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1 Introduction

Damage to the economy from a pandemic depends on the arrival of a vaccine and other forms

of costly mitigation in the interim. In the vast epidemiology literature, optimal mitigation

typically entails quickly implementing vaccination programs (Anderson and May (1992),

Bailey et al. (1975)). To the extent that vaccination takes time or is uncertain, other types

of costly mitigation such as quarantines or social distancing are used (Wickwire (1977),

Behncke (2000)). This perspective is also adopted in recent models of economic damage

from COVID-19 (Kruse and Strack (2020), Alvarez, Argente, and Lippi (2020), Acemoglu,

Chernozhukov, Werning, and Whinston (2020)).

While this recent work captures more richness in terms of externalities and markets,

their economic damage functions are similar to earlier epidemic models. For instance, a

social planner (Eichenbaum, Rebelo, and Trabandt (2020)) or firms (Hong, Wang, and Yang

(2020)) take into account when a vaccine will arrive in deciding optimal mitigation that

comes at the expense of earnings in the interim.1 When the vaccine arrives, these costs no

longer need to be paid and there is an upward jump in earnings.

However, estimating this damage function is challenging for a few reasons. First, it can

involve many parameters. Second, it is inherently nonlinear in key parameters such as the

expected vaccine arrival. Third, estimating nonlinear models requires more and timelier

data of expectations regarding economic damages. That is, estimating nonlinear damage

functions using ex-post outcomes on GDP observed annually will be challenging from a

power perspective.

To this end, we develop a parsimonious tractable continuous-time regime-switching model

of firm earnings with just a few parameters: vaccine arrival rate, jump in earnings (both on

pandemic impact and reflation upon vaccine arrival), and the ratio of growth rates across

normal (or non-pandemic) versus pandemic regimes. Firm earnings are assumed to follow

a log-normal process in the absence of jumps (Black and Scholes (1973), Merton (1974),

1Andersen, Hansen, Johannesen, and Sheridan (2020) and Farboodi, Jarosch, and Shimer (2020) also
point to the importance of voluntary mitigation by households who stop consuming even in advance of
government-imposed lockdowns.
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Leland (1994)), and the arrival of vaccines is assumed to follow a time-homogeneous Poisson

process (Arnold, Galloway, McNicholas, and O’Hallahan (2011), Lee, Norman, Assi, Chen,

Bailey, Rajgopal, Brown, Wiringa, and Burke (2010), Ball and Sirl (2018)).

We derive a tractable expectations formula that relates earnings forecast revisions from

just before the pandemic arrival to just after its arrival to these underlying parameters and

several independent variables (i.e., a closed-form damage function). We fit our nonlinear

model to timely measures of expected damage to firm earnings using revisions of industry-

level consensus earnings forecasts made by security analysts. Security analyst forecasts

should integrate not only scientific evidence on the development of effective vaccines but

also logistical issues surrounding their distribution as well as macroeconomic consequences

to consumers and firms. Plentiful timely data on these forecasts allow for precise estimates

of these parameters.

Broadly, the vaccine arrival rate moderates the persistence of the COVID-19 shock to

earnings. To the extent an effective vaccine is expected to arrive quickly, the shock should

be mostly felt in short-term as opposed to medium-term or long-term earnings forecasts.

Hence, we can infer from the revision of forecasts of different horizons the parameters of the

earnings process taking into account the effects of COVID-19.

The structure of our model points to a natural set of identifying restrictions related to

forecast rationality that allow for estimation using nonlinear least squares (NLS). If forecasts

are rational, i.e., they take into consideration the key variables of our analysis in their infor-

mation set (Nordhaus (1987), Keane and Runkle (1998)), then NLS can retrieve consistent

parameter estimates.

But forecasts can be boundedly rational or systematically biased for different reasons

(Coibion and Gorodnichenko (2012), Laster, Bennett, and Geoum (1999), Hong and Ku-

bik (2003)). We show that as long as the ratio of these biases across forecast horizons is

uncorrelated with our independent variables, then consistent parameter estimates can still

be retrieved using NLS. We argue below that this exclusion restriction is plausible. Indeed,

industry-level forecast revisions following COVID-19 in mid-May 2020 seem well-calibrated

as they are highly correlated with cross-sectional industry stock price reactions to COVID-19
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(Landier and Thesmar (2020)).

We associate a medical intervention that returns the economy to normal as being a

vaccine since the bulk of the government funding in the US and Europe have been for its

development.2 Nonetheless, our regime-switching model can be applied to other countries

where it might be the arrival of therapeutics or testing that returns these countries to normal.

For instance, rigorous testing has played a bigger role in Asian countries.3

In our empirical work, our main dependent variable is the revision of earnings forecasts

after the arrival date of COVID-19 in the US, which we take to be February 20, 2020.

To reduce measurement error, we work with industry portfolios by value-weighing median

forecasts for stocks at the GICS 8-digit industry classification. To be conservative and to

allow forecasts to be fully revised, we use May 2020 as our forecast date.4

The main independent variables from our theory are the horizon of the earnings forecasts

and the earnings growth rates in the non-pandemic and pandemic regimes. The horizon

of earnings forecasts is straightforward to measure. For our baseline specifications, we pool

together both industry FY1 (nearest next fiscal year-end), FY2, FY3, FY4 and FY5 (farthest

fiscal year-end) forecasts made in May of 2020. We measure the growth rate in the non-

pandemic regime using analysts’ growth rate forecasts on January of 2020 and also aggregate

these to the industry level. That is, our specification assumes that growth rates return to

non-pandemic levels after the arrival of a vaccine.

Our model allows us to simultaneously infer not just the vaccine arrival rate but also

disentangle jumps in earnings due to mitigation from the growth rate effects in a pandemic

regime. We have the following estimates using forecast revisions in May 2020. The vaccine

arrival rate λ is 1.354 with a 95% bootstrap confidence interval of [0.78, 1.71]. This implies

that a vaccine is expected in 1/λ = 0.74 years as of mid-May 2020. This estimate is robust

2According to Bloomberg News article “Trump administration dips into protective gear, CDC funds to
fund vaccine push” (September 23, 2020), the Warp Speed budget is as large as $18 billion and almost all of
it allocated to vaccine developments (Moderna, Sanofi, GSK, Pfizer, Novavax, J&J and AstraZeneca) and
only a small amount toward therapeutics (Regeneron’s antibody cocktail).

3Another medical scenario that returns the economy to normal is herd immunity. But this possibility
does not seem likely given limited evidence on the length of individual immunity.

4There is naturally a lag in analyst revisions and we only begin to see some revisions starting in April
and then most of the forecasts have been revised by May of 2020.
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to different cuts of the data such as how much to weigh FY4 and FY5 in our sample since

these further out forecasts are less populated compared to FY1-FY3. The initial jump in

earnings corresponds to costly mitigation measures (e.g. social distancing) meant to keep the

virus at bay. The jump in earnings following the arrival of COVID-19 is given by e−n. The

coefficient n is 2.022 with a 95% bootstrap confidence interval of [0.99, 4.1]. This statistically

significant estimate of n implies around a negative 80% jump in earnings level. Our growth

rate estimate is sensitive to how we weigh further out forecasts, but typically the ratio of

the growth rate in the pandemic regime to the non-pandemic regime is low to negative.

Using likelihood ratio tests, we reject the constrained model where λ = 0 (i.e., there is

no vaccine or a vaccine is expected to arrive in an infinite number of years) in favor of the

unconstrained model. We also reject the constrained model where g = 1 (i.e., there is no

damage to growth rates) in favor of our unconstrained model. That is, short-run growth rates

in the pandemic regime absent a vaccine are severely impacted. These findings complement

the literature on damage to short-run earnings growth (Gormsen and Koijen (2020), Giglio,

Maggiori, Stroebel, and Utkus (2020)) but not necessarily the literature on long-run damage

due to government intervention (Elenev, Landvoigt, and Van Nieuwerburgh (2020)).

