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1 Introduction

The decisions of judges, employers, police officers, teachers, doctors, lenders, landlords, journal

editors, admissions committees, and other gatekeepers often lead to significant disparities across

groups. An important question is whether, and to what extent, these disparities are driven by

group-level differences in relevant underlying individual characteristics, or by biased decision makers

employing favoritism, animus, or inaccurate stereotypes that unfairly privilege particular groups.

To answer this question, it is necessary to first define what it means for a decision to be unbiased.

This requires specifying what unbiased decision makers in a particular setting are supposed to be

optimizing, what constraints they face, and what they should know at the time they make their

decisions. Once this is specified, the analyst can derive optimality conditions for the decision

maker’s problem, and then attempt to check whether these conditions are consistent with data,

separately for different groups affected by the decision. If these checks suggest that an unbiased

decision maker could do better by changing how they treat members of a particular group, the

analyst may conclude that this group is subject to bias.

This idea forms the basis of the outcome test of bias proposed by Becker (1957, 1993). Becker

(1957)’s key insight is that a biased decision maker “must act as if he were willing to pay something”

to exercise bias. Benchmark tests, which compare decision rates across groups and are ubiquitous

in the discrimination literature, need not be informative about such bias, as differences in decision

rates may simply reflect relevant group differences in individual characteristics that are unobserved

by the analyst (e.g., Grogger and Ridgeway, 2006). Observing the downstream outcomes that

result from a decision, on the other hand, may be more informative about bias, as differences in

these outcomes across groups may reveal the decision maker’s “willingness to pay” to favor some

groups over others. Becker (1993) offers an intuitive example in the context of mortgage lending: if

a bank’s loans to approved black applicants tend to generate higher profit outcomes than its loans

to approved white applicants, this may indicate racially biased lending decisions that hold black

applicants to a stricter standard beyond what unbiased profit maximization would imply.

In this paper, we carefully examine what researchers can learn about bias in decision making

from outcome tests, which compare post-decision outcomes across different groups. Much of the

discrimination literature since Becker (1957) has focused on identification issues that arise when in-
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dividuals differ along dimensions beyond the group membership of interest.1 In outcome tests, such

heterogeneity is known to render average outcomes across groups generally uninformative about

the marginal cases that may reveal a decision maker’s differential standards, as average compar-

isons confound any differences at the margin with distributional differences away from the margin

(Peterson, 1981; Heckman, 1998; Ayres, 2002). Innovative solutions to such “inframarginality bias”

include equilibrium models in which the average individual endogenously behaves like, and thus

identifies, the marginal (Knowles et al., 2001); partial identification approaches that derive testable

implications of bias in comparisons of decision rates and average outcomes across different decision

makers (Anwar and Fang, 2006; Alesina and La Ferrara, 2014); and instrumental variable strategies

that use exogenous assignment of cases to decision makers of varying leniency to directly identify

the outcomes of marginal cases (Arnold et al., 2018; Dobbie et al., 2021).

While addressing inframarginality bias is an essential input into a viable outcome test, we

initially take a step back to ask a more fundamental question: under what conditions are the

outcomes of marginal cases, even if known perfectly, actually informative about decision maker

bias? To answer this question, we first lay out a modeling framework in Section 2 that describes

decision maker behavior and sets the stage for defining and detecting bias in decision making. We

focus on settings where a standalone decision maker makes a binary decision by maximizing the

expected net benefit of that decision.2 For concreteness, we ground our exposition in the context

of racial bias in pre-trial release, where a bail judge decides whether to release or detain defendants

of different races who are awaiting trial, as this setting features prominently in the recent outcome

test literature (e.g. Arnold et al., 2018, 2022). Our analysis generalizes, however, to a wide range

of empirical settings and dimensions of bias, as we discuss throughout the paper.

We show that models of decision making underpinning outcome tests can be usefully recast as

Roy models, since the potential outcomes of the individuals subject to the decision—in the case

of pre-trial release, the risk of flight or additional crimes (“misconduct”) a defendant may commit

before trial—enter directly into the decision maker’s choice equation.3 Indeed, the intuitive motiva-

1See recent reviews by Bertrand and Duflo (2017) and Lang and Spitzer (2020).
2For examples of outcome tests in settings with continuous, rather than binary, decision variables, see Ayres and

Waldfogel (1994), Anwar and Fang (2012), Anwar and Fang (2015), and Mechoulan and Sahuguet (2015).
3The Roy (1951) model has been enormously influential in the analysis of economic decision making across a

wide range of settings. Early applications include labor market participation (Gronau, 1974; Heckman, 1974), union
membership (Lee, 1978), college attendance (Willis and Rosen, 1979), marriage (McElroy and Horney, 1981), domestic
and international migration (Robinson and Tomes, 1982; Borjas, 1987), and occupational choice (Dolton et al., 1989).
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tion for the outcome test rests on an implicit assumption of some link between potential outcomes

and decisions; otherwise, there would be no reason to expect outcomes to be informative about

(bias in) decision making. Different members of the Roy model family, however, are distinguished

by the tightness of the link between potential outcomes and decisions. At one extreme of the Roy

spectrum, decision makers in the original Roy (1951) model simply choose the option with the

most advantageous potential outcome, forging a very tight link between potential outcomes and

decisions. At the other end of the spectrum is the Generalized Roy Model (Björklund and Moffitt,

1987; Heckman and Vytlacil, 2005), in which potential outcomes are allowed to, but not required

to, influence decisions, as other factors unobservable to the econometrician are allowed to determine

choices in unrestricted ways.

For the purposes of the outcome test, we show that a constructive middle ground between

these two extremes is the Extended Roy Model (Heckman and Vytlacil, 2007; D’Haultfœuille and

Maurel, 2013). In this model, a decision maker acts as if she follows a cutoff rule, comparing the

expected effect of her decision on the outcome against a cutoff value. This cutoff value is allowed to

vary across different decision makers (e.g. judges with different levels of leniency), and potentially

across the group membership of interest in the outcome test (e.g. the race of the defendant), but

not across any dimensions of heterogeneity unobserved by the econometrician, which is the key

restriction of the Extended Roy Model that distinguishes it from the Generalized Roy Model. We

show that these two members of the Roy model family implicitly underlie nearly all of the existing

outcome test literature, and we show how their distinction has important implications not only for

decision maker behavior, but also for the task of defining bias (Section 3), for the logical validity

of the outcome test as an indicator of such bias (Section 4), and for the econometric identification

of the marginal outcomes that the test requires (Section 5).

In Section 3, we use the models laid out in Section 2 to define bias and its absence, and discuss

how our definitions relate to and nest notions of bias from the previous literature. Our framework

explicitly distinguishes taste-based bias from other unrelated factors that can end up being empiri-

cally indistinguishable from it, including errors in the decision maker’s outcome predictions, errors

in the econometrician’s measurement or specification of the outcome variable, and other decision

maker objectives beyond the measured outcome. Our various definitions of bias also show how the

task of defining bias necessarily interacts with the task of choosing a decision model, revealing a
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tradeoff between simpler definitions of bias versus tighter restrictions on how decision makers treat

individuals who differ on dimensions beyond the group membership of interest in the outcome test.

In Section 4, we formally describe the outcome test, which aims to detect decision maker bias

by comparing the post-decision outcomes of marginal individuals from different groups.4 We then

present two sets of results on the logical validity of this test. The first set of results show that the

test is logically invalid in the context of the Generalized Roy Model. We show this by generating

broad classes of counterexamples which prove that the outcome test may conclude that a decision

maker is unbiased even if she is biased, or conclude bias even if the decision maker is unbiased, or

even conclude bias against one group when the decision maker is actually biased against another.

These logical invalidations arise because the Generalized Roy Model is not sufficiently restrictive

to deliver an optimality condition in which an unbiased decision maker must equalize marginal

outcomes across groups, since other factors unobserved to the econometrician can also influence

decisions. One perhaps surprising lesson from our analysis is that these unobserved factors can

invalidate the outcome test even if they are completely independent of the group membership

potentially subject to bias, going beyond typical concerns in the discrimination literature about

correlated confounders.

These findings raise the question of what additional restrictions are needed for the decision

model to generate an optimality condition in which an unbiased decision maker equalizes marginal

outcomes across groups, and thereby enable a logically valid outcome test. Our second set of results

in Section 4 establish logical validity of the outcome test when restricting decision maker behavior

to the Extended Roy Model, as this restriction shuts down the confounding channels present in

the Generalized Roy Model. Imposing the Extended Roy Model has substantive implications for

admissible decision maker behavior, so careful consideration must be paid to the credibility of those

implications in any given empirical environment. We also discuss alternative ways to generate

logically valid outcome tests, including changing the parameter of interest to alternative notions

of bias or discrimination (e.g. Arnold et al., 2020, 2022), or restricting the data generating process

to eliminate any statistical relationship between potential outcomes and the group membership of

interest.

4Our analysis applies to examining not only whether bias exists, but also its magnitude, as well as heterogeneity
in bias across different decision makers, including groups of decision makers. This has implications, for example, for
the literature on in-group bias (e.g., Shayo and Zussman, 2011; Anwar et al., 2012; Knepper, 2018; Ash et al., 2022).
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Since all of our results on the logical validity of outcome tests in Section 4 assume that the

outcomes of marginal members of each group are perfectly known, these results are distinct from,

and prior to, challenges that arise in attempting to identify marginal outcomes from observed

data, which we turn to in Section 5. In Section 5.1, we consider the best-case scenario of local

instrumental variation across continuously distributed and exogenously assigned decision makers.

We show that it is not possible to recover the marginal outcomes of interest for the outcome test in

the context of the Generalized Roy Model without imposing additional restrictions. This is because

the model concerns the behavior of a given decision maker and does not impose restrictions on how

decision makers may differ in their behavior, which limits the informativeness of observed variation

in decisions and outcomes across different decision makers.

We then show that the instrument monotonicity condition of Imbens and Angrist (1994), which

requires uniformity across decision makers in how they treat different individuals, permits non-

parametric point identification of the marginal outcomes of interest as marginal treatment effects

(Heckman and Vytlacil, 2005). Importantly, however, imposing this monotonicity restriction to

identify MTEs does not restore the logical validity of the outcome test, meaning that a researcher

may successfully recover marginal outcome contrasts that are nonetheless uninformative about de-

cision maker bias. This is because our results on logical invalidity in the Generalized Roy Model

hold for a given decision maker, and are thus insensitive to whether the decision model satisfies

monotonicity, which is a restriction across different decision makers. These results imply a logical

invalidity in approaches like Arnold et al. (2018) that simultaneously maintain the empirical flexi-

bility of the Generalized Roy Model to identify MTEs while also attempting to test for bias. The

Extended Roy Model, meanwhile, delivers both a logically valid and econometrically viable outcome

test: the structure it imposes on the decision model not only ensures a logical connection between

marginal outcomes and decision maker bias, but also ensures instrument monotonicity. Because the

Extended Roy Model imposes additional restrictions beyond those that identify marginal outcomes,

it generates clear testable implications that may help assess its suitability across empirical settings.

In Section 5.2, we extend these results to other data environments and identification approaches.

We first consider settings where point-identifying marginal outcomes is challenged by discretely

distributed decision makers. We then study the frequent case where no valid instrumental variation

across decision makers is available, and the analyst attempts to compare average outcomes across
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groups for a given decision maker or group of decision makers. We highlight the additional challenges

to identification that arise in these environments and discuss potential solutions.

2 Framework

In this section, we lay out a modeling framework that describes decision maker behavior and sets

the stage for defining and detecting bias in decision making. We focus on settings where a single

agent makes a binary decision through a cost-benefit analysis. For concreteness, we ground our

exposition in the context of racial bias in pre-trial release, where a bail judge decides whether to

release or detain defendants of different races who are awaiting trial. Our analysis generalizes,

however, to a wide range of empirical settings and dimensions of bias, as we discuss throughout.

2.1 Setup and Notation

The random vector (Z,D,R, V, Y1, Y0, C) captures the relevant variables in the decision model.

Each draw from this vector represents a case exogenously assigned to a decision maker Z who

makes a binary decision D regarding an individual characterized by (R, V, Y1, Y0, C), defined below.

Depending on the setting, the set of decision makers Z could be viewed as a continuum in R or

a discrete set with few or many elements. The cardinality of Z does not affect our results on

logical validity of the outcome test, which only concerns the behavior of a given decision maker z

arbitrarily chosen from Z. In Section 5, we discuss econometric viability of the outcome test using

variation across both continuous and discrete Z.

In the pre-trial release environment, D = 1 if the bail judge decides to release the defendant

prior to trial, and D = 0 if the defendant is detained. The judge observes the race R of each

defendant, with R = w denoting a white defendant and R = b denoting a black defendant, as well

as non-race characteristics V like criminal history, employment status, and family structure. We

use lower case letters (r, v) to refer to the characteristics of a specific defendant.

The defendant’s outcome Y , which is used to conduct the outcome test, takes values in Y ⊆ R,

with potential outcome Y1 occurring if the decision is D = 1 and Y0 occurring if D = 0. Throughout,

we maintain the exclusion restriction that a judge only affects defendant outcomes through her

release decision, not through any direct effects on potential outcomes. Existing empirical work
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on bias in the pre-trial setting typically restricts (Y1, Y0) in two additional ways. First, Y is

binarized, with Y1 indicating whether the defendant would commit any pre-trial misconduct if

released. Second, detention is assumed to prevent any misconduct from occurring, such that Y0 ≡ 0

for all defendants. We do not need to impose these setting-specific restrictions in our framework,

since they are immaterial for our results on logical validity and econometric viability of outcome

tests. Instead, we work more generally with ∆ ≡ Y1 − Y0, the causal effect of release on a given

defendant’s misconduct outcome. This generality can be useful in other settings where Y is not

binary or Y0 is not equal to zero.5

Weighed against the effect of release on pre-trial misconduct is C, the cost of detaining a given

defendant prior to trial. This cost captures defendant-invariant considerations like local jail capacity

and judge z’s general level of leniency, as well any defendant-specific costs of detention the judge

may consider, including job loss, family instability, increased likelihood of conviction due to reduced

bargaining power, and long-run criminogenic effects (Leslie and Pope, 2017; Dobbie et al., 2018).

To capture bias, we denote by β(z, r, v) the taste for discrimination parameter that judge z

has for a defendant with race and non-race characteristics (r, v). We devote Section 3 to formal

definitions of bias using this parameter and discuss how they relate to previous definitions from the

literature.

Finally, we denote by W (z) the information set available to judge z at the time of the decision.

W (z) contains the race and non-race characteristics of the defendant (r, v), as well as judge z’s

beliefs about the conditional distribution of (Y1, Y0, C) given (r, v).

Remark 2.1. We purposefully defer discussing which of these variables are observable and unob-

servable to the econometrician until turning our attention to identification in Section 5. In doing

so, we emphasize that the results we derive on logical validity of the outcome test are distinct from

issues about econometric identification.

Remark 2.2. We also need not be concerned at this point whether information sets and beliefs

may differ across judges. This is because logical validity of the outcome test is solely concerned

5Under the restrictions typically imposed in the pre-trial release literature, ∆ = Y1 ∈ {0, 1}. In other settings,
decision makers may focus only on Y0, like disability insurance examiners assessing an applicant’s potential for gainful
employment in the absence of DI receipt D. Our framework incorporates all of these variations by defining ∆ as
whatever level or contrast of potential outcomes is relevant for the decision maker.

7



with the mapping between the bias of any given judge and the outcomes of that specific judge’s

marginal black and white defendants.

2.2 Decision Model

Judge z makes a decision by minimizing expected cost, given her information at the time of the

bail hearing. With the notation set out above, the problem solved by judge z can be written as

min
d∈{0,1}

E[Yd + (1− d)(C + β(z, r, v)) | W (z)] . (1)

This leads to the optimal decision D given by the cost-benefit comparison

D = I {E[∆|W (z)] ≤ c(z, r, v) + β(z, r, v)} , (2)

where E[∆|W (z)] = E[Y1−Y0|W (z)] denotes the expected effect of release on defendant misconduct,

and c(z, r, v) ≡ E[C|W (z)] denotes the expected cost of detention.

The model in (2) states that judge z releases a defendant with characteristics (r, v) whenever the

expected misconduct cost of releasing the defendant given the judge’s information, E[∆|W (z)], does

not exceed the expected cost of detaining the defendant, E[C|W (z)], where the cost of detention

is shifted by the taste for discrimination parameter β(z, r, v). In this way, a high value of β(z, r, v)

means that judge z exacerbates the cost of detaining a defendant with characteristics (r, v).6

The term E[∆|W (z)] is the expected effect of release on pre-trial misconduct given the informa-

tion set of judge z. In particular, W (z) includes judge z’s beliefs about the conditional expectation

of ∆ ≡ Y1 − Y0 given (r, v), which may deviate from E[∆|R = r, V = v], which we hereafter write

more succinctly as E[∆|r, v]. To make this distinction clear, we define

λ(z, r, v) ≡ E[∆|r, v]− E[∆|W (z)] . (3)

The function λ(z, r, v) captures a variety of factors that may drive a wedge between the mean

6In our formulation, the taste for discrimination parameter β(z, r, v) enters additively in the objective function
in (1). This is the formulation adopted, for example, by Knowles et al. (2001) and Anwar and Fang (2006). An
alternative formulation would introduce β(z, r, v) multiplicatively, similar to Persico (2009). This modeling choice
does not affect the substantive points we make in this paper.
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effect of release on misconduct among defendants with characteristics (r, v) and judge z’s prediction

of that effect.7 First, λ(z, r, v) captures any prediction errors by judge z that vary systematically

with defendant characteristics (r, v). The results in Kleinberg et al. (2018), for example, sug-

gest that bail judges systematically overestimate misconduct among defendants who face a serious

current charge but have little criminal history, and conversely underestimate misconduct among

defendants who face a minor current charge but more serious prior convictions. Second, λ(z, r, v)

captures any systematic measurement error in Y , the outcome used to conduct the outcome test.

