinlay and Ramaswamy (1988); Miller et al.

(1994)).

The arbitrage I study considers the cost of purchasing a share of the SPDR ETF

and holding it for one month as compared to the cost of purchasing that ETF via

put-call parity (by buying a call and selling a put with a one month horizon). The

ETF share itself is the arbitrage-able asset (both because it is easily purchased by

households and because regulations affect intermediaries’ trade in equity shares).

The intermediary, to replicate the ETF, can buy a call on the ETF, sell a put on the

ETF at the same strike, and invest enough cash at the IOER rate over the next month

to cover the exercise price of the put/call. Regardless of whether the ETF ends up

above or below the strike price, the intermediary will end up owning the ETF in one

month.

The particular details of this arbitrage are complicated by the fact that the SPY

options are “American” and not “European” options, meaning they can be exercised

at any time. I deal with this issue by employing the Margrabe (1978) bound on

American put prices, which in my setting (short time horizons and low interest

rates) is reasonably tight. I discuss this issue in more detail below.

The ETF and the replicating portfolio will generate identical payoffs as long as

there are no dividends over the course of the month (more precisely, that an ex-

dividend date does not occur within the month). The ETF has ex-dividend dates

quarterly, usually on the third Friday of March, June, September, and December.40

40The prospectus, available at https://us.spdrs.com/library-
content/public/SPDR 500%20TRUST PROSPECTUS.pdf, describes the details of how the
ex-dividend dates are determined.
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I therefore limit my sample to avoid these dates. This illustrates one of the two main

advantages the ETF-based arbitrage has over the traditional S&P 500 cash-futures

arbitrage. The stocks of the S&P 500 index pay dividends often, and hence most

studies of index arbitrage assume either perfect foresight of dividends or use a divi-

dend forecast, whereas no such assumptions are required for the ETF arbitrage. The

second advantage relates to transactions costs and stale prices. The traditional index

arbitrage involves buying and selling 500 stocks, generating substantial transactions

costs and exacerbating the issue that prices might not be synchronized. Using the

ETF, which is one of the most actively traded securities in the equity market and has

a very small bid-offer, mitigates many of these issues. Of course, synchronizing the

options prices and the ETF price is still critically important, as in Van Binsbergen

et al. (2012).

For this arbitrage, I am assuming that the costs associated with posting margin

on the options are negligible. That is, the margin is sufficiently small, and the

interest rate the intermediary receives on the posted margin sufficiently close to the

IOER rate, that these costs are negligible. This assumption is also, implicitly, being

applied to the margin required by counterparties in the OTC market for FX swaps

when studying CIP violations.

Because the SPY options are American, not European, I construct arbitrage

bounds as opposed to a single arbitrage measure. It is straightforward to observe

that an American call or put must be weakly more valuable than its European coun-

terpart, but the possibility of early exercise implies that this weak inequality might

be strict.

Let pa(K) ∈ A and ca(K) ∈ A denote the American put and American call of
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strike K. Following the argument of Margrabe (1978), let p̂a(K) be an American

put option to exchange the ETF for an amount that grows at the IOER rate, K exp(t ·

ln(RI
f )), where t is the time of the exchange. Because the option matures prior to

the next FOMC meeting, the IOER rate is assumed to be constant. Because the

intermediary is always indifferent between buying the ETF and the risk-free bond,

there is never any advantage to early exercise. Consequently, the put option p̂a has

the same value as a European style put option with the same expiry and a strike

KRI
f . Moreover, because RI

f ≥ 1, the option p̂a is more valuable than the American

put pa. Hence, by no-arbitrage, the following inequalities hold for the American

put:

0≤ Qpe(K) ≤ Qpa(K) ≤ Q p̂a(K) = Qpe(KRI
f )
,

where pe(K) ∈ A is the European put of strike K. Using essentially the same argu-

ment, let ĉa be an American call option to buy the ETF in exchange for K
RI

f
exp(t ·

ln(RI
f )) dollars at time t. Early exercise is again never optimal, and hence this call’s

value is equal to the European call with strike K and the same expiry. Moreover,

this call dominates the American call with strike K and the same expiry, and hence

early exercise is never optimal and the American and European calls have the same

value. That is,

Qca(K) = Qce(K),

where ce(K) ∈ A is the European call of strike K.

Let us now consider how to replicate the ETF. If I observed European options
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prices, I would calculate the arbitrage, for any strike K, as

χe =
Qce(K)−Qpe(K)+

K
RI

f
−Qe

Qce(K)−Qpe(K)+
K
RI

f

,

where Qe is the ETF price. Using the put inequalities derived above,

χe ≥ χe,min(K) =
Qca(K)−Qpa(K)+

K
RI

f
−Qe

Qca(K)−Qpa(K)+
K
RI

f

,

and, for K′ = K
RI

f
,

χe ≤
Qca(K′RI

f )
−Qpa(K′)+K′−Qe

Qca(K′RI
f )
−Qpa(K′)+K′

. (13)

If RI
f is sufficiently close to one (and one month’s worth of interest is indeed quite

small), these bounds will be tight.

One implementation issue that arises from these inequalities is that the strike

KRi
f is unlikely to be traded. However, by the convexity of call prices (another

cashflow dominance argument),

Qce(KRJ
f )
≤ αQce(K1)+(1−α)Qce(K2)

for any K1 ≤ KRI
f ≤ K2 such that αK1 + (1− α)K2 = KRI

f . Choosing K1 and

K2 to be as close as possible to KRI
f generates the tightest bound. If KRI

f is

greater than the maximum traded strike Kmax, then Qce(KRI
f )
≤Qce(Kmax). Using these

bounds along with (13) generates an implementable upper-bound, which I will call

χe,max(K). Because these bounds must hold for all K, we are free to choose the

58



greatest lower bound and least upper bound from the set of available strikes.

Another empirical issue to consider in the implementation of this trading strat-

egy is whether to use bids and offers or mid-prices. Bid-offers are wide in options

markets, and likely substantially overstate the bid-offer associated with “delta one”

trades. That is, buying a call and selling a put together likely has a much smaller

bid-offer than doing those trades separately. For this reason, authors such as van

Binsbergen et al. (2019) use mid-prices. However, mid-prices can exhibit strange

behavior when bid-offers are particularly wide (which is why those authors use

outlier-robust methods of analysis). To deal with this issue, I consider only strikes

K with sufficiently small bid-offers. In particular, I restrict attention to values of

χe,min(K) which the difference between the mid-price and the lowest bound that

can be constructed from the various bids and offers is less than 0.05% of the spot

price Qe. Under this restriction, the lower bound χe,min(K) constructed from mid

prices is at most ˜5bps too high in the worse-case scenario. Similarly, I require that

the difference between χe,max(K) and the highest bound constructed from bids and

offers be less than 0.05% of Qe. From these two sets of valid strikes (one for χe,min

and one for χe,max), I choose the strikes that generate the tightest possible bounds

on χe.

After finding the maximum and minimum bounds, χe,min and χe,max, I define

the estimated arbitrage as

χe =


χe,min max(χe,min,χe,max)> χRF

χe,max min(χe,min,χe,max)< χRF

χRF otherwise.
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In other words, I will assume that there is zero risk-neutral excess arbitrage (χe−

χRF) if this is possible, and assume the minimum amount, in absolute value terms,

if it is not possible.41 In practice, my final dataset never has χe = χRF , because the

bounds are sufficiently tight.

The dataset is a high-frequency (minute-level) dataset of options quotes pur-

chased from the CBOE DataShop. From this dataset (which contains quotes for

all minutes the exchange is open), I have extracted the five minutes on each day

immediately preceding the Bloomberg London closing time. On most days, this

is 12:55pm-12:59pm EST, although the EST hour moves around due the asyn-

chronous use of daylight savings time in the US and UK.

