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adverse macro shocks, then the debt becomes risky. Convenience yields on government debt 
temporarily alleviate the trade-off.
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Governments around the world responded to the pandemic with a massive increase in spend-

ing financed with new debt. OECD governments collectively borrowed USD 18 trillion from the

bond markets in 2020, 29% of GDP, and 60% more than in 2019. Central government debt/GDP

ratios for OECD countries are projected to increase further in 2021 (OECD, 2021).

This recent debt expansion raises a classic question: How much counter-cyclical fiscal policy

can governments implement while keeping the debt safe? In this paper, we show that govern-

ments face a trade-off between insuring their bondholders–by making debt risk-free–and insuring

their taxpayers–by spending more and taxing less– in the wake of adverse macroeconomic shocks.

If a government provides more insurance to bondholders, it enjoys lower risk premia on its debt,

but then it can provide less insurance to taxpayers. Making government debt safer requires rais-

ing more tax revenue as a fraction of GDP from taxpayers in bad times. The larger the sovereign

debt burden, the steeper this trade-off becomes.

Our analysis focuses on the case of risk-free debt, because it is empirically relevant for coun-

tries like the U.S. A country’s government debt is risk-free if the government debt portfolio has

a zero beta, meaning that its valuation is immune to fluctuations in the economy and financial

markets. Default-free debt is not necessarily risk-free debt, since its valuation can still fluctuate

before expiration.

Governments, like the U.S., have an incentive to manufacture safe debt, because safe debt earns

sizeable convenience yields, lowering the interest they must pay on their debt. Krishnamurthy

and Vissing-Jorgensen (2012) estimate convenience yields on U.S. Treasuries of around 75 bps per

year, while more recent estimates find even larger convenience yields of around 200 basis points

(Jiang, Krishnamurthy, and Lustig, 2018a,b; Koijen and Yogo, 2019).

We focus most of our attention on an economy with permanent output shocks. Manufacturing

risk-free debt in the presence of permanent output risk requires a non-trivial feat of financial en-

gineering. The government bond portfolio is backed by a long position in a claim to tax revenue

and a short position in a claim to government spending. The Treasury’s long position in the tax

claim exceeds the short position in the spending claim by the value of outstanding debt. To ensure

risk-free debt (a zero beta on government debt βD = 0), the claim to tax revenues needs to have a

lower beta than the spending claim: βT < βG. Since both claims have the same exposure to long-

run output risk, this condition imposes tight restrictions on the process of primary surpluses, or

equivalently on tax revenues given a process for government spending.

Recast in the language of Modigliani-Miller, the claim to tax revenue can be regarded as the

government’s unlevered asset, which is divided into the government debt and the claim to gov-

ernment spending. To manufacture risk-free debt, the spending claim has to be a levered version

of the government’s asset. Therefore, just as the equity of a firm has to be riskier than its asset in

order to generate risk-free debt, the government’s spending beta has to be higher than its tax beta

to ensure a zero-beta debt. The tax beta has to be low.
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The tax claim has a low beta if the present discounted value (PDV) of future tax revenues

increases in bad times, times in which the investor’s marginal utility is high. Since the taxpayers

pay the taxes, they have a short position on the tax revenue claim. From their perspective, a low-

beta tax claim is a risky tax liability. The government cannot insure taxpayers when it insures

bondholders by keeping the debt risk-free. The larger the amount of outstanding debt, the more

levered the government becomes, and the larger the gap between the tax beta and the spending

beta needs to be to keep the debt risk-free. As the debt grows, the beta of the tax claim has to go to

zero holding fixed the spending beta. The trade-off between insuring taxpayers and bondholders

steepens.

Conversely, if the government insists on insuring the taxpayers by lowering tax rates in bad

times, then the tax beta is high and the government debt becomes risky. The bondholders now

bear the macroeconomic risk. The riskier the debt, the larger the welfare benefits of insurance that

accrue to taxpayers.

We characterize the restrictions imposed on tax revenues when debt is made risk-free. They

depend on the debt issuance policy the government follows. When the government keeps the

debt/output ratio constant, there is no scope for insurance of taxpayers. The tax process has to be

safer than the spending process at all horizons –short, intermediate and long horizons. When the

government can issue more debt in response to a negative GDP growth shock rather than raise

taxes, the tax claim is riskier than the spending claim over short horizons. Over intermediate and

longer horizons, the surplus and tax revenue claims have to become sufficiently safe for investors

(risky for taxpayers) to offset the long-run output risk priced into the debt process when debt

and output share the same stochastic trend. We characterize the amount of insurance that can be

provided to taxpayers over finite horizons by studying a sufficient statistic, the cash-flow beta of

the surplus/tax process.

A corollary of these results is that the government can only run primary deficits on average

if the tax claim is safer than the spending claim. Taxpayers insure bondholders by suffering high

taxation at the wrong time, in high marginal-utility states. The negative covariance of marginal

utility and surpluses is what creates fiscal capacity. The question of whether the risk-free rate r is

lower than the growth rate g is neither necessary nor sufficient to gauge fiscal capacity.

Over the last two decades, the beta of U.S. government debt has turned negative (Baele,

Bekaert, and Inghelbrecht, 2010; Campbell, Pflueger, and Viceira, 2020). When government debt

carries a negative beta, the scope for insuring taxpayers shrinks even further. The zero-beta debt

case is conservative in terms of the restrictions it implies on surpluses/taxes.

Our paper is the first one to analytically characterize the trade-off between insuring taxpayers

and bondholders at different horizons in an environment with plausible asset pricing implications

and debt dynamics. Modern asset pricing has consistently found that permanent shocks to out-

put and consumption account for most of the variance of the pricing kernel, and receive a high
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price of risk in securities market (e.g., Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009;

Bansal and Yaron, 2004; Borovička, Hansen, and Scheinkman, 2016; Backus, Boyarchenko, and

Chernov, 2018). Models without large permanent shocks counterfactually produce bond risk pre-

mia that exceed equity risk premia.1 We show that the presence of permanent risk has important

implications for the fiscal policy literature.

When output shocks are permanent, debt inherits from the long-run risk in output as along

as debt and output are co-integrated. To keep the debt risk-free, the government must offset the

long-run output risk in the debt by making the surplus safer over intermediate horizons. It now

only has very limited ability to insure taxpayers over short horizons. This is costly to taxpayers

because the welfare benefits of insurance are largest when shocks to output and consumption are

permanent (Alvarez and Jermann, 2004).

In traditional neoclassical and (New-)Keynesian models, shocks to output and consumption

are transitory, as output fluctuates around potential output. The business cycle models used in

the literature on optimal fiscal policy also imply that equilibrium output and consumption do not

have a unit root component.2 Surprisingly, the trade-off between insuring taxpayers and bond-

holders becomes worse in these models. Models with only transitory shocks to the pricing kernel

generate a great deal of interest rate risk in government debt. The long-term government bond

is the riskiest asset in such economies (Bansal and Lehmann, 1997; Alvarez and Jermann, 2005;

Backus, Chernov, and Zin, 2014). When output is below potential, the representative investor

wants to borrow, pushing up interest rates when her marginal utility is high.

To keep the debt risk-free in the environment with transitory shocks, the government has to

offset the interest rate risk in the debt in the distant future by producing safer surpluses in the

near future. This dramatically shortens the horizon over which governments can insure taxpay-

ers. Under natural parameter conditions, the trade-off is steeper in the model with transitory

shocks than in the model with permanent shocks. Hence, the results from the literature studying

household consumption smoothing in the face of transitory idiosyncratic risk with a risk-free as-

set (see Chamberlain and Wilson, 2000) do not extend to governments smoothing consumption

against transitory aggregate shocks with risk-free debt.

In our economy, the government provides insurance to taxpayers against aggregate shocks.

In models developed by Bassetto and Cui (2018); Brunnermeier, Merkel, and Sannikov (2020);

Reis (2021); Kocherlakota (2021), government debt plays a key role in allowing agents to self-

insure against idiosyncratic risk and by providing liquidity services. These features give rise to a

convenience yield, which may contribute a bubble component to the valuation of public debt.

1See e.g. Borovička et al. (2016) who argue that investors receive a large additional risk premium for bearing long-
run cash flow risk. Recently, van Binsbergen (2020) questions this view.

2These models have mean-reverting processes for productivity and government spending (see Chari, Christiano,
and Kehoe, 1994; Debortoli, Nunes, and Yared, 2017; Bhandari, Evans, Golosov, and Sargent, 2017, for examples of
calibrated economies with spending and productivity innovations).
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Equilibrium models that generate violations of the transversality condition (TVC) include

Samuelson (1958); Diamond (1965); Blanchard and Watson (1982); Hellwig and Lorenzoni (2009).

These models typically imply TVC violations for all long-lived assets including stocks, not just

government debt. As our paper shows, it is hard to generate TVC violations when there is enough

priced, permanent output risk in the economy to match the equity risk premium in the data.

When the government commits to a stationary debt/output policy, the TVC is satisfied as long

as the discount rate for a claim to GDP exceeds the growth rate of the economy. Put differently,

violations of the TVC for government debt may also result in violations of the TVC for the GDP

claim (unlevered stock market). The condition r < g, analyzed in models without aggregate risk,

does not apply in economies with priced permanent output risk because there is a risk premium

adjustment.3

There is a normative literature on optimal taxation which focuses on representative agent

economies with distortionary taxes, following Barro (1979)’s seminal work on tax smoothing. The

risk-return trade-off we highlight is present in the background, but is not explicitly analyzed. In

this class of models, distortionary taxation provides the Ramsey planner with a motive to shift

aggregate risk onto bondholders. When the government can issue a complete set of contingent

claims, the planner favors shifting the risk entirely from taxpayers onto bond investors (Lucas

and Stokey, 1983). By changing the maturity composition of debt, the government may be able

to get closer to the optimal tax policy when markets are incomplete, essentially by making the

debt riskier and shifting the risk onto the bondholders (Angeletos, 2002; Buera and Nicolini, 2004;

Lustig, Sleet, and Yeltekin, 2008; Farhi, 2010; Arellano and Ramanarayanan, 2012; Bhandari et al.,

2017). However, Buera and Nicolini (2004) show that this typically involves implausible bond

portfolios. In related work, Du, Pflueger, and Schreger (2020) study the choice of currency denom-

ination in the context of optimal debt management and Bigio, Nuno, and Passadore (2019) study

optimal debt and maturity management in a model with segmented bond markets.

Importantly, most of the models in this literature do not have plausible asset pricing implica-

tions because they do not have permanent output risk. Long-term government bond risk premia

exceed all other risk premia in such models. Also, the normative analysis in this literature has

counterfactual implications when confronted with actual debt policies. In the face of incomplete

markets, the Ramsey planner typically wants the government to accumulate assets in the long run

(Bhandari et al., 2017). In doing so, the government can escape the trade-off between insuring

bondholders and taxpayers. In the short run, the Ramsey planner has a fiscal hedging motive to

3Contemporaneous work by van Wijnbergen, Olijslagers, and de Vette (2020) highlights this point in a general
equilibrium asset pricing model. Barro (2020) considers a structural model with production and disaster risk that is
consistent with the historical evidence on consumption disasters in Barro and Ursua (2008) and with the equity risk
premium. He shows that the risk-free rate can be below the economy’s expected growth rate, which is in turn below
the expected return on equity. This economy is dynamically efficient; r < g does not result in a violation of the TVC
of the debt because output risk is subject to permanent disaster risk. Our characterization of the trade off between
insuring debtholders and taxpayers applies to a broad class of models, including Barro’s setting.
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issue risky debt when taxation is distortionary. The U.S. and most other developed economies

chose not to go down this route. They have positive amounts of debt and bond risk premia are

low. In the U.S., the excess return on government debt was 1.16% per annum between 1947 and

2019. As noted, over the past two decades, the beta of U.S. government debt has actually turned

negative. Sofar, this normative literature has not modeled the seigniorage revenue governments

can only earn by manufacturing safe debt. This non-distortionary source of revenue may counter-

act the fiscal hedging motive for choosing risky debt in the short run and accumulating assets in

the long run.

As the world’s safe asset supplier, the U.S. government may have been able to temporarily es-

cape the trade-off if government debt earns large and counter-cyclical convenience yields. We find

that counter-cyclical seigniorage revenue only relaxes the trade-off in the short run. Convenience

yields cannot alleviate the trade-off in the long-run because seigniorage revenue is also exposed

to long-run output risk. This discussion contributes to a growing branch of the international eco-

nomics literature that emphasizes the U.S. role as the world’s safe asset supplier in explaining low

U.S. rates.4 Government debt can only earn safe asset convenience yields if the debt is in fact safe

and risk-free. Liu et al. (2019) provide a structural model of convenience yields and fiscal policy.

Our paper is the first to analyze how convenience yields change the trade-off between insuring

bondholders and taxpayers. In related work, Farhi and Gourio (2018); Eggertsson, Robbins, and

Wold (2018); Ball and Gregory Mankiw (2021) emphasize the role of increased market power in

reconciling higher economic growth rates with low observed rates of return.

Regarding the riskiness of government debt, the focus in the literature has been mostly on

countries’ willingness and ability to repay.5 The trade-off we focus on between bondholder and

taxpayer insurance applies regardless of whether a country contemplates default and regardless

of which securities the country decides to issue (e.g., maturity choice). Our work is not focused

on how the maturity choice affects the riskiness of debt, but rather on how the fundamental cash-

flows determine its riskiness. Again, the fact that long-term government debt has a negative beta

in recent decades only reinforces our conclusions.

Finally, Mian, Straub, and Sufi (2021, 2020) examine the distributional implications of govern-

ment debt issuance, pointing out that the wealthy buy a large share of government (and private)

debt. To the extent that the Gini coefficient of government debt holdings exceeds that of taxes, the

government is trading off insuring the rich versus insuring the middle class.

The paper is organized as follows. Section 1 derives the general trade-off between insuring

4See work by Gourinchas and Rey (2007); Caballero, Farhi, and Gourinchas (2008); Caballero and Krishnamurthy
(2009); Maggiori (2017); He, Krishnamurthy, and Milbradt (2018); Gopinath and Stein (2018); Krishnamurthy and Lustig
(2019); Jiang et al. (2018a); Jiang, Krishnamurthy, and Lustig (2019a); Liu, Schmid, and Yaron (2019); Koijen and Yogo
(2019).

5See e.g. work by Eaton and Gersovitz (1981); Bulow and Rogoff (1989); Aguiar and Gopinath (2006); Arellano
(2008); Aguiar, Amador, Hopenhayn, and Werning (2019); DeMarzo, He, and Tourre (2019) for examples.
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bondholders and taxpayers. Section 2 introduces convenience yields as a way of relaxing this

tradeoff. Section 3 characterizes the trade-off analytically in a canonical model with permanent

shocks to output and marginal utility. Section 4 revisits the tradeoff in a model with transitory

shocks to output and marginal utility. The appendix contains the proofs and several auxiliary

results.

1 The General Trade-off between Insuring Bondholders and Taxpayers

We use Tt to denote government revenue, and Gt to denote government spending. Mt denotes the

stochastic discount factor. We assume that debt is fairly priced and does not earn any convenience

yields. Let Bt denote the market value of outstanding government debt at the beginning of period

t, before expiring debt is paid off and new debt is issued. The debt can be long-term or short-

term, and it can be nominal or real. In fact, it can be any contingent claim. The value of the

government debt equals the sum of the expected present values of future tax revenues minus

future government spending:

Bt = Et

[
∞

∑
j=0

Mt,t+j(Tt+j − Gt+j)

]
, (1)

provided that there are no arbitrage opportunities in the bond market and a transversality con-

dition holds limk→∞ Et Mt,t+kBt+k = 0. This result does not rely on complete markets, and still

applies even when the government can default on the debt. Let PT
t = Et

[
∑∞

j=0 Mt,t+jTt+j

]
and

PG
t = Et

[
∑∞

j=0 Mt,t+jGt+j

]
denote the present values of the “cum-dividend” tax claim and spend-

ing claim. Value additivity then implies that Bt = PT
t − PG

t . The value of a claim to surpluses

equals the value of a claim to taxes minus the value of a claim to spending.6 For notational con-

venience, let Dt = Bt − St denote the difference between the market value of outstanding govern-

ment debt and the government surplus. By the government budget condition, Dt is the market

value of outstanding government debt at the end of period t, after expiring debt is paid off and

new debt is issued.

1.1 Marginal Benefit of Fiscal Stabilization Policy for Taxpayers

We consider an incomplete markets economy in which households are finitely lived. To keep the

analysis simple, we assume in this section that the government borrows at the margin from foreign

investors.7 The analysis in this section connects fiscal stabilization policy and debt valuations to

6See Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019b) for a proof.
7In an infinite horizon, closed economy with a representative agent, the bondholder is also the net transfer recipient.