Defendants with more criminal experience, for example, may be more likely to commit additional

crimes while awaiting trial that go unsolved by law enforcement, driving a wedge between the mea-

sured outcome Y and the actual misconduct the judge tries to predict. Relatedly, λ(z, r, v) captures

any specification error in the definition of Y . If Y is a binarized measure of any misconduct, for

example, but judge z considers severity as well—e.g. putting more weight on murdering a witness

than skipping a court date—then λ(z, r, v) would include a severity-weighted deviation from the

unweighted effect of release on any misconduct occurring.8

Remark 2.3. Many seminal papers in the outcome test literature, including Knowles et al. (2001),

Anwar and Fang (2006), and Persico (2009), implicitly or explicitly assume λ(z, r, v) to be zero.

In both Knowles et al. (2001) and Anwar and Fang (2006), for example, a police officer’s expected

benefit of stopping a driver equals the true probability that the driver is carrying contraband.

Likewise, in the framework of Persico (2009), decision makers know the true expected profits of

every action. More recent studies of racial bias in pre-trial release, e.g. Arnold et al. (2018),

Arnold et al. (2022), and Hull (2021), discuss judge prediction error and measurement error as

potential confounders in detecting taste-based bias, but only to the extent that these confounders

correlate with defendant race. One perhaps surprising implication of our results in Section 4 is that

prediction and measurement errors embedded in λ(z, r, v) can invalidate the logic of the outcome

test even if they are independent of defendant race.

7Analogous to β(z, r, v), we model λ(z, r, v) additively, though our results could be easily adapted to a multiplica-
tive formulation with minor modifications.

8Indeed, bail judges in most U.S. jurisdictions are instructed to gauge not only the likelihood of any misconduct
but also its potential severity along several dimensions—including risks to the public at large, danger to specific
victims and witnesses, and challenges to the integrity of the judicial process (American Bar Association, 2007)—and
are explicitly instructed to use defendant characteristics like prior criminal history, employment status, and family
structure to form predictions about these risks. See, for example, 18 U.S. Code § 3142(g) and California Penal Code
1275(a)(1).
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2.3 Roy Model Representation

The decision model laid out above nests a family of Roy models, since heterogeneous potential

outcomes enter directly into the decision maker’s choice equation. Indeed, the intuitive motivation

for the outcome test rests on an implicit assumption of some link between potential outcomes and

decisions; otherwise, there would be no reason to expect outcomes to be informative about (bias in)

decision making. Different members of the Roy family, however, are distinguished by the tightness

of the link between potential outcomes and decisions. We show that clarifying these distinctions

matters for defining bias (Section 3), deriving logically valid outcome tests of such bias (Section 4),

and identifying the marginal outcomes that the test requires (Section 5).

At one extreme of the Roy spectrum, decision makers in the original Roy (1951) model solely

consider potential outcomes Yd when choosing D, forging a very tight link between potential out-

comes and decisions. In the classic setting of occupational choice, for example, a worker simply

selects the occupation d in which she would earn the highest wage Yd, with no other considerations.

At the other end of the spectrum is the Generalized Roy Model (Björklund and Moffitt, 1987; Heck-

man and Vytlacil, 2005), in which potential outcomes are allowed to, but not required to, influence

decisions, as factors other than Yd can determine choices. In occupational choice, this model allows

a worker to consider not only the potential wage of an occupation, but also non-pecuniary costs and

benefits of taking it up, which may relate to preferences, constraints, and abilities that vary across

workers. A middle ground between these two extremes is the Extended Roy Model (Heckman and

Vytlacil, 2007; D’Haultfœuille and Maurel, 2013), where other factors beyond potential outcomes

are allowed to enter decisions but only in restricted ways, as we make precise below.

Generalized Roy Model

Without further restrictions, the judge’s decision problem in (1) is a Generalized Roy Model (GRM),

since it depends on expectations of not only the potential outcomes Yd but also the (so far unre-

stricted) terms C and β. We can combine (2) and (3) and rearrange to make this representation

explicit in our framework.

Definition 2.1 (Generalized Roy Model). In the Generalized Roy Model (GRM), the decision rule
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of judge z facing a defendant characterized by (r, v) is given by

D = I {E[∆|r, v] ≤ τ(z, r, v)} where τ(z, r, v) ≡ c(z, r, v) + λ(z, r, v) + β(z, r, v) . (4)

In the GRM, the left side of the inequality is the mean effect of releasing a defendant with

characteristics (r, v) on the misconduct outcome Y . The right side captures all other factors that

influence the judge’s decision of whether to release such a defendant. We collect these factors in

the function τ(z, r, v), and refer to this function as the perceived benefit of release. This benefit

function τ(z, r, v) captures not only the expected detention costs c(z, r, v) avoided by not detaining

the defendant, but also any misalignment λ(z, r, v) between the mean effect of release and the

judge’s prediction of it as defined in (3), as well as the taste for discrimination parameter β(z, r, v).

The key elements of the GRM in (4) can therefore be summarized as follows. First, the cost

of release E[∆|r, v] is tied directly to defendant potential outcomes, which do not depend on the

identity of the judge making the decision. Second, the benefit of release τ(z, r, v) contains all other

factors that influence the judge’s decision, including those that intrinsically depend on judge z via

her beliefs and preferences. Third, both race R and non-race characteristics V enter both sides of

the decision equation.

Remark 2.4. We could have started the description of the judge’s decision problem with the

GRM in (4) directly, without defining the optimization problem in (1). However, since many of our

results in Sections 4 and 5 on the logical validity and econometric viability of the outcome test, as

well as the task of defining bias in Section 3, hinge on properties of the benefit function τ(·), the

optimization problem is useful for showing explicitly how this function can arise as a composite of

several conceptually distinct components, each of which may influence the properties of τ(·). This

derivation also allows us to demonstrate explicitly how our framework nests and relates to other

papers in the outcome test literature.

Extended Roy Model

One of the key features of the GRM in Definition 2.1 is that both sides of the cost/benefit

comparison—the expected misconduct cost on the left side, and the perceived benefits of release

on the right side—are allowed to vary across all defendant characteristics in the judge’s informa-
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tion set. This makes the GRM rich and flexible, but Sections 4 and 5 show that such flexibility

introduces challenges to both the logical validity and econometric viability of outcome tests of bias.

We show these challenges can be nullified, however, by restricting the benefit function τ(·) in

(4) to vary across only a subset of the defendant characteristics observed by the judge, narrowing

the decision model from a Generalized Roy Model to an Extended Roy Model (ERM). Specifically,

the expected misconduct cost E[∆|r, v] on the left side of the decision inequality can continue

to depend arbitrarily on all judge observables. However, the perceived benefit on the right side

now depends only on the identity of the judge Z and the group stratification variable involved

in the outcome test, namely race R, thus excluding all non-race defendant characteristics V from

τ(·).9 Through the lens of the decision model, this means the expected cost of detention c(z, r, v),

the misalignment λ(z, r, v) between the mean effect of release and the judge’s prediction of it,

and the taste for discrimination parameter β(z, r, v) are all invariant across all non-race defendant

characteristics v:

c(z, r, v) = c(z, r), λ(z, r, v) = λ(z, r), and β(z, r, v) = β(z, r) . (5)

This restriction leads to the Extended Roy Model, as defined below.

Definition 2.2 (Extended Roy Model). The decision rule of judge z in the Extended Roy Model

(ERM) is given by

D = I {E[∆|r, v] ≤ τ(z, r)} where τ(z, r) ≡ c(z, r) + λ(z, r) + β(z, r) . (6)

Remark 2.5. The restrictions in (5) are sufficient for τ(z, r, v) not to depend on v. Of course,

there exist functional forms of c(z, r, v), λ(z, r, v), and β(z, r, v) such that τ(z, r, v) may not depend

on v even when c(z, r, v), λ(z, r, v), and β(z, r, v) do, but we do not view such specific cases as

particularly insightful and so do not devote special attention to them.

Remark 2.6. In this framework, we could write the original Roy (1951) model as D = I {∆ ≤ 0},

augmented to include a fixed threshold as D = I {∆ ≤ τ}. The Extended Roy Model thus extends

9More generally, the Extended Roy Model allows all variables commonly observed by the judge and the econo-
metrician to drive variation in the benefit function τ(·), but eliminates any variation in τ(·) from variables observed
by the judge but not the econometrician. We discuss in Section 5.1 how this accommodates empirical settings with
observed covariates X and outcome tests of bias against other characteristics besides race.
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the original Roy model in two ways: it allows the decision maker to have ex ante uncertainty over

the potential outcomes ∆, and it allows the threshold τ to vary across different decision makers and

defendant races (as well as any covariates X observed by both the judge and the econometrician,

which we suppress here but discuss in Section 5.1).

Intuitive Comparison of the Models

The distinguishing feature of the ERM in (6) relative to the GRM in (4) is the exclusion of non-

race defendant characteristics V from the benefit function τ(·). This distinction has important

implications for decision maker behavior. In the ERM, judge z acts as if all defendants of the

same race have exactly the same benefit of release, since fixing z and r fixes the value of the

benefit function τ(z, r). Thus, a given ERM judge z facing a pool of defendants of the same race

r acts as if she sets a fixed cutoff of allowable misconduct risk equal to this fixed benefit value,

and then releases all defendants with expected misconduct effects below this cutoff and detains all

defendants above it. This cutoff can vary across different judges, and across different defendant

races for a given judge, but is fixed for all defendants of a given race facing a given judge. Judge

z’s variation in release decisions within this pool of defendants is thus entirely driven by variation

in expected misconduct, which in turn is driven by variation in non-race defendant characteristics

V . It is therefore important to observe that non-race defendant characteristics in the ERM play an

asymmetric role in a judge’s cost-benefit analysis: such characteristics can shift the cost of release,

but not the perceived benefit.

The GRM, by contrast, does not impose this asymmetry: non-race defendant characteristics

are allowed to shift both costs and benefits. Specifically, allowing the benefit function τ(z, r, v)

to vary with V allows the judge to perceive different benefits of releasing defendants who share

the same race but differ in their non-race characteristics, like employment status and number of

dependents. Unlike in the ERM, the GRM would therefore allow a judge to set a higher cutoff of

permissible misconduct risk among employed black defendants with children, for example, compared

to unemployed black defendants without children. We next show how these modeling choices

interact with the task of defining decision maker bias.

Remark 2.7. As we discuss in detail in Section 4.5, the family of Roy models we have laid out
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in this section underlie nearly all of the existing literature on outcome tests of bias. Arnold et al.

(2018), for example, write down a model of bail judge behavior equivalent to the GRM in (4), while

Anwar and Fang (2006)’s model of police officer behavior in traffic stops is a special case of the

ERM in (6). Knowles et al. (2001) consider a two-sided model of police behavior with endogenous

driver responses, but the decision model of police officers—whose behavior is the object of interest

in the outcome test—again represents a special case of the ERM.

3 Defining Bias

Section 2 laid out a family of decision models that describe the behavior of decision makers. In this

section, we use these models to define racial bias and its absence, and discuss how our definitions

relate to and nest notions of bias from the previous literature.

3.1 Absence of Racial Bias

The parameter β(z, r, v) in the decision model (2) captures judge z’s personal taste for releasing a

defendant of race r and non-race characteristics v, distinct from considerations of misconduct risk

and detention costs. It is natural, then, to first define the absence of racial bias in terms of this

parameter as follows.

Definition 3.1 (Absence of racial β-bias). We say judge z is racially β-unbiased if

β(z, r, v) = β(z, v) for all v ∈ V .

This definition implies that a judge is racially unbiased if she has equal preferences for white

and black defendants who share the same non-race characteristics v. Through its dependence on

z and v, Definition 3.1 nests notions of unbiasedness from previous papers in the literature. The

bias parameter in Knowles et al. (2001), for example, does not vary across decision makers (z

here) or any non-race characteristics (v here) of drivers (defendants), which in turn simplifies their

definition of unbiasedness. In Anwar and Fang (2006, Definition 1), bias is allowed to vary across

decision maker race, but again not across drivers’ (defendants’) non-race characteristics. Definition

3.1 is similar to the definition of unbiasedness proposed by Brock et al. (2012, Equation (13)),
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where preferences are required to be invariant by race for each value of the non-race characteristics

observed by the decision maker.

Defining absence of bias in terms of the preference parameter β(z, r, v) is not the only option

in a Generalized Roy decision model like (4). For example, Arnold et al. (2018, Definition 1)

define absence of bias via the broader benefit function τ(·) in (4), instead of the specific taste for

discrimination parameter β(·), which is just one component of τ(·). To contrast with Definition 3.1,

we refer to absence of bias though the function τ(z, r, v) as “absence of racial τ -bias,” and formally

define it as follows.

Definition 3.2 (Absence of racial τ -bias). We say judge z is racially τ -unbiased if

τ(z, r, v) = τ(z, v) for all v ∈ V .

Definitions 3.1 and 3.2 are conceptually and mathematically different unless further restrictions

are imposed. In order to appreciate the differences, it is helpful to recall that the benefit function

τ(·) captures three different terms:

τ(z, r, v) ≡ c(z, r, v) + λ(z, r, v) + β(z, r, v) . (7)

Two alternative interpretations immediately arise. First, one may interpret the two notions of

unbiasedness in Definitions 3.1 and 3.2 as equivalent under the implicit assumption that the other

two confounding functions, c(z, r, v) and λ(z, r, v), are absent, or at least independent of race. If

that is the case, then any dependence of τ(·) on race must come from the taste for discrimination

parameter β(·), and the two notions would coincide. Second, one may proceed by being agnostic

about the distinct mechanisms comprising the benefit function τ(·) and define bias with a broad

brush that goes beyond the taste for discrimination parameter β(·). Under this broader interpreta-

tion, for a judge to be labeled unbiased would require not only the personal taste for discrimination

(β) to be race invariant; it would also require prediction/measurement errors (λ) to be independent

of race, and require the expected cost of detention (c) to be independent of race.10 Since these are

a broader set of requirements, if judge z is racially τ -unbiased in the sense of Definition 3.2, she

10Analogous to Remark 2.5, throughout the paper we abstract away from functional singularities that may make
the function τ(·) race invariant even when its three components are not.
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would also be racially β-unbiased in the sense of Definition 3.1, but the converse does not hold.

Remark 3.1. As mentioned in Remark 2.3, earlier contributions like Knowles et al. (2001), Anwar

and Fang (2006), and Persico (2009) derive outcome tests in models where λ(z, r, v) is assumed to

be zero. However, whether c(z, r, v) is also assumed to be zero is less clear to us. On one hand,

Persico (2009) exclusively discusses psychic cost in references to β(r) (using his notation). This

would be consistent with employing Definition 3.1 and assuming c(z, r, v) = 0, which combined

with λ(z, r, v) = 0 yields an equivalence between β-bias and τ -bias. On the other hand, Knowles

et al. (2001) and Anwar and Fang (2006) define police officer bias in terms of a “search cost” t(·),

which could be interpreted as capturing not only pure officer preferences, but also factors that

belong to the cost function c(·) in our decision model. As Anwar and Fang (2006, footnote 24)

note, “Strictly speaking, we should have a broad interpretation of the search cost t(rm; rp). For

example, the cost of decoding the demeanor may be smaller if rm = rp” (i.e. if motorist race

equals police officer race). This would be consistent with a broader interpretation of bias aligned

with Definition 3.2, though again under the restriction λ(z, r, v) = 0. A key motivation of ours in

explicitly decomposing the threshold function τ(·) into its distinct components of preferences, costs,

and prediction/measurement errors, as in (7), is to highlight the important interaction between

modeling these components and defining decision maker bias.

Definitions 3.1 and 3.2 simplify when preferences β(z, r, v) and total release benefits τ(z, r, v),

respectively, do not depend on non-race characteristics v. In that case, judge z is racially unbiased

in the sense of Definition 3.1 when

β(z, r) = β(z) ,

and is racially unbiased in the sense of Definition 3.2 when

τ(z, r) = τ(z) .

With few exceptions, notably Brock et al. (2012) and Arnold et al. (2018), the literature on outcome

tests typically proceeds under such restrictions, assuming (explicitly or implicitly) that decision

maker bias is solely a function of defendant race, and thus invariant to all other non-race character-

istics. Persico (2009, Equation (3)), for example, explicitly imposes such a restriction at the outset
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under the premise that it simplifies identification. Other papers, including Knowles et al. (2001)

and Anwar and Fang (2006), do not highlight this restriction but impose it in their frameworks,

which in turn is one of the points raised by Brock et al. (2012).

Recall that in order for τ(z, r, v) not to depend on v, one needs to restrict the Generalized Roy

Model to an Extended Roy Model. Defining racially unbiased behavior in the ERM is therefore

simpler than in the GRM, but requires a more restrictive model of how decision makers treat

individuals with different non-race characteristics.

3.2 Types of Racial Bias

The subtleties associated with the preference parameter β(z, r, v) generally depending on non-race

characteristics and generally differing from the benefit function τ(z, r, v) are also present when

formally defining the presence of bias. We start with the following set of definitions.

Definition 3.3 (Racial β-bias).

We say judge z is locally β-biased against black defendants if

β(z, w, v) ≥ β(z, b, v) for all v ∈ V with strict inequality for some open subset Vsi ⊆ V . (8)

We say judge z is globally β-biased against black defendants if

β(z, w, v) > β(z, b, v) for all v ∈ V . (9)

Definition 3.3 labels judge z as biased against black defendants if she prefers white defendants

over black defendants who have the same non-race characteristics v. As with Definition 3.1, the

presence of non-race characteristics v introduces layers that are not present when bias only depends

on (z, r), as in Knowles et al. (2001), Anwar and Fang (2006), and Persico (2009), among others.

