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1 Introduction

A concern about international trade often raised by the public and the popu-

lar press is that it may destroy jobs and lead to unemployment. Trade economists

have increasingly taken this concern seriously, but the focus has been on the long-

run.1 Thus, we still lack a framework to understand the possibly adverse short-run

employment effects of trade shocks. The need for such a framework becomes par-

ticularly salient in light of the findings by Autor, Dorn, and Hanson (2013, hence-

forth ADH) and others indicating that U.S. local labor markets more exposed to the

“China shock” experienced significant increases in unemployment and decreases

in labor force participation relative to less exposed regions (see Autor et al., 2016;

Redding, 2020, for reviews). If trade shocks can lead to temporary increases in un-

employment, how does this change the way we evaluate their welfare effects?

In this paper, we propose a dynamic quantitative trade and migration model in

which shocks can trigger increases in unemployment and decreases in labor force

participation during a transition period, while allowing for the computation of the

implied aggregate and distributional welfare effects. The key feature of the model

is downward nominal wage rigidity (DNWR) as in Schmitt-Grohe and Uribe (2016),

constraining the nominal wage in any period to be no less than a factor δ times the

nominal wage in the previous period. We embed this feature into a dynamic model

in the spirit of Caliendo, Dvorkin, and Parro (2019, henceforth CDP), which we

extend to allow for a difference between the elasticity governing workers’ mobility

across sectors (1/ν in our model) and the elasticity governing mobility across local

labor markets (1/κ in our model).

We calibrate the key model parameters δ, ν, and κ to results from ADH on how

labor force participation, unemployment, and population across U.S. labor markets

1Davidson et al. (1999), Helpman et al. (2010), Kim and Vogel (2021), and Galle et al. (2023) are papers
that focus on the long-run impacts of unemployment. Important exceptions looking at short-run
employment effects are Dutt et al. (2009) and Dix-Carneiro et al. (2023), which we discuss below.
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are affected by the China shock. Using dynamic exact hat algebra, we simulate the

effects of the China shock from the year 2000 onwards. The results indicate that al-

though the China shock improves the terms of trade for almost all states (i.e., only

two states would experience a welfare loss in the absence of DNWR), employment

actually falls in most states during the transition, both through an increase in unem-

ployment and a decline in labor force participation. These employment effects have

significant welfare implications, as they lead to a two-thirds reduction in the U.S.

welfare gains from the China shock, and to absolute welfare losses in twenty states.

The intuition behind our results is as follows. With flexible wages, the increase

in China’s relative productivity would require a downward adjustment in the U.S.

relative wage. DNWR prevents this adjustment from taking place through a large

decline in the U.S. nominal wage, and a nominal anchor (described below) prevents

it from occurring through a large increase in the Chinese dollar wage. The result

is temporary unemployment in the U.S. In turn, with home production available to

workers, this triggers further declines in labor participation, as more workers prefer

to engage in home production rather than face the possibility of unemployment.

In Section 2, we argue that DNWR is a plausible mechanism to explain the un-

employment effects of the China shock. First, there is substantial empirical evidence

that DNWR is present in the data (Grigsby et al., 2021; Hazell and Taska, 2023). Sec-

ond, we show that DNWR is not inconsistent with the dynamic pattern of the unem-

ployment response to the China shock. Third, we borrow measures of DNWR from

the macro literature and show that U.S. regions with more stringent pre-shock mea-

sures of DNWR experienced significantly higher unemployment effects from the

China Shock. We acknowledge that labor-market frictions in the real world go sub-

stantially beyond DNWR. However, we aim to show that the DNWR in our model

is a powerful yet parsimonious way to capture such frictions.

Section 3 presents our model. There are multiple sectors linked by an input-

output structure, sector-level trade satisfies the gravity equation, and a home-pro-

duction sector leads to an upward-sloping labor supply curve. Trade takes place
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between regions, and workers can move across regions belonging to the same coun-

try. Each period, workers draw idiosyncratic shocks to the utility of working in

each sector-region. Based on these draws, the costs of moving, and expected future

utility (including the risk of unemployment), workers choose which sector-region

to participate in. Wages are subject to DNWR in all manufacturing sectors, but are

otherwise determined by supply and demand for labor.

Given the presence of DNWR, we need to close the model with a nominal an-

chor that prevents nominal wages from rising enough to make the DNWR always

non-binding.2 We assume that world nominal GDP in dollars grows at a constant

and exogenous rate (which we set to zero without loss of generality). While this

nominal anchor is a simplification, it allows us to solve our otherwise-unwieldy dy-

namic trade and migration model.3 Qualitatively, we would obtain similar results if

we assumed instead that China uses a combination of monetary and exchange rate

policies to prevent both an appreciation of its currency and large inflationary pres-

sures – thereby preventing the Chinese wage in dollars from increasing – while the

U.S. does not fully offset this with its own policies.

Section 4 describes our data construction. We combine multiple data sources,

proportionality assumptions, and implications from a gravity model to construct

sector-level trade flows across all region pairs in our sample. We also construct

migration flows between all sector-states in the U.S. The resulting dataset contains

87 regions (50 U.S. states, 36 additional countries, and the rest of the world), and 15

sectors (home production, 12 manufacturing sectors, services, and agriculture).

Section 5 describes our calibration procedure for parameters ν, κ, and δ as well

as for the China shock, which we operationalize as productivity changes in China

that vary across sectors and years. For any set of parameter values and produc-

2Our baseline analysis also assumes that third countries have flexible exchange rates vis-á-vis the
dollar, but we explore the alternative of fixed exchange rates for developed countries in Section 7.

3Assuming other types of nominal anchors prevents our model from being solved with an effi-
cient Alvarez-and-Lucas (Alvarez and Lucas, 2007) type algorithm that we develop to deal with
the DNWR, thereby increasing the time required to solve the model by several orders of magnitude.
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tivity changes, we use dynamic hat algebra to compute implied annual changes

in trade flows as well as changes in labor-force participation, unemployment, and

population over the 2000-2007 period. We then iterate over the parameter values

and productivity changes until the sector-level annual changes in U.S. imports from

China match those predicted in the data and the ADH-style regression coefficients

in the model match those obtained by ADH in the data. In our baseline specifica-

tion, we introduce DNWR only in the manufacturing sectors. The calibration leads

to a value of δ ≈ 0.99, implying that – with constant world nominal GDP – wages

can fall around 1% annually without the DNWR becoming binding. This value is in

line with the one in Schmitt-Grohe and Uribe (2016).

Section 6 presents the results of the baseline quantitative analysis. In the short

run, unemployment increases in the regions most exposed to the China shock, but

this unemployment dissipates over time as the nominal wage adjusts downward.

In the long run, since the real wage governs labor supply and there is no unem-

ployment, employment eventually increases after the economy fully adjusts to the

positive terms of trade shock. We compute welfare as the present discounted value

of utility flow, with a discount rate of 0.95. We find that welfare increases in 30 U.S.

states, including many that experience unemployment during the transition. For the

U.S. as a whole, although the China shock remains beneficial, DNWR reduces the

aggregate welfare gains by roughly two-thirds (from 31 to 12 basis points). There are

18 states that experience welfare losses in the presence of downward nominal wage

rigidity that would have experienced gains without it. The spatial heterogeneity

in the employment and income effects of the China shock implied by our model

is similar to that implied by the empirical results in ADH. This stands in contrast

to previous quantitative trade models, such as CDP and Galle et al. (2023), which

deliver too little dispersion, as shown in Adao et al. (2023).

Section 7 studies how varying some of the key assumptions in the baseline

specification affects our results. We discuss alternative scenarios where we allow

the China shock to last until 2011 in the spirit of Autor et al. (2021), use alterna-
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tive migration assumptions across U.S. states, introduce DNWR in all sectors, con-

sider some of the increases in trade surpluses that occurred in China as part of the

China shock, and implement a fixed exchange rate regime in developed countries.

We highlight that while the baseline specification is broadly consistent with the dy-

namic pattern of the cross-sectional response to the China shock, the specification

where the shock lasts until 2011 improves the fit along this dimension by increasing

the persistence of the cross-sectional unemployment and non-participation effects.

Interestingly, assuming that the China shock lasted until 2011 implies that the wel-

fare gains of the shock through the lens of the model roughly disappear.

Section 8 discusses two additional topics. First, we argue that, assuming that

labor supply is a function of the real wage, ADH’s exposure measure to the China

shock becomes a relevant statistic in the model only due to DNWR. Second, we

explore the model-implied tradeoff between unemployment and inflation. For a

neighborhood around our baseline, decreasing cumulative unemployment gener-

ated by the shock by one percentage point over ten years requires accepting roughly

two more percentage points of cumulative inflation over the same horizon.

Our paper follows in the footsteps of a large literature that analyzes the impacts

of trade shocks on different regions or countries. Quantitative papers such as CDP,

Galle et al. (2023), and Adao et al. (2023) focus on the effects of the China shock

on regions of the U.S. Our model incorporates nominal rigidities as a mechanism to

deliver involuntary unemployment, which is an uncommon feature in this literature

despite its prominence in the empirical papers studying the China shock.

Another literature explores the effect of trade on unemployment using search

and matching models (e.g. Davidson and Matusz, 2004; Dutt et al., 2009; Helpman

et al., 2010; Hasan et al., 2012; Heid and Larch, 2016; Kim and Vogel, 2021; Galle et al.,

2023; Dix-Carneiro et al., 2023; Carrere et al., 2020; Gurkova et al., 2023). In static

models with search and matching, trade shocks can affect aggregate unemployment

by reallocating labor across sectors with different frictional unemployment rates, as

in Helpman et al. (2010), or by changing the profitability of posting vacancies, as in
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Kim and Vogel (2021). Galle et al. (2023) focus on the second of these mechanisms,

and show that U.S. regions more exposed to the China shock experience increases

in unemployment. This is due to the decreased profitability of posting vacancies in

those areas facing intensified import competition. However, for the U.S. as a whole,

unemployment declines because the China shock is, on aggregate, a positive terms-

of-trade shock, thereby enhancing the profitability of posting vacancies.

Dix-Carneiro et al. (2023) allow for both of these mechanisms in a dynamic

multi-sector model to study the role of trade imbalances on the labor market during

the transition after the China shock. In their quantitative analysis, the China shock

entails both a gradual increase in productivity (to match China’s increase in total

exports) and a change in households’ intertemporal preferences (to match China’s

increase in net exports). According to the model simulation, the effect of the China

shock on aggregate U.S. unemployment is negligible, and there are no region-level

results connecting to the reduced-form evidence in ADH.

Also related to our paper is Eaton et al. (2013), which studies the extent to which

unmodeled cross-country relative wage rigidities can explain the increases in unem-

ployment and decreases in GDP observed in countries undergoing sudden stops.

Relative to this paper, our contribution is to show how DNWR can lead to such rela-

tive wage rigidities, to extend the analysis to terms-of-trade shocks in a multi-sector

model with migration, and to quantify the effect of the China shock on unemploy-

ment and nonemployment across U.S. states from the year 2000 onward.

On the side of open-economy macroeconomics, classic contributions such as

Clarida et al. (2002) or Gali and Monacelli (2005, 2008, 2016) have introduced nomi-

nal rigidities in models with a simplified trade structure. Schmitt-Grohe and Uribe

(2016) studies optimal policies in the presence of DNWR in a small open econ-

omy. Nakamura and Steinsson (2014), Beraja et al. (2019), and Chodorow-Reich and

Wieland (2020) deal with multiple heterogeneous regions in models with nominal

rigidities. None of these papers connect to actual sector-level trade flows and hence

cannot be used for a detailed quantitative analysis of an event like the China shock.
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2 A Case for DNWR

2.1 Support for DNWR in the Recent Literature

While the idea that DNWR may be central in explaining various macroeco-

nomic phenomena has a venerable tradition in macroeconomics (e.g., Keynes, 1936;

Tobin, 1972), it laid somewhat dormant for decades as other forms of rigidity such as

Calvo frictions in prices or wages (Calvo, 1983; Erceg et al., 2000), quadratic adjust-

ment costs (Rotemberg, 1982), or menu costs (Sheshinski and Weiss, 1977) became

more popular. However, there has recently been a resurgence in the popularity of

DNWR in the macro and labor literatures.

The first reason for this resurgence of DNWR in the literature is the strong em-

pirical support found for it in the micro data. Grigsby et al. (2021) find evidence

of DNWR for a sample of workers who remain continuously employed with the

same firm.4 Moreover, although wages could, in principle, be more flexible for new

hires than continuing workers, Hazell and Taska (2023) find strong evidence that

the wage for new hires is rigid downward, but flexible upward, in particular rising

during expansions but not falling during contractions.

Jo (2022) analyzes five distinct wage-setting schemes: flexible, Calvo, long-term

contracts, symmetric menu costs, and DNWR, and shows that only DNWR is con-

sistent with U.S. data from the CPS.5 Fallick et al. (2020) find a significant amount

of DNWR in the United States, and no evidence that the substantial degree of labor

market distress during the Great Recession reduced it.6 To be clear, the presence

4The main finding in Grigsby et al. (2021) refers to base wages, but the authors then show that
bonuses/overtime are roughly acyclical, and that the base wages of new hires are no more flexi-
ble than those of job-stayers. Therefore, they convincingly show that DNWR is present in the data.

5In particular, the paper shows that: 1) there is a strong spike in the concentration of workers that
do not have any wage changes (the “spike at zero”), 2) the spike at zero is countercyclical, 3) as
employment declines the share of workers with wage cuts increases less than the share of workers
with no wage changes, 4) employment growth is left skewed. The author shows that only models
that incorporate DNWR can successfully match these four facts.

6For additional evidence on the presence of DNWR in the United States see: Card and Hyslop (1997),
Kahn (1997), Barattieri et al. (2014), Daly and Hobijn (2014), Murray (2020), Murray (2021).
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of DNWR does not mean that nominal wages never fall, it simply means that the

fraction of nominal wages that experience a decrease is small and varies little with

the state of the business cycle.

The second reason behind the increasing prominence of DNWR in the literature

is that it can help explain many important issues in macro and labor. Shimer (2004,

2005) showed that a calibration of the standard search-and-matching model without

wage rigidity leads to unemployment fluctuations that are much smaller than the

ones in U.S. data, whereas in a version that incorporates wage rigidity these fluctu-

ations match the data. Furthermore, Dupraz et al. (2019) show that symmetric wage

rigidity models are unable to account for the skewness and asymmetry observed in

the unemployment rate, while DNWR is able to do so.

In the international context, Fadinger et al. (2024) find that intensified export

competition from Germany led to significant manufacturing employment losses but

insignificant nominal wage responses in other Euro-Area countries. Moreover, Ger-

man export competition had no significant employment effects on European coun-

tries with flexible exchange rates vis-a-vis the euro, suggesting that DNWR in the

presence of a fixed exchange rate is the main explanation for these results. Finally,

Costinot et al. (2022) study the collapse of the Finnish-Soviet trade agreement and

find that it generated employment declines that were greater in the short run than in

the long run and wage changes that were larger in the long run than in the short run.

They argue that this evidence is consistent with a model that incorporates DNWR

but not with a search-and-matching model without nominal wage frictions.

For the aforementioned reasons, it is fair to say that DNWR is an empirically

well supported and mainstream tool of modern macroeconomics. Our paper brings

this tool to the trade literature to explain important facts related to the China Shock.

In the following subsections, we provide additional evidence that DNWR is not

incompatible with the persistent effects that the China shock had on aggregate em-

ployment, and that regions with more stringent DNWR experienced a higher in-

crease in unemployment as a consequence of the shock.

8



2.2 DNWR and Persistence in the Employment Effects of the

China Shock

Recent evidence (e.g., Dix-Carneiro and Kovak, 2017; Autor et al., 2021) has

found that regions more exposed to import competition experienced persistent de-

creases in employment. Since DNWR can only lead to temporary increases in unem-

ployment, this evidence could raise doubts about DNWR as the mechanism driving

these persistent effects. However, persistent employment declines do not necessarily

imply persistent unemployment effects, as they could be due to long-run declines in

labor force participation with no long-lasting effects on unemployment.7

To study the persistence of the employment and unemployment effects of the

China Shock, we take the analysis in Autor et al. (2021) as a baseline and implement

four changes (described below) so that the regression results are comparable with

those in ADH (which use different data and regression specification).8 The resulting

exercise mimics ADH for the ending year 2007 and extends it up to 2020.

First, we estimate the dynamic effect of the China Shock following a regression

specification in the spirit of Autor et al. (2021), but that would allow us to stack the

changes in the outcomes for the 1990 - 2000 period as in ADH. Our main regression

specification is the following:

∆Yi,t+h = αt + β1h∆IPcu
i,τ + X′i,tβ2 + εi,t+h, (1)

where ∆Yi,t+h is a vector of ten-year equivalent changes in outcome Y for CZ i be-

tween 1990 and 2000 stacked with the changes in the same outcome between years

7While Autor et al. (2021) show long-run effects of the China Shock, they focus on employment,
compensation, transfers, and population effects, and do not explore separate effects in unemploy-
ment and non-participation. Similarly, the main analysis in Dix-Carneiro and Kovak (2017) relies
on employer-employee data for Brazil and hence precludes any study of unemployment. The au-
thors supplement their analysis with other data sources that include unemployment but focus on
the distinction between formal and informal employment as opposed to unemployment and non-
participation.

8These changes do not meaningfully affect the qualitative takeaways from this section. We stick with
them to remain consistent with the point estimates from ADH (associated with the 2000 − 2007
change), which are well know in the literature and which we use as our main calibration targets.
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2000 and 2000 + h, for h = 1, ..., 20. The term IPcu
i,τ is the growth in Chinese import

competition in the τ intervals 1990-2000 and 2000-2007, respectively (which, as in

Autor et al. (2021), we keep fixed regardless of h).

Second, we use the American Community Survey (ACS) for employment data

instead of the Regional Economic Information System (REIS) data.9 Third, we use

the exact import exposure definition in ADH. Autor et al. (2021) use the growth in

imports from China between 2000 and 2012, divided by domestic absorption (U.S.

industry shipments plus net imports), whereas ADH use the growth in imports per

worker between 1990 and 2000 stacked with the one between 2000 and 2007. Fourth,

we use the same controls X′i,t as in ADH, which we take from ADH’s replication file.

We estimate one regression per year using equation (1) for h = 6, ..., 20, imple-

menting the same two-stage least squares strategy as in ADH (i.e., we instrument

∆IPcu
i,τ with ∆IPcu

oi,τ, which only differs from ∆IPcu
i,τ by using imports from China in

other high-income markets). Figure 1 reports the resulting estimates for each β1h

when the outcomes are the following ratios: total employment to population (panel

a), not-in-the-labor-force (NILF) to population (panel b), and unemployment to pop-

ulation (panel c). Note that the coefficients for 2007 coincide with those in ADH.10

Panel (a) of Figure 1 suggests that the China shock has long-term employ-

ment effects. Even by 2020, CZs that were relatively more exposed to the increase

in import competition from China experienced negative and significant effects on

total employment divided by working-age population. This finding is consistent

with other recent evidence on the long-run impacts of disruptive trade shocks (Dix-

Carneiro and Kovak, 2017; Autor et al., 2021).11

9ACS allows one to compute consistent measures of unemployment and non-participation. How-
ever, it does not include full geographic information for 2001− 2005. Therefore, we start the analysis
with the 2000− 2006 change. We follow ADH in pooling a moving average of three ACS years.