To gain an intuition for our unconstrained model, consider the plot in Figure 4 of consen-

sus earnings forecasts issued in the middle of May 2020 deflated by the consensus earnings

forecasts before COVID-19 in the middle of January 2020. We can see that the FY1 forecast

within twelve months before forecast end are significantly revised down: 54% on average

across the 130 8-digit GICS industries in our sample. This is consistent with a significant

negative jump on average in our model. But we can also see that the FY2 forecasts far-

ther out are not nearly as impacted. If an effective vaccine is expected to arrive far out in

the future, then analyst revisions will be large for both near term (FY1) and longer term

forecasts (FY2, FY3, FY4 and FY5). That is, there is effectively a permanent downward

jump in earnings followed by a different pandemic regime growth rate than the one in the

non-pandemic regime. In contrast, if analysts expect a vaccine in a year, then the FY2 fore-

casts will be revised down much less in comparison to FY1. The only other way potentially

to reconcile the data is to have the pandemic growth rates be counterfactually much higher
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than the non-pandemic growth rates. But in fact our estimate is for a lower pandemic growth

rate. In other words, the anticipated reflation of earnings conditioned on a vaccine arrival

will make it appear that growth rates in the pandemic regime, when comparing FY1 versus

longer-term forecasts (e.g. FY2 or FY3), are unrealistically high.

We consider several robustness exercises. Earlier work suggests that levered or face-to-

face (Montenovo, Jiang, Rojas, Schmutte, Simon, Weinberg, and Wing (2020)) industries

are particularly hit by COVID-19. Hence, these industries ought to be the most informative

for the COVID-19 earnings damage function. To this end, we re-estimate our model using a

subsample of levered or face-to-face industries. We retrieve a similar damage function as that

of based on the overall sample. Since the vaccine arrival rate is the same for these hardest

hit industries as for the overall sample, this means that the rollout of the vaccine will not

be preferentially based on business interest groups despite speculation in the media.5

Another way to demonstrate the sensibility of our model and estimates is to present a

placebo exercise whereby we conduct exactly the same empirical analysis but using data

from 2019. As we expect, we estimate that the arrival rate of a vaccine is zero, growth rates

are unimpaired and there is no jump in the earnings level using this placebo sample.

Finally, we then extend our model to account for a time-varying damage function due

to vaccine news. This extension then allows us to draw inferences using the June, July, and

August 2020 forecasts (the latest data we have available on IBES). The only caveat to this

analysis is that as we move increasingly further away from when COVID-19 hit, estimates

of the damage function become increasingly less precise.

To this end, we develop a vaccine model in which the vaccine arrives after two jumps. We

can interpret the two jumps as stages in the vaccine development process. The first stage is

the news arrival stage. For instance, the first stage corresponds to basic analysis on whether

COVID-19 is a difficult virus to find a vaccine such as HIV or an easy one. The second stage

is the actual development of the particular treatment. After the end of the first stage, news

arrives, which can be either good or bad. In either case, investors become better informed

5J. David Goodman and Luis Ferre-Sadurni, “Big fight breaks out over which interest groups get vaccine
first,” NYTIMES, December 20, 2020.
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about the rate at which effective vaccines arrive.

Then using our May 2020 estimates for the jump in earnings and latent growth rates, we

re-estimate the vaccine arrival rate using subsequent forecasts. Differences in arrival rates

from our baseline May 2020 estimates represent news. The arrival rates estimated in June

and July are identical to those estimated in May. However, the August 2020 forecasts imply

a higher vaccine arrival rate: a vaccine is expected in 4 months, or early 2021. In other words,

our model’s estimates indicate that there was good news on vaccines in the late summer and

a lowering of expected damage, consistent with qualitative narratives in the stock market.6

Our estimates do not look overly optimistic given news on Pfizer, Moderna and As-

traZeneca vaccine effectiveness in November 2020. This consistency alleviates concerns we

might have regarding the exclusion restriction needed to estimate with NLS. But it remains

to be seen if the vaccines are indeed effectively distributed by early 2021 and if the economy

will return to normal then.

Our paper proceeds as follows. We present our model of earnings damage function

and estimation strategy in Section 2. Section 3 describes the dataset and main variables.

Estimates of our model are presented in Section 4. We extend the model to account for

vaccine news in Section 5. We conclude in Section 6.

2 Model

We assume that the economy can be in one of the two regimes: the normal (or non-pandemic)

and pandemic regimes. The economy starts in the normal regime. At stochastic time t0, it

unexpectedly enters into the pandemic regime. Afterwards, the pandemic becomes extinct

and the economy returns back to the normal regime when a successful vaccine is developed

at time τ , which occurs with probability λ per unit of time.

6See for instance MarketWatch article on August 24, 2020 entitled “COVID-19 vaccine hopes are driving
the stock-market rally — here’s how much”.
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2.1 Normal Regime

We let Ŷt denote the earnings (EBITDA) process of the asset in the normal regime. We

assume that Ŷt follows a commonly used geometric Brownian motion (GBM) process:7

dŶt

Ŷt−
= ĝdt+ ρφ dBt +

√
1− ρ2 φ dWt , (1)

where Bt is the standard Brownian motion driving the “business-as-usual” aggregate risk and

Wt is the standard Brownian motion driving the idiosyncratic earnings risk. By construction,

Bt and Wt are orthogonal. In equation (1), ĝ is the expected earnings growth (drift) and

φ is the volatility of earnings growth, which includes the aggregate component ρφ and the

idiosyncratic component
√

1− ρ2 φ. That is, ρ is the correlation coefficient between the

aggregate shock Bt and the asset’s earnings. For simplicity, we let ĝ, φ, and ρ all be constant.

2.2 Pandemic Regime

Next, we specify the impact of the unexpected pandemic arrival and the anticipated stochastic

vaccine arrival. Let Yt denote the asset’s earnings process during the pandemic regime. Once

in the pandemic regime (t0 < t < τ), the asset’s earnings process Yt follows:

dYt
Yt−

= gdt+ v dZt + ρφ dBt +
√

1− ρ2 φ dWt + (en − 1) dJt , (2)

where Jt is a pure jump process and dJt = 1 if and only if the vaccine arrives.

There are four terms in equation (2). First, earnings will jump discretely by a fraction

(en − 1) at the moment of the vaccine arrival, i.e., when dJt = 1. This is to capture earnings

reflation once the vaccine returns the economy to normal. (Absent vaccine arrival, dJt = 0).

Second, the pandemic arrival changes the expected earnings growth rate from ĝ to g (leaving

aside the effect of vaccine arrival.) Third, the pandemic shock dZt directly causes additional

earnings growth volatility, v. Finally, as in the normal regime, earnings is subject to the

7The GBM process is widely used in asset pricing and corporate finance to model corporate earnings,
e.g., Gordon growth model, capital structure models in the tradition of Black and Scholes (1973) and Merton
(1974) and Leland (1994) models. While earnings is always positive in this formulation, we can generalize
this model to allow for negative earnings. By assuming that a firm’s earnings at the enterprise level (after
we unlever the firm) follows a GBM earnings process, earnings for equity holders can be negative even when
earnings for the enterprise is positive.
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business-as-usual aggregate shock dBt and idiosyncratic shock dWt with volatility ρφ and√
1− ρ2 φ, respectively. All shocks are orthogonal to each other.8 For simplicity, we let n

be constant and keep ĝ, φ, and ρ the same as in the normal regime.

More generally, the growth rate g and earnings volatility v in the pandemic regime de-

pend on the optimally mitigated infections in the economy. For simplicity, we model these

parameters as constants with particular emphasis that g is expected to be less than ĝ due

to the adverse direct effect of the pandemic.

2.3 Transition from Normal to Pandemic Regime

The arrival of COVID-19 triggers optimal mitigation in the form of foregone earnings. There

is both a fixed and variable cost to mitigation that have to be paid out of earnings each period

there is a pandemic. This unexpected but optimal corporate mitigation spending decreases

its earnings. That is, as the COVID-19 shock unexpectedly hits at t0, the earnings drops by

a fixed fraction δ:

Yt0 = Yt0−e
−δ. (3)

And at the moment of vaccine arrival, the earnings instantaneously increases by a fraction

n from the pre-arrival time since mitigation costs no longer need to be paid as shown in

equation (2):

Yτ = enYτ− . (4)

We further set δ = n. That is, the percentage of earnings increase at the moment of vaccine

arrival τ is equal to the percentage of earnings decrease at the moment of pandemic arrival

time t0. Consider the counter-factual case that helps us understand the mechanism: If

λ → ∞, we have τ− = t0. For this case, earnings is not impacted at all by the jumps as

Yτ = enYτ− = enYt0 = ene−nYt0− = Yt0−.