Our definition distinguishes between two degrees of bias, local and global. Decision makers may

also exhibit “crossing” in their racial preference, i.e. β(z, w, v) > β(z, b, v) for v in some subset of

V and β(z, w, v) < β(z, b, v) for v in some other subset of V. In our formal results below, we refer

to such a decision maker as “unclassified,” which we define as any behavior that cannot be labeled

as unbiased, locally biased, or globally biased.
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As with the absence of bias, the presence of bias could alternatively be defined in terms of the

overall benefit function τ(z, r, v) instead of its subcomponent β(z, r, v).

Definition 3.4 (Racial τ -bias). We say judge z is locally τ -biased or globally τ -biased against

black defendants if (8) or (9), respectively, hold with τ(z, r, v) replacing β(z, r, v).

Such a definition again admits two interpretations. One may interpret the two notions of bias in

Definitions 3.3 and 3.4 as equivalent under the implicit assumption that the other two confounding

components of τ(z, r, v)—c(z, r, v) and λ(z, r, v)—are independent of race. Alternatively, one may

interpret bias in terms of τ(z, r, v) in a broad sense that goes beyond the taste for discrimination

parameter β(·). Under this broader interpretation, there are multiple ways for a judge to be labeled

as τ -biased: she may directly harbor a personal taste for discrimination (captured by β), but even

if not, she may make prediction/measurement errors (λ) that vary by race, or expect the costs of

detention (c) to vary by race, all of which would fall under the broader umbrella of τ -bias.

Remark 3.2. A prominent example of τ -bias in the literature is Arnold et al. (2018, Definition

1), which defines judge j as racially biased against black defendants if tjw(vi) > tjb(vi), where

the function tjr(v) is τ(z, r, v) in our notation, with judge j corresponding our z and i indexing

defendants. Since non-race defendant characteristics vi are identical on both sides of the inequality

(confirmed in the text of the definition), Definition 1 as published in Arnold et al. (2018) corresponds

to our definition of globally τ -biased in Definition 3.4.11

Definitions 3.3 and 3.4 simplify considerably when β(z, r, v) and τ(z, r, v) do not depend on v.

In that case, judge z is β-biased against black defendants if

β(z, w) > β(z, r) , (10)

and is τ -biased against black defendants if

τ(z, w) > τ(z, r) . (11)

It follows immediately that in the Extended Roy Model, there is no distinction between local and

11In an unpublished correction appendix (Arnold et al., 2020), the authors change their definition of bias. We
discuss this new definition in Section 4.5.
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global bias. Furthermore, the possibility of “crossing” previously discussed does not arise and, as

a result, judges cannot be labeled as unclassified. This again highlights a tradeoff between simpler

definitions of bias (ERM) and richer models of decision making (GRM). When presenting logical

validity results in the next section, we also consider an intermediate case that restricts β(·) to be

invariant to non-race characteristics—thus assuming taste-based discrimination occurs with respect

to race only, and no other defendant characteristics—but leaves the other components of τ(·) free

to vary with such characteristics, preserving the GRM. These definitional nuances are important to

keep in mind when comparing definitions of bias across the previous literature, studying the logical

validity and econometric viability of outcome tests, and formulating new tests of bias in decision

making.

4 Logical Validity of Outcome Tests of Bias

We now describe the outcome test, which aims to detect decision maker bias by comparing the

post-decision outcomes of marginal individuals from different groups. We then present two sets of

results on the logical validity of this test. The first set of results show that the test is logically

invalid in the context of the Generalized Roy Model. We show this by generating broad classes of

counterexamples which prove that the outcome test may conclude a judge is unbiased even if she is

racially biased, or conclude bias even if the judge is racially unbiased, or even conclude bias against

one race when the judge is biased against another race. The second set of results establish logical

validity of the outcome test when restricting decision maker behavior to the Extended Roy Model,

as this restriction shuts down the confounding channels present in the Generalized Roy Model.

4.1 The Outcome Test of Racial Bias

The Roy model formulations of the judge’s decision in (4) and (6) make clear that the benefit

function τ(·) acts as a cutoff in determining which defendants to release and detain: those with

expected misconduct effects below the cutoff are released, while those above it are detained. The

basic idea of the outcome test is therefore to compare the misconduct outcomes of marginally

released black defendants versus marginally released white defendants to try to learn whether a

judge’s cutoff varies by race. The intuition is that a biased judge will hold black defendants to a
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stricter standard, and thus release only those with lower expected misconduct relative to whites

(or vice versa).

As we discuss in Section 5, a major challenge in implementing this test empirically is identifying

the outcomes of marginally released defendants of each race, as the observed data rarely indicate

which defendants were marginal. Instead, a common approach is to compare outcomes averaged

across all released defendants of each race, but this confounds differences in cutoffs with differ-

ences in potential outcome distributions away from the cutoff, i.e. the well-known inframarginality

problem (Peterson, 1981; Heckman, 1998; Ayres, 2002). In this section, we abstract away from

these identification challenges and ask a more fundamental question: under what conditions are

the outcomes of marginal individuals, even if known perfectly, actually informative about decision

maker bias?

To properly define the outcome test, we start with a precise notion of marginal defendants. For

a given judge z and defendant race r, we denote by V ∗z,r ∈ int(V) a value of V such that

E[∆|r, V ∗z,r] = τ(z, r, V ∗z,r) . (12)

That is, defendants of race r with non-race characteristics equal to V ∗z,r are marginal for judge z

in the sense that the judge acts as if the costs and benefits of releasing such a defendant exactly

offset each other. An implicit minimal assumption we keep throughout our analysis is that such

marginal values of V exist.

With this notation in hand, the marginal outcome test proceeds as follows. The test infers that

judge z is racially biased against black defendants if

E[∆|w, V ∗z,w] > E[∆|b, V ∗z,b] , (13)

i.e. if judge z’s marginal white defendants have a higher mean effect of release on misconduct

than her marginal black defendants. In this first case, the test is based on the premise that racial

differences in misconduct outcomes among a judge’s marginal defendants indicate that the judge is

racially biased, specifically against the race with the lower marginal misconduct effect, as a result

of holding that group to a stricter standard. Likewise, the test concludes there is no evidence of
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racial bias if

E[∆|w, V ∗z,w] = E[∆|b, V ∗z,b] , (14)

i.e. if judge z’s marginal white and marginal black defendants have equal mean effects of release on

misconduct. In this second case, the test is based on the premise that equal misconduct outcomes

among a judge’s marginal white and marginal black defendants indicates that the judge is unbiased,

holding each race to the same standard.

4.2 Logical Invalidity in the GRM

Our first result below shows that the marginal outcome test is logically invalid in the context of the

GRM. At a conceptual level, our result shows that the difference in the misconduct outcomes of

marginally released black defendants versus marginally released white defendants is uninformative

about whether the judge’s cutoff depends directly on race, since in the GRM this cutoff is also

allowed to vary with non-race defendant characteristics. We formally present this result in layers,

by considering an increasing number of restrictions on the functions E[∆|r, ·] and τ(z, r, ·) that

enter the decision in (4). For simplicity, we focus on the case where V is a scalar, though this is

not necessary for our results as we discuss in Appendix A. The intuition of our results is captured

in Figure 1, which we discuss in detail after presenting the theorem.

To state the theorem, let F denote the space of all pairs of functions E[∆|r, ·] and τ(z, r, ·)

mapping V to R. Then, for V0 being a non-empty open subset of V, let Fm(V0) denote the space

of functions E[∆|r, ·] and τ(z, r, ·) mapping V to R that are monotone (increasing or decreasing) on

V0, and let Fcm(V0) denote the subset of Fm(V0) where these functions are also continuous. With

this notation, Fm(V) is the space of monotone functions, and Fcm(V) is the space of continuously

monotone functions. Definitions A.1-A.3 provide formal definitions of each of these spaces, including

a few minor regularity conditions.

The space of functions Fm(V0) is quite general and flexible enough to accommodate a variety of

cases, including step functions. The space does not restrict the functions outside V0, but working

with Fm(V) the restrictions become global. The space of functions Fcm(V) is the most restrictive

one, requiring both E[∆|r, ·] and τ(z, r, ·) to be continuously monotone functions of v on the entire

domain V.
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Our first result can then be stated as follows.

Theorem 4.1. Consider the GRM in Definition 2.1, a given judge z ∈ Z, and let V ∗z,r be defined

as in (12). Then, for each of the following four cases,

(i) Judge z is racially τ -unbiased,

(ii) Judge z is globally τ -biased against black or white defendants,

(iii) Judge z is locally τ -biased against black or white defendants,

(iv) Judge z is unclassified,

there exist functions E[∆|r, ·] and τ(z, r, ·) in F such that the difference

E[∆|w, V ∗z,w]− E[∆|b, V ∗z,b] (15)

could be positive, negative, or zero. The result continues to hold when F is replaced by Fm(V0),

Fcm(V0), or Fcm(V).

The theorem has multiple conclusions. First, the marginal outcome test may conclude bias even

if the judge is racially unbiased. Second, the outcome test may conclude no bias even if the judge

is locally or globally racially biased. Third, the outcome test may conclude bias in the opposite

direction; for example, it may conclude bias against white defendants when the judge is locally or

globally racially biased against black defendants. Importantly, the second and third conclusions

continue to hold in the locally racially biased case regardless of whether V ∗z,r ∈ Vsi or not, where Vsi

is the subset in Definition 3.4 in which the judge strictly prefers one race over the other. Finally,

the outcome test may conclude bias in any direction, or conclude no bias, in the case where the

judge is unclassified, where by unclassified we mean that the function τ(z, w, v) may be higher or

lower than τ(z, b, v) depending on the value of v (i.e., they may cross at possibly multiple points).

Each of these results hold regardless of whether the functions E[∆|r, ·] and τ(z, r, ·) are left mostly

unrestricted (as when they belong to the space F), or are assumed to be well-behaved in some

local area V0, or are assumed to be well-behaved globally (as when they belong to Fcm(V)), which

demonstrates these results do not rely on pathological cases of cost and benefit functions. We
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relegate the proof of Theorem 4.1 to Appendix A and offer instead a graphical interpretation of its

content in the next subsection.

Remark 4.1. Given the level of generality of Theorem 4.1, it is not difficult to see that a similar

result applies when τ -bias is replaced with β-bias, as defined in Definitions 3.1 and 3.3. That is,

differences in the misconduct outcomes of marginally released black defendants versus marginally

released white defendants are uninformative about whether a GRM judge is β-biased or not. The

reason is that any restriction imposed on β(·) will necessarily lead to τ(·) falling into one of the four

cases considered in Theorem 4.1, and from there the result will follow. Note that this includes the

case discussed after (10) that restricts β(·) to be invariant to non-race characteristics, thus allowing

for the simpler definition of (racial-only) taste-based bias used by much of the previous literature,

but leaving the other components of τ(·) unrestricted. Thus, the results in Theorem 4.1 are not

sensitive to any of these alternative definitions of bias.

Remark 4.2. In the context of police searches, Brock et al. (2012) show that the arguments

underlying the comparison of average post-decision outcomes across groups in both Knowles et al.

(2001) and Anwar and Fang (2006) break down if the search cost function (our τ) depends on

non-race characteristics that are unobserved by the analyst (our V ). This observation is similar

in spirit to our Theorem 4.1, but Brock et al. (2012), reacting to the state of the literature at the

time, study the mapping from average outcome comparisons to racial bias, and thus focus on the

inframarginality complications that arise when the distribution of V differs by race, since average

comparisons integrate over these distributions. In contrast, our results in Theorem 4.1 concern the

more fundamental mapping from marginal outcomes to bias, which only involves individuals with

specific values of V—namely those with V = V ∗z,r, i.e. marginal individuals of race r facing decision

maker z. None of our results, therefore, are affected by whether V is distributed differently across

races, which is a central concern in Brock et al. (2012) and the entire literature on average-based

outcome tests.

Remark 4.3. In a context where the analyst is interested in testing the null hypothesis H0 : “judge

z is racially τ -unbiased,” an immediate implication of Theorem 4.1 is that the marginal outcome

test will not control size and will have no power against certain alternatives. This point holds

independently of how well the analyst is able to estimate the difference E[∆|w, V ∗z,w]−E[∆|b, V ∗z,b].
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(a) Intuition with no racial bias
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(b) Intuition with local racial bias

Figure 1: Intuition behind Theorem 4.1

4.3 Graphical Representation of the Formal Results

In Figure 1, we explain the intuition behind the formal results of logical invalidity of the outcome

test in the GRM by drawing examples of cost and benefit functions for black and white defendants

facing a given judge. The functions E[∆|r, ·] and τ(z, r, ·) in the figures belong to Fcm(V) to

illustrate how logical invalidity obtains even with globally well-behaved cost and benefit functions.

Figure 1a illustrates a case where the benefit function does not depend on race, τ(z, r, v) =

τ(z, v), so judge z is racially τ -unbiased according to Definition 3.2. However, the cost function

E[∆|r, v] does vary with race, consistent with the GRM in (4). In this case, E[∆|w, v] is greater

than E[∆|b, v] for all v. So, even though judge z is not biased against black defendants, the fact

that black defendants have a lower expected effect of release on misconduct for a given value of the

non-race characteristics v leads to the marginal black defendant having a strictly lower misconduct

effect than the marginal white defendant, E[∆|b, V ∗z,b] < E[∆|w, V ∗z,w]. Thus, Figure 1a illustrates

a case in which condition (i) of Theorem 4.1 holds with (15) being positive. In other words, the

marginal outcome test may erroneously conclude racial bias when in fact the judge is racially

τ -unbiased.

Figure 1b illustrates a case where race enters both the benefit function τ(z, r, v) and the cost

function E[∆|r, v]. In this case, E[∆|b, v] is greater than E[∆|w, v] for all v, while τ(z, w, v) is

strictly greater than τ(z, b, v) for low values of v, consistent with condition (iii) in Theorem 4.1.
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Even though judge z is locally biased against black defendants in the sense of Definition 3.4, the

fact that black defendants have a sufficiently higher expected effect of release on misconduct for a

given value of the non-race characteristics v leads to the marginal black defendant having a strictly

higher misconduct effect than the marginal white defendant, E[∆|b, V ∗z,b] > E[∆|w, V ∗z,w]. Thus,

Figure 1b illustrates a case in which condition (iii) of Theorem 4.1 holds with (15) being negative.

In other words, the marginal outcome test may erroneously conclude bias against one race when in

fact the judge is racially biased against another race.

4.4 Logical Validity in the ERM

The logical invalidity of the marginal outcome test arises because the GRM defined in Definition

2.1 does not require an unbiased judge to equalize misconduct outcomes across marginal white

and marginal black defendants. This, however, turns out to be true in the context of the ERM

defined in Definition 2.2. At a conceptual level, our result below shows that the difference in

the misconduct outcomes of marginally released black defendants versus marginally released white

defendants immediately informs whether the judge’s cutoff depends directly on race, since a given

judge’s cutoff only depends on race in the ERM.12 In other words, the marginal outcome test is

indeed logically valid when the decision model conforms to the ERM, as formalized in the next

result.

Theorem 4.2. Consider the ERM in Definition 2.2 for a given judge z. Then, the difference in

the misconduct outcomes of marginally released black defendants versus marginally released white

defendants equals the difference in the expected benefit function τ(z, r) between black and white

defendants, i.e.,

E[∆|w, V ∗z,w]− E[∆|b, V ∗z,b] = τ(z, w)− τ(z, b) . (16)

The outcome test is then logically valid in the sense that

E[∆|w, V ∗z,w] > E[∆|b, V ∗z,b] ⇐⇒ τ(z, w) > τ(z, b) and

E[∆|w, V ∗z,w] = E[∆|b, V ∗z,b] ⇐⇒ τ(z, w) = τ(z, b) = τ(z) .

12Potentially conditional on covariatesX observed by both the judge and the econometrician, as we discuss explicitly
in Section 5.1.

25



v

E[∆|·],τ(·)

τ(z, v)

E[∆|b, v]
E[∆|w, v]

V ∗z,b

E[∆|r, V ∗z,r]

V ∗z,w

(a) Intuition with no racial bias

v

E[∆|·],τ(·)

τ(z, w, v)
τ(z, b, v)

E[∆|b, v]
E[∆|w, v]

V ∗z,bV ∗z,w

E[∆|w, V ∗z,w]

E[∆|b, V ∗z,b]

(b) Intuition with racial bias

Figure 2: Intuition behind Theorem 4.2

The logical validity of the outcome test is fully restored in the ERM: it would correctly conclude

(no) bias if judges are in fact (un)biased. The intuition for this follows from Figure 2, where

τ(z, r, v) satisfies the ERM by not varying across non-race characteristics v. In both cases, the

benefit of release for all defendants of a given race facing a given judge (including the marginal)

is determined entirely by a fixed quantity, τ(z, r). Consequently, any crossing between the cost

function and the benefit function will return a level equal to this fixed quantity τ(z, r). In Figure

2a, this level is common to both races, so the misconduct costs of marginal defendants coincide.

In Figure 2b, the level for black defendants is higher, so the marginal black defendant exhibits

a higher misconduct effect than the marginal white defendant, which is determined by the lower

threshold τ(z, w). Importantly, this occurs despite the expected misconduct effect E[∆|w, v] being

higher than E[∆|b, v] for all values of v ∈ V.

Remark 4.4. Theorem 4.2 not only shows that outcome tests are logically valid in the ERM,

but also shows through (16) that the magnitude of judge z’s racial τ -bias, τ(z, w) − τ(z, b), is

identified by the magnitude of the marginal outcome difference E[∆|w, V ∗z,w] − E[∆|b, V ∗z,b]. In

the language of Becker (1957), this difference succeeds in revealing judge z’s “willingness to pay”

to discriminate, measured in terms of excess misconduct: the amount of additional misconduct

among white defendants that the judge is willing to allow in order to express her τ -bias against

black defendants, or vice versa.13

13Since τ -bias τ(z, w)− τ(z, b) is specific to a given decision maker z, these results readily apply to outcome tests
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Remark 4.5. While the ERM can deliver a logically valid test of bias in terms of τ(·), consistent

with our τ -bias Definitions 3.2 and 3.4, the decomposition

τ(z, r) = β(z, r) + λ(z, r) + c(z, r)

is still present in the ERM. Without further restrictions, then, the three components entering

τ(z, r)—preferences, prediction/measurement errors, and detention costs (i.e. other judge con-

siderations beyond misconduct)—are indistinguishable from each other in the marginal outcome

difference E[∆|w, V ∗z,w] − E[∆|b, V ∗z,b]. This illustrates how difficult it is to isolate the taste com-

ponent β(z, r) from other confounding factors captured by λ(z, r) and c(z, r) without direct mea-

sures of each (e.g. Bohren et al., 2021) or further theoretical restrictions like λ(z, r) = λ(z) and

c(z, r) = c(z).