This dataset contains SPY options of many different expiries. Because I am

interested in one-month options (where one-month is defined based on FX trading

conventions) that do not cross an SPY dividend date, I restrict attention to expiries

between 21 and 58 days in the future. These cutoffs ensure expiries are roughly one

month and using these specific cutoffs simplifies the logic of determining whether

an expiry occurs after the next ex-dividend date on the SPY. I also require that each

expiry have at least eleven different strikes quoted to be included in the dataset.

The result of these restrictions and calculations is a dataset containing many esti-

mates of χe on each day (five minutes times the number of valid expiries). From this

set, for each day I search for minute/expiry pairs with non-missing data, expiries

that cross neither the next SPY ex-dividend date nor the next FOMC meeting, and

that have no arbitrage violations based on the bids and offers of options prices.42

Among the surviving minute/expiry pairs, I choose first the expiries that are clos-

41Note that, because I am using mid prices, it is possible to have χ̃e,min > χ̃e,max.
42This last filter eliminates a few days with bad options quotes.
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est to the FX market definition of one month, and then among those choose the

minute-expiry pair with the narrowest bid-offer for the relevant arbitrage bounds.

This procedures results in a unique value for χe on each day.

A.4 Expectations, Variance, and Covariance with the SPDR Ar-

bitrage

To use the SPY arbitrage described in the preceding sub-section in my exercise, I

require estimates of its variance and covariance with currency returns under both

the physical and risk-neutral measures, as well as an estimate of its expected return

under the physical measure.

I use, as an empirical analog of the one-month return RI
a,s = (1−χa)Ra,s,

Re,t = (1−χe,t−1)
Qe,t

Qe,t−1
,

where Qe,t is the spot SPY price. Note that this definition does not include div-

idends, because I have restricted attention to dates on which dividends will not

occur over the next month.

To compute expected returns under the physical measure, I assume an equity

premium of 5% (roughly the average value of Martin (2017) in recent years). Al-

though many predictors of time-varying equity returns have been documented in the

literature, over a one-month horizon most of these predictors are quite weak, and it

seems reasonable to use an estimate of the unconditional equity premium. Under

this assumption,

µ
A∗,I,p
t = (1−χe,t)(R f ,t−1+1.05∆t),
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where ∆t is the time (in years) to the next month under the FX market convention

and R f ,t is the US OIS rate accumulated over that month.

To compute the physical-measure variance-covariance matrix, I use a daily se-

ries of surprise log-returns,

re,t = ln(Qe,t)− ln(Qe,t−1)− ln(R f ,t−1+1.05∆t),

consistent with how I construct surprise currency returns. I then use the same “Risk-

Metrics” methodology described in appendix section A.2.

I compute the risk-neutral variance-covariance matrix using the SVIX method

of Martin (2017) and data on quanto options from Markit (as in Kremens and Martin

(2019)). Applying the SVIX methodology of Martin (2017) (in particular, equation

(11) of that paper) to the SPY options data used to construct the arbitrage series χe,

I compute V ∗t−1[
Qe,t

Qe,t−1
], and then scale by (1−χe,t−1)

2 to compute the variance.

I extract covariances from data on quanto options on the S&P 500. A quanto

call option is, for example, the right to buy the S&P 500 for a fixed amount of euros

at a certain date. Such options are traded in OTC markets, and Markit provides a

pricing service to help dealers that trade these options mark their books. The prices

represent the (trimmed, cleaned) averages of prices submitted by participating deal-

ers. My data set includes prices for call and put options for all of currencies used in

this paper. Unfortunately, these options have a twenty-four month expiry (this is es-

sentially the only traded expiry), and the data is monthly rather than daily. I discuss

how I deal with both of these issues below. My use of the quanto options is also

complicated by the presence of arbitrage (CIP violations). I deal with this issue by
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pricing the options under the assumptions of the framework developed in this paper,

and then extracting a risk-neutral covariance from those pricing formulas.

Let S j,t be the spot exchange rate (e.g. euros per dollar). The dollar price of a

quanto call (qc) option, as a percentage of the spot price, with a strike equal to the

current spot price is

qc j,t =

1
RI

f ,t,t+24
E∗t [

X j,t
S j,t+24

max{Qe,t+24−Qe,t ,0}]

Qe,t
,

where X j,t is the agreed-upon fixed exchange rate for the quanto option and RI
f ,t,t+24

is the intermediaries’ cumulative discount factor over the next two years. The

Markit data use the convention X j,t = S j,t .

Quanto-put (qp) prices follow an analogous formula, and by put-call parity, for

the strikes in my data,

RI
f ,t,t+24(qc j,t−qp j,t) = E∗t [

S j,tQe,t+24

S j,t+24Qe,t
]−E∗t [

S j,t

S j,t+24
].

My data also includes hypothetical prices for quanto call and put options under the

assumption of zero correlation between the foreign exchange rate and the S&P 500.

Under this assumption, the price of the quanto call with X j,t = S j,t is

zc j,t = E∗t [
S j,t

S j,t+24
]×

1
RI

f ,t,t+24
E∗t [max{Qe,t+24−Qe,t ,0}]

Qe,t

and hence is equal to the (inverse) forward premium multiplied by the price of

the vanilla (standard) call option on the S&P 500. That is, by asking for “zero-

correlation” quanto call prices, Markit is not asking dealers to price a new exotic
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instrument but rather to report the levels of two standard contracts along with the

the price of the quanto call option.

Again by put-call parity,

RI
f ,t,t+24(zc j,t− zp j,t) = E∗t [

S j,t

S j,t+24
]E∗t [

Qe,t+24

Qe,t
]−E∗t [

S j,t

S j,t+24
],

where zp j,t is the zero-correlation quanto put price.

It follows that

E∗t [
Qe,t+24

E∗t [Qe,t+24]

Fj,t,t+24

S j,t+24
] =

1+ Fj,t,t+24
S j,t

RI
f ,t,t+24(qc j,t−qp j,t)

1+ Fj,t,t+24
S j,t

RI
f ,t,t+24(zc j,t− zp j,t)

, (14)

where Fj,t,t+24 is the two-year forward price.

As mentioned previously, the quanto dataset is a monthly dataset (with a few

missing observations) of 24-month expiry options. The goal of this exercise is to

extract one-month horizon covariances. To that end, I assume that correlations are

constant over horizon, so that I can extract a 24-month risk-neutral correlation and

then assume it is equal to the one-month correlation. I will use the most recent non-

missing observation for each currency. In the data, the correlations I extract move

slowly over time.

Ignoring these issues for a moment, the quantity of interest is

Σ
A∗,I,i∗
j,e,t = E∗t [Re,t+1R j,t+1]−E∗t [Re,t+1]E∗t [R j,t+1],
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where R j,t is the intermediary currency return defined in A.1. This is

Σ
A∗,I,i∗
j,e,t = (1−χe,t)RI

f ,t
E∗t [Qe,t+1]

Qt
Cov∗t [

Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
]

= (RI
f ,t)

2Corr∗t [
Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
]V ∗t [

Qe,t+1

E∗t [Qe,t+1]
]

1
2V ∗t [

Fj,t

S j,t+1
]

1
2 . (15)

Under the assumption that correlations are constant across horizon,

Corr∗t [
Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
] =

Cov∗t [
Qe,t+24

E∗t [Qe,t+24]
,

Fj,t,t+24
S j,t+24

]

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
]

1
2V ∗t [

Fj,t,t+24
S j,t+24

]
1
2

=
E∗t [

Qe,t+24
E∗t [Qe,t+24]

Fj,t,t+24
S j,t+24

]−1

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
]

1
2V ∗t [

Fj,t,t+24
S j,t+24

]
1
2
. (16)

I compute risk-neutral variances V ∗t [
Qe,t+24

E∗t [Qe,t+24]
] and V ∗t [

Fj,t,t+24
S j,t+24

] from Bloomberg at-

the-money 2-year at-the-money SPX implied volatilities and 2-year FX volatilities

(implicitly assuming log-normality). As discussed earlier, using an SVIX-based

calculation would avoid log-normality assumptions at the expense of increased data

requirements, computational complexity, and uncertainty related to bid-offers and

illiquidity of out-of-the-money options. Under an assumption of log-normality,

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
] = exp(V ∗t [ln(Qe,t+24)])−1,

and likewise

V ∗t [
Fj,t,t+24

S j,t+24
] = exp(V ∗t [ln(S jt+24)])−1.

