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The government faces a trade-off between insuring tax payers against adverse macro shocks

and insuring bond holders. If the governments provides more insurance to bond investors, who

then require lower risk premia, then it can provide less insurance to taxpayers. Safer debt requires

more tax revenue relative to GDP when the marginal utility of the stand-in investor is high. The

larger the sovereign debt burden, the steeper this trade-off becomes.

Some countries, especially the U.S., pay a low risk premium on the portfolio of outstanding

Treasurys. The portfolio is priced as if it is close to risk-free. Other countries, including most of

the emerging market countries, pay a large risk premium to its bond investors. The focus in the

literature has been mostly on the country’s willingness and ability to repay (see, e.g., Eaton and

Gersovitz, 1981; Bulow and Rogoff, 1989; Aguiar and Gopinath, 2006; Arellano, 2008; DeMarzo,

He, and Tourre, 2019, for examples), but the trade-off between bondholder and taxpayer insurance

applies regardless of whether a country contemplates default.

Nevertheless, the U.S. insures its taxpayers against output growth risk. Panel A of Figure 1

plots the GDP growth betas of U.S. federal government spending and tax growth over longer

horizons. In the post-war U.S. data, the spending cash flows are safer than the tax revenues at

all horizons, even if we increase the horizon to 10 years. It appears as if the U.S. government can

insure taxpayers at all horizons. The U.S. government seems to insure taxpayers by lowering tax

rates in recessions, and it also insures transfer recipients by increasing its spending/output ratio

in recessions. In asset pricing lingo, a claim to tax revenue, if traded, would have a high beta,

while a claim to spending would have a low beta.

How can the Treasury manufacture debt that is completely risk-free and hence has a zero beta?

That actually requires a non-trivial feat of financial engineering. The Treasury’s bond portfolio is

backed by a long position in a claim to tax revenue and a short position in a claim to government

spending. Both are exposed to output risk. The Treasury’s long position in the tax claim exceeds

the short position by the value of outstanding Treasurys. To render the entire Treasury portfolio

risk-free, the claim to tax revenue has to have a lower beta than the spending claim to ensure

that the net beta of the Treasury portfolio is zero. Recast in Miller-Modigliani language, the tax

revenue claim is the unlevered version of the spending claim. The beta of the tax claim is the

weighted average of the beta of the spending claim and the beta of the debt.

The tax claim has a low beta when the PDV of future taxes increases in bad times, when the in-

vestor’s marginal utility is high. The tax payer is short this claim. From the taxpayer’s perspective,

a low beta tax claim is a risky tax liability. As a result, the government cannot insure taxpayers

when it insures bondholders by keeping the debt risk-free. The larger the debt, the larger the gap

between the betas of the spending and the tax claim needs to be. As the debt grows, the beta of the

tax claim has to go to zero. Conversely, if the governments insists on insuring the tax payers, then

the government debt will be risky for bond holders, because they will be bearing macro-economic

risk.
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Figure 1: GDP Growth Betas of U.S. Tax Revenue and Spending

Betas in regression of log U.S. spending G growth and log tax revenue T growth over horizon j on GDP growth over horizon j. Panel
A: Data. Sample is 1947—2019. Annual data. The plot shows 2 standard error bands. HAC standard errors with bandwidth equal to
horizon. Panel B: Model-simulated data with Risk-free Debt. Benchmark calibration in Table 1.
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Panel B: Model with Risk-free Debt
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Our paper is the first one to characterize the trade-off between insuring taxpayer and debtholder

at different horizons. In order to do this, we assume that the government commits to a counter-

cyclical debt policy, and we derive the properties of the surplus/output ratio from the government

budget constraints implied by the risk-free debt. The trade-off at different horizons only depends

on the dynamics of the debt/output ratio, not of the surpluses, when the debt is risk-free.

When shocks to output are permanent, the government can only escape this trade-off over

short horizons through countercyclical debt issuance: Over short horizons, the surplus can be

rendered risky, meaning tax payers are insured against aggregate shocks, because this surplus

risk is offset by the counter-cyclical debt issuance which neutralizes business cycle risk. Over long

horizons, the tax claim has to be sufficiently safe for investors, risky for taxpayers, to offset the

long-run output risk in debt issuance, as along as debt and output are co-integrated, as shown

in Panel B of Figure 1, which plots the risk-free-debt-implied GDP growth betas of U.S. federal

government tax growth over longer horizons, when matching counter-cyclical debt/output and

spending/output ratios. If the debt is to be risk-free, then the tax revenue beta has to drop below

the spending beta at longer horizons, clearly at odds with the actual betas shown in the top panel.

We refer to this as the government debt risk premium puzzle: why is the portfolio of U.S. Treasurys

priced as if it is close to risk-free, even though the government’s cash flow fundamentals are risky?

Risk-free debt cannot match other key moments of the U.S. data. When the debt/output ratio

is persistent, the implied process for the surplus/output ratio features little or no autocorrelation,

clearly at odds with U.S. data. In addition, even at longer horizons, the debt/output ratio has little

or no predictive power for future surpluses in U.S. data; in the model, it is the single best predictor

of future surpluses at longer horizons.

There are two exceptions to this trade-off between insuring taxpayers and bond investors.

First, the government imputes a (quasi-)unit root to the debt/output ratio, leading to a violation

of the transversality condition in the case of counter-cyclical debt issuance and large equity risk

premia. Second, the government earns large and counter-cyclical convenience yields. The U.S.

government may be able to insure both taxpayers and bondholders, when the seignorage revenue

from issuing Treasurys is large and counter-cyclical enough.

1 Related Literature

Our paper brings a state-of-the-art dynamic asset pricing model to bear on the valuation of pub-

lic debt. To do so, we assume that surpluses are cointegrated with GDP in our analysis. If GDP

growth has a permanent component, which modern macro and econometrics recognizes to be

the case, then the surplus process in levels St inherits that permanent component from Yt. Sur-

pluses have long-run risk. Modern asset pricing has consistently found that permanent cash flow

shocks receive a high price of risk in the market (e.g., Alvarez and Jermann, 2005; Hansen and
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Scheinkman, 2009; Bansal and Yaron, 2004; Borovička, Hansen, and Scheinkman, 2016; Backus, Bo-

yarchenko, and Chernov, 2018). Hence, because of the exposure of the surplus to long-run GDP

risk, the claim to current and future surpluses will typically have a substantial risk premium.

Since the value of the surplus claim equals the market value of outstanding debt, the portfolio of

government debt is a risky asset, except in knife-edge cases. The properties of the stationary sur-

plus/output ratios, which the literature focuses on, are irrelevant for the long-run discount rates

of surpluses.1 For long-run discount rates, only long-run risk matters (Backus, Boyarchenko, and

Chernov, 2018). Even when debt is risk-free, the risk-free rate is not the right discount rate in the

presence of permanent output risk.

There is an extensive literature which tests the government’s inter-temporal budget constraint.2

These authors really test the joint hypothesis that the budget constraint is satisfied and that the mea-

surability is also satisfied (to make the debt risk-free). We derive restrictions on the surplus/gdp

process that are compatible with the knife-edge case of risk-free debt. The answer depends cru-

cially on whether GDP has a permanent component or not. In the realistic case where it does, the

surplus/output ratio cannot be sufficiently autocorrelated when we match the dynamics of the

debt/output ratio. Further, we show analytically that the S-shaped impulse responses of the sur-

plus/output ratio discussed by Bohn (1998); Canzoneri, Cumby, and Diba (2001); Cochrane (2019,

2020) – the government keeps running deficits for a while to be offset by surpluses in the future–

are not consistent with risk-free debt, unless the debt/output ratio has higher-order dynamics not

observed in the data.3

The U.S. government debt earns returns close to the risk-free rate, but the cash flow dynamics

do not bear this out: the surpluses are too persistent, not predicted by the debt/GDP ratio and

too risky. We call this the U.S. government risk premium puzzle. The U.S. government debt risk

premium puzzle we document in this paper is distinct from, but related to the government debt

valuation puzzle discussed by Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019), because the

risk premium puzzle does not pertain to the first moments of future surpluses.

Our paper contributes to the normative literature on optimal government taxation and debt

management, starting with Barro (1979)’s seminal work on tax smoothing. In the literature after

Barro (1979), starting with Lucas and Stokey (1983), the risk-return tradeoff we highlight is present

in the background, but is not explicitly analyzed. However, most of these models do not have

plausible asset pricing implications. When markets are complete, the planner favors shifting the

1For example, Cochrane (2020) completely abstracts from output risk.
2Hansen, Roberds, and Sargent (1991); Hamilton and Flavin (1986); Trehan and Walsh (1988, 1991); Bohn (1998, 2007)

derive time-series restrictions on the government revenue and spending processes that enforce the government’s inter-
temporal budget constraint. They use the risk-free rate as the discount rate. This is not be the right discount rate unless
the risk-free rate exceeds the growth rate of output, when when debt is risk-free. Jiang (2019) derives the implications
of the government’s inter-temporal budget constraint for the nominal and real exchange rates, and finds support in the
data.

3When debt is risk-free, the impulse response of the surplus/output ratio inherits the impulse response of the change
in the debt/output ratio.
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risk from taxpayers to bond investors (Lucas and Stokey, 1983). We do not derive the optimal tax

rate, but show that, for any tax policy, the government can only truly insure taxpayers over short

horizons, while keeping the debt risk-free.4 Insuring taxpayers at all horizons against adverse

macro shocks will always come at a large cost to the Treasury in a model with plausible asset

prices.

