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“As to foreign trade, there needs little to be said. The trading nations of Europe were

all afraid of us; no port of France, or Holland, or Spain, or Italy would admit our ships

or correspond with us.” (A Journal of the Plague Year, Daniel Defoe, 1665)

1 Introduction

Throughout human history, globalization and pandemics have been closely intertwined. The Black

Death arrived in Europe in October 1347 when twelve ships from the Black Sea docked at the

Sicilian port of Messina – the word quarantine originates from the Italian word for a forty-day

period of isolation required of ships and their crews during the Black Death pandemic. Much more

recently, on January 21, 2020, the first human-to-human infections of COVID-19 in Europe are

presumed to have taken place in Starnberg, Germany, when a local car parts supplier (Webasto)

organized a training session with a Chinese colleague from its operation in Wuhan, China. These

examples are by no means unique; accounts of contagion through international business travel

abound. In this paper we study the interplay between human interactions – motivated by an

economically integrated world – and the prevalence and severity of pandemics.

We develop a conceptual framework to shed light on a number of central questions about

the two-way interaction between trade and pandemics. Does a globalized world make societies

more vulnerable to pandemics? To what extent are disease dynamics different in closed and open

economies? What are the implications of pandemics for the volume and pattern of international

trade? How do these changes in the volume and pattern of international trade in turn influence

the spread of the disease? To what extent are there externalities between the health policies of

different countries in the open economy equilibrium? Will the threat of future pandemics have a

permanent impact on the nature of globalization?

Our conceptual framework combines the canonical model of international trade from economics

(the gravity equation) with the seminal model of the spread of infectious diseases from epidemiology

(the Susceptible-Infected-Recovered or SIR model). We provide joint microfoundations for these

relationships in a single underlying theory in which both international trade and the spread of

disease are driven by human interactions. Through jointly modelling these two phenomena, we

highlight a number of interrelationships between them. On the one hand, the contact rate among

individuals, which is a central parameter in benchmark epidemiology models, is endogenous in our

framework, and responds to both economic forces (e.g., the gains from international trade) and to

the dynamics of the pandemic (e.g., the perceived health risk associated with international travel).

On the other hand, we study how the emergence of a pandemic and the perceived risk of future

outbreaks shapes the dynamics of international trade, and the net gains from international trade

once the death toll from the pandemic is taken into account.

We consider an economic setting – described in Section 2 – in which agents in each country

consume differentiated varieties and choose the measures of these varieties to source from home and

abroad. We suppose that sourcing varieties is costly, both in terms of the fixed costs of meeting
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with other agents that sell varieties – an activity that involves intranational or international travel

– and the variable costs of shipping varieties. Within this environment, the measures of varieties

sourced at home and abroad are endogenously determined by trade frictions, country sizes, and

the state of a pandemic, thus determining the intensity with which agents meet one another. If a

healthy (susceptible) agent meets an infected agent, the probability that the disease is transmitted

between them depends on the local epidemiological environment where the meeting takes place.

This contagion risk associated with the local epidemiological environment is in turn shaped by

local climate, by local social and cultural norms, and also by local health policies. Therefore, since

domestic agents meet with other agents at home and abroad, the rate at which they are infected

by the disease depends not only on their home health policies but also on those abroad.

To build intuition, we begin in Sections 3 and 4 by assuming that infection does not affect the

ability of agents to produce and trade, and that agents are unaware of the threat of the infection,

which implies that they do not have an incentive to alter their individual behavior (though, in

Section 4, we allow the pandemic to cause deaths). In such a case, we show that human interactions

and trade flows are characterized by gravity equations that feature origin characteristics, destination

characteristics and measures of bilateral trade frictions. Using these gravity equations, we show

that the welfare gains from trade can be written in terms of certain sufficient statistics, namely the

domestic trade share, the change in a country’s population (i.e., deaths) that can ascribed to trade

integration, and model parameters. This is similar to the celebrated Arkolakis et al. (2012) formula

for the gains from trade, but how trade shares map into welfare changes now depends on a wider

range of model parameters than the conventional elasticity of trade with respect to trade costs.

These gravity equations also determine the dynamics of the pandemic, which take a similar form to

those of multi-group SIR model, but one in which the intensity of interactions between the different

groups is endogenously determined by international trade, and potentially evolves over the course of

the disease outbreak due to general-equilibrium effects. We find that these disease dynamics differ

systematically between the open-economy case and the closed-economy case. In particular, in the

open economy, the condition for a pandemic to be self-sustaining (i.e., ROpen0 > 1, where ROpen0

is the global basic reproduction number) depends critically on the epidemiological environment in

the country with the highest rates of domestic infection.

We show that globalization and pandemics interact in a number of subtle ways. First, we

demonstrate that the dynamics of the disease are significantly impacted by the degree of trade

openness. More specifically, we show that a decline in any international trade or mobility friction

reduces the rates at which agents from the same country meet one another and increases the rates

at which agents from different countries meet one another. If countries are sufficiently symmetric in

all respects, a decline in any (symmetric) international trade friction also leads to an overall increase

in the total number of human interactions (domestic plus foreign). As a result, whenever countries

are sufficiently symmetric, a decline in any (symmetric) international trade friction increases the

range of parameters for which a global pandemic occurs. More precisely, even if an epidemic would

not be self-sustaining in either of the two symmetric countries in the closed economy (because
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RClosed0 < 1), it can be self-sustaining in an open economy (ROpen0 > 1), because of the enhanced

rate of interactions between agents in the open economy.

In contrast, if countries are sufficiently different from one another in terms of some of their

primitive epidemiological parameters (i.e., the exogenous component of the infection rate or the

recovery rate from the disease), a decline in any international trade friction can have the opposite

effect of decreasing the range of parameters for which a global pandemic occurs. This situation arises

because the condition for the pandemic to be sustaining in the open economy depends critically

on the domestic rate of infections in the country with the worst disease environment. As a result,

when one country has a much worse disease environment than the other, trade liberalization can

reduce the share of that country’s interactions that occur in this worse disease environment, thereby

taking the global economy below the threshold for a pandemic to be self-sustaining for the world as

a whole. Hence, in this case, on top of the negative effect on income, tightening trade or mobility

restrictions can worsen the spread of the disease in all countries, including the relatively healthy

one.

More generally, when a pandemic occurs in the open economy, we show that its properties are

influenced by the disease environments in all countries, and can display significantly richer dynamics

than in the standard closed-economy SIR model. For instance, even without lockdowns, multiple

waves of infection can occur in the open economy, when there would only be a single wave in each

country in the closed economy.

All the results discussed so far hold even in an environment in which the pandemic causes no

deaths (or dead individuals are immediately replaced by newborn individuals). When we allow in

Section 4 for the pandemic to cause deaths and thus a decline in population, we obtain additional

general-equilibrium effects. In this case, for instance, a country with a worse disease environment

tends to experience a larger reduction in population and labor supply, which in turn leads to

an increase in its relative wage. This wage increase reduces the share of interactions that occur

in that country’s bad disease environment, and increases the share that occur in better disease

environments, which again can take the global economy below the threshold for a pandemic to

be self-sustaining. Therefore, the general equilibrium effects of the pandemic on wages and trade

patterns induce a form of “general-equilibrium social distancing” from bad disease environments

that operates even in the absence purposeful social distancing motivated by health risks.1

In Section 5, we allow individuals to internalize the threat of infection and optimally adjust

their behavior depending on the observed state of the pandemic. As in recent work (see Farboodi

et al., 2020), it proves useful to assume that agents are uncertain about their own health status,

and simply infer their health risk from the shares of their country’s population with different health

status (something they can infer from data on pandemic-related deaths). Technically, this turns the

problem faced by agents into a dynamic optimal control problem in which the number of varieties

that agents source from each country responds directly to the relative severity of the disease in

1Similar effects would operate if infections reduced the productivity of agents in the labor market, in addition to
their effects on mortality.
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each country. As in recent closed-economy models of social distancing (such as Farboodi et al.,

2020, or Toxvaerd et al., 2020), these behavioral responses reduce human interactions, and thereby

tend to flatten the curve of infections. In contrast to these closed-economy setups, these behavioral

responses now have international general equilibrium implications. In both countries, agents skew

their interactions away from the relatively unhealthy country, which leads to the largest falls in the

ratio of trade to income in the relatively healthier country. This redirection of interactions reduces

the relative demand for the unhealthy country’s goods, which in turn reduces its relative wage,

thereby having the opposite effect to the reduction in its relative labor supply from greater death.

Depending of the timing of the wave of infections in each country, which country has more infections

than the other can change over the course of the pandemic, thereby reversing this pattern of changes

in trade openness and relative wages over time. We show that introducing these individual-level

responses is central to generating large reductions in the ratio of trade to output and implies that

the pandemic has substantial effects on aggregate welfare, through both deaths and reduced gains

from trade.

Finally, we consider an extension of our dynamic framework in which there are adjustment costs

of establishing the human interactions needed to sustain trade. In the presence of these adjustment

costs, households react less aggressively to the pandemic and their reaction is smoother, which leads

to a faster and more severe pandemic with a greater total number of deaths, but less pronounced

temporary reductions in real income and trade. In deciding to accumulate contacts, households now

anticipate the costs incurred in adjusting these contacts during a pandemic, although in practice

with symmetric adjustment costs we find that these anticipatory effects are negligible.

Throughout the paper, we use as our core setup an economy with two countries where agents

can interact across borders but are subject to trade and migration frictions. Most of our results

can be easily extended to contexts with multiple regions or even a continuum of them. We focus

on international trade as our main application because of the close relationship between trade and

pandemics throughout human history. Nevertheless, these extensions could be used to flexibly study

interactions across regions within countries or neighborhoods in a city. Ultimately, the decision of

which stores to patronize in a city, and how these decisions affect local disease dynamics, is shaped

by many of the same economic trade-offs that we study in an international context in this paper.

Our paper connects with several strands of existing research. Within the international trade

literature, we build on the voluminous gravity equation literature, which includes, among many

others, the work of Anderson (1979), Anderson and Van Wincoop (2003), Eaton and Kortum

(2003), Chaney (2008), Helpman et al. (2008), Arkolakis (2010), Allen and Arkolakis (2014), and

Allen et al. (2020). As in the work of Chaney (2008) and Helpman et al. (2008), international

trade frictions affect both the extensive and intensive margin of trade, but our model features

selection into importing rather than selection into exporting (as in Antràs et al., 2017) and, more

importantly, it emphasizes human interactions among buyers and sellers. In that latter respect, we

connect with the work on the diffusion of information in networks, which has been applied to a trade

context by Chaney (2014). By endogenizing the interplay between globalization and pandemics,
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we study the nature and size of trade-induced welfare losses associated with disease transmission,

thereby contributing to the very active recent literature on quantifying the gains from international

trade (see, for instance, Eaton and Kortum, 2002, Arkolakis et al., 2012, Melitz and Redding, 2014,

Costinot and Rodriguez-Clare, 2015, Ossa, 2015).

Although our model is admittedly abstract, we believe that it captures the role of international

business travel in greasing the wheels of international trade. With this interpretation, our model

connects with an empirical literature that has studied the role of international business travel in

facilitating international trade (see Cristea, 2011, Blonigen and Cristea, 2015, and Startz, 2018), and

more generally, in fostering economic development (see Hovhannisyan and Keller, 2015, Campante

and Yanagizawa-Drott, 2018). Our simple microfounded model of trade through human interaction

provides a natural rationalization for a gravity equation in international trade and shows how

different types of trade frictions affect the extensive and intensive margins of trade.

Our paper also builds on the literature developing epidemiological models of disease spread,

starting with the seminal work of Kermack and McKendrick (1927, 1932). More specifically, our

multi-country SIR model shares many features with multigroup models of disease transmission, as

in the work, among others, of Hethcote (1978), Hethcote and Thieme (1985), van den Driessche

and Watmough (2002), and Magal et al. (2016).2 A key difference is that the interaction between

groups is endogenously determined by the gravity structure of international trade. The recent

COVID-19 pandemic has triggered a remarkable explosion of work by economists studying the

spread of the disease (see, for instance, Fernández-Villaverde and Jones, 2020) and exploring the

implications of several types of policies (see, for instance, Alvarez et al., 2020, Acemoglu et al.,

2020, Atkeson, 2020, or Jones et al., 2020). Within this literature, a few papers have explored

the spatial dimension of the COVID-19 pandemic by simulating multi-group SIR models applied to

various urban and regional contexts (see, among others, Argente et al., 2020, Bisin and Moro, 2020,

Cuñat and Zymek, 2020, Birge et al., 2020, and Fajgelbaum et al., 2020). Our paper also connects

with a subset of that literature, exemplified by the work of Alfaro et al. (2020), Farboodi et al.

(2020), Fenichel et al. (2011), and Toxvaerd (2020) that has studied how the behavioral response

of agents (e.g., social distancing) affects the spread and persistence of pandemics. Whereas most

of this research is concerned with COVID-19 and adopts a simulation approach, our main goal

is to develop a model of human interaction that jointly provides a microfoundation for a gravity

equation and multi-group SIR dynamics, and can be used to analytically characterize the two-way

relationship between globalization and pandemics in general.

Our work is also related to a literature in economic history that has emphasized the role of

international trade in the transmission of disease. For the case of the Black Death, Christakos et

al. (2005), Boerner and Severgnini (2014), Ricci et al. (2017), and Jedwab et al. (2019) argue

that trade routes are central to understanding the spread of the plague through medieval Europe.

In a review of a broader range of infection diseases, Saker et al. (2002) argue that globalization

2See Hetchote (2000) and Brauer and Castillo-Chavez (2012) for very useful reviews of mathematical modelling
in epidemiology, and Ellison (2020) for an economist’s overview of SIR models with heterogeneity.
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has often played a pivotal role in disease transmission. The recent COVID-19 pandemic has also

provided numerous examples of the spread of the virus through business travel.3

The rest of the paper is structured as follows. In Section 2, we present our baseline gravity-style

model of international trade with endogenous intranational and international human interactions.

In Section 3, we consider a first variant of the dynamics of disease spread in which the rate of

contact between agents (though endogenous) is time-invariant during the pandemic. In Section 4,

we incorporate labor supply responses to the pandemic, which affect the path of relative wages (and

thus the rate of contact of agents within and across countries) during the pandemic. In Section 5,

we incorporate individual behavioral responses motivated by agents adjusting their desired number

of human interactions in response to their fear of being infected by the disease. We offer some

concluding remarks in Section 6.

2 Baseline Economic Model

We begin by developing a stylized model of the global economy in which international trade is

sustained by human interactions. Our baseline model is a simple two-country world, in which

countries use labor to produce differentiated goods that are exchanged in competitive markets via

human interactions. In Section 2.3, we outline how our model can be easily extended to settings

featuring (i) multiple countries, (ii) intermediate inputs, and (iii) scale economies and imperfect

competition.

2.1 Environment

Consider a world with two locations: East and West, indexed by i or j. We denote by J the

set of countries in the world, so for now J = {East,West}. Location i ∈ J is inhabited by a

continuum of measure Li of households, and each household is endowed with the ability to produce

a differentiated variety using labor as the only input in production. We denote by wi the wage rate

in country i.

Trade is costly. There are iceberg bilateral trade cost τij = tij × (dij)
δ, when shipping from

j back to i, where dij ≥ 1 is the symmetric distance between i and j, and tij is a man-made

additional trade friction imposed by i on imports from country j. We let these man-made trade

costs be potentially asymmetric reflecting the fact that one country may impose higher restrictions

to trade (e.g., tariffs, or delays in goods clearing customs) than the other country. For simplicity,

3A well-known example in the U.S. is the conference held by biotech company Biogen in Boston, Massachusetts
on February 26 and 27, and attended by 175 executive managers, who spread the covid-19 virus to at least
six states, the District of Columbia and three European countries, and caused close to 100 infections in Mas-
sachusetts alone http://www.nytimes.com/2020/04/12/us/coronavirus-biogen-boston-superspreader.html). Another
example is Steve Walsh, the so-called British “super spreader,” who is linked to at least 11 new infections of
COVID-19, and who caught the disease in Singapore, while he attended a sales conference in late January of 2020
(see https://www.washingtonpost.com/world/europe/british-coronavirus-super-spreader-may-have-infected-at-least-
11-people-in-three-countries/2020/02/10/016e9842-4c14-11ea-967b-e074d302c7d4 story.html). The initial spread of
COVID-19 to Iran and Nigeria has also been tied to international business travel.
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there are no man-made frictions to internal shipments, so tii = 1 and τii = (dii)
δ , where dii < dij

can be interpreted as the average internal distance in country i = East,West.

Each household is formed by two individuals. One of these individuals – the seller – is in

charge of producing and selling the household-specific differentiated variety from their home, while

the other individual – the buyer – is in charge of procuring varieties for consumption from other

households in each of the two locations. We let all households in country i be equally productive

in manufacturing varieties, with one unit of labor delivering Zi units of goods. Goods markets

are competitive and sellers make their goods available at marginal cost. Households have CES

preferences over differentiated varieties, with an elasticity of substitution σ > 1 regardless of the

origin of these varieties, and they derive disutility from the buyer spending time away from home.

More specifically, a household in country i incurs a utility cost

cij (nij) =
c

φ
× µij × (dij)

ρ × (nij)
φ , (1)

whenever the household’s buyer secures nij varieties from location j, at a distance dij ≥ 1 from

i. The parameter µij captures (possibly asymmetric) travel restrictions imposed by country j’s

government on visitors from i. The parameter c governs the cost of travel and we assume it is

large enough to ensure an interior solution in which nij ≤ Lj for all i and j ∈ J . We assume that

whenever nij < Lj , the set of varieties procured from j are chosen at random, so if all households

from i procure nij from j, each household’s variety in j will be consumed by a fraction nij/Lj of

households from i.4

Welfare of households in location i is then given by

Wi =

(∑
j∈J

∫ nij

0
qij (k)

σ−1
σ dk

) σ
σ−1

− c

φ

∑
j∈J

µij (dij)
ρ × (nij)

φ , (2)

where qij (k) is the quantity consumed in location i of the variety produced in location j by house-

hold k.

2.2 Equilibrium

Let us first consider consumption choices in a given household for a given nij . Maximizing (2)

subject to the households’ budget constraint, we obtain:

qij =
wi

(Pi)
1−σ

(
τijwj
Zj

)−σ
, (3)

4It may seem arbitrary that it is buyers rather than sellers who are assumed to travel. In section 2.3, we offer
an interpretation of the model in which trade is in intermediate inputs and the buyer travels in order to procure
the parts of components necessary for the household to produce a final consumption good. In section 2.3, we also
consider the case in which travel costs are in terms of labor, rather than a utility cost. Finally, in that same section
2.3, we also explore a variant of the model in which it is sellers rather than buyers who travel, as is often implicitly
assumed in standard models of firm participation in trade (cf., Melitz, 2003).
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where wi is household income, wj/Zj is the common free-on-board price of all varieties produced

in location j, τij are trade costs when shipping from j to i, and Pi is a price index given by

Pi =

(∑
j∈J

nij

(
τijwj
Zj

)1−σ
)1/(1−σ)

. (4)

Multiplying equation (3) by (qij)
(σ−1)/σ, summing across locations, and rearranging, it is straight-

forward to show that

Qi =
(∑

j∈J
nij (qij)

(σ−1)/σ
)σ/(σ−1)

=
wi
Pi
, (5)

so real consumption equals real income.

In order to characterize each household’s choice of nij , we first plug (3) and (4) into (2) to

obtain

Wi = wi

(∑
j∈J

nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)

− c

φ

∑
j∈J

µij (dij)
ρ × (nij)

φ . (6)

The first order condition associated with the choice of nij delivers (after plugging in (5)):

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

. (7)

Notice that bilateral human interactions follow a ‘gravity-style’ equation that is log-separable in

origin and destination terms, and a composite of bilateral trade frictions. Evidently, natural and

man-made barriers to trade (dij , tij) and to labor mobility (µij) will tend to reduce the number

of human interactions sought by agents from country i in country j. As we show in Appendix

A.1, for the second-order conditions to be met for all values of µij , dij , and tij , we need to impose

φ > 1/ (σ − 1) and σ > 2.

Bilateral import flows by country i from country j are in turn given by

Xij = nijpijqijLi = (c (σ − 1)µij)
− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1

(
tijwj
ZjPi

)−φ(σ−1)
φ−1

(
wi
Pi

) 1
φ−1

wiLi. (8)

Notice that the trade shares can be written as

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

, (9)

and are thus log-separable in an origin-specific term Sj , a destination-specific term Θi, and a

composite bilateral trade friction term given by:5

(Γij)
−ε = (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1 , (10)

5More specifically, Sj = (wj/Zj)
−φ(σ−1)

φ−1 and Θi =
∑
`∈J (µi`)

− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1 .
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which encompasses mobility frictions (µij), transport costs (dij) and trade frictions (tij).

Following Head and Mayer (2014), it then follows that bilateral trade flows in (8) also follow a

standard gravity equation

Xij =
Xi

Φi

Yj
Ωj

(Γij)
−ε ,

where Xi is total spending in country i, Yj is country j’s value of production, and

Φi =
∑

j∈J

Yj
Ωj

(Γij)
−ε ; Ωj =

∑
i∈J

Xi

Φi
(Γji)

−ε .

