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1 Introduction

The twenty first century has witnessed the rise of big data and big models in the social

sciences. Exponential growth in computational capacity combined with access to new micro-

level datasets have allowed the empirical implementation of models where large numbers

of heterogeneous agents interact simultaneously with each other in myriad ways. Despite

the introduction of empirical content to traditionally theoretical fields, unresolved questions

about the positive properties of these big models remain. Two concerns—critical for applied

work—are particularly pressing: How can we compute the solution of an equilibrium system

with hundreds or thousands of heterogeneous agents efficiently? And how do we know that

the equilibrium we find is the only possible one?

In this short paper, we answer these questions for a large class of models where many

heterogeneous agents simultaneously interact in many ways. In particular, we consider sys-

tems where N heterogeneous agents engage in H types of interactions whose equilibrium can

be reduced to a set of N ×H equations of the following form:

xih =
N∑
j=1

fijh (xj1, ..., xjH) , (1)

where {xih} ∈ RN×H
++ reflect the (strictly positive) equilibrium outcomes for each agent of

each interaction and fijh : RH
++ → R++ are the known (differentiable) functions that govern

the interactions between different agents. In particular, fijh is the function that governs the

impact that an interaction with agent j has on agent i’s equilibrium outcome of type h.

As we illustrate, this formulation is sufficiently general to apply to many types of economic

networks—from firm linkages to social networks to the spatial structure of cities.

The main formal result of the paper is a three-part Theorem that offers a unified charac-

terization of the positive properties of equilibrium systems satisfying equation (1). The key

insight, loosely speaking, is to simplify the analysis by abstracting from agent heterogeneity

and the particular network structure and focusing instead on the strength of economic inter-

actions. Formally, rather than focusing on the N2×H functions {fijh} themselves, we instead

focus on theH×H matrix of the uniform bounds of the elasticities (A)hh′ ≡ supi,j

(∣∣∣ ∂ ln fijh
∂ lnxjh′

∣∣∣)
of the functions. The Theorem characterizes the equilibrium properties of the system based

on a single statistic of this matrix: its spectral radius. If its spectral radius is less than one,

there exists a unique equilibrium which can be calculated using an iterative algorithm (part

i); if its spectral radius is equal to one (with additional restrictions on {fijh}), there is at

most one equilibrium (part ii); and if its spectral radius is greater than one, then there exist

{fijh} where multiplicity is assured (part iii).
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Part (i) of Theorem 1 relies on a multi-dimensional extension of the contraction mapping

theorem to a vector-valued metric known as the Perov Fixed Point Theorem (Perov, 1964;

Perov and Kibenko, 1966); we construct such a vector-valued metric by partitioning the

space of endogenous variables into subsets, each of which operates in a different metric

subspace. This partition is particularly helpful in economic models where heterogeneous

agents interact in many ways (i.e. H is large), as it allows us to separate the study of each

type of interaction. Part (ii) of Theorem 1 relies on a new contradiction argument, and we

show that the knife edge case to which it applies is common in economics, as any constant-

elasticity system where one of the equilibrium outcomes is a nominal variable (e.g. prices)

has a spectral radius no smaller than one. Part (iii) of Theorem 1 is proved by construction;

it reveals how the spectral radius being greater than one engenders multiplicity and provides

a practical guide for finding multiple solutions. The three parts together demonstrate that

the spectral radius of the elasticity matrix is the best condition possible abstracting from

the particularities of agent heterogeneity, i.e. it is sufficient and “globally necessary.”

To illustrate its broad applicability, we finally apply Theorem 1 to seminal models from

many disparate fields in economics. In the main text, we offer two applications; in Online

Appendix A, we offer ten more.1 First, we extend an urban model in the spirit of Ahlfeldt,

Redding, Sturm, and Wolf (2015) to a setting with many types of agents where the payoffs

of the choice of residence and workplace depend flexibly on the choices of other agents.

Second, we extend a social network model in the spirit of Ballester, Calvó-Armengol, and

Zenou (2006) to a setting where agents simultaneously take many actions on potentially

many different networks, with the payoffs of each depending flexibly on the actions of other

agents. In both cases, we illustrate each part of the Theorem, deriving sufficient conditions

guaranteeing convergence to a solution and uniqueness and providing examples of multiplicity

if those conditions do not hold. We note that these extensions are contributions in their

own right, as they allow heterogeneous agent network models to be brought to bear on

important empirical questions. For example, in the urban application incorporating many

types of agents enables the “quantitative” study of such issues as spatial segregation and

gentrification, whereas in our social network application, our extension enables the analysis

of the interdependent nature of different types of actions on different social networks.

1These include network models with social interactions as in Brock and Durlauf (2001) and Glaeser and
Scheinkman (2002), public goods provision in social networks as in Allouch (2015) and Bergstrom, Blume,
and Varian (1986), multiple activities as in Chen, Zenou, and Zhou (2018), economic geography models and
trade models as in Allen and Arkolakis (2014) and Alvarez and Lucas (2007), trade models with input-output
structures as in Caliendo and Parro (2015), input-output production networks as in Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) and Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021), and demand
estimation as in Berry, Levinsohn, and Pakes (1995).
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Contribution to the literature

To highlight the contribution of our paper, it is helpful to compare our approach to four

alternatives for characterizing the properties of an equilibrium.

First, one could recursively apply a process of substitution to re-define the equilibrium

system as a function of fewer economic interactions. For example, in a simple exchange econ-

omy with multiple agents and multiple goods, there are two interactions—buying and selling,

which in equilibrium can be summarized by the value of each agent’s endowment (wages)

and consumption bundle (price index). Alvarez and Lucas (2007) characterize the equilib-

rium of such a system by first substituting wages into the price index and then analyzing

the structure of the model only in terms of wages relying on the gross substitutes property

of the system, c.f. Mas-Colell, Whinston, and Green (1995). While feasible for small H,

the complexity of this approach increases exponentially with the number of interactions in

the model, creating a curse of dimensionality for large H. Theorem 1, in contrast, avoids

such a curse by simultaneously considering all H interactions and, as we show in Online

Appendix A.7, delivers less stringent sufficient conditions for uniqueness even while relaxing

the restriction that tariffs are uniform (albeit under an additional assumption that trade

costs are “quasi”-symmetric).

Second, one could “stack” all economic outcomes into a single NH × 1 vector and apply

standard contraction mapping arguments. The disadvantage of such an approach is that it

treats different types of interactions identically—despite the fact that they may play very

different roles in the equilibrium system. This results in a loss of information and intro-

duces the possibility that the sufficient conditions may fail despite the system being unique.

For example, consider the N = 1 H = 2 system x11 = x
1
2
11x

2
12 + 1, x12 = x

1
2
12 + 1. It is

straightforward to show that by treating x11 and x12 as a single vector variable, the standard

contraction conditions that the matrix norm (induced by the vector norm) of the system’s

Jacobian matrix is strictly less than one are not satisfied, whereas the conditions for our

Theorem are satisfied.

Third, one could characterize the Jacobian matrix of the equilibrium system directly, e.g.

using the results of Hadamard (1906), Gale and Nikaido (1965), or Kehoe (1980). While

powerful, such an approach is often impractical in situations with large number of equations,

as the Jacobian of equation (1) is of size NH ×NH, making it difficult to characterize. In

contrast, the conditions provided here depend on a single statistic of an H×H matrix. And

even when the Jacobian can be characterized, the associated conditions required to establish

uniqueness may be too stringent, as noted by e.g. Berry, Gandhi, and Haile (2013). For

example, consider the system xi =
∑N

j=1 Kijx
α
j for Kij > 0 and α ∈ (0, 1]. The ith diagonal

term of its Jacobian is 1 − αKiix
α−1
i which can be negative or positive, violating e.g. the
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classical condition of Gale and Nikaido (1965) that all principal submatrices of the Jacobian

have positive determinants. In this case, however, the spectral radius of the elasticity is

α ≤ 1, so uniqueness is established immediately by the Theorem presented here.

Fourth, one could apply the recent results from the social network literature (see e.g.

Ballester, Calvó-Armengol, and Zenou (2006), Bramoullé, Kranton, and D’amours (2014),

and Parise and Ozdaglar (2019)), which offers conditions for uniqueness based on the struc-

ture of the network. One advantage of our approach which instead is based on the elasticities

of economic interactions is that the conditions we provide will hold regardless of the network

structure, which is useful in settings where the same economic model may be applied to

different empirical contexts. For example, in spatial models, the heterogeneity of agents and

network structure captures such things like the geography (e.g. trade costs) which are highly

context dependent; in contrast, the elasticities govern the strength of economic interactions

(e.g. the elasticity of demand) that may be similar across locations. As we show below, these

conditions may offer distinct (but complementary) characterizations of the positive proper-

ties of existing network games. Another distinction between our approach and those of the

social network literature is our focus on the strictly positive domain and range of equation

(1); while this is due primarily to our focus on elasticities, we also offer extensions of our

results below to cases where the domain and range include zero.

In summary, we approach the N × H system represented in equation (1) by extract-

ing an H ×H matrix capturing the strength of economic interactions and characterize the

equilibrium properties of the system based on a single statistic of that matrix. As a result,

Theorem 1 provides a unified understanding of a broad class of heterogeneous agent network

models and offers a straightforward and easy-to-check sufficient condition to characterize

their equilibrium—reminiscent of how Blackwell (1965) offers straightforward sufficient con-

ditions that have been widely used to characterize the equilibrium of single-agent dynamic

models. In doing so—and as the included applications illustrate—it offers both new lessons

for existing models and the ability to extend existing frameworks in important directions.

The structure of the remainder of the paper is as follows: Section 2 presents the Theorem

and makes seven remarks. Section 3 presents two applications of the result to the fields

of urban spatial networks and social networks, respectively. For brevity, the proof of the

Theorem is presented in the Appendix. Details of the remarks and ten additional applications

are presented in the Online Appendix.
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2 The Theorem

Let N ≡ {1, ..., N} and H ≡ {1, ..., H} correspond to the set of economic agents and the set

of economic interactions, respectively.2 Let x be an N -by-H matrix of endogenous economic

outcomes, where for i ∈ N and h ∈ H, we slightly abuse notation and let xi denote x’s

ith row and x.h to denote x’s hth column. We restrict our attention to strictly positive

{xih}i∈N ,h∈H ∈ RN×H
++ and strictly positive and differentiable {fijh}. Define the elasticity

ϵijh,jh′ (xj) ≡ ∂ ln fijh(xj)

∂ lnxjh′
, i.e. ϵijh,jh′ (xj) is the impact of agent j′s outcome of type h′ on

agent i′s outcome of type h. Finally, define ρ (A) as the spectral radius of matrix A (i.e.

the largest absolute value of its eigenvalues).

Theorem 1. Suppose there exists an H-by-H matrix A such that for all i, j ∈ N , h, h′ ∈ H,

and xj ∈ RH
++, |ϵijh,jh′ (xj)| ≤ (A)hh′. Then:

(i). If ρ (A) < 1, there exists a unique solution to equation (1) which can be computed

by iteratively applying equation (1) with a rate of convergence ρ (A);

(ii). If ρ (A) = 1 and:

a. For all i ∈ N and h, h′ ∈ H when (A)hh′ ̸= 0 there exists some j such that for all

xj ∈ RH
++, |ϵijh,jh′ (xj)| < (A)hh′, then equation (1) has at most one solution;

b. For all xj, ϵijh,jh′ (xj) = αhh′ ∈ R where |αhh′ | = (A)hh′ for all i, j ∈ Nand h, h′ ∈
H—i.e. fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ for some Kijh > 0—then there is at most one column-

wise up-to-scale solution, i.e. for any h ∈ H and two solutions x and x′ it must be x′
.h = chx.h

for some scalar ch > 0;

(iii). If ρ (A) > 1, N ≥ 2H + 1, and fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ , then there exists

some {Kijh > 0}i,j∈N ,h∈H such that equation (1) has multiple solutions that are column-wise

up-to-scale different.

Proof. See Appendix A.

Part (i) of Theorem 1 applies the Perov Fixed Point Theorem (Perov, 1964; Perov and

Kibenko, 1966) to show that there exists a unique solution and that solution can be computed

with an iterative algorithm that converges at a rate ρ (A). In particular, denote equation (1)

as x = T (x); then for any initial “guess”of a positive solution x0 ∈ RN×H
++ , one simply iterates

x1 = T (x0), x2 = T (x1), x3 = T (x2), ... until convergence. Intuitively, if (1) represents an

agents i’s best response function for action h, then this algorithm is simply an iterated best

response and part (i) guarantees such best response dynamics will converge to the unique

(Nash) equilibrium from any starting point.

2More generally, the set of agents N can be countably infinite or uncountably infinite represented by a
closed interval.
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Part (ii) of Theorem 1 deals with the case of ρ (A) = 1, which turns out to be a common

phenomenon in economic modeling (see Remark 6 below). It establishes uniqueness by

imposing extra conditions on the elasticities ϵijh,jh′ (xj): if either the elasticities are strictly

smaller than their bounds (part ii.a) or the elasticities are constant (part ii.b) then (up-to-

scale) uniqueness can be assured.

Finally, since whether or not a system of the form of equation (1) has a unique solu-

tion in general depends on the particular function {fijh}, our choice to abstract from this

heterogeneity comes at the cost of preventing us from providing necessary conditions for

uniqueness. Nonetheless, part (iii) of Theorem 1 shows that the conditions provided are

“globally necessary”. That is, for any matrix of elasticity bounds A such that ρ (A) > 1, one

can construct a set of functions that govern the interactions {fijh} with a corresponding A

where multiple equilibria are assured.3 Such functions can be constructed even restricting

attention only to functions with constant elasticities. Put another way, the sufficient con-

ditions for uniqueness provided in the Theorem 1 are the best that can be provided when

abstracting from agent heterogeneity and network structure.

Remarks

We provide below seven remarks that both facilitate the implementation and extend Theorem

1. Details are presented in Online Appendix B.1. The first four remarks provide extensions

to Theorem 1.

Remark 1. (Generalized Domain and Range) Theorem 1 can be extended to both allow

the domain of {fijh} to be a function of the full set of equilibrium outcomes x for all j and

allow the range of {fijh} to be weakly positive, i.e. fijh : RH×N
++ → R+. To do so, we instead

require the summation across j to be strictly positive, i.e.
∑

j∈N fijh (x) > 0. This alters the

conditions in Theorem 1 from a condition on the elasticity |ϵijh,jh′ (xj)| to a condition on the

sum of elasticities, i.e.
∑

j∈N

∣∣∣∂ ln
∑

k∈N fikh(x)

∂ lnxjh′

∣∣∣ for parts (i) and (ii.a) and ϵijh,jh′ (xj) = αhh′

with
∑

j∈N
∂ ln

∑
k∈N fikh(x)

∂ lnxjh′
= αhh′ for part (ii.b). The remainder of Theorem 1 and its proof

is unchanged. This generalization allows both that the impact that agent j has on agent i

through an interaction of type h can depend on the equilibrium outcomes of any other agents

(including i’s own outcomes) and for certain agents’ interactions to not directly affect the

payoffs of others e.g. in a network whose graph is not complete. We apply this remark in

Section 3.1.

