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1 Introduction

The twenty first century has witnessed the rise of big data and big models in the social

sciences. Exponential growth in computational capacity combined with access to new micro-

level datasets have allowed the empirical implementation of models where large numbers

of heterogeneous agents interact simultaneously with each other in myriad ways. Despite

the introduction of empirical content to traditionally theoretical fields, unresolved questions

about the positive properties of these big models remain. Two concerns—critical for applied

work—are particularly pressing: How can we compute the solution of an equilibrium system

with hundreds or thousands of heterogeneous agents efficiently? And how do we know that

the equilibrium we find is the only possible one?

In this short paper, we answer these questions for a large class of models where many

heterogeneous agents simultaneously interact in many ways. In particular, we consider sys-

tems where N heterogeneous agents engage in H types of interactions whose equilibrium can

be reduced to a set of N ×H equations of the following form:

xih =
N∑
j=1

fijh (xj1, ..., xjH) , (1)

where {xih} ∈ RN×H
++ reflect the (strictly positive) equilibrium outcomes for each agent of

each interaction and fijh : RH
++ → R++ are the known (differentiable) functions that govern

the interactions between different agents. In particular, fijh is the function that governs the

impact that an interaction with agent j has on agent i’s equilibrium outcome of type h.

As we illustrate, this formulation is sufficiently general to apply to many types of economic

networks—from firm linkages to social networks to the spatial structure of cities.

The main formal result of the paper is a three-part Theorem that offers a unified charac-

terization of the positive properties of equilibrium systems satisfying equation (1). The key

insight, loosely speaking, is to simplify the analysis by abstracting from agent heterogeneity

and the particular network structure and focusing instead on the strength of economic inter-

actions. Formally, rather than focusing on the N2×H functions {fijh} themselves, we instead

focus on the H×H matrix of the uniform bounds of the elasticities (A)hh′ ≡ supi,j

(∣∣∣ ∂ ln fijh
∂ lnxjh′

∣∣∣)
of the functions. The Theorem characterizes the equilibrium properties of the system based

on a single statistic of this matrix: its spectral radius. If its spectral radius is less than one,

there exists a unique equilibrium which can be calculated using an iterative algorithm (part

i); if its spectral radius is equal to one (with additional restrictions on {fijh}), there is at

most one equilibrium (part ii); and if its spectral radius is greater than one, then there exist

{fijh} where multiplicity is assured (part iii).
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Part (i) of Theorem 1 relies on a multi-dimensional extension of the contraction mapping

theorem known as the Perov Fixed Point Theorem (Perov, 1964; Perov and Kibenko, 1966),

which extends the Banach fixed point theorem to a vector-valued metric; we construct such

a vector-valued metric by partitioning the space of endogenous variables into subsets, each

of which operates in a different metric subspace. This partition is particularly helpful in

economic models where heterogeneous agents interact in many ways (i.e. H is large), as it

allows us to separate the study of each type of interaction. Part (ii) of Theorem 1 relies

on a new contradiction argument, and we show that the knife edge case to which it applies

is common in economics, as any constant-elasticity system where one of the equilibrium

outcomes is a nominal variable (e.g. prices) has a spectral radius no smaller than one. Part

(iii) of Theorem 1 is proved by construction; it reveals how the spectral radius being greater

than one engenders multiplicity and provides a practical guide for finding multiple solutions.

The three parts together demonstrate that the spectral radius of the elasticity matrix is the

best condition possible abstracting from the particularities of agent heterogeneity, i.e. it is

sufficient and “globally necessary.”

To illustrate its broad applicability, we finally apply Theorem 1 to seminal models from

many disparate fields in economics. In the main text, we offer two applications; in Online

Appendix A, we offer nine more.1 First, we extend a social network model in the spirit of

Ballester, Calvó-Armengol, and Zenou (2006) to a setting where agents simultaneously take

many actions on potentially many different networks, with the payoffs of each depending

flexibly on the actions of other agents. Second, we extend an urban model in the spirit of

Ahlfeldt, Redding, Sturm, and Wolf (2015) to a setting with many types of agents where

the payoffs of the choice of residence and workplace depend flexibly on the choices of other

agents. In both cases, we illustrate each part of the Theorem, deriving sufficient conditions

guaranteeing convergence to a solution and uniqueness and providing examples of multiplicity

if those conditions do not hold. We note that these extensions are contributions in their own

right, as they allow heterogeneous agent network models to be brought to bear on important

empirical questions. For example, in our social network application, our extension enables

the analysis of the interdependent nature of different types of actions on different social

networks, whereas in the urban application incorporating many types of agents enables the

“quantitative” study of such issues as spatial segregation and gentrification.

1These include network models with social interactions as in Brock and Durlauf (2001) and Glaeser and
Scheinkman (2002), public goods provision in social networks as in Allouch (2015) and Acemoglu, Garćıa-
Jimeno, and Robinson (2015), economic geography models and trade models as in Allen and Arkolakis
(2014) and Alvarez and Lucas (2007), trade models with input-output structures as in Caliendo and Parro
(2015), input-output production networks as in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)
and Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021), and demand estimation as in Berry, Levinsohn, and
Pakes (1995).
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Contribution to the literature

To highlight the contribution of our paper, it is helpful to compare our approach to three

alternatives for characterizing the properties of an equilibrium.

First, one could recursively apply a process of substitution to re-define the equilibrium

system as a function of fewer economic interactions. For example, in a simple exchange econ-

omy with multiple agents and multiple goods, there are two interactions—buying and selling,

which in equilibrium can be summarized by the value of each agent’s endowment (wages)

and consumption bundle (price index). Alvarez and Lucas (2007) characterize the equilib-

rium of such a system by first substituting wages into the price index and then analyzing

the structure of the model only in terms of wages relying on the gross substitutes property

of the system, c.f. Mas-Colell, Whinston, and Green (1995). While feasible for small H,

the complexity of this approach increases exponentially with the number of interactions in

the model, creating a curse of dimensionality for large H. Theorem 1, in contrast, avoids

such a curse by simultaneously considering all H interactions and, it turns out, delivers less

stringent sufficient conditions for uniqueness (see Online Appendix A.6).

Second, one could “stack” all economic outcomes into a single NH × 1 vector and apply

standard contraction mapping arguments. The disadvantage of such an approach is that it

treats different types of interactions identically—despite the fact that they may play very

different roles in the equilibrium system. This results in a loss of information and intro-

duces the possibility that the sufficient conditions may fail despite the system being unique.

For example, consider the N = 1 H = 2 system x11 = x
1
2
11x

2
12 + 1, x12 = x

1
2
12 + 1. It is

straightforward to show that by treating x11 and x12 as a single vector variable, the standard

contraction conditions that the matrix norm (induced by the vector norm) of the system’s

Jacobian matrix is strictly less than one are not satisfied, whereas the conditions for our

Theorem are satisfied.

Third, one could characterize the Jacobian matrix of the equilibrium system directly, e.g.

using the results of Hadamard (1906), Gale and Nikaido (1965), or Kehoe (1980). While

powerful, such an approach is often impractical in situations with large number of equations,

as the Jacobian of equation (1) is of size NH ×NH, making it difficult to characterize. In

contrast, the conditions provided here depend on a single statistic of an H×H matrix. And

even when the Jacobian can be characterized, the conditions required to establish uniqueness

may be too stringent, as noted by e.g. Berry, Gandhi, and Haile (2013). For example,

consider the system xi =
∑N

j=1Kijx
α
j for Kij > 0 and α ∈ (0, 1]. The ith diagonal term of

its Jacobian is 1 − αKiix
α−1
i which can be negative or positive, violating e.g. the classical

condition of Gale and Nikaido (1965) that all principal submatrices of the Jacobian have

positive determinants. In this case, however, the spectral radius of the elasticity is α ≤ 1, so
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uniqueness is established immediately by the Theorem presented here.

In summary, we approach the N × H system represented in equation (1) by extract-

ing an H ×H matrix capturing the strength of economic interactions and characterize the

equilibrium properties of the system based on a single statistic of that matrix. As a result,

Theorem 1 provides a unified understanding of a broad class of heterogeneous agent network

models and offers a straightforward and easy-to-check sufficient condition to characterize

their equilibrium—reminiscent of how Blackwell (1965) offers straightforward sufficient con-

ditions that have been widely used to characterize the equilibrium of single-agent dynamic

models. In doing so—and as the included applications illustrate—it offers both new lessons

for existing models and the ability to extend existing frameworks in important directions.

The structure of the remainder of the paper is as follows: Section 2 presents the Theorem

and makes five remarks. Section 3 presents two applications of the result to the fields of social

networks and urban spatial networks, respectively. For brevity, the proof of the Theorem

is presented in the Appendix. Details of the remarks and nine additional applications are

presented in the Online Appendix.

2 The Theorem

Let N ≡ {1, ..., N} and H ≡ {1, ..., H} correspond to the set of economic agents and the set

of economic interactions, respectively.2 Let x be an N -by-H matrix of endogenous economic

outcomes, where for i ∈ N and h ∈ H, we slightly abuse notation and let xi denote x’s

ith row and x.h to denote x’s hth column. We restrict our attention to strictly positive

{xih}i∈N ,h∈H ∈ RN×H
++ and strictly positive and differentiable {fijh}. Define the elasticity

εijh,jh′ (xj) ≡ ∂ ln fijh(xj)

∂ lnxjh′
, i.e. εijh,jh′ (xj) is the impact of agent j′s outcome of type h′ on

agent i′s outcome of type h. Finally, define ρ (A) as the spectral radius of matrix A (i.e.

the largest absolute value of its eigenvalues).

Theorem 1. Suppose there exists an H-by-H matrix A such that for all i, j ∈ N , h, h′ ∈ H,

and xj ∈ RH
++, |εijh,jh′ (xj)| ≤ (A)hh′. Then:

(i). If ρ (A) < 1, there exists a unique solution to equation (1) which can be computed

by iteratively applying equation (1) with a rate of convergence ρ (A);

(ii). If ρ (A) = 1 and:

a. For all i ∈ N and h, h′ ∈ H when (A)hh′ 6= 0 there exists some j such that for all xj

|εijh,jh′ (xj)| < (A)hh′, then equation (1) has at most one solution;

2More generally, the set of agents N can be countably infinite or uncountably infinite represented by a
closed interval.
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b. For all xj, εijh,jh′ (xj) = αhh′ ∈ R where |αhh′ | = (A)hh′ for all i, j ∈ Nand h, h′ ∈
H—i.e. fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ for some Kijh > 0—then there is at most one column-

wise up-to-scale solution, i.e. for any h ∈ H and two solutions x and x′ it must be x′.h = chx.h

for some scalar ch > 0;

(iii). If ρ (A) > 1, N ≥ 2H + 1, and fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ , then there exists

some {Kijh > 0}i,j∈N ,h∈H such that equation (1) has multiple solutions that are column-wise

up-to-scale different.

Proof. See Appendix A.

It is important to emphasize that the conditions provided in the Theorem 1 abstract from

the particular heterogeneity of agents and network structure—i.e. the particular functions

{fijh}—and instead focus on the strength of the economic interactions across all agents,

i.e. the uniform bounds on elasticities |εijh,jh′ (xj)| ≤ (A)hh′ . Such conditions that focus on

the strength of the economic interactions rather than the heterogeneity of the agents and

networks themselves are advantageous in settings where the same economic model may be

applied to different empirical contexts. For example, in spatial models, the heterogeneity of

agents and network structure captures such things like the geography (e.g. trade costs) which

are highly context dependent; in contrast, the elasticities govern the strength of economic

interactions (e.g. the elasticity of demand) that may be similar across locations.

Part (i) of Theorem 1 applies the Perov Fixed Point Theorem (Perov, 1964; Perov and

Kibenko, 1966) to show that there exists a unique solution and that solution can be computed

with an iterative algorithm that converges at a rate ρ (A). In particular, denote equation (1)

as x = T (x); then for any initial “guess”of a positive solution x0 ∈ RN×H
++ , one simply iterates

x1 = T (x0), x2 = T (x1), x3 = T (x2), ... until convergence. Intuitively, if (1) represents an

agents i’s best response function for action h, then this algorithm is simply an iterated best

response and part (i) guarantees such best response dynamics will converge to the unique

(Nash) equilibrium from any starting point; Section 3.1 offers an example.

Part (ii) of Theorem 1 deals with the case of ρ (A) = 1, which turns out to be a common

phenomenon in economic modeling (see Remark 4 below). It establishes uniqueness by

imposing extra conditions on the elasticities εijh,jh′ (xj): if either the elasticities are strictly

smaller than their bounds (part ii.a) or the elasticities are constant (part ii.b) then (up-to-

scale) uniqueness can be assured.

Finally, since whether or not a system of the form of equation (1) has a unique solu-

tion in general depends on the particular function {fijh}, our choice to abstract from this

heterogeneity comes at the cost of preventing us from providing necessary conditions for

uniqueness. Nonetheless, part (iii) of Theorem 1 shows that the conditions provided are
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“globally necessary”. That is, for any matrix of elasticity bounds A such that ρ (A) > 1, one

can construct a set of functions that govern the interactions {fijh} with a corresponding A

where multiple equilibria are assured.3 Such functions can be constructed even restricting

attention only to functions with constant elasticities. Put another way, the sufficient con-

ditions for uniqueness provided in the Theorem 1 are the best that can be provided when

abstracting from agent heterogeneity and network structure.

Remarks

We provide below five remarks that both facilitate the implementation and extend Theorem

1. Details are presented in Online Appendix B.1. The first two remarks provide extensions

to Theorem 1.