By changing the maturity composition of debt, the government may be able to get closer to

the optimal tax policy when when markets are incomplete, essentially by making the debt riskier

(Angeletos, 2002; Buera and Nicolini, 2004; Lustig, Sleet, and Yeltekin, 2008; Arellano and Rama-

narayanan, 2012; Bhandari, Evans, Golosov, and Sargent, 2017; Aguiar, Amador, Hopenhayn, and

Werning, 2019), and shifting risk from taxpayers to bondholders. Our work is not focused on how

the maturity choice of the government informs the riskiness of debt, but instead focuses directly

on the fundamental determinants of the riskiness of the government’s balance sheet.

In recent work, Mian, Straub, and Sufi (2020a,b) have examined the distributional implications

of government debt issuance, pointing out that the wealthy buy a large share of government and

private debt. To the extent that the Gini coefficient of debt holdings exceeds that of taxes, the

government is really trading off insuring the rich vs the middle class.

Finally, convenience yields may help explain why emerging economies with more sovereign

risk typically have more pro-cyclical fiscal policies (Bianchi, Ottonello, and Presno, 2019). These

countries do not benefit from the convenience yields, and hence cannot escape the trade-off. It

may also help to explain the government debt risk premium puzzle. In international economics,

there is a growing literature that emphasizes the U.S. role as the world’s safe asset supplier (see

Gourinchas and Rey, 2007; Caballero, Farhi, and Gourinchas, 2008; Caballero and Krishnamurthy,

2009; Maggiori, 2017; He, Krishnamurthy, and Milbradt, 2018; Gopinath and Stein, 2018; Krishna-

murthy and Lustig, 2019; Jiang, Krishnamurthy, and Lustig, 2018a, 2019; Liu, Schmid, and Yaron,

2019; Koijen and Yogo, 2019).

The paper is organized as follows. Section 2 derives the general trade-off between the in-

surance of bondholders and taxpayers, following standard Miller-Modigliani logic. When the

government commits to plausible spending and tax revenue policies, the debt will generally be

risky. We characterize these risk premia in closed form. Section 3 develops a simple version of

the canonical dynamic asset pricing model with permanent shocks to output and to the investor’s

marginal utility. The governments commits to a spending policy and a debt policy; we back out

the tax policy that keeps the debt risk-free. We start with the case of constant debt/output ratios.

Section 4 introduces time-varying debt/output ratios, and Section 5 characterizes the trade-off

faced by the government at different horizons. Finally, Section 6 introduces convenience yields.

Section A of the separate appendix generalizes these results in a continuous time version of

4When the government accumulates sufficient assets, it can implement the complete markets Ramsey allocation, as
shown by Aiyagari, Marcet, Sargent, and Seppälä (2002).

6



the model that allows for risky debt and convenience yields. Section B provides some additional

risk premium results. Section C develops a version of the model without permanent shocks. In

models with only transitory shocks to output and marginal utility, the government may be able to

insure taxpayers over longer horizons. However, these models have counterfactual asset pricing

implications (Borovička, Hansen, and Scheinkman, 2016). The only model in which the govern-

ment can insure taxpayers at all horizons is one in which the output shocks are transitory, but they

are priced as if they are permanent.

2 The General Trade-off between Insuring Bondholders and Taxpayers

We use Tt to denote government revenue, and Gt to denote government spending. Mt denotes the

stochastic discount factor. We assume that debt is fairly priced and does not earn any convenience

yields.

Let Bt denote the market value of outstanding government debt at the beginning of period

t, before expiring debt is paid off and new debt is issued. The debt can be long-term or short-

term, and it can be nominal or real. In fact, it can be any contingent claim. In Jiang, Lustig, Van

Nieuwerburgh, and Xiaolan (2019), we show that the value of the government debt equals the

sum of the expected present values of future tax revenues minus future government spending:

Bt = Et

[
∞

∑
j=0

Mt,t+j(Tt+j − Gt+j)

]
, (1)

provided that there is no arbitrage opportunity and a transversality condition holds. This result

does not rely on complete markets, and it still applies even when the government can default on its

debt. See Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) for a proof. This result relies on the

absence of arbitrage in bond markets and the transversality condition limk→∞ Et Mt,t+kBt+k = 0.5

Let PT
t = Et

[
∑∞

j=0 Mt,t+jTt+j

]
and PG

t = Et

[
∑∞

j=0 Mt,t+jGt+j

]
denote the present values of the

“cum-dividend” tax claim and spending claim. Value additivity then implies that Bt = PT
t − PG

t .

2.1 Characterizing the Government Debt Risk Premium

For notational convenience, let Dt = Bt − St denote the difference between the market value of

outstanding government debt and the government surplus. By the government budget condition,

Dt is the market value of outstanding government debt at the end of period t, after expiring debt

is paid off and new debt is issued.

5While there are equilibrium models that generate violations of the TVC (see Samuelson, 1958; Diamond, 1965;
Blanchard and Watson, 1982; Brunnermeier, Merkel, and Sannikov, 2020), these violations typically show up in all
long-lived assets, including stocks, not just government debt, and these models typically do not feature long-lived
investors.
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Let RD
t+1, RT

t+1 and RG
t+1 denote the holding period returns on the bond portfolio, the tax claim,

and the spending claim, respectively:

RD
t+1 =

Bt+1

Bt − St
, RT

t+1 =
PT

t+1

PT
t − Tt

, RG
t+1 =

PG
t+1

PG
t − Gt

.

In Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019), we also show that the government

debt portfolio return is the return on a portfolio that goes long in the tax claim and short in the

spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Dt
Et

[
RT

t+1 − R f
t

]
− PG

t − Gt

Dt
Et

[
RG

t+1 − R f
t

]
. (2)

This result only relies on Eq. (1) and additivity. The value of a claim to surpluses equals the

value of a claim to taxes minus the value of a claim to spending.

The government bond risk premium varies dramatically across countries. In some countries,

such as the U.S., this risk premium Et

[
RD

t+1 − R f
t

]
is small. Hall and Sargent (2011) compute a

real return of 168 basis points on all U.S. Treasurys, while Jiang, Lustig, Van Nieuwerburgh, and

Xiaolan (2019) compute a risk premium of 111 basis points for the U.S. government portfolio. The

returns on debt issued by peripheral or developing countries are estimated to be much higher;

Using EMBI indices on a short sample, Borri and Verdelhan (2011) estimate annual excess returns

between 4% and 15%. On a much longer sample going back to the 19th century, Meyer, Reinhart,

and Trebesch (2019) estimate excess returns of around 4% above U.S. and U.K bond returns, taking

into account defaults.

2.2 Characterizing the Trade-Off with Return Betas

Next, we rearrange Eq. (2) and derive the following expression for the risk premium on the tax

claim:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)

Et

[
RG

t+1 − R f
t

]
+

Dt

Dt + (PG
t − Gt)

Et

[
RD

t+1 − R f
t

]
. (3)

Governments typically want a counter-cyclical spending claim, i.e. they want to spend more

in recessions. On the other hand, they also want a risky tax claim, because they want to reduce

the tax burden in recessions. As a result, the tax claim’s risk premium Et

[
RT

t+1 − R f
t

]
is high and

the spending claim’s risk premium Et

[
RG

t+1 − R f
t

]
is low. When the debt value Dt is positive, the

fraction PG
t −Gt

Dt+(PG
t −Gt)

is between 0 and 1. Then, for Eq. (3) to hold, it requires a high risk premium

Et

[
RD

t+1 − R f
t

]
on the government debt portfolio. As the debt risk premium is a measure of the

risk premium or insurance premium charged by bondholders, the government’s debt portfolio
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has to be very risky.

According to eqn. (3), the tax revenue claim is the unlevered version of the spending claim, or,

equivalently, the spending claim is the levered version of the tax claim. This result is analogous

to the Miller-Modigliani relation between the unlevered return on equity (the return on the tax

claim) and the levered return on equity (the return on the spending claim).

We define the beta of an asset i as

βi
t =

−covt
(

Mt+1, Ri
t+1

)
vart(Mt+1)

;

by the investor’s Euler equation, βi
t determines the conditional risk premium of this asset

Et

[
Ri

t+1 − R f
t

]
= βi

tλt,

where the price of risk is λt = R f
t vart(Mt+1).

Let βD
t , βT

t and βG
t denote the beta of the bond portfolio, the tax claim, and the spending claim,

respectively. We assume βY
t > 0, so that the output claim has a positive risk premium. The

following proposition characterizes the relationship of their risk exposures.

Proposition 2.1. The beta on the tax claim is a weighted average of the beta of the spending claim

and the beta of the debt:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t +

Dt

Dt + (PG
t − Gt)

βD
t .

Governments want to provide insurance to transfer recipients by choosing βG
t < βY, but they

also want to provide insurance to taxpayers by choosing βT
t > βY. However, the following corol-

lary states that this is impossible if the government debt is risk-free.