If the transfers are lump-sum, Ricardian equivalence holds, and net transfers are irrelevant. There is no trade-off
between bondholders and taxpayers. Any consideration that breaks Ricardian equivalence resuscitates the trade-off.
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household welfare through the marginal benefit of fiscal stabilization policy.

We use Uh to denote the expected utility of an investor with horizon h. In the background,

households face idiosyncratic income risk that cannot be perfectly insured away. This risk man-

ifests itself as the idiosyncratic component in the (post-trade) equilibrium consumption process

{Ci} = {C + εi}, where εi denotes the idiosyncratic component of consumption.

Let {T} denote the tax and {G} denote the spending process; {T, G} can only depend on the

history of aggregate shocks. We assume that the government balances the budget in expectation:

E0[G− T] = 0. We focus on fiscal insurance against aggregate risk. We do not consider transfers

that are contingent on idiosyncratic shocks. We analyze this case in section B of the Appendix.8

We consider distortionary taxation in section D of the Appendix.9

We consider the set of all taxpayer households who participate in asset markets and who are

unconstrained. We can infer their marginal benefit from fiscal policy from the market valuation of

tax revenues and spending outlays, even though these households do not equalize their intertem-

poral marginal rates of substitution.

In the spirit of the cost of business cycles measures (Lucas, 1987), we define the benefit of

government transfers, Ωh
net(α), to agent i with horizon h as follows:

Uh((1 + Ωh,i
net(α))C + εi) = Uh

(
(1− α){C}+ (α){C + G− T}+ εi

)
,

where Ωh,i(α) denotes the fraction of systematic consumption this agent is willing to give up

in exchange for a new systematic consumption profile that is a weighted average of the old one

(with probability 1− α) and a new one that adds net government transfers G− T (with probability

α). The total benefit of fiscal stabilization obtains for α = 1. In the spirit of Alvarez and Jermann

(2004), we study the marginal benefit at α = 0, Ωh′
net(0). We use Ph

0 [{X}] to denote E0[∑∞
t=0 M0,tXt].

Proposition 1.1. For households who participate in asset markets and who receive net transfers {G− T},
the marginal insurance benefit over horizon h is given by:

Ωh′
net(0) =

Ph
0 [{Gt − Tt}]

Ph
0 [{Ct}]

=
Ph

0 [{Ct}] + Ph
0 [{Gt − Tt}]

Ph
0 [{Ct}]

− 1

To compute the marginal benefit of government fiscal intervention from the perspective of

this household, we can compare the market valuations of net transfers and the household’s con-

sumption stream. Ph
0 [{Gt − Tt}] measures how much this household would be willing to pay for

these net transfers as an insurance policy. The safer the net transfers compared to her actual con-

sumption, the higher the marginal benefit of the net transfers to the household. A larger marginal

Foreign bond holders is just one of many such considerations.
8To be clear, the government can provide insurance against idiosyncratic risk to taxpayers without making its debt

riskier.
9This section makes contact with the literature on optimal taxation when taxes are distortionary.
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benefit of fiscal stabilization policy to households implies a larger the risk premium paid by the

government:

Ph
0 [{Gt − Tt}] = E0

h

∑
t=1

M0,t [Gt − Tt] =
h

∑
t=1

Cov0(−M0,t, Tt − Gt),

where we used E0[G− T] = 0. There is a one-to-one mapping between the riskiness of the surplus,

St = Tt − Gt, and the marginal (and total) welfare benefits. The riskier the surplus, the larger the

welfare benefit to the taxpayer.

If the government provides a marginal insurance benefit to taxpayers at horizon h, Ωh′
net(0) > 0,

and runs zero primary surpluses on average, the transfer policy has a positive cost: Ph
0 [{Gt − Tt}] >

0.

Importantly, we do not need a representative agent for this marginal benefit approach to be

valid. All we need is a pricing kernel for the marginal investors. The cash flows {Tt − Gt} and

{Ct} have to be in the span of traded assets.10 Since we are computing the marginal benefit, we are

not actually changing their equilibrium consumption. The marginal benefit/cost is a first-order

approximation of the total benefit/cost. When utility is increasing, homothetic, and concave, and

the new allocation {C + G − T} is preferred to the old one {C}, then the marginal benefit is an

upper bound on the total benefit Ωh′
net(0) ≥ Ωh

net(1) (see Alvarez and Jermann, 2004). Hence, to

get a positive total benefit, we need a positive marginal benefit, and the positive cost result goes

through. But a positive marginal benefit does not imply a positive total benefit. Hence, the trade-

off between insuring taxpayers and bondholders is more stringent when considering the total

benefit.

Under this approach, it is straightforward to compute the marginal cost of taxation for a house-

hold who pays taxes but does not receive transfers:

Ωh′
tax(0) = −

Ph
0 [{Tt}]

Ph
0 [{Ct}]

=
Ph

0 [{Ct}]− Ph
0 [{Tt}]

Ph
0 [{Ct}]

− 1

Similarly, we can take the perspective of a transfer recipient who does not pay taxes, and compute

the marginal benefit of transfers as:

Ωh′
trans(0) =

Ph
0 [{Gt}]

Ph
0 [{Ct}]

=
Ph

0 [{Ct}] + Ph
0 [{Gt}]

Ph
0 [{Ct}]

− 1

In the spirit of Lucas (1987), the government could choose to remove all business cycle varia-

tion through fiscal policy. This would result in a deterministic consumption path C = C + G− T.

10The entire government debt portfolio is a claim to {Tt − Gt}. Unlevered equity will be akin to a claim to aggregate
consumption.
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We obtain the marginal cost of business cycles from Alvarez and Jermann (2004):

Ωh′
net(0) =

Ph
0 [{C}]

Ph
0 [{Ct}]

− 1.

Infinite Horizon Case We now let the horizon over which the government provides insurance

go to ∞. The marginal benefit of net transfers to taxpayers becomes:

Ω∞′
net(0) =

P∞
0 [{Gt − Tt}]

P∞
0 [{Ct}]

=
(PG

0 − G0)− (PT
0 − T0)

PC
0 − C0

=
−D0

PC
0 − C0

,

where we used that the market value of debt equals the expected present-discounted value of

future surpluses, assuming the TVC is satisfied.

If the government provides a positive marginal insurance benefit to taxpayers at horizon ∞,

Ω∞′
net(0) > 0, then the government needs to endow a sovereign wealth fund of size −D0 =

P∞
0 [{Gt − Tt}] > 0. Conversely, if debt D0 ≥ 0, the government can only provide a negative

marginal insurance benefit Ωh′
net(0) < 0 to taxpayers at horizon ∞ with average zero primary sur-

pluses. Providing insurance to risk averse taxpayers through a zero-average net transfer policy

has a positive cost to the government of PG
0 − PT

0 > 0. If the government has positive debt out-

standing, then it cannot provide insurance to the taxpayers when balancing the budget on average.

Instead, the government loads aggregate risk onto its taxpayers.

The government can only run deficits in expectation if it is providing insurance to bondholders

and offloading aggregate risk onto taxpayers. This is true regardless of the difference between the

risk-free rate and the growth rate in the economy. The more valuable the debt, i.e., the safer the

cash flows to bondholders, the smaller the insurance benefit to taxpayers, i.e. the smaller the

marginal benefit of fiscal stabilization to taxpayers. Taxpayers always prefer riskier debt. This

defines the trade-off between insuring bondholders and taxpayers.

Gordon Growth Intuition Let ri denote the expected log return on an asset i and g the average

growth rate of output. To develop more intuition, we use Gordon’s growth formula:

Ω∞′
net(0) ≈

G0
rG−g −

T0
rT−g

C0
rc−g

≈ G0/C0

(rG − g)/(rC − g)
− T0/C0

(rT − g)/(rC − g)
=

G0

C0

(rC − g)(rT − rG)

(rG − g)(rT − g)

The second equality says that the safer the spending process (lower rG) and the riskier the tax

process (higher rT) relative to the consumption process (rC), the higher the marginal benefit of

fiscal stabilization to the taxpayer.

The last equality considers the case in which the government runs a zero surplus (G0 = T0).

Even when the government provides zero net transfers, the household benefits when the net trans-
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fers arrive in bad states of the world, i.e., when fiscal policy provides insurance against business

cycle risk. This is the case if the tax process is riskier than the spending process (rT > rG). The

larger the gap between the discount rate of the tax and the spending claim, the larger the wel-

fare benefit for the transfer recipient. However, the government needs savings to fund this zero

transfer insurance in the amount of:

−D0 =
G0

rg − g
− T0

rT − g
≈ G0

(rT − rG)

(rG − g)(rT − g)
> 0

Alternatively, to start this insurance scheme without initial assets, the government needs to run

primary surpluses. The higher the benefits from the perspective of the net transfer recipients, the

higher the cost of funding for the government.

Corollary 1.1. Assume that the TVC is satisfied. If D0 ≥ 0, the government runs surpluses on average,

and the government provides insurance to its taxpayers, then the debt is risky.

If we remove all aggregate consumption risk through fiscal policy, then we obtain the following

marginal cost to the government:

Ω∞′
net(0) =

P∞
0 [{C}]

P∞
0 [{Ct}]

− 1 =

C0
y0−g

C0
rC−g

=
rC − g
y0 − g

− 1 =
rC − y0

y0 − g
,

where y0 is the discount rate for a growing perpetuity without any cash flow risk. This is the

maximum marginal benefit the government can achieve for its taxpayers. This upper bound will

be higher in models with more permanent risk and/or with a larger price of permanent risk since

the consumption risk premium, rC− y0, is larger in such models. Modern asset pricing has consis-

tently found that permanent shocks to output and consumption account for most of the variance

of the pricing kernel, and receive a high price of risk in securities market (e.g., Alvarez and Jer-

mann, 2005; Hansen and Scheinkman, 2009; Bansal and Yaron, 2004; Borovička et al., 2016; Backus

et al., 2018). Conversely, models without large permanent shocks produce bond risk premia that

exceed equity risk premia, which is counter-factual. Hence, in models with realistic asset pricing,

the marginal benefit of fiscal stabilization to taxpayers is high. Equivalently, the marginal cost to

the taxpayers of keeping the debt risk-free is high.

1.2 Characterizing the Trade-Off with Return Betas

This results in the previous section motivate why we use the risk properties of the discounted

surplus claim as a sufficient statistic for measuring the marginal benefit of taxpayer insurance. To

examine its risk property, we define the return to this claim and its return beta.

Let RD
t+1, RT

t+1 and RG
t+1 denote the holding period returns on the bond portfolio, the tax claim,
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and the spending claim, respectively:

RD
t+1 =

Bt+1

Bt − St
, RT

t+1 =
PT

t+1

PT
t − Tt

, RG
t+1 =

PG
t+1

PG
t − Gt

.

In Jiang et al. (2019b), we show that the government debt portfolio return is the return on a

portfolio that goes long in the tax claim and short in the spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Dt
Et

[
RT

t+1 − R f
t

]
− PG

t − Gt

Dt
Et

[
RG

t+1 − R f
t

]
. (2)

This result only relies on equation (1) and additivity.

The government bond risk premium varies dramatically across countries. In some countries,

such as the U.S., this risk premium Et

[
RD

t+1 − R f
t

]
is small. Updating an earlier calculation by

Hall and Sargent (2011), Jiang et al. (2019b) compute an average annual excess return of 1.16% on

the portfolio of all U.S. Treasuries.11

By rearranging equation (2), we derive the following expression for the risk premium on the

tax claim:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)

Et

[
RG

t+1 − R f
t

]
+

Dt

Dt + (PG
t − Gt)

Et

[
RD

t+1 − R f
t

]
. (3)

Governments typically want a counter-cyclical spending claim, i.e. they want to spend more

in recessions. On the other hand, they also want a risky tax claim, because they want to reduce

the tax burden in recessions. As a result, the tax claim’s risk premium Et

[
RT

t+1 − R f
t

]
is high and

the spending claim’s risk premium Et

[
RG

t+1 − R f
t

]
is low. When the debt value Dt is positive, the

fraction PG
t −Gt

Dt+(PG
t −Gt)

is between 0 and 1. Then, for equation (3) to hold, it requires a high risk pre-

mium Et

[
RD

t+1 − R f
t

]
on the government debt portfolio. As the debt risk premium is a measure of

the risk premium or insurance premium charged by bondholders, the government’s debt portfolio

has to be risky.

According to equation (3), the tax revenue claim is the unlevered version of the spending

claim, or, equivalently, the spending claim is the levered version of the tax claim. This result is

analogous to the Miller-Modigliani relation between the unlevered return on equity (the return on

the tax claim) and the levered return on equity (the return on the spending claim).

11The returns on debt issued by peripheral or developing countries are estimated to be much higher. Using EMBI
indices on a short sample, Borri and Verdelhan (2011) estimate annual excess returns between 4% and 15%. On a much
longer sample going back to the 19th century, Meyer, Reinhart, and Trebesch (2019) estimate excess returns of around
4% above U.S. and U.K bond returns, taking into account defaults.
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We define the beta of an asset i as:

βi
t =

−covt
(

Mt+1, Ri
t+1

)
vart(Mt+1)

.

By the investor’s Euler equation, βi
tλt determines the conditional risk premium of this asset

Et

[
Ri

t+1 − R f
t

]
= βi

t · γt,

where the market price of risk is γt = R f
t · vart(Mt+1).

Let βD
t , βT

t and βG
t denote the beta of the bond portfolio, the tax claim, and the spending claim,

respectively. We assume βY
t > 0, so that the output claim has a positive risk premium. The

following proposition characterizes the relationship of these risk exposures.

Proposition 1.2. The beta on the tax claim is a weighted average of the beta of the spending claim and the

beta of the debt:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t +

Dt

Dt + (PG
t − Gt)

βD
t .

The proof is in Appendix 1.2. Governments want to provide insurance to transfer recipients

by choosing βG
t < βY

t , but they also want to provide insurance to taxpayers by choosing βT
t > βY

t .

However, the following corollary states that βG
t < βY

t < βT
t is impossible if the government debt

is risk-free.

Corollary 1.2. In order for debt to be risk-free (βD
t = 0), the beta of the tax claim needs to equal the

unlevered beta of the spending claim:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t .

If the government has a positive amount of risk-free debt Dt > 0, there is no scope to insure

taxpayers. Instead, the taxpayers provide insurance to the rest of the economy.

Consider the first case in which the spending claim has a positive beta (βG
t > 0). Then, the

government engineers risk-free debt by lowering the beta of the tax claim relative to that of the

spending claim: βT
t < βG

t . A low beta for the tax claim means that tax revenue must fall by less

than GDP in a recession. Tax rates must rise in recessions. The more debt there is outstanding,

the lower the beta of the tax claim needs to be relative to that of the spending claim. With more

debt, the trade-off between insuring bondholders and taxpayers becomes steeper. The restriction

on the betas holds true regardless of the specific dynamics of the tax and spending process. In the
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next sections, we will derive restrictions on the underlying cash flows by committing to particular

processes for debt/output and spending/output.

The only way the government can provide insurance to debt holders, while keeping the debt

risk-free, is by saving—choosing Dt < 0. In other words, the government can only insure taxpay-

ers at the expense of bondholders.

Consider the second case in which the spending claim has a negative beta (βG
t < 0). To ensure

risk-free debt, the tax claim must also have a negative beta when Dt > 0 (βT
t < 0). The taxpayers

have large tax payments during recessions; they are insuring the bondholders.

This discussion implicitly assumes that taxpayers are long-lived households who value a dol-

lar in each aggregate state in the same way as the marginal investor in Treasury markets. When

markets are incomplete, agents may have different IMRS. However, even when markets are in-

complete, the aggregate component of households’ IMRS will be common.12 The trade-off we

analyze applies equally to incomplete markets settings.

1.3 Characterizing the Trade-Off with Cash Flow Betas

Thus far, we have characterized the return betas of the tax and spending claims. We can get further

insight on what restrictions risk-free debt imposes on surplus dynamics by studying cash-flow

betas for the surplus claim.

Proposition 1.3. When the transversality condition is satisfied, the debt return innovation reflects news

about the present discounted value of future government surpluses:

Dt(Et+1 −Et)[RD
t+1] = (Et+1 −Et)[

∞

∑
j=1

Mt+1,t+jSt+j].

When the debt is risk-free, there is no news about future surpluses:

(Et+1 −Et)[
∞

∑
j=1

Mt+1,t+jSt+j] = 0.

The proof is in Appendix A.4.

This proposition implies a restriction on the dynamics of future surpluses in response to any

shock that arrives at time t + 1. If a shock raises surpluses in the near-term future, then either the

surpluses in the long-term or the discount rates have to adjust.

12Krueger and Lustig (2010); Werning (2015) show that risk premia are identical to those in the equivalent represen-
tative agent economy, as long as the conditional distribution of idiosyncratic risk does not depend on the aggregate
state of the economy. The only effect from incomplete markets is that the risk-free rate is lower due to a precautionary
savings effect.
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Define the cash flow beta of cumulative future discounted surpluses as:

βS,CF
t (h) ≡ −

covt

(
Mt+1, (Et+1 −Et)∑h

j=1 Mt+1,t+jSt+j

)
Dtvart(Mt+1)

.