Remark 1. (Generalized Domain and Range) Part (i) of Theorem 1 can be extended

to both allow {fijh} to be a function of the full set of equilibrium outcomes x for all j and

allow {fijh} to be weakly positive (while requiring the summation across j to be strictly

positive, i.e.
∑

j∈N fijh (x) > 0), i.e. fijh : RH×N
++ → R+. Doing so requires replacing

the condition on elasticity |εijh,jh′ (xj)| ≤ (A)hh′ with
∑

j∈N

∣∣∣∂ ln
∑
j∈N fijh(x)

∂ lnxjh′

∣∣∣ ≤ (A)hh′ . The

remainder of Theorem 1 and its proof is unchanged. This generalization allows both that

the impact that agent j has on agent i through an interaction of type h can depend on

the equilibrium outcomes of any other agents (including i’s own outcomes) and for certain

agents’ interactions to not directly affect the payoffs of others. We apply this remark in

Section 3.2.

Remark 2. (Presence of Endogenous Scalars) In addition to equilibrium outcomes for

each agent and interaction, certain economic systems also contain an endogenous scalar that

reflects e.g. the aggregate welfare of the system, as in:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH) , (2)

where λh > 0 is endogenous. We offer two results for such systems.

The first result concerns the equilibrium system (2) with constant elasticities (as in The-

orem 1 part ii.b). For this form, if ρ (A) = 1, we have the same conclusion as in part ii.b:

the {xih} of any solution is column-wise up-to-scale unique. If ρ (A) < 1, it is possible to

subsume the endogenous scalars into the equilibrium outcomes through a change in vari-

ables, expressing equation (2) as in equation (1), which in turn implies that the {xih} are

3Part (iii) of Theorem 1 extends the result of Allen and Donaldson (2018) to equilibrium systems with
more than two equilibrium interactions (i.e. H > 2).
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column-wise up-to-scale unique. (Separating the {xih} and {λh} to determine the scale of

{xih} requires the imposition of further equilibrium conditions, e.g. aggregate labor market

clearing conditions).

The second result concerns the equilibrium system (2) for general fijh with H additional

aggregate constraints of the form
∑N

i=1 xih = ch for known constants ch > 0. This system

has a unique solution as long as ρ (A) < 1
2
, where A is defined as in Theorem 1. Intuitively,

ρ (A) < 1
2

ensures that the feedback effect from changes in the endogenous scalar are small

enough to continue to ensure a contraction. We apply both these results in Section 3.2.

The next remark facilitates implementation of Theorem 1.

Remark 3. (Change of variables) It is often useful to consider a change of variables of

one’s original equilibrium system when writing it in the form of equation (1). One important

example that can be found in the study of network economics is the following system:

xih = fih

{∑
j 6=i

gijh′xjh′

}
h′∈H


where

∑
j 6=i gijh′xjh′ measures the aggregate behavior of agent i’s peers. Define yih ≡∑

j 6=i gijhxjh and substitute the expression of xjh. We then obtain yih =
∑

j 6=i gijhfjh
(
{yjh′}h′∈H

)
,

which is in the form of (1). We illustrate this technique in Online Appendices A.1 and A.2.

Another important example that has found widespread use in spatial economics is the fol-

lowing economic system in which the elasticities are constant:∏
h′∈H

x
γhh′
ih′ =

∑
j∈N

Kijh

∏
h′∈H

x
ρhh′
ih′ x

βhh′
jh′ . (3)

for all i ∈ N and h′ ∈ H where γhh′ , ρhh′ , and βhh′ are (h, h′)th cells of matrix Γ, R,

and B, respectively. To transform equation (3) to the form of equation (1), if Γ − R is

invertible, we can redefine yih ≡
∏

h′∈H x
γhh′−ρhh′
ih′ . Substituting this definition into the right-

hand-side we obtain yih =
∑

j∈N Kijh

∏
h′∈H y

αhh′
jh′ , where αhh′ is the corresponding element

of matrix B(Γ−R)−1, which is in the form of (1) with (A)hh′ = |αhh′|. Note that a change

of variables is not just analytically convenient: the presence of the absolute value operator in

Theorem 1 means that a change of variables may reduce the spectral radius, making it more

likely that the sufficient conditions for uniqueness are satisfied and improving the speed at

which an iterative algorithm converges.4 We illustrate this change of variables technique in

applications presented in Section 3.2 and Online Appendices A.4, A.5, A.6, and A.9.

4Consider the simple example xi =
∑N
j=1Kijx

β
i x

α
j . Applying Theorem 1 directly (using Remark 1)

provides the sufficient uniqueness condition |α| + |β| ≤ 1, but transforming the system using a change of
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The last two remarks offer details about the spectral radius.

Remark 4. (Spectral Radius of 1) In practice, ρ (A) = 1 is a general phenomenon in

economic systems which include nominal variables (e.g. prices). Indeed, any economic

system of the form (3) that is homogeneous of degree 0 in at least one of its arguments will

have spectral radius ρ (A) no smaller than 1. Hence, part (i) of Theorem 1 is more applicable

to economic systems where all economic interactions are real, whereas part (ii) of Theorem 1

is more applicable to economic systems where some economic interactions are nominal. We

provide two such economic systems with nominal variables in Online Appendices A.8 and

A.9.

Remark 5. (Characterization of the Spectral Radius) While it is straightforward to

numerically calculate ρ (A) to apply the results of Theorem 1, analytical characterizations

are also possible. We offer two results to facilitate such characterization. The first is well

known: the Collatz–Wielandt Formula (e.g. see Page 670 in Meyer (2000)), implies that if

the summation of each row (or column) of A is less than 1, then ρ (A) ≤ 1. We illustrate

how to use this result to generate intuitive economic conditions for uniqueness in Section

3.2 below. The second is, to our knowledge, new. Define g (s) as the determinant of matrix

sI − A i.e. g (s) = |sI −A| and denote its k-th derivative as g(k) (s). For any constant

s > 0, ρ (A) ≤ s if and only if g(k) (s) ≥ 0 for all k = 0, 1, 2, ..., n − 1. We apply this result

in Online Appendix A.6.

3 Applications

We now apply Theorem 1 to extend seminal models of social networks and urban economics;

in the Online Appendix A, we apply Theorem 1 to nine additional applications.5

variable yi ≡ x1−βi to yi =
∑N
j=1Kijy

α
1−β
j provides the sufficient uniqueness condition

∣∣∣ α
1−β

∣∣∣ ≤ 1, which is a

strictly weaker sufficiency condition (e.g. α = 1, β = − 1
2 ).

5In Online Appendix A.1, we consider a setting where agents make a discrete choice over a large number of
possible actions, extending the framework of Brock and Durlauf (2001); in Online Appendix A.2, we consider
a setting where agents interact in a large number of non-market ways, extending the framework of Glaeser and
Scheinkman (2002); in Online Appendix A.3, we consider the case where agents trade-off private consumption
and public good contributions, as in Allouch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015); in
Online Appendix A.4, we consider an urban setting where spillovers can occur across space, as in Ahlfeldt,
Redding, Sturm, and Wolf (2015); in Online Appendix A.5 we show that spatial spillovers–regardless if
agglomerative or congestive—can lead to multiplicity in an economic geography framework based on Allen
and Arkolakis (2014); in Online Appendix A.6, we provide sufficient conditions for uniqueness in a trade
model with intermediate inputs and tariffs as in Alvarez and Lucas (2007); in Online Appendix A.7 we prove
the uniqueness of equilibrium in a production network, extending the framework of Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) to include a CES aggregator across labor and intermediates and between
intermediate goods; in Online Appendix A.8, we show that relative sector productivities can be identified
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3.1 Social interactions with many types of networks

We first consider a social network based on the work of Ballester, Calvó-Armengol, and

Zenou (2006) (as summarized in the review article of Jackson and Zenou (2015)) where

agents’ payoffs depend both on their own actions as well as the actions of others in their

social network. We extend that framework to incorporate (a) many different types of actions

and networks; and (b) flexible impacts of others’ actions on one’s own payoffs. Allowing

agents to choose many types of actions simultaneously—and for those choices to flexibly

affect the payoffs of all other agents’ actions—enables the study of a variety of empirically

relevant social interactions, including e.g. the interdependent nature of different types actions

on different social networks (friends, family, work, etc).

3.1.1 The Model

We first describe the model and derive its equilibrium conditions.

Setup There are i ∈ {1, ..., N} ≡ N agents, each of whom decides how much effort xih to

exert on each activity h ∈ {1, ..., H} ≡ H. Agent i’s payoff from activity h is:

uih

(
{xjh′}h

′∈H
j∈N

)
= cihxih −

x2
ih

2
+ xih

∑
j 6=i

fijh
(
{xjh′}h′∈H

)
,

where cih > 0 is the (constant) marginal own benefit of effort, costs are quadratic in effort,

and fijh (·) ≥ 0 is a function capturing how others’ efforts in all activities affect agent i’s

payoff in activity h. Agent i’s overall utility is given by:

ui (x) = m [ui1 (x) , ..., uiH (x)] ,

where m (·) is a monotonic function increasing in each of its arguments.

Equilibrium Agent i choose her efforts {xih}h∈H to maximize her utility ui (x). The first

order conditions give the best response function of agent i ∈ N for action h ∈ H to all other

agents actions:

xih = cih +
∑
j 6=i

fijh
(
{xjh′}h′∈H

)
, (4)

to-scale from observed sales in a trade model with input-output linkages as in Caliendo and Parro (2015);
and in Online Appendix A.9, we provide conditions under which demand shifters can be identified from
market shares, extending the framework of Berry, Levinsohn, and Pakes (1995) to two types of goods.
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which is a special case of equation (1) (where fiih (xj1, ..., xjH) = cih). We note that Ballester,

Calvó-Armengol, and Zenou (2006) consider a single network (H = 1) and a linear spillover

function (fij (xj) = gijxj).

3.1.2 Applying Theorem 1

Theorem 1, part (i): General spillovers Suppose that the elasticities of the spillover

function can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0 such that
∣∣∣ ∂ ln fijh
∂ lnxjh′

∣∣∣ ≤
αhh′ for all {xjh′}h′∈H. Let A be the H × H matrix whose (h, h′) element is αhh′ . From

Theorem 1 part (i), there exists a unique equilibrium if ρ (A) < 1. Moreover, that equilibrium

can be reached from any initial starting point
{
x0
jh′

}h′∈H
j∈N by iteration of equation (4). Note

that the iterative procedure here has the simple economic intuition as an application of

best-response dynamics, i.e. from any initial starting point, the unique equilibrium can be

reached as an iterative application of agents’ best-responses (see e.g. section 6 of Parise and

Ozdaglar (2019)).

Theorem 1, part (ii): Constant elasticity spillovers Consider the special case where

the social spillovers take a constant elasticity form, i.e. fijh
(
{xjh′}h′∈H

)
= gijh

∏
h′∈H x

αhh′
jh′ ,

where gijh > 0 governs the strength of the network connection between agents i and j in

activity h. Then from Theorem 1 part (ii), there is at most one equilibrium if ρ (A) ≤ 1.

Theorem 1, part (iii): Multiplicity It is sufficient to consider a two agent single network

(N = 2, H = 1) with constant elasticity social spillover fij = gijx
α
j . For any α > 1 it is

straightforward to confirm that the payoff structure of c1 = c2 = 1− 1
2α

and g12 = g21 = 1
2α

has at least two solutions: a low-effort symmetric equilibrium (x1, x2) = (1, 1) and a high-

effort symmetric equilibrium (x1, x2) = (M,M), where M is the maximal root of the equation

xα − 2αx+ 2α− 1 = 0.

Comparison to previously known results In the H = 1 linear case where fij = gijxj,

Ballester, Calvó-Armengol, and Zenou (2006) show that there exists a unique solution if

ρ (G) < 1, where G is the N ×N matrix with (i, j) element gij, i.e. they provide a condition

on the spectral radius of the network structure.6 In contrast, Theorem 1 offers—for any finite

6Bramoullé, Kranton, and D’amours (2014) and Galeotti, Golub, and Goyal (2020) extend the Ballester,
Calvó-Armengol, and Zenou (2006) framework to the case where actions can be substitutes by allowing
possibly negative G and offer similar conditions for uniqueness as Ballester, Calvó-Armengol, and Zenou
(2006) based on the network structure. While Theorem 1 does not apply to this case (since we consider only
positive fijh), we can incorporate situations where actions are substitutes through negative payoff elasticities,
e.g. best response functions of the form xi = ci +

∑
j 6=i gijx

α
j , where α < 0; Online Appendix A.3 provides

such an example based on public goods provision in social networks.
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H ≥ 1 and for any fijh—condition for uniqueness as restrictions on the spectral radius of

the elasticities of the spillover function. For example, in the H = 1 case where fij = gijx
α
j ,

Theorem 1 part (i) shows there exists a unique solution if |α| < 1 and part (ii) shows there is

at most one solution if |α| = 1, regardless of the network structure G. Combining Theorem

1 with the results of Ballester, Calvó-Armengol, and Zenou (2006) in the α = 1 case then

illustrates that the condition ρ (G) < 1 guarantees the existence of an equilibrium (indeed, if

ρ (G) ≥ 1, there exists no solution). Note too that when α > 1, in our example of multiplicity

ρ (G) = 1
2α

< 1, demonstrating that the conditions on the network structure in the linear

case (α = 1) do not immediately generalize to the non-linear case.