One last implementation concerns the intermediaries’ two-year discount factor,

RI
f ,t,t+24. In the main text, I study only dates at least one month before an FOMC
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meeting and use the IOER rate as the one-month rate. This approach does not allow

me to construct a two-year rate. For simplicity, I use instead the two-year OIS

rate and then add the sample mean spread between IOER and fed funds (see Table

1). This adjustment makes almost no difference to the estimated correlations. van

Binsbergen et al. (2019) offer a better approach: extracting a two-year intermediary

discount factor using “box” trades (put-call parity for different strikes). As with

the SVIX methodology, this approach is theoretically superior but increases data

requirements and concerns about issues related to illiquidity, bid-offer spreads, and

the like.

A.5 Construction of the Dollar and Carry Portfolios

As an additional robustness exercise, I construct an externality-mimicking portfo-

lio under the assumption that A∗ includes a risk-free asset and two portfolios of

currency trades, which I will refer to as dollar and carry.

These portfolios are portfolios of five developed-market currencies vs. the US

dollar. The five currencies (plus the US dollar) in the portfolio are: euro, yen,

pound, Australian dollar, and Canadian dollar. To select these currencies, I started

with the nine non-US-dollar G10 currencies. I removed the New Zealand dollar,

Swedish krona, and Norwegian Krone due to limited data availability for FX op-

tions and OIS swaps. I removed the Swiss franc both because of problems with its

OIS rate (discussed in Du et al. (2020)) and because of the pegging and de-pegging

events that occur during the sample period.

From these five non-USD currencies, I define the dollar and carry portfolios, in

the spirit of the factor approach of Lustig et al. (2011). Dollar is an equal-weighted
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basket of the five currencies vs. USD. Note that this portfolio is short USD vs. these

other currencies, not long. This sign convention helps make the portfolio definition

consistent with the exercise in the main text. Carry is a long-short portfolio that

is long the two currencies with the smallest 1m forward premium and short the

two countries with the largest forward premium. For almost all of the sample, this

means long AUD and CAD and short JPY and EUR. To ensure a positive price, I

add some of the risk-free USD investment to the Carry portfolio. This has no effect

on the excess arbitrage χcarry− χRF , and hence no effect on resulting externality-

mimicking portfolio.

Expected returns and variance-covariance matrices for these portfolios can be

constructed from the assumed expected returns and variance-covariance matrices of

the individual currencies (as described in the previous parts of this appendix sec-

tion). Because some of the currencies in these portfolios are not explicitly modeled

in the stress tests, I impute returns using the same procedure used in the main text

for AUD.

B Additional Results

B.1 Predicted Arbitrage in Other Currencies

This sub-section presents the predicted vs. actual arbitrage using the risk-neutral

externality-mimicking portfolio for three additional currencies: CAD, CHF, and

SEK. These currencies have enough OIS swap and options data available to make

these predictions, although for both CHF and SEK the sample size is reduced.
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Figure 1: Actual vs. Predicted Excess Arbitrage in Canadian Dollar
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Notes: This figure plots excess the annualized CAD excess arbitrage χCAD− χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based CAD-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The variance-covariance matrix used in the computation and the covariances with the pound are
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.

Figure 2: Actual vs. Predicted Excess Arbitrage in Swiss Franc
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Notes: This figure plots excess the annualized CHF excess arbitrage χCHF − χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based CHF-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The variance-covariance matrix used in the computation and the covariances with the pound are
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.The two vertical lines indicate the beginning and end of a period during which CHF was
pegged to EUR.
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Figure 3: Actual vs. Predicted Excess Arbitrage in Swedish Krona
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Notes: This figure plots excess the annualized SEK excess arbitrage χSEK − χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based SEK-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The variance-covariance matrix used in the computation and the covariances with the pound are
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.

B.2 Results using the Physical Measure

This sub-section presents results using the physical-measure externality-mimicking

portfolio, as described in appendix section A.2. Table 1 presents a version of

the summary statistics table, with an estimated variance-covariance matrix in the

place of an option-implied variance-covariance matrix. I then present the portfolio

weights, predicted vs. actual GBP arbitrage, and stress test returns for the physical

measure. The results are similar to their counterparts from the main text.

69



Table 1: Summary Statistics for Physical-Measure Arbitrage
Pounds Euros Yen Aus.

Dollar
OIS-
IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 2.8

Empirical Vol. (bps/year) 812 852 922 1046 -
Empirical Corr. with

Pound/USD
1.00 0.58 0.18 0.46 -

Empirical Corr. with
Euro/USD

0.58 1.00 0.32 0.46 -

Empirical Corr. with Yen/USD 0.18 0.32 1.00 0.24 -
Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 -

N 444 444 444 444 444
Notes: This table presents summary statistics for the sample of days from Jan 4, 2011 to March 12, 2018 at least one month
before an FOMC meeting. Arbitrage mean χa is defined using (9) for a claim to e..g. one euro in one month, priced in dollars
today. The OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the
daily standard deviation of χa. Empirical Vol. and Empirical Corr. variables for currencies are the time-series means of the
correlations between the currency returns, as estimated on a rolling basis by the methodology described in appendix section
A.2.. Empirical Corr. with SPDR and Empirical Corr. with HKM are the time-series means of the correlations between the
currency returns and the SPDR ETF (which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital
factor, as estimated on a rolling basis by the methodology described in appendix section A.2.

Figure 4: Externality-Mimicking Portfolio Weights, Physical Measure
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is con-
structed using a set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The reference measure is the physical measure, meaning that expected returns calculated under the assumption that log ex-
change rates are random walks and the variance-covariance matrix is estimated using the RiskMetrics methodology. The
sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.
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Figure 5: Actual vs. Predicted Excess Arbitrage in Pounds, Physical Measure
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP− χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation.
The externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a
risk-free asset. The reference measure is the physical measure, meaning that expected returns calculated under the assumption
that log exchange rates are random walks and the variance-covariance matrix, as well as the covariances with the pound, is
estimated using the RiskMetrics methodology. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that
are at least one month before an FOMC meeting.

Table 2: Physical Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 -1.0 0.3 0.9998 -2.8 0.8 0.9995
9/30/13 59 -1.2 0.4 0.9963 -2.7 0.7 0.9999
9/30/14 62 6.2 0.9 0.0000 11.7 1.4 0.0000
12/31/15 60 1.9 0.5 0.0002 4.0 0.9 0.000
12/31/16 61 1.4 0.8 0.0384 4.9 1.1 0.0000
12/31/17 45 35.7 4.3 0.0000 31.8 3.3 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the physical-measure externality-
mimicking portfolio portfolio. The physical measure EMP portfolio is constructed with an A∗ that contains the yen, euro,
and Australian dollar, as well as a risk-free asset. The expected returns are calculated under the assumption that log exchange
rates are random walks and the variance-covariance matrix is estimated using the RiskMetrics methodology. The sample is
all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting and within
180 days of a stress test date. Each of these dates is assigned to the nearest stress test date. N reports the number of dates
assigned to each stress test, and P-Value reports the p-value associated with a one-sided hypothesis test that the mean return
is negative. Results are reported for both one-quarter (1Q) and four-return (4Q) returns from the stress test scenarios.