It follows immediately from the previous proposition that if debt is risk-free, βS,CF
t (∞) = 0. That is,

for the government debt to be risk-free, the cash flow beta of the entire discounted surplus stream

must be zero. The following proposition connects the return beta on the debt to the cash-flow beta

of cumulative surpluses.

Proposition 1.4. The return beta of debt equals the cash-flow beta of the discounted surpluses over h periods

minus the return beta of debt outstanding h periods from now:

βD
t = βS,CF

t (h)− covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
.

When debt is risk-free (βD
t = 0), then the cash flow beta is determined by the return beta of debt outstanding

h periods from now:

βS,CF
t (h) =

covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
.

When debt has negative risk premium (βD
t < 0), then the cash flow beta is smaller than the return beta of

debt outstanding h periods from now:

βS,CF
t (h) ≤ covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
.

As the horizon tends to ∞, the debt issuance covariance tends to zero, and βD
t → βS,CF

t (∞).

As long as the debt is risk-free, the risk properties of the government surpluses over a finite

horizon h are completely determined by the riskiness of the debt issuance process at time t + h.

This implies that the cash-flow beta of the surplus process does not depend on the spending and

tax revenue dynamics during those h periods. The only source of state-contingency is the debt

issuance process itself. When hit by a bad shock, the government can respond by issuing more

debt h period from now.

βS,CF
t (h) is a summary statistic for how much insurance the government provides to tax-

payers with at horizon h. Over short horizons, it can insure taxpayers and produce a risky

surplus process with high βS,CF
t (h), by choosing a counter-cyclical debt issuance process with

covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h). When the government debt has a negative risk premium,

the debt issuance beta puts an upper bound on the cash-flow beta of the surplus. We will evaluate

this constraint quantitatively by letting the government adopt a specific debt policy.
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2 Relaxing the Trade-off with Convenience Yields

Some governments are endowed with the ability to issue safe government debt at prices that

exceed their fair market value. The resulting “convenience yields” relax the trade-off between

insuring bondholders and taxpayers. Typically, the debt of such government serves the role of a

special, safe asset for domestic or foreign investors. U.S. Treasuries currently fill the role of the

world’s safe asset. In order to collect convenience yields, the government needs to manufacture

safe debt. This justifies our emphasis on the βD = 0 case throughout this paper (or βD < 0, which

makes all results stronger). The convenience yield κt is defined as a wedge in the investors’ Euler

equation for government bonds:

Et

[
Mt,t+1RD

t

]
= exp(−κt) (4)

Krishnamurthy and Vissing-Jorgensen (2012) estimate convenience yields on U.S. Treasuries of

around 75 bps per year. Using the deviations from CIP in Treasury markets, Jiang et al. (2018a,b);

Koijen and Yogo (2019) estimate convenience yields that foreign investors derive from their hold-

ings of dollar safe assets; these estimates exceed 200 bps.

2.1 The Trade-off With Return Betas

Let Kt+j = (1 − e−κt+j)Dt+j be the amount of interest the government does not need to pay in

period t + j thanks to the convenience yield. The current value of government debt reflects the

present value of all convenience yields earned on future debt. We refer to this value as the Trea-

sury’s seigniorage revenue:

PK
t = Et

[
∞

∑
j=0

Mt,t+j(1− e−κt+j)Dt+j

]
.

Jiang et al. (2019b) show that, in the presence of convenience yields, the value of the government

debt equals the sum of the expected present values of future tax revenues plus future seigniorage

revenues minus future government spending:

Bt = Et

[
∞

∑
j=0

Mt,t+j(Tt+j + (1− e−κt+j)Dt+j − Gt+j)

]
= PT

t + PK
t − PG

t ,

provided that a transversality condition holds.

Extending the Modigliani-Miller approach to the world with convenience yields, government

debt is equivalent to a portfolio that goes long in the tax claim and the seigniorage claim and short
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in the spending claim. The government debt risk premium becomes:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

PK
t − Tt

Bt − St
Et

[
RK

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,RK
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax claim,

the seigniorage claim, and the spending claim, respectively.

We take government spending process, and the debt return process as given, and explore the

implications for the properties of the tax claim. Next, we impose risk-free debt, because only safe

debt earns convenience yields.

Proposition 2.1. In the absence of arbitrage opportunities, if the TVC holds and the debt is risk-free (βD =

0), then the expected excess return on the tax claim is the unlevered expected excess return on the spending

claim and the seigniorage claim:

Et

[
RT

t+1 − R f
t

]
=

(PG
t − Gt)Et

[
RG

t+1 − R f
t

]
− (PK

t − Kt)Et

[
RK

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)

,

with the beta of the tax claim given by βT
t =

(PG
t −Gt)βG

t −(PK
t −Kt)βK

t
Dt+(PG

t −Gt)−(PK
t −Kt)

.

Consider the special case where the convenience yield seigniorage process has a zero beta

(βK = 0); seigniorage revenues are a-cyclical. Then the implied beta of the tax revenue process

exceeds the beta without seigniorage revenue because PK
t − Kt > 0:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG

t >
PG

t − Gt

Dt + (PG
t − Gt)

βG
t ,

A higher tax beta means that more insurance to taxpayers is now possible.

If the seigniorage revenue is sufficiently counter-cyclical (βK < 0), then the proposition shows

that βT
t is higher still so that even more taxpayer insurance is possible.

2.2 The Trade-off With Cash-Flow Betas

We now explore how the trade-off over finite horizons is affected by the presence of convenience

yields. We do so under the assumption that seigniorage revenue from convenience is proportional

to the debt outstanding.

Assumption 1. The convenience yield κ is constant.

We define the cash flow beta of future discounted seigniorage revenue as:

βK,CF
t (h) ≡

−(1− e−κ) · covt

(
Mt+1, (Et+1 −Et)∑h

j=1 Mt+1,t+jDt+j

)
Dtvart(Mt+1)

.
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Proposition 2.2. The return beta of debt equals the cash-flow beta of the discounted surpluses and seignior-

age revenue over h periods minus the beta of debt outstanding h periods from now:

βD
t = βS,CF

t (h) + βK,CF
t (h)− covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
.

When debt is risk-free (βD
t = 0), then the cash flow beta is determined by the seigniorage beta and beta of

the debt outstanding h periods from now:

βS,CF
t (h) =

covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
− βK,CF

t (h).

When debt has negative risk premium (βD
t < 0), then the cash flow beta is smaller than the the seigniorage

beta and beta of debt outstanding h periods from now:

βS,CF
t (h) ≤ covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)
− βK,CF

t (h).

To keep the debt risk-free (βD
t = 0) while delivering a risky surplus over short horizons

(βS,CF
t (h) > 0), the government can resort to issuing more debt when marginal utility growth is

high (covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h) > 0). When it earns seignorage revenue, this debt is-

suance produces a safe seigniorage revenue stream over short horizons (βK,CF
t (h) < 0), increasing

βS,CF
t (h) > 0 and expanding taxpayer insurance possibilities. If the convenience yields are large

enough, this can quantitatively alter the trade-off. We explore this possibility below. However,

over long horizons, βK,CF
t (h) turns positive when debt is co-integrated with output.

2.3 Marginal Benefit of Fiscal Stabilization Policy Revisited

Note that D0 = (PT
0 − T0) + (PK

0 − K0)− (PG
0 − G0). We now let the horizon over which the gov-

ernment provides insurance go to ∞. The marginal benefit of net transfers to taxpayers becomes:

Ω∞′
net(0) =

P∞
0 [{Gt − Tt}]

P∞
0 [{Ct}]

=
(PG

0 − G0)− (PT
0 − T0)

PC
0 − C0

=
(PK

0 − K0)− D0

PC
0 − C0

,

where we used that the market value of debt–inclusive of seigniorage revenue–equals the expected

present-discounted value of future surpluses, assuming the TVC is satisfied.

Corollary 2.1. If debt D0 ≥ 0, the government can provide a positive marginal insurance benefit Ωh′
net(0) >

0 to taxpayers at horizon ∞ with on average zero primary surpluses, provided that the value of seignorage

exceeds the value of debt:

(PK
0 − K0) > D0

Providing insurance to risk averse taxpayers through a zero-average net transfer policy no
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longer necessarily has a positive cost to the government, because the Treasury now collects seignor-

age revenue. Some insurance provision to taxpayers may be possible with positive debt outstand-

ing and zero-average surpluses, depending on the value of the seigniorage revenue claim. This is

true regardless of the risk-free rate and the growth rate in the economy.

3 The Trade-off in a Benchmark Economy with Permanent Risk

We characterize the trade-off between insuring debtholders and taxpayers in a canonical macro-

finance model in the tradition of Breeden (2005); Lucas (1978); Rubinstein (1974). We reverse-

engineer the revenue process T that keeps the debt risk-free. We do so under simple spending and

debt policies at first and more complex policies in the next step.

3.1 Setup

To derive closed form-solutions, we adopt an exogenous stochastic discount factor (SDF) with

plausible asset pricing implications. This SDF prices payoffs from the perspective of domestic and

foreign investors buying government debt.

First, we consider an economy with permanent output shocks and a homoscedastic SDF:

Assumption 2. (a) Let Yt and yt = log Yt denote output and its log. All output shocks are i.i.d. and

permanent:

yt+1 = µ + yt + σεt+1,

where εt+1 denotes the innovation to output growth that is i.i.d. normally distributed with mean zero and

standard deviation one.

(b) The log SDF is given by:

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

(c) The government only issues one-period real risk-free debt.

Note that the one-period risk-free rate in this model is constant and equal to ρ.

3.2 Characterizing the Trade-off with Constant Debt-Output

To build intuition for the general trade-off between insurance of bondholders and taxpayers, we

start by considering the simplest case of constant spending/output and debt/output ratio policies.

Assumption 3. (a) The government commits to a constant spending/output ratio x = Gt/Yt.

(b) The government commits to a constant debt/output ratio d = Dt/Yt.
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Under Assumption 3, the government budget constraint implies a counter-cyclical process for

tax revenue-to-GDP (the tax rate):

Tt

Yt
=

Gt

Yt
− Dt

Yt
+ R f

t−1
Dt−1

Yt
= x− d (1− exp {−(µ− ρ + σεt)}) .

To perfectly insure the bondholders by keeping the debt risk-free, the government must make

the tax revenue claim counter-cyclical: ∂(T/Y) ∂ε < 0. When the growth rate of output is low

(ε < 0), tax revenue needs to increase as a fraction of GDP. Tax rates must rise in recessions. The

magnitude of the counter-cyclical exposure is increasing in the debt-to-GDP ratio d.

Similarly, the primary surplus/output ratio is counter-cyclical:

st =
St

Yt
=

Tt − Gt

Yt
= −d (1− exp {−(µ− ρ + σεt)}) . (5)

We have that ∂st/∂εt < 0. When the unconditional growth rate of output exceeds the risk-free rate

(µ > ρ), the government runs a primary deficit on average. But when shocks are negative enough

(µ− ρ < −σε), the government must run a primary surplus.

This simple model places tight restrictions on the persistence of surpluses. The conditional

auto-covariance of the surplus/output ratio is zero: covt(st, st−1) = 0. The government cannot

run persistent deficits. When σ→ 0, the government always runs deficits. But µ > ρ now implies

a violation of the TVC, as we show below. This result is more general. With risk-free debt, the

autocorrelation of surpluses tends to zero as the persistence of the debt/output ratio tends to one.

The restrictions on the surplus and tax processes described above were independent on the

SDF model. Next, we turn to valuing the debt as the expected present-discounted value of future

surpluses.

Proposition 3.1. Under Assumptions 2 and 3, if the transversality condition holds and the primary sur-

plus satisfies (5), the government debt value is the sum of the values of the surplus strips:

Dt = Et

[
∞

∑
k=1

Mt,t+kSt+k

]
= dYt.

The proof is in Appendix A.8. This proposition confirms that the (ex-dividend) value of out-

standing debt in period t is indeed a constant fraction of output. The proof solves for the price

of a claim to a single future surplus realization (a surplus strip), and adding up the surplus strip

prices at all horizons. The result implies that there is no news about the present discounted value

of future surpluses since output is already known at time t.

Note that in this equation, the government surpluses are not discounted at the risk-free rate

even though the debt is risk-free. To see why, consider the valuation equation for debt as a function

20



of surplus/output ratios:

Dt = Et

[
T

∑
j=0

Mt,t+jYt+jst+j

]
+ Et

[
Mt,t+TYt+T

Dt+T

Yt+T

]
.

The debt/output ratio Dt+T
Yt+T

= d in the second term is constant. The correct TVC for government

debt in this model is given by:

lim
T→∞

Et [Mt,t+TDt+T] = lim
T→∞

exp
{

T(µ− ρ +
1
2

σ2 − γσ)

}
dYt. (6)

This TVC is satisfied if and only if−ρ+ µ+ 1
2 σ2− γσ < 0. The textbook condition ρ < µ is neither

necessary nor sufficient for a TVC violation. A necessary and sufficient condition is that there is

enough permanent, priced risk in output: γσ > µ− ρ + 1
2 σ2. The output risk premium (unlevered

equity risk premium) must be high enough. This ensures that this term Et [Mt,t+TYt+T] → 0 as

T → ∞.

To summarize, if GDP growth has a permanent component, which modern macro and econo-

metrics recognizes to be the case, then the surplus process in levels St inherits that permanent

component from Yt. Surpluses have long-run risk. Because of the exposure of the surplus to long-

run GDP risk, the claim to current and future surpluses has a substantial risk premium. Since the

value of the surplus claim equals the market value of outstanding debt, the portfolio of govern-

ment debt is generally a risky asset. The properties of the stationary surplus/output ratios, which

the literature focuses on, are irrelevant for the long-run discount rates of surpluses. For long-run

discount rates, only long-run risk matters (Backus et al., 2018). Therefore, even when the entire

debt portfolio is risk-free, in the sense that there is no news about current or future surpluses, the

risk-free rate is not the right discount rate for surpluses in the presence of permanent output risk.

Note that ρ < µ implies a violation of TVC only as σ → 0. In an economy with permanent

GDP risk, comparing the risk-free rate to the average growth rate of the economy, as in Blanchard

(2019), sheds no light on the fiscal cost of deficits.13 In general, the output risk premium matters

even when debt is risk-free. The risk-free rate is not the correct discount rate for surpluses even

when the debt is risk-free, in the presence of permanent output shocks.

Next, we turn to the main result characterizing the expected return and beta of the tax claim.

13See Bohn (1995) for an early reference on why discounting at the risk-free may fail. In contemporaneous work,
Barro (2020) points out that comparing µ to ρ is not informative about dynamic efficiency, consistent with our result,
unless σ = 0. There is an extensive literature which tests the government’s inter-temporal budget constraint. Hansen,
Roberds, and Sargent (1991); Hamilton and Flavin (1986); Trehan and Walsh (1988, 1991); Bohn (1998, 2007) derive time-
series restrictions on the government revenue and spending processes that enforce the inter-temporal budget constraint.
This literature uses the risk-free rate as the discount rate. This is the right discount rate only when the shocks to output
are temporary and the risk-free rate exceeds the growth rate of the economy.
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Proposition 3.2. (a) The ex-dividend values of the spending and revenue claims are given by:

PG
t − Gt = x

ξ1

1− ξ1
Yt,

PT
t − Tt =

(
d + x

ξ1

1− ξ1

)
Yt,

with ξ1 = exp
{
−ρ− γσ + µ + 1

2 σ2}.

(b) The risk premia and betas on the tax claim and the spending claim satisfy:

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RG

t+1 − R f
t

]
, (7)

βT =
x ξ1

1−ξ1

d + x ξ1
1−ξ1

βG < βG. (8)

The proof is in Appendix A.9. The constant ξ1 is the price/dividend ratio of a one-period

output strip, a claim to GDP next year. The expected return on this output strip is given by

Et
[
RY

t+1

]
= exp(µ+0.5σ2)

exp(−ρ−γσ+µ+0.5σ2)
= exp(ρ + γσ). Hence, the (log of the multiplicative) output risk

premium is constant and equal to γσ. Since spending is a constant fraction of output, the risk

premium on the spending claim equals that of the output claim: E[RG − R f ] = E[RY − R f ]. The

beta of the spending claim equals the beta of the output claim: βG = βY > 0. In section C of the

Appendix, we explicitly solve for these risk premia.

The investor in government debt is long in a tax revenue claim and short in a spending claim.