3Part (iii) of Theorem 1 extends the result of Allen and Donaldson (2018) to equilibrium systems with
more than two equilibrium interactions (i.e. H > 2).
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Remark 2. (Weakly Positive Solutions) We can also extend Theorem 1 to consider

both a weakly positive domain (and range) of {fijh} in the following way. Consider the

special case of equation (1) where fijh : RH
+ → R+ ≡ Kijhgijh (xj1, ..., xjH), where Kijh ≥ 0

and gijh (xj) is a function that is continuous, differentiable, and gijh (xj) > 0 for all xj > 0

so that equation (1) becomes xih =
∑N

j=1Kijhgijh (xj1, ..., xjH). This extension allows us to

consider the possibility that an equilibrium x∗ of equation (1) is weakly positive, i.e. for some

i, h, x∗
i,h = 0. Let non-negative matrix A represent the bounds of elasticities

∂ ln gijh(xj)

∂ lnxjh′
for

xj > 0. Then if ρ (A) < 1 and matrices (Kijh)i,j∈N for all h are irreducible, there exists only

one strictly positive solution. Weakly positive solutions may exist but will be asymptotically

unstable, in the sense of e.g. Weibull (1997). Specifically, for any ε > 0 and any x ∈ RNH
++

such that ∥x−x∗∥ < ϵ the repeated application of equation (1) from x will diverge away from

the weakly positive solution. Intuitively, while there may exist weakly positive equilibria, the

best response dynamics from any arbitrarily nearby strictly positive x will diverge away from

any of these equilibria (and toward the unique strictly positive solution) when ρ (A) < 1.4

We apply this remark in Section 3.2.

Remark 3. (Conditions on Derivatives) While the conditions of Theorem 1 are stated

in terms of the size of the elasticities, we can also derive comparable results in terms of

derivatives. Note that this approach provides another means of extending Theorem 1 to

consider domains and ranges with zero and negative values. Suppose that for all i ∈ N , h ∈
H, Fih (x) ≡

∑
j fijh (x) is continuous and has right and left partial derivatives with respect

to xjh′ (denoted as ∂+Fih(x)
∂xjh′

and ∂−Fih(x)
∂xjh′

). Define δih,jh′ (x) ≡ max
(∣∣∣∂+Fih(x)

∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣).
Equation (1) has a unique solution if (1) there exists an H-by-H matrix A satisfying ρ (A) <

1 such that for all i ∈ N , h, h′ ∈ H,
∑

j δih,jh′ (x) ≤ (A)hh′ or (2) there exists an N -by-N

matrix B satisfying ρ (B) < 1 such that for all i, j ∈ N , h ∈ H,
∑

h′ δih,jh′ (x) ≤ (B)ij.

Note that the derivatives of equation (1) typically will depend on the particular network

structure. Thus this extension of Theorem 1 bears a closer resemblance to existing work

on social networks (e.g. Ballester, Calvó-Armengol, and Zenou (2006); Bramoullé, Kranton,

and D’amours (2014); Allouch (2015); Parise and Ozdaglar (2019)) but nevertheless offers a

complementary characterization.5 We apply this result in Online Appendices A.3 and A.4

4For example, consider xi =
∑2

j=1 Kijx
1
2
j for i ∈ {1, 2}, where K11 = K22 = 0 and K21 = K12 = 1. This

equation has two solutions: x∗ = (0, 0)
T
and x∗ = (1, 1)

T
. Iterating this equation nearby solution x∗ = (0, 0)

T

from x = (ϵ1, ϵ2)
T
> 0, we get sequence

(
ϵ

1
2
2 , ϵ

1
2
1

)T
,

(
ϵ

1
22

1 , ϵ
1
22

2

)T

,

(
ϵ

1
23

2 , ϵ
1
23

1

)T

..., which converges to solution

x∗ = (1, 1)
T
.

5For example, consider xi =
∑

j Kijxj for i ∈ {1, 2}, where K11 = K21 = K22 = 0 and K12 = 4. Applying
the strong monotonicity in Parise and Ozdaglar (2019) (Proposition 3) gives a uniqueness condition that
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where we analyze the private provision of multiple public goods and multiple activities on

networks.

Remark 4. (Presence of Endogenous Scalars) In addition to equilibrium outcomes for

each agent and interaction, certain economic systems also contain endogenous scalars that

reflect e.g. the aggregate welfare of the system, as in:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH) , (2)

where λh > 0 is endogenous. We offer two results for such systems.

The first result concerns the equilibrium system (2) with constant elasticities (as in The-

orem 1 part ii.b). For this form, if ρ (A) ≤ 1, we have the same conclusion as in part ii.b

with the proof unchanged: the {xih} of any solution is column-wise up-to-scale unique. For

ρ (A) < 1, particularly, it is possible to explicitly subsume the endogenous scalars into the

equilibrium outcomes through a change in variables, expressing equation (2) as in equation

(1), which in turn implies that the {xih} are column-wise up-to-scale unique. (Separating the

{xih} and {λh} to determine the scale of {xih} requires the imposition of further equilibrium

conditions, e.g. aggregate labor market clearing conditions).

The second result concerns the equilibrium system (2) for general fijh with H additional

aggregate constraints of the form
∑N

i=1 xih = ch for known constants ch > 0. This system

has a unique solution as long as ρ (A) < 1
2
, where A is defined as in Theorem 1. Intuitively,

ρ (A) < 1
2
ensures that the feedback effect from changes in the endogenous scalar are small

enough to continue to ensure a contraction. We apply both these results in Section 3.1.

The next remark facilitates implementation of Theorem 1.

Remark 5. (Change of variables) It is often useful to consider a change of variables of

one’s original equilibrium system when writing it in the form of equation (1). One important

example that can be found in the study of network economics is the following system:

xih = fih

{∑
j ̸=i

gijh′xjh′

}
h′∈H


where

∑
j ̸=i gijh′xjh′ measures the aggregate behavior of agent i’s peers (see, for example,

Glaeser and Scheinkman (2002)). Define yih ≡
∑

j ̸=i gijhxjh and substitute the expression of

(1− c)I − K+KT

2 is positive definite for some c > 0, which requires ρ
(

K+KT

2

)
< 1. But this condition does

not hold because ρ
(

K+KT

2

)
= 2 > 1 . In contrast, applying the result in this remark gives a uniqueness

condition ρ(K) < 1.
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xjh. We then obtain yih =
∑

j ̸=i gijhfjh
(
{yjh′}h′∈H

)
, which is in the form of (1). We illustrate

this technique in Online Appendices A.1 and A.2. Another important example that has found

widespread use in trade and spatial economics is the following economic system in which the

elasticities are constant (see, for example, Arkolakis, Costinot, and Rodŕıguez-Clare (2012);

Allen and Arkolakis (2014); Redding and Rossi-Hansberg (2017)):∏
h′∈H

x
γhh′
ih′ =

∑
j∈N

Kijh

∏
h′∈H

x
ρhh′
ih′ x

βhh′
jh′ . (3)

for all i ∈ N and h′ ∈ H where γhh′ , ρhh′ , and βhh′ are (h, h′)th cells of matrix Γ, R, and B,

respectively. To transform equation (3) to the form of equation (1), if Γ −R is invertible,

we can redefine yih ≡
∏

h′∈H x
γhh′−ρhh′
ih′ . Substituting this definition into the right-hand-side

we obtain yih =
∑

j∈N Kijh

∏
h′∈H y

αhh′
jh′ , where αhh′ is the corresponding element of matrix

B(Γ−R)−1, which is in the form of equation (1) with (A)hh′ = |αhh′ |. Note that a change of

variables is not just analytically convenient: the presence of the absolute value operator in

Theorem 1 means that a change of variables may reduce the spectral radius, making it more

likely that the sufficient conditions for uniqueness are satisfied and improving the speed at

which an iterative algorithm converges.6 We illustrate this change of variables technique in

applications presented in Section 3.1 and Online Appendices A.5, A.6, A.7, and A.10.

The last two remarks offer details about the spectral radius.

Remark 6. (Spectral Radius of 1) In practice, ρ (A) = 1 is a general phenomenon in

economic systems. Indeed, any economic system of the form (3) that is homogeneous of

degree 0 in at least one of its arguments will have spectral radius ρ (A) no smaller than

1. Intuitively, such systems require the imposition of additional normalization conditions

(e.g. a choice of numeraire) to determine the equilibrium. It is important to note, however,

imposing the numeraire prior to characterizing the system will not necessarily reduce its

spectral radius.7 This highlights the importance of part (ii) of Theorem 1’s role for the

characterization of the equilibrium properties of such systems. We provide two such economic

systems in Online Appendices A.9 and A.10.

6Consider the simple example xi =
∑N

j=1 Kijx
β
i x

α
j . Applying Theorem 1 directly (using Remark 1)

provides the sufficient uniqueness condition |α| + |β| ≤ 1, but transforming the system using a change of

variable yi ≡ x1−β
i to yi =

∑N
j=1 Kijy

α
1−β

j provides the sufficient uniqueness condition
∣∣∣ α
1−β

∣∣∣ ≤ 1, which is a

strictly weaker sufficiency condition (e.g. α = 1, β = − 1
2 ).

7For example, suppose N locations earn and spend their income on each other’s goods with Cobb-Douglas
expenditure shares with equilibrium defined as xi =

∑
Kijxj , where

∑
i Kij = 1. This system has a spectral

radius of one. Applying a choice of numeraire (i.e. x1 = 1) does not affect the spectral radius, as the bounds

of the elasticity of the N − 1 equilibrium system xi = Kii +
∑N

j=2 Kijxj remains one.
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Remark 7. (Characterization of the Spectral Radius) While it is straightforward to

numerically calculate ρ (A) to apply the results of Theorem 1, analytical characterizations

are also possible. We offer two results to facilitate such characterization. The first is well

known: the Collatz–Wielandt Formula (e.g. see Page 670 in Meyer (2000)), implies that if

the summation of each row (or column) of A is less than 1, then ρ (A) ≤ 1. We illustrate

how to use this result to generate intuitive economic conditions for uniqueness in Section

3.1 below. The second is, to our knowledge, new. Define g (s) as the determinant of matrix

sI − A i.e. g (s) = |sI −A| and denote its k-th derivative as g(k) (s). For any constant

s > 0, ρ (A) ≤ s if and only if g(k) (s) ≥ 0 for all k = 0, 1, 2, ..., n − 1. We apply this result

in Online Appendix A.7.

3 Applications

We finally apply Theorem 1 to extend seminal models of urban economics and social net-

works; in the Online Appendix A, we apply Theorem 1 to ten additional applications.8

3.1 An urban spatial network with many types of agents

We first consider an urban spatial network based on the work of Ahlfeldt, Redding, Sturm,

and Wolf (2015) where agents choose where to live and where to work subject to commuting

costs. While we do not explicitly model the land market nor do we incorporate spillovers

that decay over space, we extend that framework to incorporate (a) many different types

of agents; and (b) flexible productivity and amenity spillovers between agents of different

8In Online Appendix A.1, we consider a setting where agents make a discrete choice over a large number of
possible actions, extending the framework of Brock and Durlauf (2001); in Online Appendix A.2, we consider
a setting where agents interact in a large number of non-market ways, extending the framework of Glaeser
and Scheinkman (2002); in Online Appendix A.3, we extend a framework where agents trade-off private
consumption and public good contributions as in Bergstrom, Blume, and Varian (1986); Allouch (2015);
Acemoglu, Garćıa-Jimeno, and Robinson (2015) to incorporate multiple types of public goods; in Online
Appendix A.4, we consider a network model where agents make multiple actions as in Chen, Zenou, and Zhou
(2018) and extend the analysis (from two) to many actions in different networks.; in Online Appendix A.5, we
consider an urban setting where spillovers can occur across space, as in Ahlfeldt, Redding, Sturm, and Wolf
(2015); in Online Appendix A.6 we show that spatial spillovers–regardless if agglomerative or congestive—can
lead to multiplicity in an economic geography framework based on Allen and Arkolakis (2014); in Online
Appendix A.7, we provide sufficient conditions for uniqueness in a trade model with intermediate inputs and
tariffs as in Alvarez and Lucas (2007); in Online Appendix A.8 we prove the uniqueness of equilibrium in a
production network, extending the framework of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)
to include a CES aggregator across labor and intermediates and between intermediate goods and multiple
types of intermediate goods; in Online Appendix A.9, we show that relative sector productivities can be
identified to-scale from observed sales in a trade model with input-output linkages as in Caliendo and Parro
(2015); and in Online Appendix A.10, we provide conditions under which demand shifters can be identified
from market shares, extending the framework of Berry, Levinsohn, and Pakes (1995) to two types of goods.
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types, thereby enabling the framework to be applied to a variety of empirically relevant

urban interactions, including e.g. segregation, inequality, and gentrification.9

Setup A city comprises i ∈ {1, ..., N} ≡ N blocks inhabited by h ∈ {1, ..., H} ≡ H types

of agents with measure L̄h. Each agent ν of type h ∈ H chooses where to live, denoted by

i ∈ N , and where to work, denoted by j ∈ N , to maximize her utility:

Uij,h (ν) =
uihwjh

µijh

εijh (ν) , (4)

where uih and wjh are the value of living and working, respectively, common to all agents of

type h, µijh ≥ 1 is the commuting cost, and εij,h (ν) is the idiosyncratic preference of agent

ν of type h over location pairs. We assume εij,h (ν) is extreme value (Frechet) distributed

with shape parameter θh > 0. The number of agents of type h who choose to live in location

i and work in location j can then be written as:

Lij,h =

(
uihwjh

µijh

)θh
∑

(i,j)∈N 2

(
uihwjh

µijh

)θh L̄h. (5)

Spillovers An agent h working in block j produces a numeraire good, for which they are

paid their marginal productivity, Ajh, i.e. wjh = Ajh. We suppose agents’ aggregate location

choices also affect Ajh and ujh. Specifically, Ajh (ujh) depends both on the innate productiv-

ity (amenity) of block j, Ājh (ūih), and the number of each type of agents working (residing)

in that location,
{
LW
jh′

}
h′∈H (

{
LR
jh′

}
h′∈H ) i.e.:

Ajh = Ājhf
A
h

({
LW
jh′

}
h′∈H

)
;uih = ūihf

u
h

({
LR
ih′

}
h′∈H

)
(6)

for some functions fA
h : RH

++ → R++ and fu
h : RH

++ → R++.

Equilibrium For any geography
{
{µijh}(i,j)∈N

2

h∈H ,
{
Āih, ūih

}i∈N
h∈H

}
, measure of agents

{
L̄h

}
h∈H,

spillover functions
{
fA
h , f

u
h

}
h∈H, and commuting elasticities {θh}h∈H, an equilibrium is a set

of workplace and residential populations
{
LW
ih , L

R
ih

}i∈N
h∈H such that:

LW
ih =

∑
j∈N

Lji,h;L
R
ih =

∑
j∈N

Lij,h, (7)

9In Online Appendix A.5, we characterize the equilibrium of an urban model with spatial spillovers.
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i.e. the number of workers (residents) of type h in block i is equal to the total number of

agents of type h commuting to (from) that location.

We now apply Theorem 1 to characterize the equilibrium of the model; for detailed

derivations see Online Appendix B.2.

Theorem 1, part (i): General spillovers For a general set of spillover functions fA
h and

fu
h , we suppose that for all h, h′, and j, we have

∣∣∣∣ ∂ ln fA
h

∂ lnLW
jh′

∣∣∣∣ ≤ αhh′ and

∣∣∣∣ ∂ ln fu
h

∂ lnLR
jh′

∣∣∣∣ ≤ βhh′ .