This discussion implicitly assumes that taxpayers are long-lived households who value a dol-

lar in each aggregate state in the same way as the marginal investor in Treasury markets. When

markets are incomplete, agents may have different IMRS. Even when markets are incomplete, the

aggregate component of the household’s IMRS will be common across households, and the risk

premia are identical to those in the equivalent representative agent economy, but the risk-free rate

is lower (see Krueger and Lustig, 2010; Werning, 2015, for a formal derivation of this equivalence

result), as long as the conditional distribution of idiosyncratic risk does not depend on the aggre-

gate state of the economy. In section 5, we characterize this trade-off at different horizons.

Corollary 2.2. In order for debt to be risk-free (βD
t = 0), the beta of the tax claim needs to equal

9



the unlevered beta of the spending claim:

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)

βG
t .

If the government has a positive amount of risk-free debt (Dt > 0), there is no scope to insure

taxpayers. In fact, the taxpayers have to provide insurance to the rest of the economy. We start

our analysis with the case in which the spending claim has a positive beta (βG
t > 0). Then, the

government engineers risk-free debt by lowering the beta of the tax claim relative to that of the

spending claim. When a taxpayer wakes up in the bad state, the news has to be worse, in present

value, for the recipient of transfer payments: βT
t < βG

t . The more debt outstanding, the lower the

beta of the tax claim needs to be relative to that of the spending claim.

These restrictions on the betas hold true regardless of the specific dynamics of the tax and

spending process. In the next section, we will derive restrictions on the underlying cash flows by

committing to a particular process for debt/output and spending.

The only way the government can provide insurance to debt holders, while keeping the debt

risk-free, is by saving—choosing a negative amount of debt (Dt < 0). In other words, the gov-

ernment can only insure taxpayers at the expense of bondholders. 6 On the other hand, if the

spending claim has a negative beta (βG
t < 0), then the tax claim also has a negative beta: βT

t < 0.

The taxpayers have large tax payments during recessions.

2.3 Characterizing the Trade-Off with Cash Flow Betas

Thus far, we have characterized the return betas of the tax and spending claims. We can further

derive some general conditions that characterize the betas of tax and spending cash flows.

When debt is risk-free, the government will only be able to provide insurance to taxpayers by

choosing debt policies that depend on the entire history of shocks. Let εt denote the shocks to the

economy. We use εl
t = (εt, εt−1, . . . , εt−l+1) to describe its history in the past l periods.

Proposition 2.3. When the debt is risk-free, (a) the average cash flow beta of discounted surpluses

is always zero:

covt

(
Mt+1 −Et Mt+1, (Et+1 −Et)∑∞

k=1Mt+1,t+kSt+k

)
= 0.

(b) When the government chooses a fiscal policy such that the debt/output ratio dt is only a

function of this history of past shocks and dt−l : dt = dt(εl
t; dt−l) = dt(εl

t), then the average cash

6Aiyagari, Marcet, Sargent, and Seppälä (2002) show that it is optimal for a government issuing only risk-free one
period debt to accumulate savings Dt � 0 in the limit. This makes perfect sense, because that allows the government
to choose βT

t � βG
t and insure tax payers against macro shocks. In the limit, by accumulating sufficient assets, the

government can implement the Lucas and Stokey (1983) complete markets allocation.
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flow beta of discounted surpluses over the next l + 1 periods is zero:

covt

(
Mt+1 −Et Mt+1, (Et+1 −Et)∑l+1

k=1Mt+1,t+kSt+k

)
= 0. (4)

Part (a) states that the average discounted cash flow beta for the entire surplus stream is zero.

Part (b) derives tighter restrictions on the surplus cash flow betas when the government commits

to a particular debt issuance policy. Note that dt(εl
t) implies that the surplus/output ratio st(εl+1)

depends on the same history of shocks. When the government surplus is only allowed to depend

on the shocks in the past l periods, the cash flow beta will be zero over shorter periods as shown

in Eq. (4).

The issuance decision is the only source of state-contingency with risk-free debt. If the govern-

ment only responds to the shock today in deciding issuance, then it has to pay it back next period.

The issuance decision next period only responds to the shock next period. The government can

issue more and lower the surplus in response to a bad shock, but it has to completely reverse that

in the next period.

As a result, if the government seeks to smooth out the shocks over long periods of time, that

it will have to adopt a debt issuance policy that depends on the entire history of shocks. In the

limit, if we allow for arbitrary history dependence, then we end with the standard restriction for

risk-free debt:

covt (Mt+1 −Et Mt+1, St+1) = −covt

(
Mt+1 −Et Mt+1, (Et+1 −Et)∑∞

k=2 exp(−r f
t+1,t+k)St+k

)
.

We have recovered the weakest covariance restriction. However, in this case, the debt and

the st(ε∞
t ) the surplus/output ratio depends on the entire history. In the model that we develop

next, we will allow the government to choose a debt policy that depends on the entire history of

shocks, an AR(p) process for the debt/output ratio, and we analyze the quantitative implications

of persistent debt/output ratios.

3 Quantifying the Trade-off in a Model Economy

Next, we characterize the trade-off between insuring debtholders and taxpayers in more specific

settings. We consider different spending and debt policies in order to reverse-engineer the revenue

process T that always keeps the debt risk-free. For the most part of the paper, we consider an

economy with permanent output shocks and homoskedastic pricing kernels:

Assumption 1. (a) All output shocks are i.i.d. and permanent:

yt+1 = µ + yt + σεt+1,
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where εt+1 denotes the innovation to output growth that is normally distributed and i.i.d.

(b) The log pricing kernel is given by:

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

(c) The government only issues one-period real risk-free debt.

We start by considering the simplest case with a constant spending/output and debt/output

ratio.

3.1 Characterizing the Trade-Off with Constant Debt/Output

To simplify the analysis, we use a stripped down version of the canonical Breeden (2005); Lucas

(1978); Rubinstein (1974) endowment economy. We specifically consider the case in which the

government debt is risk-free. The government commits to a spending policy and a debt issuance

policy that allows for arbitrary history dependence.7 To highlight the implications of the general

trade-off between insurance of bondholders and taxpayers, we make the following assumptions

for the entire section. Let Yt and yt = log Yt denote output and its log.

Assumption 2. (a) The government commits to a constant spending/output ratio x = Gt/Yt.

(b) The government commits to a constant debt/output ratio d = Dt/Yt.

Then, the government budget condition implies a strongly counter-cyclical tax revenue pro-

cess:

Tt

Yt
= x− d

(
1− R f

t−1
Yt−1

Yt

)
= x− d

(
1− R f

t−1 exp[−(µ + σεt)]
)

.

That is to say, to perfectly insure the bondholders by keeping the debt risk-free, the government

needs to make sure that the tax revenue claim is strongly counter-cyclical: When the growth rate

of output is low, the government’s revenue needs to increase as a fraction of GDP. Furthermore,

the magnitude of the counter-cyclical exposure is increasing in the debt-to-GDP ratio d.

Similarly, the primary surplus/output ratio is also strongly counter-cyclical:

st =
St

Yt
=

Tt − Gt

Yt
= −d

(
1− R f

t−1 exp[−(µ + σεt)]
)

. (5)

When the growth rate µ exceeds ρ, the government can run deficits on average, but not in

every state. In fact, whenever there are negative shocks such that µ− ρ < −σε, the government

7The debt policy is a flexible AR(p) process that responds to the output innovation. This rules out other policies
that satisfy the TVC: e.g., the government could simply let debt accumulate until it hits a constraint. However, when
the constraint binds, the implied tax process may have to exceed output.
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runs a primary surplus. In this scenario, the government does not run persistent deficits. In fact,

the conditional auto-covariance of the surplus/output ratio is zero:

covt(st, st−1) = 0.

When we shrink σ to zero, then the government always runs deficits, but, in this case, µ > ρ

implies a violation of TVC, which we show below. This result is more general. With risk-free debt,

the autocorrelation of the surpluses tends to zero as we increase the persistence of the debt/output

ratio.

Proposition 3.1. Under Assumptions 1 and 2, (a) if the transversality condition holds and the

primary surplus satisfies Eq. (5), the government debt value is the sum of the values of the out-

standing strips:

Dt = Et

[
∞

∑
k=1

Mt,t+kSt+k

]
= dYt.

(b) Proposition 2.3 can be simplified to the following measurability constraint:

(Et+1 −Et)

[
∞

∑
k=1

Mt,t+kSt+k

]
= 0.

This proposition shows that the value of outstanding debt at the end of period t is indeed a

constant fraction of output, and it implies that there is no news about the present discounted value

of future surpluses.8 To see why we cannot simply discount at the risk-free rate, even when the

debt is risk-free, consider the valuation equation for debt as a function of surplus/output ratios:

Dt = Et

[
T

∑
j=0

Mt,t+jYt+jst+j

]
+ Et

[
Mt,t+TYt+T

Dt+T

Yt+T

]
.

The debt/output ratio d is constant. The TVC will hold even if ρ < µ as long as the output strip

price Et [Mt,t+TYt+T]→ 0. This will be the case if there is enough permanent, priced risk in output:

−ρ + µ + 1
2 σ2 < γσ. Note that ρ < µ implies a violation of TVC as σ→ 0. So, it is not the case that

the government can always run deficits when ρ < µ, at least not without violating the TVC.9 The

output risk premia matter even when debt is risk-free. The usual condition referenced in textbooks

ρ < g is irrelevant for the TVC. The risk-free rate is not the correct discount rate for surpluses even
8Hansen, Roberds, and Sargent (1991) discuss a version of this condition that uses the risk-free rate when devising

an econometric approach to testing the budget constraint: (Et+1 − Et)
[
∑∞

k=1 exp(−r f
t,t+k)St+k

]
= 0. However, this

condition is equivalent to the one in the Proposition, only if the risk-free rate exceeds the growth rate of the economy.
If not, this equation may fail even when the condition in Prop. 3.1 holds.