3.2 An urban spatial network with many types of agents

We now consider an urban spatial network based on the work of Ahlfeldt, Redding, Sturm,

and Wolf (2015) where agents choose where to live and where to work subject to commuting

costs. While we do not explicitly model the land market nor do we incorporate spillovers

that decay over space, we extend that framework to incorporate (a) many different types

of agents; and (b) flexible productivity and amenity spillovers between agents of different

types, thereby enabling the framework to be applied to a variety of empirically relevant

urban interactions, including e.g. segregation, inequality, and gentrification.7

3.2.1 The Model

Setup A city comprises i ∈ {1, ..., N} ≡ N blocks inhabited by h ∈ {1, ..., H} ≡ H types

of agents with measure L̄h. Each agent ν of type h ∈ H chooses where to live, denoted by

i ∈ N , and where to work, denoted by j ∈ N , to maximize her utility:

Uij,h (ν) =
uihwjh
µijh

εijh (ν) , (5)

where uih and wjh are the value of living and working, respectively, common to all agents of

type h, µijh ≥ 1 is the commuting cost, and εij,h (ν) is the idiosyncratic preference of agent

ν of type h over location pairs. We assume εij,h (ν) is extreme value (Frechet) distributed

with shape parameter θh > 0. The number of agents of type h who choose to live in location

i and work in location j can then be written as:

Lij,h =

(
uihwjh
µijh

)θh
∑

(i,j)∈N 2

(
uihwjh
µijh

)θh L̄h. (6)

7In Online Appendix A.4, we characterize the equilibrium of an urban model with spatial spillovers.
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Spillovers An agent h working in block j produces a numeraire good, for which they

are paid their marginal productivity, Ajh, i.e. wjh = Ajh. We suppose agents’ aggregate

location choices also affect Ajh and ujh. Specifically, Ajh (ujh) depends both on the innate

productivity (amenity) of block j, Ājh (ūih), and the number of each type of agents working

(residing) in that location,
{
LWjh′

}
h′∈H (

{
LRjh′

}
h′∈H ) i.e.:

Ajh = Ājhf
A
h

({
LWjh′

}
h′∈H

)
;uih = ūihf

u
h

({
LRih′
}
h′∈H

)
(7)

for some functions fAh : RH
++ → R++ and fuh : RH

++ → R++.

Equilibrium For any geography
{
{µijh}(i,j)∈N 2

h∈H ,
{
Āih, ūih

}i∈N
h∈H

}
, measure of agents

{
L̄h
}
h∈H,

spillover functions
{
fAh , f

u
h

}
h∈H, and commuting elasticities {θh}h∈H, an equilibrium is a set

of workplace and residential populations
{
LWih , L

R
ih

}i∈N
h∈H such that:

LWih =
∑
j∈N

Lji,h;L
R
ih =

∑
j∈N

Lij,h, (8)

i.e. the number of workers (residents) of type h in block i is equal to the total number of

agents of type h commuting to (from) that location.

3.2.2 Applying Theorem 1

We now apply Theorem 1 to characterize the equilibrium of the model; for detailed deriva-

tions see Online Appendix B.2.

Theorem 1, part (i): General spillovers For a general set of spillover functions fAh

and fuh , we suppose that for all h, h′, and j, we have

∣∣∣∣ ∂ ln fAh
∂ lnLW

jh′

∣∣∣∣ ≤ αhh′ and

∣∣∣∣ ∂ ln fuh
∂ lnLR

jh′

∣∣∣∣ ≤ βhh′ .

Then, by substituting equations (6) and (7) into the equilibrium conditions (8), we can

derive the following bounds on the elasticities of the workplace and residential populations:∑
j

∣∣∣∣ ∂ lnLWih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ ,
∑

j

∣∣∣∣ ∂ lnLWih
∂ lnLR

jh′

∣∣∣∣ ≤ 2θhβhh′ ,
∑

j

∣∣∣∣ ∂ lnLRih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ , and
∑

j

∣∣∣∣ ∂ lnLRih
∂ lnLR

jh′

∣∣∣∣ ≤
2θhβhh′ . Therefore by applying Remark 1, part (i) of Theorem 1 yields the following sufficient

condition for uniqueness:

ρ

(
2θα 2θβ

2θα 2θβ

)
< 1,

where α and β are H×H matrices with (h, h′) entries αhh′ and βhh′ , respectively and θ is an

H ×H diagonal matrix with (h, h) entry θh. From Remark 5, a sufficient condition for this

to hold is that ρ (θα) < 1
4

and ρ (θβ) < 1
4
. As θ captures the dispersion force arising from
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agent’s preference heterogeneity (with smaller values indicating greater dispersion) and α

and β capture the agglomeration/dispersion forces arising from productivities and amenities,

respectively (with larger positive values indicating greater agglomeration), these conditions

have a simple intuition: uniqueness can be assured when agglomeration forces are small

relative to congestion forces (as in Allen and Arkolakis (2014)).

Theorem 1, part (ii): Constant elasticity spillovers Now we consider the special

case where the spillover functions fAh and fuh take the following convenient constant elasticity

specification: fAh

({
LWjh′

}
h′∈H

)
=
∏

h′∈H
(
LWjh′

)αhh′ and fuh

({
LRih′
}
h′∈H

)
=
∏

h′∈H
(
LRih′
)βhh′ .

(The αhh′ and βhh′ here can be negative.) Combining these spillover functions with equation

(6), substituting into the equilibrium system (8), and applying the change of variables in

Remarks 2 and 3 results in the following system of equilibrium equations:

L̃Wih =
∑
j∈N

(
ūjhĀih
µjih

)θh ∏
h′∈H

(
L̃Rjh′

)γR
h,h′

; L̃Rih =
∑
j

(
ūihĀjh
µijh

)θh ∏
h′∈H

(
L̃Wjh′

)γW
h,h′

(9)

where
[
γRh,h′

]
≡ θβ (I− θβ)−1, and

[
γWh,h′

]
≡ θα(I− θα)−1. This 2 × N × H system

of equations is a special case of the equation (1) and as a result, the uniqueness of the

equilibrium depends on the spectral radius of the following 2H × 2H matrix:

A ≡

(
0

∣∣θβ (I− θβ)−1
∣∣∣∣θα(I− θα)−1

∣∣ 0

)
.

From part ii.b of Theorem 1, there is at most one equilibrium as long as the spectral radius of

A is not greater than one, i.e. ρ (A) ≤ 1. A sufficient condition for this is that ρ (θ |α|) ≤ 1
2

and ρ (θ |β|) ≤ 1
2
. Note that this condition is strictly weaker than the condition required in

the case of general spillovers given above: this arises because the assumed functional form of

spillovers allows us to accommodate directly the feedback loop generated by the endogenous

welfare through the change of variables.

Theorem 1, part (iii): Multiplicity We consider a simple economy with two identical

city blocks with symmetric commuting costs (N = 2, Āih = ūih = 1, µij = µ if i 6= j, and

µ = 1 if i = j), a single type of agent (H = 1), a unitary commuting elasticity (θ = 1), and

the Cobb-Douglas spillover function from the previous section with equal productivity and

amenity spillovers (α = β). Part iii of Theorem 1 implies that for any α = β > 1
2
, there will

exist a µ > 1 such that there are multiple equilibria. Online Appendix Figure 1 plots the two

equilibrium conditions as a function of the relative number of agents employed and living in
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the first location. As long as the commuting cost µ is sufficiently large, for any α = β > 1
2

there are three possible equilibria: one in which there are an equal number of workers and

residents in each location and another where one of two the locations has a greater number

of workers and residents to take advantage of the agglomeration economies.

Comparison to previously known results In the H = 1 constant elasticity case,

Ahlfeldt, Redding, Sturm, and Wolf (2015) prove the existence and uniqueness of an equi-

librium if the only forces present are congestion forces due to the inelastic supply of land

and the idiosyncratic preferences of agents, i.e. α < 0 and β < 0 in our notation. Here we

show for any finite H ≥ 1 and any fijh that uniqueness is assured as long as the conges-

tion forces are greater in strength than the agglomeration forces—formally ρ (θ |α|) < c and

ρ (θ |β|) < c, where c = 1
4

in the general case and c = 1
2

in the constant elasticity case.

4 Conclusion

In this short paper, we provide sufficient conditions for the uniqueness and computation

of the equilibrium for a broad class of models with large numbers of heterogeneous agents

simultaneously interacting in a large number of ways. The conditions are written in terms of

the elasticities of the economic interactions across agents. We illustrate that a wide variety of

heterogeneous agent economies yield equilibrium representations amenable to our theorem’s

characterization, thereby contributing to our understanding of the big models needed to

interpret big data.

By construction, the conditions provided here depend only on the uniform bound of the

elasticities of agent’s interactions on each other’s outcomes rather than the particular form of

the network; that is, the conditions provided abstract from agent heterogeneity and network

structure. We show that should the conditions provided not hold, there exist network models

for which multiplicity is guaranteed, i.e. our conditions are “globally” necessary. However,

an outstanding and important question remains about how agent heterogeneity and network

structure itself shapes the positive properties of model equilibria.
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Bramoullé, Y., R. Kranton, and M. D’amours (2014): “Strategic interaction and networks,”
American Economic Review, 104(3), 898–930.

Brock, W. A., and S. N. Durlauf (2001): “Discrete choice with social interactions,” The Review
of Economic Studies, 68(2), 235–260.

Caliendo, L., and F. Parro (2015): “Estimates of the Trade and Welfare Effects of NAFTA,”
The Review of Economic Studies, 82(1), 1–44.

Carvalho, V. M., M. Nirei, Y. U. Saito, and A. Tahbaz-Salehi (2021): “Supply chain dis-
ruptions: Evidence from the great east Japan earthquake,” The Quarterly Journal of Economics,
136(2), 1255–1321.

Carvalho, V. M., and A. Tahbaz-Salehi (2019): “Production networks: A primer,” Annual
Review of Economics, 11, 635–663.

15



Eaton, J., and S. Kortum (2002): “Technology, Geography and Trade,” Econometrica, 70(5),
1741–1779.

Fine, B., and G. Rosenberger (1997): The Fundamental Theorem of Algebra. Springer Science
& Business Media.

Gale, D., and H. Nikaido (1965): “The Jacobian matrix and global univalence of mappings,”
Mathematische Annalen, 159(2), 81–93.

Galeotti, A., B. Golub, and S. Goyal (2020): “Targeting interventions in networks,” Econo-
metrica, 88(6), 2445–2471.

Glaeser, E., and J. Scheinkman (2002): “Non-Market Interactions,” in In Advances in Eco-
nomics and Econometetrics: Theory and Applications, Eighth World Congress, ed. by M. Arm-
strong, and R. Porter. Cambridge, UK: Cambridge University Press.

Hadamard, J. (1906): “Sur les transformations ponctuelles,” Bull. Soc. Math. France, 34, 71–84.

Jackson, M. O., and Y. Zenou (2015): “Games on networks,” in Handbook of game theory with
economic applications, vol. 4, pp. 95–163. Elsevier.

Kehoe, T. J. (1980): “An index theorem for general equilibrium models with production,” Econo-
metrica: Journal of the Econometric Society, pp. 1211–1232.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995): Microeconomic Theory. Oxford
University Press, Oxford, UK.

Meyer, C. D. (2000): Matrix analysis and applied linear algebra. Siam.

Parise, F., and A. Ozdaglar (2019): “A variational inequality framework for network games:
Existence, uniqueness, convergence and sensitivity analysis,” Games and Economic Behavior,
114, 47–82.

Perov, A. I. (1964): “On the Cauchy problem for a system of ordinary differential equations (in
Russian),” Approximate Methods of Solving Differential Equations. Kiev. Naukova Dumka.

Perov, A. I., and A. Kibenko (1966): “On a certain general method for investigation of boundary
value problems (in Russian),” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya,
30(2), 249–264.

16



A Proof of Theorem 1

We start by reminding readers of the Perov fixed point theorem (Perov, 1964; Perov and
Kibenko, 1966), which is a multi-dimensional extension of the standard contraction mapping
theorem and used in the proof of Theorem 1 part (i):

Theorem. (Perov Fixed Point Theorem) Let {(Xh, dh)}h=1,2,...,H be H metric spaces
where Xh is a set and dh is its corresponding metric. Define X ≡ X1×X2× ...×XH , and d :

X×X → RH
+ such that for x = (x1,...,xH) , x′ =

(
x′1,...,x

′
H

)
∈ X, d (x, x′) =

 d1 (x1, x
′
1)

...
dH (xH , x

′
H)

.

Given operator T : X → X, suppose for any x, x′ ∈ X

d (T (x) , T (x′)) ≤ Ad (x, x′) , (10)

where A is a non-negative matrix and the inequality is entry-wise. Denote ρ (A) as the
spectral radius of A. If ρ (A) < 1 and for all h = 1, 2, ..., H, (Xh, dh) is complete, there
exists a unique fixed point of T , and for any x ∈ X, the sequence of x, T (x), T (T (x)), ...
converges to the fixed point of T .