Then, by substituting equations (5) and (6) into the equilibrium conditions (7), we can

derive the following bounds on the elasticities of the workplace and residential populations:∑
j

∣∣∣∣ ∂ lnLW
ih

∂ lnLW
jh′

∣∣∣∣ ≤ 2θhαhh′ ,
∑

j

∣∣∣∣ ∂ lnLW
ih

∂ lnLR
jh′

∣∣∣∣ ≤ 2θhβhh′ ,
∑

j

∣∣∣∣ ∂ lnLR
ih

∂ lnLW
jh′

∣∣∣∣ ≤ 2θhαhh′ , and
∑

j

∣∣∣∣ ∂ lnLR
ih

∂ lnLR
jh′

∣∣∣∣ ≤
2θhβhh′ . Therefore by applying Remark 1, part (i) of Theorem 1 yields the following sufficient

condition for uniqueness:

ρ

(
2θα 2θβ

2θα 2θβ

)
< 1,

where α and β are H ×H matrices with (h, h′) entries αhh′ and βhh′ , respectively and θ is

an H ×H diagonal matrix with (h, h) entry θh. An equivalent condition for this to hold is

that ρ (θ (α+ β)) < 1
2
. As θ captures the dispersion force arising from agent’s preference

heterogeneity (with smaller values indicating greater dispersion) and α and β capture the

agglomeration/dispersion forces arising from productivities and amenities, respectively (with

larger positive values indicating greater agglomeration), these conditions have a simple intu-

ition: uniqueness can be assured when agglomeration forces are small relative to congestion

forces (as in Allen and Arkolakis (2014)).

Theorem 1, part (ii): Constant elasticity spillovers Now we consider the special case

where the spillover functions fA
h and fu

h take the following convenient constant elasticity

specification: fA
h

({
LW
jh′

}
h′∈H

)
=
∏

h′∈H
(
LW
jh′

)αhh′ and fu
h

({
LR
ih′

}
h′∈H

)
=
∏

h′∈H
(
LR
ih′

)βhh′ .

(The αhh′ and βhh′ here can be negative.) Combining these spillover functions with equation

(5), substituting into the equilibrium system (7), and applying the change of variables in

Remarks 4 and 5 results in the following system of equilibrium equations:

L̃W
ih =

∑
j∈N

(
ūjhĀih

µjih

)θh ∏
h′∈H

(
L̃R
jh′

)γR
h,h′

; L̃R
ih =

∑
j

(
ūihĀjh

µijh

)θh ∏
h′∈H

(
L̃W
jh′

)γW
h,h′

(8)

where
[
γR
h,h′

]
≡ θβ (I− θβ)−1, and

[
γW
h,h′

]
≡ θα(I− θα)−1. This 2 × N × H system

of equations is a special case of the equation (1) and as a result, the uniqueness of the
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equilibrium depends on the spectral radius of the following 2H × 2H matrix:

A ≡

(
0

∣∣θβ (I− θβ)−1
∣∣∣∣θα(I− θα)−1

∣∣ 0

)
.

From part ii.b of Theorem 1, there is at most one equilibrium as long as the spectral radius

of A is not greater than one, i.e. ρ (A) ≤ 1. It can be shown that this condition is strictly

weaker than the condition required in the case of general spillovers given above: this arises

because the assumed functional form of spillovers allows us to accommodate directly the

feedback loop generated by the endogenous welfare through the change of variables.

Theorem 1, part (iii): Multiplicity We consider a simple economy with two identical city

blocks with symmetric commuting costs (N = 2, Āih = ūih = 1, µij = µ if i ̸= j, and

µ = 1 if i = j), a single type of agent (H = 1), a unitary commuting elasticity (θ = 1), and

the Cobb-Douglas spillover function from the previous section with equal productivity and

amenity spillovers (α = β). Part iii of Theorem 1 implies that for any α = β > 1
2
, there

will exist a µ > 1 such that there are multiple equilibria. Online Appendix Figure 1 plots

the two equilibrium conditions as a function of the relative number of agents employed and

living in the first location. As long as the commuting cost µ is sufficiently large, for any

α = β > 1
2
there are three possible equilibria: one in which there are an equal number of

workers and residents in each location and another two where one of two the locations has a

greater number of workers and residents to take advantage of the agglomeration economies.

Comparison to previously known results In the H = 1 constant elasticity case, Ahlfeldt,

Redding, Sturm, and Wolf (2015) prove the existence and uniqueness of an equilibrium in the

absence of productivity and amenity spillovers where the only forces present are congestion

forces due to the inelastic supply of land and the idiosyncratic preferences of agents, i.e.

α < 0 and β < 0 in our notation. Here we show for any finite H ≥ 1 and any fijh that

uniqueness is assured even if some forces are agglomerative, so long as congestion forces are

greater in strength—formally ρ (θ (α+ β)) < 1
2
in the general case.

3.2 Social interactions with many types of networks

We now consider a social network based on the work of Ballester, Calvó-Armengol, and Zenou

(2006) (as summarized in the review article of Jackson and Zenou (2015)) where agents’

payoffs depend both on their own actions as well as the actions of others in their social

network. We extend that framework to incorporate (a) flexible impacts of others’ actions
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on one’s own payoffs; (b) many different types of actions; and (c) many different types of

networks. Allowing agents’ different types of actions through different networks—and for

those choices to flexibly affect the payoffs of all other agents’ actions—enables the study of

a variety of empirically relevant social interactions, including e.g. the interdependent nature

of different types actions on different social networks (friends, family, work, etc).

Setup There are i ∈ {1, ..., N} ≡ N agents, each of whom decides how much effort xih to

exert on each activity h ∈ {1, ..., H} ≡ H. Agent i’s payoff from activity h is:

uih

(
{xjh′}h

′∈H
j∈N

)
= cihxih −

x2
ih

2
+ xih

∑
j ̸=i

fijh
(
{xjh′}h′∈H

)
,

where cih > 0 is the (constant) marginal own benefit of effort, costs are quadratic in effort,

and fijh (·) ≥ 0 is a function capturing the network of type h and how others’ efforts in all

activities affect agent i’s payoff in activity h. Agent i’s overall utility is given by:

ui (x) = m [ui1 (x) , ..., uiH (x)] ,

where m (·) is a monotonic function increasing in each of its arguments.

Example For the purpose of illustration, consider a simple example with H = 2 where

fij1
(
{xjh′}h′∈H

)
= Kij1x

α11
j1 xα12

j2 and fij2
(
{xjh′}h′∈H

)
= Kij2x

α21
j1 xα22

j2 . Here, {xj1}j∈N and

{xj2}j∈N can be agents’ incomes and educations, respectively; correspondingly, {Kij1}i,j∈N
and {Kij2}i,j∈N reflect the economic and education networks, through which incomes and

educations are determined, with {αij}i,j∈{1,2} capturing the interaction between incomes and

educations.

Equilibrium Agent i choose her efforts {xih}h∈H to maximize her utility ui (x). The first

order conditions give the best response function of agent i ∈ N for action h ∈ H to all other

agents actions:

xih = cih +
∑
j ̸=i

fijh
(
{xjh′}h′∈H

)
, (9)

which is a special case of equation (1) (where fiih (xj1, ..., xjH) = cih). We note that Ballester,

Calvó-Armengol, and Zenou (2006) consider a single network (H = 1) and a linear spillover

function (fij (xj) = gijxj).

Theorem 1, part (i): General spillovers Suppose that the elasticities of the spillover func-

tion can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0 such that
∣∣∣ ∂ ln fijh
∂ lnxjh′

∣∣∣ ≤ αhh′
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for all {xjh′}h′∈H. Let A be the H ×H matrix whose (h, h′) element is αhh′ . From Theorem

1 part (i), there exists a unique strictly positive equilibrium if ρ (A) < 1. Moreover, that

equilibrium can be reached from any initial strictly positive starting point
{
x0
jh′

}h′∈H
j∈N by

iteration of equation (9). Note that the iterative procedure here has the simple economic

intuition as an application of best-response dynamics, i.e. from any initial starting point,

the unique equilibrium can be reached as an iterative application of agents’ best-responses

(see e.g. section 6 of Parise and Ozdaglar (2019)). Finally, while there may also be weakly

positive solutions, from Remark 2 any such solutions will be asymptotically unstable, in the

sense of e.g. Weibull (1997).10

Theorem 1, part (ii): Constant elasticity spillovers Consider the above example of income

and education networks. Then from Theorem 1 part (ii), there is at most one equilibrium if

ρ (A) ≤ 1.

Theorem 1, part (iii): Multiplicity It is sufficient to consider a two agent single network

(N = 2, H = 1) with constant elasticity social spillover fij = gijx
α
j . For any α > 1 it is

straightforward to confirm that the payoff structure of c1 = c2 = 1− 1
2α

and g12 = g21 =
1
2α

has at least two solutions: a low-effort symmetric equilibrium (x1, x2) = (1, 1) and a high-

effort symmetric equilibrium (x1, x2) = (M,M), whereM is the maximal root of the equation

xα − 2αx+ 2α− 1 = 0.

Comparison to previously known results We view our results are complementary to exist-

ing results in the social network literature.

In the baseline network model where H = 1 and fij = gijxj, Ballester, Calvó-Armengol,

and Zenou (2006) show that there exists a unique interior solution if ρ (G) < 1, where G is

the N ×N matrix with (i, j) element gij, i.e. they provide a condition on the spectral radius

of the network structure. In contrast, Theorem 1.ii.a shows there exists at most one interior

equilibrium, as the elasticities of fij = gijxj and fii = ci are equal to and smaller than 1,

respectively. Combining these results in the α = 1 case then illustrates that the condition

ρ (G) < 1 guarantees the existence of an interior equilibrium (indeed, if ρ (G) ≥ 1, there

exists no interior solution).

Bramoullé, Kranton, and D’amours (2014) and Galeotti, Golub, and Goyal (2020) extend

the Ballester, Calvó-Armengol, and Zenou (2006) framework to the case where actions can

be substitutes by allowing possibly negative G and offer similar conditions for uniqueness as

10In Online Appendix A.4, we extend the analysis here to consider the uniqueness of weakly positive
solutions in the setting where the best response functions are linear (i.e. ρ (A) = 1).
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Ballester, Calvó-Armengol, and Zenou (2006) based on the network structure. While Theo-

rem 1 does not allow negative fijh, it can incorporate situations where actions are substitutes

through negative payoff elasticities.11 In the example above, income and education can be

substitutes if α12 and α21 are negative. Moreover, while there may exist non-interior weakly

positive equilibria, Remark 2 guarantees that the only stable equilibria is the unique strictly

positive solution when the spectral radius ρ (A) < 1.

As in Allouch (2015); Acemoglu, Garćıa-Jimeno, and Robinson (2015) and Chen, Zenou,

and Zhou (2018), the setup above also extends the Ballester, Calvó-Armengol, and Zenou

(2006) framework to include nonlinearity and multiple activities. However, the setup above

also extends the framework to allow for multiple networks, something (to the best of our

knowledge) for which positive properties have not been previously characterized, despite the

empirical importance of simultaneous social interactions across multiple types networks (see

e.g. Christakis and Fowler (2009); Banerjee, Chandrasekhar, Duflo, and Jackson (2013)).

Our characterization emphasizes that the positive properties of the equilibrium multi-network

system can be characterized in terms of a single statistic: the spectral radius of the matrix

of the elasticities of the social interactions.

4 Conclusion

In this short paper, we provide sufficient conditions for the uniqueness and computation

of the equilibrium for a broad class of models with large numbers of heterogeneous agents

simultaneously interacting in a large number of ways. The conditions are written in terms of

the elasticities of the economic interactions across agents. We illustrate that a wide variety of

heterogeneous agent economies yield equilibrium representations amenable to our theorem’s

characterization, thereby contributing to our understanding of the big models needed to

interpret big data.

By construction, the conditions provided here depend only on the uniform bound of the

elasticities of agent’s interactions on each other’s outcomes rather than the particular form of

the network; that is, the conditions provided abstract from agent heterogeneity and network

structure. We show that should the conditions provided not hold, there exist network models

for which multiplicity is guaranteed, i.e. our conditions are “globally” necessary. However,

an outstanding and important question remains about how agent heterogeneity and network

structure itself shapes the positive properties of model equilibria.

11Note that Theorem 1’s parallel result, Remark 3, does allow negative fijh. Remark 3 is also complemen-
tary with existing works on social networks by enabling the characterization of nonsymmetric networks (see
Footnote 5) and settings with multiple actions in multiple networks (see Online Appendices A.3 and A.4).
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A Proof of Theorem 1

We start by reminding readers of the Perov fixed point theorem (Perov, 1964; Perov and
Kibenko, 1966), which is a multi-dimensional extension of the standard contraction mapping
theorem and used in the proof of Theorem 1 part (i):

Theorem A.1. (Perov Fixed Point Theorem) Let {(Xh, dh)}h=1,2,...,H be H metric spaces
where Xh is a set and dh is its corresponding metric. Define X ≡ X1×X2× ...×XH , and d :

X×X → RH
+ such that for x = (x1,...,xH) , x

′ =
(
x′
1,...,x

′
H

)
∈ X, d (x, x′) =

 d1 (x1, x
′
1)

...
dH (xH , x

′
H)

.

Given operator T : X → X, suppose for any x, x′ ∈ X

d (T (x) , T (x′)) ≤ Ad (x, x′) , (10)

where A is a non-negative matrix and the inequality is entry-wise. Denote ρ (A) as the
spectral radius of A. If ρ (A) < 1 and for all h = 1, 2, ..., H, (Xh, dh) is complete, there
exists a unique fixed point of T , and for any x ∈ X, the sequence of x, T (x), T (T (x)), ...
converges to the fixed point of T .

We now proceed to the analysis of equation (1). Notice that equation (1) can be written
as ln xih = ln

∑
j∈N fijh (exp lnxj) . Denote the leftside of this equation ln xih as yih for all

h ∈ H i ∈ N and furthermore denote its right side ln
∑

j∈N fijh (exp yj) as function gih (y),
we thus have:

∂gih
∂yjh′

=
ϵijh,jh′ (exp yj) fijh (exp yj)∑

j∈N fijh (exp yj)
. (11)

Given any y and y′, according to the mean value theorem, for each i and h, there exists
ŷ = (1− tih) y + tihy

′ where tih ∈ [0, 1] such that:

gih (y)− gih (y
′) = ∇gih (ŷ) (y − y′)

=
∑

j∈N ,h′∈H

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)
. (12)

Part i: Combine the above two equations (11) and (12) with condition |ϵijh,jh′ (xj)| ≤
(A)hh′ , we have

|gih (y)− gih (y
′)| ≤

∑
j∈N ,h′∈H

(A)hh′ fijh (exp ŷj)∑
j∈N fijh (exp ŷj)

∣∣yjh′ − y′jh′

∣∣
≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′

∣∣ . (13)

For any h ∈ H, define metric dh (yh, y
′
h) = max

j∈N

∣∣yjh − y′jh
∣∣ on space Yh ≡ RN . Further-

more, define Y = Y1 × Y2 × ... × YH and d (y, y′) = [dh (yh, y
′
h)] for y, y′ ∈ Y . Notice that

inequality (13) then becomes d (g (y) , g (y′)) ≦ Ad (y, y′). Thus we can apply the Perov
Fixed Point Theorem to obtain the desired results (existence, uniqueness and computation).
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For the purpose of the computation, instead of applying the iterative procedure in the
space Y = RN×H according to Theorem A.1, it is equivalent to do so in the space where x
lies on, i.e. RN×H

++ .