71



B.3 Results including Equity Arbitrage

This sub-section presents results for a risk-neutral externality-mimicking portfolio

that incorporates JPY, EUR, and AUD arbitrages as well as the SPY-based arbitrage

described in appendix section A.3 and the risk-free rate arbitrage. The covariances

and expected returns under the physical measure used in this section are described

in appendix section A.4.

Table 3: Summary Statistics for Arbitrage including SPY
Pounds Euros Yen Aus.

Dollar
SPY OIS-

IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 5.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 47.5 2.8

OI Vol. (bps/year) 859 950 977 1073 1566 -
OI Corr. with Pound/USD 1.00 0.56 0.22 0.47 0.28 -
OI Corr. with Euro/USD 0.56 1.00 0.31 0.51 0.11 -
OI Corr. with Yen/USD 0.22 0.31 1.00 0.26 -0.29 -

Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 1.00 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 0.66 -
Implied Corr. with S&P 500 0.28 0.11 -0.29 0.50 1.00 -

N 444 444 444 444 312 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018
at least one month before an FOMC meeting. The SPY statistics are restricted to dates at least one month before a SPDR
ex-dividend date. Arbitrage mean χa is defined using (9) for a claim to e..g. one euro in one month, priced in dollars today.
The OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the daily
standard deviation of χa. OI Vol. and OI Corr. variables for currencies are the time-series mean of a daily series extracted
from variance-covariance matrices implied by currency options, SPY options, and quanto options. Empirical Corr. with
SPDR and Empirical Corr. with HKM are the time-series means of the correlations between the currency returns and the
SPDR ETF (which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital factor, as estimated on a
rolling basis by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on the time-series
mean of the currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.
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Figure 6: Risk-Neutral Externality-Mimicking Portfolio Weights with SPY
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is con-
structed using a set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset
and the SPDR ETF. The reference measure is the intermediaries’ risk-neutral measure, meaning that expected returns are
equal to the IOER rate and the variance-covariance matrix is inferred from currency options, SPY options, and quanto op-
tions. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC
meeting and one month before a SPDR ex-dividend date.

Figure 7: Actual vs. Predicted Excess Arbitrage in Pounds, Risk-Neutral Measure
with SPY
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP− χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset and the SPDR ETF. The variance-covariance matrix used in the computation and the covariances
with the pound are inferred from currency options, SPY options, and quanto options. The sample is all US trading days
from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting and one month before a SPDR
ex-dividend date.
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Table 4: Risk-Neutral EMP Expected Returns with SPY
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 312 -111 43.3 ≥ 0 0.0053
Quarter-Ends 93 -425 125.9 ≥ 0 0.0005

Year-Ends 23 -1495 439.9 ≥ 0 0.0013
QE - Full -447.0 = 0 0.0000
YE - QE -1421 = 0 0.0000

Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking
portfolio (definition 1), under the assumption that currencies follow a random walk and with a 5% equity risk premium. The
portfolio is constructed from an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset and the
SPDR ETF. The variance-covariance matrix used in the computation is inferred from currency options, SPY options, and
quanto options. The full sample is all US trading days from Jan 4, 2011 to March 12, 2018 at least one month before an
FOMC meeting and one month before a SPDR ex-dividend date. The quarter-end and year-end sub-samples are restricted
to days on which a quarter- or year-end occurs between the spot FX settlement date and the one-month FX settlement date.
The QE-NQE and YE-NYE QE report the mean difference between quarter-end vs. non-quarter-end dates and year-end
vs. non-year-end quarter-end. Test indicates the hypothesis about the mean being tested, and P-Value reports the associated
p-value.

Table 5: Risk-Neutral Portfolio with SPY, Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 28 -1.9 0.6 0.9989 -6.0 2.1 0.9956
9/30/13 52 -0.7 1.5 0.6786 -17.7 4.3 0.9999
9/30/14 54 2.5 1.3 0.0304 -14.3 2.0 1.0000
12/31/15 53 0.1 0.7 0.4302 0.4 1.6 0.4142
12/31/16 55 -23.4 1.6 1.0000 -30.2 2.1 1.0000
12/31/17 41 0.0 5.4 0.5013 -16.7 4.8 0.9994

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-
mimicking portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the yen, euro, and
Australian dollar, as well as a risk-free asset and the SPDR ETF. The variance-covariance matrix used in the computation
is computed from currency options prices, SPY options, and quanto options. The sample is all US trading days from Jan 4,
2011 to March 12, 2018 that are at least one month before an FOMC meeting, one month before a SPDR ex-dividend date,
and within 180 days of a stress test date. Each of these dates is assigned to the nearest stress test date. N reports the number
of dates assigned to each stress test, and P-Value reports the p-value associated with a one-sided hypothesis test that the mean
return is negative. Results are reported for both one-quarter (1Q) and four-return (4Q) returns from the stress test scenarios.

B.4 Results with Dollar and Carry Portfolios

This sub-section presents for a risk-neutral externality-mimicking portfolio that in-

corporates “Carry” and “Dollar” arbitrages, as well as a risk-free rate arbitrage.
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Carry and Dollar (defined in appendix section A.5) are portfolios of currency trades.

Carry is long two low-forward-premium currencies (AUD and CAD for most of the

sample) and short two high-forward-premium currencies (JPY and EUR for most

of the sample). Dollar is an equally weighted portfolio of currencies vs. USD. Note

when interpreting the results below that Dollar is short USD, not long USD.

Table 6: Summary Statistics for Carry and Dollar Arbitrage
Carry Dollar OIS-

IOER

Arbitrage Mean (bps/year) -44.1 8.6 -12.5
Arbitrage SD (bps/year) 31.4 23.3 2.8

OI Vol. (bps/year) 835 680 -
OI Corr. with Carry 1.00 0.15 -
OI Corr. with Dollar 0.15 1.00 -

Empirical Corr. with SPDR 0.56 0.21 -
Empirical Corr. with HKM 0.46 0.21 -
Implied Corr. with S&P 500 0.68 0.30 -

N 444 444 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018
at least one month before an FOMC meeting. Arbitrage mean χa is defined using (9) for a claim to e..g. one euro in one
month, priced in dollars today. The OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one
month. Arbitrage SD is the daily standard deviation of χa. The OI Vol. and OI Corr. variables are the time-series mean
of a daily series extracted from variance-covariance matrices implied by currency options. Empirical Corr. with SPDR and
Empirical Corr. with HKM are the time-series means of the correlations between the currency returns and the SPDR ETF
(which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital factor, as estimated on a rolling basis
by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on the time-series mean of the
currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.
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Figure 8: Risk-Neutral Externality-Mimicking Portfolio Weights with Carry and
Dollar
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is con-
structed using a set of arbitrage-able assets A∗ that contains the Carry and Dollar portfolios, as well as a risk-free asset. The
reference measure is the intermediaries’ risk-neutral measure, meaning that expected returns are equal to the IOER rate and
the variance-covariance matrix is inferred from currency options. The sample is all US trading days from Jan 4, 2011 to
March 12, 2018 that are at least one month before an FOMC meeting.