We now proceed to the analysis of equation (1). We begin by defining yik ≡ lnxik for all
h ∈ H i ∈ N so that equation (1) can be written as yih = ln

∑
j∈N fijh (exp yj) . Denote its

right side as function gih (y), we thus have:

∂gih
∂yjh′

=
εijh,jh′ (exp yj) fijh (exp yj)∑

j∈N fijh (exp yj)
. (11)

Given any y and y′, according to the mean value theorem, for each i and h, there exists
ŷ = (1− tih) y + tihy

′ where tih ∈ [0, 1] such that:

gih (y)− gih (y′) = ∇gih (ŷ) (y − y′)

=
∑

j∈N ,h′∈H

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)
. (12)

Part i: Combine the above two equations (11) and (12) with condition |εih,jh′ (xj)| ≤
(A)hh′ , we have

|gih (y)− gih (y′)| ≤
∑

j∈N ,h′∈H

(A)hh′ fijh (exp ŷj)∑
j∈N fijh (exp ŷj)

∣∣yjh′ − y′jh′∣∣
≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′∣∣ . (13)

For any h ∈ H, define metric dh (yh, y
′
h) = max

j∈N

∣∣yjh − y′jh∣∣ on space Yh ≡ RN . Further-

more, define Y = Y1 × Y2 × ... × YH and d (y, y′) = [dh (yh, y
′
h)] for y, y′ ∈ Y . Notice that
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inequality (13) then becomes d (g (y) , g (y′)) 5 Ad (y, y′). Thus we can apply the Perov
Fixed Point Theorem to obtain the desired results (existence, uniqueness and computation).

For the purpose of the computation, instead of applying the iterative procedure in the
space Y = RN×H according to Theorem A, it is equivalent to do so in the space where x lies
on, i.e. RN×H

++ .

Part ii.a: We proceed by contradiction. Suppose there are two distinct solutions y and y′

i.e. yih = gih (y) and y′ih = gih (y′). Substitute these two solutions into equation (12) and we

then have yih−y′ih =
∑

j∈N ,h′∈H
∂gih(ŷ)
∂yjh′

(
yjh′ − y′jh′

)
. In this equation, if (A)hh′ > 0, according

to the condition in Part (ii.a) and equation (11), for some j
∣∣∣ ∂gih∂yjh′

∣∣∣ < (A)hh′fijh(exp yj)∑
j∈N fijh(exp yj)

, so that:

|yih − y′ih| <
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′∣∣ . (14)

Thus we have vector inequality d (y, y′) ≤ Ad (y, y′). Within this vector inequality, each
sub-inequality strictly holds as long as its right side is not zero. Since y and y′ are distinct,
d (y, y′) is a nonzero vector. Thus according to the Collatz–Wielandt Formula( i.e. ρ (A) =

maxd∈RH+ ,y 6=0 min1≤h≤H
dh 6=0

(Ad)h
zh

) , we have ρ (A) > 1, which is a contradiction.

Part ii.b: We again proceed by contradiction. Suppose a pair of solutions x and x′

to equation (1) exists that are column-wise up-to-scale different. Then for some h, y.h ≡
lnxh and y′.h ≡ lnx′h are different up to addition by a constant, i.e. for some h dh ≡
min
s∈R

max
j∈N

∣∣yjh − y′jh + s
∣∣ > 0. Let d = [dh] be the resulting nonzero vector. For any h ∈

H, assume the pair of sh and jh reach the min-max in the definition of dh, that is,dh =∣∣yjhh − y′jhh + sh
∣∣. The definition of dh implies the following three properties: (1) For any

h′ and j,
∣∣yjh′ − y′jh′ + sh′

∣∣ ≤ dh′ ; (2) For any h′, if dh′ > 0, there must exist some j ∈ N
such that

∣∣yjh′ − y′jh′ + sh′
∣∣ < dh′ ; and (3) For any h and an arbitrary constant ŝh, dh ≤

max
i∈N
|yih − y′ih + ŝh|. Substitute ∂gih

∂yjh′
=

αhh′fijh(exp yj)∑
j∈N fijh(exp yj)

on the right side of equation (12),

yih = gih (y) and y′ih = gih (y′) on its left side, and add ŝh ≡
∑

h′∈H αhh′sh′ on both sides. We
then have:

yih − y′ih + ŝh =
∑
h′∈H

αhh′
∑
j∈N

fijh (exp ŷj)∑
j∈N fijh (exp ŷj)

(
yjh′ − y′jh′ + sh′

)
⇒

|yih − y′ih + ŝh| ≤
∑
h′∈H

|αhh′ | dh′ ⇒

dh ≤
∑
h′∈H

|αhh′ | dh′ ,

where the first and second steps are due to the above properties (1) and (3), respectively.
Since for some h, dh > 0, there must exist h′ such that dh′ > 0 and αhh′ 6= 0; thus, applying
Property (2) in the above first step, we must have the inequality strictly holds for such h.
That is: whenever dh > 0, dh <

∑
h′∈H |αhh′| dh′ . Again, according to the Collatz–Wielandt
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Formula, we have ρ (A) > 1, which is a contradiction.

Part iii: Consider {Kijh > 0}i,j∈N ,h∈H which satisfies
∑

j∈N Kijh = 1 for any i. Obvi-

ously, x = 1 is one solution of equation (3). In the following, we define x̄ ∈ RN×H
++ , which is

(column-wise up-to-scale) different from x, and show it is also a solution
To define x̄jh′ , we classify its indexes jh′ into 4H + 1 sets. First, arbitrarily classify

all j ∈ N into 2H + 1 non-empty disjoint sets
{
N+
h ,N

−
h ,N 0

}
h∈H ; second, if j is in N+

h

or N−h , we classify h′ into two sets H+
h ≡ {h′|αhh′ > 0} and H−h ≡ {h′|αhh′ ≤ 0} (H+

h or
H−h may be empty). Let z ∈ RH

+ be an eigenvector of matrix A such that Az = ρ (A) z.

Now we are ready to define x̄jh′ . If j ∈ N+
h , x̄jh′ ≡

{
exp (+zh′) h′ ∈ H+

h

exp (−zh′) h′ ∈ H−h
; if j ∈ N−h ,

x̄jh′ ≡

{
exp (−zh′) h′ ∈ H+

h

exp (+zh′) h′ ∈ H−h
; if j ∈ N 0, x̄jh′ ≡ 1.

Note that
∏

h′∈H x̄
αhh′
jh′ must be between exp (−

∑
h′=H |αhh′ | zh′) and exp (

∑
h′=H |αhh′ | zh′).

Furthermore, if j ∈ N+
h ,
∏

h′∈H x̄
αhh′
jh′ = exp (

∑
h′=H |αhh′| zh′); if j ∈ N−h ,

∏
h′∈H x̄

αhh′
jh′ =

exp (−
∑

h′=H |αhh′ | zh′). Notice that
∑

h′=H |αhh′| zh′ = ρ (A) zh. Thus:∑
j∈N

Kijh

∏
h′∈H

x̄
αhh′
jh′ = exp (ρ (A) zh)

∑
j∈N+

h

Kijh+exp (−ρ (A) zh)
∑
j∈N−h

Kijh+
∑

j /∈N+
h ∪N

−
h

Kijh

∏
h′∈H

x̄
αhh′
jh′ ,

where in the last term
∏

h′∈H x̄
αhh′
jh′ is between exp (ρ (A) zh) and exp (−ρ (A) zh).

If zh = 0, the above equation is equal to 1(= exp (−zh) = exp (zh)) since
∑

j∈N Kijh =
1; if zh 6= 0, we can set it to be any value that is strictly between exp (ρ (A) zh) and
exp (−ρ (A) zh) by appropriately choosing {Kijh > 0}j∈N while keeping

∑
j∈N Kijh = 1.

In particular, since ρ (A) > 1, we can set it to be exp (−zh), 1, or exp (zh), which are the
range of xih. Thus we have

∑
j∈N Kijh

∏
h′∈H x̄

αhh′
jh′ = x̄ih. That is: x̄ is also a solution of

equation (1), as desired.
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A Additional Applications

We apply Theorem 1 to nine additional applications in the fields of social networks, spatial networks,
production networks, and demand estimation.

A.1 Discrete choice over many actions with social interactions

Here we consider a discrete choice framework with social interactions as in the seminal paper of
Brock and Durlauf (2001), generalized to include agents simultaneously choosing over many types
of actions with flexible social spillovers across agents and actions.

A.1.1 The model

Setup Suppose there are N agents where each agent i ∈ {1, ..., N} ≡ N makes a discrete choice
over a set of H actions, where hi ∈ {1, ...,H} ≡ H indicates her choice. Let the N -tuple ω ≡
{h1, ...., hN} denote the actions by entire population and let ω−i denote the actions of all agents
except i.

Let agent i′s payoffs for choosing action h consists of three components:

Vih = uih + Sih (µi) + εih,

where uih is the private utility associated with choice h, Sih (µi) is the social utility associated with
the choice, µi is agent i’s belief of other agents’ actions ω−i, and εih is a random utility term,
independently and identically distributed across agents and actions. Agent chooses the action hi
that maximizes her payoffs given her belief of the actions of others, i.e:

hi (µi) ≡ arg max
h∈H

Vih (µi) .

Define µijh to be the conditional probability measure agent i places on the probability that agent
j chooses action h. We assume that Sih (µi) takes the following form:

Sih (µi) =
∑
h′∈H

Jhh′ ln (µih′) ,

where Jhh′ reflects the impact of action h′ by others on agent i’s utility when she chooses action
h, µih′ ≡

∑
j 6=iwijh′µijh′ is her (weighted) expected number of agents taking action h′, wijh′ is

the corresponding weight, and µijh′ is her belief of agent i taking action h′. We note that the
log transform on the social utility function – not present in the primary case considered by Brock
and Durlauf (2001) – ensures that the uniqueness of the equilibrium can be characterized without
reference to an (endogenous) threshold value (c.f. Brock and Durlauf (2001) Proposition 2).

Equilibrium Retaining the assumption from Brock and Durlauf (2001) that the random utility
term follows a type I extreme value distribution with shape parameter βh and agent’s conditional
probabilities are rational (so that µijh = µjh for all j ∈ {1, ..., N} and µjh is equal to the probability
agent j actually chooses action h) results in the following equilibrium conditions for all i ∈ {1, ..., N}
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and for all h ∈ {1, ...,H}:

µih =

eβhuih
(

Πh′∈H

(∑
j 6=iwijh′µjh′

)βhJhh′)
∑

k∈H e
βkuik

(
Πh′∈H

(∑
j 6=iwijh′µjh′

)βkJkh′) (15)

Note this is a system of N×H equilibrium conditions in N×H unknown probabilities µjh. Equation
(15) is a special case of (1). From Remark 3, define xih ≡

∑
j 6=iwijhµjh , which, when combined

with equation (15), becomes:

xih =
∑
j 6=i

wijh
eβhujhΠh′∈H

(
xjh′

)βhJhh′(∑
k∈H e

βkujk
(

Πh′∈H
(
xjh′

)βkJkh′)) (16)

Finally, defining fijh ≡ wijh
e
βhujhΠh′∈H(xjh′)

βhJhh′(∑
k∈H e

βkujk
(

Πh′∈H(xjh′)
βkJkh′

)) if j 6= i and fiih = 0 results in equation

(16) be written as:

xih =
∑
j∈N

fijh (xj1, ..., xjH) ,

as in (1).

A.1.2 Applying Theorem 1

It is straightforward to calculate the elasticities of interactions as follows:

∂ ln fij,h
∂ lnxj,h′

= βhJhh′ −
∑
k

eβkujk
(

Πh′∈H
(
xjh′

)βkJkh′)∑
k∈H e

βkujk
(

Πh′∈H
(
xjh′

)βkJkh′)βkJkh′ ,
which is between Jhh′ ≡ βhJhh′ −maxk∈H βkJkh′ and Jhh′ ≡ βhJhh′ −mink∈H βkJkh′ . Thus if we
define:

(A)hh′ ≡ max
(
−Jhh′ , Jhh′

)
then we have for all h, h′: ∣∣∣∣∂ ln fij,h

∂ lnxj,h′

∣∣∣∣ ≤ (A)hh′ .

From Theorem 1, there is a unique solution if ρ (A) < 1, i.e. as long as the social spillovers are not
too heterogeneous across actions.

A.2 Choosing many (continuous) actions with social interactions

Here we consider a framework with non-market interactions as in Glaeser and Scheinkman (2002),
generalized to include many actions and a general network structure.

A.2.1 The Model

Setup Suppose there are N agents where each agent i ∈ {1, ..., N} ≡ N who chooses actions
{xih}, indexed by h ∈ {1, ...,H} ≡ H. Let agent i′s payoffs depend on her own actions and the
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actions of others as follows:

Ui

{xih}h∈H ;

∑
j 6=i

gijh′xjh′


h′∈H

 , (17)

where the utility function Ui is strictly concave in each xih, gijh′ ≥ 0, and
∑

j 6=i gijh′xjh′ measures
the aggregate behavior of agent i’s peers. Note that this generalizes Glaeser and Scheinkman (2002)
to include an unrestricted network structure

{
gijh′

}
and arbitrary H.

Equilibrium Suppose there exists a unique solution to the utility maximization problem of
equation (17) that can be written as:

xih = fih

∑
j 6=i

gijh′xjh′


h′∈H

 , (18)

where fih is the best response function. Following Remark 3, we define yih ≡
∑

j 6=i gijhxjh and
substitute the expression (18), yielding:

yih =
∑
j 6=i

gijhfjh

({
yjh′

}
h′∈H

)
. (19)

A.2.2 Applying Theorem 1

It is immediately evident that equation (19) is a special case of equation (1). Suppose that the
elasticities of the spillover function can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0

such that
∣∣∣ ∂ ln fjh
∂ ln yjh′

∣∣∣ ≤ αhh′ for all
{
yjh′

}
h′∈H. Let A be the H × H matrix whose (h, h′) element

is αhh′ . From Theorem 1 part (i), there exists a unique equilibrium if ρ (A) < 1. Moreover, that

equilibrium can be reached from any initial starting point
{
y0
jh′

}h′∈H
j∈N

by iteration of equation (4).