10Specifically, the coefficients for 2007 from panels (b) and (c) match those from Table 5, panel B,
columns 3 and 4 in ADH, respectively. The equivalent coefficient for panel (a) is not directly pre-
sented in ADH but it matches the sum of the effects for manufacturing and non-manufacturing
employment (divided by working-age population) found by ADH.

11Using employer-employee data for Brazil, Dix-Carneiro and Kovak (2017) find a stark decreasing
pattern on formal employment. Their regional analysis using decennial Census data also shows
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Figure 1: Effects of the China Shock on employment and non-employment

(a) Tot. employment/Pop.
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Note: The panels report two-stage least squares coefficient estimates for β1h in equation (1) and 95
percent confidence intervals for these estimates. Each coefficient comes from a separate IV regres-
sion following equation (1). Each regression stacks the change in the specified outcome between
1990− 2000 and between 2000 and the year indicated on the horizontal axis. The coefficients for 2007
(highlighted with the red dashed vertical line) match those from Table 5 in ADH.

We uncover the separation of the employment effects into NILF and unemploy-

ment effects in panels (b) and (c). Panel (b) shows that by 2020, the effect on NILF is

still around half the effect found by ADH for 2007, and continues to be statistically

significant. By contrast, panel (c) shows that the unemployment effects diminish

more rapidly over time. In particular, the unemployment effect already became sta-

tistically non-significant in 2011, and while the effect became statistically significant

again in some other years post 2011, it remained economically small. By 2020, the

that trade-displaced formal-sector workers switch to informal employment and that the longer-
term effect on non-employment is small and non-significant.
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unemployment effect was around one-tenth of what ADH found in 2007, which sug-

gests that the unemployment effects are transitory and that most of the persistent

employment effects of the China Shock are driven by effects on NILF.

2.3 Cross-sectional Evidence for DNWR in the Adjustment to the

China Shock

We borrow measures of DNWR from the empirical macro literature (e.g., Jo,

2022; Jo and Zubairy, 2023) and show that regions (CZs or States) with more strin-

gent pre-shock measures of DNWR experienced significantly higher unemployment

effects from the China Shock. To do so, we enrich the regression specification in

equation (1) to add a differential effect depending on the degree of DNWR:

∆Ui,t+h = γt + β1,h∆IPcu
i,τ + β2,hRigs(i),τ + β3,hRigs(i),τ × ∆IPcu

i,τ + X′i,tβ4 + εi,t+h, (2)

where ∆Ui,t+h now refers to the change in unemployment-to-population ratio in

a region (CZ or state). The variable Rigs(i),τ represents a state-level proxy for the

DNWR present in the state s to which CZ i belongs. We again instrument ∆IPcu
i,τ with

∆IPcu
oi,τ and, as commonly done for IV regressions with interactions, we instrument

Rigs(i),τ × ∆IPcu
i,τ with Rigs(i),τ × ∆IPcu

oi,τ.

We use two main proxies for DNWR following Jo and Zubairy (2023).12 The

first one is based on the share of workers with negative year-over-year hourly wage

changes among all workers. The second one is based on the share of individuals

with negative wage changes to total individuals with nonzero wage changes. Both

measures are constructed based on individual-level year-over-year wage changes

from CPS data. We pool observations from 1987 to 1990 to define the rigidity shares

for the 1990-2000 decade and observations from 1997 to 2000 to determine the rigid-

ity shares post 2000.13 We then define Rigs(i),τ as a dummy, taking a value of one if a

12We thank Yoon Joo Jo for sharing her data for 1997 onward and her code to clean the raw CPS data.
13These shares are persistent over time. Only eight states switched between below/above median
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given state is below the mean share. Note that a value of one implies a lower share

of negative wage changes, which in turn suggests more DNWR.

Panel (a) of Figure 2 displays the estimates of β3,h in equation (2). These es-

timates show the differential unemployment to population ratio increase for CZs

with high vs. low DNWR. For 2007, the panel shows that CZs with high DNWR

experienced an additional 0.17 percentage points increase in the unemployment per

population ratio due to the China Shock, a magnitude that is economically large

compared to the average effect (0.22) found in ADH. The differential effect is sta-

tistically significant at the beginning of the period and loses significance after some

years. Panel (b) uses the estimates from the same regression to present the unem-

ployment effects separated by category. While CZs in the high DNWR category ex-

perienced significantly larger unemployment effects at the beginning of the period,

the unemployment effects in both categories fade out over time.14

Figure 2: China Shock and unemployment in CZs with high vs. low DNWR
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2) when the measure of Rigs(i),τ is a dummy taking value 1 in CZ i if the share
of individuals with negative wage changes in state s is below the mean across all states.

across the two decades.
14Appendix A shows that the findings in Figure 2 are robust to several alternative proxies of DNWR.

In particular, we (i) compute measures based on the share of non-zero wage changes (Figures A.2,
A.3, A.6, A.7), (ii) use the median as opposed to the mean to split high vs. low DNWR (Figures
A.1, A.5, A.7), and (iii) run the regressions at the state-level instead of CZ-level (Figures A.4-A.7).
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3 A Dynamic Spatial Trade and Migration Model with

Downward Nominal Wage Rigidities

Building on Artuc et al. (2010) and CDP, we consider a dynamic multi-sector

quantitative trade model with an input-output structure and forward looking agents

that decide in which region and sector to work. Given our goals of matching the re-

sults in ADH, we introduce two key extensions to CDP: (i) DNWR as a mechanism

that can generate unemployment; and (ii) a nested structure in the households’ la-

bor supply decision to allow for different elasticities of moving across regions and

sectors. In this section, we present an abridged description of the model, relegating

additional details to Appendix B.

3.1 Basic Assumptions

We assume that the world is composed of multiple economies or “regions” (in-

dexed by i or j). There are M regions inside the U.S. (i.e., the 50 U.S. states), plus

I−M regions (countries) outside of the U.S. We assume that there is no labor mobil-

ity across different countries, but allow for mobility across different states of the U.S.

There are S+ 1 sectors in the economy (indexed by s or k), with sector zero denoting

the home production sector and the remaining S sectors being productive market

sectors. In each region j and period t, a representative consumer participating in the

market economy devotes all income to expenditure Pj,tCj,t, where Cj,t and Pj,t are ag-

gregate consumption and the price index respectively. Aggregate consumption is a

Cobb-Douglas aggregate of consumption across the S different market sectors with

expenditure shares αj,s. As in a multi-sector Armington trade model, consumption

in each market sector is a CES aggregate of consumption of the good of each of the

I regions, with an elasticity of substitution σs > 1 in sector s.

Each region produces the good in sector s with a Cobb-Douglas production

function, using labor with share φj,s and intermediate inputs with shares φj,ks, where
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φj,s + ∑k φj,ks = 1. Total factor productivity in region j, sector s, and time t is Aj,s,t.

There is perfect competition and iceberg trade costs τij,s,t ≥ 1 for exports from i to j

in sector s. Intermediates from different origins are aggregated in the same way as

consumption goods. Letting Wi,s,t denote the wage in region i, sector s, at time t, the

price in region j of good s produced by region i at time t is then

pij,s,t = τij,s,t A−1
i,s,tW

φi,s
i,s,t ∏

k
Pφi,ks

i,k,t , (3)

where Pi,k,t is the price index of sector k in region i at time t. Given our Armington

assumption, these price indices satisfy

P1−σs
j,s,t =

I

∑
i=1

p1−σs
ij,s,t . (4)

Let Ri,s,t and Li,s,t denote total revenues and employment in sector s of region i,

respectively. Noting that the demand of industry k of region j of intermediates from

sector s is φj,skRj,k,t and allowing for exogenous deficits as in Dekle et al. (2007), the

market clearing condition for sector s in region i can be written as

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
S

∑
k=1

Wj,k,tLj,k,t + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
, (5)

where Dj,t are transfers received by j, with ∑j Dj,t = 0, and the trade shares satisfy

λij,s,t =
p1−σs

ij,s,t

∑I
r=1 p1−σs

rj,s,t

. (6)

In turn, employment must be compatible with labor demand,

Wi,s,tLi,s,t = φi,sRi,s,t. (7)

Before describing our assumptions regarding labor supply and nominal rigidi-

ties, it is instructive to consider two standard ways to close the model. First, as in

Caliendo and Parro (2015), one could assume that there is perfect labor mobility
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across sectors within each region, that there is no migration across regions, and that

labor supply is perfectly inelastic. This would imply that wages are equalized across

sectors within a region, Wi,s,t = Wi,t for all s, and that employment must add up to

some exogenous level, ∑s Li,s,t = L̄i,t. Alternatively, one could assume that there

is a perfectly inelastic labor supply in each sector-region, Li,s,t = L̄i,s,t. In this case,

one could use equations (3)-(7) to solve for wages (up to a choice of numeraire) at

time t given employment levels. Below we appeal to this second result to intuitively

present the definition of equilibrium with DNWR.

3.2 Labor Supply

Agents are forward looking and face a dynamic problem with discount rate β.

They face a cost ϕji,sk of moving from region j, sector s to region i, sector k. These

costs are time invariant, additive, and measured in terms of utility. Additionally,

agents have additive idiosyncratic shocks for each choice of region and sector, de-

noted by εi,s,t. Agents can either engage in home production or look for work in any

of the S market sectors. We denote the number of agents that participate in region i,

sector s, at time t, by `i,s,t.

An agent that starts in region j and sector s derives flow utility Uj,s,t and decides

whether to move knowing the economic conditions in all labor markets and the

idiosyncratic shocks. Denoting with νj,s,t the lifetime utility of an agent who is in

region j, sector s, at time t, we have

νj,s,t = Uj,s,t + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}.

We assume that the joint distribution of the vector ε at time t is nested Gumbel:

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k,t/ν)

)ν/κ
 ,
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with κ > ν. This allows us to have different elasticities of moving across regions

and sectors, which will be useful for the model to match the empirical evidence in

ADH. Let Vj,s,t ≡ E(νj,s,t) be the expected lifetime utility of a representative agent

in labor market j, s. As we show in Appendix B.2, we have

Vj,s,t = Uj,s,t + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ, (8)

where γ is the Euler-Mascheroni constant.

Denote by µji,sk|i,t the share of agents that relocate from market js to ik relative

to the total number of agents that move from js to region i irrespective of the sector.

Additionally, let µji,s#,t denote the fraction of agents that relocate from market js to

any sector in i as a share of all the agents in js. In Appendix B.2, we show that

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
, (9)

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
. (10)

The share of agents in js that move to ik is µji,sk,t = µji,sk|i,t · µji,s#,t, and participation

in the different labor markets evolves according to

`i,k,t+1 =
I

∑
j=1

S

∑
s=0

µji,sk,t`j,s,t. (11)

Without DNWR there would be no unemployment and hence the flow utility

from participating in a sector-region would be the log of the associated real wage,

Ui,s,t = ln(ωi,s,t), where ωi,s,t = Wi,s,t/Pi,t and Pi,t is the aggregate price index in it,

Pi,t =
S

∏
s=1

Pαi,s
i,s,t. (12)

Equations (3)-(12) combined with Ui,s,t = ln(Wi,s,t/Pi,t) and Lj,s,t = `j,s,t would char-
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acterize the equilibrium of a model that is similar to CDP.15

With DNWR agents must take into account the possibility of unemployment

when deciding which sector-region to participate in. We assume that there is some

level of insurance against unemployment among participants in each sector-region.

Specifically, unemployed workers receive a transfer equal to a share z ∈ (0, 1] of

the average income earned by all workers supplying labor in any given sector-

region, funded by a tax on employed workers in that same sector-region. The prob-

ability of employment in (i, s) is πi,s,t ≡ Li,s,t/`i,k,t, and, in the spirit of Rogerson

(1988), we assume that workers supplying labor in (i, s) face a lottery with income

zπi,s,tWi,s,t with probability 1− πi,s,t and income (1− (1− πi,s,t) z)Wi,s,t with prob-

ability πi,s,t.16 Using ωi,s,t to denote the average real wage among all workers sup-

plying labor in (i, s), the expected (flow) utility associated with this lottery is

Ui,s,t = ln (∆i,s,tωi,s,t) , (13)

where

ωi,k,t = πi,s,t ·
Wi,k,t

Pi,t
(14)

is expected income and ∆i,s,t ≤ 1 is a factor capturing the risk associated with sup-

plying labor in (i, s) in period t,

∆i,s,t = z1−πi,s,t

(
1− z (1− πi,s,t)

πi,s,t

)πi,s,t

. (15)

For home production, we assume that Ui,0,t = ln(ωi,0,t), with ωi,0,t being the

level of (non-market) consumption associated with home production in region i,

which we assume to be exogenous and time invariant. Importantly, our setup does

not allow unemployed workers to engage in home production. This implies that

15The main theoretical differences with CDP would be our nested structure for labor supply and fact
that we do not have a fixed factor as they do.

16Expected income is then (1− πi,s,t)zπi,s,tWi,s,t + πi,s,t (1− (1− πi,s,t)z)Wi,s,t = πi,s,tWi,s,t, so that
the insurance scheme is fully funded within each sector-region.
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the threat of unemployment discourages participation, which is a useful feature that

allows the model to match the ADH targets with a reasonable labor supply elasticity.

3.3 Downward Nominal Wage Rigidity

In the standard trade model, labor market clearing requires that labor supply

and demand equalize for each sector-region, i.e. Li,k,t = `i,k,t. We depart from

this assumption and instead follow Schmitt-Grohe and Uribe (2016) by allowing

for DNWR, which might lead to an employment level strictly below labor supply,

Li,k,t ≤ `i,k,t. (16)

All prices and wages up to now have been expressed in U.S. dollars, but regions

face DNWR in terms of their local currency unit. Letting WLCU
i,k,t denote nominal

wages in local currency units, the DNWR takes the following form:

WLCU
i,k,t ≥ δkWLCU

i,k,t−1, δk ≥ 0.

Letting Ei,t denote the exchange rate between the local currency unit of region i and

the local currency unit of region one (which is the U.S. dollar) in period t, then the

DNWR for wages in dollars entails

Wi,k,t ≥
Ei,t

Ei,t−1
δkWi,k,t−1.

Since all regions within the U.S. share the dollar as their local currency unit, then

Ei,t = 1 and WLCU
i,k,t = Wi,k,t ∀ i ≤ M. This means that the DNWR in states of the U.S.

takes the familiar form Wi,k,t ≥ δkWi,k,t−1. For the I −M regions outside of the U.S.,

the LCU is not the dollar and so the behavior of the exchange rate impacts how the

DNWR affects the real economy. The DNWR in dollars can then be captured using

a country-specific parameter δi,k for each sector, i.e.:

Wi,k,t ≥ δi,kWi,k,t−1, δi,k ≥ 0. (17)
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In our baseline specification, we assume that all regions outside of the U.S. have a

flexible exchange rate and so the DNWR never binds. We capture these assumptions

by setting δi,k = δk ∀ i ≤ M and δi,k = 0 ∀ i > M. Finally, equations (16) and (17) are

satisfied with complementary slackness,

(`i,k,t − Li,k,t)(Wi,k,t − δi,kWi,k,t−1) = 0. (18)

3.4 Nominal Anchor

So far, we have introduced nominal elements to the model (i.e., the DNWR),

but we have not introduced a nominal anchor that prevents nominal wages from

rising so much in each period as to make the DNWR always non-binding. We want

to capture the general idea that central banks are unwilling to allow inflation to be

too high because of its related costs. In traditional macro models, this is usually

implemented via a Taylor rule, where the policy rate reacts to inflation in order to

keep price growth in check. Instead, we use a nominal anchor that captures a similar

idea in a way that lends itself to quantitative implementation in our trade model.

Specifically, we assume that world nominal GDP in dollars grows at a constant

gross rate of γ,

I

∑
i=1

S

∑
s=1

Wi,s,tLi,s,t = γ
I

∑
i=1

S

∑
s=1

Wi,s,t−1Li,s,t−1. (19)

A similar nominal anchor is used in Guerrieri et al. (2021), albeit in the context of a

static, closed-economy model. This nominal anchor has some desirable properties.

First, it allows us to solve our otherwise-unwieldy model using a fast contraction-

mapping algorithm in the spirit of Alvarez and Lucas (2007) that we develop to

deal with equations (16)-(18) implied by the DNWR. We describe this algorithm in

Section B.7. Second, for certain combinations of γ and δ, it can be seen as capturing

a given level of world aggregate demand in the context of a global savings glut.

Intuitively, we would obtain similar results if we removed (19) and assumed
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instead that something prevents the Chinese wage in dollars from rising. This could

occur if China wants to preserve its competitiveness and uses a combination of mon-

etary and exchange rate policies to prevent the Chinese wage in dollars from increas-

ing, while the U.S. does not offset this with its own policies. We further discuss what

would happen under alternative nominal assumptions in Section 8.2.

Consider a shock that requires the relative wage of some sector k in region i

to fall in order to maintain full employment in that sector-region. This could be a

negative productivity shock, an increase in productivity in that sector abroad, or a

decline in transfers to the region. If δk is low enough, or the exchange rate can de-

preciate (e.g., δi,k is low), then nominal wages can adjust downwards in the required

magnitude to avoid unemployment. Relatedly, if γ is high enough then again there

would be no unemployment, since no downward adjustment is needed in the nom-

inal wage. However, there are combinations of δi,k and γ that can lead to unemploy-

ment after the shock, although there would then be a decline in unemployment as

the DNWR and/or the anchor allow for adjustment year after year.

3.5 Equilibrium

Following CDP, we can think of the full equilibrium of our model in terms of

a temporary equilibrium and a sequential equilibrium. In our environment with

DNWR, given last period’s world nominal GDP (∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1), wages

{Wi,s,t−1}, and the current period’s labor supply {`i,s,t}, a temporary equilibrium at

time t is a set of nominal wages {Wi,s,t} and employment levels {Li,s,t} such that

equations (3)-(7) and (16)-(19) hold. Without DNWR then Li,s,t = `i,s,t for all i, s,

and (relative) wages would be determined by equations (3)-(7), as discussed at the

end of Section 3.1, with equations (16)-(19) just serving to pin down nominal wages.

DNWR implies that labor demand and supply may not be equalized and so we need

the full set of equations in (3)-(7) and (16)-(19) to pin down all variables.

In turn, given initial world nominal GDP (∑I
i=1 ∑S

s=1 Wi,s,0Li,s,0), labor supply
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{`i,s,0}, and wages {Wi,s,0}, a sequential equilibrium is a sequence {ωi,s,t, ∆i,s,t Vi,s,t,

µji,sk|i,t, µji,s#,t, `i,s,t, Wi,s,t, Li,s,t, }∞
t=1 such that: (i) at every period t {Wi,s,t, Li,s,t}

constitute a temporary equilibrium given ∑I
i=1 ∑S

s=1 Wi,s,t−1Li,s,t−1, {Wi,s,t−1}, and

{`i,s,t}, and (ii) {ωi,s,t, ∆i,s,t, Vi,s,t, µji,sk|i,t, µji,s#,t, `i,s,t}∞
t=1 satisfy equations (8)-(15).