Remark 4.6. The ERM allows marginal black and white defendants to have different values of

their non-race characteristics, i.e., V ∗z,w 6= V ∗z,b, even when the judge is racially τ -unbiased, as

illustrated in Figure 2(a). In this case, if E[∆|r, v] is strictly monotonic in v, one can conclude that

E[∆|w, v] 6= E[∆|b, v] for at least some values of v ∈ V. This would imply that unbiased ERM

judges would statistically discriminate by race among defendants with such v values, since race is

predictive of misconduct conditional on such v. In Figure 2(a), for example, the τ -unbiased judge

facing a black and a white defendant with an identical value of non-race characteristics v somewhere

between V ∗z,w and V ∗z,b would release the black defendant, since E[∆|b, v] < τ(z) for v ∈ (V ∗z,w, V
∗
z,b),

but would detain the white defendant, since E[∆|w, v] > τ(z) for the same value of v.

4.5 Discussion and Implications for the Literature

The main takeaway from Theorem 4.1 and Remark 4.1 is that sufficiently flexible models of decision

making do not deliver logically valid outcome tests of bias under any of the definitions of bias

discussed in Section 3. Theorem 4.2 offers a clear solution, in the form of restricting the model of

decision maker behavior to an Extended Roy Model. Together, these results provide a clarifying

lens through which to understand the existing literature on outcome tests, and a guide for empirical

of in-group bias, which aim to examine whether the presence and magnitude of bias differs across different decision
makers grouped by some observable characteristic like race or gender (e.g., Shayo and Zussman, 2011; Anwar et al.,
2012; Knepper, 2018; Ash et al., 2022).
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research that aims to test for or quantify bias in decision making.

Most immediately, our results tell a cautionary tale for approaches that simultaneously attempt

to maintain the flexibility of the Generalized Roy Model, which is a workhorse in modern applied

economics (Heckman, 2010), while also attempting to test for bias. An illustrative case study is

Arnold et al. (2018), who write down a model of bail judge decision making that satisfies our

Definition 2.1 of a GRM. By studying a decision environment that features exogenously assigned

decision makers who vary progressively in their decision tendencies, Arnold et al. (2018) build on a

rapidly growing literature that employs these institutional features to identify causal consequences

of an array of policy-relevant decisions.14 An important innovation of Arnold et al. (2018) is their

recognition that these institutional features may also help address two perennial identification

challenges faced by the discrimination literature: selection bias (as judges are randomly assigned

to cases) and inframarginality (as judges vary progressively in their decision tendencies, potentially

facilitating marginal comparisons). Furthermore, decision makers in most of these environments

are public officials who do not need to compete for cases, so there is little potential for market forces

to erode the consequences of bias in equilibrium (e.g. Arrow, 1973). Despite these methodologically

amenable institutional features, the logic of the outcome test proposed in the GRM framework of

Arnold et al. (2018) is invalidated by Theorem 4.1, as the definition of racial bias in Arnold et al.

(2018) corresponds to τ -bias in our Definition 3.4, as noted in Section 3.2.

An important lesson to draw from this case is that addressing selection and inframarginality is

not sufficient for a valid outcome test. The reason is that selection and inframarginality are issues

of identification, which we turn to in Section 5. These issues arise when attempting to use observed

variation across decision makers and across cases within decision makers to identify the outcomes

of a given decision maker’s marginal cases. In contrast, the logical validity of the outcome test,

which we have studied in this section, concerns the mapping between these marginal outcomes,

even if known perfectly, and the bias of the decision maker. Theorem 4.1 reveals a lack of such

a mapping for Generalized Roy decision makers under any of the definitions of bias in Section

3. Thus, regardless of whether a given decision environment features exogenous assignment of

decision makers and progressive variation in decision tendencies, or whether a researcher develops

14This includes criminal sentencing (Kling, 2006; Bhuller et al., 2020), welfare eligibility (Maestas et al., 2013;
Dahl et al., 2014), patent protection (Galasso and Schankerman, 2015; Sampat and Williams, 2019), eminent domain
(Belloni et al., 2012), foster care (Doyle, 2007, 2008), and bankruptcy protection (Dobbie and Song, 2015).
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other methods of dealing with selection and inframarginality, avoiding the implications of Theorem

4.1 must involve choosing a different definition of bias beyond those we discuss in Section 3, or

choosing a different model of decision making that is less flexible than the GRM. We now discuss

each of these possibilities in turn.

Choice of Bias Definition

In an unpublished correction appendix (Arnold et al., 2020), the authors of Arnold et al. (2018)

respond to our result in Theorem 4.1. To restore the logical validity of their proposed outcome

test, Arnold et al. (2020) maintain their Generalized Roy decision model but change the definition

of bias. Under the new bias definition, judge z is racially biased against black defendants if

τ(z, w, V ∗z,w) > τ(z, b, V ∗z,b), (17)

i.e. if judge z perceives greater benefits of releasing her marginal white defendant compared to

her marginal black defendant.15 By the definition of marginal white and black defendants, (17)

is equivalent to E[∆|w, V ∗z,w] > E[∆|b, V ∗z,b]. Defining bias in this way therefore restores the log-

ical validity of the outcome test, since the sign (and exact magnitude) of the marginal outcome

comparison E[∆|w, V ∗z,w]− E[∆|b, V ∗z,b] is identical that of τ(z, w, V ∗z,w)− τ(z, b, V ∗z,b).

To understand the limitations of this new bias definition, it is important to recognize that

(17) compares a judge’s perceived benefits of releasing black and white defendants with different

non-race characteristics, since V ∗z,w 6= V ∗z,b in general. This contrasts with our definitions of bias in

Generalized Roy Models in Section 3, which hold V fixed, as well as with the seminal discrimination

framework of Becker (1957) that Arnold et al. (2018) cite as motivation for their outcome test.

Becker (1957) analyzed implications of bias against minority workers who were otherwise identical

to non-minority workers; if they were instead “imperfect substitutes, they may receive different

wage rates even in the absence of discrimination” (p. 17). The definition in (17) is also silent about

how the functions τ(z, w, v) and τ(z, b, v) relate to each other for any other values of v beyond those

that characterize judge z’s marginal defendants. Thus, a judge labeled as biased under this revised

15In a different setting, Appendix B of Dobbie et al. (2021) uses (17) to define taste-based bias among loan
examiners. In the main text of Dobbie et al. (2021), however, the authors use a different, ERM-based definition of
“incentive-based” bias that satisfies (11), our definition of τ -bias in the ERM.
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definition could nonetheless satisfy τ(z, w, v) = τ(z, b, v) for all v ∈ V, i.e. be racially τ -unbiased

according to Definition 3.2. We visualized such a case in Figure 1a: judge z’s perceived benefit

function excludes race entirely as an argument, yet the definition in (17) would label such a judge

as biased. Conversely, a judge who is labeled as unbiased, or biased against white defendants,

according to (17) could nonetheless satisfy τ(z, w, v) > τ(z, b, v) for all v ∈ V, i.e. satisfy the

especially stark notion of global racial τ -bias against black defendants according to Definition 3.4.

Another recent example of avoiding Theorem 4.1 by studying target parameters other than the

definitions of bias in Section 3 is Arnold et al. (2022). In their pre-trial release context, Arnold

et al. (2022) define racial discrimination as “the average release rate disparity between white and

Black defendants with identical misconduct potential.” In our notation, this involves comparing the

release rates of white and black defendants facing a given judge Z = z who have equal misconduct

cost ∆ = δ,

E[D|Z = z,R = w,∆ = δ]− E[D|Z = z,R = b,∆ = δ], (18)

and then averaging over the support of misconduct cost values δ. If this difference is positive, then

the judge is more likely to release white defendants than black defendants with equal misconduct

potential, and is classified as discriminating against black defendants.

Using an identification-at-infinity argument, Arnold et al. (2022) show how the average of (18)

could be recovered without an explicit model of judge behavior. This leads the authors to describe

their definition and test for discrimination as “model-free.” The economic interpretation and policy

implications of such a test, however, unavoidably depend on how judges are assumed to be making

decisions and generating the data. If we are not willing to go beyond “model-free” quantities like

(18), then we cannot distinguish among the wide range of mechanisms that determine these quanti-

ties. As we illustrate in Appendix C, this includes taste-based bias, prediction/measurement errors,

and detention costs—together comprising τ(z, r, v) in our model—as well as statistical discrimina-

tion via differences in E[∆|R, V ] by race, and differences in the distribution of V |(R,∆) by race.

Each of these mechanisms clearly has different implications for potential policy interventions. In

the latter part of their paper, Arnold et al. (2022) indeed end up imposing a model of judge decision
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making similar to the ERM in an attempt to distinguish among these distinct mechanisms.16

Choice of Decision Model

As an alternative to choosing target parameters that differ from the definitions of bias in Section 3,

one may carefully specify a model of decision making that delivers a logically valid outcome test.

Theorem 4.2 offers such a model, the Extended Roy Model. Interestingly, this model of decision

making forms the basis of important prior work that aims to test for bias as defined in Section 3.

One set of studies, launched by Knowles et al. (2001), build on Becker (1957) and the large

follow-on literature using differences in average outcomes across groups to test for discrimination,

but pay careful attention to the threat to this literature posed by inframarginality bias: average

outcomes need not be informative about conditions at the margin, due to group differences in

unobservables among individuals away from the decision margin who are included in average com-

parisons. Knowles et al. (2001) address this issue by endogenizing the behavior of the individuals

subject to the decision process—in this case, drivers deciding whether to carry contraband—and

show how the equilibrium of such a model can discipline average outcomes to reveal marginal out-

comes.17 While this kind of equilibrium model may seem distinct from our single decision maker

framework in Section 2, we reiterate the point made earlier that inframarginality is an issue of

identification, rather than logical validity. Importantly for the discussion at hand, the model of

decision maker behavior in Knowles et al. (2001) compares the expected outcome, conditional on

race and non-race characteristics observed by the decision maker, to a threshold that depends on

race but not on non-race characteristics, exactly as in the ERM. Furthermore, bias (“prejudice”)

is defined as differences in these thresholds by race, as in our ERM-based definition of τ -bias in

(11). Regardless of the additional equilibrium structure imposed to identify marginal outcomes

from average outcomes, then, the basic logic of the outcome test in Knowles et al. (2001) is secured

by Theorem 4.2, in that the outcomes of marginal individuals are indeed informative about τ -bias

16Identically to the ERM, the model in Arnold et al. (2022)’s decomposition exercise features a threshold function
that depends on the identity of the judge z and the race of the defendant r, but excludes non-race defendant
characteristics v. On the other side of the decision model, judges form an expectation about defendant misconduct if
released, which depends on defendant race and a noisy “signal” V drawn from a parameterized distribution that varies
across judges and defendant races. Thus Arnold et al. (2022)’s decision model in our notation is D = I{E[Y1|W (z)] ≤
τ(z, r)}, with parameterizations that yield a known functional form for E[Y1|W (z)].

17Other papers in this literature relying on equilibrating behavior include Persico (2002), Hernández-Murillo and
Knowles (2004), and Persico and Todd (2006). See Persico (2009) for a review, as well as Dharmapala and Ross
(2004), Dominitz and Knowles (2006), Manski (2006), and Bjerk (2007) for discussions and extensions.
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when the decision model is an ERM.

A second set of studies, pioneered by Anwar and Fang (2006), relax the assumption of equili-

brating driver responses to police decision rules by exploiting variation in decision rates and average

outcomes across different decision makers.18 Specifically, Anwar and Fang (2006) show that relative

comparisons of the rates at which police officers of different races decide whether to search stopped

drivers of each race, and the rates at which those searches find contraband, can deliver testable

implications about racial differences in criminal behavior among drivers on the margin of being

searched. Since Anwar and Fang (2006)’s model of police behavior satisfies our Definition 2.2 of an

ERM (with different decision makers z distinguished by their race rp), these marginal outcomes are

in turn informative about decision maker bias by Theorem 4.2, as the definition of bias in Anwar

and Fang (2006) also corresponds to our ERM-based definition of τ -bias in (11).

Remark 4.7. While the Extended Roy Model of decision maker behavior thus underpins much of

the outcome test literature, the ERM is not strictly necessary for a logically valid outcome test of

bias as defined in Section 3. Figure 1 suggests another potential solution: rather than restricting the

benefit/threshold function τ(·), the analyst could restrict the cost/outcome expectation function

to be identical across race, i.e.

E[∆|r, v] = E[∆|v] . (19)

In Appendix B, we show that this restriction can deliver a logically valid outcome test of global

τ -bias, per Definition 3.4, if E[∆|v] is strictly increasing in v and τ(z, r, v) is weakly decreasing

in v. Intuitively, this restriction restores logical validity by assuming away any objective statis-

tical relationship between race and potential outcomes, leaving τ -bias as the only channel in the

decision model that could cause racial disparities in marginal outcomes. To justify such a restric-

tion, the analyst would need to not only rule out any direct causal effects of race on potential

outcomes, but also require the decision maker’s information set to encompass all determinants of

potential outcomes that correlate with race, leaving race as an irrelevant predictor conditional on

18Another prominent example of this approach is Alesina and La Ferrara (2014), who study racial bias in death
penalty sentencing by exploiting variation in reversal rates by higher courts across combinations of defendant race
and victim race. Marx (2022) revisits Anwar and Fang (2006)’s dataset with an absolute, rather than relative, test
of bias among police officers of different races.
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that information set.

Implications for Logically Valid Outcome Tests across Empirical Settings

We have highlighted two alternative pathways out of the negative result in Theorem 4.1. The first

pathway—changing the parameter of interest to something beyond the definitions of bias in Section

3—amounts to asking a different research question. To the extent that alternative definitions like

(17) and (18) capture relevant questions of interest, they can lead to logically valid outcome tests

despite maintaining highly flexible models of decision maker behavior. On the other hand, if we

are interested in testing for bias as defined in Section 3 and in prior work like Knowles et al. (2001)

and Anwar and Fang (2006), then the other pathway out of Theorem 4.1 is required: restricting the

model of decision making. Such restrictions need to be considered and defended on a case-by-case

basis, depending on the empirical setting.

Consider first our running example of pre-trial release. Here, imposing the Extended Roy Model

restores the logical validity of the outcome test (Theorem 4.2) by eliminating all variation in a given

judge’s perceived benefit of releasing defendants of the same race, leaving racial bias and expected

misconduct as the sole sources of variation in a given judge’s decisions. This restriction has impor-

tant implications for the admissible behavior of bail judges, as well as for the measurement of the

misconduct outcome. To justify it, the analyst would need to rule out any additional judge biases

against any defendant characteristics unobserved by the analyst, like speech patterns, body weight,

disabilities, and physical demeanor. Relatedly, the magnitude of a judge’s racial bias must not

vary across any such characteristics. Errors in judge predictions of misconduct, or in the analyst’s

measurement of misconduct, must also not correlate with any non-race defendant characteristics.

Finally, the analyst must rule out any judge considerations beyond expected misconduct, like em-

ployment or family disruptions, that vary across defendants with different non-race characteristics.

Violations of any of these restrictions would manifest as the benefit function τ(·) varying with v,

reopening the applicability of Theorem 4.1.

Studies of racial bias in pre-trial release like Arnold et al. (2018), Arnold et al. (2022), and Hull

(2021) often do consider complications to the outcome test posed by prediction error, measurement

error, and omitted judge considerations, but only to the extent that these confounding factors

correlate with defendant race. Such phenomena manifest as τ(·) varying with r for reasons other
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than pure racial animus, represented in our framework as λ and c depending on r. But a novel and

perhaps surprising lesson from our analysis is that the presence of any of these confounding factors

can invalidate the outcome test even if they are completely independent of race—as Theorem 4.1

does not depend on the statistical relationship between R and V—as long as they manifest as

τ(·) varying with non-race characteristics. This is precisely why imposing an ERM delivers logical

validity, as the ERM’s exclusion of v from τ(·) shuts down all such possibilities.

The ERM could permit logically valid outcome tests of bias across a range of settings beyond

pre-trial release, with careful consideration paid to the credibility of the ERM’s restrictions in

each environment. We have already discussed how Knowles et al. (2001), Anwar and Fang (2006),

and related papers employ the ERM to test for racial bias among police officers conducting traffic

stops, spurring a lively literature discussing and debating the assumptions behind this approach.19

Building on Becker (1993)’s suggestion of testing for bias in lending markets by studying borrower

outcomes, Dobbie et al. (2021) derive an ERM from a principal-agent model of a loan officer

who compares the short-run expected profitability of a loan application to a fixed threshold. The

ERM may reasonably describe decision maker behavior in such a setting, as loan officers have a

well-incentivized and well-measured objective and detailed data on prior applicants and outcomes.

In the seemingly distant realm of academic peer review, Card and DellaVigna (2020), Card

et al. (2020), and Hengel and Moon (2020) study gender differences in citation outcomes through

the lens of a model in which journal editors publish papers with expected citations above a threshold,

which may vary by author gender and other analyst observables but not by factors unobserved by

the analyst—again as in the ERM. The credibility of this model therefore hinges on the analyst

observing and conditioning on all non-gender factors that may shift around the editor’s threshold,

putting aside the identification challenge of inframarginality bias from using average citations to

try to infer the citation outcomes of marginally accepted papers.