Note that the iterative procedure here has the simple economic intuition as an application of best-
response dynamics, i.e. from any initial starting point, the unique equilibrium can be reached as an
iterative application of agents’ best-responses (See e.g. section 6 of Parise and Ozdaglar (2019)).

Glaeser and Scheinkman (2002) prove uniqueness in the H = 1 case where
∑

j 6=i gij = 1 if

a “Moderate Social Influence” condition holds, i.e.
∣∣∣∂fj∂yj

∣∣∣ < 1 for all yj . In the H = 1 case, our

condition simplifies to
∣∣∣∂ ln fj
∂ ln yj

∣∣∣ < 1 for all yj , regardless of the structure of {gij}. More generally,

ours is the first characterization (of which we are aware) for the H > 1 case with general {gijh}.

A.3 Public goods in social networks

Here we consider a framework where agents decide how much of their own resources to contribute
to a public good whose payoff depends on the contributions of others. To do so, we follow Al-
louch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015), who extend the seminal of work
Bramoullé, Kranton, and D’amours (2014) to consider non-linear best response functions. Given
a particularly convenient constant elasticity of substitution (CES) utility function, we derive a
condition for uniqueness of a Nash equilibrium that holds for all possible social network structures.
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A.3.1 The model

Setup Consider a world of i ∈ {1, ..., N} ≡ N agents. Agent i ∈ N is endowed with wealth
wi and chooses how allocate that wealth to private consumption (ci) or a contribution to a public
good (qi), where her payoff depends on the contributions of all other agents. In particular, agent
i ∈ N solves:

max
ci,qi

(
αic

σ−1
σ

i + βiQ
σ−1
σ

i

) σ
σ−1

s.t. ci + qi = wi and qi ≥ 0,

where αi and βi are exogenous demand shifters for the private consumption and public goods,
respectively, σ ≥ 0 is the elasticity of substitution between private consumption and public goods
and Qi is the public good bundle that depends on the contributions of all agents as follows:

Qi ≡

∑
j∈N

gijq
η−1
η

j


η
η−1

,

where the N × N matrix G ≡ [gij ] governs the payoff of j’s public good contribution to agent i
(thereby defining the social network) and η ≥ 0 is the elasticity of substitution between different
agent’s contributions to the public good. Note that Allouch (2015) considers a linear aggregation
Qi =

∑
j∈N gijqj , i.e. the limiting case of our aggregator as η →∞.

Equilibrium Combining the first order conditions of each agent with their budget constraint
results in the following equilibrium best response function of each agent’s public goods contribution
to all other agents’ contributions:

q
σ

σ−η

(
η−1
η

)
i (wi − qi)

η−1
η−σ =

∑
j∈N

(
βi
αi
gii

)σ(η−1)
σ−η

gijq
η−1
η

j . (20)

A.3.2 Applying Theorem 1

To apply Theorem 1, for all i ∈ N , we define xi ≡ q
σ

σ−η

(
η−1
η

)
i (wi − qi)

η−1
η−σ and denote its inverse

as x−1
i (so that x−1

j (xj) = qj). We can then write the best response function (20) in the form of
equation (1) as follows:

xi =
∑
j∈N

fij (xj) ,

where fij (xj) ≡
(
βi
αi
gii

)σ(η−1)
σ−η

gij

(
x−1
j (xj)

) η−1
η

. An application of the inverse function theorem

then yields:
∂ ln fij
∂ lnxj

=
σ − η

σ + η
(

qj
wj−qj

) .
Since qj ∈ [0, wj ] from agent j’s resource constraint and σ, η > 0, we can then bound the elasticity
as follows: ∣∣∣∣∂ ln fij

∂ lnxj

∣∣∣∣ ≤ ∣∣∣∣σ − ησ
∣∣∣∣ ,
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so that from Theorem 1(i), there exists a unique Nash equilibrium if
∣∣σ−η
σ

∣∣ < 1, or equivalently,
η < 2σ. Intuitively, as long as the private and public goods are not too substitutable relative to
the substitutability between different agent’s contributions to the public good, the incentives of any
agent to shirk her contribution to the public good are not large enough to result in multiplicity. As
in the sufficient condition for uniqueness offered by Allouch (2015), our condition depends on how
agents trade-off private and public consumption in their utility function, but unlike the result in
that paper, our condition does not depend on the particular network structure, i.e. it holds for all
social networks G.

A.4 An urban model with spatial spillovers

Here we consider another variant of the urban spatial model based on the seminal work of Ahlfeldt,
Redding, Sturm, and Wolf (2015) presented in Section 3.2, where we include productivity and
amenity spillovers that depend flexibly on the distribution of workers and residents, respectively,
across the entire city.

A.4.1 The Model

We first describe the model and derive its equilibrium conditions.

Setup Consider a city comprised of i ∈ {1, ..., N} ≡ N blocks inhabited by agents with measure
L̄. Each agent ν chooses where to live i ∈ N and where to work j ∈ N in order to maximize her
utility:

Uij (ν) =
uiwj
µij

εij (ν) , (21)

where ui and wj are the value of living at block i and working at block j, respectively, common
to all agents, µij ≥ 1 is the commuting cost, and εij (ν) is the idiosyncratic preference of agent ν
over location pairs, which we assume is extreme value (Frechet) distributed with shape parameter
θ > 0.

Commuting flows The number of agents who choose to live in location i and work in location
j can be written as:

Lij =

(
uiwj
µij

)θ
λ, (22)

where λ ≡ L̄W−θh and W ≡
(∑

(i,j)∈N 2

(
uiwj
µij

)θ) 1
θ

= E
(
max(i,j)∈N 2 Uij (ν)

)
is the expected

welfare of agents.

Spatial Spillovers Suppose that an agent working in block j produces a costlessly traded
numeraire good, for which they are paid their marginal product Aj , which is the only value they
derive from their work, i.e. wj = Aj . Suppose that their productivity depends both on the innate
productivity of block j, Āj , and the entire distribution of populations of workers throughout the
city as follows:

Ai = Āi

∑
j∈N

FAijL
F
j

α

, (23)
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where FAij > 0 governs the effect of the number of workers in j ∈ N on the productivity of a worker
in i ∈ N and α governs the overall strength of the productivity spillover.

Similarly, suppose that an agent residing in block i receives a value of living there that depends
both on the innate amenity of block i, ūi, and the entire distribution of populations of residents
throughout the city as follows:

ui = ūi

∑
j∈N

F uijL
R
j

β

, (24)

where F uij > 0 governs the effect of the number of residents in j ∈ N on the amenity of a worker in

i ∈ N and β governs the overall strength of the amenity spillover.8

Equilibrium For any geography

{{
µij , F

A
ij , F

u
ij

}
(i,j)∈N 2

,
{
Āi, ūi

}
i∈N

}
, measure of agents L̄,

and model elasticities {θ, α, β}, equilibrium is a set of workplace and residential populations{
LFi , L

R
i

}
i∈N such that:

1. The measure of workers employed in block i ∈ N is equal to the total number of agents
commuting to that location:

LFi =
∑
j∈N

Lji (25)

2. The measure of residents residing in block i ∈ N is equal to the total number of agents
commuting from that location:

LRi =
∑
j∈N

Lij (26)

As in Section 3.2 (and unlike Ahlfeldt, Redding, Sturm, and Wolf (2015)) we do not impose that
rental rates of residential and commercial floor spaces are equalized.

A.4.2 Applying Theorem 1

Substituting the commuting equation (22) into the equilibrium conditions (25) and (26) and re-
arranging equations (23) and (24) yields:

LFi A
−θ
i = λ

∑
j∈N

µ−θji u
θ
j

LRi u
−θ
i = λ

∑
j∈N

µ−θij A
θ
j ,

A
1
α
i = Ā

1
α
i

∑
j∈N

FAijL
F
j

u
1
β

i = ūi
∑
j∈N

F uijL
R
j ,

8Assuming alternative spillover functions Ai = Āi
∑
j∈N F

A
ij

(
LFj
)α

and ui = ūi
∑
j∈N F

u
ij

(
LRj
)β

result
in an elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1
below are unchanged.
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which together comprise our equilibrium system. It is immediately evident that this system of
4N equations in 4N unknowns takes the form of equation (3), which is a special case of equation
(1), so by applying Remarks 2 and 3, it is sufficient to characterize the spectral radius of matrix
A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


0 0 0 θ
0 0 θ 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 −θ 0
0 1 0 −θ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


0 0 0 |βθ|
0 0 |αθ| 0
1 0 |αθ| 0
0 1 0 |βθ|


From Remark 5, a sufficient condition for uniqueness is hence |α| θ ≤ 1

2 and |β| θ ≤ 1
2 , i.e. both the

productivity and amenity agglomeration forces must be no stronger than the dispersion forces aris-
ing from the heterogeneity in agent preferences governed by θ. Note these conditions are identical
to the H = 1 case of the example presented in Section 3.2, i.e. the presence of spatial spillovers
does not affect the uniqueness condition.

We remark that while the full model presented in Ahlfeldt, Redding, Sturm, and Wolf (2015)
included spatial spillovers, that paper only offered conditions for uniqueness in the absence of such
spillovers; as a result, to our knowledge this is the first proof of uniqueness of an urban model
in the presence of spatial spillovers. A similar methodology can be applied to incorporate spatial
spillovers in other spatial settings—but with very different implications for the properties of the
model—as we illustrate in the following economic geography example.

A.5 An economic geography model with spatial spillovers

We now extend the economic geography framework of Allen and Arkolakis (2014) to incorpo-
rate spatial productivity and amenity spillovers. It turns out that any spatial productivity or
amenity spillovers can result in multiple equilibria—a very different conclusion from the urban
model—highlighting the importance of Theorem 1 part (iii).

A.5.1 The model

Setup There are N locations, each of which produces a differentiated variety of a good. Agents
in location i ∈ {1, ..., N} ≡ N have constant elasticity of substitution preferences over the differen-
tiated varieties so that their welfare Wi is:

Wi =

∑
j∈N

q
σ−1
σ

ji

 σ
σ−1

ui,

where qji is the quantity of goods produced in j ∈ N and consumed in i, σ ≥ 1 is the elasticity of
substitution, and ui is the local amenity. Agents are perfectly mobile and earn wage wi by supplying
their unit labor inelastically. Labor is the only factor of production; let Ai be the productivity of an
agent in location i ∈ N . Finally, the transportation of goods are subject to iceberg transportation
costs, where Tij ≥ 1 indicates the number of goods needed to be sent from i ∈ N in order for one
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unit to arrive in j ∈ N .

Spatial spillovers We suppose that productivities and amenities depend on the distribution of
labor across all locations through spatial spillovers as follows:

Ai = Āi

∑
j∈N

FAijLj

α

(27)

ui = ūi

∑
j∈N

F uijLj

β

(28)

where Āi and ūi are the exogenous productivity and amenity, respectively, of location i ∈ N ;
FAij > 0 and F uij > 0 capture how the population in location j ∈ N affects the productivity and
amenity, respectively in location i ∈ N , and α and β are the productivity and amenity spillover
elasticities, respectively common to all locations.9

Equilibrium For any geography

{
{Tij}(i,j)∈N 2 ,

{
Āi, ūi

}
i∈N ,

{
FAij

}
(i,j)∈N2

}
equilibrium is a

set of populations, wages, productivities, and amenities {Li, wi, Ai, ui}i∈N such that:

1. Markets clear, i.e. income in a location i ∈ N is equal to the value of all goods sold in all
other locations:

wiLi =
∑
j∈N

Xij ,

where Xij =
T 1−σ
ij (wi/Ai)

1−σ∑N
k=1 T

1−σ
kj (wk/Ak)1−σ

wjLj is the bilateral flow of goods from i ∈ N to j ∈ N .

2. Trade is balanced, i.e. income in a location i ∈ N is equal to the value of all goods purchased
from all other locations:

wiLi =
∑
j∈N

Xji

3. Welfare is equalized, i.e. there exists a scalar W > 0 such that for all i ∈ N ,Wi ≤ W , with
the equality strict if Li > 0.

4. Productivities and amenities are given by equations (27) and (28).

A.5.2 Applying Theorem 1

Combining the first three equilibrium conditions (see equations 10 and 11 of Allen and Arkolakis
(2014)) and re-arranging equations (27) and (28) yields the following system of 4N equilibrium

9Assuming alternative spillover functions Ai = Āi
∑
j∈N F

A
ijL

α
j and ui = ūi

∑
j∈N F

u
ijL

β
j result in an

elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1 below
are unchanged.
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conditions in 4N unknowns:

Liw
σ
i A

1−σ
i = W 1−σ

N∑
j=1

T 1−σ
ij Ljw

σ
j u

σ−1
j

w1−σ
i u1−σ

i = W 1−σ
N∑
j=1

T 1−σ
ji w1−σ

j Aσ−1
j

A
1
α
i = Ā

1
α
i

∑
j∈N

FAijLj

u
1
β

i = ū
1
β

i

∑
j∈N

F uijLj

which together comprise our equilibrium system. It is immediately evident that this system takes
the form of equation (3), which is a special case of equation (1), so by applying Remarks 2 and 3,
it is sufficient to characterize the spectral radius of matrix A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


1 σ 0 σ − 1
0 1− σ σ − 1 0
1 0 0 0
1 0 0 0

 , Γ ≡


1 σ 1− σ 0
0 1− σ 0 1− σ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


1 0 |α| (σ − 1) |β| (σ − 1)
0 1 |α| (σ − 1) |β| (σ − 1)
1 σ

σ−1 |α| (σ − 1) |β|σ
1 σ

σ−1 |α| (σ − 1) |β|σ

 .