3.6 Dynamic Hat Algebra

Our goal is to use a calibrated version of the model to compute the employment

and welfare effects of a trade shock. We do this using data for U.S. states as well

as other countries, but without needing to calibrate technology levels and iceberg

trade costs along the transition and without requiring data on nominal wages per

efficiency unit of labor. We follow the exact hat algebra methodology of Dekle et al.

(2007) and its extension to dynamic settings proposed by CDP. Consequently, our

counterfactual exercises only require data on revenues Ri,s,t, value added Yi,s,t ≡

Wi,s,tLi,s,t, trade deficits Di,t, mobility matrices µji,sk|i,t and µji,s#,t, labor supply levels

`j,s,t, and trade shares λij,s,t in period zero (t = t0), whatever shocks we are interested

in, and the model’s parameters, namely δi,k, γ, κ, ν, {σs}, {αj,s}, {φi,s}, and {φi,sk}.

We use ẋt to denote xt/xt−1 for any variable x. In Appendix B.3 we describe

how to express the equilibrium system in dots and only leave it in terms of observ-

able data in period zero. We assume that the economy starts from a point where

every region had full employment.17 In Appendix B.4 we describe the algorithm

that we use to solve the equilibrium system “in dots”.

We are interested in obtaining the effects of the China shock as it is introduced in

an economy that did not previously expect this shock. In order to do this, we use x̂t

to denote the ratio between a relative time difference in the counterfactual economy

(ẋ′t) and a relative time difference in the baseline economy (ẋt), i.e. x̂t = ẋ′t/ẋt for any

17Assuming that the U.S. had full employment in the year 2000 is not problematic, since that year was
the peak of a business cycle, with a historically low unemployment rate of just 4%. The existence of
4% unemployment is consistent with our assumption of “full employment” because the concept of
unemployment in our model is that of “cyclical” unemployment, i.e., the unemployment in excess
of the natural rate of unemployment.
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variable x. Then we compare a counterfactual economy where the knowledge of the

China shock is unexpectedly introduced in the year 2001 (and agents have perfect

foresight about the path of the shock from then on), with a baseline economy where

no shocks occur. Appendices B.5 and B.6 describe how to express and solve the

equilibrium system “in hats”.

Our general equilibrium model also allows us to compute the welfare effects of

the shock. Using the utility framework described in Section 3.2, we can express the

welfare change in sector s in region j due to the China shock as

Vj,s =
∞

∑
t=1

βt ln

 ∆̂j,s,tω̂j,s,t(
µ̂jj,ss|j,t

)ν (
µ̂jj,s#,t

)κ

 .

This expression corresponds to the permanent equivalent variation in real income

for workers originally employed in region j in sector s, so that V′j,s,0 = Vj,s,0 +

1
1−βVj,s.18 For intuition, consider a shock that decreases the expected risk-adjusted

real wage in sector j, s, ∆̂j,s,tω̂j,s,t < 1. Without mobility we would simply have

Vj,s =
∞

∑
t=1

βt ln
(
∆̂j,s,tω̂j,s,t

)
,

which is the present discounted value of the changes in real wage. Mobility al-

lows workers in the sector to transition to other sectors and regions, as captured by

µ̂jj,ss|j,t < 1 and µ̂jj,s#,t < 1. Finally, given those mobility measures, higher variability

parameters ν and κ imply larger gains from moving out of the affected sector.

The welfare expression above is given at the sector-region level. However, in

some parts of the paper we will refer to welfare measures at the regional level. Such

regional welfare measures are computed as weighted averages of the corresponding

sector-region welfare levels, with weights given by the initial population shares.

18See Appendix B.8 for details. Trade imbalances supported by transfers imply that consumption
may differ from real income. We follow Costinot and Rodriguez-Clare (2014) and measure welfare
by real income rather than consumption to avoid attributing a direct gain to the foreign transfer.
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4 Data for the Quantitative Exercise

We provide a brief description of our data construction procedure here and rel-

egate additional details to Appendix C. We use trade, production, and employment

data for 50 U.S. states, 36 additional countries, and an aggregate rest of the world

region, for a total of 87 regions. We consider 14 market sectors: 12 manufacturing

sectors, one service sector, and one agricultural sector.

Labor, consumption, and input shares For each region j and each sector k, our

model requires data to compute the share of labor in production φj,k, the share of

intermediates from other sectors φj,sk ∀s, and the aggregate consumption shares αj,k.

We use data from the Bureau of Economic Analysis (BEA) for U.S. states and from

the World Input-Output Database (WIOD) to compute the share of value-added in

gross output of region j, which in our model is equivalent to φj,k. We also scale the

relative importance of each U.S. state in the total value added of the U.S. so that

the sum of value added across states matches the aggregate value-added of the U.S.

according to WIOD. We compute φj,sk as the share of purchases of sector k coming

from sector s (the input-output coefficient) using WIOD data.

Bilateral trade flows Our model also requires data on bilateral trade flows be-

tween all region pairs in our sample for each sector. We construct the bilateral trade

flow dataset in four steps, which we summarize here while referring the reader to

Appendix C.2 for details.

First, we take sector-level bilateral trade flows between countries from WIOD.

Second, we follow CDP to calculate the bilateral trade flows in manufacturing

among U.S. states by combining WIOD and the Commodity Flow Survey (CFS).

Third, we use the Import and Export Merchandise Trade Statistics to compute –

for manufacturing and agriculture – the sector-level bilateral trade flows between

each U.S. state and each other country in our sample. Fourth, we combine data for

region-level production and expenditure in services from the Regional Economic
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Accounts of BEA, WIOD data, and data on bilateral distances to construct service

trade flows among all regions following a gravity structure. We follow a similar

approach for the case of trade flows in agriculture using data from the Agricultural

Census, the National Marine Fisheries Service Census, and WIOD.

Labor flows across sectors and regions For the U.S. states, we combine data from

the Current Population Survey (CPS), the American Community Survey (ACS), the

state-to-state migration data from the IRS SOI Tax Stats, and the BLS sector-state

level employment data to construct the matrix of migration flows µji,sk,t between

1999 and 2000. Appendix C.3 provides more details on the data construction. The

final migration data (i) satisfies that the total movements between states across sec-

tors add up to the total state-to-state movements in the IRS data and (ii) is consistent

with the change in the stock of workers across sector-state pairs between 1999 and

2000 in the BLS and Census data.

Finally, we assume that there is no migration between countries, and that, for

countries outside of the U.S., there are no costs of moving across sectors in the single

region of each country (due to data limitations). Given this, one can infer the matrix

of migration flows for non-U.S. countries from the labor distribution in 1999 and

2000, as detailed in Appendix C.3.

5 Calibration

In this section, we describe how we calibrate our main parameters (δ, ν, κ), as

well as the China shock. We focus on the effect of the China shock as captured by

a set of productivity shocks in China given by {ÂChina,s,t} that apply only to the 12

manufacturing sectors. Inspired by ADH, and following CDP and Galle et al. (2023),

we calibrate these shocks to match the changes in U.S. imports from China predicted

from the changes in imports from China to other high-income countries.19

19We use the subset of ADH countries that are also present in the 2013 version of the WIOD, namely
Australia, Germany, Denmark, Spain, Finland, and Japan. New Zealand and Switzerland are in-
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We decompose the total productivity shock in sector s and time t into the prod-

uct of a sector-level productivity increase that is constant from 2000 to an end year

and a productivity increase over time that is constant across sectors, i.e. ÂChina,s,t =

Â1
China,t Â2

China,s. The end year will be 2007 in our baseline specification and 2011 in

a specification with a longer lasting China shock.20 This means we have to estimate

19 parameters (or 23).

We choose {Â1
China,t} and {Â2

China,s} to match two targets. The first target is the

vector of annual predicted changes in U.S. imports from China in all manufacturing

sectors combined, obtained from the following regression:

∆XC,US,t = a + b1∆XC,OC,t + εt,

where ∆XC,US,t is the change in U.S. imports from China between year t − 1 and

year t in all manufacturing sectors, ∆XC,OC,t is the corresponding change in imports

from China by the other high-income countries, and b1 is the coefficient of interest.

The predicted values from this regression are denoted { ̂∆XC,US,t}. The second target

is the vector of predicted changes in U.S. imports from China between 2000 and the

end year across sectors, obtained from the regression:

∆Xend−2000
C,US,s = b2∆Xend−2000

C,OC,s + εs,

where ∆Xend−2000
C,US,s is the change in U.S. imports from China between 2000 and our

end year in sector s, ∆Xend−2000
C,OC,s is the corresponding change in imports from China

by the other high-income countries, and b2 is the coefficient of interest. The pre-

dicted values from this regression are denoted { ̂∆Xend−2000
C,US,s }.21 We choose {Â1

China,t}

and {Â2
China,s} such that the total productivity changes in China {ÂChina,s,t} deliver

cluded in the “other high-income countries” category of ADH but are not included in WIOD.
20As pointed out in Autor et al. (2021), the trade shock approached peak intensity around 2010 and

plateaued shortly after. Because of this, their baseline definition of the trade shock is the period
2000-2012. We use 2011 as the final year because this is the last year in the WIOD 2014 data release.

21We exclude the constant in this regression because it can lead to negative predicted imports from
China, which is impossible. While the regression only has 12 observations, it has an R2 of 0.99.
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changes in imports in our model that match the 7 (or 11) values of { ̂∆XC,US,t} and

the 12 values of { ̂∆Xend−2000
C,US,s }.22

The calibration of the key model parameters (described below) is based on

matching moments that capture the relative effect of the China shock on labor force

participation, unemployment, and population. These moments come from regres-

sions of changes in these variables across regions differentially exposed to the China

shock, as captured by an exposure measure that follows the one proposed by ADH:

Exposurei ≡
S

∑
s=1

Li,s,2000

Li,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (20)

where RUS,s,2000 is total U.S. output in sector s in the year 2000, Li,s,2000 is employ-

ment of region i in sector s in year 2000, Li,2000 ≡ ∑s Li,s,2000, and ̂∆X2007−2000
C,US,s is as

explained above.

For our baseline specification, we assume that only the manufacturing sectors

are subject to DNWR so that δi,k = 0 if k is services or agriculture.23 We also assume

that all countries outside the U.S. have a flexible exchange rate that adjusts in such a

way that they retain full employment, implying that δi,k = 0 for all i > M. Therefore,

we have a single δ parameter that applies to all manufacturing sectors in all U.S.

states. We do not calibrate γ and δ separately – since only their relative value matters

– and instead assume that γ is 1, so that the burden of adjustment falls entirely on δ,

as in Schmitt-Grohe and Uribe (2016).

We choose δ, ν, and κ simultaneously to match three empirical estimates from

ADH. The first one is that a $1,000 per worker increase in import exposure to China

22The multiplicative nature of ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not identified.
We use the normalization ∑S

s=1 Â2
China,s = 1. For more details see Appendix B.9.

23There are a few papers documenting a substantial degree of heterogeneity in wage rigidity across
sectors and occupations (Radowski and Bonin, 2010; Du Caju et al., 2012). Hazell and Taska (2023)
find that production workers face a higher degree of DNWR than workers in non-production occu-
pations. Since production workers are a higher share of total labor in manufacturing compared to
non-manufacturing, this could explain why the DNWR could bind more strongly in manufactur-
ing. Another explanatory element could be the presence of stronger unionization in manufacturing.
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increases the unemployment to population ratio by 0.22 percentage points. The sec-

ond one is that the same rise in import exposure increases the NILF to population

ratio by 0.55 percentage points. The third one is that the same rise in import expo-

sure leads to a 0.05 percentage points decrease in population.24

The calibration results in values of δ ≈ 0.99, ν = 0.54, and κ = 5.8. The value

of δ implies that nominal wages can fall around 1% annually, and lands within the

ballpark described by Schmitt-Grohe and Uribe (2016) who obtain an annual δ of

0.984 (after “normalizing” γ to one as we do). Our estimates for ν and κ compare

to a value of ν = κ = 2.02 in CDP.25,26 Imposing ν = κ = 2.02 would lead to

effects on labor force participation and population that are too small relative to those

estimated by ADH. Alternatively, we could constrain our model to satisfy ν = κ,

but without setting this single elasticity to the CDP value of 2.02. Calibrating ν = κ

and δ to match the unemployment and participation targets from ADH leads to a

population response that is over three times greater than the population response in

ADH (we discuss this in more detail in Section 7.2).

Finally, we assume that the trade elasticity σs is constant across sectors and takes

the value of 6, consistent with the trade literature (e.g. Costinot and Rodriguez-

Clare, 2014). We also set the discount factor β equal to 0.95 and the risk sharing

parameter z equal to 0.5, implying 50% risk sharing within a given region-sector.27

24These results correspond to the ones in panel B of Table 5 and panel C of Table 4 in ADH. Following
ADH, when computing the equivalent coefficients in our model we also take a 2006-2008 average.
Some recent papers such as Borusyak et al. (2021) have cast doubt on the statistical significance of
some of ADH’s results. Despite that, we focus on these results as targets since ADH is the most
influential paper in this literature. That said, our quantitative analysis can be accommodated to
match alternative targets.

25In a static setup, our estimate of ν = 0.54 implies a labor supply elasticity at the sector level of
around 2 (for small enough sectors). This is just slightly higher than the estimate for this elasticity
in Galle et al. (2023). Hsieh et al. (2019) estimate a labor supply elasticity at the level of occupations,
finding also a value of 1.5, although they end up using a value of 2 in their quantitative analysis to
come closer to estimates of the labor supply elasticity in the meta analysis of Chetty et al. (2013).
Similar values are obtained for mobility across occupations in Burstein et al. (2019).

26Our model has an annual frequency, so we compare our elasticity estimates with the appropriately
annualized version of CDP’s single elasticity.

27The seminal paper studying risk sharing in the U.S. after a shock is Asdrubali et al. (1996). They
find that between 50% and 75% of a shock to per capita gross state product is smoothed by federal
tax-transfers, capital markets, and credit markets. Other papers (Athanasoulis and Wincoop, 2001;
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6 Effects of the China Shock in the Baseline Model

6.1 Comparison of Cross-Sectional results with ADH

We now use the calibrated model to study the effects of the China shock across

U.S. states. We first obtain the changes in employment, unemployment, labor par-

ticipation, real wages, and population for all the 87 regions included in our model.

Then we run OLS regressions across U.S. states of the model-implied changes in

the variables of interest on the exposure measure in equation (20). We present the

resulting coefficients in Table 1, along with the analogous coefficients from ADH.

Column (1) of Table 1 reports the results of ADH presented in their panel C of

Table 4, panel B of Table 5, and panel B of Table 7. Rows one, two and five corre-

spond to the ADH regression coefficients that we used as targets in our calibration.

Column (2) of Table 1 presents the results of our baseline model, where the changes

in productivity in China last from the year 2001 to 2007. We focus on the results

related to employment and wages in this section, and discuss the welfare effects in

Section 6.3.28 We postpone the discussion of columns (3) and onwards to Section 7.

The results in column (2) show that exposure to China measured as in ADH

leads to a fall in manufacturing and non-manufacturing employment of 0.61 and

0.17 percentage points, respectively. These are moments that we did not target in

our calibration.29 Nevertheless, they are very close to the corresponding ADH co-

efficients. Regarding the effect of exposure to China on wages, our baseline speci-

fication indicates that manufacturing wages remain roughly unchanged while non-

manufacturing wages fall by 118 basis points. This is qualitatively consistent with

Mélitz and Zumer, 2002) find similar results. We discuss robustness to z in Section 7.3.
28We focus on a state-level analysis because this is the level at which one can construct bilateral

trade matrices and mobility flows without having to impose further strong assumptions on how
the state-level flows are split between different commuting zones. Moreover, running simple ADH
state-level regressions without controls yields similar response-to-exposure coefficients.

29The only restriction is that the coefficients have to add up to 0.77 since this is the sum of the targeted
unemployment and NILF coefficients in ADH.
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Table 1: Employment, population, wage, and welfare effects of exposure to
China across U.S. regions and associated parameters generating them

ADH Baseline Longer NM ν = κ DNWRA
(1) (2) (3) (4) (5) (6)

Change in Population Shares
Unemployment (targeted) 0.221∗∗ 0.221 0.221 0.221 0.221 0.221
NILF (targeted) 0.553∗∗ 0.553 0.553 0.553 0.553 0.553
Mfg Employment -0.596∗∗ -0.608 -0.580 -0.602 -0.613 -0.329
Non-mfg Employment -0.178 -0.166 -0.193 -0.172 -0.161 -0.445

Percentage Changes
Population (targeted) -0.050 -0.050 -0.050 0.000 -0.170 -0.050
Mfg Wage 0.150 0.023 0.205 -0.016 0.033 -0.362
Non-mfg Wage -0.761∗∗ -1.181 -0.969 -1.204 -1.187 -0.735

Welfare
Welfare vs exposure -0.093 -0.142 -0.081 -0.100 -0.108
Mean welfare change 0.124 0.006 0.138 0.124 0.197
Mean welf. change no DNWR 0.312 0.450 0.314 0.313 0.324

Parameters
ν 0.539 0.712 0.611 0.604 0.549
κ 5.790 12.27 0.604 0.946
δ 0.991 0.994 0.990 0.991 0.981

Notes: The changes for the first four coefficients are measured from 2000 to an average of 2006-
2008, multiplied by 10/7 to turn into decadal changes. Population and wages are simply measured
in percentage change (between 2000 and 2006-2008), still turned into decadal changes. Welfare is
obtained as described at the end of Section 3.6. ν is the parameter that governs substitution between
sectors, κ is the one that governs substitution between regions, and δ governs the DNWR. Column
1 reproduces the ADH results from their Tables 4 (panel C, first column), 5 (panel B, first row) and
7 (panel B, columns 1 and 4), stars denote significance, one star for 5%, and two for 1%. Column 2
gives the results in our baseline specification. Column 3 describes a longer shock that lasts until 2011
instead of until 2007. Column 4 eliminates migration across U.S. states. Column 5 imposes ν = κ.
Column 6 imposes the DNWR in all sectors, instead of just manufacturing. In column (4) κ is not
reported, because, without migration, this parameter is irrelevant.

the empirical evidence, which finds that the non-manufacturing wage falls more

than the manufacturing wage in response to more exposure to the shock.30

Our results imply a dispersion in the impacts of the China shock on employ-

ment and income per capita across U.S. states that is comparable to the one predicted

by the ADH specification in the 2000-2007 data. To assess this, we first compute the

predicted variation in the employment to population ratio and income per capita by

running ADH’s main regression specification on their data at the commuting zone

30The recent literature (e.g., Autor et al., 2014; Chetverikov et al., 2016) shows that the wage effects
were more prominent for individuals with low initial wages. These results suggest that different
wage effects for workers with different initial wages may lead to average wage effects (estimated
in ADH) that result from heterogeneity that is not present in our model. While the absence of
this heterogeneity is a limitation of our framework, it is critical to note that we do not obtain our
value of δ from wage changes. Instead, our DNWR parameter is identified jointly with the mobility
elasticities from changes in unemployment, nonemployment, and migration flows. This alleviates
the concern of selection driving wage rigidity and the welfare effects in our calibrated model.
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level.31 We then compute the population-weighted average of these predicted val-

ues across all commuting zones within the same state. Finally, we compare these

empirical predictions to their model-implied counterparts. The standard deviation

(s.d.) of the changes in the state-level employment to population ratio predicted by

the model is 1.12, which is similar to the s.d. of 1.18 implied by the empirical esti-

mates. In turn, the s.d. of the changes in income per capita predicted by the model

is 2.1, while the one associated with the empirical estimates is 1.9.