9See Bohn (1995) for an early reference on why discounting at the risk-free may fail. However, Bohn (1995) refers to
this case as one in which the government runs persistent deficits, while the deficits really are uncorrelated over time.
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when the debt is risk-free, in the presence of permanent output shocks. The correct TVC is given

by: limj→∞ Et
[
exp(mt,t+j)Dt+j

]
= limj→∞ exp(j(−ρ + µ + 1

2 σ2 − γσ))dYt, which will be satisfied

even if ρ < µ iff −ρ + µ + 1
2 σ2 − γσ < 0.

Next, we define a k-period output strip as a claim to Yt+k. The price/dividend ratios of the

strips are denoted by ξk, where ξ1 = exp(−ρ− γσ + µ + 0.5σ2). The expected return on an output

strip is given by Et
[
RY

t+1

]
= exp(µ+0.5σ2)

exp(−ρ−γσ+µ+0.5σ2)
= exp(ρ+γσ). Hence, the log of the multiplicative

equity risk premium is γσ.

Corollary 3.2. (a) The value of the spending and the revenue claim is given by:

PG
t − Gt = x

ξ1

1− ξ1
Yt, PT

t − Tt =

(
d + x

ξ1

1− ξ1

)
Yt.

(b) The risk premia on the tax claim and the spending claim satisfy

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RG

t+1 − R f
t

]
,

where βT =
x ξ1

1−ξ1

d+x ξ1
1−ξ1

βG.

The Treasury investor is long in a government revenue claim and short in a spending claim.

To make the debt risk-free, as long as the debt/output ratio d is positive, we need to render the

government revenue process much safer. More precisely, since the government spending is a

constant ratio of the output level, βG = βY > 0. Then, a positive d implies the fraction
x ξ1

1−ξ1

d+x ξ1
1−ξ1

is between 0 and 1, which requires the return on the tax claim to be less risky than the return

on the output claim: 0 < βT < βY. As a result, there is no scope to insure taxpayers at any

positive debt level. As the debt/output ratio d increases, the government needs to make the tax

revenue increasingly safe. The tax claim is really a portfolio of a claim to government spending

and risk-free debt. The larger the debt/output ratio d, the safer the tax claim needs to be. As the

debt/output ratio approaches infinity, the beta of the tax claim tends to 0.

3.2 Quantitative Model Implications for Trade-off

Our calibration of the static part of the model in Panel A of Table 1 matches post-war U.S. data. The

maximum Sharpe ratio γ is 1. The standard deviation of output σ is 0.05. The growth rate of the

economy µ is 3.1%. The risk-free rate ρ is 2%. Spending accounts for 10% of output (x = 0.10). We

analyze a calibrated economy in which the risk-free rate is lower than the growth rate of output.

However, the TVC is satisfied in this economy, because log ξ1 = −0.0145 < 0. The government

cannot simply roll over the debt. The surpluses and debt issuance need to satisfy tight restrictions.
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Figure 2 plots the risk premia on the tax and the spending claim as we vary the debt/output

ratio d. The risk premium on the spending claim is 5.43% per annum. This is the unlevered equity

premium. By Corollary 3.2, the risk premium on the tax claim satisfies

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RG

t+1 − R f
t

]
, (6)

the risk premium on the tax claim falls to 4% when d = 1, and close to 3% when d = 2. As the

government becomes more levered, the tax claims needs to be safer, and the scope for taxpayer

insurance disappears. This trade-off steepens when we increase the maximum Sharpe ratio γ

from 1 to 2 (+ line). The risk premium on the spending claim is 10.86% per annum. This is the

unlevered equity premium. The risk premium on the tax claim falls to 6% when d = 1, and close

to 4% when d = 2.

Table 1: Benchmark Calibration

Panel A: Preferences and Output Dynamics

γ 1 maximum Sharpe ratio
ρ 2% risk-free rate

µ 3% mean of growth rate of output
σ 5% std. of growth rate of output
Panel B: Spending/Output Ratio Dynamics: log xt = ϕ

g
1 log xt−1 + ϕ

g
0 − βgεt − 1

2 (βg)2.

βg 1.53× σ sensitivity of spending/output to output innovations
ϕ

g
1 0.88 AR(1) coeff of spending/output

ϕ
g
0/(1− ϕ

g
1) 10% mean of spending/output

Panel C: Debt/Output Ratio Dynamics: log dt = ∑
p
j=1 φj log dt−j + φ0 − λεt − 1

2 λ2.

λ 1.94× σ sensitivity of debt/output to output innovations
φ0/(1− φ1 − φ2) 0.43 mean of debt/output
φ1 1.4 AR(1) coeff of debt/output
φ2 −0.48 AR(2) coeff of debt/output
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Figure 2: Risk Premium of T and G Claims with γ = 1, 2

The figure plots the implied risk premium of the T and G claims when the debt/output ratio and spending/output ratio are constant.
λ and βg are set to 0, for γ of 1 (−) and γ of 2 (+). Other Parameters–Benchmark calibration in Table 1.
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4 Dynamics of Debt and Surpluses in a Model Economy with State-

Contingent Debt/Output

When the debt/output ratio is constant, there is no scope for insuring taxpayers at any horizon.

Next, we allow the government to introduce state-contingent variation in the debt/output ratio.

This will create limited opportunities for the government to temporarily insure taxpayers over

short horizons.

4.1 Persistence of Debt and Surpluses in U.S. Post-war Data

Figure 3 plots the sample annual autocorrelation of the log government debt/output ratio and the

government surplus/output ratio as functions of lags. In the post-war U.S. sample (1947—2019),

the AR(1) process for the log debt/output ratio fits the data rather well. The estimated AR(1)

coefficient φ in annual data is 0.986. We also estimated an AR(2)-process. This yields estimates

of φ1 of 1.04 and φ2 of -.48. The unconditional mean of the debt/output ratio is 0.43. The federal

government’s primary surplus is also quite persistent, with an AR(1) coefficient around 0.81. We

will show that the risk-free debt model cannot match the high persistence of the debt/output ratio

and the surplus/output ratios. Finally, we set λ = 1.953× σ equal to match the slope coefficient

in a regression of the debt/output ratio innovations on GDP growth in the post-war U.S. sample

(1947—2019). A one pp. increase in GDP growth lowers the debt/output ratio by 1.95 pps. We

report the calibration of the spending/output ratio in Panel C of Table 1.

When the debt is risk-free, returning to the valuation equation for debt, and assuming the TVC

is satisfied, the debt to GDP ratio is the single best predictor of future discounted surpluses:

Dt

Yt
= Et

[
T

∑
j=0

Mt,t+j
Yt+j

Yt
st+j

]
.

To check this, we ran the following regression on annual U.S. data in the post-war sample:

St+k

GDPt+k
= ck + bk

Dt

GDPt
+ et+k.

The results are reported in Table 2. The debt/GDP ratio has not forecasting power for future

surplus/output ratios. If anything, it forecasts at short horizons with wrong sign. There is no

predictability at longer horizons. Lagged surpluses are better predictors.
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Figure 3: Autocorrelation of U.S. Government Log Debt/Output and Surplus/Output Ratios

The figure plots the sample autocorrelation of the U.S. log government debt/output ratio, the U.S. government surplus/output ratio,
the tax/output ratio and the spending/output ratio against GDP. Sample is 1947—2019. Annual data.
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Table 2: Forecasting Surplus/Output Ratios

Panel I: We forecast the primary surplus/output ratios in post-war annual U.S. data (1947-2019). In Panel A, we report the results
for St+k

GDPt+k
= ck + bk

Dt
GDPt

+ et+k . In Panel B, we report results for St+k
GDPt+k

= ck + bk
Dt

GDPt
+ dk

St
GDPt

+ et+k . Panel II: Benchmark Model
(10,000 sims). Benchmark calibration in Table 1.

Horizon k 1 2 3 4 5

Panel I: U.S. Data
St+k

GDPt+k
= ck + bk

Dt
GDPt

+ et+k

bk -0.031 -0.0099 0.013 0.023 0.028
[s.e.] [0.023] [0.025] [0.03] [0.031] [0.03]

R2 0.043 0.0041 0.006 0.018 0.024

St+k
GDPt+k

= ck + bk
Dt

GDPt
+ dk

St
GDPt

+ et+k

bk 0.0085 0.018 0.036 0.042 0.044
[s.e.] [0.01] [0.015] [0.019] [0.02] [0.021]

dk 0.81 0.57 0.47 0.37 0.33
[s.e.] [0.087] [0.13] [0.12] [0.11] [0.10]

R2 0.64 0.30 0.21 0.15 0.13

Panel II: Benchmark Model with Risk-free Debt
St+k

GDPt+k
= ck + bk

Dt
GDPt

+ et+k

bk 0.0629 0.117 0.132 0.127 0.114

R2 0.0781 0.271 0.342 0.316 0.254

St+k
GDPt+k

= ck + bk
Dt

GDPt
+ dk

St
GDPt

+ et+k

bk 0.0701 0.12 0.132 0.126 0.112

dk 0.695 0.265 0.045 -0.055 -0.11

R2 0.560 0.342 0.345 0.319 0.266
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4.2 Characterizing the Trade-Off with Counter-cyclical Debt/Output

We allow the government to vary the debt/output ratio counter-cyclically.