To make the debt risk-free, as long as the debt/output ratio d is positive, we need to render the

government tax revenue process safer than the spending process. A positive d implies the fraction
x ξ1

1−ξ1

d+x ξ1
1−ξ1

is between 0 and 1, which requires the return on the tax claim to be less risky than the

return on the output claim: 0 < βT < βY. When output falls, tax revenues must fall by less. The

tax rate increases. In other words, there is no scope to insure taxpayers. As the debt/output ratio d

increases, the government needs to make the tax revenue increasingly safe. The tax claim is really

a portfolio of a claim to government spending and risk-free debt. The larger the debt/output ratio

d, the safer the tax claim needs to be. As the debt/output ratio approaches infinity, the beta of the

tax claim tends to 0.

3.3 Quantifying the Trade-off with Constant Debt-Output

Panel A of Table 1 proposes a calibration of the model that matches basic features of post-war U.S.

data. We set γ to 1. This parameter measures the maximum Sharpe ratio in the economy. A long

asset pricing literature suggests that this is a reasonable value given high average excess returns

on a broad set of risky assets. The standard deviation of annual output growth is set to σ = 5%.
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The growth rate of real GDP is set to its observed value: µ = 3.1%. The real risk-free rate ρ is set

to 2%. Spending accounts for 10% of GDP in post-war data: x = 0.10.

Note that this calibration features a risk-free rate below the growth rate of output. However,

per our discussion above, the TVC is satisfied because−ρ + µ + 1
2 σ2− γσ = log(ξ1) = −0.0418 <

0. The government cannot simply roll over the debt. The surpluses need to satisfy tight restric-

tions.

Table 1: Benchmark Calibration for U.S.

Panel A: Preferences and Output Dynamics
γ 1 maximum annual Sharpe ratio
ρ 2.0% real risk-free rate
µ 3.1% mean of growth rate of output
σ 5.0% std. of growth rate of output

Panel B: Debt/Output Ratio Dynamics
λ 1.94× σ sensitivity of debt/output to output innovations
d = exp {φ0/(1− φ1 − φ2)} 0.43 mean of debt/output
φ1 1.40 AR(1) coeff of debt/output
φ2 -0.48 AR(2) coeff of debt/output

Panel C: Government Spending/Output Ratio Dynamics
βg 1.53× σ sensitivity of spending/output to output innovations
ϕ

g
1 0.88 AR(1) coeff of spending/output

x = exp
{

ϕ
g
0/(1− ϕ

g
1)
}

0.10 mean of govt. spending/output

Figure 1 plots the risk premia on the tax and the spending claim as we vary the debt/output

ratio d. The risk premium on the spending claim is 5% per annum. This is also the output risk

premium, which we can think of as an unlevered equity premium. By Corollary 3.2, the risk

premium on the tax claim is given by (7). The risk premium on the tax claim is 5% when d = 0. It

falls to 4% when d = 1, and close to 3% when d = 2. As the government becomes more levered,

the tax claims needs to become safer for debt to remain risk-free. The scope for taxpayer insurance

disappears. This trade-off steepens when we increase the maximum Sharpe ratio γ from 1 to 2.

When γ = 2, the risk premium on the spending claim is 10% per annum. The risk premium on

the tax claim falls to 6% when d = 1 and close to 4% when d = 2.

3.4 Characterizing the Trade-off with State-Contingent Debt-Output

The previous section showed that there is no scope for insuring taxpayers at any horizon in the

presence of permanent output shocks when the debt/output ratio is constant. Next, we assume

that the government commits to a state-contingent policy for the debt/output ratio which fea-

tures persistence and counter-cyclicality. We show that this enables limited opportunities for the

government to insure taxpayers over short horizons. The debt policies we analyze are fitted to
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Figure 1: Risk Premium of T and G Claims with γ = 1 or 2

The figure plots the implied risk premium of the T and G claims when the debt/output ratio and spending/output ratio are constant.
The figure plots two values for the maximum Sharpe ratio γ of 1 (left panel) and γ of 2 (right panel). The other parameters are given
in Table 1.
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the data and hence empirically plausible. However, as Appendix D shows, a Ramsey planner

in an incomplete markets environment would also choose a mean-reverting and counter-cyclical

process for debt, albeit with a negative long-run debt target.

We allow the government to vary the debt/output ratio counter-cyclically. We consider a flex-

ible class of AR(p) processes for the debt/output ratio.

Assumption 4. The government commits to a policy for the debt/output ratio dt = Dt/Yt given by:

log dt =
P

∑
p=1

φp log dt−p + φ0 − λεt −
1
2

λ2,

where λ > 0 so that the debt-output ratio increases in response to a negative output shock εt.

The results in Section 1 still apply and are a straightforward generalization of the results from

the simple benchmark model of Section 3. The value of the spending is unchanged and the value

of the tax claim now depends on the time-varying debt/output ratio dt:

PG
t − Gt = x

ξ1

1− ξ1
Yt, PT

t − Tt =

(
dt + x

ξ1

1− ξ1

)
Yt.

The tax claim’s conditional beta satisfies:

βT
t =

x ξ1
1−ξ1

dt + x ξ1
1−ξ1

βG
t .

Can the government systematically issue more risk-free debt, instead of raising taxes, when
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the economy is hit by a permanent, adverse shock, in order to break the restriction on insurance

of taxpayers? We consider two special cases for the debt/output dynamics.

Case 1: AR(1) Assume that the debt/output ratio evolves according to an AR(1)-process:

log dt = φ0 + φ1 log dt−1 − λεt −
1
2

λ2.

There are two sub-cases. First, when 0 < φ1 < 1, the debt/output process is stationary. Second,

when φ1 = 1 and φ0 = 0, the debt/output process is a martingale (non-stationary). In both cases,

a positive λ means that the debt/output ratio increases when the shock εt is negative, implying a

counter-cyclical debt policy. The Ramsey planner prefers tax rates that are smooth, and will resort

to choosing counter-cyclical debt policy: λ > 0.14 First, we need to make sure the transversality

(TVC) is satisfied. How persistent can debt be without violating TVC?

Proposition 3.3. Under Assumptions 2 and 4 with the maximal lag P = 1, (a) when 0 < φ1 < 1, the

TVC condition is satisfied if and only if:

log(ξ1) = −ρ + µ +
1
2

σ(σ− 2γ) < 0.

(b) When φ1 = 1 and φ0 = 0, then the TVC condition is satisfied if and only if:

log(ξ1) + λ(γ− σ) = −ρ + µ +
1
2

σ(σ− 2γ) + λ(γ− σ) < 0.

The proof is in Appendix A.10. For the case of 0 < φ1 < 1, the TVC is satisfied whenever the

price-dividend ratio of a claim to next period’s output is less than one. That is, when investors

are willing to pay less than Yt today for a claim to Yt+1. This requires the discount rate to exceed

the growth rate of GDP (modulo a Jensen adjustment). This condition can be satisfied even when

ρ < µ, as long as the risk premium γσ is large enough.15

For the random walk case in which φ1 = 1, the same condition ensures that the TVC is satisfied

when the government does not pursue counter-cyclical stabilization (λ = 0). If the government

does pursue counter-cyclical stabilization (λ > 0), then the TVC is only satisfied if:

γσ− λ(γ− σ) > −ρ + µ +
1
2

σ2 ⇔ λ <
ρ + γσ− µ− 1

2 σ2

γ− σ
.

The left-hand side of the first inequality is now lower than before when the Sharpe ratio of the

economy exceeds the volatility of output (γ > σ). When debt issuance is sufficiently counter-

cyclical, λ > σ, the expression on the left-hand side is decreasing in the economy’s maximum

14Recall that tax rates are countercyclical if the debt/output ratio is constant and debt is risk-free.
15We formally derive the expression for the risk premium in section C of the Appendix.
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Sharpe ratio γ. For high enough γ, the TVC is violated. Intuitively, when investors are risk averse

enough, the insurance provided by the counter-cyclical debt issuance policy is so valuable that

the price of a claim to the debt outstanding in the distant future dt+TYt+T fails to converge to zero.

This claim is a terrific hedge. This is the first important insight contributed by asset pricing theory.

If output is subject to permanent, priced risk and we want to rule out arbitrage opportunities then

there have to be limits to the government’s ability to pursue counter-cyclical debt issuance. This

bound on λ is shown in the second inequality. When the government exceeds this bound, it has

granted itself an arbitrage opportunity.

Case 2: AR(2) As we show below, a better description of the debt/output ratio is the data is an

AR(2) process:

log dt = φ0 + φ1 log dt−1 + φ2 log dt−2 − λεt −
1
2

λ2. (9)

When the roots of the characteristic equation 1− φ1z − φ2z2 = 0 lie outside the unit circle, the

debt/output process is mean-reverting. The result of part (a) of Proposition 3.3 applies. If one or

both roots are smaller than one, the result in part (b) of Proposition 3.3 applies.

Response of the Surplus to Adverse Shock We can compute the impulse-response functions

(IRF) of the surpluses with respect to an output shock in closed form when the government is-

sues risk-free debt. These moments are particularly powerful because they do not depend on the

properties of the SDF.

We start from the expression for the surplus/output ratio in period t + j for j ≥ 1:

st+j =
St+j

Yt+j
= dt+j−1 exp(ρ− µ− σεt+j)− dt+j.

If we assume that the risk-free rate equals the growth rate of the economy (µ = ρ), we obtain

closed-form expression for the IRF of the surplus with respect to an output shock. Specifically, the

IRF is evaluated at ετ = 0 for all τ, and hence dt = exp( φ0− 1
2 λ2

1−φ1
) = d.

Proposition 3.4. If Assumptions 2 and 4 hold, the TVC is satisfied, and ρ = µ,

(a) when the debt/output ratio follows an AR(1) process, the IRF of the surplus/output ratio is given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ)d, for j = 1,

= λφ
j−1
1 (φ1 − 1)d, for j > 1.
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(b) when the debt/output ratio follows an AR(2) process, the IRF of the surplus output ratio is given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ)d, for j = 1,

= λ(φ1 − 1)d, for j = 2,

= λ(ψj−1 − ψj−2)d, for j > 2.

where ψj = φ1ψj−1 + φ2ψj−2, j > 2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.

(c) When the debt/output ratio follows an AR(3) process, the IRF of the surplus output ratio is given by:

∂
St+j
Yt

∂εt+1
= (λ− σ)d, for j = 1,

= λ(φ1 − 1)d, for j = 2,

= λ(ψ2 − ψ1)d, for j = 3,

= λ(ψj−1 − ψj−2)d, for j > 3.

where ψj = φ1ψj−1 + φ2ψj−2 + φ3ψj−3, j > 3; ψ3 = φ3 + φ2ψ1 + φ1ψ2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.

This result can easily be generalized to any AR process, with ψj denoting the autocorrelation

coefficient. The proof is in Appendix A.11. For an AR(1), the initial response of the surplus is

positive in the empirically relevant case where λ > σ. That is, a negative shock to output is

countered with a large enough government debt issuance that the surplus in the initial period can

be negative without jeopardizing the risk-free nature of the debt. However, the deficit must turn

to a surplus starting in the second year since φ1 < 1. Surpluses remain in the years that follow. As

the persistence of the debt/output process φ1 increases, the response of the surplus/output ratio

converges to zero in year 2 and beyond.

For an AR(2), by choosing φ1 > 1, the government can run a deficit in the year of the shock

(year 1) as well as in the following year. In year 3, the IRF equals λ(ψ2−ψ1) = λ(φ2 + φ1(φ1− 1)).

This expression can be positive or negative depending on parameter values but is smaller than

the response in year 2. In other words, the government’s ability to run a third year of deficits in

response to the negative output shock is either limited or gone. The IRF flips sign in year 3 or 4.

The government must revert to running surpluses as the ACFs decline: ψj−1 < ψj−2.

With higher-order AR(p) models for debt/output, the government is able to run deficits for

longer before a reversal. For example, for an AR(3), there is an additional year of deficits possible

while keeping debt risk-free. These deficits must be made up by several years of surpluses af-

terwards. The surplus dynamics can display more pronounced hump-shaped IRFs. However, as

shown below, there is no empirical support for higher-order AR(p) dynamics (i.e., p > 2) in the

observed US debt/output process.
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3.5 Quantifying the Trade-Off with Counter-cyclical Debt/Output

3.5.1 Persistence of Fiscal Processes in the Data

Panel A of Figure 2 plots the sample autocorrelation function (ACF) of the log government debt/output

ratio as a function of the number of annual lags. The top right panel plots the partial autocorre-

lation function (PACF). They are estimated on the post-war U.S. sample (1947–2019). The PACF

function indicates that an AR(2) process fits the data well. Lags beyond two years in the PACF

are not statistically different from zero. The point estimates for φ1 and φ2 are 1.40 and -0.48, re-

spectively. Both roots lie outside the unit circle (1.66 and 1.25), so that the debt/output process

is stationary. While the AR(2) is our preferred specification, if we were to fit an AR(1), the point

estimate for φ1 would be 0.986.

We set φ0 to match the unconditional mean of the debt/output ratio of 0.43. Finally, we set λ =

1.953× σ equal to match the slope coefficient in a regression of the debt/output ratio innovations

on GDP growth in the post-war U.S. sample. A one percentage point increase in GDP growth

lowers the debt/output ratio by 1.95 percentage points. The calibration is reported in Table 1.

Given our values of σ = 0.05, γ = 1, and λ = 1.96σ = 0.098, we have γσ − λ(γ − σ) < 0.

If debt/output were non-stationary (have roots inside the unit circle), then this much counter-

cyclicality would result in a violation of the TVC condition. The coefficient λ would need to

remain below 0.85σ, which is only half of its empirical value, for the TVC to be satisfied in this

case. Once we exceed this upper bound, the value of outstanding debt explodes. To be clear, the

data suggest that the debt/output ratio is stationary, in which case the TVC is satisfied irrespective

of the value for λ. Indeed, the parameter restriction in part (a) of Proposition 3.3 is satisfied. This

is the case despite the risk-free interest rate being below the growth rate of output, because the

risk premium γσ is large enough.

Panel A of Figure 2 also plots the sample ACF and PACF for the primary surplus/output ratio

in the data. The dynamics of surplus/output are well described by an AR(1). The surplus is quite

persistent, with an AR(1) coefficient around 0.81.

3.5.2 Persistence of Fiscal Processes in Model with Risk-free Debt

We now show that the risk-free debt model cannot simultaneously match the high persistence of

the debt/output ratio and that of the surplus/output ratio. Figure 2 also plots the ACF and PACF

of the debt/output and surplus/output ratios implied by the model of risk-free debt. Panel B is

for the case where debt/output follows an AR(1) with the estimated persistence φ1 = 0.985. Panel

C is for the case where debt/output follows an AR(2) with the estimated coefficients φ1 = 1.4

and φ2 = −0.48. The ACF and PACF for debt/output match the data by construction. As argued
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Figure 2: Autocorrelation in Debt/Output and Surplus/Output

Panel A plots the sample autocorrelation of the U.S. log government debt/output ratio, the U.S. government surplus/output ratio,
the tax/output ratio and the spending/output ratio against GDP. Sample is annual, 1947—2019. Panel B plots the ACF and PACF of
S/Y and D/Y for an AR(1) with parameters φ1 = 0.985 and φ2 = 0. Panel C plots the ACF and PACF of S/Y and D/Y for an AR(2).
The parameters are listed in Table 1.
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Panel C: AR(2) Model
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above, the AR(2) fits the ACF and PACF of the observed debt/output ratio the closest.16

16The model cannot quite replicate the strong autocorrelation in surplus/output observed in the data. In the case of
the AR(2), the ACF converges too quickly to zero, compared to the observed one plotted in Panel A of Figure 2. The
ACF is no longer different from zero past two years, while in the data the ACF remains significantly positive for five

29



3.5.3 Impulse Responses in the Model with Risk-free Debt

The top left panel of Figure 3 plots the response of the surplus/output ratio to a negative shock

to output, when debt/output follows an AR(1) process. Each line corresponds to a different au-

tocorrelation, with φ1 ranging from 0.25 to 0.99. The top right panel plots the response of the

debt/output ratio. Upon impact, the debt/output ratio increases by about 4% from its mean.

After that, the rate of mean-reversion is governed by φ1. In the least persistent case (φ = 0.25),

the government runs a large surplus after the initial period deficit to bring the debt back down

quickly. In the most persistent debt case (φ1 = 0.99), the initial deficit is followed by a reversal

in the next period as the surplus jumps to just above its long-run value of s = 0 and then slowly

converges to s from above. Note that when ρ < µ, the government can run a small steady-state

deficit s = −d (1− exp(ρ− µ)) < 0. In sum, when the debt/output ratio follows an AR(1) and

the debt is risk-free, there can be no S-shaped response of the surplus/output ratio to the output

shock.

Panel B of Figure 3 plots the IRF when debt/output follows an AR(2), our preferred empiri-

cal specification. We vary φ1 from 1.1 to 1.4 and choose φ2 to match the first-order autocorrela-

tion of debt/output. With φ1 = 1.1, the IRF looks similar to the AR(1) case with φ1 close to 1.