Notice that the distance elasticity is affected by the standard substitutability σ, but also by the

traveling cost elasticity ρ, and by the convexity φ of the traveling costs. It is clear that both

ρ > 0 and φ > 1 increase the distance elasticity relative to a standard Armington model (in which

the distance elasticity would be given by δ (σ − 1)). The other man-made bilateral frictions also

naturally depress trade flows.6

We next solve for the price index and household welfare in each country. Invoking equation (5),

plugging (3) and (7), and simplifying delivers

Pi =

(
wi

c (σ − 1)

)− 1
φ(σ−1)−1

(∑
j∈J

(Γij)
−ε (wj/Zj)

− (σ−1)φ
φ−1

)− (φ−1)
φ(σ−1)−1

. (11)

Going back to the expression for welfare in (2), and plugging (5), (7) and (11), we then find

Wi =
φ (σ − 1)− 1

φ (σ − 1)

wi
Pi
, (12)

which combined with (9) implies that aggregate welfare is given by

WiLi =
φ (σ − 1)− 1

φ (σ − 1)
× (πii)

− (φ−1)
φ(σ−1)−1 ×

(
(Zi)

φ(σ−1)

c (σ − 1)
(Γii)

−ε(φ−1)

) 1
φ(σ−1)−1

Li. (13)

This formula is a variant of the Arkolakis et al. (2012) welfare formula indicating that, with

estimates of φ and σ at hand, one could compute the change in welfare associated with a shift to

autarky only with information on the domestic trade share πii. A key difference relative to their

contribution, however, is that the combination of φ and σ relevant for welfare cannot easily be

backed out from estimation of a ‘trade elasticity’ (see equation (10)). Later, when we allow trade

to affect the transmission of disease and this disease to affect mortality, a further difference will be

that the effect of trade on aggregate welfare will also depend on its effect on mortality (via changes

in Li).

6It is also worth noting that when µij = µji and tji = tij , this gravity equation is fully symmetric, and

Φi = Ωi =
∑

j
Sjφij =

∑
j

(wj/Zj)
−φ(σ−1)

φ−1 (µij)
− 1

φ−1 (dij)
− ρ+φ(σ−1)δ

φ−1 (tij)
−φ(σ−1)

φ−1 .
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We conclude our description of the equilibrium of our model by discussing the determination of

equilibrium wages. For that, it is simplest to just invoke the equality between income and spending

in each country, that is πiiwiLi + πjiwjLj = wiLi, which plugging in (9), can be written as

πii (wi, wj)× wiLi + πji (wi, wj)× wjLj = wiLi, (14)

where πii (wi, wj) and πji (wi, wj) are given in equation (9). This pair of equations (one for i and

one for j) allow us to solve for wi and wj as a function of the unique distance dij , the pair of

mobility restriction parameters µij and µji, the pair of man-made trade barriers tij and tji, and

the parameters φ, σ, δ, and ρ. Setting one of the country’s wages as the numéraire, the general

equilibrium only requires solving one of these non-linear equations in (14). Once one has solved for

this (relative) wage, it is straightforward to solve for trade flows and for the flow of buyers across

locations, as well as for the implied welfare levels.

Note that the general-equilibrium condition in (14) is identical to that obtained in standard

gravity models, so from the results in Alvarez and Lucas (2007), Allen and Arkolakis (2014), or

Allen et al. (2020), we can conclude that:7

Proposition 1 As long as trade frictions Γij are bounded, there exists a unique vector of equilib-

rium wages w∗ = (wi, wj) ∈ R2
++ that solves the system of equations in (14).

Using the implicit-function theorem, it is also straightforward to see that the relative wage

wj/wi will be increasing in Li, Γii, Γji, and Zj , while it will be decreasing in Lj , Γjj , Γij , and Zi.

Given the vector of equilibrium wages w = (wi, wj), we are particularly interested in studying

how changes in trade frictions (dij , tij , or µij) affect the rate of human-to-human interactions at

home, abroad and worldwide. Note that, combining equations (3), (8), and (9), we can express

nij (w) =

(
tij (dij)

δ wj
Pi (w)Zj

)σ−1

πij (w) , (15)

where πij (w) is given in (9) and Pi (w) in (11). Studying how nii (w) and nij (w) are shaped by the

primitive parameters of the model is complicated by the general equilibrium nature of our model,

but in Appendix A.2 we are able to show that:

Proposition 2 A decline in any international trade or mobility friction (dij , tij , tji, µij , µji) leads

to: (a) a decline in the rates (nii and njj) at which individuals will meet individuals in their own

country; and (b) an increase in the rates at which individuals will meet individuals from the other

country (nij and nji).

In words, despite the fact that changes in trade and mobility frictions obviously impact equilib-

rium relative wages, the more open are economies to the flow of goods and people across borders,

7In Alvarez and Lucas (2007), uniqueness requires some additional (mild) assumptions due to the existence of an
intermediate-input sector. Because our model features no intermediate inputs, we just need to assume that trade
frictions remain bounded.
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the larger will be international interactions and the lower will be domestic interactions.

We can also study the effect of reductions in international trade and mobility frictions on the

overall measure of varieties consumed by each household, which also corresponds to the number of

human interactions experienced by each household’s buyer (i.e., nii + nij). Similarly, we can also

study the total number of human interactions carried out by each household’s seller (i.e., nii+nji).
8

General equilibrium forces complicate this comparative static, but we are able to show that (see

Appendix A.3).

Proposition 3 Suppose that countries are symmetric, in the sense that Li = L, Zi = Z, and

Γij = Γ for all i. Then, a decline in any (symmetric) international trade frictions leads to an

overall increase in human interactions (ndom + nfor ) experienced by both household buyers and

household sellers.

The assumption of full symmetry is extreme, but the result of course continues to hold true

if country asymmetries are small and trade frictions are not too asymmetric across countries.

Furthermore, exhaustive numerical simulations suggest that the result continues to hold true for

arbitrarily asymmetric declines in trade frictions, as long as countries are symmetric in size (Li = L)

and in technology (Zi = Z).

Reverting back to our general equilibrium with arbitrary country asymmetries, we can also

derive results for how changes in the labor force in either country affect the per-household measure

of interactions at home and abroad. More specifically, from equation (14), it is straightforward

to see that the relative wage wj/wi is monotonic in the ratio Li/Lj . Furthermore, working with

equations (7) and (11), we can establish (see Appendix A.4 for a proof):

Proposition 4 A decrease in the relative size of country i’s population leads to a decrease in the

rates nii and nji at which individuals from all countries will meet individuals in country i, and to

an increase in the rates njj and nij at which individuals from all countries will meet individuals in

the other country j.

This result will prove useful in Section 4, where we study how general equilibrium forces partly

shape the dynamics of an epidemic. For instance, if the epidemic affects labor supply dispropor-

tionately in one of the countries, then the implied increase in that country’s relative wage will

induce a form of general equilibrium social distancing, as it will incentivize home buyers to avoid

that country, even without social distancing motivated by health risks.

2.3 Extensions

Our baseline economic model is special among many dimensions, so it is important to discuss the

robustness of some of the key insights we take away from our economic model. Because the gravity

equation of international trade can be derived under a variety of economic environments and market

8Note that despite us modeling a frictionless labor market, the assumed symmetry of all households implies that
no household has any incentive to hire anybody to buy or sell goods on its behalf.
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structures, it is perhaps not too surprising that many of the key features of our model carry over

to alternative environments featuring multiple countries, intermediate input trade, scale economies

and imperfect competition. We next briefly describe four extensions of our model, but we leave all

mathematical details to the Appendix (see Appendix C).

Some readers might object to the fact that, in our baseline model, production uses labor, while

the traveling cost is specified in terms of a utility cost. We make this assumption to identify

international travel with specific members of the household, which facilitates a more transparent

transition to a model of disease transmission driven by human-to-human interactions. Nevertheless,

in terms of the mechanics of our economic model, this assumption is innocuous. More specifically,

in the first extension studied in Appendix C, we show that Propositions 1 through 4 continue to

hold whenever travel costs in equation (1) are specified in terms of labor rather than being modelled

as a utility cost. In fact, this version of the model is isomorphic to our baseline model above, except

for a slightly different expression for the equilibrium price index Pi.

The assumption that households travel internationally to procure consumption goods may seem

unrealistic. Indeed, international business travel may be better thought as being a valuable input

when firms need specialized inputs and seek potential providers of those inputs in various countries.

Fortunately, it is straightforward to re-interpret our model along those lines by assuming that

the differentiated varieties produced by households are intermediate inputs, which all households

combine into a homogeneous final good, which in equilibrium is not traded. The details of this

re-interpretation are worked out in the second extension studied in Appendix C.

Returning to our baseline economic model, in Appendix C we next derive our key equilibrium

conditions for a world economy with multiple countries. In fact, all the equations above, except

for the labor-market clearing condition (14) apply to that multi-country environment once the set

of countries J is re-defined to include multiple countries. The labor-market condition is in turn

simply given by
∑

j∈J πij (w)wjLj = wiLi, where πij (w) is defined in (9). Similarly, the model

is also easily adaptable to the case in which there is a continuum of locations i ∈ Ω, where Ω is

a closed and bounded set of a finite-dimensional Euclidean space. The equilibrium conditions are

again unaltered, with integrals replacing summation operators throughout.

Finally, in Appendix C we explore a variant of our model in which it is the household’s seller

rather than the buyer who travels to other locations. We model this via a framework featuring scale

economies, monopolistic competition and fixed cost of exporting, as in the literature on selection

into exporting emanating from the seminal work of Melitz (2003), except that the seller fixed costs

are a function of the measure of buyers reached in a destination market. Again, Propositions 1

through 4 continue to hold in such an environment.

3 A Two-Country SIR Model with Time-Invariant Interactions

So far, we have just characterized a static (steady-state) model of international trade supported by

international travel. Now let us consider the case in which the model above describes a standard
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“day” in the household. More specifically, in the morning the buyer in each household in i leaves the

house and visits nii sellers in i and nij sellers in j, procuring goods from each of those households.

For simplicity, assume that buyers do not travel together or otherwise meet each other. While the

buyer visits other households and procures goods, the seller in each household sells its own goods

to visitors to their household. There will be nii domestic visitors and nji foreign visitors. In the

evening, the two members of the household reunite.

3.1 Preliminaries

With this background in mind, consider now the dynamics of contagion. As in the standard

epidemiological model, we divide the population at each point in time into Susceptible households,

Infectious households, and Recovered households (we will incorporate deaths in the next section).

We think of the health status as being a household characteristic, implicitly assuming a perfect rate

of transmission within the household (they enjoy a passionate marriage), and also that recovery is

experienced contemporaneously by all household members. For simplicity, we ignore the possibility

that a vaccine puts an end to an epidemic before herd immunity is achieved.

In this section we seek to study the dynamics of a two-country SIR model in which the pandemic

only generates cross-country externalities via contagion (and not via terms of trade effects), and

in which households do not exert any pandemic-motivated social distancing. Hence, we assume

that the infection has no effect on the ability to work and trade or mortality, and that agents

are unaware of the threat of infection and their health status, which implies that they have no

incentive to change their individual behavior. Labor supply and aggregate income are constant in

each country and over time, because there are no deaths and households have no incentive to social

distance. We relax these assumptions in Section 4, where we allow for deaths from the disease, but

assume that agents remain unaware of the threat of infection and their health status, and hence

continue to have no incentive to change their individual behavior. The result is a model in which

the dynamics of the pandemic affect the evolution of the labor supply and aggregate income in

each country. In Section 5 we go further and assume that agents understand that if they become

infected, they have a positive probability of dying (an event that they, of course, do notice!). The

possibility of dying generates behavioral responses to prevent contagion by reducing interactions.

In sum, the goal of this section is to understand how cross-country interactions motivated by

economic incentives affect the spread of a pandemic in a world in which these interactions are time-

invariant during the pandemic. It is important to emphasize, however, that the fixed measure of

interactions chosen by each household is still endogenously shaped by the primitive parameters of

our model, as described in Section 2. We will be particularly interested in studying the incidence

and dynamics of the pandemic for different levels of trade integration, and different values of the

primitive epidemiological parameters (the contagion rate conditional on a number of interactions

and the recovery rate) in each country.
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3.2 The Dynamic System

As argued above, for now, the population, technology and relative wage will all be time-invariant,

so we can treat nii, nij , nji and njj as fixed parameters (though obviously their constant level is

shaped by the primitives of the model).

The share of households of each type evolve according to the following laws of motion (we ignore

time subscripts for now to keep the notation tidy):

Ṡi = −2nii × αi × Si × Ii − nij × αj × Si × Ij − nji × αi × Si × Ij (16)

İi = 2nii × αi × Si × Ii + nij × αj × Si × Ij + nji × αi × Si × Ij − γiIi (17)

Ṙi = γiIi (18)

To better understand this system, focus first on how infections grow in equation (17). The first

term 2nii×αi×Si× Ii in this equation captures newly infected households in country i. Sellers in

i receive (in expectation) nii domestic buyers, while buyers meet up with nii domestic sellers. The

household thus jointly has 2nii domestic contacts. In those encounters, a new infection occurs with

probability αi whenever one of the agents is susceptible (which occurs with probability Si) and the

other agent is infectious (which occurs with probability Ii).
9 The second term of equation (17)

reflects new infections of country i’s households that occur in the foreign country when susceptible

buyers from i (of which there are Si) visit foreign households with infectious sellers. There are nij

of those meetings, leading to an new infection with probability αj whenever the foreign seller is

infectious (which occurs with probability Ij). Finally, the third term in (17) reflects new infections

associated with susceptible sellers in country i receiving infectious buyers from abroad (country j).

Each susceptible domestic buyer (constituting a share Si of i’s population) has nji such meetings,

which cause an infection with probability αi whenever the foreign buyer is infectious (which occurs

with probability Ij). The final term in equation (17) simply captures the rate at which infectious

individuals recover (γi), and note that we assume that this recovery rate only depends on the

country in which infected agents reside, regardless of where they got infected.

Once the equation determining the dynamics of new infections is determined, the one deter-

mining the change of susceptible agents in (16) is straightforward to understand, as it just reflects

a decline in the susceptible population commensurate with new infections. Finally, equation (18)

governs the transition from infectious households to recovered households.

In Section B of the Appendix, we provide further details on the numerical simulations of the two-

country SIR model that we use in the figures below to illustrate our results, including a justification

for the parameter values we use.

9In summing the buyer and seller domestic contact rates to obtain a domestic contact rate of 2nii for the household,
we use the property of continuous time that there is zero probability that the buyer and seller are simultaneously
infected at exactly the same instant.

14



3.3 The Closed-Economy Case

Our model reduces to a standard SIR model when there is no movement of people across countries,

and thus no international trade. In such a case, the system in (16)-(18) reduces to

Ṡi = −βi × Si × Ii
İi = βi × Si × Ii − γiIi
Ṙi = γiIi

where βi = 2nii is the so-called contact rate. The dynamics of this system have been studied

extensively since the pioneering work of Kermack and McKendrick (1927, 1932). Suppose that at

some time t0, there is an outbreak of a disease which leads to initial infections Ii (t0) = ε > 0,

where ε is small. Because ε is small, Si (t0) is very close to 1, and from the second equation,

we have the standard result that if the so-called basic reproduction number R0i = βi/γi is less

than one, then, İi (t) < 0 for all t > t0, and the infection quickly dies out. In other words, when

R0i = βi/γi < 1 an epidemic-free equilibrium is globally stable. If instead R0i = βi/γi > 1, the

number of new infections necessarily rises initially and the share of susceptible households declines

until the system reaches a period t∗ at which Si (t∗) = γi/βi, after which infections decline and

eventually go to 0. The steady-state values of Si (∞) in this epidemic equilibrium is determined

by the solution to this simple non-linear equation:10

lnSi (∞) = −βi
γi

(1− Si (∞)) . (19)

This equation admits a unique solution with 1 > Si (∞) > 0.11 Furthermore, because Si (∞) <

γi/βi (since Si (t∗) = γi/βi at the peak of infections), differentiation of (19) implies that the

steady-state share of susceptible households Si (∞) is necessarily decreasing in R0i. In sum, in the

closed-economy case, Si (∞) = 1 as long as R0i ≤ 1, but when R0i > 1, the higher is R0i, the lower

is Si (∞), and the more people will have been infected by the end of the epidemic.

3.4 The Open-Economy Case

We can now return to the two-country system in (16)-(18). We first explore the conditions under

which a pandemic-free equilibrium is stable, and infections quickly die out worldwide, regardless

of where the disease originated. For that purpose, it suffices to focus on the laws of motion for

10To see this, begin by writing
Ṡi
Si

= −βiIi = −βi
γi
Ṙ (i) .

Now taking logs and integrating, and imposing Ii (∞) = 0, delivers

lnSi (∞)− lnSi (t0) = −βi
γi

(1− Si (∞)−Ri (0)) .

Finally, imposing lnSi (t0) ' 0 and Ri (t0) ' 0, we obtain equation (19).
11Equation (19) is obviously also satisified when Si (∞) = 1, but this equilibrium is not stable when R0i > 1.
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(Si, Sj , Ii, Ij) evaluated at the pandemic-free equilibrium, in which Si = Sj ' 1 and Ii = Ij ' 0.

The Jacobian of this system is given by

J =


0 0 −2αinii − (αjnij + αinji)

0 0 − (αjnij + αinji) −2αjnjj

0 0 2αinii − γi αjnij + αinji

0 0 αjnij + αinji 2αjnjj − γj

 ,

and the largest positive eigenvalue of this matrix (see Appendix D) is given by

λmax =
1

2
(2αinii − γi)+

1

2
(2αjnjj − γj)+

1

2

√
4 (αjnij + αinji)

2 + ((2αinii − γi)− (2αjnjj − γj))2.

Since we are interested in finding necessary conditions for stability of this equilibrium (i.e., λmax <

0), and noting that λmax is increasing in nij and nji, we have that

λmax ≥ λmax|nij=nji=0 = max {2αinii − γi, 2αjnjj − γjj} . (20)

As a result, a pandemic-free equilibrium can only be stable whenever 2αinii/γi ≤ 1 and 2αjnjj/γjj ≤
1. In words, if the reproduction number R0i based only on domestic interactions (but evaluated at

the world equilibrium value of nii) is higher than 1 in any country, the pandemic-free equilibrium

is necessarily unstable, and the world will experience at least one period of rising infections along

the dynamics of the pandemic. This result highlights the externalities that countries exert on other

countries when the disease is not under control purely based on the domestic interactions of agents.

It is interesting to note that we achieve the exact same result when studying the global repro-

duction number R0 associated with the world equilibrium dynamics. Remember that R0 is defined

as the expected number of secondary cases produced by a single (typical) infection starting from a

completely susceptible population. Because our model maps directly to multigroup models of dis-

ease transmission, we can invoke (and verify) results from that literature to provide an alternative

analysis of the stability of the pandemic-free equilibrium in our two-country dynamic system (cf.,

Hethcote, 1978, Hethcote and Thieme, 1985, van den Driessche and Watmough, 2002, Magal et al.

2016). In particular, it is a well-known fact that the pandemic-free equilibrium is necessarily stable

if R0 < 1. In order to compute R0, we follow the approach in Diekmann et al. (1990), and write

the two equations determining the dynamics of infections as[
İi

İj

]
=

[
2αiniiSi (αjnij + αinji)Si

(αjnij + αinji)Sj 2αjnjjSj

]
︸ ︷︷ ︸

F

[
Ii

Ij

]
−

[
γi 0

0 γj

]
︸ ︷︷ ︸

V

[
Ii

Ij

]
.
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The next generation matrix FV −1 (evaluated at t = t0, and thus Si (t0) = Sj (t0) ' 1) is given by

FV −1 =

[
2αinii/γi (αjnij + αinji) /γj

(αjnij + αinji) /γi 2αjnjj/γj

]
.

From the results in Diekmann et al. (1990), we thus have that

R0 = ρ
(
FV −1

)
,

where ρ
(
FV −1

)
is the spectral radius of the next generation matrix. In our case, this is given by

R0 =
1

2

(
2αinii
γi

+
2αjnjj
γj

)
+

1

2

√(
2αinii
γi

− 2αjnjj
γj

)2

+ 4
(αjnij + αinji)

2

γiγj
. (21)

As in the case of λmax in equation (20), we have that R0 is nondecreasing in nij and nji, and thus

R0 ≥ R0|nij=nji=0 = max

{
2αinii
γi

,
2αjnjj
γj

}
. (22)

This confirms again that the disease can only be contained (that is, the pandemic-free equilibrium

is stable) only if both countries’ disease reproduction rate based on their domestic interactions is

less than one.12 Therefore, even if a country has a strict disease environment that would prevent an

epidemic under autarky, it may be drawn into a world pandemic in the open economy equilibrium,

if its trade partner has a lax disease environment, as measured by its open economy domestic

reproduction rate.