These results stand in contrast to previous quantitative models such as CDP

and Galle et al. (2023), which imply too little spatial heterogeneity in the employ-

ment and income effects relative to ADH (as shown by Adao et al., 2023; Autor et al.,

2021). There are two reasons why our model generates more dispersion in employ-

ment and income effects. First, because of DNWR, our model leads to much larger

declines in employment in the most exposed regions, both directly through higher

unemployment, and indirectly through discouraging labor participation. Second,

by allowing for a difference between the elasticity of moving across sectors and that

of moving across regions, we arrive at lower mobility across states and a higher

labor supply elasticity than CDP.

6.2 Aggregate Employment Effects

We now use our general equilibrium model to go beyond cross-sectional im-

plications and obtain the implied aggregate effects of the China shock on unem-

ployment and other variables. Figure 3 plots the aggregate U.S. unemployment

generated by the China shock according to our model. It increases gradually at first,

reaching 1.25 percent in 2007, and then falls to a level near zero by 2016. Notice that

all excess unemployment generated by the DNWR eventually disappears if shocks

31For the variation in employment rate we focus on the change in the ratio of total employment to
working age population using data from ADH. For the variation in income per capita we follow
the left hand side of equation 8 in Autor et al. (2021) to compute the deviation in changes in income
per capita of each commuting zone relative to the national weighted average. We use the total
salary income per adult from column 2 of Table 9 in ADH as the measure of income per capita.
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are no longer hitting the economy. This occurs because, since the nominal wage can

fall approximately 1% per year, wages eventually reach the level required to make

all unemployment disappear. This is a feature of the model that squares well with

the evidence presented in Section 2.2, as well as with the historically low levels of

unemployment observed in the U.S. between 2016 and 2019.

Regarding aggregate labor force participation, there is a sign reversal through-

out the transition. On impact, the China shock leads to a temporary decline in par-

ticipation, stemming from the fact that unemployment discourages participation

due to the risk of engaging in the labor market but not being able to obtain a job.

U.S. labor force participation falls by up to 1.2% in 2007. However, when the China

shock stops hitting the economy and the nominal wage has room to fully adjust,

labor force participation ends up increasing relative to its original level. This hap-

pens because the China shock is a positive terms-of-trade shock for the U.S., which

translates to a higher real wage and an increase in labor supply. By 2015, aggregate

labor force participation in the U.S. has already reversed sign and increased roughly

1% relative to its pre-shock value.

The results imply that most states experience both a long-run increase in the
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Figure 3: Path of aggregate U.S. unemployment generated by the China shock
in the baseline specification between 2000 and 2016.
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real wage and a temporary increase in unemployment. This is a consequence of a

shock that implies both an improvement in the terms of trade and a decline in the

export price index in a setting with DNWR. To see this most clearly, consider an

economy facing a foreign shock and a consequent decline in both the export and

import price indices, but with the latter falling by more than the former. Since the

terms of trade have improved, the real wage and employment would increase in the

absence of nominal frictions. However, the fact that the price index of its exports

has fallen requires the nominal wage to decline, and if this decline is higher than

1− δ, there would be temporary unemployment.

We illustrate this mechanism in Figure 4. Both panels have the nominal wage

in the vertical axis and employment in the horizontal axis. The China shock leads

to a fall in producer prices, shifting the labor demand down. At the same time, the

shock also leads to a decline in consumer prices, shifting the labor supply to the

right. Panel (a) presents the results without nominal frictions. The final result is a

fall in the nominal wage from W0 to W∗, a fall in prices from P0 to P∗ (not illustrated),

an increase in the real wage from W0/P0 to W∗/P∗ (prices fall more than nominal

wages), and an increase in the amount of labor supplied from L0 to L∗.

Panel (b) of Figure 4 shows the adjustment in the presence of DNWR assuming

that δ3W0 < W∗ < δ2W0. In the first year, the nominal wage only falls from W0 to

W1 ≡ δW0 and employment falls from L0 to L1, as determined by the demand curve.

Since the nominal wage does not fully adjust in the first year, the fall in consumer

prices is also smaller than in the frictionless case, and hence the labor supply curve

only moves from LS to LS
1 . The gap between the labor supplied at point A and labor

demanded L1 is the level of unemployment. In the second year, nominal wages

adjust further down (to W2 ≡ δW1 = δ2W0), the labor supply curve moves to LS
2 ,

employment increases from L1 to L2, labor supplied moves from point A to point B,

and unemployment decreases. In the third year, nominal wages finally adjust fully

and there is no more unemployment.

33



W

L

LS

LD

W0

LD′

LS
INT

LS
INT

LS′

W1 = δW0

L1

W2 = δ2W0

L2 L∗

W∗

L0

(a) Case without DNWR

W

L

LS

LD

W0

LD′

LS
1

LS
2

LS
3

W1 = δW0 A

L1

W2 = δ2W0 B

L∗

W∗

L2

(b) Case with DNWR

Figure 4: Illustration of wage and employment effects, with and without
DNWR. The nominal wage is in the vertical axis, hence price movements results
in shifts in the labor supply curve. Employment is in the horizontal axis.
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6.3 Welfare Effects

We find that U.S. states more exposed to the China shock experience lower

model-implied welfare gains: a $1,000 per worker increase in exposure to China

decreases welfare by around 9.3 basis points (this is the coefficient in column 2, row

8 of Table 1). Figure 5 presents a scatter plot of the percentage change in welfare

across states against exposure to China, while Appendix Figure A.8 displays a wel-

fare map across the 50 U.S. states. There are 30 states that gain from the China shock

while 20 states experience welfare losses.

When we consider the U.S. as a whole, and measure welfare by the population-

weighted average across U.S. states, we see that the China shock leads to an in-

crease in welfare of roughly 12 basis points. We can compare the results of our base-

line model against those from a model without nominal rigidity (i.e., with δ = 0).

In this alternative version of the model without DNWR and without recalibrating

other parameters (such as ν or κ), the U.S. as a whole experiences gains of 31 basis
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Figure 5: Welfare change vs exposure to China across U.S. states in the baseline
specification. Selected states are labelled with the usual two-letter abbreviations.
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Figure 6: Histogram of welfare changes across different sector-states of the U.S.
in the baseline specification.

points.32 Additionally, all but two states experience welfare gains from the China

shock. Comparing these two models, we see that the temporary unemployment due

to DNWR reduces the aggregate gains from the China shock by roughly two thirds.

Following our measure of welfare changes in Section 3.6, which is at the sector-

region level, we can explore how the welfare effects of the China shock vary across

workers initially employed in different sectors and regions. Figure 6 presents a his-

togram of welfare changes for sector-states of the U.S. There is higher variation in

this more disaggregated measure, with welfare effects ranging from -60 to 158 basis

points, compared to the measure at the state level, where the welfare effects range

only from -31 to 101 basis points.

7 Alternative Specifications

In this section, we discuss the implications of the China shock through the lens

of the model under alternative specifications. First, we describe the results if the

32This is comparable to the gains obtain in other recent papers (e.g., CDP, Galle et al., 2023).
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China shock lasts until 2011 instead of 2007. Second, we discuss how different mi-

gration assumptions impact the results. Finally, we discuss variations where we: 1)

introduce DNWR in all sectors, 2) vary risk-sharing, 3) introduce some of the trade-

surplus increases that happened in China as part of the shock, and 4) explore fixed

exchange rate regimes for developed countries. For each specification we recalibrate

parameters {δ, ν, κ} as well as the China shock {ÂChina,s,t}.

7.1 Longer Shock

As described in Section 5, our baseline specification incorporates a productivity

shock in China that lasts between 2001 and 2007. In this section, we discuss a spec-

ification where the China shock lasts instead between 2001 and 2011. This variant

accounts for the fact that the real-world shock did not stop in 2007. For instance, Au-

tor et al. (2021) point out that Chinese import penetration continued to grow after

2007, reaching peak intensity around 2010 and plateauing shortly thereafter. This

motivated them to use a definition of the China Shock that stops in 2012. We use

2011 as our final year because it is the last year available in the WIOD-2014 data

release, which is one of our main data sources. Column (3) of Table 1 reports some

results under the specification with the longer shock. We still target the unemploy-

ment, NILF, and population responses in 2007 from ADH. The results for manufac-

turing and non-manufacturing employment do not change much compared to the

baseline, but the wage changes become closer to those in ADH.

To explore how the model-implied persistence of the shock relates to the em-

pirical evidence, Figure 7 shows how the cross-sectional effects of the China Shock

evolve over time. The figure’s structure is similar to that of Figure 1 but with the to-

tal employment effects split into manufacturing and non-manufacturing. The blue

line shows the empirical estimates for β1h in equation (1) (the same ones presented

in Figure 1), the green line displays the equivalent effects in our model when the

China shock lasts until 2011, and the black line displays the effects in our baseline
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Figure 7: Effects of the China Shock on employment and non-employment
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Note: Each panel reports three lines. The blue line with circular markers shows the two-stage least
squares coefficient estimates for β1h in equation (1) and the shaded area represents their 95% con-
fidence intervals. These coefficients are the same as in Figure 1 with the exception that the total
employment to population effects in Figure 1 panel (a) are separated into manufacturing to popula-
tion (panel a) and non-manufacturing to population (panel b). The green dashed line displays the
effects in our model when the China shock lasts between 2001 and 2011 (labeled as “Model Shock
2011”), while the black line with triangular markers displays the effects in our baseline model when
the China shock lasts between 2001 and 2007 (labeled as “Model Shock 2007”). The three lines coin-
cide in 2007 for panels (c) and (d) by construction.

specification. The green and black lines match the blue line in 2007 for panels (c)

and (d) by construction; these are two of our three targeted moments, the other one

being the ADH population effect in 2007. Besides the targeted coefficients in 2007,

neither the baseline nor the longer-shock specification use any other targets related

to the dynamic path of the cross-sectional empirical results.33

33The longer-shock specification does target the changes in productivity in China in order to match
the predicted changes in U.S. imports between 2001 and 2011 as described in Section 5, but this is

38



Figure 7 illustrates that, qualitatively, the baseline specification does a decent

job at matching some of the dynamic properties of the data, as it is within the confi-

dence intervals for all panels except the manufacturing employment one. Quantita-

tively, however, the manufacturing employment, NILF, and unemployment results

in the baseline are not as persistent as in the data, undershooting for all of the 2010’s.

By contrast, the dynamic pattern of the cross-sectional results in the longer-shock

specification is extremely close to the one in the data. This is reassuring, as we do

not target any of these results. Specifically, the green dashed line for the longer-

shock specification is within the confidence interval of the empirical estimates in all

panels, and it is also very close to the specific point estimates for almost all years.

It is also worth noting that in the longer-shock specification, the aggregate wel-

fare effect of the China shock in the U.S. becomes almost exactly zero. Namely, the

extended period of unemployment and general dislocation generated by the longer

shock manages to extinguish nearly all the welfare gains that the U.S. would have

experienced in the absence of DNWR.

7.2 Different Migration Assumptions

Given the potential importance of migration for the dispersion of welfare effects

across U.S. states, we now study two polar options for migration: no migration and

ν = κ, which leads to more migration across states in response to the China shock.

In the first case, workers only have the option of moving between sectors within

a state. We start from a mobility matrix that matches intra-state migration flows

from the CPS data, which has good coverage about employment status and indus-

try of each respondent who stayed in the same state between waves of the survey.

We then compute the impacts of the China shock in the same way as in the baseline

model except for the fact that migration flows across states have been shut down.

The results are described in column (4) of Table 1.34 The calibrated ν increases rel-

completely independent from the cross-sectional empirical results we are discussing here.
34Notice that in this case κ is no longer relevant, and we no longer match the response of population
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ative to our baseline, but the calibrated δ remains similar. In addition, many non-

targeted moments, such as the changes in manufacturing and non-manufacturing

employment and wages, as well as our inferred welfare changes (with and without

DNWR) also stay relatively unchanged.

In our second alternative specification, we impose that ν = κ, which is neces-

sarily true in CDP.35 The results are described in column (5) of Table 1. We find that

ν = κ = 0.604, similar to our baseline estimate of ν, but very different from our

baseline estimate of κ. In the restricted model, κ is much lower than in the baseline,

leading to a population response to the China shock that is more than three times

greater than the one in the baseline model. Other results, like the calibrated δ and

the employment and wage changes are similar to those from the baseline.

7.3 Other Alternative Specifications

DNWR in all Sectors While our baseline specification introduces DNWR only in

manufacturing, here we discuss the results of introducing DNWR symmetrically

in all sectors. Column (6) of Table 1 presents the results. The ν parameter barely

changes, but κ and δ decrease substantially. The responses of the employment shares

in manufacturing and non-manufacturing are further away from the ones in ADH,

as compared to our baseline with DNWR only in manufacturing. As mentioned in

footnote 23, there are several reasons to expect that DNWR might be more prevalent

in manufacturing than in alternative sectors like services or agriculture.

Risk sharing Our baseline specification incorporates an amount of risk-sharing

across participants within each region-sector of 50%. This is the z parameter de-

scribed in Section 3.2. Having less-than-perfect risk sharing increases the welfare

costs of unemployment spells due to the risk aversion inherent in our logarithmic

utility specification. We explore the implications of setting z = 0.75 or z = 1 rather

to exposure from ADH.
35As in the previous extension, we do not target the population response in ADH, and only target

the unemployment and participation responses.
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than z = 0.5 in Appendix Table A.1. The most notable difference relates to the share

of welfare gains that would be realized in the case without nominal rigidities that

are lost when we allow for DNWR. This is 60% under the baseline specification, 46%

when z = 0.75, and 43% when z = 1.

Changing Deficits We now explore what happens if, besides a Chinese produc-

tivity increase, the China shock also includes an increase in China’s trade surplus

due to the fact that China’s GDP increased relative to world GDP.36 Relative to our

baseline specification, manufacturing employment falls slightly more and wages fall

marginally less (see Appendix Table A.1). Interestingly, the mean welfare change

decreases slightly, which could seem counter-intuitive as the U.S. is given a positive

transfer.37 To understand this, notice that higher U.S. deficits have two opposing

effects. On the one hand, in the presence of trade costs, a transfer from abroad leads

to a worldwide shift in demand towards domestic goods, which improves the recip-

ient’s terms of trade. On the other hand, it leads to a transition from manufacturing

to non-manufacturing. This can exacerbate the binding DNWR in manufacturing

in certain regions, leading to higher temporary unemployment and lower welfare

gains. In our quantitative implementation, the second effect dominates, leading to

a fall in the mean welfare change.

Fixed Exchange Rates in Developed Countries We now consider the conse-

quences of assuming that other developed countries have a fixed exchange rate

with respect to the U.S. dollar, implying that they can also face a binding DNWR.38

36We keep third-country deficits unchanged in terms of world GDP, thus having the U.S. offset the
entire increase in China’s surplus. The U.S. deficit increases 10% over the 2000-2007 period in this
exercise. We distribute this increase across U.S. states according to their initial GDP shares.

37Recall that we measure welfare as real income rather than consumption – see footnote 18.
38Specifically, we assume that there is DNWR in the United States, Canada, Japan, and the 10 richest

countries in Europe by GDP per capita PPP that are also in our sample (i.e., Austria, Belgium,
Denmark, Finland, France, Germany, Great Britain, Ireland, Netherlands, and Sweden). Besides
China and the “Rest of the World” region, some of the biggest countries without DNWR in this
extension are: Brazil, India, Indonesia, Mexico, Russia, and Turkey. As suggested by an anonymous
referee, this can approximate a realistic scenario in which high-income countries have labor-market
institutions that create DNWR, whereas many lower-income countries do not.
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Most notably, δ increases from 0.9908 to 0.9971 (see Appendix Table A.1). This

increase occurs because the other developed countries “absorb” part of the China

shock, so a higher δ is needed in the U.S. to match the response of unemployment to

exposure. As a consequence, unemployment is longer lasting, leading to significant

model-implied welfare losses from the shock.

8 Discussion

8.1 Different Exposure Measures

The measure of exposure to China that we have been using so far follows the

one in ADH. This is a Bartik instrument where the “shift component” is given by

the predicted sector-level change in U.S. imports from China and the “share compo-

nent” is given by sector-level employment shares in a region. As we now discuss,

this exposure measure cannot fully capture the welfare effects of the China shock,

because it misses the impact through consumer prices.

As we show in Appendix D, in a neoclassical environment with an upward

sloping labor supply curve but without nominal rigidities, a sufficient statistic for

the first-order changes in employment resulting from the China shock would use

net exports as the “share” component, as in

ExposureNX
i ≡

S

∑
s=1

Ri,s,2000 − Ei,s,2000

Ri,2000

̂∆X2007−2000
C,US,s

RUS,s,2000
, (21)

where Ri,s,2000 are total sales of region i in sector s in year 2000, and Ei,s,2000 is total

expenditure of region i on sector s in year 2000. This captures the effect of the shock

on the economy’s terms of trade. By contrast, when the wage does not adjust be-

cause of DNWR, employment shares become directly relevant, since the change in

employment is determined entirely by the shift in the demand curve. Of course, if

wages are sticky in the short run due to DNWR but can eventually adjust to their
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frictionless level, then both measures of exposure are expected to be relevant.

To illustrate this point, we regress the state-level changes in welfare and em-

ployment generated by the model with and without DNWR on both exposure mea-

sures (and a constant). As shown in Appendix Table A.2, without DNWR, only the

net export exposure measure is significant for employment and welfare, while ADH

exposure is not significant. By contrast, columns (2) and (4) show that in the model

with DNWR both ADH exposure and net export exposure are significant. Com-

bined with the findings in ADH, these results indicate that a mechanism similar to

DNWR is likely to be active in the U.S. economy.

8.2 Nominal Considerations

While the nominal anchor described in equation (19) allows us to efficiently

solve our model, we acknowledge that it is relatively simplistic. Importantly, we

would obtain similar results if we assumed instead that China used a combination

of monetary and exchange rate policies to prevent both an appreciation of its cur-

rency and large inflationary pressures — thereby preventing its wage in dollars from

increasing — while the U.S. did not fully offset this with its own policies.

The case of China preventing an appreciation of the renminbi during the early

2000’s is a particularly relevant one, as this was something that the Chinese govern-

ment was widely regarded as doing (c.f., Bergsten and Gagnon, 2017). While the

richness in the trade structure of our model prevents us from solving it under this

alternative nominal anchor, there are papers that have performed related exercises.