8The vaccine arrival process Jt is independent of [Wt,Bt,Zt]
>, which is a 3×1 standard Brownian motion.
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2.4 Linking Earnings Forecasts to Pandemics Damage Model

We can now relate earnings forecasts to our model. Recall that τ denotes the stochastic

vaccine arrival time. Assuming that the consensus analyst forecast is being generated by our

model, we have for t in the pandemic regime:

1

Yt
Et[Ys] =

∫ s

t

λe−λ(τ−t)eg(τ−t)eneĝ(s−τ)dτ + e−λ(s−t)eg(s−t) (5)

=
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t) . (6)

Recall that ĝ is the pre-COVID long-term growth (LTG) rate and g is the constant growth

conditional on being in the COVID-19 regime. As we assume that there are only two

regimes, normal and pandemic, the non-pandemic regime growth rate is the same as the

post-pandemic regime growth rate. In a later section, we extend this formula to allow for

these two rates to differ.

The first term of equation (5) is conditioned on a vaccine arriving in the interval between

t and s. Inside the first term, the density of the stochastic vaccine arrival time τ is λe−λ(τ−t).

Before the vaccine arrives (from t to τ) the cumulative (gross) growth is eg(τ−t). After the

vaccine arrives at τ in this interval (t, s), there is reflation of earnings by a multiple of en,

i.e., Yτ = enYτ−, and during the subsequent sub-period (τ, s), earnings growth reverts to the

pre-COVID LTG rate ĝ, which gives the cumulative (gross) growth is eĝ(s−τ) from τ to s.

As a result, for a given τ ∈ (t, s), Et[Ys] = Yte
g(τ−t)eneĝ(s−τ), which explains why the

first term is the contribution to Et[Ys]/Yt conditional on τ ∈ (t, s). The probability that a

vaccine does not arrive in (t, s) is e−λ(s−t). If this is the case, the growth rate in (t, s) is g.

Therefore, the second term gives the contribution to Et[Ys]/Yt conditional on τ > s. Adding

the two terms together gives Et[Ys]/Yt for any t in the pandemic regime.

Below in Figure 1, we provide a simulated path of earnings going through the non-

pandemic, during-pandemic, and non-pandemic regimes. The plot starts with earnings at

0.98 at t = −2. The (continuously compounded) growth rate in the non-pandemic regime

is set at ĝ = 8% per annum. The pandemic unexpectedly arrives at time t = t0 = 0, at

which point earnings jumps downward from the magenta dot Yt0− = 1.492 to the red solid

9



Figure 1: Earnings Path and Expectation Calculations

The parameter values are: n = δ = 0.4, ĝ = 0.08, g = .85 × ĝ = 0.068, and λ = 1.1. Parameter
values are annualized whenever applicable. Y−2 = 0.98. At time t = 0, earnings jumps from
Yt− = 1.492 to Yt = 1. And at time t = 1.5, earnings jumps from Yt− = 1.120 to Yt = 1.672.

dot Yt0 = 1 — which we have parameterized as a δ = 40% drop. At t = τ = 1.5, the vaccine

arrives, earnings Yt jumps upward by n = δ = 40% from Yτ− = 1.120 (the red open dot) to

Yτ = 1.672 (the black solid dot).

We set the vaccine arrival rate at λ = 1.1 per year (with an implied expected arrival

time of around 1/λ = 0.9 years, i.e., Et0(τ − t0) = 0.9) after the unexpected arrival of the

pandemic at t0. The (conditional) growth rate in the pandemic regime, g, is set to be 0.85

times that of the pandemic regime, ĝ, which means g = ĝ × 0.85 = 8%× 8.5% = 6.8%.

In addition to plotting a sample path, we also plot the expected earnings immediately

after the pandemic arrival, E0(Yt) given the value of Y0 = 1 at t = 0 (see the red dashed line).

In contrast, if investors were naive ignoring vaccine arrival and using a constant expected

earnings rate g forever, the expected earnings at t = 0 is then equal to Y0e
gt. The naive
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forecasts of Yt is lower than E0(Yt) due to the assumption that g ≤ ĝ and earnings will jump

by a fraction (en − 1) > 0 upon the vaccine arrival.

The magenta dotted line plots the expected earnings at t = −2 before the pandemic

arrival. As the pandemic is unexpected, we have E−2(Yt) = Y−2e
ĝ(t+2) = Y−2e

0.08×(t+2).

Similarly, the black dash dotted line plots expected earnings Yt immediately after the arrival

of the vaccine at time τ , which is given by Eτ (Yt) = Yτe
ĝ(t−τ). That is, the earnings processes

in the normal regimes (both before the pandemic arrival and after the vaccine arrival) are

the same. Notice that the growth rate in the non-pandemic regime (the dotted black line) is

equal to ĝ, which is larger than the growth rate for the dashed red line (the pandemic regime.)

Notice that the growth rate (anticipating stochastic vaccine arrival) in the pandemic regime

is time-varying and smaller than that in the non-pandemic regime.

Now we calculate the expected earnings from t0−, i.e., the moment that is just prior to

the unexpected COVID-19 arrival time t0. Substituting equation (3), Yt0/Yt0− = e−δ, into

(6) and with δ = n, we obtain9

1

Yt0−
Et0 [Ys] =

Yt0
Yt0−

1

Yt0
Et0 [Ys] =

λ

λ− g + ĝ

[
eĝ(s−t0) − e(g−λ)(s−t0)

]
+ e−ne(g−λ)(s−t0) . (7)

Figure 2 provides another way to understand the evolution of expectations across the

normal and pandemic regimes. In this figure, we examine the effect of the vaccine arrival

rate λ on ln [E0(Yt)/Y0−], the log of forecast revisions between t = 0−, the moment just before

the pandemic arrives, and any time t subsequently. Compared with the counterfactual that

the pandemic did not arrive and the business is then as usual (which means earnings grow at

an expected rate of ĝ indefinitely, the earnings responses are naturally negative, meaning that

E0(Yt) < Y0− e
ĝ t. But because of the anticipated vaccine arrival and the economy eventually

reverts to normal, earnings increase over time and approaches the long-run cumulative growth

for logarithmic earnings, ĝ t = 0.08t (the magenta dash-dotted straight line). For all levels

of λ, the forecast ln [E0(Yt)/Y0−] starts at the initial drop δ = −0.4 at t = 0 and then

increases over time due to anticipated vaccine arrival and eventually approaches the straight

line, ĝ t = 0.08t.

9As COVID-19 is unexpected, we calculate Et0 [Ys] from t0, but divide the forecast by Yt0− for empirical
measurement purposes.
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Figure 2: The Effect of the Vaccine Arrival Rate λ on ln [E0(Yt)/Y0−]

The forecast ln [E0(Yt)/Y0−] starts at −δ = −0.4 at t = 0 and eventually converges to the business-

as-usual scenario, depicted by the straight line ĝ t as t→∞. The higher the value of λ, the faster

the convergence. The parameter values are: n = δ = 0.4, ĝ = 0.08, and g = .85× ĝ = 0.068.

Intuitively, if an effective vaccine is expected to arrive far out in the future (lower λ),

then forecast revisions will be large for both near term and longer term forecasts (the red

dashed line) — that is there is effectively a permanent downward jump in earnings followed

by a different pandemic regime growth rate than the one in the non-pandemic regime. In

contrast, if we expect a vaccine in a year, then the longer-term forecasts will be revised down

much less in comparison to the near-term forecasts.

Figure 3 examines the effect of the size of the jump n and pandemic growth rate g on the

term structure of the forecast revision ln [E0(Yt)/Y0−]. Take the blue line as the benchmark

case, we implement two experiments to investigate how the shape of the term structure

change with respect to different n and g.
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First, the size of the initial jump is determined by n. As we change n from 0.4 to 0.8

(from the blue line to the red dashed line), we see a larger drop in ln [E0(Yt)/Y0−] in lower

horizon compared to longer horizon. From an identification point of view, this observation

implies that data in the shorter horizon are driving the identifiability of n since they are

very informative about the initial jump in earnings.

Second, if we further change g to -1.2, we see that there are sizable drops in the level

of the ln [E0(Yt)/Y0−] (black dotted line compared to the red dashed line) in all horizons.