Part ii.a: We proceed by contradiction. Suppose there are two distinct solutions y and y′

i.e. yih = gih (y) and y′ih = gih (y
′). Substitute these two solutions into equation (12) and we

then have yih−y′ih =
∑

j∈N ,h′∈H
∂gih(ŷ)
∂yjh′

(
yjh′ − y′jh′

)
. In this equation, if (A)hh′ > 0, according

to the condition in Part (ii.a) and equation (11), for some j
∣∣∣ ∂gih∂yjh′

∣∣∣ < (A)hh′fijh(exp yj)∑
j∈N fijh(exp yj)

, so that:

|yih − y′ih| <
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′

∣∣ . (14)

Thus we have vector inequality d (y, y′) ≤ Ad (y, y′). Within this vector inequality, each
sub-inequality strictly holds as long as its right side is not zero. Since y and y′ are distinct,
d (y, y′) is a nonzero vector. Thus according to the Collatz–Wielandt Formula (i.e. ρ (A) =

maxd∈RH
+ ,d̸=0 min1≤h≤H

dh ̸=0

(Ad)h
dh

), we have ρ (A) > 1, which is a contradiction.

Part ii.b: We again proceed by contradiction. Suppose a pair of solutions x and x′

to equation (1) exists that are column-wise up-to-scale different. Then for some h, y.h ≡
lnx.h and y′.h ≡ lnx′

.h are different up to addition by a constant, i.e. for some h dh ≡
min
s∈R

max
j∈N

∣∣yjh − y′jh + s
∣∣ > 0. Let d = [dh] be the resulting nonzero vector. For any h ∈ H,

assume the pair of sh and jh reach the min-max in the definition of dh, that is, dh =∣∣yjhh − y′jhh + sh
∣∣. The definition of dh implies the following three properties: (1) For any

h′ and j,
∣∣yjh′ − y′jh′ + sh′

∣∣ ≤ dh′ ; (2) For any h′, if dh′ > 0, there must exist some j ∈ N
such that

∣∣yjh′ − y′jh′ + sh′
∣∣ < dh′ ; and (3) For any h and an arbitrary constant ŝh, dh ≤

max
i∈N

|yih − y′ih + ŝh|. Substitute ∂gih
∂yjh′

=
αhh′fijh(exp yj)∑
j∈N fijh(exp yj)

on the right side of equation (12),

yih = gih (y) and y′ih = gih (y
′) on its left side, and add ŝh ≡

∑
h′∈H αhh′sh′ on both sides. We

then have:

yih − y′ih + ŝh =
∑
h′∈H

αhh′

∑
j∈N

fijh (exp ŷj)∑
j∈N fijh (exp ŷj)

(
yjh′ − y′jh′ + sh′

)
⇒ (15)

|yih − y′ih + ŝh| ≤
∑
h′∈H

|αhh′ | dh′ ⇒

dh ≤
∑
h′∈H

|αhh′ | dh′ ,

where the first and second steps are due to the above properties (1) and (3), respectively.
Since for some h, dh > 0, there must exist h′ such that dh′ > 0 and αhh′ ̸= 0; thus, applying
Property (2) in the above first step, we must have the inequality strictly holds for such h.
That is: whenever dh > 0, dh <

∑
h′∈H |αhh′| dh′ . Again, according to the Collatz–Wielandt

Formula, we have ρ (A) > 1, which is a contradiction.

Part iii: Consider {Kijh > 0}i,j∈N ,h∈H which satisfies
∑

j∈N Kijh = 1 for any i. Obviously,
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x = 1 is one solution of equation (3). In the following, we define x̄ ∈ RN×H
++ , which is (column-

wise up-to-scale) different from x, and show it is also a solution
To define x̄jh′ , we classify its indexes jh′ into 4H + 1 sets. First, arbitrarily classify

all j ∈ N into 2H + 1 non-empty disjoint sets
{
N+

h ,N−
h ,N 0

}
h∈H ; second, if j is in N+

h

or N−
h , we classify h′ into two sets H+

h ≡ {h′|αhh′ > 0} and H−
h ≡ {h′|αhh′ ≤ 0} (H+

h or
H−

h may be empty). Let z ∈ RH
+ be an eigenvector of matrix A such that Az = ρ (A) z.

Now we are ready to define x̄jh′ . If j ∈ N+
h , x̄jh′ ≡

{
exp (+zh′) h′ ∈ H+

h

exp (−zh′) h′ ∈ H−
h

; if j ∈ N−
h ,

x̄jh′ ≡

{
exp (−zh′) h′ ∈ H+

h

exp (+zh′) h′ ∈ H−
h

; if j ∈ N 0, x̄jh′ ≡ 1.

Note that
∏

h′∈H x̄
αhh′
jh′ must be between exp (−

∑
h′=H |αhh′ | zh′) and exp (

∑
h′=H |αhh′ | zh′).

Furthermore, if j ∈ N+
h ,
∏

h′∈H x̄
αhh′
jh′ = exp (

∑
h′=H |αhh′| zh′); if j ∈ N−

h ,
∏

h′∈H x̄
αhh′
jh′ =

exp (−
∑

h′=H |αhh′ | zh′). Notice that
∑

h′=H |αhh′| zh′ = ρ (A) zh. Thus:∑
j∈N

Kijh

∏
h′∈H

x̄
αhh′
jh′ = exp (ρ (A) zh)

∑
j∈N+

h

Kijh+exp (−ρ (A) zh)
∑
j∈N−

h

Kijh+
∑

j /∈N+
h ∪N−

h

Kijh

∏
h′∈H

x̄
αhh′
jh′ ,

where in the last term
∏

h′∈H x̄
αhh′
jh′ is between exp (ρ (A) zh) and exp (−ρ (A) zh).

If zh = 0, the above equation is equal to 1(= exp (−zh) = exp (zh)) since
∑

j∈N Kijh =
1; if zh ̸= 0, we can set it to be any value that is strictly between exp (ρ (A) zh) and
exp (−ρ (A) zh) by appropriately choosing {Kijh > 0}j∈N while keeping

∑
j∈N Kijh = 1.

In particular, since ρ (A) > 1, we can set it to be exp (−zh), 1, or exp (zh), which are the
range of xih. Thus we have

∑
j∈N Kijh

∏
h′∈H x̄

αhh′
jh′ = x̄ih. That is: x̄ is also a solution of

equation (1), as desired.
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A Additional Applications

We apply Theorem 1 to ten additional applications in the fields of social networks, spatial networks,
production networks, and demand estimation.

A.1 Discrete choice over many actions with social interactions

Here we consider a discrete choice framework with social interactions as in the seminal paper of
Brock and Durlauf (2001), generalized to include agents simultaneously choosing over many types
of actions with flexible social spillovers across agents and actions.

A.1.1 The model

Setup Suppose there are N agents. Each agent i ∈ {1, ..., N} ≡ N makes a discrete choice over
H ≡ {1, ...,H}, a set of H actions.

Vih (µi) = uih + Sih (µi) + εih,

where uih is the private utility associated with action h, Sih (µi) is the social utility, µi is agent
i’s belief of other agents’ actions, and εih is a random utility term, independently and identically
distributed across agents and actions. Agent chooses action

argmax
h∈H

Vih (µi)

that maximizes her payoffs given her belief of the actions of others.Define µijh to be the conditional
probability measure agent i places on the probability that agent j chooses action h. We assume
that Sih (µi) takes the following form:

Sih (µi) =
∑
h′∈H

Jhh′ ln (µih′) ,

where Jhh′ reflects the impact of action h′ by others on agent i’s utility when she chooses action
h, µih′ ≡

∑
j ̸=iwijh′µijh′ is her (weighted) expected number of agents taking action h′, wijh′ is

the corresponding weight, and µijh′ is her belief of agent i taking action h′. We note that the
log transform on the social utility function – not present in the primary case considered by Brock
and Durlauf (2001) – ensures that the uniqueness of the equilibrium can be characterized without
reference to an (endogenous) threshold value (c.f. Brock and Durlauf (2001) Proposition 2).

Equilibrium Retaining the assumption from Brock and Durlauf (2001) that the random utility
term follows a type I extreme value distribution with shape parameter βh and agent’s conditional
probabilities are rational (so that µijh = µjh for all j ∈ {1, ..., N} and µjh is equal to the probability
agent j actually chooses action h) results in the following equilibrium conditions for all i ∈ {1, ..., N}
and for all h ∈ {1, ...,H}:

µih =

eβhuih

(
Πh′∈H

(∑
j ̸=iwijh′µjh′

)βhJhh′
)

∑
k∈H eβkuik

(
Πh′∈H

(∑
j ̸=iwijh′µjh′

)βkJkh′
) (16)

1



Note this is a system of N×H equilibrium conditions in N×H unknown probabilities µjh. Equation
(16) is a special case of (1). From Remark 5, define xih ≡

∑
j ̸=iwijhµjh, which, when combined

with equation (16), becomes:

xih =
∑
j ̸=i

wijh
eβhujhΠh′∈H

(
xjh′

)βhJhh′(∑
k∈H eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)) (17)

Finally, defining fijh ≡ wijh
e
βhujhΠh′∈H(xjh′)

βhJhh′(∑
k∈H e

βkujk
(
Πh′∈H(xjh′)

βkJkh′
)) if j ̸= i and fiih = 0 results in equation

(17) be written as:

xih =
∑
j∈N

fijh (xj1, ..., xjH) ,

as in (1).

A.1.2 Applying Theorem 1

It is straightforward to calculate the elasticities of interactions as follows:

∂ ln fij,h
∂ lnxj,h′

= βhJhh′ −
∑
k

eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)

∑
k∈H eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)βkJkh′ ,

which is between Jhh′ ≡ βhJhh′ −maxk∈H βkJkh′ and Jhh′ ≡ βhJhh′ −mink∈H βkJkh′ . Thus if we
define:

(A)hh′ ≡ max
(
−Jhh′ , Jhh′

)
then we have for all h, h′: ∣∣∣∣∂ ln fij,h

∂ lnxj,h′

∣∣∣∣ ≤ (A)hh′ .

From Theorem 1, there is a unique solution if ρ (A) < 1, i.e. as long as the social spillovers are not
too heterogeneous across actions.

A.2 Choosing many (continuous) actions with social interactions

Here we consider a framework with non-market interactions as in Glaeser and Scheinkman (2002),
generalized to include many actions and a general network structure.

A.2.1 The Model

Setup Suppose there are N agents where each agent i ∈ {1, ..., N} ≡ N who chooses actions
{xih}, indexed by h ∈ {1, ...,H} ≡ H. Let agent i′s payoffs depend on her own actions and the
actions of others as follows:

Ui

{xih}h∈H ;

∑
j ̸=i

gijh′xjh′


h′∈H

 , (18)

2



where the utility function Ui is strictly concave in each xih, gijh′ ≥ 0, and
∑

j ̸=i gijh′xjh′ measures
the aggregate behavior of agent i’s peers. Note that this generalizes Glaeser and Scheinkman (2002)
to include an unrestricted network structure

{
gijh′

}
and arbitrary H.

Equilibrium Suppose there exists a unique solution to the utility maximization problem of equa-
tion (18) that can be written as:

xih = fih

∑
j ̸=i

gijh′xjh′


h′∈H

 , (19)

where fih is the best response function. Following Remark 5, we define yih ≡
∑

j ̸=i gijhxjh and
substitute the expression (19), yielding:

yih =
∑
j ̸=i

gijhfjh

({
yjh′

}
h′∈H

)
. (20)

A.2.2 Applying Theorem 1

It is immediately evident that equation (20) is a special case of equation (1). Suppose that the
elasticities of the spillover function can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0

such that
∣∣∣ ∂ ln fjh
∂ ln yjh′

∣∣∣ ≤ αhh′ for all
{
yjh′

}
h′∈H. Let A be the H × H matrix whose (h, h′) element

is αhh′ . From Theorem 1 part (i), there exists a unique equilibrium if ρ (A) < 1. Moreover, that

equilibrium can be reached from any initial starting point
{
y0jh′

}h′∈H

j∈N
by iteration of equation (20).

Glaeser and Scheinkman (2002) prove uniqueness in the H = 1 case where
∑

j ̸=i gij = 1 if a

“Moderate Social Influence” condition holds, i.e.
∣∣∣∂fj∂yj

∣∣∣ < 1 for all yj . Notice that their results

are actually implied by Remark 3 and depend on the particular network structure. In the H = 1

case, our condition, obtained from Theorem 1, simplifies to
∣∣∣∂ ln fj
∂ ln yj

∣∣∣ < 1 for all yj , regardless of the

structure of {gij}. More generally, ours is the first characterization (of which we are aware) for the
H > 1 case with general {gijh}.

A.3 Public goods in social networks

Here we consider a framework where agents decide how much of their own resources to contribute
to public goods whose payoff depends on the contributions of others. To do so, we extend the work
of Allouch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015) to allow agents to contribute
multiple types of public goods on multiple social networks.12

A.3.1 The model

Setup Consider a world of i ∈ {1, ..., N} ≡ N agents. Agent i ∈ N is endowed with wealth
wi and chooses how allocate that wealth to private consumption (ci) or contributions to H public

12Allouch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015) extend the work of Bramoullé,
Kranton, and D’amours (2014), who applies the seminal work of the private provision of public goods in
Bergstrom, Blume, and Varian (1986) to a network setting, but with non-linear best response functions.
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goods ({qih}h∈{1,2,3...H}≡H), where her payoff depends on the contributions of all other agents. In
particular, agent i ∈ N solves:

max
ci,qi

Ui (ci, {Qih}h)

s.t. ci +
∑
h

qih = wi +
∑
h

Q−ih and qi ≥ 0,

where Ui (·) is the utility function Qih = qih + Q−ih is the public good bundle with Q−ih =∑
j ̸=i gijhqjh the contributions of all other agents, and the N ×N matrix Gh ≡ [gijh] governs the

payoff of j’s contribution of public good h to agent i (thereby defining the social network h).

Equilibrium Suppose that Ui (·) is continuous, strictly increasing in all its arguments, and strictly
quasi-concave. Solving agent’s utility maximization problem gives rise to agent i demand function
of public good h,γih (wi +

∑
h′ Q−ih′). Notice that if this demand function is less than other agents’

contribution Q−ih, agent i will contribute nothing in public goods. That is in equilibrium we have:

qih = max

(
γih

(
wi +

∑
h′

Q−ih′

)
−Q−ih, 0

)
. (21)

We assume that γih (·) is differentiable and the private and public goods are all normal goods i.e.
0 < γ′ih < 1.

A.3.2 Applying Theorem 1’s Remark 3

Denote the rightside of equation (21) as Fih (·). The right and left partial derivatives of Fih (·) with
respect to qjh′ are either 0 or γ′ihgijh′ if h ̸= h′ and (γ′ih − 1) gijh if h = h′. Thus, according to Remark
3, equation (21) has a unique solution if there exists an N -by-N matrix B satisfying ρ (B) < 1

such that for all i, j ∈ N , h ∈ H,
∑

h′ max
(∣∣∣∂+Fih(x)

∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤
∣∣γ′ih∑h′ gijh′ − gijh

∣∣ ≤ (B)ij .

Intuitively, as long as the aggregate spillovers between agents’ public goods contributions are not
too strong, the incentives of any agent to shirk her contribution to public goods are not large enough
to result in multiplicity. When H = 1, this condition can be reduced to ρ (G) < 1

1−γ′
i
where G

represents the only network. This condition is very similar to (and stronger than) Allouch (2015)’s
−λmin (G) < 1

1−γ′
i
, since −λmin (G) ≤ ρ (G). However, the well-definedness of λmin (G) crucially

relies on network G being symmetric (the symmetry guarantees all the eigenvalues of G are real
and can be ranked); in contrast, the condition provided here is valid for asymmetric networks as
well.

A.4 Multiple activities in social networks

We extend the work of Chen, Zenou, and Zhou (2018) where agent’s payoffs depend on their own
multiple actions as well as the actions of others in their social networks to more than two types of
actions on multiple social networks. Unlike in Section 3.2, here we focus on linear best response
functions in order to extend the domain of solutions to include zero and negative values.