In college admissions, an active literature on “mismatch” studies whether students from different

demographic backgrounds reap different returns to attending more selective institutions.20 Viewed

as an outcome test, an analyst might consider whether outcome differences among marginally

admitted applicants are informative about a college’s preferences over applicant demographics,

19E.g. Dharmapala and Ross (2004); Antonovics and Knight (2009); Dominitz and Knowles (2006); Bjerk (2007);
Persico (2009); Brock et al. (2012).

20E.g. Arcidiacono and Lovenheim (2016); Bleemer (2022); Mountjoy and Hickman (2021).
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given that differences in admission rates across groups may simply reflect selection on applicant

characteristics unobserved by the analyst. Imposing an ERM in this setting to satisfy Theorem

4.2 would require ruling out any other college objectives—beyond the analyst’s observed outcome,

often degree completion or earnings—that vary with analyst-unobserved student characteristics.21

A final example is welfare programs with examiner discretion, like disability insurance, where

an analyst might consider testing for bias among case examiners by comparing the subsequent

labor market outcomes of marginally rejected applicants from different groups. Imposing the ERM

in this setting would require an examiner to approve or reject applicants solely by comparing

expected employment or earnings potential to a cutoff, where that cutoff may vary across the group

membership potentially subject to bias but not across any other applicant or case characteristics

excluded from the analyst’s data set.

Regardless of the specific empirical setting, our results highlight that testing for bias according

to the definitions in Section 3 requires the analyst to specify a model of decision maker behavior

that forges a sufficiently tight link between potential outcomes and decisions. Otherwise, logical

validity of outcome tests can fail. Writing down an explicit model of decision making is therefore

a crucial part of testing for bias, as it clarifies exactly how the analyst is defining bias and what,

if anything, the data can reveal about such bias. While this is not a new insight (e.g. Becker,

1957; Heckman, 1998; Knowles et al., 2001; Anwar and Fang, 2006), it is a useful reminder given

that much of the empirical literature on discrimination does not employ explicit models of decision

making, failing to clarify when and why observed disparities should be equated with decision maker

bias.

5 Identification in Logically (in)Valid Outcome Tests of Bias

The outcome test of bias requires the analyst to compare the outcomes of marginal individuals

across groups, as formalized in Section 4.1. Our discussion up to this point focused on the logical

validity of this test, which addressed the question of whether group differences in the outcomes of

marginal individuals, even if perfectly known, are informative about the presence and magnitude of

21Legacy students, for example, may be more generous in their future donations to the college compared to non-
legacies with the same earnings, incentivizing colleges to lower their admission threshold for applicants with legacy
status (e.g. Arcidiacono et al., 2021).
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decision maker bias. In this section, we turn to the issue that the outcomes of marginal individuals

are rarely observed directly by the analyst.

We study conditions under which the outcomes of marginal individuals could be identified

from the distribution of observed data, and examine whether these conditions are related to the

conditions that ensure logical validity. In Section 5.1, we consider the best-case scenario of local

instrumental variation across continuously distributed and exogenously assigned decision makers.

In Section 5.2, we shift attention to other settings and data environments, including the empirically

relevant situations of discrete instruments and no instruments.

5.1 Best-Case Scenario with Continuous and Exogenous Decision Makers

Depending on the setting, the support of decision makers Z could be viewed as a continuum in R

or a discrete set with few or many elements. Such a distinction did not affect our earlier results on

logical validity of the outcome test for a given decision maker, but it does affect the analyst’s ability

to identify the outcomes of marginal individuals from observed variation across decision makers.

We begin with the best-case scenario of continuously distributed and exogenously assigned Z.

Considering such data, we now derive the following results in turn. First, the GRM not only

fails to deliver a logically valid outcome test of bias, but also fails to secure identification of the

test’s objects of interest from the observed data without further restrictions. Second, imposing the

instrument monotonicity condition of Imbens and Angrist (1994) in the GRM rectifies the identifi-

cation failure, but not the logical failure. Third, in contrast, the ERM delivers both identification

and logical validity. Finally, the ERM also generates testable implications that may help assess its

suitability across empirical settings.

An important insight from these results is that restrictions that enable econometric identifica-

tion in the outcome test do not necessarily ensure its logical validity. An analyst may therefore

successfully identify outcomes of marginal individuals that are nevertheless uninformative about

decision maker bias as defined in Section 3, unless additional restrictions are imposed that logically

connect marginal outcomes to bias.
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5.1.1 Setup

Let (Y, Z,D,R,X) be the random vector collecting all the variables observed by the analyst. As

before, Z denotes a decision maker who is exogenously assigned to cases and makes a binary decision

D regarding an individual characterized by group membership R. The observed outcome of interest,

Y , relates to the potential outcomes previously defined by the relationship Y = DY1 + (1−D)Y0.

For concreteness, we continue to ground our discussion in the setting of racial bias in pre-trial

release, where Y is a measure of pre-trial misconduct and R denotes the defendant’s race.

More generally, our analysis applies to any outcome variable Y ∈ R, as well as any group

stratification variable R taking finitely many values. With X denoting the set of covariates that

are observed by both the judge and the analyst, the analyst could choose other elements of X as the

group membership of interest for an outcome test, like gender, age, or nationality. In that case, R

would represent this group membership of interest, and race would be subsumed into the covariate

set X. All of the analysis then proceeds by conditioning on necessary elements of X (which we keep

implicit in the notation) and conducting comparisons across values of R. Importantly, however,

note that the analyst does not observe the random variable V that captures all of the non-race

defendant characteristics that are only observed by the judge.

5.1.2 Marginal Treatment Effects as the Objects of Interest for the Outcome Test

The cost of release entering the decision model in (4),

E[∆|r, v] , (20)

is the average treatment effect of release on misconduct, ∆ ≡ Y1 − Y0, among defendants of race r

and unobserved non-race characteristics v. The outcome test requires the analyst to identify and

compare marginal treatment effects across a given judge z’s marginal white and black defendants,

which translates to E[∆|w, V ∗z,w] and E[∆|b, V ∗z,b]. We will therefore refer to these MTE parameters

are the objects of interest for the outcome test.
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5.1.3 Non-Identification of Marginal Treatment Effects in the Unrestricted GRM

The marginal treatment effects E[∆|w, V ∗z,w] and E[∆|b, V ∗z,b] are not directly observed in the data,

as they condition on a value of the unobservable V . To study how these objects of interest for the

outcome test might be recovered from the distribution of (Y,Z,D,R), let p(z, r) ≡ P{D = 1|Z =

z,R = r} be the propensity score (probability of release) for a defendant of race r facing judge z,

and consider the local instrumental variables (LIV) estimand:

LIV (r, p̃) ≡ ∂

∂p̃
E[Y |R = r, p(z, r) = p̃] . (21)

Identification of marginal treatment effects via LIV is well-established and understood in the litera-

ture (e.g. Heckman and Vytlacil, 2001; Vytlacil, 2002; Heckman and Vytlacil, 2005), which typically

begins with a decision model with a latent index structure, i.e.,

D = I
{
ζ(Z,R, V ) ≤ 0

}
. (22)

This corresponds to the GRM in (4) for ζ(Z,R, V ) ≡ E[∆|R, V ]− τ(Z,R, V ).

Without any further restrictions to this Generalized Roy decision model, Appendix A.4 adapts

Heckman and Vytlacil (2001) to show that the LIV estimand in (21) equals a weighted average of

MTEs, but with potentially negative weights:

LIV (r, p(z, r)) =
∑

j∈Jz,r

wj(z, r)E[∆|r, V ∗z,r,j ] , (23)

where {V ∗z,r,j : j ∈ Jz,r} are all of the values of V such that ζ(z, r, V ∗z,r,j) = 0, and wj(z, r) are

weights that add up to one.

Equation (23) shows that the LIV estimand, evaluated at a particular judge z and defendant

race r, is a weighted average of E[∆|r, V ∗z,r,j ] associated with each of the crossing points V ∗z,r,j for

j ∈ Jz,r, i.e. all defendants of race r who are marginal for judge z. |Jz,r| > 1 could arise, for

example, when V is a scalar and E[∆|r, V ] or τ(z, r, V ) are non-monotonic in V , or when V is

multi-dimensional. While the weights wj(z, r) necessarily add up to one across j ∈ Jz,r, they could

be negative, meaning that the LIV estimand could be negative even when E[∆|r, V ∗z,r,j ] > 0 for all
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j ∈ Jz,r. The expression for wj(z, r) we derive in Appendix A.4 shows that this phenomenon is

due to an unrestricted sign of the partial derivative of the index with respect to z, ζz(z, r, V
∗
z,r,j),

allowing it to be positive for some j and negative for others. Intuitively, reassigning one of judge

z’s marginal defendants to another judge could raise the value of the benefit function τ(·), which in

turn raises the value of the index ζ(·), while the same reassignment of another of judge z’s marginal

defendants could lower the value of the benefit function, which in turn lowers the value of the index.

Without further restrictions, the decision model in (22) allows this.

5.1.4 Identification versus Logical Validity with Instrument Monotonicity

As shown above, the GRM not only fails to deliver a logically valid outcome test of bias, but

also fails to secure identification of the test’s objects of interest from the observed data with-

out further restrictions. We now show that imposing the instrument monotonicity condition of

Imbens and Angrist (1994) in the GRM rectifies the second failure, but not the first.

To show that imposing monotonicity in the GRM secures identification of the outcome test’s

objects of interest, consider monotonicity in the index model (22):

Assumption 5.1. The latent index ζ(Z,R, V ) satisfies

ζ(z, r, v) ≥ ζ(z′, r, v) for all v ∈ V or ζ(z, r, v) ≤ ζ(z′, r, v) for all v ∈ V . (24)

Vytlacil (2002) shows that Assumption 5.1 is equivalent to ζ(Z,R, V ) having an additively separable

representation in Z and V . This guarantees that the weights in Equation (23) are non-negative:

the partial derivatives ζz(z, r, V
∗
z,r,j), which determine the sign of wj(z, r) (as shown in Appendix

A.4), must all share the same sign across j ∈ Jz,r when ζ(·) is additively separable in Z and V .

Imposing Assumption 5.1 therefore allows the LIV estimand, evaluated at a given judge z and

defendant race r, to identify a positively-weighted average of E[∆|r, V ∗z,r,j ], the objects of interest

for the outcome test.

Assumption 5.1 is a restriction imposed on the GRM that helps identify MTEs via the LIV

estimand. At the same time, this restriction does not affect the results in Theorem 4.1 and thus

does not rectify the logical invalidity of the outcome test. This is because (24) does not remove

the dependence of the benefit function τ(·) on V . Together, these results imply that an analyst
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employing a GRM that satisfies monotonicity may successfully identify marginal outcomes that are

nevertheless uninformative about decision maker bias as defined in Section 3.

5.1.5 The ERM Delivers Both Identification and Logical Validity

To derive conditions that ensure both identification and logical validity, it is useful to interpret

the monotonicity condition in Assumption 5.1 through the lens of the economic decision model.

Monotonicity in the latent index ζ(Z,R, V ) ≡ E[∆|R, V ]−τ(Z,R, V ) is equivalent to monotonicity

in the benefit function τ(·):

τ(z, r, v) ≥ τ(z′, r, v) for all v ∈ V or τ(z, r, v) ≤ τ(z′, r, v) for all v ∈ V . (25)

Intuitively, under monotonicity, if reassigning any one of judge z’s defendants to another judge z′

raises the value of the benefit function τ(·), then reassigning any other defendant from judge z to

judge z′ must also weakly increase the benefit function. Note that this is a restriction on behavior

across judges, rather than a restriction of the behavior of a given judge, which was our focus when

deriving results on the logical validity of the outcome test.

As with (24), the monotonicity condition in 25 is equivalent to the expected benefit function

τ(z, r, v) having an additively separable representation in z and v, at least after some monotonic

transformation (Vytlacil, 2002):

τ(z, r, v) = τ1(z, r) + τ2(v, r) , (26)

for some functions τ1(·) and τ2(·).22 This additively separable representation highlights that the

ERM emerges as a special case, when τ2(V,R) = 0. It follows immediately that the LIV estimand

identifies a positively weighted average of E[∆|r, V ∗z,r,j ] in the ERM without additional assumptions,

as the ERM automatically satisfies monotonicity. Thus, the ERM delivers both a logically valid

outcome test and identification of the test’s marginal outcomes of interest.

Remark 5.1. It is also useful to observe that monotonicity allows for a simple and empirically

22If a monotonic transformation m(·) is required before τ(·) is additively separable, then we could rewrite the GRM
as D = I{m(E[∆|r, v]) ≤ m(τ(z, r, v))}, and our results would follow after such a transformation. For expositional
simplicity, we abstract away from m(·) in what follows.
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convenient representation of the decision equation in (4) in terms of the propensity score p(z, r) and

a uniformly distributed random variable Ur, as is common in the IV literature (Heckman, 2010).

To see this, let Ṽr ≡ E[∆|r, V ]−τ2(V, r) and let Fṽ|r(·) denote the CDF of Ṽr conditional on R = r,

which is assumed to one-to-one. Then,

D = I{E[∆|r, V ] ≤ τ1(z, r) + τ2(V, r)}

= I{Ṽr ≤ τ1(z, r)} (27)

= I{Fṽ|r(Ṽr) ≤ Fṽ|r(τ1(z, r))}

= I{Ur ≤ p(z, r)} , (28)

where Ur is a uniformly distributed random variable on [0, 1] and p(z, r) ≡ Fṽ|r(τ1(z, r)) equals

the propensity score in this case. With this representation, a marginal defendant of race r facing

judge z is characterized by Ur = U∗z,r ≡ p(z, r), which is therefore equivalent to V = V ∗z,r,j such

that ζ(z, r, V ∗z,r,j) = 0. It follows that

MTE(r, U∗z,r) ≡ E[∆|R = r, Ur = U∗z,r] =
∑

j∈Jz,r

wj(z, r)E[∆|r, V ∗z,r,j ] , (29)

i.e. an MTE that defines marginal defendants of race r facing judge z in terms of the normalized

unobservable Ur equals a weighted average (with positive weights under Assumption 5.1) of the

MTEs of interest for the outcome test, which define marginal defendants in terms of the underlying

unobservable V .

Remark 5.2. Without monotonicity, representing the decision model in (28) in terms of a uni-

formly distributed random variable and a propensity score does not lead to a useful formulation of

MTEs that could be identified with variation across decision makers. This may not be obvious, as

one could start from the unrestricted index model D = I
{
ζ(Z,R, V ) ≤ 0

}
, as in Hull (2021), then

let F̃r,v(·) be the conditional distribution of ζ(Z,R, V ) given (Z = z,R = r), and then write

D = I
{
F̃r,v(ζ(Z,R, V )) ≤ F̃r,v(0)

}
= I

{
Ũz,r ≤ p(z, r)

}
with Ũz,r ∼ U [0, 1] .

One could then define an MTE as E[∆|R = r, Ũz,r = u]. The problem with this approach is
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that Ũz,r is not independent of Z, even if V is independent of Z. This means parameters like

E[∆|R = r, Ũz,r = u] could not be identified using variation in Z, at least without additional

restrictions. Moreover, in this case index sufficiency fails and conditioning on the propensity score

is not equivalent to conditioning on Z (Heckman and Vytlacil, 2005).

Remark 5.3. As discussed in Remark 4.7 and shown in Appendix B, the ERM is not the

only path to a logically valid outcome test: rather than restricting the benefit/threshold func-

tion τ(·) to exclude v, the analyst could restrict the cost/outcome function to exclude race, i.e.

E[∆|r, v] = E[∆|v], along with the shape restrictions detailed in Appendix B. Combining these re-

strictions with monotonicity in Assumption 5.1 could therefore deliver an alternative to the ERM in

deriving a logically valid and identified outcome test. As noted earlier, to justify such an exclusion

restriction, the analyst would need to not only rule out any direct causal effects of race on potential

outcomes, but also require the decision maker’s information set to encompass all determinants of

potential outcomes that correlate with race, leaving race as an irrelevant predictor conditional on

that information set.

5.1.6 Testable Implications of the Extended Roy Model

The derivation leading to (28) shows that both the GRM under monotonicity and the ERM lead

to the same representation of the decision equation, D = I{Ur ≤ p(z, r)}, which leads to the

identification of MTEs via the LIV estimand in (21). In turn, the outcome test attempts to learn

about the bias of judge z by using the difference in race-specific LIV estimands,

LIV (w, p(z, w))− LIV (b, p(z, b)) . (30)

The difference in (30) identifies τ(z, w) − τ(z, b) through the lens of an ERM, which is imme-

diately informative about the presence and magnitude of judge z’s τ -bias. Through the lens of a

GRM satisfying monotonicity, on the other hand, the same difference in (30) identifies

τ1(z, w) + τ2(V
∗
z,w, w)− τ1(z, b)− τ2(V ∗z,b, b) (31)

(where |Jz,r| = 1 here for simplicity), which opens up the applicability of Theorem 4.1. To take one
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illustrative example, even if a GRM judge z satisfying monotonicity is globally τ -unbiased, such

that neither τ1(·) nor τ2(·) depend on race r, the remaining difference in (31), τ2(V
∗
z,w) − τ2(V ∗z,b),

identified by LIV (w, p(z, w))−LIV (b, p(z, b)) will still generally be non-zero, violating the logic of

the outcome test.

Even though the GRM under monotonicity and the ERM lead to the same LIV estimand for

identifying MTEs, the two models differ not only in their logical implications for outcome test

validity, but also in their testable implications. The following proposition, proved in Appendix A.3,

derives a testable implication of the ERM that is not shared by the GRM.

Proposition 5.1. Assume the CDF of E[∆|r, V ] conditional on R = r is one-to-one. Then in

the Extended Roy Model, MTE(r, p(z, r)) is strictly increasing in the propensity score for each

r ∈ {w, b}.