Having described the existence and stability of a pandemic-free equilibrium, we next turn to a

situation in which R0 > 1 and the resulting contagion dynamics lead to a pandemic. Building on

the existing literature on multigroup models of disease transmission, it is well known that whenever

the global reproduction rate satisfies R0 > 1, there exists a unique asymptotically globally stable

‘pandemic’ equilibrium in which the growth in the share of worldwide infected households necessarily

increases for a period of time, and then declines to a point at which infections vanish and the share

of susceptible households in the population in each country (Si (∞) , Sj (∞)) takes a value strictly

between 0 and 1 (see, for instance, Hethcote, 1978).13 Starting from equations (16)-(18), and

going through analogous derivations as in the closed-economy case (see Appendix D), we obtain

the following system of nonlinear equations pinning down the steady-state values (Si (∞) , Sj (∞))

12Although the expressions for λmax andR0 appear different, it is straightforward to show that a necessary condition
for both λmax < 0 and R0 < 1 is

2αinii
γi

+
2αjnjj
γj

− 2αinii
γi

2αjnjj
γj

+
(αjnij + αinji)

2

γiγj
< 1.

If either 2αinii/γi > 1 or 2αjnjj/γj > 1, this condition cannot possibly hold.
13Proving global stability of the endemic equilibrium is challenging for some variants of the SIR model, but for

the simple one in (16)-(18), featuring permanent immunity and no vital dynamics, global stability of the endemic
equilibrium is implied by the results in Hethcote (1978), particularly section 6.
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of the share of susceptible households in each country in that pandemic equilibrium:

lnSi (∞) = −2αinii
γi

(1− Si (∞))− αjnij + αinji
γj

(1− Sj (∞)) (23)

lnSj (∞) = −2αjnjj
γj

(1− Sj (∞))− αjnij + αinji
γi

(1− Si (∞)) . (24)

Although we cannot solve this system in closed form, we can easily derive some comparative

statics. In particular, total differentiating we find that the steady-state values of Si and Sj are

decreasing in nii, njj , nij , and nji, and are increasing in γi and γj (see Appendix D).

We summarize these results in this section with the following proposition (see Appendix D for

a proof):

Proposition 5 Assume that there is trade between the two countries (i.e., αjnij + αinji > 0),

which implies that the next generation matrix FV −1 is irreducible. If R0 ≤ 1, the no-pandemic

equilibrium is the unique stable equilibrium. If R0 > 1, the no-pandemic equilibrium is unstable,

and there exists a unique stable endemic equilibrium with a steady-state featuring no infections

(Ii (∞) = Ij (∞) = 0) and shares of susceptible agents Si (∞) ∈ (0, 1) and Sj (∞) ∈ (0, 1) that

satisfy equations (23) and (24).

In Figure 1, we illustrate these analytical results by holding the infection rate in Country 1

(α1) constant and varying the infection rate in Country 2 (α2). The starting point is two identical

countries with a common infection rate of α1 = α2 = 0.04. The rest of the parameter values are

described in Appendix B. For this initial common infection rate, the global reproduction number

is R0 = 0.75, and the open economy domestic reproduction rates are R01 = R02 = 0.46. Thus,

the initial infection quickly dies out and there is no global pandemic. The fraction of recovered

agents in the long run, Ri (∞), which is equal to the cumulative number of infected agents in the

absence of deaths, is essentially zero in both countries. The left panel of Figure 1 plots Ri (∞) as a

function of R0 as we progressively increase α2 from 0.04 to 0.10. The value of R0 is monotone in α2

and increases from 0.75 to 1.46. Hence, as the exogenous infection rate of Country 2 increases, the

global reproduction rate increases beyond the critical value of 1, and the world experiences a global

pandemic. Note how the fraction of the cumulative number of recovered agents rises rapidly once

R0 increases beyond 1 and both countries go through increasingly severe pandemics. Note also the

importance of cross-country contagion in the open economy. Even though nothing is changing in

the domestic characteristics of Country 1, it is dramatically affected by the worsening conditions

in Country 2. The right panel shows the evolution of the pandemic in Country 1 for different levels

of severity of the disease environment in Country 2.14 The most severe and rapid pandemics are

associated with the highest values of α2 (the lightest curve in the graph). As α2 declines and R0

falls and crosses the value of 1, the evolution of inflections flattens and becomes longer, until the

pandemic eventually disappears.

14The color of each curve, correspond to the colors of the points in the left panel.
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Figure 1: The Impact of Changes in the Exogenous Infection Rate in Country 2, α2

The value of R0 is critical to determine the stability of a pandemic-free equilibrium. However,

it is worth emphasizing that is not critical to determine the existence of a pandemic cycle in each

country. For values of R0 close enough to 1, an individual country can experience a pandemic, even

if the world as a whole does not, if the declining number of cases in the other country is sufficiently

large. Similarly, even if R0 > 1, some countries might not experience a pandemic when R0 is close

enough to 1, even if the world economy as a whole does, since cases might be rising sufficiently

fast in the other country. In Figure 1, in fact, cases rise slowly when the economy crosses the

R0 = 1 threshold. At that point, pandemics are small and happen only in the sick country, while

the number of cases in the healthy country remain essentially steady. The peak of infections in

both countries is a smooth function of the value of α2.

3.5 Trade Integration and Global Pandemics

We now turn to the question of how globalization affects the prevalence and severity of a pandemic

in both countries. In terms of the stability of a pandemic-free equilibrium, inspection of equations

(20) and (22) might lead one to infer that avoiding a pandemic is always more difficult in a globalized

world. On the one hand, it is obvious that, for given positive values of nii and njj , if the ratio αi/γj

is sufficiently high in any country in the world, a global pandemic affecting all countries cannot

be avoided, even though the country with the lower ratio αi/γj might well have avoided it under

autarky. On the other hand, it would seem that even when αi = αj and γi = γj , the max operator

in (20) and (22) implies that the pandemic-free equilibrium is less likely to be stable in the open

economy. It is important to emphasize, however, that nii and njj are endogenous objects and will

naturally be lower, the lower are trade frictions, as formalized in Proposition 2. Still, it seems

intuitive that globalization will typically foster more human interactions, as these are necessary to

materialize the gains associated with trade integration, and that this will generally make it easier
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for pandemics to occur.

To explore this more formally, let us first consider a fully symmetric world in which all primitives

of the model (population size, technology, trade barriers, recovery rates, etc.) are common in both

countries, so that we have nii = njj = ndom, nij = nji = nfor, αi = αj = α, and γi = γj = γ. In

such a case, we have

λmax = 2α (ndom + nfor)− γ; R0 =
2α (ndom + nfor)

γ
,

and it thus follows immediately from Proposition 3 that a decline in any (symmetric) international

trade friction increases R0 and thus decreases the range of parameters for which a pandemic-

free equilibrium is stable. Furthermore, in this same symmetric case, the steady-state share of

susceptible households in the population is identical in both countries and implicitly given by

lnSi (∞) = −
2α (ndom + nfor)

γ
(1− Si (∞)) ,

and thus not only the frequency but also the severity of the pandemic are higher the lower are

(symmetric) trade frictions.

We summarize these results as follows:

Proposition 6 Suppose that countries are symmetric, in the sense that Li = L, Zi = Z, Γij = Γ,

αi = αj, and γi = γ for all i. Then, a decline in any (symmetric) international trade friction:

(i) increases R0, thus decreasing the range of parameters for which a pandemic-free equilibrium is

stable, and (ii) increases the share of each country’s population that becomes infected during the

pandemic when R0 > 1.

Although we have so far focused on a fully symmetric case, the main results in this Proposition

continue to hold true even if countries are not perfectly symmetric. More generally, and as noted

in footnote 12, a necessary condition for the pandemic-free equilibrium to be stable is

2αinii
γi

+
2αjnjj
γj

− 2αinii
γi

2αjnjj
γj

+
(αjnij + αinji)

2

γiγj
< 1, (25)

and thus what is key for the effects of reductions of trade and mobility barriers on the occurrence of

pandemics is whether the left-hand-side of this expression increases or declines with those reductions

in barriers.

Figure 2 illustrates part (i) of Proposition 6 for a case in which we introduce an asymmetry in

the exogenous infection rate across countries but the parameter condition in (25) is still satisfied.

We let α1 = 0.04 and α2 = 0.07 and study the cumulative number of recovered agents when we

increase symmetric international trade frictions (tij , left panel) and mobility frictions (µij , right

panel). The first point on both graphs, when t12 = t21 = µ12 = µ21 = 1, is one of the cases we

studied in Figure 1. The large infection rate in Country 2 generates a pandemic in both countries.

Globalization is essential to generate this pandemic. As both graphs illustrate, as we increase
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either tariffs or mobility restrictions, global interactions decline, and the total number of recovered

agents decreases. Eventually, when the world is sufficiently isolated, the pandemic disappears and

the pandemic-free equilibrium becomes stable. In both graphs, the value of R0 (plotted in orange

and measured in the right axis) declines smoothly with frictions. The vertical line in the figure

indicates the value of tariffs or mobility frictions, respectively, corresponding to R0 = 1.15 Clearly,

both types of barriers generate similar qualitative reductions in Ri (∞) , although for this specific

set of parameter values, the migration restrictions needed to eliminate the pandemic are larger than

the corresponding trade frictions.

Figure 2: The Impact of Changes in Trade (left) and Mobility (right) Frictions

Figure 3 illustrates part (ii) of Proposition 6 by depicting the evolution of the fraction of agents

infected for different levels of trade frictions. It corresponds to the exercise on the left panel of

Figure 2 (with α2 = 0.07 > 0.04 = α1), so the lightest curves represent the evolution of the fraction

of infected for the case with free trade (t12 = t21 = 1), and the darkest curves represent the case

when t12 = t21 = 1.5. Clearly, as we increase tariffs, the epidemic in both countries becomes less

severe and prolonged. The peak of the infection curve declines monotonically, as does the total

number of recovered agents. Eventually, although impossible to appreciate in the graph, high tariffs

eliminate the pandemic altogether and infections decline monotonically from their initial value.

Although in most cases condition (25) becomes tighter the lower are trade and mobility barriers,

it is instructive to explore scenarios in which greater integration may actually reduce the risk of a

pandemic. Suppose, in particular, that country j is a much lower risk environment, in the sense

that αj is very low – so infections are very rare – and γj is very high – so infected households

15Note that the value of Ri (∞), does not become zero for either country right at the point where tariffs or mobility
frictions lead R0 to become greater than one. The reason is that even though one of the countries necessarily avoids a
pandemic, it lingers close to its initial value of infections for a long time, which accumulates to a positive cumulative
number of recovered agents.
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Figure 3: The Impact of Changes in Trade Frictions on the Evolution of Infections

quickly recover in that country. In the limiting case αj → 0, condition (25) reduces to

2αinii
γi

+
1

γj

(αinji)
2

γi
< 1.

For a high value of γj , it is then straightforward to see that the fall in country i’s domestic

interactions nii associated with a reduction in international barriers makes this constraint laxer,

even if nji goes up with that liberalization. In those situations it is perfectly possible for a

pandemic-free equilibrium worldwide to only be stable when barriers are low. The intuition for

this result is straightforward. In such a scenario, globalization makes it economically appealing for

agents from a high-risk country to increase their interactions with agents in a low-risk country, and

despite the fact that overall interactions by these agents may increase, the reduction in domestic

interactions in their own high-risk environment is sufficient to maintain the disease in check.

More generally, beyond this limiting case, if countries differ enough in their epidemiological

parameters, even when R0 > 1, it may well be the case that a decline in international trade

frictions actually ameliorates the pandemic by incentivizing agents in the high-risk country to shift

more of their interactions to the low-risk country.

We summarize this result as follows:

Proposition 7 When the contagion rate αi and the recovery rate γi vary sufficiently across coun-

tries, a decline in any international trade friction (i) decreases R0, thus increasing the range of

parameters for which a pandemic-free equilibrium is stable, and (ii) when R0 > 1, it reduces the

share of the population in the high-risk (high αi, low γi) country that becomes infected during the

pandemic, and it may also reduce the share of the population in the low-risk (low αi, high γi)

country that become infected during the pandemic.
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An interesting implication of the last statement of Proposition 7 is that although it would seem

intuitive that a healthy country should impose high restrictions to the inflow of individuals from a

high-risk country where a disease has just broken out, in some cases such restrictions may in fact

contribute to the spread of the disease in the high-risk country, which may then make a global

pandemic inevitable unless mobility restrictions are set at prohibitive levels.

Figure 4: The Impact of Changes in Trade (left) and Mobility (right) Frictions with Large Differ-
ences in Infection Rates Across Countries (α1 = 0.008 and α2 = 0.052)

Figure 4 presents examples in which increases in trade and mobility barriers eliminate the

possibility of a pandemic-free equilibrium (as predicted by part (i) of Proposition 7). As we argued

above, to generate these examples we need large differences in exogenous infection rates. The

figure makes the exogenous infection rate in the healthy country, Country 1, extremely small at

α1 = 0.008, and sets α2 = 0.052 (a standard value).16 In both panels, increases in frictions

now lead to increases in R0 (again depicted in orange and measured in the right axis). Without

frictions the pandemic-free equilibrium is stable. Agents in Country 2 interact sufficiently with

the healthier Country 1, which helps them avoid the pandemic. As both economies impose more

frictions, domestic interactions increase rapidly, while foreign interactions drop. This is bad news

for Country 2, since its larger infection rate now leads to a pandemic. Perhaps surprisingly, it is

also bad news for Country 1 since, although it interacts less with Country 2, it does so sufficiently

to experience a pandemic. Larger frictions, which decrease aggregate income in both countries

smoothly, also worsen the pandemic in both countries, at least when frictions are not too large;

a clear case for free trade and mobility. Of course, as frictions increase further, eventually they

isolate Country 1 sufficiently and so the severity of its local pandemic declines. In autarky, Country

1 avoids the pandemic completely, but at a large cost in the income of both countries. In contrast,

higher frictions always worsen the pandemic in Country 2. Contacts with the healthy country are

16Relative to the baseline parameters the example also lowers c to 0.1 and φ to 1.5. These additional changes
increase the overall number of domestic and foreign interactions.

23



always beneficial, since they dilute interactions with locals, which are more risky.

In Figure 5 we illustrate part (ii) of Proposition 7 for the case with high differences in exogenous

infection rates across countries that we presented in Figure 4. We focus on three specific exercises:

A case with free trade where t12 = t21 = 1, another with intermediate tariffs where t12 = t21 = 1.2,

and a third one where countries are in autarky. With free trade, there is no pandemic in either

country. As we increase trade frictions, a pandemic develops in both countries, although it is much

more severe in Country 2, the country with the higher exogenous infection rate. Still, the pandemic

in Country 1 ends up infecting around 1% of the population. Moving to autarky eliminates the

pandemic for Country 1, but makes it even more severe, faster, and with a higher peak, in Country

2. Closing borders helps the healthy country eliminate the pandemic only if trade is completely

eliminated, and at the cost of a much more severe pandemic in Country 2 and larger income losses

for everyone. Although Figure 5 uses countries of identical size and studies the case of changes in

symmetric tariffs, we obtain very similar results when countries are asymmetric, or when Country 1,

the healthy country, is the only country closing its borders. Similar examples can also be generated

when considering mobility rather than trade frictions, as in the right panel of Figure 4. The essential

ingredient for declines in international frictions to ameliorate the pandemic, on top of increasing

incomes, is for countries to exhibit large asymmetries in epidemiological conditions.

Figure 5: Evolution of Infections under Free Trade, Intermediate Trade Frictions, and Autarky
with Large Differences in Infection Rates Across Countries (α1 = 0.008 and α2 = 0.052)

3.6 Transitional Dynamics: A Second Wave

When R0 > 1 and the world economy converges to the pandemic steady-state equilibrium in

equations (23) and (24), convergence to that steady-state may entail significantly richer dynamics

than in the closed-economy SIR model. In particular, in the open economy, integrating the dynamics

of infections in each country using the initial conditions Si (0) = Sj (0) = 1 and Ri (0) = Rj (0) = 0,
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we have the following closed-form solutions for infections in each country at each point in time (Iit,

Ijt) as a function of susceptibles in each country (Si (t), Sj (t)):

Ii (t) = 1− Si (t) +
logSi (t)− αjnij+αinji

2αjnjj
logSj (t)

2αinii
γi
− αjnij+αinji

2αjnjj

αinji+αjnij
γi

, (26)

Ij (t) = 1− Sj (t) +
logSj (t)− αinji+αjnij

2αinii
logSi (t)

2αjnjj
γj
− αinji+αjnij

2αinii

αjnij+αinji
γj

. (27)

In the closed economy, there is necessarily a single wave of infections in the absence of a lockdown

or other time-varying health policies. In contrast, in the open economy, it becomes possible for

a country to experience multiple waves of infections, even in the absence of lockdowns or other

time-varying health policies. From equations (26) and (27), the rate of growth of infections in each

country is highest when Si (t) = Sj (t) = 1, and declines as the number of susceptibles in each

country falls, but the decline with Si (t) occurs at a different rate from the decline with Sj (t). It

is this difference that creates the possibility of multiple waves. If one country has a wham-bam

epidemic that is over very quickly in the closed economy, while the other country has an epidemic

that builds slowly in the closed economy, this creates the possibility for the country with the quick

epidemic in the closed economy to have multiple peaks of infections in the open economy. The first

peak reflects the rapid explosion of infections in that country, which dissipates quickly. The second

peak, which is in general smaller, reflects the evolution of the pandemic in its trading partner.

In Figure 6 we provide an example of such a case, in which Country 1 experiences two waves

of infections in the open economy, whereas Country 2 experiences a single, more prolonged and

severe, wave. Country 1 features a large value of α1, but also a large value of γ1. Thus, although

the infection rate is large, people remain contagious only briefly (perhaps because of a good contact

tracing program). The resulting domestic reproduction rate R01 = 1.08 and the resulting first peak

of the pandemic is relatively small and quick. Since Country 1 is assumed ten times smaller than

Country 2, its small initial pandemic has no significant effect on Country 2. There, the infection rate

is much smaller, but the disease remains contagious for much longer, leading to a larger R01 = 1.66,

which also results in a global reproduction number R0 = 1.66.17 The result is a more protracted

but also much longer singled-peaked pandemic in Country 2. This large pandemic does affect the

smaller country through international economic interactions. The large country amounts for many

of the interactions of the small country, which leads to the second wave of the pandemic in Country

2. Essential for this example is that countries have very different timings for their own pandemics

in autarky, but also that in the open economy the relationship is very asymmetric, with the small

country having little effect on the large country but the large country influencing the small country

significantly. If the interactions are large enough in both directions, both countries will end up with

a synchronized pandemic with only one peak.

17The parameter values used in the exercise are σ = 4.5, L1 = 2, L2 = 20, d12 = d11, c = 0.12, α1 = 0.69, α2 = 0.09,
γ1 = 2.1 and γ2 = 0.18. All other values are identical to the baseline case.
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Figure 6: Multiple Waves of Infection in the Open Economy

4 General-Equilibrium Induced Responses

In this section, we allow the infection to affect mortality, but continue to assume that agents are

unaware of the threat of infection.18 There are two main implications of introducing deaths. First,

the pandemic will now affect aggregate income (and thus welfare) in both countries, as households

that die as a result of the pandemic will forego the net present discounted value of their future

lifetime utility, which in our model is proportional to real income. Second, because deaths are not

immediately replaced by new inflows into the labor force, the pandemic will affect labor supply

and aggregate demand in each country, and this will impact equilibrium relative wages and real

income.19 In Section 5, we further generalize the analysis to allow individuals to internalize the

threat of infection and incorporate behavioral responses.

With this new assumption, the shares of households of each type evolve according to the fol-

lowing laws of motion (where we again ignore time subscripts to keep the notation tidy):

Ṡi = −2nii (w)× αi × Si × Ii − [nij (w)× αj + nji (w)× αi]× Si × Ij (28)

İi = 2nii (w)× αi × Si × Ii + [nij (w)× αj + nji (w)× αi]× Si × Ij − (γi + ηi) Ii (29)

Ṙi = γiIi (30)

Ḋi = ηiIi (31)

18We implicitly assume that if one of the household members dies, the other one does too. So it is not only a
passionate marriage, but also a romantic one (in the narrow sense of the word).

19We could easily introduce a set of agents that are symptomatic infected agents who also reduce their labor supply,
but that would complicate the analysis and blur the comparison with the results in the previous section.
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There are two main differences between this dynamic system and the one above in (16)-(18).

First, we now have four types of agents, as some infected agents transition to death rather than

recovery. The rate at which infected agents die is given by ηi, and as in the case of the rate of

recovery γi, it only depends on the country in which infected agents reside, and not on where

they got infected. Second, we now need to make explicit the dependence of the contact rates

nii (w), nij (w) and nij (w) on the vector of equilibrium wages w. As the changes in each country’s

population caused by deaths affect wages, these contact rates are no longer time invariant, and

evolve endogenously over the course of the pandemic. In particular, the equilibrium wage vector is

determined by the following goods market clearing condition:∑
j∈J

πji (w)wj (1−Dj)Lj = wi (1−Di)Li,

where remember that πij (w) and nij (w) are given by (9) and (15), respectively.