Figure 9: Actual vs. Predicted Excess Arbitrage in Pounds, Risk-Neutral Measure
with Carry and Dollar
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP− χ f , as defined in (9), along with the predicted
value defined as in (12). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation.
The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the Carry and Dollar portfolios, as
well as a risk-free asset. The variance-covariance matrix used in the computation and the covariances with the pound are
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting.
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Table 7: Risk-Neutral EMP Expected Returns with Carry and Dollar
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 444 -151 20.7 ≥ 0 0.0000
Quarter-Ends 155 -315 56.1 ≥ 0 0.0000

Year-Ends 46 -763 169.9 ≥ 0 0.0000
QE - Full -252 = 0 0.0000
YE - QE -638 = 0 0.0000

Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking
portfolio (definition 1), under the assumption that currencies follow a random walk. The portfolio is constructed from an
A∗ that contains the Carry and Dollar portfolios, as well as a risk-free asset. The variance-covariance matrix used in the
computation is inferred from currency options. The full sample is all US trading days from Jan 4, 2011 to March 12, 2018
at least one month before an FOMC meeting. The quarter-end and year-end sub-samples are restricted to days on which
a quarter- or year-end occurs between the spot FX settlement date and the one-month FX settlement date. The QE-NQE
and YE-NYE QE report the mean difference between quarter-end vs. non-quarter-end dates and year-end vs. non-year-end
quarter-end. Test indicates the hypothesis about the mean being tested, and P-Value reports the associated p-value.

Table 8: Stress Test “Severely Adverse” Scenarios
Carry* *Imputed Dollar* *Imputed

Stress Test
Date

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

9/30/12 -7.4 -16.5 -4.1 -11.6
9/30/13 -8.9 -13.1 -10.5 -16.5
9/30/14 -2.1 -10.5 -3.2 -7.7

12/31/15 -3.8 -10.5 -4.1 -8.8
12/31/16 -11.3 -18.2 -7.9 -11.0
12/31/17 -23.6 -25.9 -8.0 -14.2

Notes: This table reports the imputed returns of the Carry and Dollar portfolios during the first one or four quarters of the
associated “Severely Adverse Scenario” from that year’s stress test, using the imputation method described in the text. Stress
Test Date lists the date on which that year’s scenario begins.
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Table 9: Risk-Neutral Portfolio with Carry and Dollar, Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 0.9 0.4 0.0144 0.4 0.9 0.3234
9/30/13 59 -1.8 0.4 1.0000 -2.9 0.6 1.0000
9/30/14 62 0.1 0.1 0.1707 3.9 0.6 0.0000
12/31/15 60 -0.5 0.1 0.9992 0.1 0.3 0.3965
12/31/16 61 3.7 0.6 0.0000 7.9 1.0 0.0000
12/31/17 45 27.5 4.4 0.0000 20.6 3.0 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-
mimicking portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the Carry and Dollar
portfolios, as well as a risk-free asset. The variance-covariance matrix used in the computation is computed from currency
options prices. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an
FOMC meeting and within 180 days of a stress test date. Each of these dates is assigned to the nearest stress test date. N
reports the number of dates assigned to each stress test, and P-Value reports the p-value associated with a one-sided hypothesis
test that the mean return is negative. Results are reported for both one-quarter (1Q) and four-return (4Q) returns from the
stress test scenarios.

C General Equilibrium with Intermediaries

This appendix section more formally describes the environment outlined in section

1.

The economy has a set of future states, S1, and an initial state, s0. Let S =

S1 ∪{s0} denote the set of all states, and let Js be the set of goods in each state

s ∈ S. The government can transfer income between agents in the initial state, s0,

but not any other state, and these transfers must sum to zero. The goods available

in each state are denoted by the set Js.

Households h ∈H maximize expected utility,

∑
s∈S

Uh({Xh
j,s} j∈Js;s),
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where Uh({Xh
j,s} j∈Js ;s) is the utility of household h in state s, inclusive of the house-

hold’s rate of time preference and the probability the household places on state s.

I will assume non-satiation for at least one good in each state, implying that each

household places non-zero probability on each state in S1, and that the utility func-

tions are differentiable. Note that I will refer to each h as “a household,” and assume

price-taking; nothing would change if we thought of each h as representing a mass

of identical households. In each state s ∈ S, household h ∈ H has an endowment of

good j ∈ Js equal to Y h
j,s. In state s0, the household might also receive a transfer T h.

The set of securities available in the economy, A, has securities which offer

payoffs Za,s({Pj,s} j∈Js) for security a∈ A in state s∈ S. Note that the payoff may be

a function of goods prices, which are endogenous, and I will assume that the payoffs

are homogenous of degree one in prices, so that it is without loss of generality to fix

the price for one good (the numeraire) in each state. Let Dh
a denote the quantity of

security a purchased or sold by household h, and let Qa be the “ex-dividend” price

at time zero (i.e. under the convention that Za,s0 = 0).

In state s, the household’s income used for consumption (i.e. consumption ex-

penditure) is

Ih
s =


∑ j∈Js Pj,sY h

j,s +∑a∈A Dh
aZa,s({Pj,s} j∈Js) if s 6= s0,

T h +∑ j∈Js Pj,sY h
j,s−∑a∈A Dh

aQa if s = s0.

(17)

That is, for all states except the initial state, consumption expenditure is equal to

income, and is the value of the household endowment plus the payoffs of the house-

hold’s asset holdings. In the initial state, income used for consumption is the value

of the endowment plus any transfers, less the purchase price of the household’s asset
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holdings. In all states, there is a budget constraint for consumption in the state,

∑
j∈Js

Pj,sXh
j,s ≤ Ih

s .

Household asset allocations are constrained by limited participation constraints

or other kinds of limits. The constraints on households’ asset positions are summa-

rized by

Φ
h({Dh

a}a∈A)≤~0, (18)

where Φh is a vector-valued function, convex in Dh. Limited participation is the

key form of constraint I am attempting to capture with these Φ functions, but it is

not the only kind of constraint that fits into this framework.

Having defined expenditure and prices, I define the standard indirect utility

function in each state,

V h(Ih
s ,{Pj,s} j∈Js;s) = max

{Xh
j,s∈R+} j∈Js

Uh({Xh
j,s} j∈Js;s)

subject to

∑
j∈Js

Pj,sXh
j,s ≤ Ih

s .

Using these indirect utility functions, we can write the portfolio choice problem as

max
{Dh

a∈R}a∈A
∑
s∈S

V h(Ih
s ,{Pj,s} j∈Js;s)

subject to the budget constraints that define income (equation (17)) and the con-

straints on asset allocation (equation (18)). Note that I fold the household’s dis-
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counting and subjective probability assessments into the state-dependent direct and

indirect utility functions. In a competitive equilibrium (that is, taking asset prices Q

and goods prices P as given, defined below), this is the problem households solve

when choosing their asset allocation.

I will call the other type of agents in the economy intermediaries, and use i ∈I

to denote a particular intermediary. Intermediaries are like households (in the sense

that all of the notation above applies, with some i ∈ I in the place of an h ∈H ),

except that they face different constraints on their portfolio choices. In particular,

households are constrained to trade only with intermediaries, but intermediaries can

trade with both households and other intermediaries.

The constraint that households can trade only with intermediaries, but not each

other, can be implemented using this notation in the following way. The set of as-

sets, A, is a superset of the union of disjoint sets {Ah}h∈H , denoting trades with

household h. For a given household h, the function Φh,exog implements the require-

ment that, for all a ∈ A\Ah, Dh
a = 0. To be precise, if a ∈ A\Ah and Dh

a 6= 0, then

there exists an element of Φh(Dh) strictly greater than zero. The set of assets also

includes assets that cannot be traded by any household. Define AI = A\ (∪h∈HAh)

as the set of securities tradable only by intermediaries. The exogenous constraints

on intermediary trading are denoted Φi,exog.