Moreover, the drop is smaller in the short horizon compared to the median and longer

horizon. Therefore, the data with longer horizons can help us better identify g given the

larger difference generated by the g parameter in the median and longer horizon.

2.5 Estimation

Using this insight from Figure 2, we take our model to data on analyst forecasts in the

following manner. In reality, we do not observe analyst forecasts at t0, which is the immediate

moment after the pandemic arrival time. Instead, we observe forecasts at a later time, t.

As such, we will employ the approximation Yt/Yt0− ≈ Yt0/Yt0− = e−δ and assume δ = n to

obtain the following relation:

1

Yt0−
Et[Ys] =

Yt
Yt0−

1

Yt
Et[Ys] ≈ e−δ

[
λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
en + e(g−λ)(s−t)

]
=

λ

λ− g + ĝ

[
eĝ(s−t) − e(g−λ)(s−t)

]
+ e−ne(g−λ)(s−t) . (8)

That is, we assume that the jump which in our model occurs over an instant takes place

over the period from the end of February 20 to May 14 of 2020.

Moreover, we aggregate corporate earnings forecasts at the firm level up to the industry

level, which we denote by j. The main dependent variable of interest given by the right

side of equation (8) is constructed in the following manner. As Yj,t0− is not empirically

observable, we measure Yj,t0− by using the earnings forecast expression before the arrival

of COVID-19: Et0− [Yj,s] = Yj,t0−e
ĝ(j)(s−t0), where ĝ(j) is the long-run growth rate in the

non-pandemic regime, which as we discuss below is observable. Equivalently, we have

Yj,t0− = exp
[
−ĝ(j) · (s− t0−)

]
· Et0− [Yj,s] . (9)
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Figure 3: The Effect of n and g on ln [E0(Yt)/Y0−]

In this figure we present the forecast ln [E0(Yt)/Y0−] based on four sets of parameter values to show

the sensitivity of the path to the jump parameter n and the pandemic growth rate parameter g.

The other parameter values are: λ = 1.1, ĝ = 0.08. The magenta line is the business-as-usual

scenario. The blue solid line shows the path when n = 0.4 and g = .85× ĝ = 0.068. The red dashed

line shows the path when n = 0.8 and g = .85× ĝ = 0.068. The black dotted line presents the path

when n = 0.8 and g = −1.2× ĝ = −0.096.
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Using equations (8) and (9), and taking natural logs on both sides, we obtain the following

relation that we take to data:

ln

[
Et[Yj,s]

e−ĝ(j)(s−t0−)Et0−[Yj,s]

]
= ln

[
λ

λ− g(j) + ĝ(j)

(
eĝ

(j)(s−t) − e(g(j)−λ)(s−t)
)

+ e−n
(j)

e(g
(j)−λ)(s−t)

]
.(10)

We parameterize the earnings jump parameter n(j) for firms in industry j by

n(j) = n0, (11)

The growth rate g for firms in industry j in the pandemic regime, g(j), is parameterized as

g(j) = g0 · ĝ(j) . (12)

That is, the growth rate in the pandemic regime g(j) is a multiple of ĝ(j), the growth rate in

the non-pandemic regime for firms in industry j. The ratio between the two growth rates,

g(j)/ĝ(j), captures the average difference in growth rates across the two regimes.

Finally to estimate our model, we need to specify analyst forecast errors. Denote IBES

forecast of industry j at t of horizon s by f st,j. Suppose

f st,j = Et[Yj,s] · ust,j , (13)

where ust,j is a mean one random variable that is conditionally independent of Et[Yj,s]. Then,

taking logs on both sides of (13) and then using (10) for Et[Yj,s], we obtain

ln

[
f st,j

e−ĝ(j)(s−t0−)f s0−,j

]
= ln

[
λ

λ− g(j) + ĝ(j)
(eĝ

(j)(s−t) − e(g(j)−λ)(s−t)) + e−n
(j)

e(g
(j)−λ)(s−t)

]
+ln

(
ust,j
us0−,j

)
(14)

Therefore, an identifying restriction allowing for estimation of equation (14) using non-

linear least squares (NLS) (Cameron and Trivedi (2005)) is given by:

E
[
ln

(
ust,j
us0−,j

) ∣∣∣∣s− t, ĝ(j)] = 0 . (15)

Obviously, if forecasts are rational, i.e., forecast errors are white noise, then the exclusion

restriction is satisfied. More generally, as long as the log difference of these biases across

forecast horizons is uncorrelated with our independent variables, then consistent parameter

estimates can still be retrieved using NLS.
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This exclusion restriction is plausible. Intuitively, imagine if analyst forecasts were overly

optimistic at 5 years out and overly-pessimistic say at 2 years out, then this can bias estimates

of the vaccine arrival rate. We know of no obvious research to suggest that our exclusion

restriction is unlikely. At the same time, our setting is unique in that we can also compare

our estimates implied with forecast to subsequent actual outcomes. Presumably, biased

estimates will not be very predictive or subsequent outcomes. But we show below that the

vaccine arrival estimate is predictive.

2.6 Comments

The upside of our baseline set-up is parsimony. In practice, rather than assuming that a

successful vaccine is a silver bullet that instantly brings the economy back to normal upon its

arrival as in our baseline model, we may consider a more realistic setting where a successful

vaccine development brings the economy back to normal in several stages over time. These

stages might correspond to an increasing fraction of the population being vaccinated over

time. For example, consider the following setting with N sequentially ordered stages, denoted

by {S1, · · · , SN}, in addition to the pandemic regime, which we denote by S0. We assume

that as the stage transitions from stage Sm to stage Sm+1 at stochastic time τm, where

m = 0, · · · , N − 1, at a constant rate of λm per unit of time, earnings jumps upward by a

constant fraction δm > 0. That is, Yτm = Yτm− e
δm . We can compute the earnings forecast

and other key objects in this more general model in closed form, but the model would be

less parsimonious.

3 Data and Variables

3.1 Earnings Forecasts

We obtain the forecasts on earnings per share (EPS) and growth rate forecasts from the

monthly IBES summary history files from WRDS. Our data is from January 2020 to May

2020. We keep all stocks that are also in CRSP. We set the starting date of the pandemic

regime, t0, to be February 20, 2020. We take the median forecast for each firm in May
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as the consensus forecast during the pandemic period. We treat the forecasts in January

as the most recent non-pandemic period forecast. That is, we link our model notations to

our empirical measurement as follows: January 2020 is our t0−, May 2020 is time t for our

forecast, and s is the fiscal year end date of the forecasts.

Using February and March of 2020 forecasts is problematic from the point of view of

identification since we want timely measures of analyst expectation revisions from just before

COVID-19 arrived to after its arrival. February 2020 may capture a bit of information

about the pandemic since some analysts might have started revising their forecasts based

on infections in other countries such as China. On the other hand, March 2020 might not

capture the full extent of the pandemic regime to the extent some analysts might have

been slow in revising. As such, we view using January 2020 forecasts as cleanly capturing

non-pandemic earnings expectations and either April or May 2020 forecasts as capturing

revisions accounting for the pandemic and hence embedding information regarding vaccines.

We prefer May 2020 to April 2020 since almost all the analysts have revised their forecasts

by then.10

We label the EPS annual forecasts based on the time gap between their forecast period

end date s (i.e. the fiscal end year end date of the company) and the forecast date t, i.e., the

gap (s − t). If the time gap is less than 365 days, we label the annual forecast as FY 1t. If

the time gap is between 366 days and 730 days, we label the annual forecast as FY 2t. We

also similarly collect FY3 and FY4 annual forecasts from IBES. In addition, we convert LTG

forecasts, which are defined as long-run growth rates from the previous announced earnings

out to 5 years, to FY5 forecasts.

We use this methodology to label annual forecasts instead of using the classification

provided by IBES because their classification is based on when the actual earnings is reported

not when the fiscal year ends. For example, IBES will label an April annual forecast of a

firm with a fiscal year that ended the previous month as FY1 if the firm has not yet reported

the actual earnings for that fiscal year. We want FY1 to reflect future earnings so we use

10Moreover, most of the government intervention programs have already been announced and hence ought
to be reflected in analyst forecasts as well by then.
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our methodology instead.