It can be shown that ρ (A) ≤ 1 only if α = β = 0, i.e. only if there are no spatial spillovers.
Note that this is a substantial departure from Allen and Arkolakis (2014) and Allen, Arkolakis, and
Takahashi (2020), who show that uniqueness is guaranteed in an economic geography model with
local spillovers as long as the dispersion forces are stronger than agglomeration forces; in contrast,
Thereom 1 part (iii) says that there will be geographies for which there are multiple equilibria for
in the presence of any spatial spillover, i.e. for any non-zero α and β. Note too that this is also
a major qualitative difference with the urban example above, where the conditions for uniqueness
were the same for local and spatial spillovers.

A simple example suffices to provide intuition for the possibility of multiple equilibria. Consider
a world of two identical locations (i.e. Āi = ūi = 1 for i, j ∈ {1, 2}) separated by trade costs τ > 1.
Suppose there are only productivity spillovers (i.e. β = 0); the case with amenity spillovers is

similar. For any α > 0 and FAij =

{
1 if i = j

0 if i 6= j
— i.e. a case where the spillovers are positive and

depend only on one’s own population—there exists a τ > 1 such that there are three equilibria:
one in which both locations have an equal population and one in which one of the two locations
has a greater concentration of population (to take advantage of the agglomeration forces). But for

any α < 0 and FAij =

{
0 if i = j

1 if i 6= j
— i.e. a case where the spillovers are negative and depend only

on the other location’s population—there exists a τ > 1 such that there are again three equilibria:
one in which both locations have an equal population and one in which one of the two locations has
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a greater concentration of population (to take advantage of the fact that the smaller population
in the neighbor increases ). That is, with spatial spillovers, a dispersion force from population
elsewhere acts like a local agglomeration force.

To our knowledge, this is the first characterization of uniqueness in an economic geography
model with spatial spillovers.

A.6 A trade model with intermediate goods and tariffs

We now consider a Ricardian model based on the seminal work of Eaton and Kortum (2002) but
augmented to include tariffs and an input-output network as in Alvarez and Lucas (2007).

A.6.1 The model

Setup

There are N locations, each of which produces 3 sets of goods: a continuum of tradeables qi(u)
where u ∈ [0, 1], a composite intermediate good Ii, and a non tradeable final good c. Agents in the
economy derive their utility from the non tradeable final good c. This final good ci is produced in
a Cobb-Douglas manner using the intermediate good Ii and labor i.e. ci = sαfiI

1−α
fi where sfi and

Ifi are the labor and intermediate inputs in final good production, respectively. The intermediate
good Ii is a Spence-Dixit-Stiglitz aggregate of all varieties of tradeables:

Ii =

[∫ 1

0
(qi∗(u))1−1/η du

] η
η−1

,

where i∗ ≡ arg minj∈N pji (u), i.e. each variety of tradeable is sourced from the lowest cost location.
Tradeables in turn are produced using the composite intermediate good Ii as input, along with labor
as:

qi(u) = xi(u)−θsi(u)βIi(u)1−β

where xi(u)−θ is the total factor productivity, Ii(u) is the quantity of the intermediate good used
in the production of tradeable variety u and si(u) is the labor input. Following Alvarez and Lucas
(2007), we assume xi(u) follows an exponential distribution with parameter λi and its draws are
independent across u, allowing us to rewrite the above equations in terms of x. Each country
i ∈ {1, 2, ...N} ≡ N is endowed with immobile labor Li. Transportation costs between countries
are iceberg in nature, where to keep the notation similar to Alvarez and Lucas (2007), we denote by
κij ≤ 1 as the fraction arriving in location j ∈ N if one unit is set from location i ∈ N . Tariffs ωij
are defined as the proportion of revenue seller in country j receives for every unit of its tradeable
good sold in country i.

Equilibrium

Under perfect competition, the equilibrium of the model can be characterized by the three equations
below (corresponding to equations 3.8, 3.15, and 3.17 respectively in Alvarez and Lucas (2007)),

pmi =

∑
j∈N

λj

(
1

κij

AB

ωij

)−1/θ (
wβj p

1−β
mj

)−1/θ

−θ , (29)
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Liwi

(
1− sfi

)
=
∑
j∈N

Lj
wj

(
1− sfj

)
Fj

Djiωji, (30)

Fi =
∑
j∈N

Dijωij , (31)

where Dij =

(
wβj p

1−β
mj

pmi

)−1/θ (
AB
κijωij

)−1/θ
λj is country i’s per capita spending on tradeables that is

spent on goods from country j and sfi = α[1−(1−β)Fi]
(1−α)βFi+α[1−(1−β)Fi]

is labor’s share in the production of

final goods (equations 3.10 and 3.16 in Alvarez and Lucas (2007)) and the endogenous variables are:
pmi, the price index of tradeables in country i; Fi, the fraction of country i’s spending on tradeables
that reaches producers; and wi, country i’s wage. Finally, ωij is the bilateral tariff. Therefore,

for any trade costs, tariff structure and labor endowments
{
{κij}i,j∈N 2 , {ωij}i,j∈N 2 , {Li}i∈N

}
an

equilibrium is defined by the set of prices and wages
{
{pmi}i∈N , {wi}i∈N

}
such that all markets

clear under perfect competition.

Applying Theorem 1

As in the previous example, the equilibrium of this system can be expressed in the special form of
equation (1) presented in equation (3) in Remark 3. Now we show how to transform the equilibrium
equations into the form of equation (3). To see this, first raise both sides of equation (29) to the

power of −1/θ and denote λj

(
1
κij

AB
ωij

)−1/θ
as K1

ij , so that equation (29) becomes

p
−1/θ
mi =

∑
j∈N

K1
ijw
−β
θ

j p
− 1−β

θ
mj . (32)

Second, substitute the expression of Dij into equation (31), multiply both sides by p
−1/θ
mi , and

denote ωijλj

(
1
κij

AB
ωij

)−1/θ
as K2

ij , so that equation (31) becomes

p
−1/θ
mi Fi =

∑
j∈N

K2
ijw
−β
θ

j p
− 1−β

θ
mj . (33)

Third, define F̃i ≡ α + (β − α)Fi, substitute equation (31) into it, and notice that
∑n

j=1Dij = 1.

Thus we have F̃i =
∑n

j=1Dij [α+ (β − α)ωij ] . Again, substitute the expression of Dij , multiply

both sides by p
−1/θ
i , and denote [α+ (β − α)ωij ]λj

(
1
κij

AB
ωij

)−1/θ
as K3

ij , yielding:

p
−1/θ
mi F̃i =

∑
j∈N

K3
ijw
−β
θ

j p
− 1−β

θ
mj . (34)

Last, substitute the expressions of sfi andDji into equation (30) , subsequently replace α+(β − α)Fi

with F̃i, multiply both sides by p
1−β
θ

mi w
β
θ
i and define

Lj
Li

(
1
κji

AB
ωji

)−1/θ
λiωji as K4

ij , then we can rewrite

equation (30) as:

p
1−β
θ

mi FiF̃
−1
i w

1+β
θ

i =
∑
j∈N

K4
ijwjF̃

−1
j p

1/θ
mj . (35)
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Now we have transformed the equilibrium equations into the form (3) but with four set of

endogenous variables
{
pmi, Fi, F̃i, wi

}
i=1,2,...,n

. Notice that all the kernels, K1
ij , ...,K

4
ij , defined

above are positive when α, β, θ > 0 and 0 < ωij ≤ 1.
Then we have the corresponding parameter matrices

Γ =


−1/θ 0 0 0
−1/θ 1 0 0
−1/θ 0 1 0
1−β
θ 1 1 1 + β

θ

 , B =


−1−β

θ 0 0 −β
θ

−1−β
θ 0 0 −β

θ

−1−β
θ 0 0 −β

θ
1/θ 0 −1 1


The determinant of Γ is − 1

βθ2+θ
6= 0. This implies Γ is always invertible as long as θ > 0. Therefore,

we have

∣∣BΓ−1
∣∣ =


1− β 0 0 β

0 0 0 0
0 0 0 0

1−(1−β)2

β+θ 0 1
β
θ

+1

∣∣∣1− (1−β)β
θ

∣∣∣
β
θ

+1


Here 1 ≥ (1−β)β

θ or β ≥ 1
2 is sufficient for ρ

(∣∣BΓ−1
∣∣) ≤ 1 i.e. we have (up-to-scale) uniqueness.

In comparison, the conditions for uniqueness in Alvarez and Lucas (2007) (see their Theorem
3) are:

(i)

(
min
i,j∈N 2

{κij} min
i,j∈N 2

{ωij}
) 2
θ

≥ 1− β; (ii) α ≥ β; (iii) 1− min
i,j∈N 2

{ωij} ≤
θ

α− β
,

although these conditions are derived only for the special case of uniform tariffs (i.e. ωij = ωi for
all j ∈ N ).10

A.7 A production network with constant elasticity of substitution
production functions

We extend the many firm production network in the seminal paper by Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) to include (1) a constant elasticity of substitution (CES) aggre-
gator across labor and intermediates (as discussed in Carvalho and Tahbaz-Salehi (2019)) and (2)
a constant elasticity of substitution between intermediate goods (as discussed in Carvalho, Nirei,
Saito, and Tahbaz-Salehi (2021)).

A.7.1 The model

Setup There are N different competitive firms, each of which produce a distinct product using as
intermediate goods the output of all other firms. The quantity produced by firm i ∈ {1, ..., N} ≡ N ,

10If 1 ≥ (1−β)β
θ , we can solve explicitly the eigenvalues are

{
0, 0, 1,

(1−β)− βθ
1+ β

θ

}
. Obviously,∣∣∣ (1−β)−βε1+βε

∣∣∣ < 1, thus the uniqueness holds. If 1 < (1−β)β
θ , the characteristic polynomial is f (x) =

x4 + 2β2−2β+βθ
β+θ x3 + 2β3−4β2+β+βθ−θ

β+θ x2. According to Remark 5, we can check the value of f (k) (1) for

k = 0, 1, 2, 3, a sufficient condition to guarantee ρ
(∣∣BΓ−1

∣∣) ≤ 1 is β ≥ 1
2 . (In this case the sufficient and

necessary condition is 4β3 − 2β2 + 2θ + 5βθ ≥ 0 and 2β3 + 2β2 + β + 4βθ − θ ≥ 0 when 1 < (1−β)β
θ .)
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Qi, is determined by a constant elasticity of substitution production function combining labor and
a composite bundle of intermediate goods as follows:

Qi =

[
(1− µ)

1
σ (AiLi)

σ−1
σ + µ

1
σM

σ−1
σ

i

] σ
σ−1

where Li is the amount of labor, Ai is the (exogenous) labor productivity, σ is the elasticity of
substitution between labor and intermediates, and the intermediate input bundle Mi is a CES
aggregate of inputs purchased from other firms:

Mi =

∑
j∈N

a
1
ζ

ijx
ζ−1
ζ

ij


ζ
ζ−1

,

where ζ is the elasticity of substitution between different intermediate goods and {aij} governs
the relative importance of different firms j ∈ N in the intermediate input bundle of firm i ∈ N .
We remark that Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021) also include firm-specific capital
in the production function; however, given that it is assumed to be supplied inelastically, it is
isomorphic to the exogenous labor productivity term Ai.

Equilibrium Solving the cost minimization problem of the firm results in the following system
of equations for equilibrium firm prices pi:

p1−σ
i = (1− µ) (w/Ai)

1−σ + µ

(
n∑

m=1

aimp
1−ζ
m

) 1−σ
1−ζ

which in turn can be written as:(
p1−σ
i − (1− µ) (w/Ai)

1−σ

µ

) 1−ζ
1−σ

=
n∑

m=1

aimp
1−ζ
m .

Normalizing the wage w = 1 and defining xi ≡
(
p1−σi −(1−µ)(w/Ai)

1−σ

µ

) 1−ζ
1−σ

, this becomes:

xi =

N∑
j=1

aij

(
µx

1−σ
1−ζ
j + (1− µ)Aσ−1

j

) 1−ζ
1−σ

, (36)

which is a special case of equation (1) with fij ≡ aij
(
µx

1−σ
1−ζ
j + (1− µ)Aσ−1

j

) 1−ζ
1−σ

.

13



A.7.2 Applying Theorem 1

We can directly bound the elasticity of equation (36) as follows:

∂ ln fij
∂ lnxj

=

(
1− ζ
1− σ

)(
1− σ
1− ζ

)
µx

1−σ
1−ζ
j

µx
1−σ
1−ζ
j + (1− µ) (Aj)

σ−1
=⇒

∣∣∣∣∂ ln fij
∂ lnxj

∣∣∣∣ =
µx

1−σ
1−ζ
j

µx
1−σ
1−ζ
j + (1− µ) (Aj)

σ−1
< 1,

so that by Theorem 1 (part ii.a), there exists at most one equilibrium. To our knowledge, this is
the first proof of uniqueness of an equilibrium in a many firm production network with constant
elasticity of substitution between different types of intermediate goods and between the intermediate
goods bundle and labor.

A.8 Productivity identification in a production network with many
locations and sectors

In this application, we consider input-output production networks with many locations and sectors
as in the seminal paper of Caliendo and Parro (2015). The purpose of this is two-fold: first,
it demonstrates how Theorem 1 can be applied to establish identification results (in addition to
characterizing the uniqueness of the equilibrium, as in the examples in the main text); second, it
demonstrates the ubiquity of economic situations where ρ (A) = 1 (see Remark 4), highlighting the
importance of part (ii) of Theorem 1.