Assumption 3. (a) The government commits to a policy for the spending/output ratio xt = Gt/Yt given

by:

log xt = ϕ
g
1 log xt−1 + ϕ

g
0 − βgεt −

1
2
(βg)2.

(b) The government commits to a policy for the debt/output ratio dt = Dt/Yt given by:

log dt = φ log dt−1 + φ0 − λεt −
1
2

λ2,

where λ > 0 so that the debt-output ratio increases in response to a negative output shock εt.

The government will only be able to insure taxpayers over short horizons, when the shocks are

permanent. We also counter-cyclical variation in the spending/output ratio (βg > 0). The results

in Section 2 still apply. The value of the spending and the revenue claim is given by:

PG
t − Gt = x

ξ1

1− ξ1
Yt, PT

t − Tt =

(
dt + x

ξ1

1− ξ1

)
Yt.

The tax claim’s conditional beta satisfies

βT
t =

x ξ1
1−ξ1

dt + x ξ1
1−ξ1

βG
t .

Can the government systematically issue more risk-free debt, instead of raising taxes, when

the economy is hit by a permanent, adverse shock, in order to break the restriction on insurance

of taxpayers? To start analysis, we assume that the debt/output ratio evolves according to an

AR(1)-process:

log dt = φ log dt−1 + φ0 − λεt −
1
2

λ2.

This assumption encompasses two cases. First, when 0 < φ < 1, the debt/output process is

mean-reverting. Second, when φ = 1 and φ0 = 0, the debt/output process is a martingale. In both

cases, a positive λ means that the debt/output ratio increases when the shock εt is negative—

implying a counter-cyclical debt policy. First, we need to make sure the TVC is satisfied. How

persistent can debt be without violating TVC?

Proposition 4.1. Under Assumptions 1 and 3, (a) when 0 < φ < 1, the transversality condition is
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satisfied if

log(ξ1) = −ρ + µ +
1
2

σ(σ− 2γ) < 0.

(b) When φ = 1 and φ0 = 0, then the transversality condition is satisfied if

log(ξ1) + λ(γ− σ) = −ρ + µ +
1
2

σ(σ− 2γ) + λ(γ− σ) < 0.

When the government does not pursue counter-cyclical stabilization (λ = 0), then the TVC is

(trivially) satisfied as long as the discount rate on an output strip is positive (log(ξ1) < 0). When

the government does pursue counter-cyclical stabilization (λ > 0) and the risk premium γ is large

enough:

(λ− σ)(γ− σ) > ρ− µ +
1
2

σ2,

the TVC is violated for the case of φ = 1 and φ0 = 0. In comparison, the value of λ does not

affect if the transversality condition is violated for the case of 0 < φ < 1. The counter-cyclical

insurance λ > 0 provided by the debt issuance policy is so valuable to risk-averse investors (mea-

sured by (γ− σ)λ) that the price of a claim to the debt outstanding in the distant future dt+TYt+T

fails to converge to zero, because this claim is a terrific hedge. This is the first important insight

contributed by asset pricing theory. If we want to rule out arbitrage opportunities and output is

subject to permanent, priced risk, then there have to be limits to the government’s ability to pursue

counter-cyclical debt issuance.

The PACF for the debt/output process suggests an AR(2) process might be a better fit. To

capture these higher-order dynamics, we introduce an AR(2) process for the debt/output ratio:

log dt = φ1 log dt−1 + φ2 log dt−2 + φ0 − λεt −
1
2

λ2.

The parameter estimates are reported in Panel C of Table 1.

When the roots lie outside the unit circle, the debt/output process is mean-reverting. As be-

fore, a positive λ means that the debt/output ratio increases when the shock εt is negative—

implying a counter-cyclical debt policy. When the roots of the AR(2) lie outside of the unit circle,

the results in (a) of Prop. 4.1 apply. If not, the results in (b) of Prop. 4.1 apply.

Quantitative Implications This limits how much counter-cyclical debt issuance is feasible with-

out violating the transversality condition when the debt/output ratio has a unit root (φ = 1). In

our calibrated economy, the upper bound for λ is 0.30σ, thus severly limiting the scope for counter-

cyclical policy. Once we exceed this upper bound, the value of outstanding debt explodes. Hence,
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risk premiarisk premium in financial markets constrain counter-cyclical fiscal policy. The intuition

is simple. When the government exceeds this bound, it has granted itself an arbitrage opportunity.

However, as long as φ < 1, the TVC is satisfied even though the risk-free of 2% is lower than the

growth rate of the economy (3%).

4.2.1 Persistence of Surpluses

We can compute the autocorrelation (ACF) and impulse response functions (IRF) of the surpluses

in closed form when the government issues only risk-free debt. These moments are particularly

informative because these do not depend on the properties of the pricing kernel. We use ψ(L) to

denote the infinite MA representation of the debt/output process.

We start from the following expressions for the surplus/output ratios in t + 1 and t + j respec-

tively.

St+1

Yt+1
= dt exp(r f

t − µ− σεt+1)− dt+1,

St+j

Yt+j
= dt+j−1 exp(r f

t+j−1 − µ− σεt+j)− dt+j.

We use st+1 to denote St+1
Yt+1

. We assume that the risk-free rate equals the growth rate of the

economy (g = ρ) to derive a closed-form expression for the IRF of the surplus.

Proposition 4.2. Under Assumptions 1 and 3, (a) when the debt/output ratio follows an AR(1)

process, the debt is risk-free and the TVC is satisfied, then the IRF of the surplus output ratio is

given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λφj−1(φ− 1) exp(d), for j > 1.

(b) When the debt/output ratio follows an AR(2) process, the debt is risk-free and the TVC is

satisfied, then the IRF of the surplus output ratio is given by:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(ψ1 − 1) exp(d), for j = 2,

= λ(ψj−1 − ψj−2) exp(d), for j > 2.

where ψj = φ1ψj−1 + φ2ψj−2, j > 2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.

(c) When the debt/output ratio follows an AR(3) process, the debt is risk-free and the TVC is
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satisfied, then the IRF of the surplus output ratio is given by:

∂
St+j
Yt

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(ψ1 − 1) exp(d), for j = 2,

= λ(ψ2 − ψ1) exp(d), for j = 3,

= λ(ψj−1 − ψj−2) exp(d), for j > 3.

where ψj = φ1ψj−1 + φ2ψj−2 + φ3ψj−3, j > 3; ψ3 = φ3 + φ2ψ1 + φ1ψ2; ψ2 = φ2 + φ1ψ1; ψ1 = φ1.

For an AR(1), when λ > σ, the initial response is positive, but is negative starting in the 2nd

year. As the persistence increases, the IRF converges to zero after year 1. In the case of an AR(2),

by choosing φ1 > 1, the government can run a deficit for 2 years in response to a negative output

shock, but after that it reverts to running surpluses, as the ACFs decline: for j > 2 : ψj−1 < ψj−2.

With higher-order, highly persistent AR(p) models, the government may be able to larger

hump-shaped IRFs. However, there is no evidence of higher-order AR(p) dynamics (i.e., p > 2)

in the US debt process (see Figure 3).

The auto-covariance of the surplus/output ratio is defined as follows:

covt(st+1, st+j) = Et[st+1st+j]−Et[st+1]Et[st+j].

The closed-form expressions for the autocovariances of the surplus/output ratio are given in sec-

tion D of the Appendix. In the case of an AR(1), we show that the conditional autocovariance de-

clines to zero as we increase the persistence of the debt/output process. limφ→1 covt(st+1, st+j) = 0.

This is not surprising. In the case of a constant debt/output ratio, the surplus/output ratios are

uncorrelated.

4.3 Quantitative Model Implications for Surplus Dynamics

AR(1) We report the persistence of the surplus in the calibrated version of the model.

Panel A in Figure 4 plots the IRF to a one standard deviation negative innovation to output

growth for a range of values of φ. We vary φ from 0.25 to 0.99. Upon impact, the debt/output

ratio increases from its mean by about 8.9%. After that, the rate of mean-reversion is governed

by φ. We choose ρ = µ = 2% so that the long-run response of the surplus is zero. In the least

persistent case (φ = 0.25), the government immediately runs large surpluses after period 1. In the

most persistent case, the (φ = 0.99), the government runs a balanced budget starting in period 2.

In all case, the long run surplus converges to a small deficit given by:

St

Yt
=

Tt − Gt

Yt
= −d (1− exp(ρ− g)) ,
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because ρ < g. Nevertheless, the TVC is satisfied. When the debt/output ratio follows an AR(1),

and the debt is risk-free, there can be no S-shaped responses to shocks.

Figure 4: IRF of Surplus/Output Ratios and Debt/Output Ratios (AR(1))

The figure plots the IRF of S/Y and D/Y for an AR(1) (top panel) and an AR(2) (bottom panel). In Panel B, φ2 is chosen to match
1st-order autocorrelation. We choose ρ = µ = 2%. Other parameters–Benchmark calibration in Table 1.
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Panel A in Figure 5 plots the ACF of the debt/output ratio and the surplus/output ratio against

the horizon for different values of φ. We evaluate these by simulating a path of T = 1000 observa-

tion. As explained, the autocorrelations are mostly non-positive.