Kim et al. (2024), for example, solve a model that is similar to ours but where deficits

are endogenous and China uses a currency peg. The added realism in the macro as-

sumptions comes at the cost of richness in the trade structure, as they only have six

countries (with no internal regions) and six sectors. Nevertheless, their model’s im-

plications for the unemployment and welfare effects of the China shock on the U.S.

are qualitatively similar to ours in that a significant amount of aggregate unemploy-
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ment is generated and the welfare gains of the shock are reduced by a large fraction

due to the presence of wage rigidities.

Apart from the form of the nominal anchor assumed in our model, we also

explore the potential tradeoff between unemployment and inflation that arises in

response to the China shock. As discussed in Section 6.2, DNWR implies that the

China shock leads to aggregate unemployment during a transition period. Accord-

ing to our baseline specification, the cumulative effect is roughly 6 year-points of

unemployment over the 2001-2010 decade.39 In principle, monetary policy could

have prevented this outcome, but only at the cost of higher inflation. We explore

this by computing a “sacrifice ratio”. This measure answers the question: if the cen-

tral bank wants to have one fewer year-point of unemployment between 2001 and

2010 relative to our baseline specification, how many more year-points of inflation

over the same 10 years relative to the baseline are necessary?

As can be seen in Figure 8, this sacrifice ratio is highly non-linear. Around

the baseline calibration, lowering unemployment by one year-point would require

accepting 1.63 year-points higher inflation. This increases to 2.2 year-points when

unemployment is 3 year-points lower than in the baseline calibration, and shoots

off toward infinity when unemployment is around 6 year-points lower than in the

baseline calibration. The sacrifice ratio is lower near the baseline because a mone-

tary expansion there makes DNWR less binding and lowers unemployment, lead-

ing to higher output and a weaker inflationary effect. By contrast, for lower un-

employment levels DNWR is less binding and there is not much additional output

forthcoming from a further monetary expansion, so most of the effect is inflation-

ary. While our model does not have all the necessary macro ingredients to properly

study the relationship between unemployment and inflation in a way that is robust

to the Lucas critique, this analysis highlights the tradeoff involved and indicates that

the inflation costs of reducing the unemployment generated by the China shock are

not trivial through the lens of the model.

39This is the area under the curve between 2001 and 2010 in Figure 3.
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Figure 8: This figure displays aggregate U.S. unemployment between 2001 and
2010, in year-points, relative to the baseline value, in the x-axis. The y-axis dis-
plays aggregate U.S. inflation between 2001 and 2010, in year-points, relative to
the baseline value. The figure provides a notion of the “sacrifice ratio” between
unemployment and inflation that is implicit in the model.

9 Conclusion

In this paper, we propose a dynamic quantitative trade and migration model

with downward nominal wage rigidity and use it to study the adjustment path after

a large trade shock. We show that even a shock that improves an economy’s terms

of trade can lead to unemployment if it requires a fall in the nominal wage that is

larger than the one permitted by nominal frictions. We calibrate the model to match

the reduced-form evidence in Autor et al. (2013), and find that, although the U.S. as

a whole still gains from the China shock, such gains are approximately two thirds

lower than without nominal rigidities.
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We acknowledge that we have captured nominal forces and trade imbalances in

our model via relatively simple rules. We have done this so that we can have a rich

trade structure with the U.S. composed of many regions, as in Caliendo et al. (2019),

allowing us to match the empirical results in Autor et al. (2013). Our aim is that this

exercise serves to identify the key elements that future models need to incorporate.

Another limitation of our approach is that all employed workers in a given

sector-region earn the same wage and have the same expected future earnings. This

is inconsistent with evidence in Autor et al. (2014) and Chetverikov et al. (2016) that

lower-wage workers in sectors most affected by the China shock experience worse

earnings trajectories. This could be incorporated into our framework by including

low- and high-skilled workers, with low-wage workers less willing to move away

from the most negatively affected sector-regions, and hence experiencing more neg-

ative effects on wages and employment.

Our approach also has the drawback that it implies workers’ employment sta-

tus is independent across periods, contrary to the evidence and to what one could

get in a search and matching framework as in Dix-Carneiro et al. (2023). A fruitful

direction for future research would be to introduce search frictions into a quantita-

tive trade model with many regions and DNWR. Finally, it is important to note that

our model does not incorporate mechanisms such as human capital depreciation,

hysteresis, or agglomeration forces that could amplify the persistent employment

losses of heavily exposed regions in response to trade shocks.
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Appendices for Online Publication

A Additional Figures and Tables

Figure A.1: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the median
across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).
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Figure A.2: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes
in state s is below the mean across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).

Figure A.3: China Shock on unemployment in CZs with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes
in state s is below the median across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).
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Figure A.4: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the mean
across all states

(a) Estimated β3,h
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(b) β1,h vs. β1,h + β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).

Figure A.5: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes in state s is below the median
across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).
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Figure A.6: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes
in state s is below the mean across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).

Figure A.7: China Shock on unemployment in States with high vs low DNWR.
Share of individuals with negative wage changes among non-zero wage changes
in state s is below the median across all states

(a) Estimated β3,h
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Note: The panels report two-stage least squares coefficient estimates in equation (2) and 95 percent
confidence intervals for these estimates. Coefficients in each year come from a separate IV regression
following equation (2).
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Figure A.8: Welfare change from the China shock across U.S. states in the base-
line specification, in percent.

Table A.1: Employment, population, wage, and welfare effects of exposure to
China across U.S. regions and associated parameters generating them

Baseline z = 0.75 z = 1 Def. Inc Fixed ER
(2) (7) (8) (9) (10)

Change in Population Shares
Unemployment (targeted) 0.221 0.221 0.221 0.221 0.221
NILF (targeted) 0.553 0.553 0.553 0.553 0.553
Mfg Employment -0.608 -0.569 -0.558 -0.618 -0.591
Non-mfg Employment -0.166 -0.206 -0.216 -0.156 -0.183

Percentage Changes
Population (targeted) -0.050 -0.050 -0.050 -0.050 -0.050
Mfg Wage 0.023 0.010 0.007 0.045 -0.087
Non-mfg Wage -1.181 -1.127 -1.112 -1.142 -1.012

Welfare
Welfare vs exposure -0.093 -0.082 -0.079 -0.090 -0.101
Mean welfare change 0.124 0.165 0.173 0.122 -0.152
Mean welf. change no DNWR 0.312 0.305 0.304 0.326 0.297

Parameters
ν 0.539 0.445 0.424 0.533 0.614
κ 5.790 3.876 3.539 6.467 6.299
δ 0.991 0.989 0.989 0.992 0.997

Notes: All definitions are the same as the ones in Table 1. Column (2), which contains the results
from the baseline specification, repeats column (2) from Table 1 to facilitate comparison. Column
(7) gives the results from our model when the risk sharing parameter is z = 0.75, while in column
(8) this parameter is z = 1 so there is full risk sharing within a region-sector. Column (9) gives the
results from our model when we introduce an increase in Chinese surplus as part of the China shock.
Column (10) gives the results when other developed countries have fixed exchange rates relative to
the U.S.
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Table A.2: ”Horse race” between different exposure measures in the baseline
model with and without DNWR

(1) (2) (3) (4)
Welf. Flex. Welf. DNWR Empl. Flex. Empl. DNWR

Constant 0.602** 0.559** 2.742** 1.311*
(0.058) (0.072) (0.313) (0.514)

ADH Exposure −0.028 −0.067** −0.075 −0.779**
(0.017) (0.021) (0.090) (0.148)

NX Exposure −0.099** −0.111** −0.538** −0.618**
(0.017) (0.021) (0.090) (0.148)

N 50 50 50 50
R squared 0.494 0.511 0.465 0.555
Mean dep. var. 0.268 0.092 1.130 −2.364

Notes: This table shows the results of regressing several variables of interest on a constant, ADH
exposure, and net export exposure. The exposure variables are described in the text. The dependent
variables are: welfare change from the China shock in the baseline model without DNWR (column
1), welfare change from the China shock in the baseline model with DNWR (column 2), percentage
change in total employment between 2000 and 2007 in the baseline model without DNWR (column
3), and percentage change in total employment between 2000 and 2007 in the baseline model with
DNWR (column 4). Stars denote significance, one star for 5%, and two for 1%.

B Model Details

B.1 Production

Technology to produce the differentiated good of industry s in region i at time t is

Yi,s,t =

(
φ
−φi,s
i,s

S

∏
k=1

φ
−φi,ks
i,ks

)
Ai,s,tL

φi,s
i,s,t

S

∏
k=1

Mφi,ks
i,ks,t,

where Mi,ks,t is the quantity of the composite good of industry k used in region i to produce

in sector s at time t, φi,s is the labor share in region i, sector s, φi,ks is the share of inputs that

sector s uses from sector k in region i, and 1− φi,s = ∑S
k=1 φi,ks. The resource constraint for

the composite good produced in region j, sector k, at time t is

Mj,k,t = Cj,k,t +
S

∑
s=1

Mj,ks,t.
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In turn, the resource constraint for good s produced by region i is Yi,s,t = ∑I
j=1 τij,s,tYij,s,t. The

composite in sector k is produced according to

Mj,k,t =

(
I

∑
i=1

Y
σk−1

σk
ij,k,t

) σk
σk−1

.

Let Pi,s,t be the price of Mi,s,t, pij,s,t be the price of Yi,s,t in j at time t, and Wi,s,t be the nominal

wage in region i, sector s, at time t. We know that pii,s,t = A−1
i,s,tW

φi,s
i,s,t ∏S

k=1 Pφi,ks
i,k,t , pij,s,t =

τij,s,t pii,s,t, and Pj,s,t =
(

∑I
i=1 p1−σs

ij,s,t

)1/(1−σs)
. Combining these we obtain:

P1−σs
j,s,t =

I

∑
i=1

(
τij,s,t A−1

i,s,tW
φi,s
i,s,t

S

∏
k=1

Pφi,ks
i,k,t

)1−σs

,

The price of final output in region j at time t is given by Pj,t = ∏S
s=1 P

αj,s
j,s,t. Multiplying the

resource constraint for Mj,k,t by Pj,k,t we get

Zj,k,t = Pj,k,tCj,k,t +
S

∑
s=1

Pj,k,t Mj,ks,t,

where Zj,k,t ≡ Pj,k,t Mj,k,t denotes the total expenditure of region j in industry k. Let the share

of that expenditure spent on imports from i be λij,k,t ≡
pij,k,tYij,k,t

Zj,k,t
. We know that

λij,k,t =
p1−σk

ij,k,t

∑l p1−σk
l j,k,t

=
p1−σk

ij,k,t

P1−σk
j,k,t

=

(
τij,k,t A−1

i,k,tW
φi,k
i,k,t ∏S

s=1 Pφi,sk
i,s,t

)1−σk

∑I
r=1

(
τrj,k,t A−1

r,k,tW
φr,k
r,k,t ∏S

s=1 Pφr,sk
r,s,t

)1−σk
.

Let Ri,k,t = pii,k,tYi,k,t represent the sales of good k by region i. Multiplying the resource

constraint for Yi,k,t above by pii,k,t we get pii,k,tYi,k,t = ∑I
j=1 τij,k,t pii,k,tYij,k,t, and hence Ri,k,t =

∑I
j=1 λij,k,tZj,k,t. Plugging in from the resource constraint for Zj,k,t we have

Ri,k,t =
I

∑
j=1

λij,k,t

(
Pj,k,tCj,k,t + ∑

s
Pj,k,t Mj,ks,t

)
.

Note that Pj,k,t Mj,ks,t = φj,ksRj,s,t. Additionally, the total amount available for consumption

in region j at time t is the sum of total labor income (denoted Ij,t, notice Ij,t ≡
S
∑

k=1
Wj,k,tLj,k,t)
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and the deficit (denoted Dj,t). So we get Pj,k,tCj,k,t = αj,k
(

Ij,t + Dj,t
)

, hence

Ri,k,t =
I

∑
j=1

λij,k,t

(
αj,k
(

Ij,t + Dj,t
)
+ ∑

s
φj,ksRj,s,t

)
.

We know that a fraction φi,k of Ri,k,t is paid to labor, hence Wi,k,tLi,k,t = φi,kRi,k,t.

B.2 Labor Supply

As mentioned in the text, an agent’s utility in region j, sector s, at time t is given by

νj,s,t = Uj,s,t + max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t},

with the joint distribution of vector ε being i.i.d over time and nested Gumbel,

F(ε) = exp

− I

∑
i=1

(
S

∑
k=0

exp (−εi,k/ν)

)ν/κ


with ν ≤ κ. If there is an strict inequality such that ν < κ, that means that the elasticity across

sectors (1/ν) is greater than the elasticity across locations (1/κ). Denote Vi,k,t+1 ≡ E[νi,k,t+1].

In this appendix, we will prove two main results. First, the probability that an agent in js

will choose to move to ik conditional on moving to region i is

µji,sk|i,t =
exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+1 − ϕji,sh

)1/ν
,

while the probability that an agent in js will move to any sector in region i is

µji,s#,t =

(
∑S

h=0 exp
(

βVi,h,t+1 − ϕji,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
.

Second,

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,
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where γ is the Euler-Mascheroni constant. The previous expression implies

Vj,s,t = Uj,s,t + ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
κ

+ γκ.

To show the first result, note that an agent that is in market js at time t will choose to

switch to ik if and only if the following expression holds for all mh:

βVi,k,t+1 − ϕji,sk + εi,k,t ≥ βVm,h,t+1 − ϕjm,sh + εm,h,t,

which is equivalent to εm,h,t ≤ νxim,kh + εi,k,t, where

xim,kh ≡
β (Vi,k,t+1 −Vm,h,t+1)−

(
ϕji,sk − ϕjm,sh

)
ν

.

Denoting

Φj,s,t ≡ E

[
max

{i,k}I,S
i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}
]

We know that

Φj,s,t =
I

∑
i=1

S

∑
k=0

∫ +∞

−∞

(
βVi,k,t+1 − ϕji,sk + εi,k,t

)
Gik(εi,k,t, xi,k,t)dεi,k,t

where Gik(εi,k,t, xi,k,t) is the partial derivative of F(·) w.r.t. to the ik element of the vector ε,

with the ik element of the vector evaluated at εi,k,t and the generic element in position mh of

the vector evaluated at νxim,kh,t + εi,k,t. Given our function F(ε) above, the partial derivative

w.r.t the element in position ik is

∂F(ε)
∂εi,k

=
1
κ

(
∑
h

exp (−εi,h/ν)

)ν/κ−1

exp (−εi,k/ν) exp

−∑
m

(
∑
h

exp (−εm,h/ν)

)ν/κ


We then have

Gik(εi,k,t, xi,k,t) =
1
κ

(
∑
h

exp (−xii,kh,t)

)ν/κ−1

exp (−εi,k,t/κ)
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· exp

− exp (−εi,k,t/κ)∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ


where we have used the fact that xii,kk,t = 0. Integrating this over εi,k,t yields

∫ +∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

(∑h exp (−xii,kh,t))
ν/κ−1

∑m (∑h exp (−xim,kh,t))
ν/κ

∫ +∞

−∞

1
κ

exp (−εi,k,t/κ)

· T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t,

where

T ≡∑
m

(
∑
h

exp (−xim,kh,t)

)ν/κ

.

But note that

∫ +∞

−∞

1
κ

exp (−εi,k,t/κ) T exp

[
− exp (−εi,k,t/κ) T

]
dεi,k,t = 1,

because the integrand is the density associated with exp (− exp (−εi,k,t/κ) T), a univariate

Gumbel. Hence, the previous expression simplifies to

∫ ∞

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t =

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν

∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν

(
∑
h

exp
(

βVi,h,t+1 − ϕji,sh

)1/ν
)ν/κ

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

It is easy to see that the first fraction is µji,sk|i,t, while the second one is µji,s#,t.

Now we want to solve for

E

[
max

{i,k}I,S
i=1,k=0

{βVi,k,t+1 − ϕji,sk + εi,k,t}
]

Let’s compute

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

To do this, first note that the joint probability that βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a while at the
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same time arg maxmh
{

βVm,h,t+1 − ϕjm,sh + εm,h,t
}
= ik, is

∫ a−(βVi,k,t+1−ϕji,sk)

−∞
Gik(εi,k,t, xi,k,t)dεi,k,t

=
(∑h exp (−xii,kh))

ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz

A change of variables with y = exp (z) implies that dy/y = dz and

∫ a−(βVi,k,t+1−ϕji,sk)

−∞

1
κ

T exp (−z/κ) exp (−T exp (−z/κ)) dz

= exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

Thus, the joint probability we are interested in is

(∑h exp (−xii,kh))
ν/κ−1

∑m (∑h exp (−xim,kh))
ν/κ

exp
(
−T exp

[(
βVi,k,t+1 − ϕji,sk

)
/κ
]

exp (−a/κ)
)

and hence the probability of (βVi,k,t+1 − ϕji,sk + εi,k,t ≤ a) conditional on

arg max
mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik,

is

exp
(
−T̃ exp (−a/κ)

)
,

where now

T̃ ≡ T exp
[(

βVi,k,t+1 − ϕji,sk
)

/κ
]

.

In turn, this implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]
=

∫ +∞

−∞
ad exp

(
− exp

(
−
(
a− ln T̃κ

)
κ

))
,
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where we have used

T̃ exp (−a/κ) = exp

(
−
(
a− ln T̃κ

)
κ

)
.

This is the expectation of a variable distributed Gumbel with location parameter µ = ln T̃κ

and scale parameter β = κ. But we know that the expectation of a variable distributed

Gumbel with µ and β is µ + βγ, where γ is the Euler-Mascheroni constant, hence we have

∫ ∞

−∞
ad exp

(
−T̃ (exp a)−1/κ

)
= ln T̃κ + γκ.

This implies that

E

[
βVi,k,t+1 − ϕji,sk + εi,k,t| arg max

mh

{
βVm,h,t+1 − ϕjm,sh + εm,h,t

}
= ik

]

= ln

∑
m

(
∑
h

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
κ

+ γκ

Since this does not depend on ik, then we have

E

 max
{i,k}I,S

i=1,k=0

{βE(νi,k,t+1)− ϕji,sk + εi,k,t}

 = ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk

)1/ν
)ν/κ

κ

+ γκ,

as we wanted to show.

B.3 Equilibrium in Relative Time Changes (Dots)

Now we will describe the equilibrium equations in relative changes from one period to

the next. We use the notation ẋt = xt/xt−1. We start by deriving the dot equations for the

labor market block of the economy. We will denote uj,s,t ≡ exp(Vj,s,t) and assume that the

utility function takes log form. We have,

µji,sk|i,t+1

µji,sk|i,t
=

exp
(

βVi,k,t+2 − ϕji,sk
)1/ν / exp

(
βVi,k,t+1 − ϕji,sk

)1/ν

∑S
h=0 exp

(
βVi,h,t+2 − ϕji,sh

)1/ν / ∑S
h′=0 exp

(
βVi,h′,t+1 − ϕji,sh′

)1/ν

=
exp (Vi,k,t+2 −Vi,k,t+1)

β/ν

∑S
h=0 µji,sh|i,t exp (Vi,h,t+2 −Vi,h,t+1)

β/ν
,
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while

µji,s#,t+1

µji,s#,t
=

(
∑S

h=0 exp (Vi,h,t+2 −Vi,h,t+1)
β/ν µji,sh|i,t

)ν/κ

∑I
m=1 µjm,s#,t

(
∑S

h=0 exp (Vm,h,t+2 −Vm,h,t+1)
β/ν µjm,sh|m,t

)ν/κ
.