A.8.1 The Model

Setup Consider an economy comprised of i ∈ {1, ..., N} ≡ N locations and h ∈ {1, ...,H} ≡
H sectors. Each sector h in location i produces a differentiated intermediate good (denoted as
good (i, h)) by combining local labor with a Cobb-Douglas combination of a CES composite of
intermediates from all locations according to the following production function:

Qih = AihL
αh
ih

∏
h′∈H


∑
j∈N

q

σh′−1

σh′
jih′h


σh′
σh′−1


βh′h

,

where qjih′h is the quantity of the good (j, h′) used as an intermediate good in the production of
good (i, h), {σh}h∈H are the sector elasticities of substitution across locations, {αh}h∈H are the
sector labor shares, and B ≡ [βh′h] is an H ×H input-output matrix of intermediate inputs, and
{Aih}h∈Hi∈N are the productivities of each sector-location. The shipment of good (j, h′) from j ∈ N
to i ∈ N incurs an iceberg trade cost τijh′ ≥ 1.

Suppose that each location i ∈ N is endowed with Li agents, each of whom is perfectly mobile
across sectors and earns (equilibrium) wage wi for inelastically supplying one unit of labor. Agents
use their wages to consume a non-traded final good produced by combining intermediate goods
with the production function Ci =

∏
h∈HM

γh
ih , where

∑
h∈H γh = 1 are the consumption shares of
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each sector, Mih =

(∑
j∈N m

σh−1

σh
jh

) σh
σh−1

, and mjh is the quantity of the good (j, h) used in the

production of final good.

Equilibrium From the cost minimization, the equilibrium price of the intermediate good pro-
duced by sector h ∈ H in location i ∈ N is:

pih = ch
1

Aih
wαhi

∏
h′∈H

P
βh′h
ih′ , (37)

where
P 1−σh
ih =

∑
j∈N

τ1−σh
jih p1−σh

jh (38)

is a sector-location price index of intermediate goods purchased in all locations, and ch > 0 is a
exogenous constant.11

Let Yih ≡ pihQih denote the income of sector h ∈ H in location i ∈ N , which in equilibrium is
equal to its total sales to all locations and sectors:

Yih =
∑
j∈N

τ1−σh
ijh p1−σh

ih P σh−1
jh

∑
h′∈H

(βhh′ + γhαh′)Yjh′ , (39)

where the two terms in the last summation captures how much spending in sector (j, h′) translates
to spending in sector (i, h) through intermediate production and final good purchases by consumers,
respectively.

Identification The question we are interested in is the following. Suppose one observes (1) the
sales of each sector h ∈ H in each location i ∈ N , i.e. {Yih}h∈Hi∈N ; (2) the labor endowment {Li}i∈N ;
(3) the sector elasticities {σh}h∈H; (4) the sector production function labor shares {αh}h∈H and
input-output matrix B ≡ [βh′h]; (5) the final good production shares {γh}h∈H ;and (6) the sector-

specific bilateral trade costs {τijh}h∈Hi,j∈N . Is it possible to identify the productivity of each sector

h ∈ H in each location i ∈ H, {Aih}h∈Hi∈N ? One could imagine many instances where recovering
the underlying productivities of different sectors in different locations from observed sales data is
useful and important: e.g. in the study of comparative advantage, structural change, technological
innovations, etc.

A.8.2 Applying Theorem 1

We begin by remarking that since wages can be inferred directly from the observed labor share of
income and labor endowment, given knowledge of prices {pih}h∈Hi∈N and price indices {Pih}h∈Hi∈N , one

can immediately recover productivities {Aih}h∈Hi∈N from equation 37. Hence, it is sufficient to focus

on the question of identification of prices {pih}h∈Hi∈N and price indices {Pih}h∈Hi∈N .

Define the 2H × 1 endogenous vector xi =

[{
P 1−σh
ih

}H
h=1

,
{
pσh−1
ih

}H
h=1

]
so that equations (38)

11In particular, ch ≡ α−αhh

∏
h′∈H β

−βh′h
h′h .
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and (39) can be written as:

xih =

{∑
jKij,hx

−1
j,h+H if h ∈ {1, ...,H}∑

j Fij,hx
−1
j,h−H if h ∈ {H + 1, ..., 2H}

whereKij,h ≡ τ1−σh
jih for h ∈ {1, ...,H} and Fij,h ≡ τ1−σh

ijh

(∑
h′∈H(βhh′+γhαh′ )Yjh′

Yih

)
for h ∈ {H + 1, ..., 2H}.

As a result, we can define the 2H × 2H matrix of elasticity bounds as:

A ≡
(

0 IH
IH 0

)
,

where IH is the H ×H identity matrix. Hence, regardless of the particular input output structure
(or the values of labor shares, final goods shares, or sector elasticities) we have ρ (A) = 1, and so
from Theorem 1 part (ii) there is at most one set of (column-wise to scale unique) prices {pih}h∈Hi∈N
and price indices {Pih}h∈Hi∈N consistent with equations (38) and (39). This then implies that there is
at most one (column-wide up to scale) unique set of productivities {Aih} consistent with observed
sales data.12 To our knowledge, this is the first identification result applied to many location/sector
models with input/output linkages.

A.9 Inverting a demand system with multiple types of goods

Here we consider the question of the invertibility of demand systems based on the seminal work
of Berry, Levinsohn, and Pakes (1995). In Berry, Levinsohn, and Pakes (1995), agents makes a
choice over a single type of goods, e.g. which cellphone to buy. Here, we extend the framework to
consider a situation where consumers simultaneously make decisions across multiple types of goods,
e.g. which cellphone and computer to buy. We suppose that the market shares for each type are
observed and ask if that is enough information to recover the unobserved demand for each good.13

A.9.1 The model

Setup There are H types of goods for agents to buy (e.g. cellphones, computers, and automo-
biles). Within each type h ∈ {1, ...,H} ≡ H of good, there are Nh products over which to choose
(e.g. in the case of cellphones, there are the Google Pixel 6, the iPhone 13, etc.). One of these Nh

products may be the choice to purchase nothing.
Let J be a H-by-1 vector representing agent’s choice over the bundle of products. Specifically,

J ≡ [jh]h∈H, where jh ∈ {1, ..., Nh} ≡ Nh is agent’s choice of product type h to purchase. Suppose
that the latent utility of agent k’s choice J is:

Uk (J) =
∑
h∈H

δjh,h + µ (J, νk) + εkJ (40)

12The column-wise up to scale uniqueness implies that the relative productivity within sector across lo-
cations can be identified from sales data, but the relative productivity across sectors cannot; intuitively,
if the productivity of sector h doubles in all locations, given the unit price elasticity from the presumed
Cobb-Douglas production function, its price will half, leaving its sales unchanged.

13While the choice of buying two products can be technically modeled as a single choice over pairs of
products, applying the inversion results of Berry, Levinsohn, and Pakes (1995) would then require knowledge
of the market shares of each pair of products, which is typically not observed.
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where δjh,h represents the (unobservable) good characteristics of product jh in type h, µ (J, νk) is a
function of (observable) good characteristics of the bundle J and consumer characteristics νk and
εkJ is a random variable representing agents’ idiosyncratic preference. Note that µ (J, νk) flexibly
allows for any sort of (observed) complementarity or substitutability across products of different
types, which can potentially vary with consumer characteristics νk. We assume νk ∼ P where P is
a known distribution and εkJ has type I extreme value distributions independent of k and J .

Suppose for each h ∈ H we observe the fraction of agents that choose product i ∈ Nh, i.e. the
market share si,h. Our goal is to identify the set of unobservable good characteristrics {δi,h}.

Market share Given the extreme value distribution of εig, the market share can be written as:

si,h =

∫ exp
(
δi,h

)∑N1
j1=1 · · ·

∑Nh−1
jh−1=1

∑Nh+1
jh+1=1 · · ·

∑NH
jH=1 exp

(∑
h′ 6=h δjh′ ,h′ + µ ([j1, ..., jh−1, i, jh+1, ..., jH ] , ν)

)
∑Nh
jh=1 exp

(
δjh,h

)∑N1
j1=1 · · ·

∑Nh−1

jh−1=1

∑Nh+1

jh+1=1 · · ·
∑NH
jH=1 exp

(∑
h′ 6=h δjh′ ,h′ + µ ([j1, ..., jh−1, jh, jh+1, ..., jH ] , ν)

)dP (ν) .

(41)

A.9.2 Applying Theorem 1

The case of H = 1 (Berry, Levinsohn, and Pakes (1995)) We first consider the case
of H = 1, as in Berry, Levinsohn, and Pakes (1995). In this case, equation (41) becomes:

si =

∫
exp (δi + µ (i, ν))∑N
j=1 exp (δj + µ (j, ν))

dP (ν) .

Define xi ≡ exp (δi) . Then xi = sifi (x) ,where fi (x) ≡
(∫ exp(µ(i,ν))∑N

j=1 xj exp(µ(j,ν))
dP (ν)

)−1

. We then

have:

∂ ln fi
∂ lnxj

= fi

∫
exp (µ (i, ν))xj exp (µ (j, ν))(∑N

j=1 xj exp (µ (j, ν))
)2 dPν

which in turn implies:

∑
j∈N

∣∣∣∣ ∂ ln fi
∂ lnxj

∣∣∣∣ = fi

∫
exp (µ (i, ν))

∑
j xj exp (µ (j, ν))(∑N

j=1 xj exp (µ (j, ν))
)2 dPν

= fi (x) /fi (x) = 1.

According to part (ii) of Theorem 1 and Remark 1, there is at most one set of {δi} (up to an
unknown constant), as in Berry, Levinsohn, and Pakes (1995).

The case of H = 2 We now consider the case of H = 2, under the special case where
µ ([i, j] , ν) ≡ µp ([i, j]) + µc (ν), i.e. that there is separability between any complementarity or
substitutability of product characteristics and any heterogeneity in consumer preferences. Also, we
assume N1 = N2 = N .
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Define xi,h ≡ exp (δi,h). Equation (41) can be written as:

xi,1zi,2 =

N∑
j=1

si,1xj,1zj,2

xi,2zi,1 =
N∑
j=1

si,2xj,2zj,1,

where:

zi,1 ≡
N∑
j=1

xj,1 exp (µp ([j, i]))

zi,2 ≡
N∑
j=1

xj,2 exp (µp ([i, j]))

It is immediately evident that this system of 4N equations in 4N unknowns takes the form of
equation (3), which is a special case of equation (1), so by applying Remarks 3, it is sufficient to
characterize the spectral radius of matrix A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 ,

so that:

A ≡


1 0 0 0
0 1 0 0
1 0 0 1
0 1 1 0


which has a spectral radius equal to 1, so that from Theorem 1 part (ii) there exists at most one set

of {δi,h} consistent with the observed market shares, up to an unknown constant for each h ∈ H,

thereby extending the results of Berry, Levinsohn, and Pakes (1995) to the case of H = 2 under

the special case where µ ([i, j] , ν) ≡ µp ([i, j]) + µc (ν).

B Additional Details

B.1 Details of Remarks

In this section, we provide further details for the remarks discussed in the paper.
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B.1.1 Remark 1

Extending the domain of fijh to all x requires only a small change to the proof of Theorem 1, where

equality (11) and inequality (13) respectively become ∂gih
∂yjh′

=
∂ ln

∑
m fimh(x)

∂ lnxjh′
and

∣∣gih (y)− gih
(
y′
)∣∣ =

∣∣∣∣∣∣
∑
h′∈H

∑
j∈N

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)∣∣∣∣∣∣
≤
∑
h′∈H

∑
j∈N

∣∣∣∣∂ ln
∑

m fimh (x̂)

∂ lnxjh′

∣∣∣∣max
j∈N

∣∣yjh′ − y′jh′∣∣
≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′∣∣ .
The rest of the proof of Theorem 1 remains unchanged.

B.1.2 Remark 2

Consider first the equilibrium system (2) with constant elasticities, which can be written as follows:

λhxih =
∑
j∈N

Kijh

∏
h′∈H

x
αhh′
jh′ , (42)

where λh > 0 is endogenous. In the case that ρ (A) = 1, we have the same conclusion as in part
(ii)b: the {xih} of any solution is column-wise up-to-scale unique. The proof of this result is exactly
the same as part (ii)b of Theorem 1.

If ρ (A) < 1, it is possible to subsume the endogenous scalars into the equilibrium outcomes
through a change in variables, expressing equation (42) as in equation (1). To do so, define x̃ih ≡
xih
∏
h′∈H λ

dh′h
h′ , where dh′his the h′hth element of the H ×H matrix (I−α)−1 and α ≡ (αhh′) (i.e.

α is the matrix of elasticities without the absolute value taken) so the system becomes:

x̃ih =
∑
j∈N

Kijh

∏
h′∈H

x̃
αhh′
jh′ .

Note that because ρ (A) < 1, then so too is ρ (α) < 1, so that (I−α)−1 exists. From Theorem
1 part (i), the {x̃ih} are unique and can be calculated using an iterative algorithm, which in
turn implies that the {xih} are column-wise up-to-scale unique. (Separating the {xih} and {λh} to
determine the scale of {xih} requires the imposition of further equilibrium conditions, e.g. aggregate
labor market clearing conditions).

Consider now equilibrium system (2) with H additional aggregate constraints
∑N

i=1 xih = ch
for known constants ch > 0.