These predictions do not depend on the properties of the SDF. But they are at odds with the

data. As discussed, increasing the persistence of the debt process pushes the conditional auto-

correlations of the surplus/output ratio to zero. When the government issues risk-free debt, the

surpluses cannot feature significant autocorrelation if the surplus/output ratio is persistent. The

only way around is to choose a sensitivity λ that is much larger than σ, which is empirically im-

plausible.

Figure 5: Autocorrelation of Surplus/Output Ratios and Debt/Output Ratios

Panel A plots the ACF and PACF of S/Y and D/Y for an AR(1) with parameters φ1 = 0.985 and φ2 = 0. Other parameters–Benchmark
calibration in Table 1. Panel B plots the ACF and PACF of S/Y and D/Y for an AR(2): Benchmark calibration in Table 1.
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AR(2) We also consider an AR(2) process. Panel B in Figure 4 plots the IRF to a one standard

deviation negative innovation to output growth for a range of values of φ1. We vary φ1 from 1 to

1.5. We choose φ2 to match the first-order autocorrelation of 0.94. Upon impact, the debt/output

ratio increases from its mean by about 8.9%. With φ1 = 1.1, the IRF looks essentially like the one

obtained with an AR(1) with φ close to 1. However, with φ1 = 1.4, and φ2 = −0.48, the IRF for

the debt/output ratio displays a hump-shaped pattern.10 Consistent with the results in Proposi-

tion 4.2, this hump-shaped pattern in the IRF of debt essentially delays the fiscal adjustment in

surpluses by one year. The government runs an even larger deficit in the 2nd period. However,

starting in year 3, the government runs surpluses. There is no significant S-shaped pattern; the

government cannot run large deficits for more than 2 periods. Similarly, the model produces an

AR(3) of 0, compared to 0.6 in the data. The model with risk-free debt cannot match the persistence

in surpluses and taxes we see in the data.

Panel B in Figure 5 plots the ACF for S/Y and D/Y for φ1 = 1.4 and φ2 = −0.48 –the bench-

mark calibration of the debt/output ratio process. While this AR(2) model produces more persis-

tence in the surplus/output ratio, the ACF declines much faster than in the data. In the model, the

AC(3) is essentially zero. Furthermore, the model produces a large, negative PACF(2) coefficient

of -0.5, inconsistent with the estimated PACF for the surplus/output ratio.

The surplus forecasting results are reported in Panel II of Table 2, to be compared to the results

in the data, listed in Panel I of Table 2. In the model, the debt/GDP ratio has strong forecasting

power for future surplus/output ratios, with a positive sign, even when we control for lagged

surplus/out ratios. At horizons up to 2 years, the lagged surplus/output ratio also forecasts future

surpluses with a positive sign. After 2 years, the sign flips, and the surplus/output ratios have

no incremental forecasting power. Given our results for the persistence of the surplus, this is not

surprising. The model with risk-free debt generates a much faster decay in the slope coefficients

on the lagged surplus than we see in the data.

Bohn (1998); Canzoneri, Cumby, and Diba (2001); Cochrane (2019, 2020) find evidence of S-

shaped dynamics in the U.S. surplus/GDP ratios: Surplus initially declines after a negative shock,

but then subsequently the government runs larger surpluses. The authors argue that these dy-

namics are consistent with budget balance. However, the S-shaped surplus dynamics in the data

violate the risk-free debt conditions. Governments cannot defer the increase in the tax rate when

output declines for more than 1 or 2 years, if they want to keep the debt risk-free. That would

require AR(p) dynamics with p > 3.

Finally, we consider the implied tax revenue betas inside the model. These are generated from

10,000 simulations from the AR(2)-model for the debt/output ratio. The results are plotted in

Panel B of Figure 1. In the model, even in the AR(2) case, the tax betas drop below the spending

betas at longer horizons, to ensure that the debt is risk-free. This is counterfactual. In post-war

10We stop here because φ1 of 1.5 produces complex roots.

26



U.S. data, the cash flow betas of the tax revenue claim converge to 1 at horizons between 5 and 10

years, as shown in Panel A of Figure 1. The cash flows are too risky even at longer horizons for

the debt to be risk-free.

5 Frequency Decomposition of the Trade-off in a Model Economy with

State-Contingent Debt/Output

How much smoothing can the government achieve by issuing more debt in response to bad

shocks? It all depends on the horizon. This section characterizes the trade-off at different fre-

quencies. In the presence of permanent shocks, the government can only insure taxpayers over

a limited period of time. This period can be extended by imputing higher-order dynamics to the

debt/output process.

5.1 Cash Flow Betas at Different Frequencies

At any given horizon, the trade-off is fully determined by the dynamics of the debt/output ratio,

as long as the debt is risk-free.

Proposition 5.1. Under Assumptions 1 and 3, when debt is risk-free and debt/output follows an

AR(2), the cash flow beta of the discounted surpluses over j periods is given by beta of future

debt issuance j periods from now:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kSt+k

)
= −covt

(
Mt+1, (Et+1 −Et)Mt+1,t+jDt+j

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1).

The sign of the cash flow covariance is sign
(
γ(σ− ψj−1λ)

)
, where ψj denotes the ACF: ψj =

φ1ψj−1 + φ2ψj−2, and where ψ1 = 1.

The risk properties of the government surpluses over a given horizon are completely deter-

mined by riskiness of the debt issuance process, as long as the debt is risk-free, because consecu-

tive surpluses cancel out when properly discounted. So, we do not need any information on the

spending and tax revenue dynamics to do this decomposition at different horizons.

AR(1) Let us start by setting φ2 = 0, which means the debt/output follows an AR(1) process.

When debt is risk-free, the cash flow beta of the surpluses over j periods is given by minus the
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beta of future debt issuance:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kSt+k

)
= −covt

(
Mt+1, (Et+1 −Et)Mt+1,t+jDt+j

)
,

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1).

The sign of the cash flow covariance is sign
(
γ(σ− φj−1λ)

)
. The sign of this covariance determines

the horizon over which the government can provide insurance to taxpayers. Hence, the sign of

the cash flow covariance is determined by the sign of γ(σ− φj−1λ), which has a natural economic

interpretation: It is the risk premium of a debt strip that pays Yt+kdt+k. Hence, the discounted

surplus earn the negative of the risk premia on the weighted baskets of debt strips. The surplus

can be risky over horizon j only if this offset by safety of future debt issuance.

If λ ≤ 0, all cash flow covariances for the discounted surpluses are positive. In other words,

the government cannot insure taxpayers at any horizon. In figure 6, we discussed the case of

λ = 0. The intuition is simple. Because debt and output are co-integrated, debt strips are as risky

as claims to output at all horizons. Surpluses have to be safe enough to offset this risk, so that the

total debt is risk-free.

However, if λ > σ, the initial covariance is negative. In the short run, debt strips are less risky

than output. The government is insuring taxpayers who pay the next surpluses. As j increases

the covariance declines and switches signs. If the rate of mean-reversion is high and φ is small,

this switch occurs sooner. If the debt/output ratio is more persistent, the switch occurs later. As

j increases, this expression γ(σ − φj−1λ) converges to γσ, the risk premium on the output strip,

because debt is co-integrated with output. In the long run, the entire cash flow covariance is posi-

tive but converges towards 0. Note that the covariance inherits the dynamics of the AR(1)-process

for the debt/output ratio and starts to decline right away. The shocks are i.i.d. and permanent.

Hence, in the long run, an adverse shock to output has to lead to permanently higher surpluses.

In the case of permanent output shocks, this covariance always approaches 0 from above as

j → ∞, as Et[Mt+1,t+jdt+jYt+j] approaches 0. This means at some finite horizon, the surplus pro-

cess is risky from the perspective of the taxpayer, who is providing these cash flows, and hence is

short this claim. The only way to escape this is to impute a unit root to the debt/output ratio by

pushing φ to 1, but that would violate the TVC, unless we are close enough to risk neutrality.

AR(2) In the more case of an AR(2), the sign of the cash flow covariance is determined by the sign

of γ(σ− ψj−1λ). If λ > σ, the initial covariance is negative. The government is insuring taxpayers

who pay the next surpluses by issuing more debt in response to adverse shocks. As j increases,

the covariance declines and switches signs. If the rate of mean-reversion is high and ψj declines

quickly, this switch occurs sooner. If the debt/output ratio is more persistent, the switch occurs
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later. γ(σ−ψj−1λ) has a natural economic interpretation: It is the risk premium of a debt strip that

pays Yt+kdt+k. As j increases, this expression γ(σ− ψj−1λ) converges to γσ, the risk premium on

the output strip. In the long run, the entire cash flow covariance is positive but converges towards

0. Note that the covariance inherits the dynamics of the AR(1)-process for the debt/output ratio

and starts to decline right away.

Next, we can look at the tax liability itself. When the debt is risk-free, government surpluses

only depend on the debt process, whereas tax revenues depend on both the debt process and the

government spending process. In particular, the risk profile of the tax process over horizon j is

determined by both the risk profiles of debt and spending.

Corollary 5.2. Under Assumptions 1 and 3, and when debt is risk-free and debt/output follows

an AR(2), the cash flow beta of taxes have to satisfy the following restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kGt+k

)
.