We now show that this endogeneity of wages introduces a form of general equilibrium social

distancing into the model. In particular, if the country with a worse disease environment experiences

more deaths, its relative wage will rise. As this country’s relative wage increases, its varieties become

relatively less attractive to agents in the country with the better disease environment. Therefore,

purely from the general equilibrium force of changes in relative labor supplies, agents in the healthy

country engage in a form of endogenous social distancing, in which they skew their interactions away

from the country with a worse disease environment, as summarized in the following proposition

(see Appendix A.8 for a proof):

Proposition 8 If country j experiences more deaths than country i, the resulting change in relative

wages (wj/wi) leads country i to reduce its interactions with country j and increase its interactions

with itself (general equilibrium social distancing).

It is worth stressing that even if one of the countries features more favorable primitive health

parameters than the other one, which country appears de facto more unhealthy can change over

the course of the pandemic if the two countries’ waves of infection are staggered in time. In the

initial stages of the pandemic one country may experience a larger relative reduction in its labor

supply (leading to endogenous social distancing in the other country), while in the later stages of

the pandemic the other country experiences a larger relative reduction in its labor supply (leading

to the opposite pattern of endogenous social distancing).20

Another straightforward implication of explicitly modeling deaths is that they naturally affect

aggregate income in both countries. More specifically, whenever changes in trade or mobility bar-

riers affect population, aggregate real income (wiLi/Pi) and aggregate welfare (WiLi) are directly

impacted by trade-induced changes in population. Because around R0 = 1 deaths are particularly

20Although we have established this general equilibrium social distancing mechanism using death as the source of
changes in relative labor supplies, if the disease also were to reduce the productivity of workers while they are infected,
this additional source of labor supply movements would naturally exacerbate the general equilibrium interactions
between countries.
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responsive to changes in trade frictions, this effect is not necessarily negligible when evaluating the

welfare implications of trade in a world with global pandemics.

Figure 7: General Equilibrium Induced Social Distancing

We close this section by illustrating the result in Proposition 8 with a numerical example,

where we let η1/ (η1 + γ1) = 0.01 and η2/ (η2 + γ2) = 0.50. Namely, we let the death rate among

the infected be 1% in Country 1 and, an admittedly extreme, 50% in Country 2. The large difference

in death rates amplifies the general equilibrium effects. The rest of the parameters are set to their

baseline, symmetric values, across countries. Figure 7 presents the results. We denote by ‘SIRD

model’ the case in which we incorporate deaths. For comparison purposes, we also present results

for the case when η1 = η2 = 0, which we label the ‘SIR model.’ The larger death rate in Country 2

leads to a relative decrease in its labor supply, which increases relative wages, as illustrated in the

top-left panel. Since the countries are otherwise symmetric and we chose the wage of Country 1 as
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the numéraire, only the wage of Country 2 increases above one in the case where death rates are

positive. The resulting increase in relative wage is small (0.5%) even though about 6% of agents

end up dying in Country 2. Labor supply falls, but so does the aggregate demand for goods in

that country. The larger wage in Country 2 implies that both countries bias their consumption

towards Country 1 varieties. As the top-right panel illustrates, the consumption of foreign varieties

increases in Country 2 but falls in Country 1. Of course, we see the opposite effect on domestic

varieties although the adjustments are smaller. Ultimately, agents in both countries consume less

varieties, which increases the price index in both countries, although by more in Country 2 (see the

bottom-left panel). Real income falls in Country 1, both per capita and in aggregate, because of

this increase in the price index. In contrast, in Country 2, real income per capita rises, because the

wage increases by more than the price index. Nevertheless, aggregate real income falls as result of

the reduction in labor supply from deaths (bottom-right panel).

5 Behavioral Responses

Up to this point, we have assumed that agents do not change their behavior during the pandemic,

unless changes in relative wages induce them to do so. Implicitly, we were assuming that although

households may observe that other households are dying, they do not understand the underlying

cause of those deaths and go on with their lives.

In this section, we instead consider the more realistic (but also more complicated) case in

which households realize that the deaths they observe are related to the outbreak of a pandemic.

Following the approach in Farboodi et al. (2020), we continue to assume, however, that all infected

individuals are asymptomatic, in the sense that household behavior is independent of their specific

health status, though their actual behavior is shaped by their expectation of the probability with

which they are susceptible, infected, or recovered households. How is that expectation formed? A

natural assumption is that agents have rational expectations and that their belief of the probability

with which they have a specific health status is equal to the share of the population in their country

with that particular health status.21

We denote the individual beliefs of the probability of being infected, susceptible recovered or

dead with lowercase letters, except for their belief of their death rate, which we denote by ki (t)

(instead of di (t)) to avoid a confusion with the notation we used for distance. The maximization

21This may raise the question among some readers as to how households are able to form this belief if, according to
our assumptions, nobody observes their own health status. It suffices to assume, however, that agents have common
knowledge of all parameters of the model, and form rational expectations of the path of the pandemic. For the latter,
it suffices to assume that agents observe pandemic-related deaths at the outbreak of the disease. More specifically,
at t = 0, notice from equation (31) that (i) Ii0 can be obtained from Ii0 = D0ηi since D−1 ' 0; (ii) Ri0 ' 0; and (iii)
Sit is then trivially Si0 = 1− Ii0 −Ri0 −Di0. With this initial condition, agents can solve for the future path of the
pandemic using rational expectations.
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problem of the individual, for known ii (0) , si (0) and ki (0) = 0, is given by

W s
i (0) = maxnii(·),nij(·)

∫∞
0 e−ξt [[Qi (nii (t) , nij (t))− Ci (nii (t) , nij (t))] (1− ki (t))] dt

s.t. ṡi (t) = −si (t)
[
(αinii (t) + αin

∗
ii (t)) Ii (t) +

(
αjnij (t) + αin

∗
ji (t)

)
Ij (t)

]
,

i̇i (t) = si (t)
[
(αinii (t) + αin

∗
ii (t)) Ii (t) +

(
αjnij (t) + αin

∗
ji (t)

)
Ij (t)

]
− (γi + ηi) ii (t) ,

k̇i (t) = ηiii (t) ,

where ξ is the rate of time preference, and where from equation (6),

Qi (nii (t) , nij (t)) = wi (t)

(∑
j∈J

nij (t)

(
τijwj (t)

Zj

)1−σ
) 1

(σ−1)

,

and

Ci (nii (t) , nij (t)) =
c

φ

∑
j∈J

µij (dij)
ρ × (nij (t))φ .

Notice that we denote with an asterisk variables chosen by other households that affect the dynamics

of infection of a given household.22 In equilibrium, aggregate consistency implies that ii (t) = Ii (t),

si (t) = Si (t), and ki (t) = Di (t) . Implicitly, we are assuming that agents decide their optimal path

of nii (·) and nij(·) at period zero and commit to following it. Otherwise, without commitment, at

some future period and conditional on being alive, agents would want to reoptimize their choices

by solving the problem above but setting ki (t) = 0.23

The Hamiltonian of the problem faced by each household is given by

H(s, i, nii, nij , θ
i, θs, θk)

= [Qi (nii (t) , nij (t))− Ci (nii (t) , nij (t))] (1− ki (t))e−ξt

−θsi (t) si (t)
[
(αinii (t) + αin

∗
ii (t)) Ii (t) +

(
αjnij (t) + αin

∗
ji (t)

)
Ij (t)

]
+θii (t)

[
si (t)

[
(αinii (t) + αin

∗
ii (t)) Ii (t) +

(
αjnij (t) + αin

∗
ji (t)

)
Ij (t)

]
− (γi + ηi) ii (t)

]
+θki (t) ηiii (t) .

Hence, the optimality condition with respect to the choice of nij is[
∂Qi (nii (t) , nij (t))

∂nij (t)
− ∂Ci (nii (t) , nij (t))

∂nij (t)

]
(1− ki (t))e−ξt =

[
θsi (t)− θii (t)

]
si (t)αjIj (t) , (32)

22For instance, though the aggregate domestic rate of contact in i is 2αinii, a household has no control over how
many buyers visit the household’s seller, so the household only controls the rate αinii of contacts generated by the
household’s buyer.

23The reason for this is that the probability of deaths acts like non-exponential discounting in the value function
solved by agents, and it is well-understood that non-exponential discounting creates a wedge between the solution of
dynamic problems with and without commitment. Farboodi et al. (2020) bypass this issue by assuming that, instead
of foregoing future utility when dying, agents pay a one-time utility cost (or value of life) at the moment they die.
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while the optimality conditions associated with the co-state variables are given by:

−θ̇si (t) = −
[
θsi (t)− θii (t)

] [
(αinii (t) + αin

∗
ii (t)) Ii (t) +

(
αjnij (t) + αin

∗
ji (t)

)
Ij (t)

]
, (33)

−θ̇ii (t) = ηiθ
k
i (t)− (γi + ηi) θ

i
i (t) , (34)

−θ̇ki (t) = − [Qi (nii (t) , nij (t))− Ci (nii (t) , nij (t))] e−ξt. (35)

Finally, the transversality conditions are

lim
t→∞

θii (t) ii (t) = 0,

lim
t→∞

θsi (t) si (t) = 0,

lim
t→∞

θki (t) ki (t) = 0.

To complete the description of the model, we need to specify the general equilibrium determi-

nation of wages. As in the version of our model with deaths in Section 4, we again have that wages

are determined by the following goods market clearing condition:∑
j∈J

πji (w,t)× wj (t)× (1−Dj (t))Lj = wi (t)× (1−Di (t))× Li.

Importantly, however, the trade shares πji (w,t) are now impacted by the fact that the level of

interactions nij (t) are directly affected by the dynamics of the pandemic. Still, computationally,

it is straightforward to solve for a dynamic equilibrium in which πij (w,t) = Xij (t) /
∑

`∈J Xi` (t),

and Xij (t) = nij (t) pij (t) qij (t) (1−Di (t))Li. More specifically, the dynamic model can be solved

through a backward shooting algorithm (see Appendix E for details).

This is obviously a rather complicated system characterized by several differential equations, and

two (static) optimality conditions for the choices of nii and nij in each country. Nevertheless, we are

able to show analytically that the solution to this problem necessarily involves individual-level social

distancing. In the absence of a pandemic, households equate the marginal utility from sourcing

varieties from each location to the marginal cost of sourcing those varieties. During a pandemic,

households internalize that the interactions involved in sourcing varieties expose them to infection,

which leads them to reduce interactions until the marginal utility from those interactions exceeds

the marginal cost, as summarized in the following proposition (proven in Appendix A.9).

Proposition 9 Along the transition path, θsi (t)− θii (t) ≥ 0 for all t, which implies:

∂Qi (nii (t) , nij (t))

∂nij (t)
>
∂Ci (nii (t) , nij (t))

∂nij (t)
, as long as Ij (t) > 0.

An implication of this result is that the pandemic generically has a larger impact on foreign

interactions than on domestic interactions. This implication can been seen by re-arranging the
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optimality condition (32) and substituting for the marginal utility and marginal cost for interactions:

1

nij

nijq
σ−1
σ

ij∑
`∈J ni`q

σ−1
σ

i`

Qi =
1

nij
cµijd

ρ
ijn

φ
ij +

[
θsi (t)− θii (t)

]
si (t)αjIj (t)

(1− ki (t))e−ξt
,

where the term on the left-hand side is the marginal utility from interactions; the first term on the

right-hand side is the marginal cost of interactions; and the second term on the right-hand side

is the wedge capturing the threat of infection. As foreign interactions are generically a smaller

share of the consumption index than domestic interactions, the fraction on the left-hand side is

generically smaller for foreign interactions (i 6= j). Therefore, as a pandemic emerges and the threat

of infection becomes positive, a larger reduction in nij is generically needed for foreign interactions,

in order to raise the marginal utility on the left-hand side until it is equal to the marginal cost plus

the positive wedge capturing the threat of infections on the right-hand side.

We now illustrate some of these implications of behavioral responses for the case of symmetric

countries. We use the baseline parameters with αi = 0.1, γi + ηi = 0.2, and ηi/ (ηi + γi) = 0.0062

(a 0.62% death rate among those infected) for all i. We also show a specification with half the

death rate of ηi/ (ηi + γi) = 0.003 for all i, as well as the case without behavioral responses from

the previous section. As we choose the wage in one country as the numéraire, with symmetric

countries, the relative wage is also equal to one and constant over time. In the absence of any

behavioral responses, this constant relative wage implies that both the mass of varieties and price

index are constant over time, as shown in the Proof of Proposition A.4. In contrast, in the presence

of behavioral responses, households reduce the intensity of their interactions in response to the

threat of infection, which leads to changes in the mass of varieties and the price index over time.

In the top-left panel of Figure 8, we show the percentage of individuals infected in Country

2 for all three specifications (with symmetry the figure for Country 1 is identical). Households’

behavioral response of reducing interactions leads to a “flattening of the curve of the pandemic,”

such that the pandemic has lower peak and lower cumulative infections, but takes longer to subside.

Clearly, the larger the death rate, the stronger the behavioral response and the flatter the resulting

curve of infections. The top-right panel in Figure 8 presents the resulting evolution of cumulative

deaths in Country 2. Behavioral responses delay and reduce total deaths, with the level (and

proportional reduction) larger, the larger the death rate. Naturally, the behavioral response and

the associated reductions in the number of deaths come at an economic cost for survivors. As the

bottom-left panel shows, the reductions in the number of purchased domestic and foreign varieties

increase the price index in each country, which results in a corresponding decline in real income.

This increase in the price index, and reduction in real income, is larger the stronger the behavioral

response, and hence increases with the death rate. Finally, the bottom-right panel displays the

trade over GDP ratio (calculated as imports plus exports over GDP). In the example, trade/GDP

falls from about 0.45 to less than 0.25 when the death rate is 0.3%, and to 0.17 when the death

rate is 0.62%. Therefore, the flattening of the curve of infections and reduction in the number
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of deaths comes at the cost of lower trade and real income. Of course, behavioral responses are

ex-ante privately optimal, so it is not surprising that they improve individual welfare.24

Figure 8: Behavioural Responses with Symmetric Countries for Various Death Rates

The presence of behavioral responses in the model thus leads to endogenous social distancing

that has both economic and epidemiological implications. Households keep reducing interactions

until the (monotonically decreasing) reproduction number, R0 × Si (t), falls below 1. Once this

reproduction number crosses that threshold, interactions start growing again, as herd immunity

reduces the number of infections. An implication is that the magnitude of households’ behavioral

responses depends crucially on the value of R0. The larger this value, the larger the resulting

behavioral response. Furthermore, the model with behavioral responses results in reproduction

numbers that linger closer to one as economic activity endogenously recovers, once the worst of the

24It is worth stressing that these responses are not necessarily socially optimal due to the externalities that agents
exert on other agents when traveling.
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pandemic has passed.

The value of mobility and trade frictions plays an important role in shaping the magnitude

and pattern of behavioral responses. First, with symmetric countries, higher mobility and trade

frictions imply a reduction in the overall volume of human interactions, which leaves less scope for

behavioral responses. Second, higher mobility and trade frictions imply that more of the burden of

adjustment falls on domestic rather than foreign transactions. In Figure 9, we show the evolution

of the trade/GDP ratios for symmetric countries for two different levels of mobility (left panel)

and trade (right panel) frictions and the baseline values of our other parameters. As discussed

above, in the symmetric case without behavioral responses, all human contacts nii (t) and nij (t)

are constant in time, which implies that mobility and trade frictions only reduce the level of the

trade/GDP ratios. Once we incorporate behavioral responses, trade/GDP follows the trajectory

of the pandemic. The larger value of trade frictions reduces trade openness, which dampens the

absolute magnitude of the behavioral response, although trade openness can end up falling to quite

low levels. In this example with 10% trade frictions, (t12 = t21 = 1.1), trade essentially falls to zero

in the most severe phase of the pandemic. For each level of trade frictions, behavioral responses

reduce the total number of deaths, and for the parameter values considered here, higher trade and

mobility frictions also reduce the total number of deaths.

Figure 9: The Effect of Mobility and Trade Frictions on Trade/GDP with Behavioural Responses

We next illustrate some of the implications of our model when countries are asymmetric. We

focus on a case in which countries differ in their mortality rate, where remember that we assume

that mortality is determined by the country in which a household lives rather than the country

in which it was infected. We let Country 1 have a relatively low mortality rate of 0.3% and we

leave the mortality rate of Country 2 at the higher baseline value of 0.62%. Figure 10 presents

the results. The top-left panel shows the percent of infections in each country. As benchmarks, we

also display the average of infections in the two countries, as well as infections in the case of two
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symmetric countries with an average mortality rate of 0.46% (the mean of 0.3 and 0.62%). There

is a stronger behavioral response in the high-mortality Country 2 because households internalize

the greater risk that infection leads to death, which results in a “flatter” curve of infections in this

country. The low-mortality Country 1 ends up with about 10% higher total infections, because

of its more subdued behavioral response. However, its lower mortality rate implies that it ends

up with only about half the total number of deaths. This asymmetric behavioral response implies

that Country 1 is a relatively dangerous destination for doing business in the early stages of the

pandemic, but a relatively safe destination in the later stages of the pandemic, since it reaches herd

immunity faster. Comparing the average response for the world with asymmetric countries to the

response in the symmetric case with average mortality rates illustrates the implied aggregate effects

from differences across countries in mortality rates. In the asymmetric case, the world’s infection

curve is marginally flatter than in a symmetric world with average mortality rates.

The top-right panel in Figure 10 displays Country 1’s relative wage. As a result of the smaller

behavioral response in this lower mortality country, there is a greater risk of infection in Country 1

in the early stages of the pandemic, which leads to a decline in demand for this country’s varieties

and a fall in its relative wage. Once Country 1’s infection rate falls, demand for its varieties recovers,

and hence so does its wage. Eventually, once Country 1’s infection rate falls below that of Country

2, it becomes the relatively safe environment in which to source varieties, and its relative wage rises

temporarily above one, before falling back to one as the pandemic ends. Therefore, these behavioral

responses in general equilibrium with asymmetric countries lead to demand effects that reduce the

relative wage of the country with a relatively higher infection rate. In addition, as shown in the

previous section, there is another general equilibrium effect from changes in relative labor supply.

A country with a higher death rate experiences a reduction in its relative labor supply, which leads

to an increase in its relative wage. The top-right panel of Figure 10 shows the balance of these

forces, and demonstrates that relative demand effects generally dominates and overturns the result

in Section 4 linking higher death rates to higher relative wages.

As before, the stronger behavioral response in Country 2 as a result of its higher mortality rate

comes with greater economic costs. Country 2’s reduction in domestic and foreign purchases raises

its price index and reduces its real income. The effect on the price index in Country 1 is more

nuanced. Country 1 also reduces domestic and foreign interactions, which tends to increase its price

index. However, the decline in its relative wage during the first part of the pandemic reduces the

price of domestic varieties. The bottom-left panel in Figure 10 shows how these forces result in a

price index with multiple peaks. Overall, the effect of the pandemic on the real income of Country

1 is negative but substantially smaller in magnitude than in Country 2. As shown in the bottom-

right panel, the reduction in human interactions from social distancing reduces trade openness

dramatically, particularly in Country 2, where behavioral responses are stronger. The asymmetry

in mortality rates between the two countries initially leads to a larger reduction in trade openness

than in a symmetric world with average mortality rates, in part because the behavioral response

of Country 2 is particularly strong in the earlier phases of the pandemic. Later in the pandemic,
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Figure 10: Behavioural Responses with Asymmetric Mortality Rates

the asymmetric case has higher trade openness than in a symmetric world, because the initially

subdued behavioral response of Country 1 creates a more pronounced and faster wave of infections.

Adjustment Costs and the Risk of a Pandemic

Despite the potential for significant disruptions in international trade during a pandemic, a clear

implication of the first-order condition (32) is that as long as Ii (t) = Ij (t) = 0, human interactions

are at the same level as in a world without the potential for pandemics. In other words, although we

have generated rich dynamics of international trade during a pandemic, as soon as this pandemic is

overcome (via herd immunity or the arrival of a vaccine), our model predicts that life immediately

goes back to normal. We next explore an extension of our model that explores the robustness of

this notion of a rapid V-shape recovery in economic activity and international trade flows after a
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global pandemic.

The main novel feature we introduce is adjustment costs associated with changes in the measures

of human contacts nii (t) and nij (t). More specifically, we assume that whenever a household wants

to change the measure of contacts nij (t), it needs to pay a cost ψ1 |ṅij(t)|ψ2 , where ψ1 > 0 and

ψ2 > 1. An analogous adjustment cost function applies to changes in domestic interactions nii.

Notice that this formulation assumes that the cost of reducing or increasing the number of contacts

are symmetric. This leads to the following modified first-order condition for the choice of nij at

any point in time t0 (an analogous condition holds for nii):∫ ∞
t0

e−ξt
[
∂Qi (nii (t) , nij (t))

∂nij
− ∂Ci (nii (t) , nij (t))

∂nij

]
(1− ki (t))dt

=

∫ ∞
t0

e−ξt
[
θsi (t0)− θii (t0)

]
si (t0) ajIj (t0) dt+ e−ξt0ψ1ψ2 |ṅij(t0)|ψ2−1 (1− ki (t0)).