The second result concerns the general case with an endogenous scalar:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH)

with H additional aggregate constraints
∑N

i=1 xih = ch for known constants ch > 0. Substituting
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in the aggregate constraints allows us to express the equilibrium system as:

xih =
N∑
j=1

(
fijh (xj1, ..., xjH)

1
ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)) ,
where the denominator is equal to the endogenous scalar, i.e. λh = 1

ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)
.

We can define the new function:

gij,h (x) ≡
fijh (xj1, ..., xjH)

1
ch

∑N
i′=1

∑N
j′=1 fi′j′h

(
xj′1, ..., xj′H

)
so that the equilibrium system becomes:

xih =
N∑
j=1

gijh (x) .

We can then bound the elasticities, following Remark 1. Note:

∂ ln gij,h
∂ lnxm,l

=
∂ ln fij,h
∂ lnxj,l

1m=j −
∑
o

(
∂ ln fom,h
∂ lnxm,l

)
fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

where 1m=j =

{
1 if m = j

0 if m 6= j
is an indicator function. Thus,

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤ |Ahl|1m=j + |Ahl|
∑

o fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

.

Furthermore,∑
m

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤∑
m

|Ahl|1m=j + |Ahl|
∑

m

∑
o fom,h ({xm,l})∑

o

∑
p fop,h ({xp,l})

= 2 |Ahl| .

Hence, from Remark 1, we have uniqueness as long as ρ (A) < 1
2 , as required.

B.1.3 Remark 4

Consider equation (3). We will directly prove that ρ (A) = ρ
(
BΓ−1

)
≥ 1. Suppose for some h̄ ≥ 1

that {x.h}h=1,...,h̄ are nominal variables. Then if we construct {x̄.h}h∈H by scaling {x.h}h=1,...,h̄ up
to t times and keeping all other entries unchanged, the constructed {x̄.h}h∈H should still solve the
equation. Therefore we can write

ΓT = BT,

where T is a H-by-1 vector and

Th =

{
t h ≤ h̄
0 other case

.

Notice that this further implies Γ−1B has eigenvalue of 1. Furthermore, because BΓ−1 = Γ
(
Γ−1B

)
Γ−1,

BΓ−1 also has eigenvalue of 1. We define matrix A as the absolute value of BΓ−1 (i.e. each entry of
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matrix A is the absolute value of the corresponding entry in matrix BΓ−1). Therefore ρ (A) must

be weakly larger than 1 because ρ (A) = limn→∞ ‖An‖
1
n ≥ limn→∞

∥∥(BΓ−1
)n∥∥ 1

n = ρ
(
BΓ−1

)
.

B.1.4 Remark 5

We prove a necessary and sufficient condition such that ρ (A) ≤ 1.

Lemma 1. Let A be a non-negative n×n matrix. The function f (λ) is defined as the determinant
of matrix λI − A i.e. f (λ) = |λI −A| , and its k-th derivative is denoted by f (k) (λ). Then
ρ (A) ≤ s if and only if f (k) (s) ≥ 0 for all k = 0, 1, 2, ..., n− 1.

Proof. If part: Notice that f (n) (s) = n! > 0. Then f (n−1) (λ) strictly increases with λ. So
f (n−1) (λ) > 0 for λ ∈ [s,∞). Using deduction we obtain f (λ) is strictly increasing and f (λ) ≥ 0
for any λ ∈ [s,∞]. According to Perron–Frobenius theorem, ρ (A) is A’s largest eigenvalue, so that
f (ρ (A)) = 0. Thus, by strict monotonicity it must be ρ (A) ≤ s.

Only If part: According to the Fundamental Theorem of Algebra (e.g. see Corollary 3.6.3 of
Fine and Rosenberger (1997)), f (λ) can be decomposed as f (λ) = f1 (λ) f2 (λ) such that f1 (λ) =∏
i∈C (λ− λi)

(
λ− λi

)
and f2 (λ) =

∏
i∈R (λ− λi) where λi is conjugate of λi and C and R are

set of indexes. For all i ∈ C, λi is a complex number and for all i ∈ R λi is a real number.

Clearly, λi and λi are eigenvalues of A.Notice that f (k) (λ) =
∑

(k1,k2)∈Dk, f
(k1)
1 (λ) f

(k2)
2 (λ) where

Dk = {k1, k2|k1 + k2 = k, k1, k2 ≥ 0}. When i ∈ R λi ≤ ρ (A) (from Perron–Frobenius theorem),

we have f
(k2)
2 (s) ≥ 0. Additionally, f

(k1)
1 (λ) =

∏
i∈C

[
λ2 −

(
λi + λi

)
λ+ λiλi

](k2,i) where k2,i ≥ 0
and

∑
i∈C k2,i = k2. Notice that

[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i) =


s2 −

(
λi + λi

)
s+ λiλi > 0 k2,i = 0

2 (s− Re (λi)) k2,i = 1

2 > 0 k2,i = 2

0 k2,i > 3

,

where Re (λi) is real part of λi. As Re (λi) < ‖λi‖ ≤ ρ (A) ≤ s (the second inequality is also

from Perron–Frobenius theorem), so
[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i) ≥ 0. In all, f (k) (s) ≥ 0 k =
0, 1, 2, ..., n− 1.

B.2 Details of the Urban Spatial Model

B.2.1 Theorem 1, part (i): General spillovers

Substituting equations (6) and (7) into the equilibrium conditions (8) yields the following two
equilibrium conditions:

LWih =
∑
j∈N

(
ūjhĀih
µjih

)θh (
fAh

({
LWi,h′

}
h′∈H

))θh (
fuh

({
LRj,h′

}
h′∈H

))θh
∑

(i,j)∈N 2

(
ūjhĀih
µjih

)θh (
fAh

({
LWi,h′

}
h′∈H

))θh (
fuh

({
LRj,h′

}
h′∈H

))θh L̄h (43)

LRih =
∑
j

(
ūihĀjh
µijh

)θh (
fuh

({
LRi,h′

}
h′∈H

))θh (
fAh

({
LWj,h′

}
h′∈H

))θh
∑

(i,j)∈N 2

(
ūjhĀih
µjih

)θh (
fAh

({
LWi,h′

}
h′∈H

))θh (
fuh

({
LRj,h′

}
h′∈H

))θh L̄h (44)
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Denote the left side of equations (43) and (44) as gWih and gRih, respectively. Since ln gWih =

ln
∑

j∈N Lijh−ln
∑

(i,j)∈N 2 Lijh where Lijh =
(
ūjhĀih
µjih

)θh (
fAh

({
LWi,h′

}
h′∈H

))θh (
fuh

({
LRj,h′

}
h′∈H

))θh
,

we have:

∂ ln gWih
∂ lnLWjh′

=
∂ ln

∑
j∈N Lijh − ∂ ln

∑
(m,j)∈N 2 Lijh

∂ lnLFjh′

=
Lijh∑
j∈N Lijh

∂ lnLijh

∂ lnLFjh′
−
∑
m

Lmjh∑
(m,j)∈N 2 Lijh

∂ lnLmjh

∂ lnLFjh′

Since 0 ≤ ∂ lnLijh
∂ lnLW

sh′
≤ θhαhh′ , we have

∑
j

∣∣∣∣ ∂ ln gWih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ . Similarly, we have
∑

j

∣∣∣∣ ∂ ln gWih
∂ lnLR

jh′

∣∣∣∣ ≤
2θhβhh′ ,

∑
j

∣∣∣∣ ∂ ln gRih
∂ lnLW

jh′

∣∣∣∣ ≤ 2θhαhh′ , and
∑

j

∣∣∣∣ ∂ ln gRih
∂ lnLR

jh′

∣∣∣∣ ≤ 2θhβhh′ . Therefore by applying Remark 1,

part (i) of Theorem 1 yields the following sufficient condition for uniqueness:

ρ

(
2θα 2θβ
2θα 2θβ

)
< 1.

B.2.2 Theorem 1, part (ii): Constant elasticity spillovers

We first combine the spillover equations fAh

({
LWj,h′

}
h′∈H

)
=
∏
h′∈H

(
LWj,h′

)αhh′
and fuh

({
LRi,h′

}
h′∈H

)
=∏

h′∈H

(
LRi,h′

)βhh′
with equation (6) into the equilibrium system defined by equation (8), we get:

LWih(∏
h′∈H

(
LWi,h′

)αhh′)θh = λh
∑
j∈N

(
ūjhĀih
µjih

)θh (∏
h′∈H

(
LRj,h′

)βhh′)θh (45)

LRih(∏
h′∈H

(
LRi,h′

)βhh′)θh = λh
∑
j

(
ūihĀjh
µijh

)θh (∏
h′∈H

(
LWj,h′

)αhh′)θh (46)

We then pursue the change in variables described in Remark 3. Define:

xWih ≡

 LWih∏
h′∈H

(
LWi,h′

)αhh′


so that:
lnxWih = lnLWih + θh

∑
h′∈H

αhh′ lnL
W
ih′

or, in matrix notation:

lnxWi = (I + θα) lnLWi ⇐⇒
lnLWi = (I + θα)−1 lnxWi
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or, in non-vector notation, we have:

LWih =
∏
h′∈H

(
xWih′
)a−1
hh′ ,

where
[
a−1
hh′
]
≡ (I + θα)−1.

Similarly, define:

xRih ≡

 LRih(∏
h′∈H

(
LRi,h′

)βhh′)θh


so that:

lnxRi = (I− θβ) lnLRi ⇐⇒
lnLRi = (I− θβ)−1 lnxRi

or in non-vector notation:

LRih =
∏
h′∈H

(
xRih′
)b−1
hh′

where
[
b−1
hh′
]
≡ (I− θβ)−1. Then we can write: LWih(∏

h′∈H

(
LWi,h′

)αhh′)θh
 = λh

∑
j∈N

(
ūjhĀih
µjih

)θh (∏
h′∈H

(
LRj,h′

)βhh′)θh ⇐⇒
xWih = λh

∑
j∈N

(
ūjhĀih
µjih

)θh∏
h′∈H

( ∏
h′′∈H

(
xRj,h′′

)b−1
h′,h′′

)βhh′θh

⇐⇒

xWih = λh
∑
j∈N

(
ūjhĀih
µjih

)θh ∏
h′∈H

(
xRj,h′

)γR
h,h′

where
[
γRh,h′

]
≡ θβ (I− θβ)−1.

Similarly: LRih(∏
h′∈H

(
LRi,h′

)βhh′)θh
 = λh

∑
j

(
ūihĀjh
µijh

)θh (∏
h′∈H

(
LWj,h′

)αhh′)θh ⇐⇒

xRih = λh
∑
j

(
ūihĀjh
µijh

)θh (∏
h′∈H

( ∏
h′′∈H

(
xWjh′′

)a−1
h′h′′

)αhh′)θh
⇐⇒

xRih = λh
∑
j

(
ūihĀjh
µijh

)θh ∏
h′∈H

(
xWj,h′

)γF
h,h′θh
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where
[
γWh,h′

]
≡ θα(I− θα)−1.

Finally, we apply the change of variables described in Remark 3 to subsume the endogenous
scalars {λh} in the equilibrium system. Define:

yWih ≡

(∏
h′

λ
cW
h′h
h′

)−1

xWih

yRih ≡

(∏
h′

λ
cR
h′h
h′

)−1

xRih

so that we have:

xWih = λh
∑
j∈N

(
ūjhĀih
µjih

)θh ∏
h′∈H

(
xRj,h′

)θhγRh,h′ ⇐⇒
yWih

(∏
h′

λ
cW
h′h
h′

)
= λh

∑
j∈N

(
ūjhĀih
µjih

)θh ∏
h′∈H

(∏
h′′

λ
cR
h′′h′
h′′ yRj,h′

)θhγRh,h′
⇐⇒

yWih =
∑
j∈N

(
ūjhĀih
µjih

)θh ∏
h′∈H

(
yRj,h′

)θhγRh,h′
and:

xRih = λh
∑
j

(
ūihĀjh
µijh

)θh ∏
h′∈H

(
xWj,h′

)γW
h,h′θh ⇐⇒

yRih

(∏
h′

λ
cR
h′h
h′

)
= λh

∑
j

(
ūihĀjh
µijh

)θh ∏
h′∈H

(∏
h′′

λ
cW
h′′h′
h′′ yWj,h′

)γW
h,h′θh

⇐⇒

yRih =
∑
j

(
ūihĀjh
µijh

)θh ∏
h′∈H

(
yWj,h′

)γW
h,h′θh

We then need to choose
{
cWh , c

R
h

}
such that:

I− CR +
[
θhγ

R
h,h′
]
CR = 0 ⇐⇒(

I−
[
θhγ

R
h,h′
])−1

= CR

and similarly: (
I−

[
θhγ

W
h,h′
])−1

= CW

Finally, defining L̃Wih ≡ yWih and L̃Rih ≡ yRih, we recover the equilibrium system defined in equation
(9), as required.
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Figure 1: Examples of multiplicity in an urban spatial framework

(a) µ = 2, α = β = 0.5 (b) µ = 2, α = β = 0.55 (c) µ = 2, α = β = 0.6

(d) µ = 6, α = β = 0.5 (e) µ = 6, α = β = 0.55 (f) µ = 6, α = β = 0.6

(g) µ = 11, α = β = 0.5 (h) µ = 11, α = β = 0.55 (i) µ = 11, α = β = 0.6

Notes : This figure depicts the set equilibria for an urban economy with two identical locations
and a single type of agent for different combinations of productivity and amenity spillovers
(α and β, respectively) and commuting costs (µ). The x-axis is the (log) ratio of the workers
in location 1 relative to location 2; the y-axis is the (log) ratio of residents in location 1
relative to location 2. Stars indicate an equilibrium.
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