A.4.1 The model

Setup Consider a system of h ∈ {1, 2, 3...H} ≡ H social networks with N agents. Each agent
i ∈ {1, 2, 3...N} ≡ N has preferences over actions {xih}h∈H which take real numbers. We assume
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that agents’ preferences are represented by the quadratic utility function:

Ui =
H∑

h=1

(
cihxih −

1

2
x2ih

)
+

H∑
h=1

H∑
h′=1

dihh′xihxih′ +
H∑

h=1

N∑
j=1

gijhxihxjh,

where cih, dihh′ , and gijh are exogenously given constants and for all i, h, dihh = 0 and giih = 0.
The first term in the above expression, reflects decreasing returns to scale of agent i’s own actions;
the second term reflects substitution or complementary effects between agent i’s different actions;
the last term reflects the network externality from other agents and {gijh} i,j∈N represents the
corresponding social network.

Equilibrium We assume the above utility function is concave. Thus its maximum can be char-
acterized by the first order condition:

xih = cih +
∑
h′ ̸=h

(dihh′ + dih′h)xih′ +
∑
j ̸=i

gijhxjh.

Define theH-by-H symmetric matrixDi such that (Di)hh′ = dihh′+dihh′ . The concavity assumption
implies that matrix I−Di is positive definite and thus invertible. Denote the element of the inverse
of I −Di as δihh′ . Then we can rewrite the above first order condition as:

xih =
∑
h′

δihh′

cih′ +
∑
j ̸=i

gijh′xjh′

 . (22)

This equation then represents the Nash equilibrium of this network game.

A.4.2 Applying Theorem 1’s Remark 3

Denote the rightside of equation 22 as Fih (·). Notice that ∂Fih(x)
∂xjh′

= δihh′gijh′ . Thus, according

to Remark 3, equation (22) has a unique solution if there exists an N -by-N matrix B satisfying
ρ (B) < 1 such that for all i, j ∈ N , h ∈ H,

∑
h′

∣∣δihh′gijh′
∣∣ ≤ (B)ij . Intuitively, if the aggregate

connections of different networks are low, agents’ influences on each other are weak enough such
that the multiplicity as in coordination games then is excluded.

We note that our condition simplifies to the one given by Chen, Zenou, and Zhou (2018) in
the special case considered there of H = 2, dihh′ + dihh′ = −β (h = 1, h′ = 2), and for all i, j,
gij1 = gij2 = gij i.e. there is a single network G. To see this, note that by calculating the inverse of
I −Di, we have

∑
h′

∣∣δihh′gijh′
∣∣ = 1

1−|β|gij . Then our condition can be written as ρ (G) < 1 − |β|,
which is the one used in Chen, Zenou, and Zhou (2018).

A.5 An urban model with spatial spillovers

Here we consider another variant of the urban spatial model based on the seminal work of Ahlfeldt,
Redding, Sturm, and Wolf (2015) presented in Section 3.1, where we include productivity and
amenity spillovers that depend flexibly on the distribution of workers and residents, respectively,
across the entire city.
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A.5.1 The Model

We first describe the model and derive its equilibrium conditions.

Setup Consider a city comprised of i ∈ {1, ..., N} ≡ N blocks inhabited by agents with measure
L̄. Each agent ν chooses where to live i ∈ N and where to work j ∈ N in order to maximize her
utility:

Uij (ν) =
uiwj

µij
εij (ν) , (23)

where ui and wj are the value of living at block i and working at block j, respectively, common
to all agents, µij ≥ 1 is the commuting cost, and εij (ν) is the idiosyncratic preference of agent ν
over location pairs, which we assume is extreme value (Frechet) distributed with shape parameter
θ > 0.

Commuting flows The number of agents who choose to live in location i and work in location j
can be written as:

Lij =

(
uiwj

µij

)θ

λ, (24)

where λ ≡ L̄W−θh and W ≡
(∑

(i,j)∈N 2

(
uiwj

µij

)θ) 1
θ

= E
(
max(i,j)∈N 2 Uij (ν)

)
is the expected

welfare of agents.

Spatial Spillovers Suppose that an agent working in block j produces a costlessly traded nu-
meraire good, for which they are paid their marginal product Aj , which is the only value they
derive from their work, i.e. wj = Aj . Suppose that their productivity depends both on the innate
productivity of block j, Āj , and the entire distribution of populations of workers throughout the
city as follows:

Ai = Āi

∑
j∈N

FA
ijL

F
j

α

, (25)

where FA
ij > 0 governs the effect of the number of workers in j ∈ N on the productivity of a worker

in i ∈ N and α governs the overall strength of the productivity spillover.
Similarly, suppose that an agent residing in block i receives a value of living there that depends

both on the innate amenity of block i, ūi, and the entire distribution of populations of residents
throughout the city as follows:

ui = ūi

∑
j∈N

F u
ijL

R
j

β

, (26)

where F u
ij > 0 governs the effect of the number of residents in j ∈ N on the amenity of a worker in

i ∈ N and β governs the overall strength of the amenity spillover.13

13Assuming alternative spillover functions Ai = Āi

∑
j∈N FA

ij

(
LF
j

)α
and ui = ūi

∑
j∈N Fu

ij

(
LR
j

)β
result

in an elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1
below are unchanged.
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Equilibrium For any geography

{{
µij , F

A
ij , F

u
ij

}
(i,j)∈N 2

,
{
Āi, ūi

}
i∈N

}
, measure of agents L̄,

and model elasticities {θ, α, β}, equilibrium is a set of workplace and residential populations{
LF
i , L

R
i

}
i∈N such that:

1. The measure of workers employed in block i ∈ N is equal to the total number of agents
commuting to that location:

LF
i =

∑
j∈N

Lji (27)

2. The measure of residents residing in block i ∈ N is equal to the total number of agents
commuting from that location:

LR
i =

∑
j∈N

Lij (28)

As in Section 3.1 (and unlike Ahlfeldt, Redding, Sturm, and Wolf (2015)) we do not impose that
rental rates of residential and commercial floor spaces are equalized.

A.5.2 Applying Theorem 1

Substituting the commuting equation (24) into the equilibrium conditions (27) and (28) and re-
arranging equations (25) and (26) yields:

LF
i A

−θ
i = λ

∑
j∈N

µ−θ
ji u

θ
j

LR
i u

−θ
i = λ

∑
j∈N

µ−θ
ij Aθ

j ,

A
1
α
i = Ā

1
α
i

∑
j∈N

FA
ijL

F
j

u
1
β

i = ūi
∑
j∈N

F u
ijL

R
j ,

which together comprise our equilibrium system. It is immediately evident that this system of
4N equations in 4N unknowns takes the form of equation (3), which is a special case of equation
(1), so by applying Remarks 4 and 5, it is sufficient to characterize the spectral radius of matrix
A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


0 0 0 θ
0 0 θ 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 −θ 0
0 1 0 −θ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


0 0 0 |βθ|
0 0 |αθ| 0
1 0 |αθ| 0
0 1 0 |βθ|


From Remark 7, a sufficient condition for uniqueness is hence |α| θ ≤ 1

2 and |β| θ ≤ 1
2 , i.e. both the

productivity and amenity agglomeration forces must be no stronger than the dispersion forces aris-
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ing from the heterogeneity in agent preferences governed by θ. Note these conditions are identical
to the H = 1 case of the example presented in Section 3.1, i.e. the presence of spatial spillovers
does not affect the uniqueness condition.

We remark that while the full model presented in Ahlfeldt, Redding, Sturm, and Wolf (2015)
included spatial spillovers, that paper only offered conditions for uniqueness in the absence of such
spillovers; as a result, to our knowledge this is the first proof of uniqueness of an urban model
in the presence of spatial spillovers. A similar methodology can be applied to incorporate spatial
spillovers in other spatial settings—but with very different implications for the properties of the
model—as we illustrate in the following economic geography example.

A.6 An economic geography model with spatial spillovers

We now extend the economic geography framework of Allen and Arkolakis (2014) to incorpo-
rate spatial productivity and amenity spillovers. It turns out that any spatial productivity or
amenity spillovers can result in multiple equilibria—a very different conclusion from the urban
model—highlighting the importance of Theorem 1 part (iii).

A.6.1 The model

Setup There are N locations, each of which produces a differentiated variety of a good. Agents
in location i ∈ {1, ..., N} ≡ N have constant elasticity of substitution preferences over the differen-
tiated varieties so that their welfare Wi is:

Wi =

∑
j∈N

q
σ−1
σ

ji

 σ
σ−1

ui,

where qji is the quantity of goods produced in j ∈ N and consumed in i, σ ≥ 1 is the elasticity of
substitution, and ui is the local amenity. Agents are perfectly mobile and earn wage wi by supplying
their unit labor inelastically. Labor is the only factor of production; let Ai be the productivity of an
agent in location i ∈ N . Finally, the transportation of goods are subject to iceberg transportation
costs, where Tij ≥ 1 indicates the number of goods needed to be sent from i ∈ N in order for one
unit to arrive in j ∈ N .

Spatial spillovers We suppose that productivities and amenities depend on the distribution of
labor across all locations through spatial spillovers as follows:

Ai = Āi

∑
j∈N

FA
ijLj

α

(29)

ui = ūi

∑
j∈N

F u
ijLj

β

(30)

where Āi and ūi are the exogenous productivity and amenity, respectively, of location i ∈ N ;
FA
ij > 0 and F u

ij > 0 capture how the population in location j ∈ N affects the productivity and
amenity, respectively in location i ∈ N , and α and β are the productivity and amenity spillover

8



elasticities, respectively common to all locations.14

Equilibrium For any geography

{
{Tij}(i,j)∈N 2 ,

{
Āi, ūi

}
i∈N ,

{
FA
ij

}
(i,j)∈N2

}
equilibrium is a set

of populations, wages, productivities, and amenities {Li, wi, Ai, ui}i∈N such that:

1. Markets clear, i.e. income in a location i ∈ N is equal to the value of all goods sold in all
other locations:

wiLi =
∑
j∈N

Xij ,

where Xij =
T 1−σ
ij (wi/Ai)

1−σ∑N
k=1 T

1−σ
kj (wk/Ak)

1−σwjLj is the bilateral flow of goods from i ∈ N to j ∈ N .

2. Trade is balanced, i.e. income in a location i ∈ N is equal to the value of all goods purchased
from all other locations:

wiLi =
∑
j∈N

Xji

3. Welfare is equalized, i.e. there exists a scalar W > 0 such that for all i ∈ N ,Wi ≤ W , with
the equality strict if Li > 0.

4. Productivities and amenities are given by equations (29) and (30).

A.6.2 Applying Theorem 1

Combining the first three equilibrium conditions (see equations (10) and (11) of Allen and Arkolakis
(2014)) and re-arranging equations (29) and (30) yields the following system of 4N equilibrium
conditions in 4N unknowns:

Liw
σ
i A

1−σ
i = W 1−σ

N∑
j=1

T 1−σ
ij Ljw

σ
j u

σ−1
j

w1−σ
i u1−σ

i = W 1−σ
N∑
j=1

T 1−σ
ji w1−σ

j Aσ−1
j

A
1
α
i = Ā

1
α
i

∑
j∈N

FA
ijLj

u
1
β

i = ū
1
β

i

∑
j∈N

F u
ijLj

which together comprise our equilibrium system. It is immediately evident that this system takes
the form of equation (3), which is a special case of equation (1), so by applying Remarks 4 and 5,

14Assuming alternative spillover functions Ai = Āi

∑
j∈N FA

ijL
α
j and ui = ūi

∑
j∈N Fu

ijL
β
j result in an

elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1 below
are unchanged.

9



it is sufficient to characterize the spectral radius of matrix A ≡
∣∣BΓ−1

∣∣ ,where:
B ≡


1 σ 0 σ − 1
0 1− σ σ − 1 0
1 0 0 0
1 0 0 0

 , Γ ≡


1 σ 1− σ 0
0 1− σ 0 1− σ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


1 0 |α| (σ − 1) |β| (σ − 1)
0 1 |α| (σ − 1) |β| (σ − 1)
1 σ

σ−1 |α| (σ − 1) |β|σ
1 σ

σ−1 |α| (σ − 1) |β|σ

 .

It can be shown that ρ (A) ≤ 1 only if α = β = 0, i.e. only if there are no spatial spillovers.
Note that this is a substantial departure from Allen and Arkolakis (2014) and Allen, Arkolakis, and
Takahashi (2020), who show that uniqueness is guaranteed in an economic geography model with
local spillovers as long as the dispersion forces are stronger than agglomeration forces; in contrast,
Thereom 1 part (iii) says that there will be geographies for which there are multiple equilibria for
in the presence of any spatial spillover, i.e. for any non-zero α and β. Note too that this is also
a major qualitative difference with the urban example above, where the conditions for uniqueness
were the same for local and spatial spillovers.

A simple example suffices to provide intuition for the possibility of multiple equilibria. Consider
a world of two identical locations (i.e. Āi = ūi = 1 for i, j ∈ {1, 2}) separated by trade costs τ > 1.
Suppose there are only productivity spillovers (i.e. β = 0); the case with amenity spillovers is

similar. For any α > 0 and FA
ij =

{
1 if i = j

0 if i ̸= j
— i.e. a case where the spillovers are positive and

depend only on one’s own population—there exists a τ > 1 such that there are three equilibria:
one in which both locations have an equal population and one in which one of the two locations
has a greater concentration of population (to take advantage of the agglomeration forces). But for

any α < 0 and FA
ij =

{
0 if i = j

1 if i ̸= j
— i.e. a case where the spillovers are negative and depend only

on the other location’s population—there exists a τ > 1 such that there are again three equilibria:
one in which both locations have an equal population and one in which one of the two locations has
a greater concentration of population (to take advantage of the fact that the smaller population in
the neighbor increases productivity spillovers). That is, with spatial spillovers, a dispersion force
from population elsewhere acts like a local agglomeration force.

To our knowledge, this is the first characterization of uniqueness in an economic geography
model with spatial spillovers.

A.7 A trade model with intermediate goods and tariffs

We now consider a Ricardian model based on the seminal work of Eaton and Kortum (2002) but
augmented to include tariffs and an input-output network as in Alvarez and Lucas (2007).
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A.7.1 The model

Setup

There are N locations, each of which produces 3 sets of goods: a continuum of tradeables qi(u)
where u ∈ [0, 1], a aggregate intermediate good ai, and a non-tradeable final good ci. Agents in the
economy derive their utility from the non-tradeable final good ci. This final good ci is produced in
a Cobb-Douglas manner using the intermediate good ai and labor i.e. ci = sαfia

1−α
fi where sfi and

afi are the labor and intermediate inputs in final good production, respectively. The intermediate
good ai is a Spence-Dixit-Stiglitz aggregate of all varieties of tradeables:

ai =

[∫ 1

0
(qi∗(u))

1−1/η du

] η
η−1

,

where i∗ ≡ argminj∈N pji (u), i.e. each variety of tradeable is sourced from the lowest cost location.
Tradeables in turn are produced using the composite intermediate good Ii as input, along with labor
as:

qi(u) = xi(u)
−θsi(u)

βai(u)
1−β

where xi(u)
−θ is the total factor productivity, ai(u) is the quantity of the intermediate good used

in the production of tradeable variety u and si(u) is the labor input. Following Alvarez and Lucas
(2007), we assume xi(u) follows an exponential distribution with parameter λi and its draws are
independent across u (and across countries), allowing us to rewrite the above equations in terms
of x. Each country i ∈ {1, 2, ...N} ≡ N is endowed with immobile labor Li. Transportation costs
between countries are iceberg in nature, where to keep the notation similar to Alvarez and Lucas
(2007), we denote by κij ≤ 1 as the fraction arriving in location j ∈ N if one unit is set from
location i ∈ N . Tariffs ωij are defined as the proportion of revenue received by producer in country
j for a unit of its tradeable good sold in country i. In addition, we define Ymi as the revenue of the
tradeables sector and Ii as the expenditure on tradeables in country i.