Since dead individuals do not pay adjustment costs, equation (35) becomes

−θ̇ki (t) = −
[
Qi (nii (t) , nij (t))− Ci (nii (t) , nij (t))− ψ1(|ṅii(t)|ψ2 + |ṅij(t)|ψ2)

]
e−ξt.

The rest of the system is as before with the added feature that the values of nii (t) and nij (t) are

now state variables, with exogenous initial conditions nii (0) and nij (0).25

As the first-order condition makes evident, the choice of ṅij(t0) now affects the values of nii (t)

and nij (t) in the future directly and not only through its impact on the pandemic (and the cor-

responding co-state variables θsi (t0) and θii (t0)). This has two important implications. First,

adjustment costs imply that agents will react less aggressively to a pandemic and overall their reac-

tion will be smoother. Of course, the counterpart is that their endogenous response will attenuate

the flattening of the curve of infections associated with behavioral responses. Second, if households

anticipate that the probability of a future pandemic is λ > 0, the growth in the resurgence of

human interactions will be slower than in the world in which the perceived probability of a future

pandemic is 0, and the more so the larger is λ. As a result, if due to recency effects, households

perceive a particularly high risk of future pandemics in the aftermath of a pandemic, this could

slow the recovery of international trade flows after a pandemic occurs.

Figure 11 presents a numerical example of an economy with symmetric countries, behavioral

responses, and adjustment costs. The figure uses the baseline parameters from the previous section

for symmetric countries, together with ψ1 = 1 and ψ2 = 4 for the adjustment cost parameters.

The left-panel shows the evolution of foreign varieties consumed, nij (t), and compares it with the

case with no adjustment costs (ψ1 = 0). Clearly, adjustment costs reduce the magnitude of the

behavioral response. Not only do agents take longer to start the adjustment, but the adjustment is

substantially smaller. In computing this example we assume that the pandemic never repeats itself.

Hence, eventually the number of varieties consumed is the same as in the behavioral case without

25Alternatively we can use terminal conditions. This is what we do in the numerical exercise below where we
assume that a pandemic ends, and never happens again, after some large time period T.
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adjustment costs. We use this value as the terminal condition and compare the resulting initial

nij(1). Anticipatory effects, agents adjusting in anticipation of a pandemic, imply that the initial

value should be smaller than the terminal one. Figure 11 shows no indication that these effects

are significant. Although nij (1) < nij (T ) , the effect is negligible and cannot be perceived in the

graph. This is the case, even though the effect on the evolution of domestic and foreign contacts is

fairly large. This pattern of results is consistent with the view that economies will quickly return to

normal after the pandemic, although with the caveat that we have here assumed that adjustment

costs are symmetric and that the pandemic does not affect agents’ beliefs of the probability of future

pandemics. The right panel of Figure 11 presents the corresponding evolution of infections with

and without adjustment costs. As discussed above, the milder and delayed behavioral response in

the case with adjustment costs leads to a faster increase in the number of infections. It also leads to

a corresponding faster decline, since herd immunity starts reducing the number of infections earlier.

The result is a faster, but more severe, pandemic with more overall deaths, but less pronounced

temporary reductions in real income and trade.

Figure 11: Behavioural Responses with Adjustment Costs

6 Conclusions

Although globalization brings aggregate economic gains, it is often argued that it also makes soci-

eties more vulnerable to disease contagion. In this paper, we develop a model of human interaction

to analyze the relationship between globalization and pandemics. We jointly microfound both

the canonical model of international trade from economics (the gravity equation) with the semi-

nal model pandemics from epidemiology (the Susceptible-Infected-Recovered (SIR) model) using

a theory of human interaction. Through jointly modelling these two phenomena, we highlight a

number of interactions between them. On the one hand, the contact rate among individuals, which
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is a central parameter in benchmark epidemiology models, is endogenous in our framework, and

responds to both economic forces (e.g., the gains from international trade) and to the dynamics of

the pandemic (e.g., the perceived health risk associated with international travel). On the other

hand, we study how the emergence of a pandemic and the perceived risk of future outbreaks shapes

the dynamics of international trade, and the net gains from international trade once the death toll

from the pandemic is taken into account.

We begin by considering the case in which the disease does not affect the ability of agents to

produce and trade, and agents are unaware of the threat of infection, which implies that they do

not have an incentive to alter their individual behavior. Even in this case, globalization influences

the dynamics of the disease, because it changes patterns of human interaction. We show that

there are cross-country epidemiological externalities, such that whether a pandemic occurs in the

open economy depends critically on the disease environment in the country with the highest rate

of domestic infection. If countries are symmetric, a decline in any (symmetric) international trade

friction also leads to an overall increase in the total number of human interactions (domestic plus

foreign), which increases the range of parameters where a pandemic occurs. In this case, even if an

epidemic would not be self-sustaining in a country in the closed economy, it can be self-sustaining

in an open economy. In contrast, if countries are sufficiently different from one another in terms of

their primitive epidemiological parameters (e.g., as a result of different health policies), a decline in

any international trade friction can have the opposite effect of decreasing the range of parameters

where a pandemic occurs. In this case where one country has a much worse disease environment

than the other, trade liberalization can reduce the share of that country’s interactions that occur

in this bad disease environment, thereby taking the global economy below the threshold for a

pandemic to be self-sustaining. In the presence of differences in the timing of infections, multiple

waves of infection can occur in the open economy, when there would be a single wave in the closed

economy.

We next allow the infection to cause deaths (or reduce productivity in the labor market),

but assume that agents remain unaware of the threat of infection, and hence continue to have no

incentive to alter their individual behavior. In this case, a country with a worse disease environment

experiences a larger reduction in labor supply, which in turn leads to an increase in its relative

wage. This wage increase reduces the share of interactions that occur in that country’s bad disease

environment and increases the share that occur in better disease environments, which again can

take the global economy below the threshold for a pandemic to be self-sustaining. Therefore, the

general equilibrium effects of the pandemic on wages and trade patterns induce a form of “general

equilibrium social distancing” from bad disease environments that operates even in the absence of

purposeful social distancing motivated by health risks.

We then allow individuals to become aware of the threat of infections and optimally adjust

their behavior depending on the observed state of the pandemic. In this case, agents are not willing

to interact as much with the unhealthy country thereby decreasing its relative wage. Overall, we

find that behavioral responses lead to amplified reductions in international trade and income, but
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save lives. Adding adjustment costs of establishing the human interactions needed to sustain trade

delays and diminishes these behavioral responses.

Although we have argued that our results are robust to alternative specifications of our model

of international trade, our theoretical framework is still missing a number or realistic features. For

example, in future work it would be interesting to explore the implications of allowing for cross-

sectoral heterogeneity in the importance of face-to-face interactions for sustaining international

trade. Similarly, and although we have studied the effects of various parameters that are at least

partly shaped by government policies, it would be fruitful to more thoroughly study optimal policy

in our framework. We leave these extensions for future work.
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A Theoretical Appendix

A.1 Second-Order Conditions for Choice of nij

From equation (6), we obtain, for all j ∈ J ,

∂W (i)

∂nij
=

wi
(σ − 1)

(∑
j∈J

nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−1(

τijwj
Zj

)1−σ
− cµij (dij)

ρ (nij)
φ−1 ;

∂W (i)

∂ (nij)
2 =

wi
(σ − 1)

(
2− σ
σ − 1

)(∑
j∈J

nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−2(

τijwj
Zj

)1−σ (τijwj
Zj

)1−σ

− (φ− 1) cµij (dij)
ρ × (nij)

φ−2

=

(
2− σ
σ − 1

)(∑
j∈J

nij

(
τijwj
Zj

)1−σ
)−1(

τijwj
Zj

)1−σ
cµij (dij)

ρ × (nij)
φ−1

− (φ− 1) cµij (dij)
ρ × (nij)

φ−2

= cµij (dij)
ρ × (nij)

φ−2

( 1

(σ − 1)
− 1

) nij
τijwj
Zj∑

j∈J nij

(
τijwj
Zj

)1−σ


1−σ

− (φ− 1)

 ;

∂2W (i)

∂nij∂nii
=

wi
(σ − 1)

(
2− σ
σ − 1

)(∑
j∈J

nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−2(

τijwj
Zj

)1−σ (τiiwi
Zi

)1−σ
.

Notice that ∂W (i)

∂(nij)
2 < 0 if only if:

(
2− σ
σ − 1

) nij
τijwj
Zj∑

j∈J nij

(
τijwj
Zj

)1−σ


1−σ

< (φ− 1) ,

so this condition could be violated for large enough τij , unless σ > 2, in which case the condition

is surely satisfied as long as φ (σ − 1) > 1.

Next note that

(
∂2W (i)

∂nij∂nii

)2

=

 wi
σ − 1

2− σ
σ − 1

(∑
j∈J

nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−2(

τijwj
Zj

)1−σ (τiiwi
Zi

)1−σ
2

= Ξ2
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and

∂W (i)

∂ (nii)
2

∂W (i)

∂ (nij)
2 =

 1
(σ−1)

2−σ
σ−1wi

(∑
j∈J nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−2 (

τiiwi
Zi

)1−σ (
τiiwi
Zi

)1−σ

− (φ− 1) cµii (dii)
ρ × (nii)

φ−2


×

 1
(σ−1)

2−σ
σ−1wi

(∑
j∈J nij

(
τijwj
Zj

)1−σ
) 1

(σ−1)
−2 (

τijwj
Zj

)1−σ ( τijwj
Zj

)1−σ

− (φ− 1) cµij (dij)
ρ × (nij)

φ−2


= Ξ2 − κiij − κjij +$ij ,

where κiij < 0 and κjij < 0, and $ij > 0, whenever σ > 2 and φ > 1.

In sum, when σ > 2 and φ (σ − 1) > 0, we have

∂W (i)

∂ (nii)
2

∂W (i)

∂ (nij)
2 >

(
∂2W (i)

∂nij∂nii

)2

,

and the second-order conditions are met.

A.2 Proof of Proposition 2

Proof of part a):

From equation (7), we can write

nii (w) = (c (σ − 1)µii)
−1/(φ−1) (dii)

− ρ+(σ−1)δ
φ−1

(
tii
Zi

)− σ−1
(φ−1)

(
wi
Pi

)−σ−2
φ−1

,

but remember from (13) that

wi
Pi

= (πii)
− (φ−1)
φ(σ−1)−1 ×

(
(Zi)

φ(σ−1)

c (σ − 1)
(Γii)

−ε(φ−1)

) 1
φ(σ−1)−1

.

This implies that, in order to study the effect of international trade frictions on nii (w), it suffices

to study their effect on πii, with the dependence of nii on πii being monotonically positive. Now

from

πii =
(wi/Zi)

−φ(σ−1)
φ−1 × (Γii)

−ε∑
`∈J (w`/Z`)

−φ(σ−1)
φ−1 × (Γi`)

−ε
,

it is clear that the impact effect of a lower Γi` is to decrease πii and thus to decrease nii. To take

into account general-equilibrium forces, we can write equation (14) as
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(Zi)
φ(σ−1)
φ−1 (Γii)

−ε

(Zi)
φ(σ−1)
φ−1 (Γii)

−ε + (Zj/ω)
φ(σ−1)
φ−1 (Γij)

−ε
Li +

(Zi)
φ(σ−1)
φ−1 (Γji)

−ε

(Zj/ω)
φ(σ−1)
φ−1 (Γjj)

−ε + (Zi)
φ(σ−1)
φ−1 (Γji)

−ε
ωLj = Li,

(A.1)

where ω ≡ wj/wi is the relative wage in country j. From this equation, it is easy to see that if

Γij falls, ω cannot possibly decrease. If it did, both terms in the left-hand-side of (A.1) would fall.

But if ω goes up, then πii goes up by more than as implied by the direct fall in Γij . Similarly, if

Γji falls, πij falls on impact, so ω needs to increase to re-equilibrate the labor market, and again

πii must decline.

Because the results above hold for Γij and Γji, they must hold for any of the constituents of

those composite parameters.

Proof of part b):

Note from equations (2), (5), and (12) that

c

φ

∑
j∈J

µij (dij)
ρ × (nij)

φ =
1

φ (σ − 1)

wi
Pi
.

In part a) of the proof, we have established that when any international trade friction decreases, πii

goes down, and from (13), wi/Pi goes up. Thus, µii (dii)
ρ× (nii)

φ+µij (dij)
ρ× (nij)

φ goes up when

any international trade friction decreases. But because nii goes down and µij and dij (weakly) go

down, it must be the case that nij increases.

A.3 Proof of Proposition 3

We begin by considering the case with general country asymmetries. Consider the sum

µii (dii)
ρ × (nii)

φ + µij (dij)
ρ × (nij)

φ .

Differentiating:

φ

µii (dii)
ρ × (nii)

φ−1 dnii︸︷︷︸
<0

+ µij (dij)
ρ × (nij)

φ−1 dnij

+ d (µij (dij)
ρ)︸ ︷︷ ︸

≤0

× (nij)
φ > 0. (A.2)

Clearly, we must have

µii (dii)
ρ × (nii)

φ−1 dnii + µij (dij)
ρ × (nij)

φ−1 dnij > 0.

So if

µii (dii)
ρ (nii)

φ−1 > µij (dij)
ρ × (nij)

φ−1 ,
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we must have

dnij > −dnii,

which would prove the Proposition.

Now, from the FOC for the choice of n’s, that is equation (7),

µii (dii)
ρ (nii)

φ−1 =

(
wi
Pi

)1/(φ−1) (Pi)
σ−1
(φ−1)

(σ − 1) c
×

(
(dii)

δ tiiwi
Zi

)− σ−1
(φ−1)

µij (dij)
ρ (nij)

φ−1 =

(
wi
Pi

)1/(φ−1) (Pi)
σ−1
(φ−1)

(σ − 1) c
×

(
(dij)

δ tijwj
Zj

)− σ−1
(φ−1)

,

so a sufficient condition for the result is

(dii)
δ tiiwi
Zi

<
(dij)

δ tijwj
Zj

.

This amounts to prices for domestic varieties being lower than prices for foreign varieties. This

makes sense, in such a case, desired quantities of domestic varieties will be higher, and the marginal

benefit of getting more of them will be higher.

Note finally that with full symmetry, we must have wi = wj and Zj = Zi, and the condition

above trivially holds since tij > tii and dij > dii.

A.4 Proof of Proposition 4

Note from equation (11), that we can write

wi
Pi

= const×

( 1

Zi

)−φ(σ−1)
φ−1

(Γii)
−ε +

(
ω

Zj

)−φ(σ−1)
φ−1

(Γij)
−ε


(φ−1)

φ(σ−1)−1

wj
Pi

= const× ω

( 1

Zi

)−φ(σ−1)
φ−1

(Γii)
−ε +

(
ω

Zj

)−φ(σ−1)
φ−1

(Γij)
−ε


(φ−1)

φ(σ−1)−1

where ω = wj/wi. Plugging in (7), we have

nii = const×
(
wi
Pi

)−σ−2
φ−1

×

( 1

Zi

)−φ(σ−1)
φ−1

(Γii)
−ε +

(
ω

Zj

)−φ(σ−1)
φ−1

(Γij)
−ε

− σ−2
φ(σ−1)−1

,
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and thus nii increases in ω. Next, note

nij = const×
(
wj
Pi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

= const× ω−
σ−1
(φ−1)

( 1

Zi

)−φ(σ−1)
φ−1

(Γii)
−ε +

(
ω

Zj

)−φ(σ−1)
φ−1

(Γij)
−ε

− σ−2
φ(σ−1)−1

The effect of ω may look ambiguous, but in fact we have that nij decreases if ω goes up. To see

this, note that

∂ω−a
(
b+ cω−d

)−g
∂ω

= − (a− dg) c+ abωd(
1
ωd

(c+ bωd)
)g
ωaω (c+ bωd)

,

which is negative if a− dg > 0. But here we have

a− dg =
σ − 1

(φ− 1)
− φ (σ − 1)

φ− 1

σ − 2

φ (σ − 1)− 1
=

σ − 1

φ (σ − 1)− 1
> 0.

In sum, nij decreases in ω. Because an increase in Li/Lj increases in ω (from straightforward use

of the implicit function theorem to (14)), the Proposition follows.

Notice also that

nji = const×
(
wi
Pj

)− σ−1
(φ−1)

(
wj
Pj

)1/(φ−1)

= const× ω
σ−1
(φ−1)

( ω

Zj

)−φ(σ−1)
φ−1

(Γjj)
−ε +

(
1

Zi

)−φ(σ−1)
φ−1

(Γji)
−ε

− σ−2
φ(σ−1)−1

,

and by an analogous argument above, we have that nji increases in ω, and thus an increase in

population in i leads to an increase nji (while also decreasing njj).

A.5 Proof of Proposition 5

See main text and Online Appendix D. Here we just discuss the derivation of the system of equations

in (23)-(24), and derive the comparative statics mentioned in the main text.

We begin with the law of motion for susceptible agents in each country in equation (16):

Ṡi = −2αinii × Si × Ii − αjnij × Si × Ij − αinji × Si × Ij
Ṡj = −2αjnjj × Sj × Ij − αjnij × Sj × Ii − αinji × Sj × Ii

Dividing by the own share of susceptibles, and plugging the expression for Ṙi and Ṙj in (18), we
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obtain

Ṡi
Si

= −2αinii
γi

Ṙi −
αjnij + αinji

γj
Ṙj

Ṡj
Sj

= −2αjnjj
γj

Ṙj −
αjnij + αinji

γi
Ṙi.

Turning the growth rate in the left-hand-side to a log-difference, and integrating we get

lnSi (t)− lnSi (0) = −2αinii
γi

(Ri (t)−Ri (0))− αjnij + αinji
γj

(Rj (t)−Rj (0))

lnSj (t)− lnSj (0) = −2αjnjj
γj

(Rj (t)−Rj (0))− αjnij + αinji
γi

(Ri (t)−Rj (0))

Finally, noting Si (0) ' 1 and Ri (0) ' 1, and Ri (∞) = 1 − Si (∞) (since Ii (∞) = 0), we obtain

the system in (23)-(24), that is:

lnSi (∞) = −2αinii
γi

(1− Si (∞))− αjnij + αinji
γj

(1− Sj (∞))

lnSj (∞) = −2αjnjj
γj

(1− Sj (∞))− αjnij + αinji
γi

(1− Si (∞))

Although we cannot solve the system in closed-form, we can derive some comparative statics. In

particular, total differentiating we find

1

Si (∞)
dSi (∞)− 2αinii

γi
dSi (∞) + (1− Si (∞)) d

(
2αinii
γi

)
=

(
αjnij + αinji

γj

)
dSj (∞)− d

(
αjnij + αinji

γj

)
(1− Sj (∞))

1

Sj (∞)
dSj (∞)− 2αjnjj

γj
dSj (∞) + (1− Sj (∞)) d

(
2αjnjj
γj

)
=

(
αjnij + αinji

γi

)
dSi (∞)− d

(
αjnij + αinji

γi

)
(1− Si (∞))

Solving

dSi (∞) = −

 αjnij+αinji
γj

(
d
(
αjnij+αinji

γi

)
+ (1− Sj (∞)) d

(
2αjnjj
γj

))
+
(

1
Sj(∞) −

2αjnjj
γj

)(
d
(
αjnij+αinji

γj

)
(1− Sj (∞)) + (1− Si (∞)) d

(
2αinii
γi

)) 
(

1
Si(∞) −

2αinii
γi

)(
1

Sj(∞) −
2αjnjj
γj

)
− (αjnij+αinji)

2

γiγj

dSj (∞) = −

 αjnij+αinji
γi

(
d
(
αjnij+αinji

γj

)
+ (1− Si (∞)) d

(
2αinii
γi

))
+
(

1
Si(∞) −

2αinii
γi

)(
d
(
αjnij+αinji

γi

)
(1− Si (∞)) + (1− Sj (∞)) d

(
2αjnjj
γj

)) 
(

1
Sj(∞) −

2αjnjj
γj

)(
1

Si(∞) −
2αinii
γi

)
− (αjnij+αinji)

2

γiγj
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Next, note that because new infections eventually go to zero, there have to be (at least) two

peaks of infection (t∗i and t∗j ) defined by İi (t∗i ) = İj

(
t∗j

)
= 0. Whenever there are more than two

peaks in one country, should set t∗i and t∗j to the latest periods for which İi (t∗i ) = İj

(
t∗j

)
= 0.

Now we have two cases to consider:

• Case 1: t∗i ≥ t∗j . Then İi (t∗i ) = 0 > İj

(
t∗j

)
and

2αinii
γi

Si (t∗i ) +
αjnij + αinji

γi
Si (t∗i )×

Ij (t∗i )

Ii (t∗i )
= 1

2αjnjj
γj

Sj (t∗i ) +
αjnij + αinji

γj
Sj (t∗i )×

Ii (t∗i )

Ij (t∗i )
≤ 1

and thus(
1

Si (t∗i )
− 2αinii

γi

)(
1

Sj (t∗i )
− 2αjnjj

γj

)
≥ (αjnij + αinji)

2

γiγj
×Ij (t∗i )

Ii (t∗i )
× Ii (t∗i )

Ij (t∗i )
=

(αjnij + αinji)
2

γiγj

But at Si (t∗i ) > Si (∞) and Sj (t∗i ) > Si (∞) , so we must have 2αinii
γi

Si (∞) ≤ 1 and
2αjnjj
γj

Sj (∞) ≤ 1, as well as

(
1

Si (∞)
− 2αinii

γi

)(
1

Sj (∞)
− 2αjnjj

γj

)
≥ (αjnij + αinji)

2

γiγj
.