Intuitively, a judge with a relatively high propensity score in the ERM must be a judge with a

relatively high fixed threshold of tolerable misconduct effects, since variation in potential miscon-

duct effects of release is the only variation that determines whether defendants of a given race are

released by a given ERM judge. Since marginal defendants are those with misconduct effects equal

to this tolerance threshold, the functions MTE(r, p(z, r)) that identify marginal misconduct effects

of defendants of race r facing judge z must be increasing in the judge propensity score p.23 Since

MTE(w, ·) and MTE(b, ·) are the key empirical objects of interest in the outcome test, assessing

whether they are strictly increasing—and thus assessing the suitability of the ERM in a given

setting—is a natural next step after their estimation.

Remark 5.4. These results imply that neither the GRM nor the ERM are rejected by the data if

MTE(r, p(z, r)) is strictly increasing in the propensity score p for each r ∈ {w, b}. Hull (2021) builds

on our results to interpret the modeling restrictions of the ERM as “without loss of generality”

when MTEs are strictly increasing.24 This interpretation confounds the question of whether models

are rejected given the data at hand with the question of how to choose between alternative model-

based interpretations of a given estimand. This observation has analogues in many econometric

23This result is similar in spirit to the last sentence of Proposition 3 in Anwar and Fang (2006), which concerns the
ranking of average (rather than marginal) search outcomes across discrete police officer races (rather than individual
decision makers) who search drivers of a given race at different rates.

24Concretely, Hull (2021, p. 12) states that “whenever the race-specific MTE curves are strictly increasing there
exists a V such that decisions have an extended Roy model representation.”
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settings, where the interpretation of a given estimand changes depending on the underlying model

the analyst is willing to assume.

A notable and instructive analogy is the 2SLS estimand with a binary treatment and valid binary

instrument, Cov(Y,Z)
Cov(D,Z) . This estimand admits at least three alternative interpretations, depending on

the underlying model. First, in a model with homogeneous treatment effects across individuals, i.e.

Y1−Y0 = c for some constant c, the 2SLS estimand identifies c and thus is interpreted as the constant

causal effect of the treatment on the outcome. Alternatively, in a heterogeneous effect model that

assumes instrument monotonicity, as in Imbens and Angrist (1994), the 2SLS estimand identifies

an average effect of treatment solely among instrument compliers. Finally, in a heterogeneous

effects model without monotonicity, the 2SLS estimand identifies a linear combination of average

effects among compliers and defiers that generally fails to correspond to an average treatment

effect for any (group of) individuals. It is the choice of model—not the data—that ultimately

distinguishes between these three alternative and substantively different interpretations of the 2SLS

estimand. One could always state that the 2SLS estimand admits a homogeneous treatment effect

representation among observationally equivalent individuals; such a statement does not render

treatment effects in fact homogeneous.

5.2 Other Settings and Data Environments

In many empirical settings, variation across decision makers Z may only be reasonably characterized

as discrete, rather than continuous, and decision makers may not be exogenously assigned to cases.

These deviations introduce additional challenges for identifying decision maker bias beyond the

logical and econometric issues discussed so far. In this subsection, we discuss these challenges and

potential solutions.

Discrete Instruments

We first consider settings in which decision makers Z continue to be exogenously assigned to cases,

and the monotonicity assumption in (24) holds, but Z may only be reasonably characterized as

discrete, rather than continuous. In this case, exploiting variation across different decision makers

can nonparametrically identify local average treatment effects (LATEs), but not MTEs. Outcome

tests that compare LATEs across groups are more problematic than the MTE-based tests discussed
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up to this point, as instrument compliers now include individuals beyond those directly on the

decision maker’s margin of indifference. As such, the inframarginality problem re-emerges as a

challenge to identifying bias with discrete instruments (Arnold et al., 2018), even in the context of

the Extended Roy Model.

To illustrate this point, we start by exploiting the fact that LATE can be expressed as a function

of the MTE(r, u) in (29). To be concrete, consider two judges z and z′ such that p(z, r) > p(z′, r)

for a given race R = r. Write the LATE parameter as a function of the MTE, i.e.,

LATEz
z′(r) =

∫ p(z,r)

p(z′,r)

MTE(r, ur)

p(z, r)− p(z′, r)
dur . (32)

The set of compliers can be described as {ur : p(z′, r) ≤ ur ≤ p(z, r)} in terms of Ur defined in (28)

or as

Vzz′(r) ≡ {v : τ1(z
′, r) ≤ E[∆|r, v]− τ2(v, r) ≤ τ1(z, r)} (33)

in terms of the unobservable V entering the decision problem in (4).

A researcher may propose an outcome test in this setting that interprets the difference

LATEz
z′(w)− LATEz

z′(b) , (34)

as evidence of racial bias. However, even in the context of the ERM where both judges are racially

τ -unbiased—i.e., τ2(v, r) = 0, τ1(z, r) = τ1(z), and τ1(z
′, r) = τ1(z

′) in (33)—the difference in

(34) would not necessarily be equal to zero. This is because black compliers and white compliers

to the same discrete instrument shift generally differ when the expected cost function E[∆|r, v]

varies by race, leading the race-specific LATEs in (34) to average across inframarginal compliers

who differ across race and differ from the marginal defendants of interest, analogous to the case of

average outcome comparisons that we discuss below. Settings where the support of Z is discrete

therefore introduce challenges to the outcome test that go beyond those we identified when Z is

continuous, and these challenges are similar to those that arise when exogenous instruments are

not even available.
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Partial Identification

With discrete instruments, instead of attempting to point identify MTEs, one could approach the

problem from a different angle and consider partial identification of the MTEs of interest, and

bias in turn, by using strategies that restrict the range of admissible parameters using information

from the data. Anwar and Fang (2006) offer a pioneering example of this approach: rather than

attempting to directly identify the outcomes of marginal drivers of each race, they derive restrictions

on the rankings of decision rates and average outcomes across different officer groups under the

null hypothesis of unbiased ERM officers.25 A natural expansion of this approach when Z indexes

individual decision makers would apply the methods of Mogstad et al. (2018) to derive bounds

on the MTE functions implied by the LATE difference in (34) and other empirical moments that

constrain the set of possible MTEs. In the context of the ERM, the identified sets for the MTEs

may still be informative enough to make statements about the absence or presence of bias.

Average Outcome Comparisons without Instruments

In many empirical settings, cases are not exogenously assigned to decision makers. In such settings,

no valid instrument may be available, and the analyst must use a different identification strategy. A

widespread approach in the discrimination literature is to compare average post-decision outcomes

across groups for a given decision maker (or group of decision makers), typically after conditioning

on a set of observable covariates X (which we again suppress for parsimony):26

E[∆|w, z,D = 1]− E[∆|b, z,D = 1] , (35)

where for simplicity we assume the relevant outcome is ∆ ≡ Y1. In pre-trial release, for example,

the analyst considers comparing the average rate of pre-trial misconduct among white defendants

released by judge z versus the average rate of misconduct among black defendants released by the

same judge. We note that the more general case where ∆ ≡ Y1− Y0 does not affect the derivations

25See also Alesina and La Ferrara (2014) and Marx (2022).
26Peterson (1981) and Berkovec et al. (1994) are early examples of this approach in the context of gender and racial

discrimination in lending, discussed in Ross and Yinger (2003). Charles and Guryan (2011) review similar approaches
in the context of racial discrimination in the labor market. More recent applications include gender bias in academic
publishing (Card and DellaVigna, 2020; Card et al., 2020; Hengel and Moon, 2020) and racial bias in police use of
force (Fryer, 2019).
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below but brings additional identification challenges due to not observing Y0.

The question of whether the observed difference in average outcomes in (35) is informative

about unobserved differences at the margin,

E[∆|w, V ∗z,w]− E[∆|b, V ∗z,b] , (36)

is a question about identification. In turn, the question of whether the marginal difference in (36)

is informative about decision maker bias is a question about logical validity. From our results in

Section 4, we know that unrestricted decision models do not yield logically valid outcome tests of

bias as defined in Section 3, even if the marginal outcome difference in (36) is perfectly known.

We therefore examine conditions an analyst could impose not only to render the average out-

come difference in (35) informative about the marginal difference in (36), but also to render (36)

informative about bias. To study clear and intuitive cases, assume V is scalar, E[∆|r, v] is strictly

increasing in v, and τ(z, r, v) is weakly decreasing in v, which ensures a unique type of marginal

defendant V ∗z,r for each judge z and defendant race r. With these restrictions, the event D = 1 is

equivalent to V ≤ V ∗z,r; intuitively, if V represents a summary measure of the defendant’s criminal

history, then judge z releases all defendants of race r with criminal history below the cutoff value

V ∗z,r, and detains all those above. This allows us to write the estimand in (35) as

∫
E[∆|w, v]dFV |R=w,V≤V ∗z,w(v)−

∫
E[∆|b, v]dFV |R=b,V≤V ∗z,b(v) . (37)

This formulation highlights at least two distinct reasons why average outcome comparisons,

without further restrictions, fail to be informative about decision maker bias. Both involve the fact

that the two averages in (37) integrate over non-marginal values of V , sweeping in inframarginal

individuals who are irrelevant for the marginal comparison in (36)—i.e. the well-known “infra-

marginality” problem in the outcome test literature (e.g. Heckman et al., 1998; Knowles et al.,

2001; Ayres, 2002; Anwar and Fang, 2006). First, the distribution of V generally differs across R.

Integrating over non-marginal white and black defendants with arbitrarily different distributions of

V therefore allows the magnitude and sign of (37) to be arbitrarily different from that of (36). Sec-

ond, expected outcomes conditional on race and non-race characteristics, E[∆|R, V ], also generally
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vary across R. The two averages in (37) thus integrate arbitrarily different conditional expectation

functions over inframarginal values of V , which is another reason the magnitude and sign of (37)

can differ arbitrarily from that of (36).

An analyst may attempt to solve the first problem by assuming that V is statistically indepen-

dent of R (again, typically after conditioning on X, which we keep implicit):27

V ⊥⊥ R . (38)

Imposing (38) alone is insufficient, however, since the second problem still allows (37) to integrate

arbitrarily different conditional expectation functions over inframarginal values of V . An interesting

takeaway from this point is that assuming away racial differences in the characteristics observed by

the decision maker but not the analyst is not a sufficient condition for average outcome comparisons

like (35) to be informative about bias.

Likewise, the analyst may attempt to solve the second problem by excluding race R from the

expected cost/outcome function:

E[∆|R, V ] = E[∆|V ] . (39)

As discussed in Remark 4.7 and shown in Appendix B, this exclusion restriction (along with the

shape restrictions imposed to derive (37)) is sufficient for a logically valid outcome test, in that the

marginal comparison in (36) becomes informative about whether judge z is globally τ -biased. Im-

posing (39) is not sufficient on its own, however, to render the average difference in (37) informative

about the marginal difference in (36), leaving the average outcome difference still uninformative

about bias. The reason is that even if the outcome functions E[∆|V ] being integrated in (37) are

the same for white and black defendants with the same V , they are still weighted in the integration

by the arbitrarily different distributions FV |R=r,V <V ∗z,r
across race r, as discussed above.

Imposing only one of (38) or (39) in isolation is therefore insufficient to render the average

outcome comparison in (37) informative about bias. Imposing both restrictions simultaneously,

however, does achieve this goal, at least with regard to global τ -bias and under the additional

27The assumption in (38) does not require specifying the functional form of FV . See Simoiu et al. (2017) and Arnold
et al. (2022) for alternative approaches that allow V to be distributed differently across R but impose parametric
assumptions about these distributions.

48



shape restrictions imposed to derive (37). To see this, write (37) under all of these restrictions as

∫
E[∆|v]dFV |V≤V ∗z,w(v)−

∫
E[∆|v]dFV |V≤V ∗z,b(v) . (40)

First, suppose judge z is racially τ -unbiased, such that τ(z, r, v) = τ(z, v). Since neither the cost

function E[∆|V ] nor the benefit function τ(z, v) depend on r, neither does their intersection point

defining marginal defendants: V ∗z,w = V ∗z,b = V ∗z . Then the average outcome difference in (40)

collapses to zero. Now suppose judge z is globally τ -biased against black defendants, such that

τ(z, w, v) > τ(z, b, v) for all v. Since E[∆|V ] is strictly increasing in V and τ(z, r, v) is weakly

decreasing in V for each r, it follows that V ∗z,w > V ∗z,b. In addition, with strictly increasing E[∆|v],

it follows from the properties of truncated distributions (and truncated expectations) that

∂

∂ṽ

∫
E[∆|v]dFV |V≤ṽ(v) > 0 ,

which implies the average outcome difference in (40) is positive given V ∗z,w > V ∗z,b. By an exactly

parallel argument, if judge z is globally τ -biased against white defendants, the average outcome

difference in (40) is negative.

Thus, if the analyst is willing to impose both (38) and (39) (and the shape restrictions leading

to (37)), then the average outcome comparison in (35) will be informative about whether judge z

is globally τ -biased. To understand the intuition of this result, observe that (38) and (39) together

eliminate any role for race to influence expected outcomes, either directly as a relevant predictor

or indirectly through correlations with other non-race characteristics observed by the judge, which

eliminates any rationale for statistical discrimination. The only remaining channel through which

race could influence judge decisions and the outcomes of released defendants, both marginal and

inframarginal, is through the benefit function τ(·), i.e. through decision maker τ -bias.

Remark 5.5. The result above illustrates conditions under which average outcome comparisons

can be informative about the sign of judge z’s τ -bias. Contrasting the magnitude of (40) across

different judges z and z′, however, would not be informative about whether z is more or less τ -biased

than z′, even if judges were additionally assumed to satisfy the ERM. This is because, in contrast

to Remark 4.4, the difference in (40) also integrates over inframarginal individuals. Different judges
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can set different cutoff levels V ∗z,b, which can lead to arbitrarily different magnitudes of (40) even

for ERM judges with the same magnitude of τ -bias, which is only equal to expected outcome

differences at the margin.

Remark 5.6. In the case of exogenous and continuous instrumental variation across decision

makers studied in Section 5.1, imposing an Extended Roy Model of decision maker behavior was

sufficient for a logically valid and identified outcome test. In contrast, in the case of observational

average comparisons like (35), imposing the ERM is neither necessary—as the result above did not

impose it—nor sufficient, as the inframarginality issues discussed after (37) would remain regardless

of whether an ERM were imposed.

Remark 5.7. Interestingly, imposing both (38) and (39) (and the shape restrictions leading to

(40)) to justify an average outcome test would actually render observing outcomes unnecessary.

The analyst could conduct an equivalent benchmark test that simply compares decision rates across

race,

P{D = 1|R = w,Z = z} − P{D = 1|R = b, Z = z} = FV (V ∗z,w)− FV (V ∗z,b) . (41)

since the sign of (41) must match the sign of (40) under these restrictions. The intuition here is

that while benchmark tests generally fail to be informative about bias because of racial differences

in unobservables and statistical discrimination, those are exactly the two phenomena shut down by

(38) and (39). With both outcomes and decisions observed, a testable condition of these restrictions

is therefore that the sign of the average outcome test in (35) and the benchmark test in (41) must

match.

6 Conclusion

In this paper, we have carefully examined what researchers can and cannot learn about bias in deci-

sion making from outcome tests. We showed that models of decision making underpinning outcome

tests can be usefully recast as Roy models, since potential outcomes enter directly into the decision

maker’s choice equation. Different members of the Roy model family, however, are distinguished

by the tightness of the link between potential outcomes and decisions, and we showed that these
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distinctions have important implications for defining bias, deriving logically valid outcome tests of

such bias, and identifying the marginal outcomes that the test requires.
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Appendix

A Proofs of the Main Theorems

Throughout the appendix, we define

Λ(R, V ) = E[∆|R, V ] , (A.1)

and use the following spaces for the pair of functions Λ(r, ·) : V → R and τ(z, r, ·) : V → R. In addition,

to simplify our argument we assume throughout the appendix that V is scalar. We note, however, that our

results would extend to the case where V is a vector but assuming that the conditions we require below hold

for one of the components in V conditional on the rest of then.

Definition A.1. For fixed values of r ∈ {w, b} and z ∈ Z, F denotes the space of all pairs of functions

Λ(r, ·) : V → R and τ(z, r, ·) : V → R.

Definition A.2. For fixed values of r ∈ {w, b} and z ∈ Z, Fm(V0) ⊆ F denotes the space of all pairs of

functions Λ(r, ·) and τ(z, r, ·) such that there is an open subset V0 ⊆ V where:

1. Λ(r, ·) : V → I ⊆ R is weakly monotone in v ∈ V0.

2. τ(z, r, ·) : V → I ⊆ R is weakly monotone in v ∈ V0.

3. For Il ≡ inf I and Iu ≡ sup I, Il < τ(z, r, v) < Iu for all v ∈ V0.

4. There exist V ∗z,r ∈ V0 such that Λ(r, V ∗z,r) = τ(z, r, V ∗z,r).

5. The sets

V0
l ≡ {v ∈ V0 : τ(z, w, v) < τ(z, w, V ∗z,w)} , and (A.2)

V0
u ≡ {v ∈ V0 : τ(z, w, V ∗z,w) < τ(z, w, v)} (A.3)

are non-empty open subsets of V0.

Definition A.3. For fixed values of r ∈ {w, b} and z ∈ Z, Fcm(V0) ⊆ Fm(V0) denotes the space of all

pairs of functions Λ(r, ·) and τ(z, r, ·) satisfying the conditions in Definition A.2, where conditions 1 and 2

additionally require the functions to be continuous.

Remark A.1. The space of functions Fm(V0) is quite general and flexible enough to accommodate a

variety of cases. To start, the space does not restrict the functions outside V0, but working with Fm(V) the

restrictions become global. Conditions 1 and 2 impose weak monotonicity. Note that the condition does not

state whether the monotonicity should be increasing or decreasing and that it does not impose continuity,
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thus allowing for step functions. Condition 3 requires τ to be in the interior of its range on V0 to leave

room for other functions to be either above or below it. Condition 4 requires the functions to cross on V0.