However, with φ1 = 1.4 and φ2 = −0.48, the point estimates from the data, the IRF for the sur-

plus/output ratio displays a hump-shaped pattern. Consistent with the results in Proposition 3.4,

a state-contingent and persistent debt issuance policy enables the government to delay the fiscal

adjustment. The deficit/output ratio in the year of the shock is followed by an even larger deficit

in year 2. However, the deficit must shrink dramatically in year 3 and turn into a surplus start-

ing in year 4 and beyond. The surplus eventually converges back to s from above. Keeping debt

risk-free still imposes severe restrictions on the size of the S-shaped surplus dynamics. Running

sizeable deficits for more than two years is incompatible with risk-free debt.

3.5.4 Covariance of Tax and Spending with GDP

Finally, we compare the covariance of tax revenue/output with output growth in model and data.

Given a process for spending/output, the surplus/output ratio implies a tax revenue/output ratio

from the government’s budget constraint.

To make the model’s implications for tax revenues as comparable to the data as possible, we

posit a more realistic process for spending/output than the one we have worked with hitherto.

Specifically, we assume that the government commits to a policy for the spending/output ratio

years. Furthermore, the model produces a PACF(2) coefficient of -0.5, which is larger in absolute value than the one
estimated in the data.
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Figure 3: IRF of Surplus/Output and Debt/Output in Model

The figure plots the IRF of S/Y and D/Y for an AR(1) (top panel) and an AR(2) (bottom panel). In Panel B, φ2 is chosen to match the
first-order autocorrelation. The other parameters are given in Table 1.
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xt = Gt/Yt given by:

log xt = ϕ
g
0 + ϕ

g
1 log xt−1 − bgεt −

1
2

b2
g. (10)

When bg > 0, the spending/output ratio rises in response to a negative output shock. We estimate

(ϕ
g
0 , ϕ

g
0 , βg) from the post-war U.S. data. The parameter estimates are reported in Panel C of Table

1. Spending/output is counter-cyclical in the data. A 1% point decline in output coincides with a

1.53% point increase in the spending/output ratio. The persistence of spending/output matches

that in the data with an AR(1) coefficient of 0.88. With this spending process in hand, we compute

the model-implied tax revenue/output.

Figure 4 plots the tax revenue beta, namely the covariance of tax revenue/output with output
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growth divided by the variance of output growth, in the model. These betas do not depend on the

properties of the SDF. They are estimated from a 10,000 period simulation of the AR(2)-model for

the debt/output ratio, in which we calculate the beta over horizons ranging from 1 to 50 years.

The model implies that the tax betas drop below the spending betas at longer horizons to ensure

that the debt is risk-free.

Figure 4: GDP Growth Betas of U.S. Tax Revenue and Spending

This figure reports the betas in regression of log U.S. spending G growth and log tax revenue T growth over horizon j on the concurrent
GDP growth over horizon j. The curve plots the coefficients implied from the model with risk-free Debt. Benchmark calibration in
Table 1.
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3.6 The Insurance Trade-off over Finite Horizons

How much smoothing can the U.S. government achieve for taxpayers when debt is risk-free by

issuing more debt in response to bad shocks? It depends on the horizon. Section 1.3 showed that

we can gauge the welfare implications by examining the riskiness of the net transfer process Gt −
Tt at different horizons. This section applies the general result to the specific asset pricing model

and debt/output processes from the previous section. In the presence of permanent shocks, the

government can only insure taxpayers over a limited period of time. This period can be extended

by imputing more persistence or higher-order dynamics into the debt/output process.

3.6.1 Cash-Flow Betas with Risk-free Debt

The general Proposition 1.4 specializes to the following result:

Proposition 3.5. Under Assumptions 2 and 4, when debt is risk-free and debt/output follows an autore-

gressive process as in (9), the cash-flow beta of the discounted surpluses over h periods is given by the beta
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of debt h periods from now:

βS,CF
t (h) =

covt (Mt+1, (Et+1 −Et)Mt+1,t+hDt+h)

Dtvart(Mt+1)

=
Et[Mt+1]

Dtvart(Mt+1)
Et[Mt+1,t+hdt+hYt+h](exp {γ(ψh−1λ− σ)} − 1).

sign
(

βS,CF
t (h)

)
= sign (γ(ψh−1λ− σ))

where ψj = φ1ψj−1 + φ2ψj−2, j > 2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1; ψ0 = 1.

The proof is in Appendix A.12. This result can easily be generalized to any AR process, with

ψj denoting the coefficients in the characteristic equation. The risk properties of the government

surpluses over a given horizon are completely determined by riskiness of the debt issuance pro-

cess, as long as the debt is risk-free. The cash-flow beta of the surplus at various horizons does not

depend on the spending and tax revenue dynamics.

Analogously, we define the cash-flow beta of discounted government spending and of tax

revenues.

Corollary 3.1. Under Assumptions 2 and 4, and when debt is risk-free and debt/output follows an AR(2)

and the government commits to a policy of spending-to-output ratio following equation (10), the cash flow

beta of spending and tax revenues have to satisfy the following restrictions:

βG,CF
t (h) =

h

∑
j=1

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+jxt+jYt+j](exp

{
γ(ϕ

j−1
g bg − σ)

}
− 1).

βT,CF
t (h) =

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+hdt+hYt+h](exp {γ(ψh−1λ− σ)} − 1)

+
h

∑
j=1

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+jxt+jYt+j](exp

{
γ(ϕ

j−1
g bg − σ)

}
− 1).

The properties of the βG,CF
t (h) depend on the persistence and cyclicality of the exogenous

spending/GDP process in equation (10). The properties of βT,CF
t (h) depend on the risk proper-

ties of both the debt claim and the spending claim.

3.6.2 The Trade-off over Finite Horizons with Constant Debt-Output

When debt/output is constant (λ = 0), Proposition 3.5 implies:

βS,CF
t (h) =

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+hdYt+h](exp {−γσ} − 1). (11)
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The cash-flow beta of the surplus is negative at all horizons since γσ > 1. In bad times, the

surplus/output ratio goes up. When spending/output is constant (or also goes up), tax rev-

enues/output must go up. The government cannot insure taxpayers against adverse output

shocks. Rather, the taxpayers insure the bondholders.

Panel A of Figure 5 plots the risk premium on a claim to cumulative surpluses over the next h

periods in the left panel. It is the spending beta multiplied by the market prices of risk, βS,CF
t (h)×

vart[Mt+1]
Et[Mt+1]

. The cumulative risk premium at horizon h is the sum of the individual strip risk premia

up until horizon h. The negative risk premium over short horizons indicates that surpluses are a

hedge. Since taxpayers are short the surplus claim, their tax-minus-transfer liability is risky. When

debt/output is constant and there is no possibility to raise the debt in response to an adverse

shock, the surplus/output ratio must rise on impact. This makes the one-period surplus claim a

hedge. The year-2 surplus claim in contrast earns a small positive risk premium, reflecting the

underlying output risk, so that the cumulative 2-period surplus risk premium is higher than the

1-period surplus risk premium. As h → ∞, the sum of discounted surpluses converges to the

current value of debt Dt. Insisting on risk-free debt (βD
t = 0) implies that βS,CF

t (h) → 0. The red

line in the left panel converges to zero from below for large h.

This risk premium on cumulative surpluses is inversely related to the risk premium on a debt

strip, which is γσ > 0 at all horizons. This debt strip risk premium is plotted in the right figure

of Panel A. When the debt/output ratio is constant, the debt strip has the same risk as the output

strip at all horizons. To offset the output risk in debt, the risk premium on the surplus has to be

negative.

The solid black line in the left panel plots the risk premium on the claim to cumulative gov-

ernment spending over the next h periods. It equals the cash-flow beta of the h-period spending

claim multiplied by the market price of risk. Since the spending/output dynamics are exoge-

nously given, the spending beta does not depend on the debt policy. The countercyclical nature

of spending/output makes the risk premium negative at short horizons. At longer horizons, the

spending risk premium turns positive reflecting the long-run output risk in the spending claim,

since the spending/output ratio is stationary.

The extent of taxpayer insurance is captured by βT,CF
t (h). The blue dashed line in the left panel

plots βT,CF
t (h) multiplied by the market price of risk, the risk premium on a claim to the next h

periods of tax revenue. When this risk premium is negative, taxpayers are providing insurance

to the government rather than receiving insurance. The risk premium is negative until year 13

for our parameters. It then turns positive. The positive risk premium on longer-dated tax strips

reflects cointegration between tax revenues and output and a positive risk premium for output

risk.

Note that the tax beta βT,CF
t (h) in the left panel is below the spending beta βG,CF

t (h) at all hori-

zons. As h → ∞, these cash-flow betas converge to the return betas βT
t and βG

t . As we discussed
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Figure 5: Risk Premia Across Horizons

The figure plots the risk premium of cumulative discounted cash flows, βi,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
, in the left panel against the horizon h.

The right panel plots the risk premium on the debt strips: 1− exp
{

γ(φh−1λ− σ)
}

. The parameters are given in Table 1, except for the
debt dynamics in the first two panels.
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Panel B: AR(1) Debt/Output (φ1 = 0.75)
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Panel C: AR(2) Debt/Output
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in Corollary 1, βT
t < βG

t was the condition to keep the debt risk-free.
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3.6.3 AR(1) for debt/output

The sign and magnitude of the cash-flow beta of the surplus βS,CF
t (h) are now governed by γ(φh−1

1 λ−
σ), where φ is the autocorrelation coefficient of the debt/output ratio.

If debt/output is pro-cyclical (λ ≤ 0), βS,CF
t (h) < 0 at all horizons. We are back in the previ-

ous case. In other words, when the government repays debt in bad times, it cannot provide any

insurance to its taxpayers.

In the empirically relevant case of λ > σ > 0, the initial βS,CF
t (1) > 0. By issuing more debt

in response to an adverse shock, the government prevents the tax rate and the surplus from going

up. This provides insurance to the taxpayers βT,CF
t (1) > 0. The left plot in Panel B of Figure

5 shows the positive risk premium on cumulative surplus and tax claims at horizon h = 1. The

one-period debt strip has a negative risk premium, 1− exp {γ(λ− σ)}, due to the counter-cyclical

nature of debt issuance, as shown in the right panel. The 1-period surplus can be risky because

that risk is offset by the safety of the debt issuance at time t + 1.

However, due to its AR(1) nature, the debt/output ratio starts to revert back to its mean the

very next period. The risk premium on the cumulative two-period surplus depends on γ(φ1λ− σ)

which is still positive but not as large as the one-period risk premium since φ1 < 1. Conversely,

the cumulative two-period debt strip risk premium is not as negative as the one-period debt strip

risk premium. The risk premium on the strip that pays the annual surplus two years from now is

negative, pulling down the cumulative strip risk premium. The same is true for the two-year tax

strip.

The surplus beta βS,CF
t (h) inherits the dynamics of the AR(1) process for the debt/output ratio.

As h increases, the surplus beta eventually switches signs. This occurs at the first time h for which

φh−1λ < σ. If the rate of mean-reversion in debt is high (φ1 is small), this switch occurs sooner. If

the debt/output ratio is more persistent, the sign switch occurs later.

Given the counter-cyclical nature of government spending, the tax beta βT,CF
t (h) must cross

over into negative territory sooner than the surplus beta. There is only a very limited amount

of taxpayer insurance that the government can provide when debt is risk-free and follows AR(1)

dynamics. This insurance is further curtailed due to the counter-cyclical nature of spending.

As the right panel shows, the risk premium on the debt strip increases with the horizon. As

h → ∞, it converges to the risk premium on a long-dated output strip. Again, this reflects the

fact that debt is co-integrated with output. It is common in the literature to assume that this

risk premium is zero at long horizons, because this allows discounting at the risk-free rate. In

the presence of permanent shocks, this is incorrect. Similarly, the risk premia on the long-dated

T-strip and G-strip also converge to risk premium on the long-dated output strip as h→ ∞.

When output shocks are i.i.d. and permanent, far-out surpluses are risky as they inherit the

permanent output risk. Medium-term surpluses must be safe and have negative risk premia to
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offset both the positive risk premium of the short-run surpluses (short-run insurance provision to

the taxpayer) and the positive risk premium of the long-run surpluses (output risk). Equivalently,

the cash-flow betas of the tax strip must be below those of the spending strip at medium hori-

zons. The cash-flow beta at h = ∞ equals the return beta, and so βT
t < βG

t ensures that βD
t = 0.

Permanent output risk rules out insurance provision to taxpayers over long horizons.

3.6.4 AR(2) for debt/output

In our preferred case of an AR(2) for debt/output, the sign of the cash flow beta of the surplus is

determined by γ(ψj−1λ− σ). If λ > σ, the initial surplus beta is positive. The second beta is larger

since ψ1 = φ1 > 1. The third beta remains positive and is larger than the second beta if ψ2 > ψ1 or

φ1(φ1 − 1) + φ2 > 0. This condition is satisfied for our point estimates φ1 = 1.40 and φ2 = −0.48.

For these parameter values, the fourth beta is lower than the third, the fifth lower than the fourth,

etc. Eventually the surplus cash-flow beta crosses over into negative territory. Panel C of Figure

5 shows this occurs in year 9. The cash-flow beta for tax revenue follows a similar pattern. The

cash-flow betas inherit the hump-shaped pattern from the debt/output ratio.

What allows the government to provide temporary insurance to taxpayers is a debt issuance

policy with more history dependence. Risk premia on debt strips, shown in the right panel, are

more negative than in the AR(1) model and remain negative for longer (9 versus 3 years). The slow

expansion and repayment of the debt in response to an adverse shock allows the government

to postpone fiscal rectitude. But as h increases, the expression γ(σ − ψj−1λ) turns positive and

converges to γσ, the risk premium on the output strip. In sum, the cumulative surplus can be risky

over a horizon h (providing insurance to the tax payer) only if this risk is offset by the safety of

debt issuance at time t + h. Insurance provision to the tax-payer is necessarily short-lived because

of the long-run risk in debt.

3.7 Counter-cyclical Spending

The government insures transfer recipients by spending a larger fraction of GDP in recession. We

now show that the more counter-cyclical spending becomes, the steeper the trade-off between

insurance of bondholders and taxpayers.

Figure 6 plots scaled cash-flow betas for spending, βG,CF
t (h)× vart[Mt+1]

Et[Mt+1]
, in the top panel, and

the implied tax revenue betas, βT,CF
t (h)× vart[Mt+1]

Et[Mt+1]
, in the bottom panel, for a range of values of

the cyclicality of spending bg in equation (10). As government spending becomes more counter-

cyclical, the risk premium on the spending claim declines. The risk premium on the tax claim has

to decline as well in order to keep the government debt risk-free. As the tax claim becomes safer,

taxpayers face a riskier tax liability proposition. As the governments provides more insurance to

transfer recipients, this reduces the scope for insurance of taxpayers. When spending is acyclical
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(bg = 0), the tax claim inherits the risk properties of the surplus claim.

Figure 6: Varying the Counter-cyclicality of Spending

This figure plots the scaled cash-flow beta of spending βG,CF
t (h) × vart [Mt+1 ]

Et [Mt+1 ]
in the top panel and the implied tax revenue betas,

βT,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
, in the bottom panel for a range of values of the cyclicality of spending bg.
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3.8 Seigniorage Revenue

We now introduce convenience yields and apply the general analysis of Section 2 to the specific

asset pricing model with permanent risk and the AR(2) dynamics for debt/output of this section.

Under the proportional convenience yields Assumption 1, the seigniorage revenue beta becomes:

βK,CF
t (h) ≡ −(1− e−κ)

h

∑
j=1

Et[Mt+1]

Dtvart(Mt+1)
Et[Mt+1,t+jdt+jYt+j](exp

{
γ(ψj−1λ− σ)

}
− 1).

Figure 7 plots the risk premium on the cumulative seigniorage claim in the left panel. It is the

product of βK,CF
t (h) and the market price of risk. The three lines refer to different values for the

convenience yield (1− e−κ), ranging from 1% to 3%. In the short run, the seignorage revenue claim

is safe and hence earns a negative risk premium. The larger κ, the more negative the seigniorage

risk premium at short horizons. As a result, the seigniorage revenue relaxes the trade-off between

insuring bondholders and taxpayers over short horizons. This is shown in the right panel, which

plots the risk premium on the cumulative surplus claim βS,CF
t (h) × vart[Mt+1]

Et[Mt+1]
. The latter is more
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positive in the short run, the higher the convenience yield.