In our empirical analysis, FY1 forecasts need to be adjusted for the fact that a certain

fraction of the fiscal year has already been realized before the pandemic arrived at t0. Con-

sider a firm in our sample that has a fiscal year ending in October 2020 (time s in our

model). In this case, for FY 1t, the FY1 earnings forecast for the period from November

2019 to October 2020, made in May 2020 (our t), only the sub-period between February 20,

2020 (our t0) to October 2020 is exposed to COVID-19.

Therefore, we need to make adjustments to FY 1t forecasts (e.g. May as our t) considering

the differential impact of the pandemic on earnings resulting from heterogeneous fiscal year

end dates. What enters into our calculation of earnings forecast in equation (10) at t (May

in our empirical analysis) is adjusted as follows:

FY 1adjt = FY 1t ·
(

1

s− t0

)
+ FY 1t0− ·

(
1− 1

s− t0

)
, (16)

where (s− t0) is the fraction of the fiscal year that is exposed to COVID-19.

For the preceding example, s − t0 = (10 − 2)/12 (the event time t0 is February 2020

and time s in equation (16) is October 2020.) That is, 8/12 =2/3 of the annual earnings is

after the pandemic arrival and the other 4/12=1/3 is non-pandemic. Our adjusted earnings

forecast at t (in May for our empirical analysis) is then given by FY 1adjt = (3/2)FY 1t −

(1/2)FY 1t0− = FY 1t + 0.5 × (FY 1t − FY 1t0−). That is, the adjusted annual earnings

forecast FY 1adjt is equal to the unadjusted FY1 forecast FY 1t plus a term, which accounts for

the change of forecasts caused by the pandemic arrival. If pandemic is bad news for the firm,

i.e., FY 1t < FY 1t0−, this earnings forecast is adjusted downward by 0.5×(FY 1t − FY 1t0−),

where the multiple 0.5 reflects the ratio between the non-pandemic 4- month duration and

pandemic 8-month duration. In our sample, the non-pandemic forecast FY 1t0− is the FY1

forecasts in January and FY 1t is the unadjusted FY1 forecasts in May.

We merge IBES forecasts with CRSP market capitalization data using historical 8-digit

CUSIP identifiers.11 We then merge in the 8-digit GICS code obtained from Compustat.

On each date in our IBES sample, we set the negative values in adjusted FY1 to the lowest

11For the unmatched cases, we obtain additional matching using the official tickers and 6-digit CUSIP.
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Figure 4: ln(Et[Ys]/Yt0−) Over Forecast Horizons

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s − t). Yt0−, the

non-pandemic earnings, is the FY1 forecasts in January 2020 discounted by the I/B/E/S growth

rate forecasts in January 2020. The May 2020 cross section is plotted. Forecast horizons are marked

with different colors. Forecast are defined by the distance between the forecast end date and the

I/B/E/S statistical period.

positive observation in adjusted FY1 on that date. We also set the negative values of FY2

on each date to the lowest positive FY2 observation on each date. We repeat the same

procedure for FY3, FY4 and FY5. We then aggregate the EPS forecasts, pre-pandemic

growth rate forecasts, non-pandemic earnings, and time until fiscal year end to the 8-digit

GICS industries using the end of 2019 market capitalization from CRSP as the weights. We

winsorize these industry
Et0 [Ys]
Yt0−

and ĝ at the 5% level.

The summary statistics for our dependent variables are presented in Table 1. In Panel

A, we report the distribution of
Et0 [Ys]
Yt0−

for the mid-May 2020 forecasts. The mean is 1.16

and the standard deviation is 0.54. The ln
(

Et0 [Ys]
Yt0−

)
has a mean of 0.01 with a large standard

deviation of 0.61. The mean (s− t) is 2.57 for the May 2020 forecasts.

In Figure 4, we take a closer look at the standard deviation of these forecasts by plotting

the industry forecast revisions separately for FY1 to FY5 forecasts. We can see that the
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Table 1: Summary Statistics

This table summarizes the mean, standard deviation, and the quartiles of the key variables used
in our main analysis at 8-digit GICS industry level. Et[Ys]/Yt0− is the earnings forecasts in month
t divided by the non-pandemic earnings Yt0−, which is the FY1 forecasts in January 2020 dis-
counted by the I/B/E/S growth rate forecasts in January 2020. ln(Et[Ys]/Yt0−) is the natural log
of Et[Ys]/Yt0−. s − t is the horizon of the earnings forecasts in month t, which is the difference
between the date of the forecast period end and the I/B/E/S statistical period in month t. We
include the May sample of I/B/E/S summary statistics in 2020 in our analysis. The sample in-
cludes the earnings forecasts with horizons up to 5 years. Panel A presents the summary statistics
of Et[Ys]/Yt0−, ln(Et[Ys]/Yt0−) and s − t in May 2020. Panel B contains the summary statistics
of other key variables. Face-to-Face Score is first constructed at the occupation level using O*Net
Main database and then aggregated to industry level using the BLS Industry-occupation matrix
data (from 2018). Market Leverage is calculated at the end of 2019 using the following formula,
(long-term debt+ debt in current liabilities)/(fiscal year end market capitalization + total assets
- common equity). ĝ is the I/B/E/S forecasts of growth rates in January 2020. All the firm level
variables are aggregated to the industry level using 8-digit GICS code, weighted by the market val-
ues of the companies in each industry at the end of 2019. Et[Ys]/Yt0− is winsorized at 5% level on
each date within each horizon. Forecasts horizons are defined by the distance between the forecast
end date and the I/B/E/S statistical period. ĝ is also winsorized at 5% level.

(a) Panel A: Distribution of Et[Ys]/Yt0− and s− t in May 2020

Mean SD P0 P25 P50 P75 P100

Et[Ys]/Yt0− 1.16 0.54 0.05 0.86 1.10 1.39 3.14
ln(Et[Ys]/Yt0−) 0.01 0.61 -3.07 -0.15 0.10 0.33 1.14

s− t 2.57 1.45 0.13 1.56 2.62 3.63 4.67

(b) Panel B: Distribution of other variables used in analysis

Mean SD P0 P25 P50 P75 P100

Market Leverage 0.20 0.10 0.03 0.13 0.19 0.25 0.72
Face-to-Face Score 3.94 0.14 3.59 3.85 3.90 4.01 4.33

Customer Score 3.45 0.45 2.54 3.09 3.44 3.80 4.48
Blinder Score 2.97 0.24 2.57 2.75 2.95 3.13 3.76

ĝ 0.10 0.09 -0.05 0.06 0.08 0.13 0.35
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FY1 forecast within twelve months before forecast end are significantly revised down: 54%

on average for the May 2020 forecasts across the industries in our sample. This is consistent

with a significant negative jump on average in our model. But we can also see that the FY2

forecasts farther out are not nearly as impacted.

3.2 Leverage, Face-to-Face, and Customer Interaction Measures

We obtain the GICS code and calculate the market leverage of each firm using Compustat.

Market Leverage is calculated at the end of 2019 using the following formula: long-term debt

(dlttq) plus debt in current liabilities (dlcq) all divided by the sum of market capitalization

(prccq × cshoq) and total assets (atq) net common equity (ceqq).

We then use the O*Net Main database in the U.S. about occupational information to

construct the face-to-face exposures of different industries. O*Net collects information on

974 occupations. They are based on the Standard Occupational Classification (SOC), the

last update of which was done in 2010. O*Net surveys people in these occupations, asking

about the knowledge, skills, and abilities used to perform the activities and tasks of their

occupations. Our face-to-face measure is based on Montenovo, Jiang, Rojas, Schmutte,

Simon, Weinberg, and Wing (2020).

They use questions taken from the 2019 Work Context module. The questions used in

face-to-face measure are: (1) How often do you have face-to-face discussions with individuals

or teams in this job? And (2) To what extent does this job require the worker to perform

job tasks in close physical proximity to other people? These measures are typically provided

on a 1-5 scale, where 1 indicates that a task is performed rarely or is not important to the

job, and 5 indicates that the task is performed regularly or is important to the job.

There is also a direct question that asks people to rate how much they work with cus-

tomers in the O*Net survey. The question is: How important is it to work with external

customers or the public in this job? We take the average score for each occupation for this

alternative measure.