Regulation, in this framework, are additional convex functions Φi,reg({Di
a}a∈A)

and Φh,reg({Di
a}a∈A) such that the intermediaries face the constraint Φi(·)=

[
Φi,reg Φi,exog

]
,

and likewise for households. As discussed in the text, for notational simplicity I as-

sume that these functions depend only on asset quantities and not on asset prices.

Because the equilibrium gradient on these constraints is the only quantity that mat-
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ters for equilibrium, this assumption is without loss of generality.

The notion of equilibrium, given the constraints Φi and Φh, is standard.

Definition 2. An equilibrium is a collection of consumptions Xh
j,s and X i

j,s, goods

prices Pj,s, asset positions Dh
a and Di

a, transfers T h and T i, and asset prices Qa such

that:

1. Households and intermediaries maximize their utility over consumption and

asset positions, given goods prices and asset prices, respecting the constraints

that consumption be weakly positive and the constraints on their asset posi-

tions,

2. Goods markets clear: for all s ∈ S and j ∈ Js,

∑
h∈H

(Xh
j,s−Y h

j,s) = ∑
i∈I

(X i
j,s−Y i

j,s),

3. Asset markets clear: for all a ∈ A,

∑
h∈H

Dh
a + ∑

i∈I
Di

a = 0, (19)

4. The government’s budget constraint balances,

∑
h∈H

T h + ∑
i∈I

T i = 0. (20)

The definition of equilibrium presumes price-taking by households and inter-

mediaries. Absent government constraints, each household h can trade with every

intermediary, and the price of asset a ∈ Ah will be pinned down by competition be-

tween intermediaries. The equilibrium definition supposes that this will continue
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to be the case, even if the government places asymmetric constraints on intermedi-

aries– for example, by granting a single intermediary a monopoly over trades with a

particular household. In this case, it is as if the household had all of the bargaining

power. Such a policy is unlikely to optimal, and will never be the unique optimum.

I next describe a planner’s problem for this economy. I assume that the plan-

ner is unable to redistribute resources ex-post (doing so would allow the planner to

circumvent limited participation). Instead, in the spirit of Geanakoplos and Pole-

marchakis (1986), I will allow the planner to trade in asset markets on behalf of

agents, trading for each agent only in markets the agent can participate in, to max-

imize a weighted sum of the household’s indirect utility functions, subject to an

ex-ante participation constraint for intermediaries. The planner is required respect

the exogenous portfolio constraints, Φh,exog and Φi,exog.

Definition 3. The constrained planner’s problem is

max
{Dh

a∈R}a∈A,h∈H ,{Di
a∈R}a∈A,i∈I ,{Pj,s∈R+}s∈S, j∈Js ,{T i∈R}i∈I ,{T h∈R}h∈H

∑
h∈H

λ
h
∑
s∈S

V h(Ih
s ,{Pj,s} j∈Js;s),

subject to the intermediaries’ ex-ante participation constraint,

∑
s∈S

V i(Ii
s,{Pj,s} j∈Js;s)≥ V̄ i, ∀i ∈I ,
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household’s exogenous portfolio constraints,

Φ
h,exog({Dh

a}a∈A)≤~0, ∀h ∈H ,

intermediaries exogenous portfolio constraints,

Φ
i,exog({Di

a}a∈A)≤~0, ∀i ∈I ,

the definition of incomes Ih
s and Ii

s (17), market clearing in assets (19), the govern-

ment’s budget constraint (20), and goods market clearing for each state s ∈ S and

good j ∈ Js,

∑
h∈H

(Xh
j,s(I

h
s ,{Pj′,s} j′∈Js)−Y h

j,s) = ∑
i∈I

(X i
j,s(I

i
s,{Pj′,s} j′∈Js)−Y i

j,s).

Here, Xh
j,s(I

h
s ,{Pj′,s} j′∈Js) denotes the demand function for good j by agent h

in state s. I have chosen to write the planner’s problem as maximizing household

utility subject to an ex-ante participation constraint for intermediaries, because this

fits best into the example from the text; nothing would change if instead the planner

maximized a weighted combination of all agents’ utilities. Lastly, I define con-

strained (in)efficiency:

Definition 4. A competitive equilibrium is constrained efficient if there exists Pareto

weights λ h and outside options V̄ i such that the allocation of assets and goods in

the competitive equilibrium coincides with the solution to the planner’s problem.

Otherwise, the competitive equilibrium is constrained inefficient.
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D Discussion of Alternative Sources of Inefficiency

In this appendix section, I will discuss informally how certain unmodeled sources

of inefficiency might affect the interpretation of my results. I also discuss how the

results should be interpreted if the purpose of macro-prudential policy is redistribu-

tive (i.e. in the absence of the assumption that transfers exist in state s0).

Inefficiency in the states S1 Suppose for the sake of arguments that agents have

private information in some state s ∈ S1, or that they can take hidden actions with

externalities (i.e. a moral hazard problem exists) in s ∈ S1, or even more generally

that, for some reason, the welfare theorem fails to hold in s ∈ S1. More formally,

conditional on the incomes {Ii
s}i∈I ,{Ih

s }h∈H , suppose any market-clearing prices

{P̄j,s} j∈Js are generically not the solution to an ex-post planner’s problem. That, let

{P∗j,s} j∈Js be a solution to

max
{Pj,s} j∈Js

∑
h∈H

λ
h
s V h(Ih

s ,{Pj,s};s)+ ∑
i∈I

λ
i
sV

i(Ii
s,{Pj,s};s)

subject to the constraint that the total endowment value equal total income,

∑
h∈H

∑
j∈Js

(Pj,sY h
j,s− Ih

s ) = ∑
i∈I

∑
j∈Js

(Pj,sY i
j,s− Ii

s).

If no P∗j,s satisfies market clearing, then a pecuniary externality will generically

exist at the margin at any market-clearing prices {P̄j,s} j∈Js . That is, perturbations

to prices in the neighborhood of {P̄j,s} j∈Js that leave total income unchanged will
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generically affect welfare.43 Consequently, this case is essentially isomorphic to

the case of incomplete markets, a point due to Greenwald and Stiglitz (1986).

Summarizing, if private information, moral hazard, or any other form of inef-

ficiency occurring the states s ∈ S1 cannot be corrected by ex-post policies, it will

give rise to pecuniary externalities of the form considered in the main body of the

text. Such externalities can justify regulatory interventions, those interventions may

create arbitrage opportunities, and the main part of my analysis follows unchanged.

Of course, if the regulator can correct whatever problems arise from private in-

formation or moral hazard ex-post, the regulator should do that; macro-prudential

(ex-ante) policies are justified only when such ex-post corrections are imperfect.

Private Information or Hidden Trade in the state s0 Private information or

hidden trade in the initial state will limit the set of asset allocations the planner can

implement.

Hidden trade in a particular asset is a straightforward case. Suppose an asset

can be traded between intermediaries, but such trades cannot be observed by the

planner. This in fact has no direct bearing on my results, which focus on trade be-

tween households and intermediaries. It can have an indirect (general equilibrium)

effect, but the first-order conditions of the planner for the assets the planner can

regulate must still hold. Consequently, all of the results in the main text continue to

apply. Essentially the same point applies if intermediaries and households can se-

cretly trade with each other; the first-order conditions of the planner with respect to

the secretly-traded assets will not apply, but the first-order conditions of the planner
43This is true generically, and whenever the ex-post planner’s problem is concave, but the possi-

bility of local maxima, saddle points, or minima in prices means that it is not true for all possible
parameter configurations.