Figure 7: Convenience Yield Seigniorage Betas

The left panel plots the risk premium of cumulative discounted seigniorage revenue, βK,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
, in the left panel against the

horizon h. The right panel plots the risk premium of cumulative discounted surpluses, βS,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
against the horizon h. The

parameters are given in Table 1, except for the debt dynamics in the first two panels. Convenience yield (1− e−κ ) ranging from 0% to
3%.
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Over longer horizons, the seigniorage revenue is risky. Since seignorage revenue is propor-

tional to debt outstanding, and debt is cointegrated with output, the long-run risk premium on

the seigniorage revenue claim is dominated by long-run output risk. Seigniorage revenue in-

evitably adds long-run output risk to the debt, and more so the higher the convenience yield. This

worsens the insurance possibilities to taxpayers over intermediate horizons. The return beta of the

seigniorage revenue stream equals its cash-flow beta at horizon h = ∞, which is positive, thereby

lowering the return beta of the tax claim βT. In sum, convenience yields, even large ones, are no

panacea. They allow for more taxpayer insurance over short horizons but less insurance in the

longer-run.

4 Quantifying the Trade-off in Model with Transitory Output Shocks

We now study the insurance tradeoff in a model where output only experiences transitory shocks.

This is the standard assumption in most macro-economic models. In models with only transitory

shocks, long-term bonds are the riskiest assets; see Appendix E for a formal derivation. Govern-

ment debt is subject to substantial interest rate risk. To keep the debt risk-free in the presence

of this interest rate risk, the government needs to deliver an even safer surplus process. Inter-

est rate risk reduces the scope for insurance of taxpayers. Under natural parameter conditions,

the trade-off between insuring taxpayers and bondholders is even steeper than in the model with

permanent shocks.
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We proceed in two steps. In a first step, we introduce transitory shocks to output but keep our

original SDF with permanent shocks to the level of marginal utility. In this setting, the government

can insure taxpayers at all horizons while keeping the debt risk-free. We call this the goldilocks

economy. However, this model is misspecified. In any structural model with transitory output

(or productivity) risk, marginal utility will only have a transitory component as well. Hence, this

model is merely an expositional device. In the second step, we consider such an internally con-

sistent model with transitory shocks to both output and the pricing kernel. The trade-off actually

worsens.

4.1 Permanent Shocks to Marginal Utility

Assumption 5. (a) The shocks to output are transitory. The log output process is given by:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 denotes the innovation to log output which is i.i.d. normally distributed.

(b) The log pricing kernel is:

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

(c) The government commits to a policy for the debt/output ratio dt = Dt/Yt given by:

log dt = φ1 log dt−1 + φ0 − λεt −
1
2

λ2,

where λ > 0 so that the debt-output ratio increases in response to a negative output shock εt.

This asset pricing model is misspecified. This SDF does not reflect the mean-reversion in out-

put and hence cannot be micro-founded. In this setting, the government faces no trade-off between

insuring taxpayers and bondholders. The government can insure taxpayers over all horizons.

Proposition 4.1. The cash flow beta of the surpluses over j periods is given by:

βS,CF
t (j) =

Et[Mt+1]

vart[Mt+1]
Et[Mt+1,t+jdt+jYt+j](exp(γ(φj−1λ− ξ j−1σ))− 1)

when j ≥ 1. The sign of the cash flow beta is sign
(
φj−1λ− ξ j−1σ

)
.

Hence, the sign of the surplus cash-flow beta is determined by the sign of
(
φj−1λ− ξ j−1σ

)
.

If λ > σ, the initial surplus cash-flow beta is positive. If the rate of mean-reversion in output is

higher than in the debt/output ratio, φ > ξ, the surplus cash-flow beta stays positive for all j > 1.

The positive surplus beta at all horizons indicates that the government can insure taxpayers at all

horizons. This was not feasible in the case of permanent innovations.
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For intuition, recall that the cumulative surplus risk premium is the inverse of the risk pre-

mium on a debt strip. The debt risk premium compensates investors for output risk. Because the

output shocks are temporary, the output component of this risk premium converges to zero as the

horizon grows. The transitory nature of output risk expands the scope for insurance of taxpayers.

As ξ → 1, we revert back to the expression derived in the benchmark model with permanent

output risk:
(
φj−1λ− σ

)
.

Figure 8 plots the risk premium on the cumulative surplus claim for the model with transitory

output risk, βS,CF
t (h) × vart[Mt+1]

Et[Mt+1]
. The calibration is the same as in the benchmark model, except

that the output process no longer has a unit root. In Panel A, we consider a case in which the

debt/output ratio and the output processes are equally persistent: φ = ξ = 0.75. At all horizons,

the surplus claim is risky, contributing positive risk premium across all horizons. The tax claim is

also risky across all horizons. In this goldilocks scenario, the government can insure taxpayers at

all horizons while keeping the debt risk-free, insuring bondholders.

Figure 8: Risk Premia with Transitory Shocks to Output and Permanent Shocks to SDF

The figure plots the risk premium of cumulative discounted cash flows, βS,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
, in the left panel against the horizon h.

The right panel plots the risk premium on the debt strips: (1− exp(−γ(σξ j−1 − φj−1λ))). In top panel, φ is 0.75 and ξ is 0.75. In
bottom panel, φ is 0.75 and ξ is 0.98. Other parameters–Benchmark calibration in Table 1.
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Panel B: Output AR(1) with ξ = 0.98
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The right panel of Figure 8 plots the risk premium on the debt strips, which pay off dt+jYt+j,
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given by

γ(σξk−1 − φk−1λ) ≈ 1− exp
{
−γ(σξk−1 − φk−1λ)

}
.

Given that λ > σ, the risk premium on the debt strips is negative at each horizon j. As j → ∞,

this debt strip risk premium converges to the risk premium on the output strips. The latter is 0%

because the output innovations are transitory and the pricing kernel does not have a transitory

component which contributes interest rate risk. The government can insure taxpayers over long

horizon because the debt strip risk premium is negative at all horizons.

Simultaneous insurance of taxpayers and bondholders only works if the governments commits

to a debt policy that is at least as persistent as the output process (φ > ξ). Panel B in Figure 8 plots

a scenario where the debt/output ratio is less persistent than the debt/output ratio. In this case,

the government has to produce safer surplus claims over longer horizons. The trade-off between

insuring bondholders and taxpayers re-emerges.

4.2 Transitory Shocks to Marginal Utility

The above goldilocks case is misleading, because equilibrium models without permanent shocks

to consumption do not typically generate permanent innovations to marginal utility. Next, we

consider an internally consistent model with transitory shocks to both output and marginal utility.

Most of the equilibrium models in the literature on optimal taxation fit into this class of models.

For an example, see Bhandari et al. (2017, pp. 653), which features a mean-reverting process for

productivity growth and government spending. See Chari et al. (1994); Debortoli et al. (2017)

for other examples. Our qualitative results would go through if we used the equilibrium pricing

kernels implied by these models, but we adopt a flexible pricing kernel to derive closed-form

solutions.

Assumption 6. (a) The shocks to output are transitory. The log output process is given by:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 denotes the innovation to log output which is i.i.d. normally distributed.

(b) The log SDF is:

mt,t+1 = −ρ− 1
2

γ2 − γ

σ
(σεt+1 + (ξ − 1)yt).

This specific modification of the SDF is motivated by the fact that if the agent’s consumption is

equal to the output and has CRRA preferences with a relative risk aversion of γ/σ, the marginal

utility growth is mt,t+1 = −ρ̃− (γ/σ)(ξ0 + (ξ − 1)yt + σεt+1). In this case, the marginal utility of
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wealth can be written as:

Λt+1 = exp(−ρ̃(t + 1)− (γ/σ)yt+1).

There are no permanent shocks to the marginal utility of wealth. The log of the risk-free rate is

given by:

r f
t = ρ + γ

(ξ − 1)yt

σ
.

Output risk drives interest rate risk.

This model has counterfactual asset pricing implications. Interest rate risk will make the long

bond, a zero coupon bond with the longest maturity, the riskiest asset in the economy. Modern

asset pricing has consistently found that permanent cash flow shocks receive a high price of risk

in the market (e.g., Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009; Bansal and Yaron,

2004; Borovička et al., 2016; Backus et al., 2018). This model has no permanent priced risk.

Surprisingly, even when there are no permanent shocks to output and the pricing kernel, the

government cannot insure taxpayers over longer horizons. In fact, the trade-off worsens.

Proposition 4.2. The cash flow beta of the surpluses over j periods is given by:

βS,CF
t (h) =

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+jdt+jYt+j]

[
exp

(
γ(φ

j−1
1 λ− ξ j−1σ− γ(1− ξ j−1)

)
− 1
]

when j ≥ 1. The sign of the cash flow beta is sign(φj−1
1 λ− ξ j−1σ− γ(1− ξ j−1).

The first component of the debt strip risk premium, γ(ξ j−1σ − φj−1λ), compensates for out-

put risk. The second component, γ2(1 − ξ j−1), compensates for interest rate risk. Because the

innovations are temporary, the output component of this risk premium converges to zero as we

increase the horizon. The interest rate risk does not converge to zero, but rather to γ2.17 Hence, in

the long-run the entire debt strip risk premium of (1− exp(−γ2)) is due to interest rate risk. It is

large and positive since the long bond is the riskiest asset in an economy with only transitory risk.

In sum, while the transitory nature of output risk broadens the scope for insurance of taxpayers,

this is more than offset by the rising interest rate risk. Compared to the permanent risk case, we

have replaced long-run output risk with more long-run interest rate risk. The trade-off worsens

as a result.

Figure 9 plots the trade-off for our calibration. In Panel A, the debt/output process is equally

persistent as the output process. In the year of the shock, the surplus beta is still positive. In

17If M is conditionally log-normal, the expected log excess return on a long position in the longest-maturity bond
reaches the entropy bound, one half of the variance of the log SDF: ht(∞) = limk→∞ Etrxk

t+1 = (1/2)Vart(mt+1)

(Backus et al., 2014). In our setting, the expected log return on the longest maturity bond is .5γ2. After adding a Jensen
term, we recover the interest rate risk premium given by γ2. All else equal, this risk premium exceeds the output risk
premium as long as the conditional volatility of the pricing kernel exceeds the conditional volatility of output: γ > σ.
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the following year, the government already has to produce very safe surpluses, dragging the 2-

year cumulative surplus risk premium into negative territory. At the 4-year horizon, the risk

premium on the cumulative surplus declines to -17%. To keep the debt risk-free, the interest rate

risk (shown in the right panel) has to be offset by very negative surplus and tax betas. As a result,

the government can only insure taxpayers over very short periods even though the shocks to the

economy are transitory.

Figure 9: Risk Premia with Transitory Shocks to Output and SDF

The figure plots the risk premium of cumulative discounted cash flows, βS,CF
t (h)× vart [Mt+1 ]

Et [Mt+1 ]
, in the left panel against the horizon h.

The right panel plots the risk premium on the debt strips: (1− exp(−γ(σξ j−1 − φj−1λ + γ(1− ξ j−1))). In top panel, φ is 0.75 and ξ is
0.75. In bottom panel, φ is 0.75 and ξ is 0.98. Other parameters–Benchmark calibration in Table 1.
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Panel B: Output AR(1) with ξ is 0.98
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In Panel B, we consider a more persistent debt/output process. This mitigates the decline in

the risk premium on the cumulative surplus, but the government can still not insure taxpayers

beyond 2 years.

This result does not hinge on the specific SDF we use. In the absence of arbitrage opportunities,

if the SDF is not subject to permanent innovations, the zero-coupon bond with the longest maturity

will always earn the highest expected log return (see section E in the appendix for details). In any

model with only transitory shocks, the cash flow beta of the j-period cumulative surplus converges
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to:

lim
j→∞

βS,CF
t (j) =

Et[Mt+1]

Dtvart[Mt+1]
Et[Mt+1,t+jdt+jYt+j] [exp (−vart(mt+1))− 1] ,

where vart(mt+1) governs the interest rate risk premium. To keep the debt risk-free, the govern-

ment has to offset the interest rate risk by generating safe surpluses, or equivalently, risky taxpayer

liabilities.

5 Conclusion

The government engineers risk-free debt by choosing the exposure of the tax claim to output

risk judiciously. The more debt there is outstanding, the lower this exposure must become, and

hence the more output risk must be borne by taxpayers. There is no scope for insurance of both

taxpayers and debt holders over long horizons in the presence of priced shocks to output, be they

permanent or transitory in nature. Convenience yields on the debt, which induce the government

to follow a safe debt strategy, alleviate the insurance tradeoff but only temporarily. The only way

the government can provide insurance to taxpayers over all horizons while keeping the debt risk-

free is by saving. Since U.S. surplus and tax dynamics look quite different from the ones that are

needed to induce risk-free debt, U.S. Treasury debt may not be as safe as it looks.
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A Proofs

A.1 Proof of Proposition 1.1

Proof. Our derivation follows Alvarez and Jermann (2004) by assuming that (1 + Ωh
net(α)) does not change the initial

consumption C0. By differentiating w.r.t. α, we can back out the marginal benefit/cost of government intervention as

follows:

Ωh,i′
net(0) =

E0 ∑h
t=1 Ui

c,t [Gt − Tt]

E0 ∑h
t=1 Ui

c,t [Ct]
.

When evaluating at α = 0, we are not actually changing the household’s consumption process. When the investors

can invest in Treasury markets and do not face any binding constraints, the agents agree on the valuation of aggregate

payoffs from the government debt:

E0

h

∑
t=1

M0,t [Gt − Tt] = E0

h

∑
t=1

Ui
c,t

Ui
c,0

[Gt − Tt] .

For any investment horizon h, the following individual optimality condition has to hold, absent binding borrowing

and short-sales constraints:

E0

h

∑
t=1

Ui
c,t

Ui
c,0

[Gt − Tt] + E0
Ui

c,h

Ui
c,0

[Dh]− D0 = 0 = E0

h

∑
t=1

M0,t [Gt − Tt] + E0 MhDh − D0.

In addition, the transversality condition implies that, as h→ ∞, E0 MhDh → 0. This implies that, for all h, the following

equality holds:

E0

h

∑
t=1

M0,t [Gt − Tt] = E0

h

∑
t=1

Ui
c,t

Ui
c,0

[Gt − Tt] .

By the same token, if these agents can trade claims to aggregate consumption, provided that the transversality condition

holds, we know that for all h, the following equality holds:

E0

h

∑
t=1

M0,t [Ct] = E0

h

∑
t=1

Ui
c,t

Ui
c,0

[Ct] .

By combining these 2 equalities, we obtain the following result, for each h:

Ωh′
net(0) =

E0 ∑h
t=1 M0,t [Gt − Tt]

E0 ∑h
t=1 M0,t [Ct]

=
E0 ∑h

t=1 Ui
c,t [Gt − Tt]

E0 ∑h
t=1 Ui

c,t [Ct]
.

A.2 Proof of Corollary 1.1

Proof. We start from the marginal cost at infinite horizon:

Ω∞
net(0) =

P∞
0 [{Gt − Tt}]

P∞
0 [{Ct}]

=
(PG

0 − G0)− (PT
0 − T0)

PC
0 − C0

= − D0

PC
0 − C0

.

Start from the following equation:

P∞
0 [{Gt − Tt}] = E0

∞

∑
t=1

M0,t [Gt − Tt] =
∞

∑
t=1

Cov0(M0,t, Gt − Tt) +
∞

∑
t=1

E0 M0,tE0 [Gt − Tt] .
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Since the risk premium component for debt is positive: RP0 = −∑∞
t=1 Cov0(M0,t, Tt − Gt) > 0, we need positive

average surpluses E0 [Gt − Tt] < 0, to obtain D0 = P∞
0 [{Tt − Gt}] > 0.

A.3 Proof of Proposition 1.2

Proof. From the investor’s Euler equation Et[Mt+1(Ri
t+1 − R f

t )]=0, we know that the expected excess return on the tax

claim, spending claim, and debt claims are given by

Et

[
RT

t+1 − R f
t

]
=
−covt

(
Mt+1, RT

t+1
)

Et[Mt+1]
=
−covt

(
Mt+1, RT

t+1
)

vart[Mt+1]

vart[Mt+1]

Et[Mt+1]
= βT

t λt,

Et

[
RG

t+1 − R f
t

]
=
−covt

(
Mt+1, RG

t+1

)
Et[Mt+1]

=
−covt

(
Mt+1, RG

t+1

)
vart[Mt+1]

vart[Mt+1]

Et[Mt+1]
= βG

t λt,

Et

[
RD

t+1 − R f
t

]
=
−covt

(
Mt+1, RD

t+1
)

Et[Mt+1]
=
−covt

(
Mt+1, RD

t+1
)

vart[Mt+1]

vart[Mt+1]

Et[Mt+1]
= βD

t λt.

A.4 Proof of Proposition 1.3

Proof. We start from the one-period government budget constraint:

Tt = Gt − (Dt − RtDt−1).

This implies that the return on government debt can be stated as follows:

RtDt−1 = St + Dt = St + Et[Mt,t+1Rt+1Dt],

= St + Et [Mt,t+1[St+1 + Mt+1,t+2Rt+2Dt+1]] ,

= Et[
1

∑
k=0

Mt,t+kSt+k] + Et[Mt,t+1Dt+1],

where we have used Rt+1Dt = St+1 + Et+1[Mt+1,t+2Rt+2Dt+1]. By continued forward substitution, we obtain the

following expression for the return on debt:

RtDt−1 = Et[
h

∑
k=0

Mt,t+kSt+k] + Et[Mt,t+hDt+h].