Condition 5 essentially requires τ to vary on V0 and have a set of points with “high” values and a set of

points with “low” values. This assumption is only required for one value of r and, without loss of generality,

here we assume that such value is w.

A.1 Proof of Theorem 4.1

Note that, by definition of V ∗z,r, the difference in (15) is the same as

τ(z, w, V ∗z,w)− τ(z, b, V ∗z,b) .

The proof for functions in F is therefore trivial, as these are two different functions evaluated at two different

points so we omit a detailed treatment here. The result becomes more interesting as we add more restrictions,

starting with Fm(V0). We divide the proof in cases and assume without loss of generality that Λ(r, v) is

weakly increasing as the other case involves symmetric arguments.

Case (i). When z is racially τ -unbiased the function τ(z, r, v) does not depend on r and becomes τ(z, v).

Take (Λ(w, v), τ(z, v)) ∈ Fm(V0) and recall V ∗z,w ∈ V0 is such that Λ(w, V ∗z,w) = τ(z, V ∗z,w). Choose a point

in V0
u and call it V ∗z,b. By Definition A.2(5), τ(z, V ∗z,b) > τ(z, V ∗z,w). Next, define two functions, Hr(v) and

Gr(v), as follows. First,

Hr(v) = {continuous and weakly increasing function mapping V0 ∩ {v ≤ V ∗z,r} to I

s.t. Hr(v) < τ(z, r, v) ∀v < V ∗z,r and Hr(V
∗
z,r) = τ(z, r, V ∗z,r)} . (A.4)

Such a function always exists provided τ(z, r, v) > Il for all v ∈ V0. Second,

Gr(v) = {continuous and strictly increasing function mapping V0 ∩ {v > V ∗z,r} to I

s.t. Gr(v) > τ(z, r, v) and lim
v→V ∗z,r

Gr(v) = τ(z, r, V ∗z,r)} . (A.5)

Such a function always exists provided τ(z, r, v) < Iu for all v ∈ V0. If we now define

Λ(b, v) =


Hb(v) for v ∈ V0 ∩ {v ≤ V ∗z,b}

Gb(v) for v ∈ V0 ∩ {v > V ∗z,b}
, (A.6)

then Λ(b, v) belongs to Fm(V0) and satisfies Λ(b, V ∗z,b) = τ(z, V ∗z,b). The case leads to (15) being negative.
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Replacing V ∗z,b ∈ V0
u with V ∗z,b ∈ V0

l as defined in Definition A.2(5), so that τ(z, V ∗z,b) < τ(z, V ∗z,w), and

following the same construction, leads to (15) being positive. Setting V ∗z,b = V ∗z,w or any other value of

v ∈ V0 such that τ(z, v) = τ(z, V ∗z,w) leads to (15) being zero. Note that the exact same construction works

on Fcm(V0) since Λ(b, v) was chosen to be a continuous function. Also note that extending V0 to V does

not change any of the arguments either, and so the result holds on Fcm(V).

Case (ii). We show the case where the judge is globally biased against black defendants as the other

case is symmetric. Note that this situation necessarily implies that τ(z, w, v) > Il for all v ∈ V so we assume

this below. Take (Λ(w, v), τ(z, w, v)) ∈ Fm(V0) and recall V ∗z,w ∈ V0 is such that Λ(w, V ∗z,w) = τ(z, w, V ∗z,w).

Define τ(z, b, v) on V as

τ(z, b, v) = γτ(z, w, v) + (1− γ)Il , (A.7)

where γ ∈ (0, 1) is defined below. It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ V and judge z is globally

biased against black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3).

In particular, note that τ(z, b, v) inherits the same monotonicity properties that τ(z, w, v) has. Next choose

a point in V0
u and call it V ∗z,b, and then choose γ to satisfy

γ

1− γ
>

τ(z, w, V ∗z,w)− Il
τ(z, w, V ∗z,b)− τ(z, w, V ∗z,w)

> 0 , (A.8)

where the last inequality follows from Definition A.2(5) implying τ(z, w, V ∗z,b) > τ(z, w, V ∗z,w). Finally, define

Λ(b, v) as in (A.6). Definitions A.2(1) and A.2(4) immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈

Fm(V0). Putting all the pieces together,

Λ(b, V ∗z,b) = τ(z, b, V ∗z,b) > τ(z, w, V ∗z,w) = Λ(w, V ∗z,w) , (A.9)

where the strict inequality follows (A.8). The case leads to (15) being negative. For the case that leads to

(15) being zero, simply choose γ to satisfy (A.8) with the first inequality replaced by an equality. For the

case that leads to (15) being positive, set V ∗z,b = V ∗z,w and choose any value of γ ∈ (0, 1). Note that the exact

same construction works on Fcm(V0) since Λ(b, v) was chosen to be a continuous function and τ(z, b, v) in

(A.7) would be continuous on V0 if τ(z, w, v) is also continuous. Finally, note that extending V0 to V does

not change any of the arguments either, and so the result holds on Fcm(V).

Case (iii). We show the case where the judge is locally biased against black defendants as the other

case is symmetric. Note that if Vsi ∩ V0 = ∅, then τ(z, r, v) = τ(z, v) for all v ∈ V0 and the proof follows

from the proof of Case (i). We therefore consider a construction where Vsi ∩ V0 6= ∅ and focus on the case

where Vsi = (
¯
v, v̄) ⊆ V0 since other cases require essentially the same arguments. Take (Λ(w, v), τ(z, w, v)) ∈

Fm(V0) and recall V ∗z,w ∈ V0 is such that Λ(w, V ∗z,w) = τ(z, w, V ∗z,w).

60



Start with the case where τ(z, w, v) is decreasing and note that it must be case that τ(z, w, v) > τ(z, w, v̄)

for v < v̄ in order for τ(z, b, v) to satisfy Definition 3.4 without violating weak monotonicity at v̄. Define

τ(z, b, v) on V as

τ(z, b, v) ≡


γτ(z, w, v) + (1− γ)τ(z, w, v̄) for v ∈ (

¯
v, v̄)

τ(z, w, v) for v 6∈ (
¯
v, v̄)

, (A.10)

for some γ ∈ (0, 1). It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ (
¯
v, v̄) and judge z is locally biased against

black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3). To check

that τ(z, b, v) is decreasing, note that for any v′ ≤
¯
v and v′′ ∈ (

¯
v, v̄),

τ(z, b, v′) = τ(z, w, v′) > γτ(z, w, v′) + (1− γ)τ(z, w, v̄) ≥ γτ(z, w, v′′) + (1− γ)τ(z, w, v̄) = τ(z, b, v′′) ,

with a similar argument applying to points v′′ ∈ (
¯
v, v̄) and v′′′ ≥ v̄. Next choose a point in V0

u and call it

V ∗z,b. Since τ(z, w, v) is decreasing, we can choose V ∗z,b to satisfy V ∗z,b ≤ ¯
v. Finally, define Λ(b, v) as in (A.6).

Definitions A.2(1) and A.2(4) immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈ Fm(V0). It then

follows that

Λ(b, V ∗z,b) = τ(z, b, V ∗z,b) > τ(z, w, V ∗z,w) = Λ(w, V ∗z,w) , (A.11)

where the strict inequality comes from τ(z, b, V ∗z,b) = τ(z, w, V ∗z,b) > τ(z, w, V ∗z,w) since V ∗z,b ≤ ¯
v. This

case leads to (15) being negative. For the case that leads to (15) being zero, simply choose V ∗z,b = V ∗z,w if

V ∗z,w 6∈ (
¯
v, v̄). If V ∗z,w ∈ (

¯
v, v̄) then we need a point V ∗z,b ∈ (

¯
v, v̄) such that τ(z, w, V ∗z,b) > τ(z, w, V ∗z,w) in

order to set γ to satisfy

γ

1− γ
=

τ(z, w, V ∗z,w)− τ(z, w, v̄)

τ(z, w, V ∗z,b)− τ(z, w, V ∗z,w)
.

Otherwise exact equality may not arise unless τ(z, w,
¯
v) = τ(z, w, V ∗z,w). For the case that leads to (15)

being positive, choose V ∗z,b in V0
l so that V ∗z,b ≥ v̄. The construction we just derived is simple, but it

does not cover the case where the space is Fcm(V0) since, even when τ(z, w, v) is everywhere continuous,

τ(z, b, v) would exhibit a discontinuity at
¯
v by construction. This, however, can be easily fixed by re-defining

τ(z, b, v) on (
¯
v,

¯
v + ε) for some ε > 0 small as the linear function connecting the points (

¯
v, τ(z, w,

¯
v)) and

(
¯
v + ε, γτ(z, w,

¯
v + ε) + (1 − γ)τ(z, w, v̄)). When τ(z, w, v) is decreasing and continuous, we can choose ε

small enough to guarantee that such a line would be strictly below τ(z, w, v) on (
¯
v,

¯
v+ ε). Finally, note that

extending V0 to V does not change any of the arguments, and so the result holds on Fcm(V).

Next consider the case where τ(z, w, v) is increasing and note that it must be case that τ(z, w, v) >

τ(z, w,
¯
v) for v >

¯
v in order for τ(z, b, v) to satisfy Definition 3.4 without violating weak monotonicity at

¯
v.
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Define τ(z, b, v) on V as

τ(z, b, v) ≡


γτ(z, w, v) + (1− γ)τ(z, w,

¯
v) for v ∈ (

¯
v, v̄)

τ(z, w, v) for v 6∈ (
¯
v, v̄)

, (A.12)

for some γ ∈ (0, 1). It follows that τ(z, b, v) < τ(z, w, v) for all v ∈ (
¯
v, v̄) and judge z is locally biased against

black defendants. By construction, τ(z, b, v) satisfies Definitions A.2(2) and Definitions A.2(3). To check

that τ(z, b, v) is increasing, note that for any v′ ≤
¯
v and v′′ ∈ (

¯
v, v̄),

τ(z, b, v′) ≤ τ(z, w,
¯
v) = γτ(z, w,

¯
v) + (1− γ)τ(z, w,

¯
v) < γτ(z, w, v′′) + (1− γ)τ(z, w,

¯
v) = τ(z, b, v′′) ,

with a similar argument applying to points v′′ ∈ (
¯
v, v̄) and v′′′ ≥ v̄. Next choose a point in V0

u and call it

V ∗z,b. Since τ(z, w, v) is increasing, we can choose V ∗z,b to satisfy V ∗z,b ≥ v̄. Finally, define Λ(b, v) as in (A.6).

Definitions A.2(1) and A.2(4) immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈ Fm(V0). It then

follows that

Λ(b, V ∗z,b) = τ(z, b, V ∗z,b) > τ(z, w, V ∗z,w) = Λ(w, V ∗z,w) , (A.13)

where the strict inequality comes from τ(z, b, V ∗z,b) = τ(z, w, V ∗z,b) > τ(z, w, V ∗z,w) since V ∗z,b ≥ v̄. This

case leads to (15) being negative. For the case that leads to (15) being zero, simply choose V ∗z,b = V ∗z,w if

V ∗z,w 6∈ (
¯
v, v̄). If V ∗z,w ∈ (

¯
v, v̄) then we need a point V ∗z,b ∈ (

¯
v, v̄) such that τ(z, w, V ∗z,b) > τ(z, w, V ∗z,w) in

order to set γ to satisfy

γ

1− γ
=

τ(z, w, V ∗z,w)− τ(z, w,
¯
v)

τ(z, w, V ∗z,b)− τ(z, w, V ∗z,w)
.

Otherwise exact equality may not arise unless τ(z, w, v̄) = τ(z, w, V ∗z,w). For the case that leads to (15) being

positive, choose V ∗z,b in V0
l so that V ∗z,b ≤ ¯

v. The construction we just derived is simple, but it does not cover

the case where the space is Fcm(V0) since, even when τ(z, w, v) is everywhere continuous, τ(z, b, v) would

exhibit a discontinuity at v̄ by construction. This, however, can be easily fixed by re-defining τ(z, b, v) on

(v̄ − ε, v̄) for some ε > 0 small as the linear function connecting the points (v̄ − ε, γτ(z, w, v̄ − ε) + (1 −

γ)τ(z, w,
¯
v)) and (v̄, τ(z, w, v̄). When τ(z, w, v) is increasing and continuous, we can choose ε small enough

to guarantee that such a line would be strictly below τ(z, w, v) on (v̄− ε, v̄). Finally, note that extending V0

to V does not change any of the arguments, and so the result holds on Fcm(V).

Case (iv). This case is similar to the other cases so we only characterize the simplest situation and omit

the details of the rest. Take (Λ(w, v), τ(z, w, v)) ∈ Fcm(V0) and recall V ∗z,w ∈ V0 is such that Λ(w, V ∗z,w) =
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τ(z, w, V ∗z,w). Consider the case where τ(z, w, v) is strictly decreasing for simplicity and define

τ(z, b, v) ≡ γτ(z, w, v) + (1− γ)τ(z, w, V ∗z,w) , (A.14)

for γ ∈ (0, 1). By construction, τ(z, b, v) satisfies Definitions A.3(2) and Definitions A.3(3). In addition,

τ(z, b, v) < τ(z, w, v) for v < V ∗z,w, τ(z, b, V ∗z,w) = τ(z, w, V ∗z,w), and τ(z, b, v) > τ(z, w, v) for v > V ∗z,w. The

judge is then unclassified, as she exhibits higher expected benefits for one race or the other one depending

on the values of v. Next, for a given value of V ∗z,b, define Λ(b, v) as in (A.6). Definitions A.3(1) and A.3(4)

immediately hold, so we conclude that (Λ(b, v), τ(z, b, v)) ∈ Fcm(V0). To finish the argument, note that by

strict monotonicity of τ(z, w, v),

τ(z, b, v) = γτ(z, w, v) + (1− γ)τ(z, w, V ∗z,w) > γτ(z, w, V ∗z,w) + (1− γ)τ(z, w, V ∗z,w) = τ(z, w, V ∗z,w) (A.15)

for any v < V ∗z,w and

τ(z, b, v) = γτ(z, w, v) + (1− γ)τ(z, w, V ∗z,w) < γτ(z, w, V ∗z,w) + (1− γ)τ(z, w, V ∗z,w) = τ(z, w, V ∗z,w) (A.16)

for any v > V ∗z,w. This means that choosing V ∗z,b < V ∗z,w leads to (15) being negative, choosing V ∗z,b = V ∗z,w

leads to (15) being zero, and choosing V ∗z,b > V ∗z,w leads to (15) being positive. This completes the proof.

A.2 Proof of Theorem 4.2

By the definition of the marginal defendant in (12), it must be the case that

Λ(w, V ∗z,w) = τ(z, w) and Λ(b, V ∗z,b) = τ(z, b) .

It follows immediately that

Λ(w, V ∗z,w)− Λ(b, V ∗z,b) = τ(z, w)− τ(z, b) , (A.17)

and so the outcome test concludes there is no evidence of racial bias if and only if judge z ∈ Z is racially

τ -unbiased, i.e., τ(z, r) = τ(z). Similarly, the outcome test concludes that judge z is biased against black

defendants, Λ(w, V ∗z,w) > Λ(b, V ∗z,b), if and only if judge z ∈ Z is racially τ -biased against black defendants.

The same holds for τ -biased against white defendants and this concludes the proof.
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A.3 Proof of Proposition 5.1

Let FΛ|r(·) denote the CDF of Λ(r, V ) conditional on R = r, which is assumed to be one-to-one for each r.

Evaluating MTE(r, u) at u = p(z, r) yields

MTE(r, p(z, r)) = E[∆|R = r, Ur = p(z, r)]

= E[∆|R = r, FΛ|r(Λ(r, V )) = FΛ|r(τ(z, r))]

= E[∆|R = r,Λ(r, V ) = τ(z, r)]

= τ(z, r)

= F−1
Λ|r(p(z, r)) , (A.18)

where the first and second equality use the representation D = I{Ur ≤ p(z, r)}, and the third and last

equality follow from FΛ|r(·) being one-to-one.

A.4 Details on LIV and MTEs

Consider the latent index model in (22) without (24). Following Heckman and Vytlacil (2001, Appendix),

assume ζ(z, r, v) is absolutely continuous with respect to Lebesgue measure for all (z, r) and that ζ(z, r, v)

is continuously differentiable in (z, v) for each value of r. Fix the value of Z at z. Under these conditions,

there may be at most a countable number crossing points v such that ζ(z, r, v) = 0, i.e., marginal defendants

with exactly offsetting costs and benefits of release. Let j ∈ Jz,r index the set of v points such that the

latent index is zero, so that ζ(z, r, v∗j ) = 0 for all j ∈ Jz,r. |Jz,r| > 1 could arise, for example, when v is

a scalar and the function τ(z, r, v) is non-monotonic in v, or when v is multi-dimensional. Note that |Jz,r|

may be infinity, but it is countable. Also note that the values {v∗j : j ∈ Jz,r} depend on z and r, but we

suppress such dependence throughout this appendix for parsimony. It follows from standard manipulations

(see Section A.4.1 below) that

∂

∂z
E[Y |Z = z,R = r] = −

∑
j∈Jz,r

ζz(z, r, v
∗
j )

|ζv(z, r, v∗j )|
fv|r(v

∗
j )E[∆|R = r, V = v∗j ] ,

∂

∂z
p(z, r) = −

∑
j∈Jz,r

ζz(z, r, v
∗
j )

|ζv(z, r, v∗j )|
fv|r(v

∗
j ) ,

where ζz(·) and ζv(·) denote the partial derivatives of ζ(·) with respect to z and v, and fv|r(v
∗
j ) is the

conditional density of V given (R,Z), which only depends on R since V is independent of Z. The LIV
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estimand is the ratio of these two terms:

LIV (r, p(z, r)) =
∂
∂zE[Y |Z = z,R = r]

∂
∂zp(z, r)

=
∑
j∈Jz,r

wj(z, r)E[∆|R = r, V = v∗j ] , (A.19)

where the weights wj(z, r) are given by

wj(z, r) =

ζz(z,r,v∗j )

|ζv(z,r,v∗j )|fv|r(v
∗
j )∑

j∈Jz,r
ζz(z,r,v∗j )

|ζv(z,r,v∗j )|fv|r(v
∗
j )

. (A.20)

It follows that the LIV estimand, evaluated at a particular judge z and defendant race r, is a weighted

average of E[∆|r, v∗j ] associated with each of the crossing points v∗j for j ∈ Jz,r, i.e. all defendants of race

r who are marginal for judge z. While these weights necessarily add up to one, they could be negative,

meaning that the LIV estimand may be negative even when E[∆|r, v∗j ] > 0 for all j ∈ Jz,r. This is because

ζz(z, r, v
∗
j ) could be positive for some j and negative for others; intuitively, reassigning one of judge z’s

marginal defendants to a nearby judge z′ could raise the value of the benefit function τ(·), while the same

reassignment of another of judge z’s marginal defendants could lower the value of the benefit function.