Equilibrium

The equilibrium can be characterized by three sets of equations. The first one corresponds to
equation 3.8 in Alvarez and Lucas (2007):

p
−1/θ
mi =

∑
j∈N

λj

(
1

κij

AB

ωij

)−1/θ (
wβ
j p

1−β
mj

)−1/θ
. (31)

Now we derive the other two, which are different from those in Alvarez and Lucas (2007) and
convenient for the exercise here. Let Lfi and Lmi be the numbers of labor used in country i’
production of the final and intermediate goods. We have αYfi = Lfiwi and βYmi = Lmiwi. Adding
both sides of the two equations, we get

αYfi + βYmi = Liwi.

Also let Ti be the total tariffs collected by country i. Notice that the residents’ total income in
country i is Liwi + Ti and all used to buy the final goods. That is Yfi = Liwi + Ti. Substitute the
expression into the above displayed equation. We can solve

Liwi =
α

1− α
Ti +

β

1− α
Ymi. (32)
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Let Ij be the total expenditure on intermediate goods in country j. Then DjiIj is the amount
spent on intermediate goods from country i, of which (1− ωji)DjiIj is tariff and goes to the
government and ωjiDjiIj goes to the producer. Thus, we have Ti =

∑
j∈N (1− ωji)DjiIj and

Ymi =
∑

j∈N ωjiDjiIj . Insert them into equation (32). Then we get our second equilibrium
equation

Liwi =
∑
j∈N

α (1− ωji) + βωji

1− α
DjiIj . (33)

Furthermore, notice that producers’ total expenditure Ii+Liwi must be equal to their total income
Ymi+Yfi i.e. Ii+Liwi = Ymi+Yfi. Since Liwi+Ti = Yfi, Ii must be equal to Ymi+Ti. Substituting
the expression of Ymi and Ti, we then have

Ii =
∑
j∈N

DjiIj . (34)

Although the above equilibrium equations can be simply transformed the one in Theorem 1,
unfortunately, the corresponding spectral radius we get is larger than 1.15 We move to impose a
quasi-symmetry condition like Allen and Arkolakis (2014) that can allow us to reduce the three
sets of equilibrium equations into two. Specifically, we assume κijωij = τijcirj for some τij , ci, and
rj where τ is symmetric i.e. for any i, j, τij = τji.

Notice that
∑

j∈N Dij = 1. Multiplying it with both sides of equation (34), we get
∑

j∈N DijIi =∑
j∈N DjiIj . Substitute into the expression of equation Dij = λj

(
wβ

j p
1−β
mj

pmi

)−1/θ (
AB

κijωij

)−1/θ
and

κijωij = τijcirj , then:

∑
j∈N

λj

(
wβ
j p

1−β
mj

pmi

)−1/θ (
AB

τijcirj

)−1/θ

Ii =
∑
j∈N

λi

(
wβ
i p

1−β
mi

pmj

)−1/θ (
AB

τjicjri

)−1/θ

Ij .

On the left side of this equation, keep all the i-related variables (ci, pmi, and Ii) and move the
rest (the summation) to the right side; similarly, on the right side of this equation, keep all the
i-related variables (λi, ri, wi, and pmi,) and move the rest (the summation) to the left side. We
have:

c
1/θ
i p

1/θ
mi Ii∑

j∈N

(
AB
τji

)−1/θ
c
1/θ
j p

1/θ
mj Ij

=
λir

1/θ
i

(
wβ
i p

1−β
mi

)−1/θ

∑
j∈N

(
AB
τij

)−1/θ
λjr

1/θ
j

(
wβ
j p

1−β
mj

)−1/θ
.

Denote the numerators, c
1/θ
i p

1/θ
mi Ii and λir

1/θ
i

(
wβ
i p

1−β
mi

)−1/θ
, as Ĩi and w̃i respectively. Further-

more, denote
(
AB
τij

)−1/θ
as τ̃ij . Notice that τ̃ij = τ̃ji. Then we can write the above equation as

Ĩi∑
j∈N τ̃ij Ĩj

= w̃i∑
j∈N τ̃ijw̃j

, of which the value we denote as γi. Then we can write this equation as

15This does not necessarily imply multiplicity of solutions since the kernels are correlated unlike Part (iii).
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two equations:

Ĩi =
∑
j∈N

γiτ̃ij Ĩj ;

w̃i =
∑
j∈N

γiτ̃ijw̃j .

Thus Ĩ and w̃ can be viewed as two solutions of equation xi =
∑

j∈N γiτ̃ijxj . According to

Perron–Frobenius theorem, Ĩ and w̃ is different at most up to scale i.e. there exists some constant
a such that Ĩi = aw̃i. Furthermore, substitute into the expression of Ĩi and w̃i and we get

Ii = aλir
1/θ
i c

−1/θ
i

(
wβ
i p

2−β
mi

)−1/θ
. (35)

Notice that in this expression, Ii, wi, and pmi are nominal variables and we can scale them arbitrarily
and get the corresponding a. Therefore, a simply reflects the normalization of nominal variables
and without loss of generality, we set a = 1.

Substitute equation (35) into equation (33). Then, the equilibrium can be characterized by
equations (31) and (33) where the endogenous variables are: pmi, the price index of tradeables in
country i; and wi, country i’s wage.

Applying Theorem 1

As in the previous example, the equilibrium of this system can be expressed in the special form of
equation (1) presented in equation (3) in Remark 5. Now we show how to transform the equilibrium

equations into the form of equation (3). To see this, denote λj

(
1
κij

AB
ωij

)−1/θ
in equation (31) as

K1
ij , so that it becomes

p
−1/θ
mi =

∑
j∈N

K1
ij

(
wβ
j p

1−β
mj

)−1/θ
. (36)

Second, substitute the expression ofDij = λj

(
wβ

j p
1−β
mj

pmi

)−1/θ (
AB

κijωij

)−1/θ
and Ii = aλir

1/θ
i c

−1/θ
i

(
wβ
i p

2−β
mi

)−1/θ

into equation (33), multiply both sides by
(
wβ
i p

1−β
mi

)1/θ
L−1
i , and denote

α(1−ωji)+βωji

1−α

(
AB

κjiωji

)−1/θ
λiλjr

1/θ
j c

−1/θ
j L−1

i

as K2
ij , so that equation (33) becomes

w
1+β/θ
i p

(1−β)/θ
mi =

∑
j∈N

K2
ij

(
wβ
j p

1−β
mj

)−1/θ
. (37)

Now we have transformed the equilibrium equations into the form (3) and with two set of
endogenous variables {pmi, wi}i=1,2,...,n. Notice that the kernels, K1

ij and K2
ij , defined above are

positive when α, β, θ > 0 and 0 < ωij ≤ 1.
Then we have the corresponding parameter matrices

Γ =

(
−1/θ 0

(1− β) /θ 1 + β/θ

)
, B =

(
− (1− β) /θ −β/θ
− (1− β) /θ −β/θ

)
Clearly, Γ is always invertible as long as θ > 0. Therefore, we have
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∣∣BΓ−1
∣∣ = ( (1−β)θ

β+θ
β

β+θ
(1−β)θ
β+θ

β
β+θ

)
Here ρ

(∣∣BΓ−1
∣∣) = β+θ−βθ

β+θ < 1 i.e. we always have (up-to-scale) uniqueness with quasi-symmetry
trade costs κij and tariffs ωij . In comparison, the conditions for uniqueness in Alvarez and Lucas
(2007) (see their Theorem 3) are:

(i)

(
min

i,j∈N 2
{κij} min

i,j∈N 2
{ωij}

) 2
θ

≥ 1− β; (ii) α ≥ β; (iii) 1− min
i,j∈N 2

{ωij} ≤ θ

α− β
,

although these conditions are derived only for the special case of uniform tariffs (i.e. ωij = ωi for
all j ∈ N ).

A.8 A production network with multiple intermediates goods

We extend the many firm production network in the seminal paper by Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) to include (1) a constant elasticity of substitution (CES) ag-
gregator across labor and intermediates (as discussed in Carvalho and Tahbaz-Salehi (2019)), (2)
a constant elasticity of substitution between intermediate goods (as discussed in Carvalho, Nirei,
Saito, and Tahbaz-Salehi (2021)), and (3) multiple types of intermediates goods.

A.8.1 The model

Setup There areN different competitive firms, each of which produceH distinct products using as
intermediate goods the output of all other firms. The quantity of productH by firm i ∈ {1, ..., N} ≡
N , Qih, is determined by a constant elasticity of substitution production function combining labor
and a composite bundle of intermediate goods as follows:

Qih =

[
(1− µih)

1
ζh (AihLih)

ζh−1

ζh + µ
1
ζh
ih M

ζh−1

ζh
ih

] ζh
ζh−1

where µih is between 0 and 1 and governs the relative importance of labor and intermediate goods,
Lih is the amount of labor, Aih is the (exogenous) labor productivity, ζh is the elasticity of substi-
tution between labor and intermediates, and the intermediate input bundle Mih is a CES aggregate
of inputs purchased from other firms:

Mih =
∏
h′∈H


∑

j∈N
a

1
σh′
jih′hq

σh′−1

σh′
jih′h


σh′

σh′−1


βh′h

,

where σh′ is the elasticity of substitution between different intermediate goods, ajih′h represents
the production network of firms j supplying intermediates h′ in firm i’s production of product h,
qjih′h is the quantity supplied, and {βh′h}h′∈H is the intermediates share satisfying

∑
h′ βh′h = 1

for all h.
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Equilibrium Solving the cost minimization problem of the firm results in the following system of
equations for equilibrium firm prices pih:

p1−ζh
ih = (1− µih) (w/Aih)

1−ζh + µih

∏
h′∈H

β
−βh′h
h′h

 n∑
j=1

ajih′hp
1−σh′
jh′


βh′h
1−σh′

(1−ζh)

(38)

where w is the (exogenous) market wage.

A.8.2 Applying Theorem 1

Take both sides of equation (38) to the power of 1
1−ζh

and denote its right side as Fih(·). We can
directly bound its elasticity as follows:∑

j∈N

∣∣∣∣ ∂ lnFih

∂ ln pjh′

∣∣∣∣ < βh′h.

Since
∑

h′ βh′h = 1, according to Remark 1, we have ρ(β)=1. Thus by Theorem 1 (part ii.a)
and Remark 1, there exists at most one equilibrium. To our knowledge, this is the first proof of
uniqueness of an equilibrium in a many firm production network with multiple types of intermediates
goods and constant elasticity of substitution between different types of intermediate goods and
between the intermediate goods bundle and labor.

A.9 Productivity identification in a production network with many loca-

tions and sectors

In this application, we consider input-output production networks with many locations and sectors
as in the seminal paper of Caliendo and Parro (2015). The purpose of this is two-fold: first,
it demonstrates how Theorem 1 can be applied to establish identification results (in addition to
characterizing the uniqueness of the equilibrium, as in the examples in the main text); second, it
demonstrates the ubiquity of economic situations where ρ (A) = 1 (see Remark 6), highlighting the
importance of part (ii) of Theorem 1.

A.9.1 The Model

Setup Consider an economy comprised of i ∈ {1, ..., N} ≡ N locations and h ∈ {1, ...,H} ≡
H sectors. Each sector h in location i produces a differentiated intermediate good (denoted as
good (i, h)) by combining local labor with a Cobb-Douglas combination of a CES composite of
intermediates from all locations according to the following production function:

Qih = AihL
αh
ih

∏
h′∈H


∑

j∈N
q

σh′−1

σh′
jih′h


σh′

σh′−1


βh′h

,

where qjih′h is the quantity of the good (j, h′) used as an intermediate good in the production of
good (i, h), {σh}h∈H are the sector elasticities of substitution across locations, {αh}h∈H are the
sector labor shares, and B ≡ [βh′h] is an H ×H input-output matrix of intermediate inputs, and
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{Aih}h∈Hi∈N are the productivities of each sector-location. The shipment of good (j, h′) from j ∈ N
to i ∈ N incurs an iceberg trade cost τijh′ ≥ 1.

Suppose that each location i ∈ N is endowed with Li agents, each of whom is perfectly mobile
across sectors and earns (equilibrium) wage wi for inelastically supplying one unit of labor. Agents
use their wages to consume a non-traded final good produced by combining intermediate goods
with the production function Ci =

∏
h∈HMγh

ih , where
∑

h∈H γh = 1 are the consumption shares of

each sector, Mih =

(∑
j∈N m

σh−1

σh
jh

) σh
σh−1

, and mjh is the quantity of the good (j, h) used in the

production of final good.

Equilibrium From the cost minimization, the equilibrium price of the intermediate good produced
by sector h ∈ H in location i ∈ N is:

pih = ch
1

Aih
wαh
i

∏
h′∈H

P
βh′h
ih′ , (39)

where
P 1−σh
ih =

∑
j∈N

τ1−σh
jih p1−σh

jh (40)

is a sector-location price index of intermediate goods purchased in all locations, and ch > 0 is a
exogenous constant.16

Let Yih ≡ pihQih denote the income of sector h ∈ H in location i ∈ N , which in equilibrium is
equal to its total sales to all locations and sectors:

Yih =
∑
j∈N

τ1−σh
ijh p1−σh

ih P σh−1
jh

∑
h′∈H

(βhh′ + γhαh′)Yjh′ , (41)

where the two terms in the last summation captures how much spending in sector (j, h′) translates
to spending in sector (i, h) through intermediate production and final good purchases by consumers,
respectively.

Identification The question we are interested in is the following. Suppose one observes (1) the
sales of each sector h ∈ H in each location i ∈ N , i.e. {Yih}h∈Hi∈N ; (2) the labor endowment {Li}i∈N ;
(3) the sector elasticities {σh}h∈H; (4) the sector production function labor shares {αh}h∈H and
input-output matrix B ≡ [βh′h]; (5) the final good production shares {γh}h∈H ;and (6) the sector-

specific bilateral trade costs {τijh}h∈Hi,j∈N . Is it possible to identify the productivity of each sector

h ∈ H in each location i ∈ H, {Aih}h∈Hi∈N ? One could imagine many instances where recovering
the underlying productivities of different sectors in different locations from observed sales data is
useful and important: e.g. in the study of comparative advantage, structural change, technological
innovations, etc.

A.9.2 Applying Theorem 1

We begin by remarking that since wages can be inferred directly from the observed labor share
of income and labor endowment, given knowledge of prices {pih}h∈Hi∈N and price indices {Pih}h∈Hi∈N ,

16In particular, ch ≡ α−αh

h

∏
h′∈H β

−βh′h
h′h .
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one can immediately recover productivities {Aih}h∈Hi∈N from equation (39). Hence, it is sufficient to

focus on the question of identification of prices {pih}h∈Hi∈N and price indices {Pih}h∈Hi∈N .

Define the 2H × 1 endogenous vector xi =

[{
P 1−σh
ih

}H

h=1
,
{
pσh−1
ih

}H

h=1

]
so that equations (40)

and (41) can be written as:

xih =

{∑
j Kij,hx

−1
j,h+H if h ∈ {1, ...,H}∑

j Fij,hx
−1
j,h−H if h ∈ {H + 1, ..., 2H}

whereKij,h ≡ τ1−σh
jih for h ∈ {1, ...,H} and Fij,h ≡ τ1−σh

ijh

(∑
h′∈H(βhh′+γhαh′ )Yjh′

Yih

)
for h ∈ {H + 1, ..., 2H}.