• Case 2: t∗j ≥ t∗j . Then İj

(
t∗j

)
= 0 > İi (t∗i ) and

2αinii
γi

Si
(
t∗j
)

+
αjnij + αinji

γi
Si
(
t∗j
)
×
Ij

(
t∗j

)
Ii

(
t∗j

) ≤ 1

2αjnjj
γj

Sj
(
t∗j
)

+
αjnij + αinji

γj
Sj
(
t∗j
)
×
Ii

(
t∗j

)
Ij

(
t∗j

) = 1

and thus 1

Si

(
t∗j

) − 2αinii
γi

 1

Sj

(
t∗j

) − 2αjnjj
γj

 ≥ (αjnij + αinji)
2

γiγj
×
Ij

(
t∗j

)
Ii

(
t∗j

)× Ii
(
t∗j

)
Ij

(
t∗j

) =
(αjnij + αinji)

2

γiγj

But Si

(
t∗j

)
> Si (∞) and Sj

(
t∗j

)
> Si (∞) , so we must again have 2αinii

γi
Si (∞) ≤ 1 and

2αjnjj
γj

Sj (∞) ≤ 1, as well as

(
1

Si (∞)
− 2αinii

γi

)(
1

Sj (∞)
− 2αjnjj

γj

)
≥ (αjnij + αinji)

2

γiγj
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Going back to the system, this means that an increase in any n or a decrease in any γ will

decrease the steady-state values for Si (∞) and Sj (∞), and thus increase infections everywhere.

A.6 Proof of Proposition 6

See main text. In particular, the result is an immediate corollary of Proposition 3.

A.7 Proof of Proposition 7

See main text.

A.8 Proof of Proposition 8

The goods market clearing condition with deaths defines the following implicit function:

Λi =


(Zi)

φ(σ−1)
φ−1 (Γii)

−ε

(Zi)
φ(σ−1)
φ−1 (Γii)

−ε+(Zj/ω)
φ(σ−1)
φ−1 (Γij)

−ε
(1−Di)Li

+
(Zi)

φ(σ−1)
φ−1 (Γji)

−ε

(Zj/ω)
φ(σ−1)
φ−1 (Γjj)

−ε+(Zi)
φ(σ−1)
φ−1 (Γji)

−ε
ω (1−Dj)Lj − (1−Di)Li

 = 0.

Taking partial derivatives of this implicit function, we have:

∂Λi
∂Di

> 0,
∂Λi
∂Dj

< 0,
∂Λi
∂ω

> 0.

Therefore, from the implicit function theorem, we have the following comparative statics of the

relative wage with respect to deaths in the two countries:

dω

dDi
= −∂Λi/∂Di

∂Λi/∂ω
< 0,

dω

dDj
= −∂Λi/∂Dj

∂Λi/∂ω
> 0. (A.3)

We now combine these results above with the comparative statics of bilateral interactions with

respect to the relative wage (ω) from Proposition 4. In particular, from the proof of that proposition,

we have the following results:
dnii
dω

> 0,
dnij
dω

< 0. (A.4)

Combining these two sets of relationships (A.3) and (A.4), we have the following results stated in

the proposition:
dnii
dDi

=
dnii
dω︸︷︷︸
>0

dω

dDi︸︷︷︸
<0

< 0,
dnii
dDj

=
dnii
dω︸︷︷︸
>0

dω

dDj︸︷︷︸
>0

> 0.

dnij
dDi

=
dnij
dω︸︷︷︸
<0

dω

dDi︸︷︷︸
<0

> 0,
dnij
dDj

=
dnij
dω︸︷︷︸
<0

dω

dDj︸︷︷︸ < 0

>0

.
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A.9 Proof of Proposition 9

Because Qi (nii (t) , nij (t)) ≥ Ci (nii (t) , nij (t)), from equation (35), we must have θ̇ki (t) ≥ 0 at all

t. This in turn implies that we must have θki (t) ≤ 0 at all t for the transversality condition to be

met (i.e., convergence to 0 from below).

We next show that θ̇ii (t) ≥ 0 and θii (t) ≤ 0 for all t. First note that we must have

ηiθ
k
i (t) < (γi + ηi) θ

i
i (t)

and thus (from equation (34)) θ̇ii (t) > 0 for all t. To see this, note that if instead we had

ηiθ
k
i (t0) > (γi + ηi) θ

i
i (t0) ,

at any time t0, then θ̇ii (t0) < 0 < θ̇ik (t0) so this inequality would continue to hold for all t0 > t.

But then we would have θ̇ii (t) < 0 for all t > t0, and for θii (t) to meet its transversality condition,

we would need to have θii (t) > 0 at all t > t0. But if θii (t) > 0 and θki (t) ≤ 0 for t > t0, it is clear

from equation (34) that θ̇ii (t) > 0 for t > t0, which is a contradiction. In sum, θ̇ii (t) > 0 for all t.

But then for θii (t) to meet its transversality condition (from below), we need θii (t) ≤ 0 for all t.

Finally, to show that show that θsi (t) > θii (t) for all t, suppose that θsi (t0) < θii (t0) for some

t0. From equation (33), this would imply θ̇si (t0) < 0. But because θ̇ii (t) > 0 for all t, we would

continue to have θsi (t) < θii (t) for all t > t0, and thus θ̇si (t) < 0 for all t > t0. This would imply

that, for t > t0, θsi (t) would converge to its steady-state value of 0 from above, i.e., θsi (t) > 0 for

t > t0. But because θii (t) ≤ 0 for all t, from equation (33), we would have θ̇si (t) > 0 for t > t0,

which is a contradiction. In sum, we must have θsi (t) > θii (t) for all t.

B Simulation Appendix

In this section of the Appendix, we discuss our choice of parameter values. A description of the

computational algorithms used is presented in Appendix E. The simulation presented in the main

text are supposed to be illustrative rather than a detailed calibration for a specific circumstance.

Nevertheless, the baseline calibration adopts the central values of the epidemiology parameters in

Fernández-Villaverde and Jones (2020). For example, in Figure 1 we set the value of the exogenous

component of the infection rate in the healthy country, α1 = 0.04, and we vary the value for the

sick country between α2 ∈ [0.04, 0.1]. Using the equilibrium values of interactions, this leads to

a value of 2niiαi + nijαj + njiαi (the actual infection rate in Country i if Ii = Ij) in the range

[0.15, 0.20] in Country 1 and [0.15, 0.33] in Country 2, well in the range of values estimated in

Fernández-Villaverde and Jones (2020). We also set γi = 0.2, which implies an infectious period of

5 days.

The economic model also involves a number of parameters. We set the elasticity of substitution

σ = 5, a central value in the trade literature (Costinot and Rodŕıguez-Clare, 2015), and normalize

productivity Zi = 1 for all i. We also set Country size Li = 3 when countries are symmetric. We

choose values so that the choice of trading partners nij is never constrained. We choose a baseline

53



value for the elasticity of the cost of consuming more varieties in a region of φ = 2. Hence, the

second order conditions discussed in the text are satisfied since φ > 1/(σ − 1). Note that we also

require φ > 1. We eliminate all man-made frictions in the baseline, so tij = µij = 1 for all i, j, and

let dij = 1.1 for i 6= j and 1 otherwise. We set to one the elasticity of trade costs with respect

to distance, so δ = 1. Finally we set the level of the cost of creating contacts, c = 0.15, which

guarantees that equilibrium contacts are always in an interior solution. Of course, in the main

text we show a number of exercises in which we change these parameter values, and in particular

introduce trade and mobility frictions. Whenever we vary from the parameter values mentioned

above we state that in the discussion of the relevant graph.
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C Extensions of Economic Model

In this Appendix, we flesh out some of the details of the four extensions of our framework mentioned

in Section 2.3 of the main text.

C.1 Traveling Costs in Terms of Labor

If traveling costs are specified in terms of labor (rather than utility), welfare at the household level

depends only on consumption

Wi =

∑
j∈J

∫ nij

0
qij(k)

σ−1
σ dk

 σ
σ−1

,

and the implied demand (for a given nii and nij) is given by

qij(k) =

(
pij
Pi

)−σ Ii
Pi
,

where Ii is household income, which is given by

Ii = wi

1− c

φ

∑
j∈J

µijd
ρ
ijn

φ
ij

 ,

since the household now needs to hire labor to be able to secure final-good differentiated varieties,

and where

Pi =

∑
j∈J

nijp
1−σ
ij

 1
1−σ

.

Welfare can therefore be rewritten as

Wi =
Ii
Pi

= wi

1− c

φ

∑
j∈J

µijd
ρ
ijn

φ
ij

∑
j∈J

nijp
1−σ
ij

 1
σ−1

The first-order condition for the choice of nij delivers:

nij = (c(σ − 1))
− 1
φ−1

(
Ii
wi

) 1
φ−1

(
tijwj
ZjPi

)−σ−1
φ−1

µ
− 1
φ−1

ij d
− ρ+δ(σ−1)

φ−1

ij

Bilateral import flows by country i from country j are given by

Xij = nijpijqijLi = (c(σ − 1))
− 1
φ−1

(
Ii
wi

) 1
φ−1

(
tijwj
ZjPi

)−φ(σ−1)
φ−1

µ
− 1
φ−1

ij d
− ρ+φδ(σ−1)

φ−1

ij IiLi,

2



and the trade share can be written as

πij =
Xij∑
l∈J Xil

=

(
wj
Zj

)−φ(σ−1)
φ−1 × µ

− 1
φ−1

ij d
− ρ+φδ(σ−1)

φ−1

ij t
−φ(σ−1)

φ−1

ij∑
l∈J

(
wl
Zl

)−φ(σ−1)
φ−1 × µ

− 1
φ−1

il d
− ρ+φδ(σ−1)

φ−1

il t
−φ(σ−1)

φ−1

il

=
Sj
Φi
× Γ−εij ,

where

Γ−εij = µ
− 1
φ−1

ij d
− ρ+φδ(σ−1)

φ−1

ij t
−φ(σ−1)

φ−1

i ,

which is identical to equation (9) applying to our baseline model with traveling costs in terms of

labor.

The price index is in turn given by

Pi = (c(σ − 1))
1

φ(σ−1)

(
Ii
wi

)− 1
φ(σ−1)

∑
j∈J

(
wj
Zj

)−φ(σ−1)
φ−1

Γ−εij

−
φ−1

φ(σ−1)

,

and using this expression together for the one for πij , one can verify that we can write

nij =

(
tijd

δ
ijwj

ZjPi

)σ−1

πij ,

just as in equation (15) of the main text.

Plugging this expression back into the budget constraint yields

Ii =
φ(σ − 1)

φ(σ − 1) + 1
wi,

and a resulting price index equal to

Pi =

(
cφ

φ(σ − 1) + 1

) 1
φ(σ−1)

∑
j∈J

(
wj
Zj

)−φ(σ−1)
φ−1

Γ−εij

−
φ−1

φ(σ−1)

,

which is only slightly different than expression (11) in the main text,

The labor-market conditions are given by

πiiIiLi + πjiIjLj = IiLi

or, equivalently,

πiiwiLi + πjiwjLj = wiLi,

just as in the main text, and remember that the expressions for πii and πji are also left unchanged.

We next turn to verifying that Propositions 1 through 4 in the main text continue to hold

whenever travel costs in equation (1) are specified in terms of labor rather than being modelled as
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a utility cost.

Proposition 1’: As long as trade frictions ( Γij) are bounded, there exists a unique vector of

equilibrium wages w∗ = (wi, wj) ∈ R2
++ that solves the system of equations above.

Proof. By results in standard gravity models in Alvarez and Lucas (2007), Allen and Arkolakis

(2014), and Allen et al. (2020).

Proposition 2’: A decline in any international trade or mobility friction (dij , tij , tji, µij , µji) leads

to: (a) a decline in the rates (nii and njj) at which individuals will meet individuals in their

own country; and (b) an increase in the rates at which individuals will meet individuals from

the other country (nij and nji).

Proof. (a) Given that Ii = φ(σ−1)
φ(σ−1)+1wi,

nii = (c(σ − 1))
− 1
φ−1

(
Ii
wi

) 1
φ−1

(
tiiwi
ZiPi

)−σ−1
φ−1

µ
− 1
φ−1

ii d
− ρ+δ(σ−1)

φ−1

ii = const×
(
Pi
wi

)σ−1
φ−1

Then

Pi
wi

=

(
cφ

φ(σ − 1) + 1

) 1
φ(σ−1)

Z φ(σ−1)
φ−1

i Γ−εii +

(
Zj
ω

)φ(σ−1)
φ−1

Γ−εij

−
φ−1

φ(σ−1)

,

where ω = wj/wi is the relative wage in country j .

Note that the labor constraint can be rewritten as

Z
φ(σ−1)
φ−1

i Γ−εii

Z
φ(σ−1)
φ−1

i Γ−εii +
(
Zj
ω

)φ(σ−1)
φ−1

Γ−εij

Li +
Z
φ(σ−1)
φ−1

i Γ−εji

Z
φ(σ−1)
φ−1

i Γ−εji +
(
Zj
ω

)φ(σ−1)
φ−1

Γ−εjj

ωLj = Li

Consider a case when Γij decreases, while other Γkl remain constant. That means that the first

term in the sum goes down, while the second term is constant. For the equality to hold, ω should

increase. After re-equilibration, the second term in the sum increased, which means that the first

term decreased. This means that Pi/wi decreased, and nii as well.

Consider now a case when Γji decreases, while other Γkl remain constant. The second term

increases, so ω needs to go down to equilibrate the model. That means that the first term decreases,

and Pi/wi and nii decrease by extension.

Therefore, whenever one decreases any international friction (dij , tij , tji, µij , µji), Γij or Γji goes

down, and, hence, nii and njj go down.

(b) Note that
Ii
wi

= 1− c

φ

∑
j∈J

µijd
ρ
ijn

φ
ij

Since Ii = φ(σ−1)
φ(σ−1)+1)wi, the left-hand side is constant. Since nii and njj decrease, nij and nji must

increase.
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Proposition 3’: Suppose that countries are symmetric, in the sense that Li = L, Zi = Z, and

Γij = Γ for all i. Then a decline in any (symmetric) international trade frictions leads to an

overall increase in human interactions (ndom + nfor) experienced by both household buyers

and household sellers.

Proof. We begin by considering the case with general country asymmetries. Consider the sum

µiid
ρ
iin

φ
ii + µijd

ρ
ijn

φ
ij =

1

φ(σ − 1) + 1

Differentiating yields

φµiid
ρ
iin

φ−1
ii dnii + φµijd

ρ
ijn

φ−1
ij dnij + φnφijd

(
µijd

ρ
ij

)
︸ ︷︷ ︸

≤0

= 0

Hence,

φµiid
ρ
iin

φ−1
ii dnii + φµijd

ρ
ijn

φ−1
ij dnij ≥ 0,

and if µiid
ρ
iin

φ−1
ii > µijd

ρ
ijn

φ−1
ij , then dnij > −dnii.

From the FOC for the choice of nii and nij ,

µiid
ρ
iin

φ−1
ii =

1

c(σ − 1)

Ii
wi

(
pii
Pi

)1−σ

µijd
ρ
ijn

φ−1
ij =

1

c(σ − 1)

Ii
wi

(
pij
Pi

)1−σ

Therefore, µiid
ρ
iin

φ−1
ii > µijd

ρ
ijn

φ−1
ij is satisfied if and only if pii < pij .

When countries are symmetric, this holds trivially because of international trade costs tij > tii

and dij > dii. Hence, dnij > −dnii, and ndom + nfor increases.

Proposition 4’: An increase in the relative size of country i’s population leads to an increase in

the rate nii at which individuals from i will meet individuals in their own country, and to a

decrease in the rate nij at which individuals will meet individuals abroad.

Proof. Consider again

Z
φ(σ−1)
φ−1

i Γ−εii

Z
φ(σ−1)
φ−1

i Γ−εii +
(
Zj
ω

)φ(σ−1)
φ−1

Γ−εij

Li +
Z
φ(σ−1)
φ−1

i Γ−εji

Z
φ(σ−1)
φ−1

i Γ−εji +
(
Zj
ω

)φ(σ−1)
φ−1

Γ−εjj

ωLj = Li

An increase in Li makes the left-hand side smaller then the right-hand side. Therefore, ω grows to
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re-equilibrate. Then

Pi
wi

=

(
cφ

φ(σ − 1) + 1

) 1
φ(σ−1)

Z φ(σ−1)
φ−1

i Γ−εii +

(
Zj
ω

)φ(σ−1)
φ−1

Γ−εij

−
φ−1

φ(σ−1)

,

increases, and nii = const×
(
Pi
wi

)σ−1
φ−1

increases with it.

Since

µiid
ρ
iin

φ
ii + µijd

ρ
ijn

φ
ij =

1

φ(σ − 1) + 1
,

nij decreases.

Therefore, following a growth in population Li, nii increases while nij decreases.

C.2 International Sourcing of Inputs

The assumption that households travel internationally to procure final goods may seem unrealistic.

Perhaps international travel is better thought as being a valuable input when firms need specialized

inputs and seek potential providers of those inputs in various countries. It is straightforward to

re-interpret our model along those lines. In particular, suppose now that all households in country

i produce a homogeneous final good but also produce differentiated intermediate input varieties.

The household’s final good is produced combining a bundle of the intermediate inputs produced

by other households. Technology for producing the final good is given by

Qi =

(∑
j∈J

∫ nIij

0
qIij (k)

σ−1
σ dk

) σ
σ−1

and this final good is not traded (this is without loss of generality if households are homogeneous

in each country and trade costs for final goods are large enough). Household welfare is linear in

consumption of the final good and is reduced by the disutility cost of a household’s member having

to travel to secure intermediate inputs. In particular, we have

Wi =

(∑
j∈J

∫ nIij

0
qIij (k)

σ−1
σ dk

) σ
σ−1

− c

φ

∑
j∈J

µij (dij)
ρ ×

(
nIij
)φ

.

Under this model is isomorphic to the one above, except that trade will be in intermediate inputs

rather than in final goods.

C.3 Multi-Country Model

We next consider a version of our model with a world economy featuring multiple countries. It

should be clear that all our equilibrium conditions, except for the labor-market clearing condition

(14) apply to that multi-country environment once the set of countries J is redefined to include
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multiple countries. The labor-market condition is in turn simply given by∑
j∈J

πij (w)wjLj = wiLi,

where πij (w) is defined in (9) for an arbitrary set of countries J . Similarly, the model is also

easily adaptable to the case in which there is a continuum of locations i ∈ Ω, where Ω is a closed

and bounded set of a finite dimensional Euclidean space. The equilibrium conditions are again

unaltered, with integrals replacing summation operators throughout.

From the results in Alvarez and Lucas (2007), Allen and Arkolakis (2014), and Allen et al.

(2020), it is clear that Proposition 1 in the main text on existence and uniqueness will continue

to hold. In the presence of arbitrary asymmetries across countries, it is hard however to derive

crisp comparative static results of the type in Propositions 2 and 4. Nevertheless, our result in

Proposition 3 regarding the positive effect of declines of trade and mobility barriers on the overall

level of human interactions between symmetric countries is easily generalizable to the case of many

countries (details available upon request - future versions of the paper will include an Online

Appendix with the details).

C.4 Traveling Salesman Model

Finally, we explore a variant of our model in which it is the household’s seller rather than the

buyer who travels to other locations. We model this via a framework featuring scale economies,

monopolistic competition and fixed cost of exporting, as in the literature on selection into exporting

emanating from the seminal work of Melitz (2003), except that the fixed costs of selling are defined

at the buyer level rather than at the country level, as in the work of Arkolakis (2010).

On the consumption side, households maximize their utility, given by

Wi =

∑
j∈J

∫ ηij

0
qij(k)

σ−1
σ dk

 σ
σ−1

,

where ηij is the measure of varieties available to them, subject to the household budget constraint.

This yields

qij(k) =

(
pij
Pi

)−σ Ii
Pi
,

where Ii is household income and the price index is

Pi =

∑
j∈J

ηijp
1−σ
ij

 1
1−σ

.

Household sellers in country j produce Nj varieties and make them available to nij consumers.

Both Nj and nij are endogenous and pinned down as part of the equilibrium. Note that because

there are Li and Lj households in i and j, respectively, the measure of varieties available from j

to consumers in i is given by ηij = nijNjLj/Li (where implicitly we assume that which nij < Lj
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consumers in j get access to a seller’s varieties is chosen at random).

The level of output and price of each variety, as well as the measure of consumers nij sellers

reach out to follows from profit maximization:

max
nij ,pij

nij

(
pij −

τijwj
Zj

)
qij − wj

c

φ
µijd

ρ
ijn

φ
ij ,

where again nij is the number of customers served, and where the remaining parameters are anal-

ogous to those in our baseline model.

Sellers naturally charge a constant markup over marginal cost,

pij =
σ

σ − 1

τijwj
Zj

,

so the choice of nij boilds down to

max
nij

nij
σ
pijqij − wj

c

φ
µijd

ρ
ijn

φ
ij .