One issue with this customer measure is that it does not necessarily capture face-to-face

contact. To this end, we have also constructed a customer measure from Blinder (2009)
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based on the following questions: (1) establishing and maintaining personal relationships,

(2) assisting and caring for others, (3) performing for or working directly with the public,

(4) selling or influencing others, and (5) social perceptiveness.

The O*Net provides two ways that people weight how an occupation uses these char-

acteristics: Importance and Level. That is, people in an occupation are asked to rate how

important the characteristic is in their job and the level of use of the characteristic in their

job. We use the Importance score of each characteristic and take the simple average of the

Importance scores to make what we call the Blinder index for each occupation. The social

perceptiveness question is in the Social Skills part of the O*Net. The other four measures

are in the Work Activities part of the O*Net.

We have occupation-level measures of face-to-face and the two customer measures. We

then convert them to an industry-level measure. To do this, we use the BLS Industry-

occupation matrix data (from 2018).12 In the BLS data, for every industry, they measure

what percentage of workers work in a given occupation. (They also use the SOC occupation

codes just like the O*Net). So we take the O*Net occupation measures and for each industry

weight them by the percentage of workers in that industry that work in the occupation. We

take a weighted-average to come up with the industry measures. One issue is that the BLS

uses NAICS codes for industries. We convert these to 8-digit GICs codes using a crosswalk.13

The summary statistics for leverage and these three face-to-face measures are provided

in Panel B of Table 1. The mean Market Leverage ratio is 0.2 with a standard deviation

of 0.1. The mean Face-to-Face Score is 3.94 with a standard deviation of 0.14. The mean

Customer Score is 3.45 with a standard deviation of 0.45, while the Blinder Score has a

mean of 2.97 and a standard deviation of 0.24. These measures are correlated (around 0.4

to 0.5 in pairwise correlations). The statistics for ĝ are also displayed — the mean (annual)

non-pandemic growth rate is 10% with a standard deviation of 9%.

In our empirical analysis, we will work with percentiles of these measures as opposed to

the values themselves. Figure 5 show the empirical cumulative distribution of our Face-to-

12See https://www.bls.gov/emp/tables/industry-occupation-matrix-industry.htm
13See https://sites.google.com/site/alisonweingarden/links/industries
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Figure 5: The Empirical Distributions of Face-to-Face Scores and Market Leverage

This figure plots the empirical cumulative distributions of Face-to-Face Scores and Market Lever-

age of industries defined by 8-digit GICS codes. Subfigure (a) is the cumulative distribution of

Face-to-Face Scores. Face-to-Face Score is first constructed at the occupation level using O*Net

Main database and then aggregated to the industry level using the BLS Industry-occupation ma-

trix data (from 2018). Subfigure (b) is the cumulative distribution of Market Leverage. Market

Leverage is calculated at the end of 2019 using the following formula, (long-term debt+ debt in

current liabilities)/(market capitalization + total assets - common equity). The variables are from

Compustat. In Compustat variable names, the formula is the following, Market Leverage = (dlttq

+ dlcq)/(atq - ceqq + prccq * cshoq).

(a) The Cumulative Distribution of Face-to-
Face Scores

(b) The Cumulative Distribution of Market
Leverage

Face Score and Market Leverage measures, respectively. The correlation at the industry level

of face-to-face ranks and leverage ratio ranks is 0.4. There are a number of good economic

reasons why these two industry attributes are correlated. Airline and hotels for instance have

high Face-to-Face Scores and are also industries that have physical assets such as land or

planes that are used for collateralized borrowing. Our goal in this paper is not to disentangle

these two effects. Hence we will use both of these measures interchangeably to model latent

growth rates in our baseline specifications. We will consider the two customer measures in

our robustness exercises.
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Table 2: NLS Results Using the I/B/E/S Sample in May 2020

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (14). The regressions are run using I/B/E/S summary statistics in May
2020. Et[Ys]/Yt0− is the earnings forecasts divided by the non-pandemic earnings. The dependent
variable is the natural log of Et[Ys]/Yt0−. Yt0−, the non-pandemic earnings, is the FY1 forecasts in
January 2020 discounted by the I/B/E/S growth rate forecasts in January 2020. The explanatory
variables include the horizon of the earnings forecasts s− t and the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ. λ is the vaccine arrival rate. g0 represents the proportional
change in the growth rate. n0 governs the size of the jump in earnings. Columns (1)-(3) present
the results from three different restrictions on the model parameters. Column (1) contains the
results of the unconstrained regression. Column (2) contains the results restricting λ = 0. Column
(3) contains the results restricting g0 = 1. We keep observations with non-missing Et[Ys]/Yt0−, ĝ,
Face-to-Face Score, and Market Leverage. The 95% bootstrap confidence intervals are reported in
square brackets. We also present the likelihood ratio test statistics for the restricted models.

(1) (2) (3)

λ 1.354 0.538
[0.78,1.71] [0.39,0.74]

g0 -1.203 0.850
[-2.25,-0.06] [0.68,1]

n0 2.021 0.214 0.879
[0.99,4.1] [0.16,0.28] [0.68,1.22]

Num.Obs. 633 633 633
Log.Lik. -493.690 -534.685 -513.274
LR.Stat. 81.99 39.17

4 Empirical Results

4.1 Baseline Specification

In Table 2, we present the coefficients and bootstrap confidence intervals from non-linear

least square regressions of equation (14) using May 2020 earnings forecasts. The dependent

variable is the natural log of Et[Ys]/Yt0−, i.e., the revision of forecasts between January and

May 2020. The explanatory variables include the (remaining) duration of time-t earnings

forecasts (s− t) and the non-pandemic (January 2020) forecasts of the growth rate ĝ.

Column (1) contains the results for our baseline and unconstrained model. The estimate

of λ is 1.354 with 95% bootstrap confident interval of [0.78, 1.71]. So the vaccine that
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returns the earnings to normal is expected in 1/1.354 or 0.74 years.14 The estimate of g0

is -1.203, indicating that pandemic growth rates are lower than during the non-pandemic

periods. The confidence interval is [−2.19,−0.06]. Moreover, industries experience a large

downward jump in earnings level, captured by n0 = 2.021, which has a confidence interval

of [0.99, 4.10]. Notice that this parameter also captures the expected reflation in earnings

for these industries when the vaccine does arrive. The jump in earnings level is given by

1 − e−n, which means that there is around an 80% drop in earnings immediately following

the arrival of COVID-19.

Recall that the average earnings FY1 forecast revision in the summary statistics is nearly

50% with a fat left-tail. The nonlinear least squares model, which is equal-weighted, will fit

this tail, giving a sizable estimate for the downward jump in earnings g0. There is also a

fat-left tail in further out forecasts, which will then impart an attribution of low of negative

growth rates in the pandemic regime compared to the non-pandemic regime. Finally, the

high λ estimate comes from the intuition discussed earlier that there is a sizable disconnect

between downward revisions in FY1 forecasts compared to subsequent ones.

In column (2), we present the estimates for the constrained model where we set λ = 0, i.e.

assuming there is no vaccine. The estimate for g0 is 0.850 with a 95% bootstrap confidence

interval of [0.68, 1]. There is also a much smaller earnings jump parameter of 0.214 with a

confidence interval of [0.16, 0.28]. When λ is forced to be zero, the constrained model has to

compensate with a positive g0 to account for the higher levels of FY2-FY5 earnings forecasts

compared to FY1. Moreover, the initial jump in earnings is n0 = 0.214 with a confidence

interval of [0.16, 0.28]. This implies a downward jump of 1− e−n0 = 0.20 or 20%.

The estimates of the constrained model are nonsensical because they imply only a small

impairment of growth rates and a small initial jump. Of course, we know from the summary

statistics that the FY1 forecast revision for the median industry is nearly 50%. These

14There has been significant attention to the question of when vaccines will arrive and if they will return
the economy to normal. For instance, see the McKinsey Report (July 29, 2020) “On pins and needles: Will
COVID-19 vaccines save the world”, and an article in the Washington Post (August 2, 2020), entitled “A
coronavirus vaccine won’t change the world right away”. Our estimate of the vaccine arrival rate λ as far as
we know is the first systematic attempt to speak to this question.
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nonsensical estimates are of course coming from constraining λ, which is equivalent to an

omitted variables bias where expectations of an imminent vaccine are ignored in estimating

damage functions. This lack of fit is reflected in a log likelihood of -534.685, which is

substantially higher than the log likelihood of -493.69 from the unconstrained model in

column (1). The likelihood ratio test statistic is 81.99, clearly rejecting the constrained

model in column (2) in favor of the unconstrained model in column (1).