Since uj,s,t ≡ exp(Vj,s,t) then

u̇j,s,t+2 ≡ uj,s,t+2/uj,s,t+1 =
exp(Vj,s,t+2)

exp(Vj,s,t+1)
= exp(Vj,s,t+2 −Vj,s,t+1)

(u̇j,s,t+2)
β
ν = exp(Vj,s,t+2 −Vj,s,t+1)

β
ν .

Introducing this in the previous results and writing the equations for period t instead of

t + 1, we obtain

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

(B1)

µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ
. (B2)

Take the difference between Vj,s,t+1 and Vj,s,t using equation (8) to get

Vj,s,t+1 −Vj,s,t = Uj,s,t+1 −Uj,s,t

+ ln


(

∑I
i=1

(
∑S

k=0 exp
(

βVi,k,t+2 − ϕji,sk

)1/ν
)ν/κ

)κ

(
∑I

m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

)κ


eVj,s,t+1−Vj,s,t = exp(ln((ωj,s,t+1∆j,s,t+1)/(ωj,s,t∆j,s,t)))

· exp

ln

 I

∑
i=1

(
S

∑
k=0

u̇
β
ν
i,k,t+2µji,sk|i,t

)ν/κ

µji,s#,t

κ .
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Thus, we finally obtain

u̇j,s,t+1 = ω̇j,s,t+1∆̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

. (B3)

The equilibrium in changes includes equations (B1), (B2), (B3), together with the dot

versions of the remaining equations in (3) - (19).

B.4 Algorithm to Solve the Dot System

Group the equations of the dot equilibrium system into 3 categories:

1. The ones that are needed to obtain new migration and new labor supply from a guess of

utilities (block 1):

µji,sk|i,t =
µji,sk|i,t−1u̇

β
ν

i,k,t+1

∑S
h=0 µji,sh|i,t−1u̇

β
ν

i,h,t+1

µji,s#,t =

µji,s#,t−1

(
∑S

h=0 µji,sh|i,t−1u̇
β
ν

i,h,t+1

)ν/κ

∑I
m=1 µjm,s#,t−1

(
∑S

h=0 µjm,sh|m,t−1u̇
β
ν

m,h,t+1

)ν/κ

`i,s,t =
I

∑
j=1

S

∑
k=0

µji,ks|i,t−1µji,k#,t−1`j,k,t−1

With these equations, if one has an initial distribution of labor supply (`i,s,0), initial mo-

bility matrices (µji,sk|i,0 and µji,s#,0) and an initial guess for the utility dots (u̇(0)
i,s,t ∀ t), one

can obtain the entire path of labor supplies (`i,s,t ∀ t > 0), and the entire path of mobility

matrices (µji,sk|i,t and µji,s#,t ∀ t > 0) without needing to use the other equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor, sec-

toral prices, trade shares, revenue levels) from a given set of shocks and labor supply

(block 2):

Ṗ1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
τ̇ji,s,t Ȧ−1

j,s,tẆ
φj,s
j,s,t

S

∏
k=1

Ṗ
φj,ks
j,k,t

)1−σs

14



λij,s,t =
λij,s,t−1(τ̇ij,s,t Ȧ−1

i,s,tẆ
φi,s
i,s,t ∏S

k=1 Ṗφi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(τ̇rj,s,t Ȧ−1

r,s,tẆ
φr,s
r,s,t ∏S

k=1 Ṗφr,ks
r,k,t )

1−σs

Ri,s,t =
I

∑
j=1

λij,s,t

(
αj,s

(
∑

s
Ẇj,s,t L̇j,s,tYj,s,t−1 + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
Ẇi,s,t L̇i,s,tYi,s,t−1 = φi,sRi,s,t

t

∏
q=1

L̇i,s,q ≤
t

∏
q=1

˙̀ i,s,q , Ẇi,s,t ≥ δi,s , Complementary Slackness

γ
I

∑
i=1

S

∑
s=1

Yi,s,t−1 =
I

∑
i=1

S

∑
s=1

Ẇi,s,t L̇i,s,tYi,s,t−1

3. The ones that are needed to update the guess for the path of utilities (block 3):

Ṗi,t =
S

∏
s=1

Ṗαi,s
i,s,t

ω̇i,s,t =
Ẇi,s,t L̇i,s,t

Ṗi,t ˙̀ i,s,t
(but with ω̇i,s,t = 1 if s = 0)

u̇j,s,t+1 = ω̇j,s,t+1∆̇j,s,t+1

 I

∑
i=1

µji,s#,t

(
S

∑
k=0

µji,sk|i,tu̇
β
ν

i,k,t+2

)ν/κ
κ

The algorithm would work as follows:

1. Guess a path for the utility dots (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ’s and `’s using the guessed path for utility.

3. Use block two to solve the temporary equilibrium using the path for the `’s.

4. Use block three to obtain a new guess for the utility dots. This uses the fact that in a

far enough point in the future (called T) even the new guess of utility dots should have

u̇(1)
i,s,T = 1. With u̇(1)

i,s,T = 1, the path for µ’s and the sectoral compensations one can obtain

u̇(1)
i,s,T−1. And from those obtain u̇(1)

i,s,T−2, and so on until u̇(1)
i,s,1.

5. If the two guessed paths of utility dots u̇(0) and u̇(1) are close enough, stop the algorithm,

otherwise return to item one with the new guess and iterate again.
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B.5 Equilibrium in Counterfactual Relative to Baseline (Hats)

Now we want to describe the equilibrium equations in ratios of changes in a coun-

terfactual economy relative to the same changes in the baseline economy. We will use the

notation x̂t = ẋ′t/ẋt, where ẋ′t is the relative change from period t− 1 to t in the counterfac-

tual economy and ẋt is the same thing but for the baseline economy. First, we want to get

the evolution of µ′ji,sk|i,t. Start from equation (B1) for the case of the counterfactual economy,

µ′ji,sk|i,t =
µ′ji,sk|i,t−1(u̇

′
i,k,t+1)

β
ν

∑S
h=0 µ′ji,sh|i,t−1(u̇

′
i,h,t+1)

β
ν

.

Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

. (B4)

To obtain the evolution of µ′ji,s#,t, start from equation (B2) for the counterfactual economy,

µ′ji,s#,t =
µ′ji,s#,t−1

(
∑S

h=0 µ′ji,sh|i,t−1(u̇
′
i,h,t+1)

β
ν

)ν/κ

∑I
m=1 µ′jm,s#,t−1

(
∑S

h=0 µ′jm,sh|m,t−1(u̇
′
m,h,t+1)

β
ν

)ν/κ
.

Divide this by the same expression in the case of the baseline economy and rearrange to get:

µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ
. (B5)

Now we want to derive an expression for utility in hats. Start from equation (B3) for the

counterfactual economy (but for period t instead of t + 1):

u̇′j,s,t = ω̇′j,s,t∆̇
′
j,s,t

 I

∑
i=1

µ′ji,s#,t−1

(
S

∑
k=0

µ′ji,sk|i,t−1(u̇
′
i,k,t+1)

β
ν

)ν/κ
κ

.
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Dividing by this equation in the baseline economy and rearranging yields

ûj,s,t = ω̂j,s,t∆̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

. (B6)

However, at t = 1 the equilibrium conditions are slightly different. This is the result of

the timing assumption in CDP (which we adopt in this paper too), that the counterfactual

fundamentals are unknown before t = 1. This means that at t = 0, ûj,s,0 = 1, µ′ji,sk|i,0 =

µji,sk|i,0, µ′ji,s#,0 = µji,s#,0, and `′i,k,1 = `i,k,1 = ∑I
j=1 ∑S

s=0 µji,sk|i,0µji,s#,0`j,s,0. To account for the

unexpected change in fundamentals at t = 1, the right equations are

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

(B7)

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ
(B8)

ûj,s,1 = ω̂j,s,1∆̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

, (B9)

where

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The equilibrium in hats includes equations (B4), (B5), (B6), together with the hat ver-

sions of the remaining equations in (3) - (19).

B.6 Algorithm to Solve the Hat System

As in the previous algorithm, group the equations into 3 categories:

1. The ones that are needed to obtain new mobility shares and new labor supply from a

guess of utilities (block 1):

µ′ji,sk|i,t =
µ′ji,sk|i,t−1µ̇ji,sk|i,tû

β
ν

i,k,t+1
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

17



µ′ji,s#,t =

µ′ji,s#,t−1µ̇ji,s#,t

(
S
∑

h=0
µ′ji,sh|i,t−1µ̇ji,sh|i,tû

β
ν

i,h,t+1

)ν/κ

I
∑

m=1
µ′jm,s#,t−1µ̇jm,s#,t

(
S
∑

h=0
µ′jm,sh|m,t−1µ̇jm,sh|m,tû

β
ν

m,h,t+1

)ν/κ

`′i,s,t =
I

∑
j=1

S

∑
k=0

µ′ji,ks|i,t−1µ′ji,k#,t−1`
′
j,k,t−1

But period one works differently:

µ′ji,sk|i,1 =
θji,sk|i,0ûβ/ν

i,k,2

∑S
h=0 θji,sh|i,0ûβ/ν

i,h,2

µ′ji,s#,1 =
µji,s#,1

(
∑S

h=0 θji,sh|i,0ûβ/ν
i,h,2

)ν/κ

∑I
m=1 µjm,s#,1

(
∑S

h=0 θjm,sh|m,0ûβ/ν
m,h,2

)ν/κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1

With these equations, if one has an initial distribution of labor supply (`′i,s,0, which should

be the same as `i,s,0), the mobility matrices in the baseline economy and an initial guess

for the utility hats (û(0)
i,s,t ∀ t), one can obtain the entire path of labor supplies (`′i,s,t ∀ t > 0),

and the entire path of mobility matrices without needing to use the other equations at all.

2. The ones that are needed to obtain the temporary equilibrium (wages, actual labor, sec-

toral prices, trade shares, revenue levels) from a given set of shocks and labor supply

(block 2):

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
φi,sR′i,s,t = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

t

∏
q=1

L̂i,s,q L̇i,s,q ≤
t

∏
q=1

˙̀ ′
i,s,q , Ŵi,s,tẆi,s,t ≥ δi,s , Complementary Slackness

I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
1
γ

I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t
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With these equations, if we have a set of shocks in hats (τ̂ and Â, as well as deficits in

the counterfactual economy D′), together with initial values for the counterfactual econ-

omy (like trade shares and nominal incomes) and the solution for the baseline economy

(including trade shares dot, wages dot and labor dot), we can solve for hat prices, new

trade shares in levels, new revenues in levels, actual labor hats and wages hat.

3. The ones that are needed to update the guess for the path of utilities (block 3):

P̂i,t =
S

∏
s=1

P̂αi,s
i,s,t

ω̂i,s,t =
Ŵi,s,t L̂i,s,t

P̂i,t ˆ̀ i,s,t
(but with ω̂i,s,t = 1 if s = 0)

ûj,s,t = ω̂j,s,t∆̂j,s,t

 I

∑
i=1

µ′ji,s#,t−1µ̇ji,s#,t

(
S

∑
k=0

µ′ji,sk|i,t−1µ̇ji,sk|i,tû
β
ν

i,k,t+1

)ν/κ
κ

But period one works differently:

ûj,s,1 = ω̂j,s,1∆̂j,s,1

 I

∑
i=1

µji,s#,1

(
S

∑
k=0

θji,sk|i,0ûβ/ν
i,k,2

)ν/κ
κ

θji,sk|i,0 ≡ µji,sk|i,1ûβ/ν
i,k,1.

The algorithm would work as follows:

1. Guess a path for the utility hats (which can be all of them being equal to one).

2. Use block one to obtain paths for the µ′ and `′ using the guessed path for the utility hat

and the solution for the baseline economy.

3. Use block two to solve the temporary equilibrium using the path for `′, the hat shocks

and the solution for the baseline economy.

4. Use block three to obtain a new guess for the utility hats. This uses the sectoral compen-

sations obtained in the previous step and the fact that in a far enough point in the future

(called T) the change in utility in the baseline economy should be the same as the change

in utility in the counterfactual, so we should have û(1)
i,s,T = 1. With û(1)

i,s,T = 1, the path

for the µ′ and the sectoral compensations one can obtain û(1)
i,s,T−1. And from those obtain

û(1)
i,s,T−2, and so on until û(1)

i,s,2. û(1)
i,s,1 needs to be obtained with a special equation.
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5. If the two guessed paths of utility hats û(0) and û(1) are close enough, stop the algorithm,

otherwise return to item one with the new guess and iterate again.

B.7 Algorithm to Solve the Temporary Equilibrium

Block two of the previously described outer algorithms (which solve the equilibrium

system in dots or hats) solves for the temporary equilibrium of the baseline or counterfac-

tual economy. Given the presence of an inequality constraint due to DNWR, solving this

temporary equilibrium is an unwieldy process that would be infeasible with any traditional

solver. To overcome this limitation, we develop an augmented version of Alvarez and Lu-

cas (2007) to be able to handle the existence of DNWR. This inner algorithm is very efficient

and allows us to solve the temporary equilibrium of the full model with DNWR extremely

fast (provided we use the nominal anchor described in equation 19). In this appendix, we

describe this inner algorithm in the case of the hat system. The inner algorithm for the dot

system is analogous.

Notice first that, if one knows a given period’s wages in hats (as well as the solution for

the baseline economy, the previous period’s trade shares, and the shocks to trade costs and

technology), it is possible to obtain the corresponding prices in hats from the equation:

P̂1−σs
i,s,t =

I

∑
j=1

λ′ji,s,t−1λ̇ji,s,t

(
τ̂ji,s,t Â−1

j,s,tŴ
φj,s
j,s,t

S

∏
k=1

P̂
φj,ks
j,k,t

)1−σs

,

using traditional contraction mapping algorithms. The new trade shares can then easily be

obtained from the following equation,

λ′ij,s,t =
λ′ij,s,t−1λ̇ij,s,t(τ̂ij,s,t Â−1

i,s,tŴ
φi,s
i,s,t ∏S

k=1 P̂φi,ks
i,k,t )

1−σs

P̂1−σs
j,s,t

.

Knowing the previous elements, employment in hats, the previous periods output levels,

and the shock to deficits, allows one to solve for revenues using the linear (albeit massive)
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system described by the following set of equations

R′i,s,t =
I

∑
j=1

λ′ij,s,t

(
αj,s

(
∑

s
Ŵj,s,t L̂j,s,tY′j,s,t−1Ẇj,s,t L̇j,s,t + D′j,t

)
+

S

∑
k=1

φj,skR′j,k,t

)
.

The previous argument implies that we can write revenues in the counterfactual economy

in a given period as a function of that same period’s wages and employment hats, i.e.

R′i,s,t(Ŵ, L̂) (where the bold W and L stand for the vector of wages and employment hats

in all the regions and sectors).

What remains is to show how to solve the following system in wages and employment

hats for all regions and sectors:

φi,sR′i,s,t(Ŵ, L̂) = Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t

L̂i,s,t ≤ LU
i,s,t , Ŵi,s,t ≥WL

i,s,t , Complementary Slackness (C.S.)
I

∑
i=1

S

∑
s=1

Y′i,s,t−1 =
I

∑
i=1

S

∑
s=1

Ŵi,s,t L̂i,s,tY′i,s,t−1Ẇi,s,t L̇i,s,t.

This is where we will use an augmented version of the Alvarez and Lucas (2007) algorithm

that accounts for the presence of DNWR. Imagine that one has an initial guess for wages and

employment in hats, denoted Ŵ(0)
i,s,t and L̂(0)

i,s,t. We use an algorithm that updates this guess as

follows:

Ŵ(1)
i,s,t = max


(1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

, WL
i,s,t


L̂(1)

i,s,t = min

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

 .

These new guesses obviously satisfy L̂(1)
i,s,t ≤ LU

i,s,t and Ŵ(1)
i,s,t ≥ WL

i,s,t. The new guesses also

satisfy the C.S. condition. To see this, notice that it cannot happen that:

Ŵ(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t
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L̂(1)
i,s,t =

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

,

since that would require:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

≥ WL
i,s,t

LU
i,s,t ≥

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0),L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

.

Putting the last two inequalities together we get:

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
≥WL

i,s,tL
U
i,s,t ≥ (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t(Ŵ
(0), L̂(0))

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which is impossible unless both inequalities hold with equality (in which case all the rele-

vant conditions are satisfied anyway). This means that unless we are in a knife edge case

(where everything works fine) we are going to be either in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

LU
i,s,t,

(1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

LU
i,s,t

 ,

or in the point:

(
L̂(1)

i,s,t, Ŵ(1)
i,s,t

)
=

 (1− λ)Ŵ(0)
i,s,t L̂

(0)
i,s,t + λ

φi,sR′i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t

WL
i,s,t

, WL
i,s,t

 ,

which means that the C.S. condition is satisfied. It is also true that the new guess satisfies

the nominal anchor if the previous guess did. To see this, notice that (from the observation

that we are always in either of those special points) the following always holds:

Ŵ(1)
i,s,t L̂

(1)
i,s,t = (1− λ)Ŵ(0)

i,s,t L̂
(0)
i,s,t + λ

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
.
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Multiplying this by Y′i,s,t−1Ẇi,s,t L̇i,s,t and summing it over i and s we get:

I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t = (1− λ)

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t

+ λ
I

∑
i=1

S

∑
s=1

φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
Y′i,s,t−1Ẇi,s,t L̇i,s,t.

Focusing on the last term, it is possible to show that:

I

∑
i=1

S

∑
s=1

φi,sR′i,s,t =
I

∑
j=1

S

∑
r=1

Ŵ(0)
j,r,t L̂

(0)
j,r,tY

′
j,r,t−1Ẇj,r,t L̇j,r,t.

This makes it clear that:

I

∑
i=1

S

∑
s=1

Ŵ(1)
i,s,t L̂

(1)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t =

I

∑
i=1

S

∑
s=1

Ŵ(0)
i,s,t L̂

(0)
i,s,tY

′
i,s,t−1Ẇi,s,t L̇i,s,t.

Therefore, if the initial guess satisfies the nominal anchor the new guess will do so as well.

Finally, when the algorithm converges, for example at iteration N, the following holds:

Ŵ(N)
i,s,t L̂(N)

i,s,t = (1− λ)Ŵ(N)
i,s,t L̂(N)

i,s,t + λ
φi,sR′i,s,t

Y′i,s,t−1Ẇi,s,t L̇i,s,t
,

which implies Ŵ(N)
i,s,t L̂(N)

i,s,t Y′i,s,t−1Ẇi,s,t L̇i,s,t = φi,sR′i,s,t, indicating that the final guess solves our

desired system. We use the following initial guess which satisfies the nominal anchor,

Ŵ(0)
i,s,t =

1
Ẇi,s,t

, L̂(0)
i,s,t =

1
L̇i,s,t

.