The first-order condition of this problem yields

pijqij
σ

= wjcµijd
ρ
ijn

φ−1
ij ⇒ nij =

(
pijqij

cσµijd
ρ
ijwj

) 1
φ−1

Developing a new variety costs wif . Hence, by free entry,
∑

k Πki = wif , and the zero-profit

condition also entails Ii = wi. As a result, we can express nij as

nij = (cσ)
− 1
φ−1µ

− 1
φ−1

ij d
− ρ+(σ−1)δ

φ−1

ij

(
σ

σ − 1

tijwj
PiZj

)−σ−1
φ−1

(
wi
wj

) 1
φ−1

.

With this expression at hand, we can compute the import volume of country i from country j:

Xij = ηijpijqijLi = nijpijqijNjLj

= wjcσµijd
ρ
ijn

φ
ijNjLj

= (cσ)
− 1
φ−1µ

− 1
φ−1

ij d
− ρ+φ(σ−1)δ

φ−1

ij

(
σ

σ − 1

tijwj
PiZj

)−φ(σ−1)
φ−1

(
wi
wj

) 1
φ−1

wiNjLj

= (cσ)
− 1
φ−1 Γ−εij

(
σ

σ − 1

wj
PiZj

)−φ(σ−1)
φ−1

(
wi
wj

) 1
φ−1

wiNjLj

Hence, the share of country j in country i’s import is

πij =
Γ−εij

(
wj
Zj

)−φ(σ−1)
φ−1

w
− 1
φ−1

j NjLj∑
k Γ−εik

(
wk
Zk

)−φ(σ−1)
φ−1

w
− 1
φ−1

k NkLk

.
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Solving for price index yields

wiLi =
∑
j

Xij

wiLi =
∑
j

(cσ)
− 1
φ−1 Γ−εij

(
σ

σ − 1

wj
PiZj

)−φ(σ−1)
φ−1

(
wi
wj

) 1
φ−1

wiNjLj

Pi =
σ

σ − 1
(cσ)

1
φ(σ−1)L

φ−1
φ(σ−1)

i

∑
j

Γ−εij

(
wj
Zj

)−φ(σ−1)
φ−1

(
wi
wj

) 1
φ−1

NjLj

−
φ−1

φ(σ−1)

.

We can next study the choice of the number of varities Nj produced by sellers. Profits of sellers

are given by

Πij =
φ− 1

φ

nijpijqij
σ

=
φ− 1

φ

Xij

σNjLj
,

so the zero-profit condition implies

∑
k

Πki = wif ⇒
φ− 1

φ

1

σNiLi

∑
k

Xki = wif.

Since
∑

kXki = wiLi,
φ− 1

φ

wiLi
σNiLi

= wif ⇒ Ni =
φ− 1

φσf

Hence, the number of varieties is constant and independent of many of the parameters of the model.

We finally turn to the general equilibrium of the model, which is associated with the condition:

πiiwiLi + πjiwjLj = wiLi

Plugging in the expressions for trade shares yields

Γ−εii

(
wi
Zi

)−φ(σ−1)
φ−1

w
− 1
φ−1

i Li∑
k

(
Γ−εik

wk
Zk

)−φ(σ−1)
φ−1

w
− 1
φ−1

k Lk

wiLi +
Li

(
wi
Zi

)−φ(σ−1)
φ−1

w
− 1
φ−1

i Γ−εji∑
k Lk

(
wk
Zk

)−φ(σ−1)
φ−1

w
− 1
φ−1

k Γ−εjk

wjLj = wiLi.

We are now ready to state and proof results analogous to those in Propositions 1 and 4 in the

main text.

Proposition 1”: As long as trade frictions (Γij) are bounded, there exists a unique vector of

equilibrium wages w∗ = (wi, wj) ∈ R2
++ that solves the system of equations above.

Proof. This follows again from results in standard gravity models in Alvarez and Lucas (2007),

Allen and Arkolakis (2014), and Allen et al. (2020), and the fact that if there exists a unique wage

vector, the remaining equilibrium variables in this single-sector economy are uniquely determined.
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Proposition 2”: A decline in any international trade or mobility friction (dij , tij , tji, µij , µji) leads

to: (a) a decline in the rates (nii and njj) at which individuals will meet individuals in their

own country; and (b) an increase in the rates at which individuals will meet individuals from

the other country (nij and nji).

Proof. (a) First, note that

nii = ξµ
− 1
φ−1

ii d
− ρ+(σ−1)δ

φ−1

ii

(
tiiwi
PiZi

)−σ−1
φ−1

= const×
(
Pi
wi

)σ−1
φ−1

Then

Pi
wi

= const× L
φ−1

φ(σ−1)

i

LiΓ−εii Z φ(σ−1)
φ−1

i + LjΓ
−ε
ij

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1

−
φ−1

φ(σ−1)

where ω = wj/wi is the relative wage in country j .

Note that the equilibrium equations can be rewritten as

LiZ
φ(σ−1)
φ−1

i Γ−εii

LiZ
φ(σ−1)
φ−1

i Γ−εii + Lj

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1 Γ−εij

Li (C.1)

+
LiZ

φ(σ−1)
φ−1

i Γ−εji

LiZ
φ(σ−1)
φ−1

i Γ−εji + Lj

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1 Γ−εjj

ωLj = Li (C.2)

Consider a case when Γij decreases, while other Γkl remain constant. That means that the first

term in the sum goes down, while the second term is constant. For the equality to hold, ω should

increase. After re-equilibration, the second term in the sum increased, which means that the first

term decreased. This means that Pi/wi decreased, and nii as well.

Consider now a case when Γji decreases, while other Γkl remain constant. The second term

increases, so ω needs to go down to equilibrate the model. That means that the first term decreases,

and Pi/wi and nii decrease by extension.

Therefore, whenever one decreases any international friction (dij , tij , tji, µij , µji), Γij or Γji goes

down, and, hence, nii and njj go down.

(b) Note that Πii + Πji = wif . That can be rewritten as

φ− 1

φ

niipiiqii
wiσ

+
φ− 1

φ

njipjiqji
wiσ

= f

Using the FOC for nij , that yields

φ− 1

φ
cµiid

ρ
iin

φ
ii +

φ− 1

φ
cµjid

ρ
jin

φ
ji = f

Since nii and njj decrease and frictions do not increase, nij and nji have to increase.
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Proposition 3”: Suppose that countries are symmetric, in the sense that Li = L, Zi = Z, and

Γij = Γ for all i. Then a decline in any (symmetric) international trade frictions leads to an

overall increase in human interactions (ndom + nfor) experienced by both household buyers

and household sellers.

Proof. We begin by considering the case with general country asymmetries. Consider the sum

µiid
ρ
iin

φ
ii + µjid

ρ
jin

φ
ji = const

Differentiating yields

φµiid
ρ
iin

φ−1
ii dnii + φµjid

ρ
jin

φ−1
ji dnji + nφjid

(
µjid

ρ
ji

)
︸ ︷︷ ︸

≤0

= 0

Hence,

µiid
ρ
iin

φ−1
ii dnii + µjid

ρ
jin

φ−1
ji dnji ≥ 0,

and if µiid
ρ
iin

φ−1
ii > µjid

ρ
jin

φ−1
ji , then dnji > −dnii.

From the FOC for the choice of nii and nji,

µiid
ρ
iin

φ−1
ii = const× piiqii

wi
= const×

(
pii
Pi

)1−σ

µjid
ρ
jin

φ−1
ji = const× pjiqji

wi
= const×

(
pji
Pj

)1−σ (wj
wi

)
Since the countries are symmetrics, Pi = Pj and wi = wj , so the inequality is satisied if and

only if pii < pji.

When countries are symmetric, this holds trivially because of international trade costs tji > tii

and dji > dii. Hence, dnji > −dnii, and ndom + nfor increases.

Proposition 4”: An increase in the relative size of country i’s population leads to an increase in

the rate nii at which individuals from i will meet individuals in their own country, and to a

decrease in the rate nji at which individuals will meet individuals abroad.

Proof. Consider again

LiZ
φ(σ−1)
φ−1

i Γ−εii

LiZ
φ(σ−1)
φ−1

i Γ−εii + Lj

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1 Γ−εij

Li (C.3)

+
LiZ

φ(σ−1)
φ−1

i Γ−εji

LiZ
φ(σ−1)
φ−1

i Γ−εji + Lj

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1 Γ−εjj

ωLj = Li (C.4)

11



An increase in Li makes the left-hand side smaller then the right-hand side. Therefore, ω grows to

re-equilibrate. Then

Pi
wi

= const× L
φ−1

φ(σ−1)

i

LiΓ−εii Z φ(σ−1)
φ−1

i + LjΓ
−ε
ij

(
Zj
ω

)φ(σ−1)
φ−1

ω
− 1
φ−1

−
φ−1

φ(σ−1)

increases, and nii = const×
(
Pi
wi

)σ−1
φ−1

increases with it.

Since
φ− 1

φ
cµiid

ρ
iin

φ
ii +

φ− 1

φ
cµjid

ρ
jin

φ
ji = f,

nji decreases.

Therefore, following a growth in population Li, nii increases while nji decreases.

D Proof of Proposition 5

Proposition 5: Assume that there is trade between the two countries (i.e., αjnij + αinji > 0),

which implies that the next generation matrix FV −1 is irreducible. If R0 ≤ 1, the no-

pandemic equilibrium is the unique stable equilibrium. If R0 > 1, the no-pandemic equilibrium

is unstable, and there exists a unique stable endemic equilibrium.

Proof. The proof of existence and uniqueness, depending on whether R0 ≤ 1 or R0 > 1, follows

standard arguments for a two-group SIR model, as in Magal et al. (2016). We proceed in the

following steps. (A) The system of dynamic equations for susceptibles, infected and recovered is

given by:

Ṡi (t) = −2αiniiSi (t) Ii (t)− αjnijSi (t) Ij (t)− αinjiSi (t) Ij (t) , (D.1)

Ṡj (t) = −2αjnjjSj (t) Ij (t)− αinjiSj (t) Ii (t)− αjnijSj (t) Ii (t) , (D.2)

İi (t) = 2αiniiSi (t) Ii (t) + αjnijSi (t) Ij (t) + αinjiSi (t) Ij (t)− γiIi (t) , (D.3)

İj (t) = 2αjnjjSj (t) Ij (t) + αinjiSj (t) Ii (t) + αjnijSj (t) Ii (t)− γjIj (t) , (D.4)

Ṙi (t) = γiIi (t) , (D.5)

Ṙj (t) = γjIj (t) . (D.6)

Note that we can re-write the dynamic equations for infections (D.3) and (D.4) as:[
İi (t)

İj (t)

]
=

{[
2αinii
γi

Si (t)
αjnij+αinji

γj
Si (t)

αjnij+αinji
γi

Sj (t)
2αjnjj
γj

Sj (t)

]
−

[
1 0

0 1

]}[
γiIi (t)

γjIj (t)

]
. (D.7)

The properties of this dynamic system depend crucially on the properties of the matrix B:

B ≡

[
2αinii
γi

Si (t)
αjnij+αinji

γj
Si (t)

αjnij+αinji
γi

Sj (t)
2αjnjj
γj

Sj (t)

]
.

12



We assume that there is trade between the two countries:

αjnij + αinji
γi

> 0,
αjnij + αinji

γj
> 0,

which implies that the matrix B is irreducible for all strictly positive susceptibles Si (t) , Sj (t) > 0.

(B) Re-writing equations (D.1) and (D.2) in proportional changes, and using equations (D.5) and

(D.6), we have:

Ṡi (t)

Si (t)
= −2αinii

γi
Ṙi (t)− αjnij + αinji

γj
Ṙj (t) ,

Ṡj (t)

Sj (t)
= −2αjnjj

γj
Ṙj (t)− αinji + αjnij

γi
Ṙi (t) .

Integrating from 0 to t, we have:

logSi (t)− logSi (0) = −2αinii
γi

(Ri (t)−Ri (0))− αjnij + αinji
γj

(Rj (t)−Rj (0)) ,

logSj (t)− lnSj (0) = −2αjnjj
γj

(Rj (t)−Rj (0))− αinji + αjnij
γi

(Ri (t)−Ri (0)) .

Using the accounting identities, Si (t) + Ii (t) +Ri (t) = 1 and Sj (t) + Ij (t) +Rj (t) = 1, we obtain:

logSi (t)−logSi (0) =
2αinii
γi

[(Si (t) + Ii (t))− (Si (0) + Ii (0))]+
αjnij + αinji

γj
[(Sj (t) + Ij (t))− (Sj (0) + Ij (0))] ,

logSj (t)−lnSj (0) =
2αjnjj
γj

[(Sj (t) + Ij (t))− (Sj (0) + Ij (0))]+
αinji + αjnij

γi
[(Si (t) + Ii (t))− (Si (0) + Ii (0))] .

In steady-state as t→∞, we have Ii (∞) = Ij (∞) = 0, and hence:

Si (∞) = Si (0) exp

[
2αinii
γi

[Si (∞)− Vi] +
αjnij + αinji

γj
[Sj (∞)− Vj ]

]
, (D.8)

Sj (∞) = Sj (0) exp

[
2αjnjj
γj

[Sj (∞)− Vj ] +
αinji + αjnij

γi
[Si (∞)− Vi]

]
, (D.9)

where Vi ≡ Si (0) + Ii (0) and Vj (0) ≡ Sj (0) + Ij (0). We now define the following notation:

X ≤ Y ⇔ Xk ≤ Yk for all k ∈ {i, j} ,

X < Y ⇔ X ≤ Y and Xk < Yk for some k ∈ {i, j} ,

X � Y ⇔ Xk < Yk for all k ∈ {i, j} ,

and represent the system (D.8)-(D.9) as the following map:

X = T (X) ,
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(
xi

xj

)
= T

(
xi

xj

)
=

(
Ti (xi, xj)

Tj (xi, xj)

)
,

with

Ti (xi, xj) = Si (0) exp

[
2αinii
γi

[xi − Vi] +
αjnij + αinji

γj
[xj − Vj ]

]
,

Tj (xi, xj) = Sj (0) exp

[
αinji + αjnij

γi
[xi − Vi] +

2αjnjj
γj

[xj − Vj ]
]
.

(C) Using this notation, we begin by establishing that all the fixed points of T in [0, S (0)] are

contained in the smaller interval [S−, S+]. To establish this result, note that T is monotone in

increasing, which implies that:

X ≤ Y ⇒ T (X) ≤ T (Y ) .

Using our assumption of positive trade,
αinji+αjnij

γi
> 0 and

αjnij+αinji
γj

> 0, this implies:

X � Y T (X)� T (Y ) .

For S (0)� 0, and using the definitions of Vi and Vj above, this implies:

0� T (0) < T (S (0)) < S (0) .

Therefore, by induction arguments, we have the following result for each n ≥ 1:

0� T (0) · · · � Tn (0)� Tn+1 (0) ≤ Tn+1 (S (0)) < · · ·Tn (S (0)) < S (0) .

By taking the limit as n does to +∞, we obtain:

0� lim
n→+∞

Tn (0) =: S− ≤ S+ := lim
n→+∞

Tn (S (0)) < S (0) .

Then, by continuity of T , we have:

T
(
S−
)

= S− and T
(
S+
)

= S+.

(D) We next establish that if S− < S+ then S− � S+. This property follows from our assump-

tion that the matrix B above is irreducible. Assume, for example, that S−i < S+
i . Then, since

αinji+αjnij
γi

> 0, we have:

S−j = Tj

(
S−i , S

−
j

)
≤ Tj

(
S−i , S

+
j

)
< T2

(
S+
i , S

+
j

)
= S+

j .

Hence,

S−i < S+
i ⇒ S−j < S+

j .
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By the same argument,
αjnij+αinji

γj
> 0 implies,

S−j < S+
j ⇒ S−i < S+

i .

(E) We now establish the following result for λ > 1 and X � 0:

T
(
λX + S−

)
− T

(
S−
)
� λ

[
T
(
X + S−

)
− T

(
S−
)]
.

Note that we can write the left-hand side of this inequality as follows:

T
(
λX + S−

)
− T

(
S−
)

=

∫ 1

0
DT

(
lλX + S−

)
(λX) dl = λ

∫ 1

0
DT

(
lλX + S−

)
Xdl,

where the differential of T is given by:

DT (X) =

(
2αinii
γi

Ti (xi, xj)
αjnij+αinji

γj
Ti (xi, xj)

αinji+αjnij
γi

Tj (xi, xj)
2αjnjj
γj

Tj (xi, xj)

)
. (D.10)

Since λ > 1 and X � 0, we have:

DT
(
lλX + S−

)
X � DT

(
lX + S−

)
X ∀ l ∈ [0, 1] .

It follows that:

T
(
λX + S−

)
− T

(
S−
)
� λ

∫ 1

0
DT

(
lX + S−

)
Xdl,

= λ
[
T
(
X + S−

)
− T

(
S−
)]
,

which establishes the result.

(F) We now show that the map T has at most two equilibria such that either:

(i) S− = S+ and T has only one equilibrium in [0, S (0)];

(ii) S− � S+ and the only equilibria of T in [0, S (0)] are S− and S+.

We prove this result by contradiction. Assume that S− 6= S+. Then S− < S+, which implies

S− � S+. Now suppose that there exists X̄ ∈ [S−, S+] a fixed point T such that:

S− 6= X̄ and X̄ 6= S+.

Then, by using the same arguments as in (D) above, we have:

S− � X̄ � S+.

Now define:

γ := sup
{
λ ≥ 1 : λ

(
X̄ − S−

)
+ S− ≤ S+

}
. (D.11)
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Since X̄ � S+ this implies that

γ > 1.

We have

γ
(
X̄ − S−

)
+ S− ≤ S+,

and, by applying T to both sides of this inequality, we obtain:

T
(
γ
(
X̄ − S−

)
+ S−

)
≤ S+.

Now, using (E), we have:

T
(
γ
(
X̄ − S−

)
+ S−

)
− T

(
S−
)
� γ

[
T
((
X̄ − S−

)
+ S−

)
− T

(
S−
)]
,

= γ
[
T
(
X̄
)
− T

(
S−
)]
,

= γ
[
X̄ − S−

]
.

Therefore we have shown that:

S+ ≥ T
(
γ
(
X̄ − S−

)
+ S−

)
� γ

[
X̄ − S−

]
,

which contradicts the definition of gamma as the supremum of the set in equation (D.11), since

S− ≥ 0. Therefore we cannot have another fixed point X̄ ∈ [S−, S+] .

(G) Now consider the case where:

S− � S+.

In this case of two equilibria, the differential of T can be written as:

DT
(
S±
)

= B
(
S±i
)

=

(
2αinii
γi

S±i
αjnij+αinji

γj
S±i

αinji+αjnij
γi

S±j
2αjnjj
γj

S±j

)
.

(H) We now establish the following property of the spectral radius of the matrices DT (S−) and

DT (S+):

ρ
(
DT

(
S−
))
< 1 < ρ

(
DT

(
S+
))
.

To prove this result, note that:

S+ − S− = T
(
S+
)
− T

(
S−
)
,

= T
((
S+ − S−

)
+ S−

)
− T

(
S−
)
,

=

∫ 1

0
DT

(
l
(
S+ − S−

)
+ S−

) (
S+ − S−

)
dl.
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Since S+ − S− � 0, we also have:

DT
(
S+
) (
S+ − S−

)
�

∫ 1

0
DT

(
l
(
S+ − S−

)
+ S−

) (
S+ − S−

)
dl,

� DT
(
S−
) (
S+ − S−

)
.

Combining these two results, we obtain:

DT
(
S+
) (
S+ − S−

)
�
(
S+ − S−

)
� DT

(
S−
) (
S+ − S−

)
. (D.12)

which can be equivalently written as:[
DT

(
S+
)
− I
] (
S+ − S−

)
> 0,[

DT
(
S+
)
− ξ+I

] (
S+ − S−

)
= 0, ξ+ > 1,

and [
DT

(
S−
)
− I
] (
S+ − S−

)
< 0,[

DT
(
S−
)
− ξ−I

] (
S+ − S−

)
= 0, ξ− < 1,

where I is the identity matrix. Noting that the matrices DT (S+) and DT (S−) are non-negative

and irreducible, the Perron-Frobenius theorem implies:

ξ− = ρ
(
DT

(
S−
))
< 1 < ρ

(
DT

(
S+
))

= ξ+.

(I) We now solve explicitly for the spectral radius of the matrices DT (S±). We find the eigenvalues

of the matrix DT (S±) by solving the characteristic equation:

∣∣DT (S±)− ξ±I∣∣ =

∣∣∣∣∣
[

2αinii
γi

S±i
αjnij+αinji

γj
S±j

αjnij+αinji
γi

S±i
2αjnjj
γj

S±j

]
−

[
ξ± 0

0 ξ±

]∣∣∣∣∣ = 0.

The characteristic polynomial is:

(
ξ±
)2 − (2αinii

γi
S±i +

2αjnjj
γj

S±j

)
ξ± +

(
2αinii
γi

2αjnjj
γj

S±i S
±
j −

(αjnij + αinji)
2

γiγj
S±i S

±
j

)
= 0.