In column (3), we present the estimates for the constrained model where we set g0 = 1; i.e.

there was no damage to growth rates. λ is now estimated to be 0.538 with a 95% confidence

interval of [0.39, 0.74], and n0 is 0.879 with a 95% confidence interval of [0.67, 1.22]. Notice

that since we are assuming there is no growth impairment, there is a lower estimated λ

because the higher growth rate will explain more of the difference between revisions of long-

horizon forecasts to short-horizon forecasts. The log-likelihood is -513.274. The likelihood

ratio statistic comparing column (1) to (3) is 39.17, rejecting the constrained model in column

(3) in favor of the unconstrained model.

Another way to see that the unconstrained model fits the data is to compare the predicted

values as a function of our two main independent variables the forecast horizon (s− t) and

non-pandemic industry growth rate ĝ
(j)
0 . These plots are in Figure 6. Panel (a) shows the

fitted values for the unconstrained model from column (1), while panels (b) and (c) show

the fitted values from the constrained models in columns (2) and (3), respectively. It is clear

from these 3-D plots that only the unconstrained model can fit the data. The constrained

models generate poor fits of the data.

4.2 Robustness Exercises

We consider several robustness exercises. Since earlier work suggests that levered or face-

to-face industries are particularly hit by COVID-19 and should be the most informative

regarding the damage function,15 we re-run our model using observations from just these

15The immediate impact of COVID-19 for stock prices was more negative for firms in these types of
industries (Pagano, Wagner, and Zechner (2020), Ramelli and Wagner (2020), Alfaro, Chari, Greenland,
and Schott (2020), Ding, Levine, Lin, and Xie (2020), Hassan, Hollander, van Lent, and Tahoun (2020),
Favilukis, Lin, Sharifkhani, and Zhao (2020)).
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Figure 6: The Surfaces of the Estimated Models

This figure plots the observations and fitted value of ln(Et[Ys]/Yt0−) using the parameter estimates

of Equation (14) on the I/B/E/S sample from May of 2020. All the subfigures plot ln(Et[Ys]/Yt0−)

and the fitted surface against the pre-pandemic growth rate and the horizons of forecasts. Subfigure

(a) uses estimates from Column (1) in Table 2. Subfigure (b) uses estimates from Column (2) in

Table 2. Subfigure (c) uses estimates from Column (3) in Table 2. The ln(Et[Ys]/Yt0−) observations

are the blue dots.

(a) Unconstrained (b) Constraint: λ = 0

(c) Constraint: g0 = 1
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industries. The results are presented in Table 3. In Panel A, we present the results for high

face-to-face industries based on our main face-to-face measure. An industry is categorized in

the high group if its face-to-face score is in the top tercile of the cross-sectional distribution.

λ is precisely estimated to be 1.197, similar to our estimate of 1.354 from column (1) of Table

2. g0 is estimated to be -2.123, which is smaller than the -1.203 figure from column (1) of

Table 2. However, its confidence interval of [−3.72, 0.54] is quite wide, including the -1.203

figure. Hence, there is not a statistical difference across the two sets of estimates. Similarly,

the coefficient for n0 is 3.115 which is larger than the 2.021 figure from Table 2. But again,

they are not statistically different. In other words, the damage function estimated off of

this subsample of firms is quite similar to the overall sample. The same can be said for the

constrained models in columns (2) and (3). So overall, our earlier conclusions based on the

overall sample continues to hold for this subsample.

In Panel B, we present the results for high leverage industries based on our main leverage

measure. An industry is categorized in the high group if its leverage score is in the top

tercile of the cross-sectional distribution. Our qualitative conclusions are quite similar to

those from Panel A. We have also repeated these exercises by using a net market leverage

measure where we deduct corporate cash and short-term investments and by replacing our

baseline face-to-face measure with our two customer interaction measures. The conclusions

are similar, pointing to the robustness of our damage function estimates.

In Table 4, we then consider a placebo exercise. We run exactly the same empirical

procedure but using the forecasts in 2019 far before COVID-19. We report in Table 4 the

regressions results with the constraint that λ ≥ 0. Our estimates are zero for both the palcebo

full sample and the placebo subsample of high face-to-face industries. For the placebo high

leverage sample, the λ coefficient is 0.111, which is also very small. g0 is 0.687 for the full

sample with a tight 95% bootstrap confidence interval of [0.52, 0.74]. The point estimates are

similar to the placebo subsample of high face-to-face and high leverage industries, though

the confidence interval for the placebo high leverage subsample estimate is quite wide. n0 is

-0.068 with a tight confidence interval of [−0.13,−0.04] for the full placebo sample. This is

quite small in comparison to our earlier estimates. the same conclusions hold for the placebo
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Table 3: NLS Results Using Subsamples

This table presents the coefficients and bootstrap confidence intervals from non-linear least square
regressions of Equation (14) on subsamples of industries split by the terciles of Face-to-Face Scores
and Market Leverage. The top tercile of the Face-to-Face Scores are classified as High Face-to-Face.
The top tercile of the Market Leverage are classified as High Market Leverage. The regressions are
run using I/B/E/S summary statistics in May 2020. Et[Ys]/Yt0− is the earnings forecasts divided
by the non-pandemic earnings. The dependent variable is the natural log of Et[Ys]/Yt0−. Yt0−, the
non-pandemic earnings, is the FY1 forecasts in January 2020 discounted by the I/B/E/S growth
rate forecasts in January 2020. The explanatory variables include the horizon of the earnings
forecasts s− t and the non-pandemic (January 2020) I/B/E/S forecasts of growth rates ĝ. λ is the
vaccine arrival rate. g0 represents the proportional change in the growth rate. n0 governs the size
of the jump in earnings. Panel A and B contain the results using the High Face-to-Face subsample
and High Market Leverage subsample correspondingly. In each panel, Columns (1)-(3) present the
results from three different restrictions on the model parameters. Column (1) contains the results
of the unconstrained regression. Column (2) contains the results restricting λ = 0. Column (3)
contains the results restricting g0 = 1. We keep observations with non-missing Et[Ys]/Yt0−, ĝ,
Face-to-Face Score, and Market Leverage. The 95% bootstrap confidence intervals are reported in
square brackets. We also present the likelihood ratio test statistics for the restricted models.

(a) Panel A: NLS Results Using the High Face-to-Face Subsample

(1) (2) (3)

λ 1.197 0.675
[0.35,1.5] [0.37,0.98]

g0 -2.123 0.678
[-3.72,0.54] [0.27,1.03]

n0 3.115 0.220 1.630
[0.83,4.75] [0.08,0.36] [0.88,3.26]

Num.Obs. 201 201 201
Log.Lik. -198.074 -217.778 -207.168
LR.Stat. 39.41 18.19

(b) Panel B: NLS Results Using the High Leverage Subsample

(1) (2) (3)

λ 1.455 0.357
[0.32,1.79] [0.15,0.66]

g0 -3.174 0.552
[-4.98,0.32] [0.22,0.86]

n0 4.063 0.203 0.819
[0.6,4.28] [0.08,0.33] [0.51,1.51]

Num.Obs. 182 182 182
Log.Lik. -163.380 -175.836 -175.531
LR.Stat. 24.91 24.30
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Table 4: Placebo Results Using the I/B/E/S Sample in May 2019

This table presents the coefficients and bootstrap confidence intervals from the placebo non-linear
least square regressions of Equation (14) with the constraint that λ ≥ 0. The regressions are
run using I/B/E/S summary statistics in May of 2019. The dependent variable is the natural
log of Et[Ys]/Yt0−, where Et[Ys]/Yt0− is the earnings forecasts in May divided by the pseudo non-
pandemic earnings. Yt0−, the pseudo non-pandemic earnings, are the FY1 forecasts in January 2019
discounted by the I/B/E/S growth rate forecasts in the same month. The explanatory variables
include the horizon of the earnings forecasts s − t and the January I/B/E/S forecasts of growth
rate ĝ in 2019. λ is the vaccine arrival rate. g0 represents the proportional change in the growth
rate. n0 governs the size of the jump in earnings. The first column contains the results using the
full sample. The second column (“High Face-to-Face”) shows the results using the subsample of
industries with Face-to-Face Scores in the top tercile. The last column (“High Leverage”) shows the
results using the subsample of industries with Market Leverage in the top tercile at the end of 2018.
We keep observations with non-missing Et[Ys]/Yt0−, ĝ, Face-to-Face Score, and Market Leverage.
The 95% bootstrap confidence intervals are reported in square brackets.