In the AR(1) case, ψj−1 is simply φj−1. When this covariance is negative over horizon j, the

government provides insurance to taxpayers over horizon j. Note that the government is fighting

the accumulation of output strip risk premium γσ because of the debt-claim exposure to output.

As we take j→ ∞, we recover the return betas in section 2.

Section C of the appendix develops a version of the model without permanent shocks. This

model produces radically different implications, but has counterfactual asset pricing implications.

5.2 Quantitative Model Implications for Trade-off at Different Frequencies

Dynamics of Spending/Output Ratio: Implications for Trade-off To quantify the trade-off, we

need to calibrate the process for government spending. The U.S. spending/output ratio varies

counter-cyclically.

We report the calibration of the spending/output ratio dynamics in Panel B of Table 1. In the

1947—2019 sample, we estimate the persistence of the spending/output ratio: ϕ = 0.88, and we

estimate βg = 1.53× σ. This is the slope coefficient in a regression of the spending/output ratio

innovations on GDP growth; Spending/output increases by 1.53 pps. per pp decrease in output

growth.

Constant Debt/Output. Figure 6 plots the risk premium (in % per annum) contributions of cu-

mulative discounted cash flows (top panel) and the strips (middle panel) against the horizon. We
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Figure 6: Horizon Decomp. of Risk Premium on Govt. Cash Flows with Constant Debt/Output
and Spending/Output

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. The bottom panel plots the risk premium on the debt strips: −(exp(−γσ)− 1). Benchmark calibration: λ = 0. Other
Parameters–Benchmark calibration in Table 1.
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plot the risk premium contribution at each horizon j given by

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kSt+k

)
/Et[Mt+1],

= −dEt[Mt+1,t+jYt+j](exp(−γσ)− 1).

against the horizon j in the top panel. This is a special case of Proposition 5.1: λ = 0. This

measure is directly informative about the insurance provided by the government to taxpayers with

a horizon j. This expression is negative at all horizons in this case: The government cannot insure

citizens who pay the primary surplus at any horizon when the debt/output ratio is constant,

because debt issuance has the same exposure to output risk as a claim to GDP. As a result, to offset

this, the risk premium contributions have to be negative at all horizons. For large j, this expression

converges to zero, because the debt is risk-free.

The taxpayer cares about the following risk measure:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
/Et[Mt+1]. (7)

When this risk premium is negative, the taxpayers are instead providing insurance to the govern-

ment. The risk premium contributions are negative until year 15.

As shown in the top panel of Figure 6, the risk premium on a claim to the discounted future

surpluses is negative everywhere and converges to zero as we increase the horizon j in eqn. (7).

This follows because the debt is risk-free. Risk-free debt is achieved by keeping the contributions

of the risk premium on the tax claim below those on the spending claim at all horizons. In the

bottom panel of Figure 6, we plot the contribution of each strip:

−covt
(

Mt+1, (Et+1 −Et)Mt+1,t+jSt+j
)

/Et[Mt+1]

against the horizon j. The 1-year strip on the surplus earns a risk premium of -3.75% per annum.

It is safe because the surplus decreases in bad times, when the investor’s marginal utility is high.

We start by considering moderately persistent AR1 process for the debt/output ratio: φ is

0.75.11 All the other parameters are given in Table 1.

AR(1) Figure 7 plots the risk premium (in % per annum) on cumulative discounted cash flows

(top panel) and the strips (bottom panel) against the horizon. Instead of plotting cash flow betas,

we plot the risk premium computed by

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kSt+k

)
/Et[Mt+1] (8)

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1). (9)

11When we use more persistent processes, we get a quasi-violation of the TVC.
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against the horizon j in the top panel. This measure is directly informative about the insurance

provided by the government to taxpayers with a horizon j. In particular, this taxpayer cares about

the following risk measure:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
/Et[Mt+1]. (10)

When this risk premium is positive, this means that the government is insuring taxpayers. When

it is negative, the taxpayers are instead providing insurance to the government.

As shown in the top panel of Figure 7, the risk premium on a claim to the discounted future

surpluses converges to zero as we increase the horizon j in eqn. (12). This follows because the

debt is risk-free. Risk-free debt is achieved by keeping the contributions of the risk premium on

the tax claim below those on the spending claim, as we increase the horizon beyond 2 years. The

risk premium on the cumulative surpluses crosses zero when σ > φj−1λ.

In the middle panel of Figure 7, we plot the contribution of each strip:

−covt
(

Mt+1, (Et+1 −Et)Mt+1,t+jSt+j
)

/Et[Mt+1]

against the horizon j. The 1-year strip on the surplus earns a risk premium of 3% per annum.

It is risky because the surplus decreases in bad times (λ > 0), when marginal utility is high. In

order to make the debt risk-free, the risk premium on the 2-year strip is close to -2%. And these

strips earn negative risk premium until they revert to zero after 15 years. Hence, the government

has to commit to increasing the surplus 1 year after the negative shock. This applies to all the

surpluses that follow. This result illustrates the limits to smoothing shocks with risk-free debt. If

the debt/output ratio follows an AR(1) process, then you can really not smooth across multiple

periods. The cumulative risk premium on the surplus start to decline right away. They inherit the

dynamics of the debt/output ratio.

The bottom panel of Figure 7 plots the risk premium on the debt strips, which pay off dt+kYt+k,

given by

γ(σ− φk−1λ) ≈ −(exp(−γ(σ− φk−1λ))− 1).

As we have shown, when debt is risk-free, the risk premium for the cumulative surplus claim

inherits the negative of the sign of this debt strip risk premium. As j → ∞, this risk premium

converges to the risk premium on the output strips, given by γσ ≈ −(exp(−γσ) − 1) of 5%,

because the output innovations are permanent. It is common in the literature to assume that

this risk premium is zero at long horizons, because this allows discounting at the risk-free rate. Of

course, in the presence of permanent shocks, this is wrong. This positive risk premium on the debt

strip explains why the surplus claim in the top panel approaches 0 zero from below. Permanent

output risk rules out insurance provided to taxpayers over long horizons.
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Figure 7: Horizon Decomp. of Risk Premium on Govt. Cash Flows. Case of AR(1).

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. The bottom panel plots the risk premium on the debt strips: −(exp(−γ(σ− φj−1λ))− 1). AR(1) with φ1 is 0.75. Other
Parameters – Benchmark calibration in Table 1.
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AR(2) We use the estimated AR(2) parameters that provide the best fit for the data. Figure 8

plots the risk premium (in % per annum) on cumulative discounted cash flows (top panel) and

the strips (bottom panel) against the horizon. Instead of plotting cash flow betas, we plot the risk

premium computed by

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kSt+k

)
/Et[Mt+1] (11)

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1). (12)

against the horizon j in the top panel. This measure is directly informative about the insurance

provided by the government to taxpayers with a horizon j. In particular, this taxpayer cares about

the following risk measure:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
/Et[Mt+1]. (13)

When this risk premium is positive, this means that the government is insuring taxpayers. When

it is negative, the taxpayers are instead providing insurance to the government.

As shown in the top panel of Figure 8, the risk premium on a claim to the discounted future

surpluses converges to zero as we increase the horizon j in eqn. (12). The risk premium on the

cumulative surpluses crosses zero when σ > ψj−1λ.

In the middle panel of Figure 8, we plot the contribution of each strip:

−covt
(

Mt+1, (Et+1 −Et)Mt+1,t+jSt+j
)

/Et[Mt+1]

against the horizon j. The 1-year strip on the surplus earns a risk premium of 3% per annum. It is

risky because the surplus decreases in bad times (λ > 0), when marginal utility is high. In order

to make the debt risk-free, the risk premium on the 2-year strip is close to -1.5%. And these strips

earn negative risk premium until they revert to zero after 15 years. Hence, the government has to

commit to increasing the surplus 1 year after the negative shock. This applies to all the surpluses

that follow.

If the debt/output ratio follows an AR(2) process, then you can do some limited smoothing

across multiple periods, because the cumulative risk premium on the surplus inherit the hump-

shaped dynamics of the debt/output ratio.

The bottom panel of Figure 8 plots the risk premium on the debt strips, which pay off dt+kYt+k,

given by

γ(σ− ψk−1λ) ≈ −(exp(−γ(σ− ψk−1λ))− 1).

As we have shown, when debt is risk-free, the risk premium for the cumulative surplus claim

inherits the negative of the sign of this debt strip risk premium. As j → ∞, this risk premium
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Figure 8: Horizon Decomp. of Risk Premium on Govt Cash Flows: Benchmark Calibration.

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. The bottom panel plots the risk premium on the debt strips: −(exp(−γ(σ− ψj−1λ))− 1). Benchmark calibration in Table
1.

0 5 10 15 20 25 30
Horizon in years

-5

0

5

10

Su
m

  i
n 

%
 p

.a
.

T
G
S

0 5 10 15 20 25 30
Horizon in years

0

2

4

 S
tri

ps
, i

n 
%

 p
.a

.

T
G
S

0 5 10 15 20 25 30
Horizon in years

-10

-5

0

5

  D
 S

tri
ps

, i
n 

%
 p

.a
.

converges to the risk premium on the output strips, given by γσ ≈ −(exp(−γσ) − 1) of 5%,

because the output innovations are permanent. It is common in the literature to assume that

this risk premium is zero at long horizons, because this allows discounting at the risk-free rate. Of

course, in the presence of permanent shocks, this is wrong. This positive risk premium on the debt

strip explains why the surplus claim in the top panel approaches 0 zero from below. Permanent

output risk rules out insurance provided to taxpayers over long horizons.