As a result, we can define the 2H × 2H matrix of elasticity bounds as:

A ≡
(

0 IH
IH 0

)
,

where IH is the H ×H identity matrix. Hence, regardless of the particular input output structure
(or the values of labor shares, final goods shares, or sector elasticities) we have ρ (A) = 1, and so
from Theorem 1 part (ii) there is at most one set of (column-wise to scale unique) prices {pih}h∈Hi∈N
and price indices {Pih}h∈Hi∈N consistent with equations (40) and (41). This then implies that there is
at most one (column-wise up to scale) unique set of productivities {Aih} consistent with observed
sales data.17 To our knowledge, this is the first identification result applied to many location/sector
models with input/output linkages.

A.10 Inverting a demand system with multiple types of goods

Here we consider the question of the invertibility of demand systems based on the seminal work
of Berry, Levinsohn, and Pakes (1995). In Berry, Levinsohn, and Pakes (1995), agents makes a
choice over a single type of goods, e.g. which cellphone to buy. Here, we extend the framework to
consider a situation where consumers simultaneously make decisions across multiple types of goods,
e.g. which cellphone and computer to buy. We suppose that the market shares for each type are
observed and ask if that is enough information to recover the unobserved demand for each good.18

A.10.1 The model

Setup There areH types of goods for agents to buy (e.g. cellphones, computers, and automobiles).
Within each type h ∈ {1, ...,H} ≡ H of good, there are Nh products over which to choose (e.g. in
the case of cellphones, there are the Google Pixel 6, the iPhone 13, etc.). One of these Nh products
may be the choice to purchase nothing.

Let J be a H-by-1 vector representing agent’s choice over the bundle of products. Specifically,
J ≡ [jh]h∈H, where jh ∈ {1, ..., Nh} ≡ Nh is agent’s choice of product type h to purchase. Suppose
that the latent utility of agent k’s choice J is:

17The column-wise up to scale uniqueness implies that the relative productivity within sector across lo-
cations can be identified from sales data, but the relative productivity across sectors cannot; intuitively,
if the productivity of sector h doubles in all locations, given the unit price elasticity from the presumed
Cobb-Douglas production function, its price will half, leaving its sales unchanged.

18While the choice of buying two products can be technically modeled as a single choice over pairs of
products, applying the inversion results of Berry, Levinsohn, and Pakes (1995) would then require knowledge
of the market shares of each pair of products, which is typically not observed.
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Uk (J) =
∑
h∈H

δjh,h + µ (J, νk) + εkJ (42)

where δjh,h represents the (unobservable) good characteristics of product jh in type h, µ (J, νk) is a
function of (observable) good characteristics of the bundle J and consumer characteristics νk and
εkJ is a random variable representing agents’ idiosyncratic preference. Note that µ (J, νk) flexibly
allows for any sort of (observed) complementarity or substitutability across products of different
types, which can potentially vary with consumer characteristics νk. We assume νk ∼ P where P is
a known distribution and εkJ has type I extreme value distributions independent of k and J .

Suppose for each h ∈ H we observe the fraction of agents that choose product i ∈ Nh, i.e. the
market share si,h. Our goal is to identify the set of unobservable good characteristrics {δi,h}.

Market share Given the extreme value distribution of εih, the market share can be written as:

si,h =

∫ exp
(
δi,h

)∑N1
j1=1 · · ·

∑Nh−1
jh−1=1

∑Nh+1
jh+1=1 · · ·

∑NH
jH=1 exp

(∑
h′ ̸=h δjh′ ,h′ + µ ([j1, ..., jh−1, i, jh+1, ..., jH ] , ν)

)
∑Nh

jh=1 exp
(
δjh,h

)∑N1
j1=1 · · ·

∑Nh−1
jh−1=1

∑Nh+1
jh+1=1 · · ·

∑NH
jH=1 exp

(∑
h′ ̸=h δjh′ ,h′ + µ ([j1, ..., jh−1, jh, jh+1, ..., jH ] , ν)

)dP (ν) .

(43)

A.10.2 Applying Theorem 1

The case of H = 1 (Berry, Levinsohn, and Pakes (1995)) We first consider the case of H = 1,
as in Berry, Levinsohn, and Pakes (1995). In this case, equation (43) becomes:

si =

∫
exp (δi + µ (i, ν))∑N
j=1 exp (δj + µ (j, ν))

dP (ν) .

Define xi ≡ exp (δi) . Then xi = sifi (x) ,where fi (x) ≡
(∫ exp(µ(i,ν))∑N

j=1 xj exp(µ(j,ν))
dP (ν)

)−1

. We then

have:

∂ ln fi
∂ lnxj

= fi

∫
exp (µ (i, ν))xj exp (µ (j, ν))(∑N

j=1 xj exp (µ (j, ν))
)2 dPν

which in turn implies:

∑
j∈N

∣∣∣∣ ∂ ln fi
∂ lnxj

∣∣∣∣ = fi

∫
exp (µ (i, ν))

∑
j xj exp (µ (j, ν))(∑N

j=1 xj exp (µ (j, ν))
)2 dPν

= fi (x) /fi (x) = 1.

According to part (ii) of Theorem 1 and Remark 1, there is at most one set of {δi} (up to an
unknown constant), as in Berry, Levinsohn, and Pakes (1995).

The case of H = 2 We now consider the case ofH = 2, under the special case where µ ([i, j] , ν) ≡
µp ([i, j]) + µc (ν), i.e. that there is separability between any complementarity or substitutability
of product characteristics and any heterogeneity in consumer preferences. Also, we assume N1 =
N2 = N .
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Define xi,h ≡ exp (δi,h). Equation (43) can be written as:

xi,1zi,2 =

N∑
j=1

si,1xj,1zj,2

xi,2zi,1 =
N∑
j=1

si,2xj,2zj,1,

where:

zi,1 ≡
N∑
j=1

xj,1 exp (µp ([j, i]))

zi,2 ≡
N∑
j=1

xj,2 exp (µp ([i, j]))

It is immediately evident that this system of 4N equations in 4N unknowns takes the form of
equation (3), which is a special case of equation (1), so by applying Remark 5, it is sufficient to
characterize the spectral radius of matrix A ≡

∣∣BΓ−1
∣∣ , where:

B ≡


1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 ,

so that:

A ≡


1 0 0 0
0 1 0 0
1 0 0 1
0 1 1 0


which has a spectral radius equal to 1, so that from Theorem 1 part (ii) there exists at most one set

of {δi,h} consistent with the observed market shares, up to an unknown constant for each h ∈ H,

thereby extending the results of Berry, Levinsohn, and Pakes (1995) to the case of H = 2 under

the special case where µ ([i, j] , ν) ≡ µp ([i, j]) + µc (ν).

B Additional Details

B.1 Details of Remarks

In this section, we provide further details for the remarks discussed in the paper.

B.1.1 Remark 1

Remark 1: Suppose there exists an H-by-H matrix A such that for all i, j ∈ N , h, h′ ∈ H, and

xj ∈ RH
++,

∑
j∈N

∣∣∣∂ ln
∑

k∈N fikh(x)

∂ lnxjh′

∣∣∣ ≤ (A)hh′ . Then:

(i). If ρ (A) < 1, there exists a unique solution to equation (1) which can be computed by
iteratively applying equation (1) with a rate of convergence ρ (A);
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(ii). If ρ (A) = 1 and:
a. For all i ∈ N and h, h′ ∈ H when (A)hh′ ̸= 0 there exists some j such that for all xj ∈ RH

++,∑
j∈N

∣∣∣∂ ln
∑

k∈N fikh(x)

∂ lnxjh′

∣∣∣ < (A)hh′ , then equation (1) has at most one solution;

b. For all xj ,
∑

j∈N
∂ ln

∑
k∈N fikh(x)

∂ lnxjh′
= αhh′ ∈ R where |αhh′ | = (A)hh′ then there is at most

one column-wise up-to-scale solution, i.e. for any h ∈ H and two solutions x and x′ it must be
x′.h = chx.h for some scalar ch > 0.

Proving this remark requires only a small change to the proof of Theorem 1. Equality (11)

becomes ∂gih
∂yjh′

=
∂ ln

∑
k fikh(x)

∂ lnxjh′
.

Correspondingly, in part (i), inequality (13) becomes

∣∣gih (y)− gih
(
y′
)∣∣ =

∣∣∣∣∣∣
∑
h′∈H

∑
j∈N

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)∣∣∣∣∣∣
≤
∑
h′∈H

∑
j∈N

∣∣∣∣∂ ln
∑

k fikh (x̂)

∂ lnxjh′

∣∣∣∣max
j∈N

∣∣yjh′ − y′jh′
∣∣

≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′
∣∣ .

And in part (ii.b), equation (15) becomes

yih − y′ih + ŝh =
∑
h′∈H

∑
j∈N

∂ ln
∑

k fikh (x)

∂ lnxjh′

(
yjh′ − y′jh′ + sh′

)
The rest of the proof of Theorem 1 remains unchanged.

B.1.2 Remark 2

Remark 2: Consider the special case of equation (1) where fijh : RH
+ → R+ ≡ Kijhgijh (xj1, ..., xjH),

where Kijh ≥ 0 and gijh (xj) is continuous, differentiable, and gijh (xj) > 0 for all xj > 0 so that

equation (1) becomes xih =
∑N

j=1Kijhgijh (xj1, ..., xjH). Then if ρ (A) < 1 and matrices (Kijh)i,j∈N
for all h are irreducible, there exists only one strictly positive solution. Weakly positive solutions,
where for some i, h, x∗i,h = 0, may exist but will be asymptotically unstable,

The condition that matrices (Kijh)i,j∈N for all h are irreducible implies that for any strictly

positive x,
∑N

j=1Kijhgijh (xj1, ..., xjH) > 0. Thus we can apply Remark 1 to obtain the existence,
uniqueness, and convergence of the solution. Observe that the convergence simply implies the
unstableness of other weakly positive solutions.

B.1.3 Remark 3

Remark 3: Suppose for all i, j ∈ N , h, h′ ∈ H,Fih (x) has right and left partial derivatives with

respect to xjh′ and denote they as ∂+Fih(x)
∂xjh′

and ∂−Fih(x)
∂xjh′

. Equationxih = Fih (x) has a unique

solution if (1) there exists an H-by-H matrix A satisfying ρ (A) < 1 such that for all i ∈ N , h, h′ ∈
H,

∑
j max

(∣∣∣∂+Fih(x)
∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤ (A)hh′ or (2) there exists an N -by-N matrix B satisfying

ρ (B) < 1 such that for all i, j ∈ N , h ∈ H,
∑

h′ max
(∣∣∣∂+Fih(x)

∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤ (B)ij . Due to

symmetry, we only need to prove the first condition.
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Given any x and x′, let mih (tih) ≡ Fih ((1− tih)x+ tihx
′) be a function of tih on interval [0, 1].

Since each Fih (x) is left and right differentiable, so is mih (tih). Suppose m′
ih+ (tih) and m′

ih− (tih)
are function mih (·)’s right and left derivatives at tih. According to a generalized mean value theo-

rem, there exists some tih ∈ (0, 1) such that mih(1)−mih(0)
1−0 is between m′

ih+ (tih) and m′
ih− (tih). Ob-

serve that m′
ih+ (tih) =

∑
j,h′

[
∂+Fih(x̂)
∂xjh′

1∆xjh′>0 +
∂−Fih(x̂)
∂xjh′

1∆xjh′<0

]
∆xjh′ where x̂ ≡ (1− tih)x+

tihx
′ and ∆xjh′ ≡ x′jh′−xjh′ . Similarly,m′

ih− (tih) =
∑

j,h′

[
∂+Fih(x̂)
∂xjh′

1∆xjh′<0 +
∂−Fih(x̂)
∂xjh′

1∆xjh′>0

]
∆xjh′ .

Thus we have m′
ih+ (tih) and m′

ih− (tih) must be within interval [−Mih,Mih] where

Mih ≡
∑
j,h′

max

(∣∣∣∣∂+Fih (x̂)

∂xjh′

∣∣∣∣ , ∣∣∣∣∂−Fih (x̂)

∂xjh′

∣∣∣∣) ∣∣∆xjh′
∣∣.

Thus Fih (x
′)− Fih (x) = mih(1)−mih(0) must be also within interval [−Mih,Mih]. That is

∣∣Fih

(
x′
)
− Fih (x)

∣∣ ≤
∑
j,h′

max

(∣∣∣∣∂+Fih (x̂)

∂xjh′

∣∣∣∣ , ∣∣∣∣∂−Fih (x̂)

∂xjh′

∣∣∣∣) ∣∣∆xjh′
∣∣

≤
∑
h′

(A)hh′ max
j

∣∣∆xjh′
∣∣ .

Since the above expression holds for any i, h, we have max
j

|Fih (x
′)− Fih (x)| ≤

∑
h′ (A)hh′ max

j

∣∣∆xjh′
∣∣.

Thus we establish a contraction mapping as in Theorem A.1, which gives us the existence and
uniqueness of the solution in equation xih = Fih (x).

B.1.4 Remark 4

Consider first the equilibrium system (2) with constant elasticities, which can be written as follows:

λhxih =
∑
j∈N

Kijh

∏
h′∈H

x
αhh′
jh′ , (44)

where λh > 0 is endogenous. If ρ (A) ≤ 1, we have the same conclusion as in part (ii)b: the {xih}
of any solution is column-wise up-to-scale unique. The proof of this result is exactly the same as
part (ii)b of Theorem 1.

For ρ (A) < 1, particularly it is possible to subsume the endogenous scalars into the equilibrium
outcomes through a change in variables, expressing equation (44) as in equation (1). To do so, define

x̃ih ≡ xih
∏

h′∈H λ
dhh′
h′ , where dhh;is the hh

′th element of the H×H matrix (I−α)−1 and α ≡ (αhh′)
(i.e. α is the matrix of elasticities without the absolute value taken) so the system becomes:

x̃ih =
∑
j∈N

Kijh

∏
h′∈H

x̃
αhh′
jh′ .

Note that because ρ (A) < 1, then so too is ρ (α) < 1, so that (I−α)−1 exists. From Theorem
1 part (i), the {x̃ih} are unique and can be calculated using an iterative algorithm, which in
turn implies that the {xih} are column-wise up-to-scale unique. (Separating the {xih} and {λh} to
determine the scale of {xih} requires the imposition of further equilibrium conditions, e.g. aggregate
labor market clearing conditions).

Consider now equilibrium system (2) with H additional aggregate constraints
∑N

i=1 xih = ch
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for known constants ch > 0.
The second result concerns the general case with an endogenous scalar:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH)

with H additional aggregate constraints
∑N

i=1 xih = ch for known constants ch > 0. Substituting
in the aggregate constraints allows us to express the equilibrium system as:

xih =
N∑
j=1

(
fijh (xj1, ..., xjH)

1
ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)) ,

where the denominator is equal to the endogenous scalar, i.e. λh = 1
ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)
.

We can define the new function:

gij,h (x) ≡
fijh (xj1, ..., xjH)

1
ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)
so that the equilibrium system becomes:

xih =

N∑
j=1

gijh (x) .

We can then bound the elasticities, following Remark 1. Note:

∂ ln gij,h
∂ lnxm,l

=
∂ ln fij,h
∂ lnxj,l

1m=j −
∑
o

(
∂ ln fom,h

∂ lnxm,l

)
fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

where 1m=j =

{
1 if m = j

0 if m ̸= j
is an indicator function. Thus,

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤ |Ahl|1m=j + |Ahl|
∑

o fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

.