Replace the time index t by t + 1,

Rt+1Dt = Et+1[
h

∑
j=1

Mt+1,t+jSt+j] + Et+1[Mt+1,t+hDt+h]. (12)

Next, we take the limit of h → ∞, and consider the case of risk-free debt. We start again from the one-period budget

constraint:

Tt = Gt − (Dt − R f
t−1Dt−1).

When the transversality condition holds, repeated forward substitution produces the following expression:

R f
t−1Dt−1 = St + Dt = St + Et[Mt,t+1R f

t Dt] = St + Et[Mt,t+1(St+1 + exp(mt+1,t+2)R f
t+1Dt+1)] = Et[

∞

∑
k=0

Mt,t+kSt+k].
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Replace the time index t by t + 1, to obtain the following expression:

R f
t Dt = Et+1[

∞

∑
j=1

Mt+1,t+jSt+j].

Since the left-hand side is known at time t, we obtain the result:

(Et+1 −Et)[
∞

∑
j=1

Mt+1,t+jSt+j] = 0.

A.5 Proof of Proposition 1.4

Proof. We start from eqn. 12. We take the innovations on both sides:

Dt(Et+1 −Et)Rt+1 = (Et+1 −Et)[
h

∑
j=1

Mt+1,t+jSt+j] + (Et+1 −Et)[Mt+1,t+hDt+h].

We obtain the following result:

DtCovt(Mt+1, (Et+1 −Et)Rt+1) = Covt(Mt+1, (Et+1 −Et)[
h

∑
j=1

Mt+1,t+jSt+j])

+ Covt(Mt+1, (Et+1 −Et)[Mt+1,t+hDt+h]).

A.6 Proof of Proposition 2.1

Proof. We start from the value of the government debt equals the sum of the expected present values of future tax

revenues plus future seigniorage revenues minus future government spending:

Bt = Et

 ∞

∑
j=0

Mt,t+j(Tt+j + (1− e−κt+j )Dt+j − Gt+j)

 = PT
t + PK

t − PG
t ,

provided that a transversality condition holds. The government debt portfolio return equals the return on a portfolio

that goes long in the tax claim and short in the spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

PK
t − Tt

Bt − St
Et

[
Rλ

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,RK
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax claim, and the spending

claim, respectively. We take government spending process, and the debt return process as exogenously given, and we

explore the implications for the properties of the tax claim. In the absence of arbitrage opportunities, if the TVC holds,

the expected excess return on the tax claim is the unlevered return on the spending claim and the debt claim:

Et

[
RT

t+1 − R f
t

]
=

(PG
t − Gt)Et

[
RG

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)

+
DtEt

[
RD

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)

−
(PK

t − Kt)Et

[
RK

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)
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If we want the debt to be risk-free, then the following equation holds for expected returns:

Et

[
RT

t+1 − R f
t

]
=

(PG
t − Gt)Et

[
RG

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)

−
(PK

t − Kt)Et

[
RK

t+1 − R f
t

]
Dt + (PG

t − Gt)− (PK
t − Kt)

and there is a similar equation for the betas:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (PK

t − Kt)
βG

t −
PK

t − Kt

Dt + (PG
t − Gt)− (PK

t − Kt)
βK

t .

A.7 Proof of Proposition 2.2

Proof. This result follows directly from the proof of Proposition 1.4.

A.8 Proof of Proposition 3.1

Proof. To verify the expression, first conjecture the pricing of the output strip is Et
[
Mt,t+kYt+k

]
= ξkYt, for k ≥ 0. Then

ξ0 = 1 and

ξkYt = Et
[
Mt,t+kYt+k

]
= Et [Mt,t+1ξk−1Yt+1] = exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− 1)2)Yt,

ξkYt = exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)ξk−1Yt,

which verifies the conjecture and implies ξk = ξk−1 exp(−ρ − 1
2 γ2 + µ + 1

2 (γ − σ)2). Similarly, we define a k-period

surplus strip as a claim to St+k, with price given by Et
[
Mt,t+kSt+k

]
= χkYt. The pricing of the first surplus strip is

given by the following expression:

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−dYt+1

(
1− R f

t exp[−(µ + εt+1)]
)
}
]

,

= −dEt [Mt,t+1Yt+1] + dYtR
f
t Et [Mt,t+1] ,

= −d exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt + dYt,

=

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
dYt.

χ1 =

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
d.

Then, similarly, the pricing of the kth surplus strip is given by:

χkYt = Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
= Et [Mt,t+1χk−1Yt+1] ,

= χk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt.

Note that this calculation also implies that we cannot simply price these strips off the risk-free yield curve, even

though the entire debt is risk-free. The solution is given by:

χ1 = d
[

1− exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)

]
.

χk = χk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2).
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which implies that limj→∞ Et

[
Mt,t+jSt+j

]
= ∑∞

k=1 χkYt = χ1(1 + ξ1 + ξ2
1 + . . .)Yt = dYt, where ξ1 = exp(−ρ− 1

2 γ2 +

µ + 1
2 (γ− σ)2).

A.9 Proof of Proposition 3.2

Proof. From the gross risk-free rate expression R f
t+1 = exp(ρ) and the one-period government budget constraint, we

obtain that:

Tt
Yt

= x− d
(

1− R f
t−1

Yt−1
Yt

)
.

The return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
)Yt+1

(d + x ξ1
1−ξ1

)Yt
=

x 1
1−ξ1

Yt+1

(d + x ξ1
1−ξ1

)Yt
+

d exp(ρ)

(d + x ξ1
1−ξ1

)
.

Similarly, the return on the spending claim can be stated as:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1

x ξ1
1−ξ1

Yt
=

x 1
1−ξ1

Yt+1

x ξ1
1−ξ1

Yt
.

Armed with these expressions, we get the following expression for the covariance:

cov(RT
t+1, Mt,t+1) =

x ξ1
1−ξ1

(d + x ξ1
1−ξ1

)
cov(RG

t+1, Mt,t+1),

which also translates to Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d+x ξ1
1−ξ1

Et

[
RY

t+1 − R f
t

]
.

A.10 Proof of Proposition 3.3

A.10.1 Case of AR(1)

Proof. From the government budget constraint in the case of risk-free debt:

Tt = Gt − (Dt − R f
t−1Dt−1).

Hence, the surplus process is given by:

St
Yt

= −
(

dt − R f
t−1dt−1

Yt−1
Yt

)
= dt−1R f

t−1 exp[−(µ + σεt)]− dφ1
t−1 exp(φ0 − λεt −

1
2

λ2).

We conjecture that the price of the surplus strips is given by:

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip is given by:

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ1 log dt + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,
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= − exp(φ1 log dt + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,

(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ1 log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.

So, we define:

(χ1,t)Yt = dtYt, (ψ1,t)Yt = exp(φ0 + φ1 log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.

Similarly the price of the k-th surplus strip is given by:

Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
,

(χk,t − ψk,t)Yt = Et
[
Mt,t+1(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [Mt,t+1χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ1 log dt + φ0),

= exp(φ0 + φ1 log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2) = ψ1,t,

and the ψ’s are defined by the following recursion:

ψ2,tYt = Et [Mt,t+1ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ1 log dt+1 − ρ− 1

2
(γ2 + λ2) + g +

1
2
(γ + λ− σ)2 + µ + σεt+1)

]
,

ψ2,t = exp(−2ρ + φ0 + φ1φ0 + φ2
1 log dt −

1
2
(γ2 + φ1λ2),

− 1
2
(γ2 + λ2) + 2g +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ1 − σ)2),

= ψ1,t exp(−ρ + φ1φ0 + (φ2
1 − φ1) log dt −

1
2
(γ2 + φ1λ2) + µ +

1
2
(γ + λφ1 − σ)2).

More generally, we note that χk+1,t = ψk,t, so that ∑∞
k=1 Et

[
Mt,t+kSt+k

]
= χ1,tYt = Dt. For some 0 < φ1 < 1, we can

solve for the price of the debt strips:

Et[Mt,t+1Dt+1] = Et[Mt,t+1Yt+1dt+1] = dφ1
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ1
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt = exp(κ1) exp(φ1 log dt)Yt,

where κ1 = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2. Similarly, the price of the two-period ahead debt strip is given

by:

Et[Mt,t+2Dt+2] = Et[Mt,t+1Et+1[exp(mt+1,t+2)Dt+2]] = Et[Mt,t+1 exp(κ1) exp(φ1 log dt+1)Yt+1],

= Et[Mt,t+1 exp(κ1) exp(φ2
1 log dt + φ1φ0 − φ1λεt+1 −

1
2

φ1λ2) exp(µ + σεt+1)]Yt,

= exp(κ1 + κ2) exp(φ2
1 log dt)Yt,

where κ2 = φ1φ0 − ρ− 1
2 (γ

2 + φ1λ2) + g + 1
2 (γ + φ1λ− σ)2. Then, by induction,

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(φj
1 log dt)Yt,
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= lim
j→∞

exp(
φ0

1− φ1
− ρj− 1

2
(γ2 j +

λ2

1− φ1
) + µj +

j

∑
k=1

1
2
(γ + λφk−1

1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ1
− ρj− 1

2
(γ2 j +

λ2

1− φ1
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ1 and λ.

A.10.2 Case of Random Walk

Proof. Now, assume φ1 = 1 and φ0 = 0. Then κj = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

The TVC is

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(log dt)Yt,

which is 0 if and only if −ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2 < 0.

A.10.3 Case of AR(2)

Proof. From the government budget constraint in the case of risk-free debt:

Tt = Gt − (Dt − R f
t−1Dt−1),

it follows that the surpluses are given by:

St = −
(

dtYt − R f
t−1dt−1Yt−1

)
,

= dt−1R f
t−1Yt−1 − exp(φ0 + φ1 log dt−1 + φ2 log dt−2 − λεt −

1
2

λ2)Yt.

We conjecture the price of the surplus strips is given by the following expression:

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip then as follows:

Et [Mt,t+1St+1] = Et

[
Mt,t+1{−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ1 log dt + φ2 log dt−1 + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,

= − exp(φ1 log dt + φ2 log dt−1 + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,

(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.

We define the following objects:

(χ1,t)Yt = dtYt,

(ψ1,t)Yt = exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.
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Similarly the pricing of the k-th surplus strip is

Et
[
Mt,t+kSt+k

]
= Et

[
Mt,t+1Et+1[Mt+1,t+kSt+k]

]
,

(χk,t − ψk,t)Yt = Et
[
Mt,t+1(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [Mt,t+1χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ1 log dt + φ2 log dt−1 + φ0),

= exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2).

and the ψ’s are defined by the following recursion:

ψ2,tYt = Et [Mt,t+1ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ1 log dt+1 + φ2 log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2 + µ + σεt+1)] ,

ψ2,t = exp(−2ρ + φ0 + φ1φ0 + (φ2
1 + φ2) log dt + φ1φ2 log dt−1 −

1
2
(γ2 + φ1λ2),

− 1
2
(γ2 + λ2) + 2µ +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ1 − σ)2).

We note that χk+1,t = ψk,t, so this expression can be simplified as follows:

∞

∑
k=1

Et
[
Mt,t+kSt+k

]
= χ1,tYt = Dt.

Also note that: dt = exp(φ1 log dt−1 + φ2 log dt−2 + φ0 − λεt − 1
2 λ2). Using this expression, we find that:

Et[Mt,t+1Dt+1] = Et[Mt,t+1Yt+1dt+1],

= dφ
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt,

= exp(κ1) exp(φ1 log dt + φ2 log dt−1)Yt,

Define κ1 = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

Et[Mt,t+2Dt+2] = Et[Mt,t+1Et+1[exp(mt+1,t+2)Dt+2]],

= Et[Mt,t+1 exp(κ1) exp(φ1 log dt+1 + φ2 log dt)Yt+1],

= Et[Mt,t+1 exp(κ1) exp((φ2
1 + φ1φ2 + φ2) log dt + φ1φ0 − φ1λεt+1 −

1
2

φ1λ2) exp(µ + σεt+1)]Yt,

= exp(κ1 + κ2) exp((φ2
1 + φ1φ2 + φ2) exp(log dt)Yt.

Define κ2 = φ1φ0 − ρ− 1
2 (γ

2 + φ1λ2) + µ + 1
2 (γ + φ1λ− σ)2.

lim
j→∞

Et[Mt,t+jDt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(ψj log dt)Yt,
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= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj +

j

∑
k=1

1
2
(γ + λψk−1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ and λ. So this case is similar to

the i.i.d. debt case φ = 0. More extremely, when λ = 0, dt = exp(φ0) is a constant. Now, assume φ = 1. Then

κj = φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2,

and limj→∞ Et[Mt,t+jDt+j] = limj→∞ exp(∑
j
k=1 κk) exp(log dt)Yt, which is 0 if and only if φ0 − ρ− 1

2 (γ
2 + λ2) + µ +

1
2 (γ + λ− σ)2 < 0.

A.11 Proof of Proposition 3.4

A.11.1 Case of AR(1)

Proof. When the log of the debt/output process follows an AR(1), the surplus/output ratio is given by:

St+1
Yt+1

= dtR
f
t exp[−(µ + σεt+1)]− dφ1

t exp(φ0 − λεt+1 −
1
2

λ2)

= exp(r f
t − µ− σεt+1 −

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
)− exp(φ1(−

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
) + φ0 − λεt+1 −

1
2

λ2).

We assume that r f
t = µ. This expression for the surplus/output ratio can be restated as:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
)− exp(−

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
).

Next, we compute the derivative of the surplus/output ratio at t + 1:

∂ St+1
Yt+1

∂εt+1
= (λ) exp(g + σεt+1 −

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
)− σ exp(−σεt+1 −

∞

∑
j=0

φ
j
1λεt−j +

φ0 − 1
2 λ2

1− φ1
).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(

φ0 − 1
2 λ2

1− φ1
).

Next, we compute the derivative of the surplus/output ratio at t + 2, given by

∂ St+2
Yt+2

∂εt+1
= −λ exp(−σεt+2 −

∞

∑
j=0

φ
j
1λεt+1−j +

φ0 − 1
2 λ2

1− φ1
) + λφ1 exp(−

∞

∑
j=0

φ
j
1λεt+2−j +

φ0 − 1
2 λ2

1− φ1
).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(

φ0 − 1
2 λ2

1− φ1
) + λφ1 exp(

φ0 − 1
2 λ2

1− φ1
).
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This generalizes to the following expression. For j ≥ 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λφ

j−1
1 exp(

φ0 − 1
2 λ2

1− φ1
) + λφ

j
1 exp(

φ0 − 1
2 λ2

1− φ1
).

Assume r f = g. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= λφ

j−1
1 (φ1 − 1)d, j > 1,

∂ St+1
Yt+j

∂εt+1
= (λ− σ)d, j = 1.

A.11.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that r f
t = µ. When

the log of the debt/output process follows an AR(2), the surplus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0 :

∂ St+1
Yt+1

∂εt+1
= (λ− σ) exp(d).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)− exp(+d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(d) + λ(φ1) exp(d)).

The surplus/output ratio at t + 3 is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j)− λεt+3 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).

This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(d)) + λψj exp(d)).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,
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= λ(φ1 − 1) exp(d), for j = 2,

= λ(ψj−1 − ψj−2) exp(d), for j > 2.

A.11.3 Case of AR(3)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that the risk-free

rate equals the growth rate of the economy. When the log of the debt/output process follows an AR(3), the sur-

plus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j + φ3(−
∞

∑
j=0

ψjλεt−2−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0:

∂ St+1
Yt+1

∂εt+1
= (λ− σ) exp(d).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j) + φ3(−
∞

∑
j=0

ψjλεt−1−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:
∂

St+2
Yt+2

∂εt+1
= −λ exp(d)) + λ(φ1) exp(d)). The surplus/output ratio at t+ 3

is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j + φ3(−
∞

∑
j=0

ψjλεt−j)− λεt+3 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+4
Yt+4

∂εt+1
= −ρ2λ exp(d) + λ(φ1ρ2 + φ2ψ1 + φ3) exp(µ + d).

This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(d) + λψj exp(µ + d).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(φ1 − 1) exp(d), for j = 2,

= λ(φ1ψ1 + φ2 − ψ1) exp(d), for j = 3,
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= λ(ψj−1 − ψj−2) exp(d), for j > 3.

A.12 Proof of Proposition 3.5

A.12.1 Case of AR(1)

Proof. As a result, we can solve for an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
.

Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is given by:

St+1 = dtYt exp(r f
t )− exp(φ log dt + φ0 − λεt+1 −

1
2

λ2)Yt+1.

We get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1) = −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)] = covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2])

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− φλ))− 1).

Check the proof of Prop. 1.3 to see why the sum of the discounted surpluses drop out, and only the debt issuance term

remains. We get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j]) = covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1).