B.8 Welfare

We start from our previous result that

Vj,s,t = ln(ωj,s,t∆j,s,t) + κ ln

 I

∑
i=1

(
S

∑
k=0

exp
(

βVi,k,t+1 − ϕji,sk
)1/ν

)ν/κ
+ γκ.
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Using

µjj,s#,t =

(
∑S

h=0 exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

∑I
m=1

(
∑S

h=0 exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ
,

we then have

I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh
)1/ν

)ν/κ

= µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

.

Next, using

µjj,ss|j,t =
exp

(
βVj,s,t+1

)1/ν

∑S
h=0 exp

(
βVj,h,t+1 − ϕjj,sh

)1/ν
,

we have
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

= µ−1
jj,ss|j,t exp

(
βVj,s,t+1

)1/ν ,

and hence

µ−1
jj,s#,t

(
S

∑
h=0

exp
(

βVj,h,t+1 − ϕjj,sh
)1/ν

)ν/κ

= µ−1
jj,s#,tµ

−ν/κ
jj,ss|j,t exp

(
βVj,s,t+1

)1/κ .

This implies that

κ ln

 I

∑
m=1

(
S

∑
h=0

exp
(

βVm,h,t+1 − ϕjm,sh

)1/ν
)ν/κ

 = βVj,s,t+1 − κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
.

We then write

Vj,s,t = ln(ωj,s,t∆j,s,t)− κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
+ γκ + βVj,s,t+1.

Iterating this equation forward, we obtain

Vj,s,t =
∞

∑
r=t

βr−t
(

ln(ωj,s,t∆j,s,t)− κ ln
(
µjj,s#,t

)
− ν ln

(
µjj,ss|j,t

)
+ γκ

)
.
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We define the EV in consumption for market js at time t = 0 to be the scalar ζ j,s such that

V ′j,s,0 = Vj,s,0 +
∞

∑
r=0

βr ln(ζ j,s) =
∞

∑
r=0

βr

ln

 ωj,s,r∆j,s,rζ j,s(
µjj,ss|j,r

)ν (
µjj,s#,r

)κ

+ γκ

 .

Defining Vj,s ≡ ln(ζ j,s) and rearranging the previous definition, we can write:

(V ′j,s,0 −Vj,s,0) = Vj,s

∞

∑
r=0

βr

Vj,s = (1− β)(V ′j,s,0 −Vj,s,0)

=
∞

∑
r=1

βr ln

 ω̂j,s,r∆̂j,s,r(
µ̂jj,ss|j,r

)ν (
µ̂jj,s#,r

)κ

 ,

which is the expression that we will use for the “welfare change” stemming from the China

shock, formally the equivalent variation change in consumption due to the shock. Notice

that, since the welfare effects from the China shock will be small in percentage terms, then

Vj,s = ln(ζ j,s) ≈ ζ j,s − 1.

B.9 More on Calibration

As we discussed in the main text, the multiplicative nature of our productivity decom-

position, ÂChina,s,t = Â1
China,t Â2

China,s, implies that their level is not identified. For example, if

we multiply all the Â2
China,s by a constant c and we divide all the Â1

China,t by c, then we would

have the same ÂChina,s,t. Thus, we use the normalization ∑S
s=1 Â2

China,s = 1. Correspond-

ingly, the model is only able to produce changes in imports that satisfy ∑end
t=2001 ∆Xmodel

C,US,t =

∑S
s=1 ∆Xend−2000,model

C,US,s . This condition is automatically satisfied by the actual changes, i.e.

∑end
t=2001 ∆XC,US,t = ∑S

s=1 ∆Xend−2000
C,US,s , but not necessarily by the predicted changes, due to the

lack of a constant in the second regression. We adjust the predicted changes in manufactur-

ing so that they satisfy: ∑end
t=2001

̂∆XC,US,t = ∑S
s=1

̂∆Xend−2000
C,US,s , this adjustment is very small.

In all of our applications we match our targets with an accuracy greater than 99.9%.
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C Data Construction

In this appendix section, we provide details on the construction of the data we briefly

described in Section 4. We divide this appendix into three parts. Appendix C.1 describes

all data sources. Appendix C.2 discusses how we combine the different data sources to

compute an internally consistent bilateral trade-flow matrix for all sectors for the years when

all the data is available. It also discusses how we use the previous step to project bilateral

trade flows between states and countries for the years before full data availability. Finally,

Appendix C.3 discusses the construction of the initial employment allocations for all regions

and the bilateral migration flows between sectors and U.S. states.

C.1 Data Description and Sources

List of sectors. We use a total of 14 market sectors (plus a home production sector).

The list of market sectors includes 12 manufacturing sectors, one catch-all services sector,

and one agriculture sector. We follow CDP in the selection of the 12 manufacturing sectors.

These are: 1) Food, beverage, and tobacco products (NAICS 311-312, WIOD sector 3); 2) Tex-

tile, textile product mills, apparel, leather, and allied products (NAICS 313-316, WIOD sec-

tors 4-5); 3) Wood products, paper, printing, and related support activities (NAICS 321-323,

WIOD sectors 6-7); 4) Mining, petroleum and coal products (NAICS 211-213, 324, WIOD sec-

tors 2, 8); 5) Chemical (NAICS 325, WIOD sector 9); 6) Plastics and rubber products (NAICS

326, WIOD sector 10); 7) Nonmetallic mineral products (NAICS 327, WIOD sector 11); 8)

Primary metal and fabricated metal products (NAICS 331-332, WIOD sector 12); 9) Machin-

ery (NAICS 333, WIOD sector 13); 10) Computer and electronic products, and electrical

equipment and appliance (NAICS 334-335, WIOD sector 14); 11) Transportation equipment

(NAICS 336, WIOD sector 15); 12) Furniture and related products, and miscellaneous man-

ufacturing (NAICS 337- 339, WIOD sector 16). There is a 13) Services sector which includes

Construction (NAICS 23, WIOD sector 18); Wholesale and retail trade sectors (NAICS 42-45,

WIOD sectors 19-21); Accommodation and Food Services (NAICS 721-722, WIOD sector 22);

transport services (NAICS 481-488, WIOD sectors 23-26); Information Services (NAICS 511-

518, WIOD sector 27); Finance and Insurance (NAICS 521-525, WIOD sector 28); Real Estate
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(NAICS 531-533, WIOD sectors 29-30); Education (NAICS 61, WIOD sector 32); Health Care

(NAICS 621-624, WIOD sector 33); and Other Services (NAICS 493, 541, 55, 561, 562, 711-713,

811-814, WIOD sector 34).40

List of countries: We use data for 50 U.S. states, and 37 other countries, including an

aggregated rest of the world. The list of countries is: Australia, Austria, Belgium, Bulgaria,

Brazil, Canada, China, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Hungary, India, Indonesia, Italy, Ireland, Japan, Lithuania, Mexico, the

Netherlands, Poland, Portugal, Romania, Russia, Spain, the Slovak Republic, Slovenia, S.

Korea, Sweden, Taiwan, Turkey, the United Kingdom, and the rest of the world.

Data on bilateral trade between countries. World Input-Output Database (WIOD).

Release of 2013. We use data for 2000-2007 in our baseline and 2000-2011 in one of our ex-

tensions. We map the sectors in the WIOD database to our 14 market sectors in the follow-

ing way: 1) Food Products, Beverage, and Tobacco Products (c3); 2) Textile, Textile Product

Mills, Apparel, Leather, and Allied Products (c4-c5); 3) Wood Products, Paper, Printing, and

Related Support Activities (c6-c7); 4) Petroleum and Coal Products (c8); 5) Chemical (c9); 6)

Plastics and Rubber Products (c10); 7) Nonmetallic Mineral Products (c11); 8) Primary Metal

and Fabricated Metal Products (c12); 9) Machinery (c13); 10) Computer and Electronic Prod-

ucts, and Electrical Equipment and Appliances (c14); 11) Transportation Equipment (c15);

12) Furniture and Related Products, and Miscellaneous Manufacturing (c16); 13) Construc-

tion (c18), Wholesale and Retail Trade (c19-c21), Transport Services (c23-c26), Information

Services (c27), Finance and Insurance (c28), Real Estate (c29- c30); Education (c32); Health

Care (c33), Accommodation and Food Services (c22), and Other Services (c34); 14) Agri-

culture and Mining (c1-c2). We follow Costinot and Rodriguez-Clare (2014) to remove the

negative values in the trade data from WIOD.

Data on bilateral trade in manufacturing between U.S states. We combine the 2002

and 2007 Commodity Flow Survey (CFS) with the WIOD database. The CFS records ship-

ments between U.S. states for 43 commodities classified according to the Standard Classi-

fication of Transported Goods (SCTG). We follow CDP and use CFS 2007 tables that cross-

40The only difference with respect to CDP in the definition of manufacturing sectors is that we in-
clude Mining (NAICS 211-213) together with Petroleum and Coal Products (NAICS 324) in our
sector 4.
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tabulate establishments by their assigned NAICS codes against commodities (SCTG) ship-

ped by establishments within each of the NAICS codes. These tables allow for the mapping

of SCTG to NAICS.

Data on bilateral trade in manufacturing and agriculture between U.S states and the

rest of the countries. We obtain sector-level imports and exports between the 50 U.S. states

and the list of other countries from the Import and Export Merchandise Trade Statistics,

which is compiled by the U.S. Census Bureau. This dataset reports imports and exports in

each NAICS sector between each U.S. state and each other country in the world.

Data on sectoral and regional value-added share in gross output. Value added for

each of the 50 U.S. states and 14 sectors can be obtained from the BEA by subtracting taxes

and subsidies from GDP data. In the cases when gross output was smaller than value added

we constrain value added to equal gross output. For the list of countries, we obtain the share

of value added in gross output from WIOD.

Data on services expenditure and production. We compute bilateral trade in services

using a gravity approach explained in Appendix C.2. As part of these calculations, we

require data on production and expenditure in services by region. We obtain U.S. state-

level services GDP from the Regional Economic Accounts of the BEA. We obtain U.S. state-

level services expenditure from the Personal Consumption Expenditures (PCE) database of

BEA. Finally, for the list of other countries we compute total production and expenditure in

services from WIOD.

Data on agriculture expenditure and production. We also compute bilateral trade in

agriculture using a gravity approach explained in Appendix C.2. To get production in agri-

culture for the U.S. states, we combine the 2002 and 2007 Agriculture Census with the Na-

tional Marine Fisheries Service Census to get state-level production data on crops, livestock

and seafood. We infer state-level expenditure in agriculture from our gravity approach ex-

plained in Appendix C.2. Finally, for the list of other countries we compute total production

and expenditure in agriculture from WIOD.

Data on population and geographic coordinates. As part of the gravity approach to

compute bilateral trade in services, we also need to compute bilateral distances between

regions. We follow the procedure used in the GeoDist dataset of CEPII to calculate interna-
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tional (and intranational) bilateral trade distances. We thus require data on the most popu-

lated cities in each country, the cities’ coordinates and population, and each country’s popu-

lation. We obtained this information from the United Nations Population Division website.

In particular, we use the population of urban agglomerations with 300,000 inhabitants or

more in 2018, by country, for 2000-2007. For Austria, Cyprus, Denmark, Estonia, Hungary,

Ireland, Lithuania, Slovakia and Slovenia we use the two most populated cities.41 For the

case of U.S. states, we use population and coordinates data for each U.S. county within each

U.S. state. The data for the U.S. counties comes from the U.S. CENSUS.

Data on employment and migration flows. For the case of countries, we take data

on employment by country and sector from the WIOD Socio Economic Accounts (WIOD-

SEA). For the case of U.S. states, we take sector-level employment (including unemployment

and non-participation) from the 5% sample PUMS files of the 2000 Census. We only keep

observations with ages between 25 and 65, who are either employed, unemployed, or out of

the labor force. We construct a matrix of migration flows between sectors and U.S. states by

combining data from the American Community Survey (ACS) and the Current Population

Survey (CPS). Finally, we abstract from international migration.

C.2 Construction of the Bilateral Trade Flows Between Regions

We follow the notation from Costinot and Rodriguez-Clare (2014) and omit the time

subscripts t that are relevant in our quantitative model. Define Xij,ks as sales of intermediate

goods from sector k in region i to sector s in region j, and Xij,kF as the sales of sector k in

region i to the final consumer of region j. Our final objective is to construct a bilateral trade

flows matrix between all regions in our sample with elements equal to Xij,k = ∑s Xij,ks +

Xij,kF. This matrix allows us to compute the trade shares λij,k, and the sector-level revenues

Rj,k = ∑l Xjl,k for each region, which are crucial elements in our hat algebra described in

Section 3.6.

As additional definitions, take Ej,k = ∑i Xij,k as the total expenditure of region j in

sector k, Fj,k = ∑i Xij,kF as the final consumption in region j of sector k, Fj = ∑k Fj,k as the

total final consumption of region j, and Xj,ks = ∑i Xij,ks as the total purchases that sector s

41For the specific case of Cyprus, the cities’ information comes from the country’s Statistical Service.
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in region j makes from sector k. We construct Xij,k in the four steps explained below. With

some abuse of notation, we refer to a region i as a U.S. state (country) by i ∈ US (i /∈ US).

Step 1: Bilateral trade between countries. In the first step we focus on the case where

both i and j are countries. Thus, we simply take Xij,k = XWIOD
ij,k , where XWIOD

ij,k are the

bilateral trade flows that come directly from the WIOD database.

Step 2: Manufacturing trade among U.S. states. In the second step we focus on man-

ufacturing bilateral trade between U.S. States. For this, we combine the closest Commodity

Flow Survey (CFS) for each year with WIOD Data for the total trade of the U.S. with itself.

We first compute the shares that each state i exports to state j in sector k represent in the total

trade of sector k according to CFS. Then, we calculate the total exports of state i to state j in

sector k as WIOD’s U.S. trade with itself in sector k multiplied by the share computed in the

previous step to ensure that bilateral trade between states adds up to the WIOD total.

Step 3: Manufacturing trade between U.S. states and countries. For the third step,

we combine Census and WIOD data to calculate the trade flows between each of the 50 U.S.

states and the other 37 country regions. There is limited availability for the state×sector-

level trade data coming from the CENSUS. Data for exports at the state×sector-level starts

in 2002 and data for imports starts in 2008. We scale state-level imports and exports data

from the Import and Export Merchandise Trade Statistics to match the U.S. totals in WIOD.

More precisely, the exports (imports) of state i to (from) country j in manufacturing sector k

are computed as a proportion of WIOD’s U.S. export (imports) to (from) country j in sector

k. This proportion is equal to the exports (imports) of state i to (from) country j in sector k

relative to the total U.S. exports (imports) to (from) country j in sector k.

Since the Import and Export Merchandise Trade Statistics data for exports starts in

2002 and for imports starts in 2008, the bilateral trade flows between regions for the years

before the data starts cannot be computed directly from the data. We adapt our computation

method to take into account this issue. All previous procedures remain the same. Denote

Xbase
ij,k as the matrix Xij,k for the first year where the exports or imports data is available (the

base year). Define the share of exports of U.S. State i in sector k, going to country j in the

base year as ybase
ij,k ≡

Xbase
ij,k

∑h∈US Xbase
hj,k

∀i ∈ US , j /∈ US. Similarly, define the share of imports of

U.S. state j in sector k, coming from country i in the base year as ebase
ij,k ≡

Xbase
ij,k

∑l∈US Xbase
il,k

∀i /∈

30



US , j ∈ US. Finally for each sector k in manufacturing or agriculture; and any year before

the base year define Xij,k = ebase
ij,k XWIOD

i US,k ∀i /∈ US, ∀j ∈ US and Xij,k = ybase
ij,k XWIOD

US j,k ∀i ∈

US, ∀j /∈ US.

Step 4: Trade in services and trade in agriculture. We compute bilateral trade flows

for services and agriculture separately using a gravity structure that matches WIOD to-

tals for trade between countries (including the U.S.). We start with the standard gravity

equation (for simplicity, we remove the subscript of the sector) Xij =
(

wiτij
Pj

)−ε
Ej, where

P−ε
j = ∑i

(
wiτij

)−ε. We know that ∑j Xij = Ri and hence ∑j

(
wiτij

Pj

)−ε
Ej = Ri. This implies

w−ε
i Π−ε

i = Ri, where Π−ε
i = ∑j τ−ε

ij Pε
j Ej. Let P̃j ≡ P−ε

j and Π̃i ≡ Π−ε
i , and τ̃ij ≡ τ−ε

ij . Given{
Ej
}

, {Ri}, and
{

τ̃ij
}

, one we can get
{

P̃j
}

and
{

Π̃i
}

from the following system:

P̃j =∑
i

τ̃ijΠ̃−1
i Ri

x̃i =∑
j

τ̃ijP̃−1
j Ej (C1)

The solution for
{

P̃j, Π̃i
}

is unique up to a constant (Fally, 2015). This indeterminacy re-

quires a normalization. We thus impose P̃1 = 100 in each exercise. Then one can compute

our outcome of interest
{

Xij
}

from

Xij = τ̃ijΠ̃−1
i P̃−1

j RiEj. (C2)

Computation of the bilateral resistance τ̃ij. To solve the gravity system, we must first compute

τ̃ij ∀i, j. We proceed by assuming the following functional form: τ̃ij = β
ιij
0 distβ1

ij exp
(
ξij
)

,

where ιij is an indicator variable equal to 1 if i = j, and ξij is an idiosyncratic error term. β1

captures the standard distance elasticity and β0 captures the additional inverse resistance of

trading with others versus with oneself.

To calculate distij, we follow the same procedure used in the GeoDist dataset of CEPII

to calculate international (and intranational) bilateral trade distances. The idea is to calculate

the distance between two countries based on bilateral distances between the largest cities of

those two countries, those inter-city distances being weighted by the share of the city in the

overall country’s population (Head and Mayer, 2002).
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We use population for 2010 and coordinates data for all U.S. counties, and all cities

around the world with more than 300,000 inhabitants. For those countries with less than

two cities of this size, we take the two largest cities. Coordinates are important to calculate

the physical bilateral distances in kms between each county r in state i and county s in state

j (drs ∀r ∈ i , s ∈ j and ∀i, j = 1, ..., 50), and define dist (ij) as:

dist (ij) =

(
∑
r∈ i

∑
s∈ j

(
popr

popi

)(
pops

popj

)
dθ

rs

)1/θ

, (C3)

where poph is the population of country/state h. We set θ = −1.

Given our definition of τ̃ij we can write the gravity equation between countries as Xij =

β
ιij
0 distβ1

ij exp
(
ξij
)

Π̃−1
i P̃−1

j RiEj. Taking logs we can write the previous equation as:

ln Xij = δo
i + δd

j + β̃0ιij + β1 ln distij + ξij, (C4)

where β̃0 = ln β0 and the δs are fixed effects. We first estimate the equation above sep-

arately for services and agriculture using a 2000-2011 panel of bilateral trade flows be-

tween countries from WIOD. We present our OLS estimation results in Table C.1. Columns

(1) and (2) refer to the estimated coefficients for the case of services and agriculture, re-

spectively. Both regressions include year-by-origin and year-by-destination fixed effects.

We take these estimates and compute the bilateral resistance term in each sector as ˆ̃τij =

exp( ˆ̃β0ιij + β̂1 ln distij).