As an illustration, consider a case where |Jz,r| = 2, so there are two values of V that characterize

marginal defendants. This could arise when v is a scalar and the function τ(·) is quadratic in v, or when

v is multi-dimensional. For example, suppose that v = (v1, v2) where v1 takes values {0, 1} and v2 takes

values in R. Consider the case where τ(z, r, v) = τ1(z, r) + av1 − v2 for some function τ1(z, r) and constant

a ∈ R. Then, for any τ∗ in the range of τ(·) we obtain that τ(z, r, v) = τ∗ for v = (1, τ1(z, r) + a− τ∗) and

v = (0, τ1(z, r)− τ∗).

Additive separability of the latent index ζ(z, r, v) in z and v guarantees that the weights wj(z, r) in

(A.20) are positive, since in that case ζz(z, r, v) is either positive or negative for all v ∈ V. Indeed, additive

separability ensures that the derivative ζz(z, r, v
∗
j ) in (A.20) does not depend on v∗j and so

wj(z, r) =

fv|r(vj)

|ζv(z,r,vj)|∑
j∈Jz,r

fv|r(vj)

|ζv(z,r,vj)|

> 0 . (A.21)

A.4.1 Proof of (A.19)

We start with the denominator. In order to simplify the expressions, we remove the dependence of Jz,r on

(z, r) and simply write J from here on. Let Vz,r ≡ {v ∈ V : ζ(z, r, v) ≤ 0} and note that we can order the

crossing points {v∗j : j ∈ J} from smallest to largest. By the chain rule,

dv∗j
dz

= −
ζz(z, r, v

∗
j )

ζv(z, r, v∗j )
(A.22)

65



where ζz and ζv denote the partial derivatives of ζ with respect to z and v. Next, let fv|r(v) be the conditional

on (z, r) density of v. Since Z ⊥ V , this conditional density does not depend on z. Finally, consider the case

where ζ(z, r, v) > 0 for v ∈ (−∞, v∗1), as the other case involves similar arguments. We can then write

P{D = 1|Z = z,R = r} =

∫
Vz,r

fv|r(v)dv

=

∫ v∗2

v∗1

fv|r(v)dv +

∫ v∗4

v∗3

fv|r(v)dv +

∫ v∗6

v∗5

fv|r(v)dv + · · · .

Taking derivatives, using (A.22), and noting that fv|r(v) is not a function of z, we get

∂

∂z
P{D = 1|Z = z,R = r} = fv|r(v

∗
2)
dv∗2
dz
− fv|r(v∗1)

dv∗1
dz

+ fv|r(v
∗
4)
dv∗4
dz
− fv|r(v∗3)

dv∗3
dz

+ fv|r(v
∗
6)
dv∗6
dz
− fv|r(v∗5)

dv∗5
dz

+ fv|r(v
∗
8)
dv∗8
dz
− fv|r(v∗7)

dv∗7
dz

+ · · ·

= −fv|r(v∗1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|
− fv|r(v∗2)

ζz(z, r, v
∗
2)

|ζv(z, r, v∗2)|
− fv|r(v∗3)

ζz(z, r, v
∗
3)

|ζv(z, r, v∗3)|
− · · ·

= −
∑
j∈J

fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
, (A.23)

where the second equality follows because ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for all

even values of j. In the case where ζ(z, r, v) < 0 for v ∈ (−∞, v∗1), the first integral in the expression goes

from −∞ to v∗1 and in that case ζv(z, r, v
∗
j ) > 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for all even values

of j. The resulting expression is the same.

Now consider the numerator. Let Vz,r be defined as before and note that we can order the crossing

points {v∗j : j ∈ J} from smallest to largest. Consider the case where ζ(z, r, v) > 0 for v ∈ (−∞, v∗1), as the

other case involves similar arguments. We can then write

E[Y |Z = z,R = r] = E [E[Y |Z = z,R = r,D]|Z = z,R = r]

= E[Y1|Z = z,R = r,D = 1]p(z, r) + E[Y0|Z = z,R = r,D = 0](1− p(z, r))

= E[Y1|Z = z,R = r, v ∈ Vz,r]p(z, r) + E[Y0|Z = z,R = r, v ∈ Vcz,r](1− p(z, r))

=

∫
Vz,r

E[Y1|Z = z,R = r, V = v]p(z, r)fv|r(v|v ∈ Vz,r)

+

∫
Vc

z,r

E[Y0|Z = z,R = r, V = v](1− p(z, r))fv|r(v|v ∈ Vcz,r)

=

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v)I{v ∈ Vz,r} (A.24)

+

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v)I{v ∈ Vcz,r} , (A.25)

where the first equality follows by the LIE, the second equality follows by the definition of propensity score,
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and the last equality follows from the definition of the condition density

fv|r(v|v ∈ A) =
fv|r(v)I{v ∈ A}

Pr{v ∈ A|r}
, (A.26)

and the independence of Z. The term in (A.24) can be worked out as in the previous proof by first writing,

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v) =

∫ v∗2

v∗1

E[Y1|R = r, V = v]fv|r(v)dv

+

∫ v∗4

v∗3

E[Y1|R = r, V = v]fv|r(v)dv +

∫ v∗6

v∗5

E[Y1|R = r, V = v]fv|r(v)dv + · · · .

and then taking derivatives with respect to z,

∂

∂z

∫
Vz,r

E[Y1|R = r, V = v]fv|r(v) = E[Y1|R = r, V = v∗2 ]fv|r(v
∗
2)
dv∗2
dz
− E[Y1|R = r, V = v∗1 ]fv|r(v

∗
1)
dv∗1
dz

+ E[Y1|R = r, V = v∗4 ]fv|r(v
∗
4)
dv∗4
dz
− E[Y1|R = r, V = v∗3 ]fv|r(v

∗
3)
dv∗3
dz

+ · · ·

= −E[Y1|R = r, V = v∗1 ]fv|r(v
∗
1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|
− E[Y1|R = r, V = v∗2 ]fv|r(v

∗
2)
ζz(z, r, v

∗
2)

|ζv(z, r, v∗2)|

− E[Y1|R = r, V = v∗3 ]fv|r(v
∗
3)
ζz(z, r, v

∗
3)

|ζv(z, r, v∗3)|
− · · ·

= −
∑
j∈J

E[Y1|R = r, V = v∗j ]fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
,

where we again used that ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for all even values of j.

The term in (A.25) can be worked out similarly since,

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v) =

∫ v∗1

−∞
E[Y0|R = r, V = v]fv|r(v)dv

+

∫ v∗3

v∗2

E[Y0|R = r, V = v]fv|r(v)dv +

∫ v∗5

v∗4

E[Y0|R = r, V = v]fv|r(v)dv + · · · .
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and then taking derivatives with respect to z,

∂

∂z

∫
Vc

z,r

E[Y0|R = r, V = v]fv|r(v) = E[Y0|R = r, V = v∗1 ]fv|r(v
∗
1)
dv∗1
dz
− E[Y0|R = r, V = v∗2 ]fv|r(v

∗
2)
dv∗2
dz

+ E[Y0|R = r, V = v∗3 ]fv|r(v
∗
3)
dv∗3
dz
− E[Y0|R = r, V = v∗4 ]fv|r(v

∗
4)
dv∗4
dz

+ · · ·

= E[Y0|R = r, V = v∗1 ]fv|r(v
∗
1)
ζz(z, r, v

∗
1)

|ζv(z, r, v∗1)|
+ E[Y0|R = r, V = v∗2 ]fv|r(v

∗
2)
ζz(z, r, v

∗
2)

|ζv(z, r, v∗2)|

+ E[Y0|R = r, V = v∗3 ]fv|r(v
∗
3)
ζz(z, r, v

∗
3)

|ζv(z, r, v∗3)|
+ E[Y0|R = r, V = v∗4 ]fv|r(v

∗
4)
ζz(z, r, v

∗
4)

|ζv(z, r, v∗4)|
+ · · ·

=
∑
j∈J

E[Y0|R = r, V = v∗j ]fv|r(v
∗
j )
ζz(z, r, v

∗
j )

|ζv(z, r, v∗j )|
,

where we again used (A.22) and the fact that ζv(z, r, v
∗
j ) < 0 for all odd values of j and ζv(z, r, v

∗
j ) > 0 for

all even values of j. The expression in (A.19) follows by taking the ratio of these quantities.

B Excluding Race from the Cost Function

In Section 4 we showed that marginal-based outcome tests are logically invalid in the GRM and logically

valid in the ERM. The ERM differs from the GRM in that it excludes non-race defendant characteristics

v from the benefit function τ(·). However, a close inspection to the intuition provided in Figures 1a and

1b points to another possible restriction in the GRM that would break the arguments behind the proof of

Theorem 4.1: excluding race from the cost function,

Λ(r, v) = Λ(v) for all v ∈ V . (A.27)

This restriction is not strong enough by itself to recover logical validity of the marginal outcome test.

A set of apparent minimal conditions would require both Λ(r, v) and τ(z, r, v) to be monotone and also

require assuming away the possibility that judge z is locally racially biased or, what we previously label as,

unclassified. The combination of these conditions are enough to make the marginal outcome test valid in

the GRM as the following Lemma shows.

Lemma B.1. Assume the following conditions:

1. The expected cost function satisfies (A.27) and is strictly increasing on V.

2. The expected benefit function τ(z, r, v) is weakly decreasing on V.

3. Judge z is either racially τ -unbiased so that τ(z, b, v) = τ(z, w, v) for all v ∈ V or is globally τ -biased

against race r so that τ(z, r′, v) > τ(z, r, v) for all v ∈ V.
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It follows that

Λ(V ∗z,w) = Λ(V ∗z,b) if and only if z is racially τ -unbiased , (A.28)

Λ(V ∗z,r′) > Λ(V ∗z,r) if and only if z is globally τ -biased against defendants of race r . (A.29)

Proof of Lemma B.1. First, suppose that judge z ∈ Z is racially τ -unbiased, i.e., τ(z, r, v) = τ(z, v) for all v ∈

V. In this case neither the expected cost nor the expected benefit depend on race, and since they cross only

once by the monotonicity assumptions, it follows that τ(z, V ∗z ) = Λ(V ∗z ) and V ∗z = V ∗z,b = V ∗z,w. The out-

come test immediately concludes absence of racial bias in this case. Next, suppose that Λ(V ∗z,w) = Λ(V ∗z,b).

Since Λ(v) is strictly increasing, this implies that V ∗z,b = V ∗z,w and so τ(z, b, V ∗z,b) = τ(z, w, V ∗z,w). Under the

assumption that z is either racially τ -unbiased or is globally racially τ -biased, this immediately implies that

z is racially unbiased.

Second, suppose that judge z is globally τ -biased against black defendants, i.e.

τ(z, w, v) > τ(z, b, v) for all v ∈ V . (A.30)

The other direction is symmetric. Now split the argument in three cases. First, suppose that V ∗z,w = V ∗z,b

and consider the following argument,

Λ(V ∗z,w) = τ(z, w, V ∗z,w) > τ(z, b, V ∗z,w) = τ(z, b, V ∗z,b) = Λ(V ∗z,b) = Λ(V ∗z,w) , (A.31)

where the equalities follow from the definition of marginal defendants and the inequality follows from (A.30).

This is a contradiction. Second, suppose that V ∗z,w < V ∗z,b and consider the following argument,

Λ(V ∗z,w) = τ(z, w, V ∗z,w) > τ(z, b, V ∗z,w) ≥ τ(z, b, V ∗z,b) = Λ(V ∗z,b) , (A.32)

where the equalities follow from the definition of marginal defendants, the first inequality follows from (A.30),

and the weak inequality follows from τ(z, r, v) being weakly decreasing. This leads to a contradiction of Λ(v)

being strictly increasing. Finally, suppose then that V ∗z,w > V ∗z,b. Since the function Λ(·) is assumed to

be strictly increasing, it follows that Λ(V ∗z,w) > Λ(V ∗z,b). It follows that the marginal-based outcome test

concludes there is racial bias in the right direction.

To conclude the proof, suppose now that Λ(V ∗z,w) > Λ(V ∗z,b), so that the outcome test concludes that

judge z is biased against black defendants, and assume that τ(z, b, v) ≥ τ(z, w, v) for all v ∈ V. By Λ(v)
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(a) Weakly Monotone Expected Cost
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Λ,τ

τ(z, w, v)

τ(z, b, v)

Λ(v)

V ∗z,w = V ∗z,b

Λ(V ∗z,b) = Λ(V ∗z,w)

(b) Locally Racially Bias

Figure A.1: Intuition behind the conditions in Lemma B.1

being strictly increasing we know that V ∗z,w > V ∗z,b and so

Λ(V ∗z,w) = τ(z, w, V ∗z,w) ≤ τ(z, w, V ∗z,b) ≤ τ(z, b, V ∗z,b) = Λ(V ∗z,b) , (A.33)

where the equalities follow from the definition of marginal defendants, the first weak inequality follows from

τ(·) being weakly decreasing, and the second weak inequality follows from τ(z, b, v) ≥ τ(z, w, v) for all v ∈ V.

This leads to a contradiction and completes the proof.

Lemma B.1 requires three conditions. Figure A.1a illustrates the strict monotonicity of Λ(v) is needed

to avoid a situation where the outcome test concludes absence of racial bias simply because Λ(v) happens to

be flat in the relevant crossing areas. That is, excluding race from the cost function and weak monotonicity

of Λ(v) are not enough to prevent the outcome test from incorrectly concluding absence of racial bias. The

second condition guarantees that there is a unique marginal defendant for each race. If the function τ(z, r, v)

is allowed to be increasing in some subset of V, then the marginal defendants for each race may not be

associated with a unique value of v and the arguments in behind (A.32) and (A.33) would break. Finally,

the third condition assumes away the possibility that z is only locally biased against a given race. This is

required as, otherwise, a situation could arise where Λ(V ∗z,w) = Λ(V ∗z,b), the test concludes absence of bias,

and despite the fact that τ(z, b, V ∗z,b) = τ(z, w, V ∗z,w), the judge is locally racially biased. This is illustrated in

Figure A.1b. In that figure, the outcome test concludes that there is no evidence of racial bias when judge z

is locally racially biased against black defendants simply because the intersection happens at a point where

the expected benefits across race are the same.
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C Interpreting (18) Through the Lens of the GRM

Consider the GRM in Definition 2.1 and assume for simplicity that V ∈ R. Note that E[∆|R, V ] is a function

of (R, V ) so the actual treatment effect ∆ does not enter D. Then,

E[D|Z = z,R = w,∆ = δ] = P {E[∆|R, V ] ≤ τ(Z,R, V )|Z = z,R = w,∆ = δ}

= P {ψw(V ) ≤ gz,w(V )|R = w,∆ = δ} , (A.34)

where the last line used that V ⊥ Z and changes notation simply to emphasize that these are two functions

of V indexed by values of (z, r). Arnold et al. (2022) test for racial discrimination based on

T = E [P {ψw(V ) ≤ gz,w(V )|R = w,∆} − P {ψb(V ) ≤ gz,b(V )|R = b,∆}] . (A.35)

To interpret this test in the context of the GRM, one would need to make statements about the distribution

of V |(R,∆) for the expression inside the expectation, and then about the distribution of ∆ for the outer

expectation. Without restrictions on these distributions, the values that T can take are not informative

about differences in τ(Z,R, V ), even within the context of the ERM. As a simple illustration, consider the

following example where judge z is racially τ -unbiased:

ψw(V ) = awV ψb(V ) = abV τ(z, r, V ) = −V V |(R,∆) ∼ U [−∆, 1 + cr] ∆ ∈ {0, 1} (A.36)

where ar ∈ (0, 1), cb > cw = 0 and P{∆ = 1} = 0.5. It follows that

P
{

(1 + aw)V ≥ 0|R = w,∆ = 0
}
− P

{
(1 + ab)V ≥ 0|R = b,∆ = 0

}
= 1− 1 = 0 (A.37)

P
{

(1 + aw)V ≥ 0|R = w,∆ = 1
}
− P

{
(1 + ab)V ≥ 0|R = b,∆ = 1

}
=

1

2
− 1 + cb

2 + cb
< 0 (A.38)

since V |R = b,∆ = 1 ∼ U [−1, 1 + cb] and so P {(1 + ab)V ≥ 0|R = b,∆ = 0} = 1+cb
2+cb

> 1/2. Averaging over

∆ then leads to T < 0. The example does not depend on the values of ar and holds when aw = ab.

A special case arises when we impose the restrictions (a) V ⊥ (∆, R) and (b) E[∆|w, V ] = E[∆|b, V ], so

that T in (A.35) becomes

T = P {ψ(V ) ≤ gz,w(V )} − P {ψ(V ) ≤ gz,b(V )} . (A.39)

It follows immediately from this expression that if judge z is racially τ -unbiased, so gz,w(V ) = gz,b(V ), then

T = 0. It also follows from the same expression that if judge z is globally τ -biased against black defendants,
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so gz,w(V ) > gz,b(V ), then T > 0. However, even in this very special case, one may still obtain T = 0 when

gz,w(V ) 6= gz,b(V ).
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