86



with respect to other assets will still apply. Hidden trade can have consequences that

affect equilibrium outcomes and the solutions to the planner’s problem, but these

will be captured in the endogenous variables (the externalities and asset prices) that

enter the key formulas of the main text.

Private information can be accommodated within the framework using a virtual

utility approach (see, e.g., Myerson (2007)). This involves, essentially, substituting

the Lagrange multipliers associated with the incentive compatibility constraint into

the objective. To keep things simple, I will consider private information for one

type of household, ĥ ∈H ; the extension to all households and intermediaries is

straightforward. Suppose a continuum of these households draw private types t ∈

T from a distribution πT , and consider an incentive-compatible direct revelation

mechanism version of the planner’s problem in which this household reports a type

t ′ ∈T . Let α(t ′|t) be the multiplier on the incentive compatibility constraint.

The virtual utility version of the planner’s objective is

∑
h∈H

λ
h
∑
s∈S

V h(Ih
s ,{Pj,s} j∈Js;s)+

∑
t∈T

(πT (t)λ ĥ,t− ∑
t ′∈T

α(t ′|t))∑
s∈S

V ĥ,t(Iĥ,t
s ,{Pj,s} j∈Js;s)+

∑
t ′∈T

α(t ′|t)∑
s∈S

V ĥ,t(Iĥ,t ′
s ,{Pj,s} j∈Js;s).

The “virtual SDF” that appears in the planner’s first-order condition with respect to

a transfer of an asset from i∗ to (ĥ, t) (where t is the reported type) is now

π
r
s M̃ĥ,t,r,∗

s =
πT (t)λ ĥ,tV ĥ,t

I (Iĥ,t,∗
s ,{P∗j,s} j∈Js;s)+∑t ′∈T \{t}α(t ′|t)V ĥ,t ′

I (Iĥ,t,∗
s ,{P∗j,s} j∈Js;s)

πT (t)λ ĥ,tV ĥ,t
I (Iĥ,t,∗

s0 ,{P∗j,s0
} j∈Js0

;s0)+∑t ′∈T \{t}α(t ′|t)V ĥ,t ′
I (Iĥ,t,∗

s0 ,{P∗j,s0
} j∈Js;s0)

.
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That is, the case of private information in state s0 is equivalent to the case of full

information with a different collection of SDFs for the agents.

Define the “private information externalities” as

∆̃
ĥ,t,i,r
s = M̃ĥ,t,r,∗

s −
V ĥ,t

I (Iĥ,t,∗
s ,{P∗j,s} j∈Js;s)

V ĥ,t
I (Iĥ,t,∗

s0 ,{P∗j,s0
} j∈Js0

;s0)
,

observing that if the incentive compatibility constraints do not bind, these external-

ities are zero.

Regulation is more complex in this case; the planner must regulate the trades

of households. However, as with intermediaries, it is without loss of generality to

assume that one type t∗ of the households in ĥ can freely trade all of the assets

(to determine prices), as it is sufficient to constrain all of that household’s coun-

terparties instead. Under this assumption, the externalities-as-arbitrage analysis of

the main text applies to the (ĥ, t∗) household and i∗ intermediary. In this case that

the externalities recovered are the sum of the pecuniary externalities ∆
ĥ,t,i,r
s and the

private information externalities ∆̃
ĥ,t,i,r
s .

Regulation as Redistribution Lastly, I will discuss issues related to transfers and

redistribution in the planner’s problem.

Because I have assumed all assets trade ex-dividend, in the absence of transfers,

the planner has no ability at all to change incomes in state s0, putting the plan-

ner at a disadvantage relative to the agents (who can exchange assets for the state

s0 numeraire). In this case, the planner’s problem cannot serve as a definition of

constrained efficiency.
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To consider the planner’s problem in the absence of transfers, we must break

the assumption that all assets trade ex-dividend. Let us instead suppose some asset

trades both ex- and cum-dividend. This is equivalent to assuming an “asset” equiva-

lent to an Arrow security in state s0 exists. Since the planner controls the allocation

of this asset, it is as-if the planner could make transfers. But if an Arrow security

for the state s0 cannot be synthesized, we are back to the assumption that the agents

can accomplish something that the planner cannot. The broader point here is that it

makes little sense to consider a planner who can is free to reallocate assets across

agents but for some reason cannot transfer income at the same time.

Restrictions against income transfers by the planner make more sense in the

context of a regulator who cannot freely assign assets to agents either. It is certainly

plausible that regulators such as the Federal Reserve can implement various forms

of capital and liquidity requirements but are not able to simply reallocate assets or

income across agents. However, it is also not clear what the redistributive motives of

the Fed are; in particular, the Fed may feel constrained to avoid “picking winners.”

In this context, the transfers in state s0 can be seen as a device to capture the idea

that the Fed wishes to move as close as possible to the Pareto frontier without regard

for how this impacts the distribution of wealth across agents.

Let us set this issue aside, and suppose that the Fed is both limited in terms

of what it can accomplish and animated by a desire to redistribute wealth across

agents. In this case, the Fed might wish to use regulations to manipulate the terms

of trade between agents. Put another way, regulatory policy must balance macro-

prudential and redistributive objectives. The redistributive interpretation of the re-

lationship between the sign of CIP violations and the carry trade is that the Fed is
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attempting to redistribute money from the agents seeking to do carry trade to banks.

Whether this interpretation is more plausible than the “accidental by-product of

leverage restrictions” hypothesis advanced in the main text is beyond the scope my

analysis.

E Alternative Definition of the Externality-Mimicking

Portfolio

In this section, I provide a definition of the externality-mimicking portfolio as a

portfolio of arbitrage-able assets (as opposed to a portfolio of replicating portfolios).

Defining

θ̃
A∗,r = θ̃(θ A∗,r),

where θ A∗,r is the externality-mimicking portfolio of definition 1, and

χ̃a =
−Qa +∑a′∈AI wa′(a)Qa′

Qa
,

we can see that the following defines a portfolio of arbitrage-able assets with pay-

offs identical to those of θ A∗,r.

Definition 5. The alternative externality-mimicking portfolio is a portfolio arbitrage-

able assets in A∗, with weights on the risky assets equal to

θ̃
A∗,r = (ΣA∗,r)−1(χ̃A∗− χ̃ f

µA∗,r

R f
), (21)
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and a weight on the risk-free asset equal to

θ̃
A∗,r
f =−(θ̃ A∗,r)T µA∗,r

R f
+

1
(R f )2 χ̃ f . (22)

This definition is identical to definition 1, except that the arbitrage is now nor-

malized by the asset price (as opposed to the replicating portfolio price) and the ex-

pected returns, variance-covariance matrix, and risk-free rates are for the arbitrage-

able assets as opposed to the replicating portfolios.

F Proofs

F.1 Proof of Proposition 1

For a formal definition of the planner’s problem discussed in this proof, see ap-

pendix section C.

Consider a perturbation to the solution of the planner’s problem in which the

planner re-allocates an asset a ∈ A from agent i to agent h, or vice versa. If such

perturbations are feasible, we must have (by differentiability)

−λ
h0V h0

I,s0 ∑
s∈S

∑
j∈Js

µ j,s[Xh
I, j,s−X i

I, j,s]Za,s({P∗j,s} j∈Js)= ∑
s∈S

(λ iV i
I,s−λ

hV h
I,s)Za,s({P∗j,s} j∈Js),

where λ i is the multiplier on intermediary i’s participation constraint and µ j,sλ
h0V h0

I,s0

is the multiplier on the goods-market clearing constraint. Note that the derivatives

Xh
I, j,s =

∂

∂ I Xh
j,s(I,{P∗j,s} j∈Js)|I=Ih∗

s
and V h

I,s =
∂

∂ IV
h
s (I,{P∗j,s} j∈Js)|I=Ih∗

s
are evaluated

at the solution to the planner’s problem. Note also that I have normalized the mul-
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tiplier to units of dollars, rather than social utility, using the marginal utility of an

arbitrary agent h0.