A.12.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. As a result, we can solve for

an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

ψjλεt−j +
φ0 − 1

2 λ2

1− φ1 − φ2
.
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where ψj = φ1ψj−1 + φ2ψj−2. Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is

given by:

St+1 = dtYt exp(r f
t )− exp(+φ1 log dt + φ2 log dt−1 + φ0 − λεt+1 −

1
2

λ2)Yt+1.

As a result, we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1),

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1],

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1],

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)],

= covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2]),

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− ψ1λ))− 1)

Check the proof of Prop. 1.3 to see why the sum of the discounted surpluses drop out, and only the debt issuance term

remains. And we get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j]),

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j]),

= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1).

A.13 Proof of Corollary 3.1

A.13.1 Case of AR(1)

Proof. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1) + covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kxt+kYt+k

)
,

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1) +
j

∑
k=1

covt
(

Mt+1, Et+1[Mt+1,t+kxt+kYt+k]
)

,

where log xt follows equation (10).

Next, we compute the covt

(
Mt+1, (Et+1 −Et)∑

j
k=1 Mt+1,t+kxt+kYt+k

)
:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kxt+kYt+k

)
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=
j

∑
k=1

covt
(

Mt+1, Et+1[Mt+1,t+kxt+kYt+k]
)

=
j

∑
k=1

[
Et[Mt+1 Mt+1,t+kxt+kYt+k]− Et[Mt+1]Et+1[Mt+1,t+kxt+kYt+k]

]
=

j

∑
k=1

Et[Mt+1]Et+1[Mt+1,t+kxt+kYt+k]
(

exp(−γ(σ− φk−1
g bg))− 1

)
.

We then obtain the cash flow beta βG,CF
t (h) from the definition.

A.13.2 Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1) + covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kxt+kYt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1) +

j

∑
k=1

Et[Mt+1]Et+1[Mt+1,t+kxt+kYt+k]
(

exp(−γ(σ− φk−1
g bg))− 1

)
.

A.13.3 Proof of Proposition 4.1

Proof. Starting from the government budget constraint,

St+1 = dtYt exp(r f
t )− dt+1Yt+1,

we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1),

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1],

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1],

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over j ≥ 2

periods:

covt(Mt+1, Et+1[
j

∑
k=1

Mt+1,t+kSt+k])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j]),

= −Et[Mt+1 Mt+1,t+jdt+jYt+j] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j],

= −Et[exp(−ρ− 1
2

γ2 − γεt+1) exp(. . .− γ(ξ − 1)
σ

(1 + ξ + . . . + ξ j−2)yt+1),

exp(φj log dt − φj−1λεt+1 + . . .) exp(ξ jyt + ξ j−1σεt+1 + . . .)] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]
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= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

A.13.4 Proof of Proposition 4.2

Proof. We start from the one-period government budget constraint:

St+1 = dtYt exp(r f
t )− dt+1Yt+1,

to obtain the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1],

= − exp(−ρ− γ

σ
(ψ− 1)yt −

1
2

γ2 +
1
2
(γ + λ− σ)2 + ξ0 + (ξ − γ/σ ∗ (ξ − 1))yt + φ log dt + φ0 −

1
2

λ2),

+ exp(−ρ− γ

σ
(ξ − 1)yt) exp(

1
2
(λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1],

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over j ≥ 2

periods:

covt(Mt+1, Et+1[
j

∑
k=1

Mt+1,t+kSt+k])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j]),

= −Et[Mt+1 Mt+1,t+jdt+jYt+j] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j],

= −Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(. . .− γ(ξ − 1)
σ

(1 + ξ + . . . + ξ j−2)yt+1)

exp(φj log dt − φj−1λεt+1 + . . .) exp(ξ jyt + ξ j−1σεt+1 + . . .)] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ− γ(ξ − 1)
1− ξ j−1

1− ξ
))− 1),

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ + γ(1− ξ j−1)))− 1).

We can also derive restrictions on the covariances with the tax process. The first equation follows from

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
,

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ + γ(1− ξ j−1)))− 1)

+ x · covt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kYt+k

)
.

where the covariance of the pricing kernel with the output strip price is given by:

covt
(

Mt+1, (Et+1 −Et)Mt+1,t+kYt+k
)

= Et[Mt+1 Mt+1,t+kYt+k]− Et[Mt+1]Et[Mt+1,t+kYt+k],
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= Et[exp(−ρ− γ(ξ − 1)yt −
1
2

γ2 − γεt+1)Mt+1,t+k exp(ξkyt + ξk−1σεt+1 + . . .)]− Et[Mt+1]Et[Mt+1,t+kYt+k],

= −Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γ(ξk−1σ + γ(1− ξk−1)))− 1).

Next, we conjecture

Et[Mt,t+jdt+jYt+j] = exp(
j

∑
k=1

κ̃k) exp(φj log dt + f jyt).

Note

Et[Mt,t+jdt+jYt+j] = Et[Mt,t+1 exp(
j−1

∑
k=1

κk) exp(φj−1 log dt+1 + f j−1yt+1)],

= Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(
j−1

∑
k=1

κ̃k)

exp(φj−1(φ log dt + φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + ξyt + σεt+1))].

So we confirm the conjecture,

exp(κ̃j) = Et[exp(−ρ− 1
2

γ2 − γεt+1 + φj−1(φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + σεt+1))]

κ̃j = −ρ− 1
2

γ2 + φj−1(φ0 −
1
2

λ2) + f j−1ξ0 +
1
2
(−γ− φj−1λ + f j−1σ)2

and

f j = −γ

σ
(ξ − 1) + f j−1ξ

= ξ j +
γ

σ
(1− ξ j) =

σ− γ

σ
ξ j +

γ

σ

So, for j > 1,

Et[Mt+1,t+jdt+jYt+j]

= Et[exp(
j−1

∑
k=1

κ̃k) exp(φj−1 log dt+1 + (
σ− γ

σ
ξ j−1 +

γ

σ
)yt+1)],

= exp((−ρ− 1
2

γ2)(j− 1) +
1− φj−1

1− φ
(φ0 −

1
2

λ2) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ− φk−1λ + ((σ− γ)ξk−1 + γ))2

+ φj−1(φ log dt + φ0 −
1
2

λ2) + (
σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(−φj−1λ + (σ− γ)ξ j−1 + γ)2).

By a similar logic,

Et+1[Mt+1,t+jYt+j]

= exp((−ρ− 1
2

γ2)(j− 1) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ + ((σ− γ)ξk−1 + γ))2 + (

σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(((σ− γ)ξ j−1 + γ))2).
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So

Et+1[Mt+1,t+jdt+jYt+j]

= Et+1[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

((γ− σ)ξk−1φk−1λ +
1
2
(φk−1λ)2)

+ φj log dt − φj−1λ((σ− γ)ξ j−1 + γ) +
1
2
(φj−1λ)2).
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B Idiosyncratic Insurance

We now consider transfers that are contingent on idiosyncratic shocks.

Proposition B.1. For households who participate in asset markets and who receive net transfers {G− T} = {Ga − Ta}+ {Gi −
Ti}, the marginal insurance benefit over horizon h is given by:

Ωh′
net(0) >

Ph
0 [{Ga

t − Ta
t }]

Ph
0 [{Ct}]

=
Ph

0 [{Ct}] + Ph
0 [{Ga

t − Ta
t }]

Ph
0 [{Ct}]

− 1

Proof. The government can provide insurance against idiosyncratic shocks without increasing the riskiness of its debt.

E0

h

∑
t=1

Ui
c,t

Ui
c,0

([
Gi

t − Ti
t

]
+ [Ga

t − Ta
t ]
)
= E0

h

∑
t=1

Ui
c,t

Ui
c,0

[
Gi

t − Ti
t

]
+ E0

h

∑
t=1

M0,t [Ga
t − Ta

t ] .

Provided that the net transfers provide insurance against idiosyncratic risk:

h

∑
t=1

Cov0

(
Ui

c,t

Ui
c,0

,
[

Gi
t − Ti

t

])
> 0,

we obtain the following inequality:

E0

h

∑
t=1

Ui
c,t

Ui
c,0

([
Gi

t − Ti
t

]
+ [Ga

t − Ta
t ]
)
> E0

h

∑
t=1

M0,t [Ga
t − Ta

t ] .

This implies that the marginal benefit of insurance, including idiosyncratic insurance:

Ωh′
net(0) >

Ph
0 [{Ga

t − Ta
t }]

Ph
0 [{Ct}]

However, the cost to the government of financing these transfers is given by:

E0

∞

∑
t=1

M0,t

[
Gi

t − Ti
t

]
+ E0

∞

∑
t=1

M0,t [Ga
t − Ta

t ] = E0

∞

∑
t=1

M0,t [Ga
t − Ta

t ] ,

where we have used that idiosyncratic transfers are orthogonal to the stochastic discount factor.

C Return Betas and Cash Flow Betas

What is the relationship between return betas and cash flow betas? In the simple case with constant debt/output and

spending/output ratios, there is a one-to-one mapping:

Corollary C.1. The expected returns can be expressed as a function of the cash flow betas:

Et

[
RT

t+1 − R f
t

]
=

x
d(1− ξ1) + xξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

=
x

d(1− ξ1) + xξ1
exp(µ +

1
2

σ2)(1− exp(−γσ))

Et

[
RG

t+1 − R f
t

]
=

1
ξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)

=
1
ξ1

exp(µ +
1
2

σ2)(1− exp(−γσ)),

where ξ1 = exp(−ρ− γσ + µ + 0.5σ2).
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Proof. From R f
t+1 = ρ exp(ρ) and Tt

Yt
= x− d

(
1− R f

t−1
Yt−1
Yt

)
, we have that the return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
)Yt+1

(d + x ξ1
1−ξ1

)Yt
,

=
x 1

1−ξ1
Yt+1

(d + x ξ1
1−ξ1

)Yt
+

d exp(ρ)

(d + x ξ1
1−ξ1

)
.

Similarly, we have an expression for the return on the spending claim:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1

x ξ1
1−ξ1

Yt
=

x 1
1−ξ1

Yt+1

x ξ1
1−ξ1

Yt
.

As a result, we can state the risk premium as follows:

Et

[
RT

t+1 − R f
t

]
= −

cov
(

Mt+1, RT
t+1
)

Et(Mt+1)
=

x
d(1− ξ1) + xξ1

−cov (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

Et

[
RG

t+1 − R f
t

]
= −

cov
(

Mt+1, RG
t+1

)
Et(Mt+1)

=
1
ξ1

−cov (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

where we have used that ξ1 = exp(−ρ− 1
2 γ2 + g + 1

2 (γ− σ)2) = exp(−ρ− γσ + g + 1
2 σ2).

Then plug in

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)
=
−covt

(
exp(−ρ− 1

2 γ2 − γεt+1), exp(g + σεt+1)
)

Et(exp(−ρ− 1
2 γ2 − γεt+1))

=
−covt (exp(−γεt+1), exp(σεt+1))

exp(−ρ)
exp(−ρ− 1

2
γ2 + g),

= −(exp(
1
2
(γ2 + σ2))(exp(−γσ)− 1)) exp(−1

2
γ2 + g),

= exp(g +
1
2

σ2)(1− exp(−γσ)).

D Fiscal Hedging Demand in Economy with Distortionary Taxation

In a class of dynamic models with distortionary taxation going back to Lucas and Stokey (1983), the government chooses

the tax rate optimally to hedge shocks to government spending. If the government can issue state-contingent debt, the

optimal tax rate inherits the serial correlation of government spending.To the extent that the government’s debt securi-

ties do not span all the shocks that hit the economy, maturity choice plays an important role. In a model in which only

spending shocks drive the term structure, Angeletos (2002) and Buera and Nicolini (2004) show how the government

can choose the maturity of non-state-contingent government debt to mimic the complete markets allocations in Lucas

and Stokey (1983), thus creating an explicit role for the maturity structure. In general, the government will not try to

replicate the complete markets allocation if variation in interest rates is largely explained by non-spending shocks, as

is the case in the data. When governments only issue risk-free debt, the market incompleteness imputes more persis-

tence to the optimal tax rates, as shown by Aiyagari, Marcet, Sargent, and Seppälä (2002), unless the government can

accumulate savings. Lustig et al. (2008) examine the optimal maturity structure when the government issues nomi-

nal non-state-contingent debt. A general version of the incomplete markets optimal taxation problem is analyzed by

Bhandari et al. (2017).
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When taxes are distortionary, the government has an additional fiscal hedging motive to issue risky debt. In a

representative agent economy with distortionary taxation, Bhandari et al. (2017) show that the planner will choose the

long-run target debt level to minimize the variance of its financing requirements:

Var0

RD
1 BM0,1 −

∞

∑
j=1

M0,jSτ
j

 = B2Var0[RD
1 M0,1]− Bcov0

RD
1 M0,1,

∞

∑
j=1

M0,jSτ
j

+ . . . ,

where Sτ
t+j denotes the surplus evaluated at a constant tax rate τ such that B = E0 ∑∞

j=1 M0,jSτ
j . Given the constant tax

rate, this surplus stream will be risky, and the covariance term will tend to be negative:

cov0

RD
1 M0,1,

∞

∑
j=1

M0,jSτ
j

 < 0.

With positive debt outstanding B > 0, minimizing the variance of financing requirements is achieved by choosing a

debt instrument with return RD
1 = 1/M0,1. The optimal debt instrument is the riskiest one, the one with the maximum

squared Sharpe ratio Var0(M0,1). In environments with only transitory shocks, the riskiest security is the longest-

maturity debt instrument. (In environments with permanent shocks to the SDF, the riskiest asset would be more like

equity.) The fiscal hedging motive would lead the government to prefer risky debt.

In general, the solution to the variance minimization problem in Bhandari et al. (see 2017, p.650) implies a long-run

debt target:

B∗ =
cov0

(
RD

1 M1, ∑∞
j=1 M0,jSτ

j

)
var0(RD

1 M1)
.

and a rate at which the debt reverts to the target given by 1
1+e−2ρvar0(M1)

, where ρ denotes the rate of time preference.

In the case of risk-free debt, the optimal target debt level is negative:

B∗ =
cov0

(
M1, ∑∞

j=1 M0,jSτ
j

)
var0(M1)

< 0

Given that the surplus evaluated at constant tax rates is exposed to short-run and long-run output risk, the planner will

want to accumulate assets because debt does not provide a fiscal hedge. This rationalizing the prescription in Aiyagari

et al. (2002) that the government should save. Having savings (a sovereign wealth fund) is what allows the government

to choose βT
t > βG

t and insure taxpayers against macro shocks. In the limit, by accumulating sufficient assets, the gov-

ernment can implement the Lucas and Stokey (1983) complete markets allocation. Even when the debt is risky, Bhandari

et al. (2017) find that the planner wants to accumulate assets in the long-run because cov0

(
RD

1 M0,1, ∑∞
j=1 M0,jSτ

j

)
< 0.

E Entropy Bounds

Proposition E.1. In the absence of arbitrage, the entropy of the SDF Mt+1 = Λt+1
Λt

puts an upper bound on the expected log

excess returns:

Lt

(
Λt+1

Λt

)
≥ Et log Rt+1 − log Rt+1,1.

Proof. See Backus et al. (2014) for a comprehensive proof. We start from the definition of the conditional entropy of the
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SDF:

Lt

(
Λt+1

Λt

)
= log Et

Λt+1
Λt
−Et log

Λt+1
Λt

= −Et log
Λt+1

Λt
− log Rt+1,1

≥ Et log Rt+1 − log Rt+1,1.

No arbitrage implies that:

Et

[
Λt+1

Λt
Rt+1

]
= 1.

Using Jensen’s inequality, we obtain that:

0 = log Et

[
Λt+1

Λt
Rt+1

]
≥ Et log

(
Λt+1

Λt
Rt+1

)
.

As a result, the return 1/Mt+1 the highest log return:

Et log
Λt

Λt+1
≥ Et log Rt+1.

Proposition E.2. If the pricing kernel is not subject to permanent innovations, then the highest expected log return asset is the

longest maturity zero-coupon bond.

Proof. The return on a k-period zero coupon bond is given by:

lim
k→∞

Et+1Λt+k+1
Λt+1

/
EtΛt+k

Λt
.

The expected log bond return is given by:

lim
k→∞

Et log
Et+1Λt+k+1

Λt+1
/

EtΛt+k
Λt

.

The pricing kernel has no permanent innovations if and only if:

lim
k→∞

Et log
Et+1[Λt+k]

Et[Λt+k]
= 0.

If there are no permanent innovations, then the expected log return on the long bond is given by:

Et log
Λt

Λt+1
.

If M is conditionally log-normal, the expected log excess return on a long position in the longest maturity bonds is

(Alvarez and Jermann, 2005)

ht(∞) = lim
k→∞

Etrxk
t+1 = (1/2)Vart(mt+1).
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