Full Sample High Face-to-Face High Leverage

λ 0.000 0.000 0.111
[0,0.29] [0,0.6] [0,11.8]

g0 0.687 0.676 0.793
[0.52,0.74] [0.39,0.78] [-4.58,0.95]

n0 -0.068 -0.107 -0.007
[-0.13,-0.04] [-0.25,-0.06] [-3.56,0.06]

Num.Obs. 638 195 210
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Figure 7: ln(Et[Ys]/Yt0−) Over Forecast Horizons of the Placebo Sample

This figure plots the natural log of the industry level I/B/E/S earnings forecasts divided by the

pseudo non-pandemic earnings, ln(Et[Ys]/Yt0−), against the horizons of the forecasts (s− t) using

I/B/E/S summary statistics in May 2019. The pseudo non-pandemic earnings are the FY1 forecasts

in January 2019 discounted by the I/B/E/S growth rate forecasts in the same month. Forecasts

horizons are marked with different colors. Forecasts horizons are defined by the distance between

the forecast end date and the I/B/E/S statistical period.

subsamples. These exercises indicate that our model estimates using the COVID-19 sample

are informative.

In Figure 7, we plot the dependent variables, i.e., the forecasts revisions, for the placebo

full sample that are analogous to those shown in Figure 4. We can see that the big difference

between the COVID-19 period and the other placebo period is that one does not typically

see such a large divergence in revisions across FY1 and FY2 forecasts. Understandably, in

most periods, the relationship between FY1 and FY2 revisions should be more synchronized

with the growth rate.

But of course, the COVID-19 period data suggests instead that there is a regime switch

that might occur between over the roughly 1 to 2 year period of forecast horizons. As we said,

the alternative is that the growth rates in the pandemic period are just much larger, which

is counterfactual. Importantly, this is not an artifact of slow revisions of FY2 since analysts
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revise FY1 and FY2 at the same time and both sets of forecasts experienced significant

revisions downward with the arrival of COVID-19.

5 Vaccine News and Time-Varying Damages

Finally, we extend our baseline model to allow for the possibility of time-varying arrival rates

or vaccine news. This extension allows us to draw inferences for the June, July, and August

2020 forecasts. To this end, we now consider a vaccine model in which the vaccine arrives

only after two jumps. We can interpret the two jumps as stages in the vaccine development

process. For instance, the first stage can correspond to basic analysis on whether COVID-19

is a difficult virus to find a vaccine such as HIV or an easy one. The second stage is then

the actual development of the particular treatment.

Let τη denote the arrival time of the first jump, which follows a Poisson process with

arrival rate λη. Upon the arrival of the first jump, investors become informed about the

arrival rate of the second jump (i.e., the first jump arrival reveals news about the second

jump arrival rate, which can be either good (a high arrival rate λG) or bad (a low arrival

rate λB.) Let πB and πG be the probability that the news is good and bad, respectively.

Let τv denote the vaccine arrival time: τv = τG if news is good and τv = τB if news is

bad. The sequential order of the two jumps implies that τv > τη with probability one in our

model. Additionally, the news arrival time τη and the additional time required for vaccine

arrival after news arrival, τv − τη, are independent. The expected vaccine arrival time at

time t before news arrival (i.e., when t < τη) is then given by

Et(τv) = Et(τη) + Et
[
Eτη(τv − τη)

]
=

1

λη
+

(
πG
λG

+
πB
λB

)
, (17)

where the first equality follows from the law of iterated expectation and the second equality

uses the independence property of τη and (τv − τη). The expected vaccine arrival time at

time t where t > τη, i.e., after the news arrival time, is simply Et(τv) = 1/λB if the news is

bad and Et(τv) = 1/λG if the news is good.

The vaccine arrival-rate estimate of roughly one year from our baseline model using May

2020 forecasts essentially gives us an estimate of Et(τv), the LHS of Equation (17). Hence,
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Table 5: Updated Estimates of the Vaccine Arrival Rate

This table presents the updated estimates of the vaccine arrival rate λ using I/B/E/S summary

statistics in June, July, and August. The dependent variable is the natural log of Et[Ys]/Y pred
t .

Y pred
t is the earnings predicted using the estimates in Column (1) of Table (2). The explanatory

variables include the horizons of the earnings forecasts s− t and the non-pandemic (January 2020)
I/B/E/S forecasts of growth rates ĝ. λ is the vaccine arrival rate.

June July August

λ 1.455 1.606 2.888
[1.27,1.65] [1.4,1.86] [2.49,3.42]

Num.Obs. 632 632 630

we can interpret the expected arrival time as the sum of two arrival times: the news arrival

time (stage 1) and then the subsequent vaccine development (stage 2).

A simple way then to check for the arrival of vaccine news is to re-estimate our baseline

model for June, July, and August forecasts and check to see if the inferred vaccine arrival

rates differ from that of the May forecasts.

More specifically, we take our model’s predictions for Yt for time t in the pandemic regime,

Y pred
t , by using the May 2020 estimates of n and g, which we denote by the subscript may

(i.e. nmay and gmay). Then, with June, July or August forecasts, we can estimate λ with the

same expectations formula as in our baseline model:

1

Y pred
j,t

Et[Ys] =

∫ s

t

λe−λ(τ−t)egmay(τ−t)enmayeĝ(s−τ)dτ + e−λ(s−t)egmay(s−t)

=
λ

λ− gmay + ĝ

[
eĝ(s−t) − e(gmay−λ)(s−t)

]
enmay + e(gmay−λ)(s−t)

In the pandemic regime at time t, conditional on no news arrival, we expect our estimate of

λ using these other months to be the same as that obtained from the May 2020 forecasts.

That is, the estimate of λ in July conditional on no news arrival implies a value of 1/λ that

is about the value of 1/Et(τv) given in equation (17). On the other hand, if there is news,

the estimated value of λ will differ — the estimated λ at t conditional on news arrival (i.e.,

t > τη) should then be close to either λG or λB.

We report the results of this estimation in Table 5, where we fix the estimates n0 and

g0 from column (1) of Table 2 and estimate λ using June, July and August forecasts. First,
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our inference of λ using the June and July forecasts are similar to those obtained using

May. We estimate λ to be 1.443 for the June forecasts and 1.613 for the July forecasts,

respectively. These estimates are close to the May estimates. However, we find that the

estimated arrival rate increased when using the August 2020 forecasts. The estimated λ is

2.888 with a 95% confidence interval of [2.49, 3.42]. This confidence interval does not overlap

with the 95% confidence interval attached to the 1.354 estimate of λ based on May forecasts

from Table 2. It also does not overlap with the confidence intervals for the estimates based

on June and July forecasts. This is evidence of time-varying vaccine arrival rates and hence

a time-varying damage function.

6 Conclusion

Despite a large theoretical literature on the inherent nonlinearity of pandemic damage func-

tions, there has been relatively little work in estimating them. To address this challenge,

we propose a parsimonious damage function that we take to the data using timely measures

of expected damage given by revisions of industry-level earnings forecasts. The structure

of our model suggests a natural set of identifying restrictions related to forecast rationality

that allow for estimation using nonlinear least squares. Forecast revisions in mid-May 2020

imply a significant negative earnings jump in levels and that a vaccine is expected in 0.74

years. Growth rates are significantly lower until the vaccine arrives.

Our estimates have implications for a number of policy questions. Notably, there is a

timely debate on when and whether a vaccine will be a silver bullet for COVID-19 that

reverts the economy to normal. Our estimates derived from analysts earnings forecasts

provide a potential answer. Moreover, there are several natural inquiries based on our model

and estimates. For instance, one can combine these estimates with an asset pricing model to

assess the extent to which stock prices particularly for distressed industries such as airlines

or hotels, are efficient. One can also consider the pricing of vaccine risk. We leave these

inquires for future research.
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