By the definition of the wedges, this is

λ
h0V h0

I,s0 ∑
s∈S

∑
j∈Js

(πr
s τ

r
j,s−

1
|Js| ∑

j′∈Js

µ j′,s

P∗j′,s
)P∗j,s[X

h
I, j,s−X i

I, j,s]Za,s({P∗j,s} j∈Js) =

∑
s∈S

(λ iV i
I,s−λ

hV h
I,s)Za,s({P∗j,s} j∈Js).

By non-satiation, the identity ∑ j∈Js Xh
I, j,sP

∗
j,s = 1 holds, and this simplifies using the

definition of the externalities to

λ
h0V h0

I,s0 ∑
s∈S

π
r
s ∆

h,i,r
s Za,s({P∗j,s} j∈Js) = ∑

s∈S
(λ iV i

I,s−λ
hV h

I,s)Za,s({P∗j,s} j∈Js).

By the first-order condition for the transfer between h0 and h,

λ
h0V h0

I,s0
= λ

hV h
I,s0

and likewise λ h0V h0
I,s0

= λ iV i
I,s0

, and therefore

∑
s∈S

π
r
s ∆

h,i,r
s Za,s({P∗j,s} j∈Js) = ∑

s∈S
(
V i

I,s

V i
s0

−
V h

I,s

V h
I,s0

)Za,s({P∗j,s} j∈Js)

= ∑
s∈S

π
r
s (M

i,r
s −Mh,r

s )Za,s({P∗j,s} j∈Js),

where

Mh,r
s =

V h
I,s

πr
sV h

I,s0

.
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F.2 Proof of Proposition 2

Observe first that, via quantity constraints on portfolio choices, the planner can

dictate the asset allocations of all agents. So any feasible allocation (including any

optimal allocations) can be implemented via portfolio constraints.

Moreover, for each asset, the planner can implement the allocation without reg-

ulating one agent’s trade in that asset. If the planner regulates the quantities for

all other agents who can trade that asset, market clearing will ensure the unregu-

lated agent holds the desired asset allocation. In this case, the asset price will be

determined by the valuation of the unregulated agent.

Applying this logic to all assets a ∈ Ah for some h ∈H , the planner can imple-

ment any desired allocation without regulating the household h. All other house-

holds cannot trade that asset, and hence do not need to be regulated either. Generi-

cally, the planner will need to regulate the trades of all intermediaries in that asset.

Applying the same logic to the assets in AI , which no household can trade, it is

without loss of generality to designate one intermediary, i∗, as unregulated for all

the assets in AI . Note, as discussed in the text, that this in fact requires only that the

regulations do not bind for i∗ (which is to say i∗ is not necessarily “unregulated.”)

In such an implementation, equations (1) and (2) hold. The result immediately

follows by proposition 1 and those equations.
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F.3 Proof of Proposition 3

The first two of these claims are simply the definition of the least-squares projection.

That is

(∑
s∈S

π
r
s RI

s(R
I
s)

T )−1(∑
s∈S

π
r
s RI

s∆
h,i,r
s ) = (∑

s∈S
π

r
s RI

s(R
I
s)

T )−1

χa

χ f


=

(ΣA∗,I,r +µA∗,I,r(µA∗,I,r)T ) RI
f µA∗,I,r

RI
f (µ

A∗,I,r)T (RI
f )

2


−1χa

χ f


=

 (ΣA∗,I,r)−1 −(RI
f )
−1(ΣA∗,I,r)−1µA∗,I,r

−(RI
f )
−1(µA∗,I,r)T (ΣA∗,I,r)−1 (RI

f )
−2(1+(µA∗,I,r)T (ΣA∗,I,r)−1µA∗,I,r)


χa

χ f


=

θ A∗,r

θ
A∗,r
f

 .
where RI

s is the vector form of {RI
a,s}a∈A∗ . The mean externalities, by construction,

are

∑
s∈S

π
r
s ∆

h,i,r
s =

χ f

RI
f
,

and the claim about the variance follows.

I prove the third claim below. Define the Lagrangian, using Ra,s(1−χa) = RI
a,s,

as
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min
m∈R|S1|

max
θ∈R|A∗|

1
2 ∑

s∈S1

π
r
s (ms−mI,r

s )2−

∑
a∈A∗

θa[(1−χa)− ∑
s∈S1

π
r
s msRI

a,s].

The FOC for m is

π
r
s (ms−mI,r

s )+π
r
s ∑

a∈A∗
θaRI

a,s = 0.

Plugging this back into the problem,

max
θ∈R|A∗|

1
2 ∑

s∈S1

π
r
s ( ∑

a∈A∗
θaRI

a,s)
2−

∑
a∈A∗

θa[ ∑
s∈S1

π
r
s ((1−χa)−mI,r

s RI
a,s +RI

a,s ∑
a′∈A∗

θa′R
I
a′,s)],

which simplifies, using the assumption that mI,r
s prices the replicating portfolios

(∑s∈S1 πr
s mI,r

s RI
a′,s = 1), to

max
θ∈R|A∗|

∑
a∈A∗

θaχ̃a−
1
2 ∑

s∈S1

π
r
s ( ∑

a∈A∗
θaRI

a,s)
2. (23)

It follows immediately that θ ∗, the solution to this problem, is the projection of χa

onto the space of returns, and hence is the externality-mimicking portfolio. Ob-

serve, by construction, that the mean return of the externality-mimicking portfolio

is χ f

RI
f
= ( 1

RI
f
− 1

R f
). Therefore,

mr
s = mI,r

s − ∑
a∈A∗

θ
A∗,r
a RI

a,s

95



is the household SDF that minimizes the variance of the difference between SDFs

subject to the constraint that the SDFs are consistent with the observed arbitrages.

Lastly, consider the fourth claim: the externality-mimicking portfolio maxi-

mizes the Sharpe ratio due to arbitrage,

ŜA∗,I,r(θ) = SA∗,r(θ̃(θ))−SA∗,I,r(θ)

=

θ̃(θ)T µA∗,r

R f
−∑a∈A∗ θ̃a(θ)

(θ̃(θ)T ΣA∗,I,rθ̃(θ))
1
2
−

θ T µA∗,I,r

RI
f
−∑a∈A∗ θa

(θ T ΣA∗,I,rθ)
1
2

=
∑a∈A∗ θa(χa−χ f

µA∗,I,r

RI
f
)

(θ T ΣA∗,I,rθ)
1
2

.

Suppose not; let θ̂ be some portfolio with a higher ratio. Note that the Sharpe ratio

due to arbitrage is homogenous of degree zero. Moreover, mixing in some amount

of the risk-free rate does not change this ratio,

∑a∈A∗ θ̂a(χa− µA∗,I,r

RI
f

χ f )

(θ T ΣA∗,I,rθ)
1
2

=
∑a∈A∗(θ̂a +1(a = f ))(χa− µA∗,I,r

RI
f

χ f )

((θ̂a +1(a = f ))T ΣA∗,I,r(θ̂a +1(a = f ))T )
1
2
.

It is therefore without loss of generality to suppose that

∑
a∈A∗

θ̂aµ
A∗,I,r = ∑

a∈A∗
θaµ

A∗,I,r

and

∑
a∈A∗

θ̂aχa = ∑
a∈A∗

θaχa.
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But in this case, θ̂ must achieve a higher payoff than the externality-mimicking

portfolio in (23), a contradiction.
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