Trade in services. As inputs, we need total expenditures in services for each region (Ei), as

well as total production in services (Ri). For the case of countries we take this directly

from WIOD. For the case of U.S. states we take these variables from the Regional Economic

Accounts of the Bureau of Economic Analysis. We scale the state-level services production

and expenditures so that they aggregate to the U.S. totals in WIOD.

We incorporate the information on bilateral trade in services between countries (in-

cluding the U.S.) that comes from WIOD to the gravity system of equation (C1) by first

writing the system as P̃j = ∑i/∈US τ̃ijΠ̃−1
i Ri + ∑i∈US τ̃ijΠ̃−1

i Ri and Π̃i = ∑j/∈US τ̃ijP̃−1
j Ej +

∑j∈US τ̃ijP̃−1
j Ej. Then, we define λ̃j ≡ 1− ∑i/∈US Xij

Ej
for j /∈ US (the share of imports of re-
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Table C.1: Estimation of Own-Country Dummy and Distance Elasticity

(1) (2)
Dep. Var.: ln Xij,t Services Agriculture
ιij 7.357∗∗∗ 4.143∗∗∗

(0.126) (0.145)
ln distij -0.376∗∗∗ -1.745∗∗∗

(0.037) (0.020)
Year×Orig. Yes Yes
Year×Dest. Yes Yes
Observations 17,328 17,328
Adjusted R2 0.66 0.76

Notes: This table displays the OLS estimates of specifications analogous to the one in
equation (C4). The outcome variable ln Xij,t is the log exports of country i sent to country
j. The own-country dummy ιij is defined as an indicator function equal to one whenever
country i is the same as country j. Finally, ln distij is the log distance between country i
and country j. This variable is computed according to equation (C3). Robust standard
errors are presented in parenthesis. *** denotes statistical significance at the 1%.

gion j /∈ US coming from the U.S.) and λ̃∗i ≡ 1 − ∑j/∈US Xij
Ri

for i /∈ US (total exports of

region i /∈ US to other regions not in the U.S.). Using these two definitions and substituting

τ̃ij = XijΠ̃i P̃jR−1
i E−1

j whenever i, j /∈ US in the previous system of equations we have the

final system we solve for services:

P̃j = ∑
i

τ̃ijΠ̃−1
i Ri j ∈ US

Π̃i = ∑
j

τ̃ijP̃−1
j Ej i ∈ US

λ̃jP̃j = ∑
i∈US

τ̃ijΠ̃−1
i Ri j /∈ US

λ̃∗i Π̃i = ∑
j∈US

τ̃ijP̃−1
j Ej i /∈ US

Once we find solutions for
{

P̃j, Π̃i
}

, we compute the final bilateral trade matrix accord-

ing to equation (C2).

Trade in agriculture. As inputs, we need total expenditures in agriculture for each region (Ei),

as well as total production in agriculture (Ri). For the case of countries we take this directly

from WIOD. For the case of U.S. states we compute total production (Ri) by combining data

from the Agriculture Census and the National Marine Fisheries Service Census. We scale the

state-level agriculture production so that it aggregates to the U.S. total in WIOD. However,
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it is not possible to find state-level agriculture expenditure for U.S. states. To overcome

this data unavailability, we combine the U.S. input-output matrix (φj,ks) together with the

shares of value-added in gross production (φj,k) in order to compute a value of (Ei) that is

consistent with the full bilateral trade matrix for all regions and all sectors.

In order to describe our procedure, note that the total expenditure of region j in sector k

(Ej,k) could be written as Ej,k = ∑s φ̃j,ksRj,s + Fj,k, where φ̃j,ks = φj,ks(1− φj,s). We make two

assumptions. First, we assume that φ̃j,ks = φ̃US,ks ∀j ∈ US, which means that we assume

common input-output matrix and value-added shares across U.S. states and equal to the

ones of the U.S. as a whole. Second, we assume identical Cobb-Douglas preferences across

U.S. states. This means that when j ∈ US we have that Fj,k =
Fj

FUS
FUS,k = Fjγk, where γk ≡

FUS,k
FUS

. Using these two assumptions we get Fj = Ej,k −∑s φ̃j,ksRj,s + ∑r 6=k
(
Ej,r −∑s φ̃j,rsRj,s

)
.

Substituting the previous equation in the definition of Ej,k for the agriculture sector (k =

AG), and j ∈ US we find

Ej,AG = ∑
s

φ̃j,AG sRj,s +
γAG

1− γAG
∑

r 6=AG

(
Ej,r −∑

s
φ̃j,rsRj,s

)
,

which can be computed using state-level production of all sectors and state-level expendi-

ture data of all other sectors (excluding agriculture), combined with the U.S.-level input-

output matrix, value-added shares, and sector-level consumption shares.

Once we obtain the state-level expenditure values in agriculture, we can proceed with

the gravity system in equation (C1). As in the case of services, we incorporate the infor-

mation on bilateral trade in agriculture between countries that comes from WIOD. We also

incorporate the bilateral trade in agriculture between U.S. states and other countries coming

from the Import and Export Merchandise Trade Statistics. Thus, we only need to focus on{
P̃j
}

j∈US and
{

Π̃i
}

i∈US. Define χ∗i = 1− ∑j/∈US
Xij
Ri

for i ∈ US (the share of sales of state i

that stay in the U.S.) and χj = 1−∑i/∈US
Xij
Ej,k

for j ∈ US (the share of purchases of state i that

come from the U.S.). The final system we solve for agriculture becomes:

χjP̃j = Σi∈USτ̃ijΠ̃−1
i Ri, ∀j ∈ US

χ∗i Π̃i = Σj∈USτ̃ijP̃−1
j Ej, ∀i ∈ US
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As before, once we find solutions for
{

P̃j, Π̃i
}

, we compute the bilateral trade in agri-

culture between U.S. states according to equation (C2).

C.3 Initial Employment Allocations for each Region and Bilateral

Migration Flows between Sectors and U.S. States

Employment allocation in each region and sector. For the case of countries outside of

the U.S., we first compute the employment distribution by country-sector from the WIOD-

SEA. We treat the unemployed and out-of-labor force as an additional sector. The data

for that sector combines WIOD-SEA’s worker population and each country’s labor force

participation rate from World Bank data. Since SEA does not include the RoW directly and

since the remaining countries in SEA are too few, we define RoW’s employment such that its

production to employment ratio equals the respective average ratio of the other 37 countries.

This calculation is done separately for each sector.

For the case of U.S. states, we calculate the employment level for each state and sec-

tor (including unemployment and non-participation) in the year 2000 from the 5% sample

PUMS files of the 2000 Census. We only keep observations type ”P” (persons) aged 25 to

65, who are either employed or out of the labor force. Finally, we apply proportionality so

that the aggregate employment at the sector level coincides with the totals for the U.S. in

WIOD-SEA.

Workers’ mobility matrix for U.S. states. Let Lji,sk be the number of workers who

move from state j and sector s to state i and sector k between two periods (we ignore the

time subscript for simplicity). We want to compute the mobility matrix for the shares µji,sk,

for each origin state j, origin sector s, destination state i, and destination sector k, with

the shares defined as µji,sk =
Lji,sk

∑i′ ∑k′ Lji′ ,sk′
. To do this, we combine data from the Current

Population Survey (CPS), the American Community Survey (ACS), the IRS state-to-state

migration data, and the sector-state employment data from BLS, as explained below.

The CPS provides details of people’s employment status and industry each month, but

it does not provide information regarding movements across states. This means that we

can construct from the CPS data LCPS
jj,sk ∀j ∈ U.S. and any origin or destination sectors s, k

(intra-state flows of people between sectors). To remain internally consistent with the model,
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we only consider employed or out-of-the-labor force workers (i.e., we exclude unemployed

workers). 42

The ACS provides details of workers’ current employment status, sector, and state. It

also asks the state in which respondents lived the prior year. However, this survey does not

provide information regarding people’s employment status and sector in the previous year.

This means that we can construct from the ACS data LACS
ji,#k ∀j, i ∈U.S. and destination sector

k (interstate flows but without knowing the sector of origin, where the unknown component

is labeled as #). Finally, the IRS state-to-state migration data allows us to construct the

mobility between states regardless of their sector LIRS
ji,## ∀j, i ∈ U.S.

We combine these datasets to compute the labor transitions across states and sectors.

We also apply proportionality to the flows from CPS and ACS to sum up the total flows of

the IRS data (which do not require additional assumptions and are available for interstate

movements). In particular, for movements between sectors within the same state we use the

following rule:

Ljj,sk = LIRS
jj,## ×

LCPS
jj,sk

∑s ∑k LCPS
jj,sk

∀j, ∀s, k

For movements across states, we define:

Lji,sk =
LCPS

jj,sk

∑s LCPS
jj,sk
× LIRS

ji,## ×
∑i LACS

ji,?k

∑i ∑k LACS
ji,?k

,

where, in the few cases when the diagonal value of the matrix (same state and sector in

origin and destination) is zero, we change it to the minimum non-zero diagonal value.

Since the U.S. Census has the highest-quality data on the labor distribution by sector-

state, we want our constructed flows to be consistent with sector-state data from the Census.

However, this data is only available every ten years. Because of this, we first rely on sector-

state data from the BLS (which is available yearly) to get sector-level employment for 1999

42The CPS surveys households in a 4-8-4 format; that is, it interviews the household for four consec-
utive months, gives them an 8-month break, and interviews them again for four straight months.
We start with the NBER version of the CPS. The first four monthly interviews are 12 months apart
from the final four interviews, and the first four and final four are consecutive months. Since we
are interested in recording annual changes, we only keep interview months (1,5) which is equiva-
lent to following individuals for the first twelve months they appear in the survey. To avoid noise
in our sample, we pooled observations for the previous two years and the following two years for
the year of interest.
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and 2000 and make our migration flows consistent with those employment vectors as ex-

plained below. One disadvantage of the BLS data is that it is based on a sample of the

U.S. population and therefore its levels are less reliable than the ones from the Census (in

particular, some sector-states have zero employment in both 1999 and 2000 in the BLS data

but non-zero employment in the 2000 Census). To make the employment changes consis-

tent with the 1999-2000 BLS data but the levels in 2000 consistent with the Census data, we

construct the ratio of employment in 1999 to employment in 2000 for all sector-states using

BLS data (after normalizing the total employment to be constant across time as it is in our

model), winsorize these ratios at the 2.5% and 97.5% levels, and then multiply them by the

2000 Census data to generate a 1999 employment vector that is consistent with the levels of

the 2000 Census but the changes in BLS, which we denote by “CBLS”.

Note that the migration shares imply that Li,k,t+1 = ∑I
j=1 ∑S

s=0 µji,skLj,s,t, where Lj,s,t is

the total employment in region j, sector s, at time t. Since we want the migration flows

matrix for 1999-2000 to be consistent with the change in the stocks of workers across sector-

state pairs that we observe in the data between 1999 and 2000 (which is much more reliable

than the direct migration flows), we use the µ′ji,sks that are the closest to the ones constructed

with the steps above but that satisfy that LCensus
i,k,2000 = ∑I

j=1 ∑S
s=0 µ′ji,skLCBLS

j,s,1999. Specifically, we

minimize the sum of square differences between the new µ’s and the original ones subject

to: (1) the new µ’s are consistent with the change in the stocks of workers across sector-

states from the CBLS data, (2) they are greater than zero: µ′ji,sk ≥ 0, and they sum to one

for each sender market over all receiver markets: ∑I
i=1 ∑S

k=0 µ′ji,sk = 1, and (3) if the original

µ matrix has a given flow as zero, then this must still be the case in the new µ′ matrix:

µ′ji,sk = 0 if µji,sk = 0. The change in the flows implied by this procedure is very small. In

particular, the correlation between the original µji,sk and the µ′ji,sk is greater than 99.99%.

Mobility matrix for non-U.S. regions. We do not take the mobility matrix for each

country outside of the U.S. from the data, which would be extremely cumbersome because

we have 37 other countries. However, it can be shown (details provided upon request), that

for a country with a single region (such as non-U.S. countries in our context), the fact that

there are no mobility costs can be captured by setting a special mobility matrix between

1999 and 2000. Thus, we compute the elements of that mobility matrix between 1999 and
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2000. To do this, we take as given the labor distribution in 1999 (Li,s,0) and 2000 (Li,s,1) and

compute the following formula:

µii,sk,0 =
Li,k,1

∑S
r=1 Li,r,0

Notice that the flows between sector s and sector k do not depend on information of the

sender sector (s), which is implicitly encoding the information that in the countries outside

of the U.S., mobility between sectors is frictionless.

C.4 Handling Negative Cobb-Douglas Shares

From our data on bilateral trade flows, labor shares, and input-output coefficients we

can back out a set of implied values for the αj,s Cobb-Douglas parameters. However, there

may be situations where the implied α’s for a small fraction of the region-sectors are slightly

negative, which is not consistent with our model. In this case, we modify the bilateral trade

flow data to make it consistent with non-negative α’s. In order to do this, we first obtain the

set of α’s implied by the original data, then we set the negative implied α’s to zero, and then

we re-normalize the α’s so that they add up to one again in each region. This process yields

a new set of non-negative alphas which we denote α̃j,s.

We then recover the bilateral trade flows that are compatible with the new α̃j,s. The

equilibrium system to obtain these bilateral trade flows is a special case of the temporary

equilibrium “dot” system described in point (2) of Section B.4 for the year 2000, without

DNWR, without mobility, without technology or trade shocks, and with γ = 1 in the nomi-

nal anchor:

Ṗ1−σs
i,s,t =

I

∑
j=1

λji,s,t−1

(
Ẇ

φj,s
j,s,t

S

∏
k=1

Ṗ
φj,ks
j,k,t

)1−σs

λij,s,t =
λij,s,t−1(Ẇ

φi,s
i,s,t ∏S

k=1 Ṗφi,ks
i,k,t )

1−σs

∑I
r=1 λrj,s,t−1(Ẇ

φr,s
r,s,t ∏S

k=1 Ṗφr,ks
r,k,t )

1−σs

Ri,s,t =
I

∑
j=1

λij,s,t

(
α̃j,s

(
∑

s
Ẇj,s,tYj,s,t−1 + Dj,t

)
+

S

∑
k=1

φj,skRj,k,t

)
Ẇi,s,tYi,s,t−1 = φi,sRi,s,t
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I

∑
i=1

S

∑
s=1

Ẇi,s,tYi,s,t−1 =
I

∑
i=1

S

∑
s=1

Yi,s,t−1.

In this system, the λt−1, α̃j,s, Yt−1, and Dt’s are all known, and the Ẇ, Ṗ, Rt and λt’s are the

outcomes. From these outcomes we can construct the new bilateral trade flow matrix that is

consistent with the non-negative α̃j,s. This process changes the original data by a negligible

amount; the correlation between the constructed bilateral trade flows and the original ones

is above 99.99%. A version of this process is also applied in CDP, who further equalize the

α’s across regions.

D Exposure measures

Consider an economy producing a set of homogeneous goods across sectors s = 1, ..., S

with prices ps. Labor is the only factor of production that is mobile across sectors, and

there are decreasing returns to labor in each sector so that qs = Fs(ls) with F′s(·) > 0 and

F′′s (·) < 0. Preferences are given by U(c) − V(l), where l ≡ ∑s ls, U(c) is homogeneous

of degree one, and V ′(·) > 0 and V ′′(·) > 0. We are interested in the effect of a foreign

shock on employment in two different cases. In the first case the wage w is fixed and labor

is fully determined by labor demand (we assume that labor supply is higher than labor

demand at the fixed wage w), while in the second case the wage is fully flexible and clears

the labor market. Below we show that further assuming that ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε for all s

and µ(l) ≡ V′′(l)l
V′(l) = µ, then in the case of a fixed wage we have

d ln l =
1
ε ∑

s

( psqs

I

)
d ln ps (D1)

while in the case of flexible wages we have

d ln l =
1

ε + µ ∑
s

(
psqs − pscs

I

)
d ln ps, (D2)

where I ≡ ∑s psqs. Thus, if the wage is fixed and if we know the log changes in prices

resulting from the foreign shock then we can interact them with revenue shares, psqs
I , to

construct a Bartik-style sufficient statistic for the first order effect on employment. In con-
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trast, if the wage fully adjusts to equalize labor supply and demand, then the appropriate

weights (share components in the Bartik measure) for the price changes are instead given by

net exports as a share of GDP, to capture the implied terms-of-trade effects. If the economy

is small, then prices are exogenous and one could further replace d ln ps by the underlying

Chinese productivity shocks.

Let’s start with the case where w is fixed. Fully differentiating the equilibrium condition

psF′s(ls) = w implies d ln ls =
d ln ps
εs(ls)

, where ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

. We then have d ln l = ∑s ms
d ln ps
εs(ls)

,

where ms ≡ ls
∑s ls . Assuming that εs(ls) = ε we know that psqs/I = ms and hence we get

(D1).

Now let’s consider the case with a flexible wage. The equilibrium is given by w, l, λ

and {ls, cs}s such that the following equations hold

psF′s(ls) = w (D3)
∂Us

∂cs
= λps (D4)

V ′(l) = λw (D5)

∑
s

ls = l (D6)

∑
s

pscs = ∑
s

ps fs(ls). (D7)

Differentiating equation (D5) yields µ(l)d ln l = d ln λ + d ln w, where µ(l) ≡ V′′(l)l
V′(l) . Thus

d ln l =
d ln (w/P)

µ(l)
, (D8)

with P ≡ 1/λ. Next, totally differentiating equations (D3) and (D6) yields d ln ps − εd ln ls

= d ln w and ∑s msd ln ls = d ln l. Combined, the previous two equations imply ∑ msd ln ps

−εd ln l = d ln w, which combined with (D8) implies (after some rearranging):

d ln (w/P) =
µ

µ + ε

(
∑ msd ln ps − d ln P

)
. (D9)

But equation (D4) implies that ∑s
∂Us
∂cs

cs = λ ∑s pscs. Since U(c) is homogeneous of degree

one this implies U(c) = λ ∑s pscs. Totally differentiating this equation yields ∑s
∂Us
∂cs

dcs =
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(∑s pscs) dλ + λ ∑s psdcs + λ ∑s csdps. Using equation (D4) we get ∑s λpsdcs = (∑s pscs) dλ

+λ ∑s psdcs +λ ∑s csdps, which, after simplifying, implies

d ln P = d ln (1/λ) = ∑
s

θsd ln ps, (D10)

where θs ≡ pscs
∑s pscs

. Plugging into (D9) and combining with (D8) we get

d ln l =
1

µ + ε ∑ (ms − θs) d ln ps = d ln l.

Finally, note that ms ≡ ls
∑s ls = wls

∑s wls = psF′s(ls)ls
∑s psF′s(ls)ls

. Using ε(ls) ≡ − F′′s (ls)ls
F′s(ls)

= ε, we know that

Fs(ls) ∝ l1−ε
s and F′s(ls) ∝ (1− ε) l−ε

s , hence ms = psFs(ls)
∑s psFs(ls)

= psqs
∑s psqs

= psqs
I . On the other

hand, using (D7) we have θs ≡ pscs
∑s pscs

= pscs
I . Combining all of this we obtain (D2).
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