The spectral radius is the largest eigenvalue:

ρ
(
DT

(
S±
))

=
1

2

(
2αinii
γi

S±i +
2αjnjj
γj

S±j

)
+

1

2

√(
2αinii
γi

S±i −
2αjnjj
γj

S±j

)2

+ 4
(αjnij + αinji)

2

γiγj
S±i S

±
j .

(J) We now use the results in (H) and (I) to examine the local stability of the two steady-state
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equilibria. From the dynamics of infections in equation (D.7), we have:[
İ±i
İ±j

]
=

{[
2αinii
γi

S±i
αjnij+αinji

γj
S±j

αjnij+αinji
γi

S±i
2αjnjj
γj

S±j

]
−

[
1 0

0 1

]}[
I±i
I±j

]
. (D.13)

Therefore the spectral radius of the matrix DT (S±) corresponds to the global R0 that determines

the local stability of the two steady-state equilibria. As we have shown that ρ (DT (S+)) > 1, the

steady-state S+ is locally unstable. As we have shown that ρ (DT (S−)) < 1, the steady-state S−

is locally stable.

E Computational Appendix

In this Appendix we describe the algorithms we use to do the numerical simulations in each section

of the paper.

E.1 A Two-Country SIR Model with Time-Invariant Interactions

Solution Algorithm

1. Compute the value of nii, nij , nij , and njj as the outcome of the equilibrium that solves

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

πiiwiLi + πjiwjLj = wiLi,

where πij is given by

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

,

corresponding to equation (9) in the paper. Call them n̄ii, n̄ij , n̄ij , and n̄jj . Provided

population, technology, and relative wages are time invariant, these quantities will be fixed.

2. Set Ii(0) = 0.1× 10−4, Si(0) = 1− Ii(0), and Ri(0) = 0 for all i. For each t ∈ [1, T ] solve the

following system of equations:

Si(t+ 1)

Ii(t+ 1)

Ri(t+ 1)

Sj(t+ 1)

Ij(t+ 1)

Rj(t+ 1)


=



−Ωi Ωi 0 0 0 0

0 −γi γi 0 0 0

0 0 0 0 0 0

0 0 0 −Ωj Ωj 0

0 0 0 0 −γj γj

0 0 0 0 0 0


× (1/step)×



Si(t)

Ii(t)

Ri(t)

Sj(t)

Ij(t)

Rj(t)


+



Si(t)

Ii(t)

Ri(t)

Sj(t)

Ij(t)

Rj(t)


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where

Ωi = αi × 2n̄ii × Ii(t) + αj × n̄ij × Ij(t) + αi × n̄ji × Ij(t).

This system corresponds to equations (16)− (18) in the paper. The variable step marks the

number of steps taken within each time period, in this section we use step = 2.

Associated Figures

This section in the paper uses three sets of parameters. Figures 1, 2, and 3 present a general

specification in which international trade favors the onset of a pandemic, with standard parameters

as listed in Table E.1 for Figure 1 and Table E.2 for Figures 2 and 3. Figures 4 and 5 look at an

example in which free trade prevents the onset of a pandemic, using parameters listed in Table E.3.

Figure 6 presents the possibility of second waves of infection, using parameters listed in Table E.4.

If no other mention is made, trade frictions are set at baseline values µij = µji = 1, tij = tji = 1,

dij = dij = 1.1. Some of these figures study changes in trade frictions moving one of these

parameters. All other parameters are kept at baseline value.

Table E.1: Baseline parameters - Figure 1 in draft.

Parameter Value

σ 5
φ 2
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.15

α1 0.04
α2 {0.04, 0.10}
γ1, γ2 0.20, 0.20
η1, η2 0.0, 0.0

In order to obtain the result described for the second set of parameters, φ = 1.5 is crucial.

The only other difference with respect to the general scenario is a decrease of c to 0.1. This is not

necessary: the qualitative result also holds for c = 0.15 but it was originally changed so that nii

would be approximately the same in both cases.

There are more parameters that will generate a second wave of infections. The ones presented

here were picked to obtain reasonable values for R0i and R0. What is essential for this feature to

occur is that both countries have different timings for their own pandemics in autarky. One (small)

country has very fast contagion rates (α) and very short recovery periods (high γ), while in the

other (big) country the disease must progress much slower so that when the cycle starts it will drag

the first country with it once again. The difference in size is there so that when the small country

goes through its first cycle, the big country will remain mostly unaffected.
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Table E.2: Baseline parameters - Figures 2, 3 in draft.

Parameter Value

σ 5
φ 2
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.15

α1, α2 0.04, 0.07
γ1, γ2 0.20, 0.20
η1, η2 0.0, 0.0

Table E.3: ”Better trade” parameters - Figures 4, 5 in draft.

Parameter Value

σ 5
φ 1.5
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.10

α1, α2 0.04, 0.07
γ1, γ2 0.20, 0.20
η1, η2 0.0, 0.0

E.2 General-Equilibrium Induced Responses

Solution Algorithm

1. Compute the value of nii(0), nij(0), nij(0), and njj(0) as the outcome of the equilibrium that

solves

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

πiiwiLi(1−Di(t)) + πjiwjLj(1−Dj(t)) = wiLi(1−Di(t)),

where πij is once again given by

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

,
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Table E.4: Second-wave parameters - Figure 6 in draft

Parameter Value

σ 4.5
φ 2
Z1, Z2 1
L1, L2 2, 20
d12 = d21 1
δ 1
ρ 1
c 0.12

α1, α2 0.69, 0.09
β1, β2 2.29, 0.30
γ1, γ2 2.1, 0.18

corresponding to equation (9) in the paper. These values are no longer fixed and will evolve

as the pandemic progresses.

2. Set Ii(0) = 0.1× 10−4, Si(0) = 1− Ii(0), and Ri(0) = 0 for all i. For each t ∈ [1, T ]:

(a) Solve the following system of equations:

Si(t+ 1)

Ii(t+ 1)

Ri(t+ 1)

Di(t+ 1)

Sj(t+ 1)

Ij(t+ 1)

Rj(t+ 1)

Dj(t+ 1)


=



−Ωi Ωi 0 0 0 0 0 0

0 −κi γi ηi 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −Ωj Ωj 0 0

0 0 0 0 0 −κj γj ηj

0 0 0 0 0 0 0 0


×(1/step)×



Si(t)

Ii(t)

Ri(t)

Di(t)

Sj(t)

Ij(t)

Rj(t)

Dj(t)


+



Si(t)

Ii(t)

Ri(t)

Di(t)

Sj(t)

Ij(t)

Rj(t)

Dj(t)


where κi = γi + ηi and

Ωi = αi × 2nii(t)× Ii(t) + αj × nij(t)× Ij(t) + αi × nji(t)× Ij(t).

This system corresponds to equations (28)− (31) in the paper. The variable step marks

the number of steps taken within each time period, in this section we use step = 2.

(b) Update nij(t+ 1) and wi(t+ 1) as the values that solve:

nij(t+ 1) = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj(t+ 1)

ZjPi

)− σ−1
(φ−1)

(
wi(t+ 1)

Pi

)1/(φ−1)

πiiwi(t+ 1)Li(1−Di(t+ 1)) + πjiwj(t+ 1)Lj(1−Dj(t+ 1)) = wi(t+ 1)Li(1−Di(t+ 1)).
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Associated Figures

This section in the paper is associated with Figure 7, which uses the parameters described in Table

E.5. These correspond to the first set of parameters in the previous section (associated to Figures

1, 2, and 3). The duration of the disease remains the same, as the exit rate from the infected stage

(γi + ηi) is unchanged, but now both countries experience deaths, with one of them having a much

higher death rate than the other (ηi marks the entry into the dead stage, so ηi/(γi + ηi) marks how

many of those that were infected will end up dying).

Table E.5: Section 4 parameters - Figure 7.

Parameter Value

σ 5
φ 2
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.15

α1, α2 0.04, 0.07
(γi + ηi) 0.20
ηi/(γi + ηi) 0.01, 0.50

E.3 Behavioral Responses - Symmetric Case

Solution Algorithm

1. Choose T (∞) = 500, 000 (some large number), and T = 10, 000. Guess D(∞) = Di.

2. Compute the value of nii(∞), nij(∞), nij(∞), and njj(∞) as the outcome of the equilibrium

that solves

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

πiiwiLi(1−Di) + πjiwjLj(1−Dj) = wiLi(1−Di),

where πij is given by

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

corresponding to equation (9) in the paper.
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3. Transversality conditions are satisfied if

lim
t→∞

θki (t) = 0

lim
t→∞

θii(t) = 0

lim
t→∞

θsi (t) = 0

Set θki (∞) = θii(∞) = θsi (∞) = 0 and let the economy run without infections between T and

T (∞), that is, for each time period t ∈ [T, T (∞)] update the Lagrange multipliers as

θki (t) = θki (t+ 1)− [Qi(nii(∞), nij(∞))− Ci(nii(∞), nij(∞))] e−ξt∆t

θii(t) =
1

1 + (γi + ηi)∆t
[ηiθ

k
i (t)∆t+ θii(t+ 1)]

where ∆t is the step size (one over how many times you update within each day). Keep θk(T )

and θi(T ) as the terminal values of the Lagrange multipliers.

4. Set Ii(T ) = 10−6, θsi (T ) = 0 and Si(T ) = 1− Ii(T )−Di/(ηi/(γi + ηi)). Recompute ni·(T ) as

the values that solve[
∂Qi(nii(T ), nij(T ))

∂nij
− ∂Ci(nii(T ), nij(T ))

∂nij

]
(1−Di)e−ξT = [θsi (T )− θii(T )]Si(T )αjIj(T ),

corresponding to equation (32) in the paper. Given perfect symmetry between countries, we

will have wi = 1 for all i.

5. For each t ∈ [T, 0] solve the following system of equations, where all values evaluated at t+ 1

are known, to obtain values at t:

θsi (t+ 1)− θsi (t) = [θsi (t)− θii(t)][2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t

θsi (t+ 1)− θii(t) = (γi + ηi)θ
i
i(t)∆t− ηiθki (t)∆t

θsk(t+ 1)− θki (t) = [Qi(nii(t), nij(t))− Ci(nii(t), nij(t))] e−ξt∆t

Ii(t+ 1)− Ii(t) = Si(t)[2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t− (γi + ηi)Ii(t)∆t

Si(t+ 1)− Si(t) = −Si(t)[2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t

Di(t+ 1)−Di(t) = ηiIi(t)∆t

and where ni·(t) is again obtained as the value that solves:[
∂Qi(nii(t), nij(t))

∂nij
− ∂Ci(nii(t), nij(t))

∂nij

]
(1−Di(t))e

−ξt = [θsi (t)− θii(t)]Si(t)αjIj(t).

These correspond to equations (32)-(35) in the paper plus the equations determining the
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evolution of the epidemiological variables, once we have imposed equilibrium conditions.

6. Repeat for all periods until I(t) reaches the desired initial condition, that is, I(t) = 10−5. If

at this t we have |D(t)| < 10−5 stop. Otherwise, adjust guess Di.

Associated Figures

This section in the paper is associated with Figures 8 and 9, which uses the parameters described

in Table E.6.

Table E.6: Behavioral response parameters - Figures 8, 9 in draft.

Parameter Value

σ 5
φ 1.5
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.10

α1, α2 0.1, 0.1
γi + ηi 0.20, 0.20
ηi/(γi + ηi) 0.0062, 0.0062

∆t 1/5
ξ 0.05/(365×∆t)

The initial guess used in the code Figure 8 is Di = 0.0022, and the initial guess for Figure 9 is

Di = 0.004.

E.4 Behavioral Responses - Asymmetric Case

Solution Algorithm

1. Choose T (∞) = 500, 000 (some large number), and T = 10,000. Guess D1(∞) = D1. Fix

I1(T ) = 10−7.

2. Generate a grid for D2(∞) = D2 wide enough to contain the solution (use solution without

behavioral responses as an upper bound for this guess). For each of the points in this grid

(a) Compute the value of nii(∞), nij(∞), nij(∞), and njj(∞) as the outcome of the equi-

librium that solves

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

πiiwiLi(1−Di) + πjiwjLj(1−Dj) = wiLi(1−Di),
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where πij is once again given by

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

corresponding to equation (9) in the paper.

(b) Transversality conditions are satisfied if

lim
t→∞

θki (t) = 0

lim
t→∞

θii(t) = 0

lim
t→∞

θsi (t) = 0

Set θki (∞) = θii(∞) = θsi (∞) = 0 and let the economy run without infections between T

and T (∞), that is, for each time period t ∈ [T, T (∞)] update the multipliers as

θki (t) = θki (t+ 1)− [Qi(nii(∞), nij(∞))− Ci(nii(∞), nij(∞))] e−ξt∆t

θii(t) =
1

1 + (γi + ηi)∆t
[ηiθ

k
i (t)∆t+ θii(t+ 1)]

where ∆t is the step size (one over how many times you update within each day). Keep

θk(T ) and θi(T ) as the terminal values of the Lagrange multipliers.

(c) Guess a value for I2(T ). Set θsi (T ) = 0 and Si(T ) = 1 − Ii(T ) − Di/(ηi/(γi + ηi)).

Recompute ni·(T ) as the values that solve[
∂Qi(nii(T ), nij(T ))

∂nij
− ∂Ci(nii(T ), nij(T ))

∂nij

]
(1−Di)e−ξT = [θsi (T )− θii(T )]Si(T )αjIj(T ),

corresponding to equation (32) in the paper. Given perfect symmetry between countries,

we will have wi = 1 for all i.

i. Given a value for I2(T ), for each t ∈ [T, 0] solve the following system of equations,

where all values evaluated at t+ 1 are known, to obtain values at t:

θsi (t+ 1)− θsi (t) = [θsi (t)− θii(t)][2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t

θsi (t+ 1)− θii(t) = (γi + ηi)θ
i
i(t)∆t− ηiθki (t)∆t

θsk(t+ 1)− θki (t) = [Qi(nii(t), nij(t))− Ci(nii(t), nij(t))] e−ξt∆t

Ii(t+ 1)− Ii(t) = Si(t)[2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t− (γi + ηi)Ii(t)∆t

Si(t+ 1)− Si(t) = −Si(t)[2αinii(t)Ii(t) + (αjnij(t) + αinji(t))Ij(t)]∆t

Di(t+ 1)−Di(t) = ηiIi(t)∆t
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and where ni·(t) is again obtained as the value that solves:[
∂Qi(nii(t), nij(t))

∂nij
− ∂Ci(nii(t), nij(t))

∂nij

]
(1−Di(t))e

−ξt = [θsi (t)−θii(t)]Si(t)αjIj(t).

These correspond to equations (32)-(35) in the paper plus the equations determining

the evolution of the epidemiological variables, once we have imposed equilibrium

conditions.

ii. Given a particular grid, two adjacent guesses of D2 may lead to diverging paths for Ii.

If this is the case, pick the two guesses that split the paths between those diverging

upwards and downwards and re-draw a finer grid for D2 within these bounds.

iii. Repeat for all periods until Ii(t) reaches the desired initial condition, that is, I(t) =

10−5 and Ii(t) < Ii(t+1) in a flat line (meaning it does not diverge to plus or minus

infinity). If at this t we have D1(t) = D2(t) go back to outside layer of the loop.

Otherwise, adjust guess I2(T ).

3. If at this t we have |Di(t)| < 10−5 stop. Otherwise, adjust guess D1.

Associated Figures

This section in the paper is associated with Figure 10, which uses the parameters described in Table

E.7.

Table E.7: Behavioral response parameters - Figure 10 in draft.

Parameter Value

σ 5
φ 1.5
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.10

α1, α2 0.1, 0.1
γi + ηi 0.20, 0.20
ηi/(γi + ηi) 0.003, 0.0062

∆t 1/3
ξ 0.05/(365×∆t)

Notes about the Algorithm

This algorithm is not closed, as it still requires a mechanism that will automatically define which

are the bounds for D2 in step 2(c)ii.
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E.5 Adjustment Costs and the Risk of a Pandemic

Solution Algorithm

1. Choose T (∞) = 500, 000 (some large number), and T = 10,000. Guess D(∞) = Di.

2. Compute the value of nii(∞), nij(∞), nij(∞), and njj(∞) as the outcome of the equilibrium

that solves

nij = (c (σ − 1)µij)
−1/(φ−1) (dij)

− ρ+(σ−1)δ
φ−1

(
tijwj
ZjPi

)− σ−1
(φ−1)

(
wi
Pi

)1/(φ−1)

πiiwiLi(1−Di) + πjiwjLj(1−Dj) = wiLi(1−Di),

where πij is once again given by

πij =
Xij∑
`∈J Xi`

=
(wj/Zj)

−φ(σ−1)
φ−1 × (µij)

− 1
φ−1 (dij)

− ρ+φ(σ−1)δ
φ−1 (tij)

−φ(σ−1)
φ−1∑

`∈J (µi`)
− 1
φ−1 (di`)

− ρ+φ(σ−1)δ
φ−1 (ti`w`/Z`)

−φ(σ−1)
φ−1

corresponding to equation (9) in the paper.

3. Transversality conditions are satisfied if

lim
t→∞

θki (t) = 0

lim
t→∞

θii(t) = 0

lim
t→∞

θsi (t) = 0

Set θki (∞) = θii(∞) = 0 and let the economy run without infections between T and T (∞),

that is, for each time period t ∈ [T, T (∞)] update the multipliers as

θki (t) = θki (t+ 1)− [Qi(nii(∞), nij(∞))− Ci(nii(∞), nij(∞))] e−ξt∆t

θii(t) =
1

1 + (γi + ηi)∆t
[ηiθ

k
i (t)∆t+ θii(t+ 1)]

where ∆t is the step size (one over how many times you update within each day). Keep θk(T )

and θi(T ) as the terminal values of the Lagrange multipliers.

4. Set Ii(T ) = 10−7, θsi (T ) = 0 and Si(T ) = 1− Ii(T )−Di/(ηi/(γi + ηi)). Recompute ni·(T ) as

the values that solve[
∂Qi(nii(T ), nij(T ))

∂nij
− ∂Ci(nii(T ), nij(T ))

∂nij

]
(1−Di)e−ξT = [θsi (T )− θii(T )]Si(T )αjIj(T ),

corresponding to equation (32) in the paper. Given perfect symmetry between countries, we

will have wi = 1 for all i.
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5. For each τ − 1 ∈ [T, 0] solve the following system of equations, where all values evaluated at

τ are known and we have imposed perfect symmetry between countries, to obtain values at t:

θs(τ)− θs(τ − 1) = [θs(τ)− θi(τ)][2αni(τ)I(τ) + 2αnj(τ)I(τ)]∆τ

θs(τ)− θs(τ − 1) = (γ + η)θi(τ)∆τ − ηθk(τ)∆τ

θk(τ)− θk(τ − 1) =
[
Q(nj(τ), nj(τ))− C(ni(τ), nj(τ))− ψ1(|gii (t)|ψ2 + |gij (t)|ψ2)

]
e−ξτ∆τ

I(τ)− I(τ − 1) = S(τ)[2αni(τ)I(τ) + 2αnj(τ)I(τ)]∆τ − (γ + η)I(τ)∆τ

S(τ)− S(τ − 1) = −S(τ)[2αni(τ)I(τ) + 2αnj(τ))I(τ)]∆τ

D(τ)−D(τ − 1) = ηI(τ)∆τ

and where ni·(τ) is obtained as ni·(τ + 1)− gi·(τ)×∆t for the value of gi·(τ) that solves:

e−ξτ
[
∂Qi
∂nij

(nij(τ))− ∂Ci
∂nij

(nij(τ))

]
× (1−D(τ))

+
∞∑

t=τ+1

e−ξt
[
∂Qi
∂nij

(nij(t))−
∂Ci
∂nij

(nij(t))

]
× (1−D(t))

− (θs(τ)− θi(τ))× S(τ)× α× I(τ)−
∞∑

t=τ+1

(θs(t)− θi(t))× S(t)× α× I(t)

− ψ1ψ2|
nij(τ + 1)− nij(τ)

∆τ
|ψ2−1 × (1−D(τ))e−ξτ

= 0.

Note that, in contrast to the other cases above, we compute changes as happening between

τ and τ − 1, rather τ + 1 and τ. This makes the system easier to solve backwards, although

the difference in solutions is negligible for small enough step size.

6. Repeat for all periods until I(τ) reaches the desired initial condition, that is, I(τ) = 10−5. If

at this τ we have D(τ) = 0 stop. Otherwise, adjust guess Di.

Associated Figures

This section in the paper is associated with Figure 11, which uses the parameters described in Table

E.8.
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Table E.8: Behavioral response parameters - Figure 10 in draft.

Parameter Value

σ 5
φ 1.5
Z1, Z2 1
L1, L2 3, 3
d12 = d21 1.1
µ12 = µ21, t12 = t21 1
δ 1
ρ 1
c 0.10

α1, α2 0.1, 0.1
γi + ηi 0.20, 0.20
ηi/(γi + ηi) 0.0062, 0.0062

ξ 0.05/(365×∆t)
ψ1 1
ψ2 4
∆t 1/10
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