Furthermore,∑
m

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤∑
m

|Ahl|1m=j + |Ahl|
∑

m

∑
o fom,h ({xm,l})∑

o

∑
p fop,h ({xp,l})

= 2 |Ahl| .

Hence, from Remark 1, we have uniqueness as long as ρ (A) < 1
2 , as required.

B.1.5 Remark 6

Consider equation (3). We will directly prove that ρ (A) = ρ
(
BΓ−1

)
≥ 1. Suppose for some h̄ ≥ 1

that {x.h}h=1,...,h̄ are nominal variables. Then if we construct {x̄.h}h∈H by scaling {x.h}h=1,...,h̄ up
to t times and keeping all other entries unchanged, the constructed {x̄.h}h∈H should still solve the
equation. Therefore we can write
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ΓT = BT,

where T is a H-by-1 vector and

Th =

{
t h ≤ h̄

0 other case
.

Notice that this further implies Γ−1B has eigenvalue of 1. Furthermore, becauseBΓ−1 = Γ
(
Γ−1B

)
Γ−1,

BΓ−1 also has eigenvalue of 1. We define matrix A as the absolute value of BΓ−1 (i.e. each entry of
matrix A is the absolute value of the corresponding entry in matrix BΓ−1). Therefore ρ (A) must

be weakly larger than 1 because ρ (A) = limn→∞ ∥An∥
1
n ≥ limn→∞

∥∥(BΓ−1
)n∥∥ 1

n = ρ
(
BΓ−1

)
.

B.1.6 Remark 7

We prove a necessary and sufficient condition such that ρ (A) ≤ 1.

Lemma 1. Let A be a non-negative n×n matrix. The function f (λ) is defined as the determinant of
matrix λI−A i.e. f (λ) = |λI −A| , and its k-th derivative is denoted by f (k) (λ). Then ρ (A) ≤ s
if and only if f (k) (s) ≥ 0 for all k = 0, 1, 2, ..., n− 1.

Proof. If part: Notice that f (n) (s) = n! > 0. Then f (n−1) (λ) strictly increases with λ. So
f (n−1) (λ) > 0 for λ ∈ [s,∞). Using deduction we obtain f (λ) is strictly increasing and f (λ) ≥ 0
for any λ ∈ [s,∞]. According to Perron–Frobenius theorem, ρ (A) is A’s largest eigenvalue, so that
f (ρ (A)) = 0. Thus, by strict monotonicity it must be ρ (A) ≤ s.

Only If part: According to the Fundamental Theorem of Algebra (e.g. see Corollary 3.6.3 of
Fine and Rosenberger (1997)), f (λ) can be decomposed as f (λ) = f1 (λ) f2 (λ) such that f1 (λ) =∏

i∈C (λ− λi)
(
λ− λi

)
and f2 (λ) =

∏
i∈R (λ− λi) where λi is conjugate of λi and C and R are

set of indexes. For all i ∈ C, λi is a complex number and for all i ∈ R λi is a real number.

Clearly, λi and λi are eigenvalues of A.Notice that f (k) (λ) =
∑

(k1,k2)∈Dk,
f
(k1)
1 (λ) f

(k2)
2 (λ) where

Dk = {k1, k2|k1 + k2 = k, k1, k2 ≥ 0}. When i ∈ R λi ≤ ρ (A) (from Perron–Frobenius theorem),

we have f
(k2)
2 (s) ≥ 0. Additionally, f

(k1)
1 (λ) =

∏
i∈C

[
λ2 −

(
λi + λi

)
λ+ λiλi

](k2,i) where k2,i ≥ 0
and

∑
i∈C k2,i = k2. Notice that

[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i) =

s2 −

(
λi + λi

)
s+ λiλi > 0 k2,i = 0

2 (s− Re (λi)) k2,i = 1

2 > 0 k2,i = 2

0 k2,i > 3

,

where Re (λi) is real part of λi. As Re (λi) < ∥λi∥ ≤ ρ (A) ≤ s (the second inequality is also

from Perron–Frobenius theorem), so
[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i) ≥ 0. In all, f (k) (s) ≥ 0 k =
0, 1, 2, ..., n− 1.

B.2 Details of the Urban Spatial Model

B.2.1 Theorem 1, part (i): General spillovers

Substituting equations (5) and (6) into the equilibrium conditions (7) yields the following two
equilibrium conditions:
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LW
ih =

∑
j∈N

(
ūjhĀih

µjih

)θh (
fA
h

({
LW
i,h′

}
h′∈H

))θh (
fu
h

({
LR
j,h′

}
h′∈H

))θh
∑

(i,j)∈N 2

(
ūjhĀih

µjih

)θh (
fA
h

({
LW
i,h′

}
h′∈H

))θh (
fu
h

({
LR
j,h′

}
h′∈H

))θh L̄h (45)

LR
ih =

∑
j

(
ūihĀjh

µijh

)θh (
fu
h

({
LR
i,h′

}
h′∈H

))θh (
fA
h

({
LW
j,h′

}
h′∈H

))θh
∑

(i,j)∈N 2

(
ūjhĀih

µjih

)θh (
fA
h

({
LW
i,h′

}
h′∈H

))θh (
fu
h

({
LR
j,h′

}
h′∈H

))θh L̄h (46)

Denote the left side of equations (45) and (46) as gWih and gRih, respectively. Since ln gWih =

ln
∑

j∈N Lijh−ln
∑

(i,j)∈N 2 Lijh where Lijh =
(
ūjhĀih

µjih

)θh (
fA
h

({
LW
i,h′

}
h′∈H

))θh (
fu
h

({
LR
j,h′

}
h′∈H

))θh
,

we have:

∂ ln gWih
∂ lnLW

jh′
=

∂ ln
∑

j∈N Lijh − ∂ ln
∑

(m,j)∈N 2 Lijh

∂ lnLF
jh′

=
Lijh∑

j∈N Lijh

∂ lnLijh

∂ lnLF
jh′

−
∑
m

Lmjh∑
(m,j)∈N 2 Lijh

∂ lnLmjh

∂ lnLF
jh′

Since 0 ≤ ∂ lnLijh

∂ lnLW
sh′

≤ θhαhh′ , we have
∑

j

∣∣∣∣ ∂ ln gWih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ . Similarly, we have
∑

j

∣∣∣∣ ∂ ln gWih
∂ lnLR

jh′

∣∣∣∣ ≤
2θhβhh′ ,

∑
j

∣∣∣∣ ∂ ln gRih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ , and
∑

j

∣∣∣∣ ∂ ln gRih
∂ lnLR

jh′

∣∣∣∣ ≤ 2θhβhh′ . Therefore by applying Remark 1,

part (i) of Theorem 1 yields the following sufficient condition for uniqueness:

ρ

(
2θα 2θβ
2θα 2θβ

)
< 1.

To see that this condition is equivalent with ρ (θ (α+ β)) < 1
2 , simplify spectral radius ρ

(
2θα 2θβ
2θα 2θβ

)
as

r and denote its associated eigenvector as

(
vα
vβ

)
where both vα and vβ are H-by-1 vectors. Thus

we have (
2θα 2θβ
2θα 2θβ

)(
vα
vβ

)
= r

(
vα
vβ

)
⇒(

2θαvα + 2θβvβ
2θαvα + 2θβvβ

)
= r

(
vα
vβ

)
,

which implies vα = vβ. Thus, r
2 is the spectral radius of matrix θ (α+ β) with vα being its

corresponding eigenvector.
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B.2.2 Theorem 1, part (ii): Constant elasticity spillovers

We first combine the spillover equations fA
h

({
LW
j,h′

}
h′∈H

)
=
∏

h′∈H

(
LW
j,h′

)αhh′
and fu

h

({
LR
i,h′

}
h′∈H

)
=∏

h′∈H

(
LR
i,h′

)βhh′
with equation (5) into the equilibrium system defined by equation (7), we get:

LW
ih(∏

h′∈H

(
LW
i,h′

)αhh′
)θh = λh

∑
j∈N

(
ūjhĀih

µjih

)θh
(∏

h′∈H

(
LR
j,h′
)βhh′

)θh

(47)

LR
ih(∏

h′∈H

(
LR
i,h′

)βhh′
)θh

= λh

∑
j

(
ūihĀjh

µijh

)θh
(∏

h′∈H

(
LW
j,h′
)αhh′

)θh

(48)

We then pursue the change in variables described in Remark 5. Define:

xWih ≡

 LW
ih∏

h′∈H

(
LW
i,h′

)αhh′


so that:

lnxWih = lnLW
ih − θh

∑
h′∈H

αhh′ lnLW
ih′

or, in matrix notation:

lnxW
i = (I− θα) lnLW

i ⇐⇒
lnLW

i = (I− θα)−1 lnxW
i

or, in non-vector notation, we have:

LW
ih =

∏
h′∈H

(
xWih′
)a−1

hh′ ,

where
[
a−1
hh′
]
≡ (I− θα)−1.

Similarly, define:

xRih ≡

 LR
ih(∏

h′∈H

(
LR
i,h′

)βhh′
)θh


so that:

lnxR
i = (I− θβ) lnLR

i ⇐⇒
lnLR

i = (I− θβ)−1 lnxR
i

or in non-vector notation:

LR
ih =

∏
h′∈H

(
xRih′
)b−1

hh′
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where
[
b−1
hh′
]
≡ (I− θβ)−1. Then we can write: LW

ih(∏
h′∈H

(
LW
i,h′

)αhh′
)θh
 = λh

∑
j∈N

(
ūjhĀih

µjih

)θh
(∏

h′∈H

(
LR
j,h′
)βhh′

)θh

⇐⇒

xWih = λh

∑
j∈N

(
ūjhĀih

µjih

)θh
∏

h′∈H

( ∏
h′′∈H

(
xRj,h′′

)b−1
h′,h′′

)βhh′
θh

⇐⇒

xWih = λh

∑
j∈N

(
ūjhĀih

µjih

)θh ∏
h′∈H

(
xRj,h′

)γR
h,h′

where
[
γRh,h′

]
≡ θβ (I− θβ)−1.

Similarly: LR
ih(∏

h′∈H

(
LR
i,h′

)βhh′
)θh

 = λh

∑
j

(
ūihĀjh

µijh

)θh
(∏

h′∈H

(
LW
j,h′
)αhh′

)θh

⇐⇒

xRih = λh

∑
j

(
ūihĀjh

µijh

)θh
(∏

h′∈H

( ∏
h′′∈H

(
xWjh′′

)a−1
h′h′′

)αhh′
)θh

⇐⇒

xRih = λh

∑
j

(
ūihĀjh

µijh

)θh ∏
h′∈H

(
xWj,h′

)γF
h,h′θh

where
[
γWh,h′

]
≡ θα(I− θα)−1.

Finally, we apply the change of variables described in Remark 2 to subsume the endogenous
scalars {λh} in the equilibrium system. Define:

yWih ≡

(∏
h′

λ
cW
h′h
h′

)−1

xWih

yRih ≡

(∏
h′

λ
cR
h′h
h′

)−1

xRih

so that we have:

xWih = λh

∑
j∈N

(
ūjhĀih

µjih

)θh ∏
h′∈H

(
xRj,h′

)θhγR
h,h′ ⇐⇒

yWih

(∏
h′

λ
cW
h′h
h′

)
= λh

∑
j∈N

(
ūjhĀih

µjih

)θh ∏
h′∈H

(∏
h′′

λ
cR
h′′h′
h′′ yRj,h′

)θhγ
R
h,h′

⇐⇒

yWih =
∑
j∈N

(
ūjhĀih

µjih

)θh ∏
h′∈H

(
yRj,h′

)θhγR
h,h′
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and:

xRih = λh

∑
j

(
ūihĀjh

µijh

)θh ∏
h′∈H

(
xWj,h′

)γW
h,h′θh ⇐⇒

yRih

(∏
h′

λ
cR
h′h
h′

)
= λh

∑
j

(
ūihĀjh

µijh

)θh ∏
h′∈H

(∏
h′′

λ
cW
h′′h′
h′′ yWj,h′

)γW
h,h′θh

⇐⇒

yRih =
∑
j

(
ūihĀjh

µijh

)θh ∏
h′∈H

(
yWj,h′

)γW
h,h′θh

We then need to choose
{
cWh , cRh

}
such that:

I− CR +
[
θhγ

R
h,h′
]
CR = 0 ⇐⇒(

I−
[
θhγ

R
h,h′
])−1

= CR

and similarly: (
I−

[
θhγ

W
h,h′
])−1

= CW

Finally, defining L̃W
ih ≡ yWih and L̃R

ih ≡ yRih, we recover the equilibrium system defined in equation
(8), as required.

Now we show that c ≡ ρ

 0
∣∣∣θβ (I− θβ)−1

∣∣∣∣∣∣θα(I− θα)−1
∣∣∣ 0

 ≤ 1, the uniqueness condi-

tion here, is weaker than ρ (θ (|α|+ |β|)) < 1
2 , the condition required in the case of general spillovers

given above. Suppose that for vα and vβ H-by-1 vectors, 0
∣∣∣θβ (I− θβ)−1

∣∣∣∣∣∣θα(I− θα)−1
∣∣∣ 0

( vα
vβ

)
= c

(
vα
vβ

)
⇒

 ∣∣∣θβ (I− θβ)−1
∣∣∣ vβ∣∣∣θα(I− θα)−1
∣∣∣ vα

 = c

(
vα
vβ

)
⇒

∣∣∣θα(I− θα)−1
∣∣∣ ∣∣∣θβ (I− θβ)−1

∣∣∣ vβ = c2vβ.

Thus it is equivalent to show that ρ
(∣∣∣θα(I− θα)−1

∣∣∣ ∣∣∣θβ (I− θβ)−1
∣∣∣) = c2 ≤ 1. Define H-by-

H matrix δ where (δ)hh′ = max ((θ |α|)hh′ , (θ |β|)hh′). Clearly,
∣∣∣θβ (I− θβ)−1

∣∣∣ ≤∑∞
n=1 (θ |β|)n ≤∑∞

n=1 δ
n where the inequality is elementwise; similarly,

∣∣∣θα(I− θα)−1
∣∣∣ ≤∑∞

n=1 δ
n. Thus,

ρ
(∣∣∣θα(I− θα)−1

∣∣∣ ∣∣∣θβ (I− θβ)−1
∣∣∣) ≤ ρ

( ∞∑
n=1

δn
∞∑
n=1

δn

)
= ρ

( ∞∑
n=1

δn

)2

.

Here, ρ (
∑∞

n=1 δ
n) = ρ(δ)

1−ρ(δ) . Furthermore, ρ (δ) ≤ ρ (θ (|α|+ |β|)) < 1
2 . Thus, ρ (

∑∞
n=1 δ

n) < 1,
which is as desired.
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Figure 1: Examples of multiplicity in an urban spatial framework

(a) µ = 2, α = β = 0.5 (b) µ = 2, α = β = 0.55 (c) µ = 2, α = β = 0.6

(d) µ = 6, α = β = 0.5 (e) µ = 6, α = β = 0.55 (f) µ = 6, α = β = 0.6

(g) µ = 11, α = β = 0.5 (h) µ = 11, α = β = 0.55 (i) µ = 11, α = β = 0.6

Notes : This figure depicts the set equilibria for an urban economy with two identical locations
and a single type of agent for different combinations of productivity and amenity spillovers
(α and β, respectively) and commuting costs (µ). The x-axis is the (log) ratio of the workers
in location 1 relative to location 2; the y-axis is the (log) ratio of residents in location 1
relative to location 2. Stars indicate an equilibrium.
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