5.3 Counter-cyclical Spending

The government insures transfer recipients by spending a larger fraction of GDP in recession. This

further constraints the government in navigating the trade-off between insurance of bondholders

and taxpayers.

We consider the implications of varying βg which governs the response to GDP growth shocks.

In the post-war sample, when regressing the innovation in log spending on the log change in

output, we get a a slope coefficient of 0.28. By contrast, when we run the same regression for tax

revenue, we get a slope coefficient of 1.86.

Taxpayers with a horizon j care about the riskiness of the tax process over horizon j.

Corollary 5.3. Under Assumptions 1 and 3, the cash flow beta of taxes have to satisfy the following
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restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

+
j

∑
k=1

Et[Mt+1]Et[Mt+1,t+jxt+jYt+j](exp(−γ(σ− φ
j−1
G βg))− 1).

Figure 9: Horizon Decomp. of Risk Premium on Govt. Cash Flows and Counter-cyclical Spending

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (bottom panel) against
the horizon. We vary βg between 0 and 2× σ.AR(1) with φ1 is 0.75. Other parameters–Benchmark calibration in Table 1.
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In particular, this taxpayer with horizon j cares about the following risk measure:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1Mt+1,t+kTt+k

)
/Et[Mt+1]. (14)

When this risk premium is positive, this means that the government is insuring taxpayers. When

it is negative, the taxpayers are instead providing insurance to the government. Figure 9 plots the

implied spending (top panel) and tax claim risk (bottom panel) risk premium contributions. As

government spending becomes more counter-cyclical, the risk premium on the tax claim has to

decline as well, in order to keep the government debt risk-free. The empirically relevant line is the

case of βg = 0.031%. In that case, the one-period vol of spending is only 25% of the output vol (σ).
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As the tax claim becomes safer, taxpayers face a riskier tax liability proposition. When spending

is risk-free (blue line), the tax claim inherits the risk properties of the surplus claim:

−Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

As the governments provides more insurance to transfer recipients, this reduces the scope for

insurance of taxpayers one-for-one.

5.4 Debt Persistence

To provide more intertemporal smoothing, the government can increase the persistence of the

debt/output process. This allows the government to spread out the adjustment further over time.

When φ = 0.90 (dash-dotted line) , we have to increase the horizon beyond 40 years to see the risk

premium on the total surplus go to zero, as shown in the top panel of Figure 10. This allows for

a riskier surplus in the first year, and a smaller downward adjustment in the risk premium in the

following years (see bottom panel). However, even in the case of φ = 0.90, the risk premium flips

signs in year 2.

As the government increases the persistence of the debt/output process to 0.99, The govern-

ment almost imputes a unit root to the debt/output ratios and seems to escape the trade-off be-

tween insuring taxpayers and bondholders. As a result of the near-unit-root, the TVC is quasi

violated in our calibration, given that the market price of risk γ is large. To visualize this, we plot

the following fraction: Et[Mt+kDt+k]/Dt, the tail value of debt as a percentage of the debt out-

standing today. For j = 50, the fraction is 150%. Under the risk-neutral measure, investors expect

the debt to increase faster than the risk-free rate; the government increases the debt/output ratio

along paths characterized by adverse aggregate histories, because λ > 0. For j = 100, the fraction

is 100%. This means that the expected value of debt 100 years from now accounts for the entire

value of the debt (and the value of the first 100 years of surpluses for 0%).

37



Figure 10: Horizon Decomp. of Risk Premium on Govt. Surpluses and Debt Persistence

The figure plots the risk premium contribution of cumulative discounted surpluses (top panel) and the surplus strips (middle panel)
against the horizon. The bottom panel plots the tail value at t of the debt expected at t + j as a fraction of debt today. AR(1) with φ
between 0.5 and 0.99. Other Parameters–Benchmark calibration in Table 1.
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6 Revisiting the Trade-off when Debt Earns Convenience Yields

When the transversality conditions holds, and there are no arbitrage opportunities in debt mar-

kets, there is only one way to relax this trade-off between insurance of bondholders and taxpayers.

Some governments are endowed with the ability to see Treasurys at prices that exceed their fair

market value. In other words, investors earn convenience yields on their debt holdings. Typically,

the debt then serves the role of a special, safe assets for domestic or foreign investors.

Our analysis begins with a reduced-form characterization of the convenience yield.12 In dis-

crete time, the convenience yield λt is defined as a wedge in the investors’ Euler equation:

Et [Mt,t+1Rt] = exp(−λt). (15)

The following proposition shows that the convenience yield can be interpreted as an additional

seigniorage revenue to the government.

Proposition 6.1. In the absence of arbitrage opportunities, the value of the government debt

equals:

Bt =
H

∑
h=0

Qh+1
t−1 Ph

t = Et

[
∞

∑
j=0

Mt,t+j(Tt+j + (1− e−λt+j)Dt+j − Gt+j)

]
= PT

t + Pλ
t − PG

t ,

provided that a transversality condition holds.

The seigniorage revenue is (1− e−λt+j)Dt+j, which is exactly the amount of interest the govern-

ment does not need to pay due to the convenience yield. The value of government debt reflects

the value of all future convenience yields earned on future debt. We refer to this value as the

Treasury’s seignorage revenue:

Pλ
t = Et

[
∞

∑
j=0

Mt,t+j(1− e−λt+j)Dt+j

]
.

The government debt portfolio return is the return on a portfolio that goes long in the tax claim

and short in the spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

Pλ
t − Tt

Bt − St
Et

[
Rλ

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,Rλ
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax

claim, the seignorage claim, and the spending claim, respectively. We take government spending
12See Liu, Schmid, and Yaron (2019) for a structural model of convenience yields and fiscal policy.
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process, and the debt return process as exogenously given, and we explore the implications for

the properties of the tax claim.

Constant Spending/Output Ratio Let’s take a simple benchmark. If we assume that the spend-

ing/output ratio is constant and βY
t = βG

t . We define Kt = (1− e−λt)Dt to be seignorage revenue.

Suppose that the (convenience yield) seignorage process has a zero beta. If the government wants

risk-free debt, then the implied beta of the tax revenue process

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
� PG

t − Gt

Dt + (PG
t − Gt)

,

which exceeds the beta of the tax revenue without seignorage. If the seignorage revenue is suf-

ficiently counter-cyclical, then the government can insure both taxpayers and bondholders at the

same time.

Krishnamurthy and Vissing-Jorgensen (2012) estimate convenience yields on U.S. Treasurys of

around 75 bps. These convenience yields are counter-cylical. Using the deviations from CIP in

Treasury markets, Jiang, Krishnamurthy, and Lustig (2018a,b); Koijen and Yogo (2019) estimate

convenience yields that foreign investors derive from their holdings of dollar safe assets; these

estimates exceed 200 bps.

We can characterize the sensitivity of the average tax rate to aggregate output growth in closed

form.

Assumption 4. The government commits to a constant spending/output ratio x = Gt/Yt, and a mean-

reverting process for the log tax/output ratio τt = log(Tt/Yt) with a constant sensitivity to output inno-

vations βτ:

∆τt+1 = θ(τ̄ − τt) + βτσεt+1.

Corollary 6.2. Under Assumptions 1 and 4, for the debt to be conditionally risk-free, the sensitivity

of the average tax rate needs to satisfy:

βτ =
1

1 + qτ

(
PG

t − Gt − (1 + (1 + qκ)βκ)(Pλ
t − Kt)

Dt + (PG
t − Gt)− (Pλ

t − Kt)
− 1
)

.

If βκ � − 1
1+qκ

, then the counter-cyclical convenience yields increase the sensitivity of tax rates

to output innovations. For example, we can have a constant average tax rate and risk-free debt

when:

βκ = − 1
1 + qκ

Dt

Pλ
t − Kt

Consider the case in which the government runs zero primary surpluses in all future states of the
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world: Dt = Pλ
t − Kt. In this case, the average tax rate is constant if βκ = − 1

1+qκ
. This is −1 in the

random walk case with θ = 0. Please see section A of the Appendix for details.

7 Conclusion

The government engineers risk-free debt by choosing the beta of the tax claim judiciously. The

more debt outstanding, the lower the beta of the tax claim needs to be. There is no scope for

insurance of taxpayers over long horizons in the presence of permanent and priced shocks to

output. The only way the government can provide insurance to tax payers over long horizons

while keeping the debt risk-free is by saving.
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A Risky Debt

In general, when we specify exogenous processes for taxes and spending, the implied debt is risky. This section derives

more general characterizations of the risk-return trade-off, by specifying exogenous processes for taxes and spend-

ing, and allowing for arbitrary mean-reversion in the tax rate, and risky debt. This approach is more common in the

literature. We will do this in a continuous time version of our model.

Let yt denote log of real GDP. Let τt denote the log tax-to-gdp ratio and let gt denote the log spending-to-gdp ratio.

We specify exogenous processes for both spending and taxes:

dyt = µdt + σdZt,

dτt = θ(τ̄ − τt)dt + βτσdZt,

dgt = θ(ḡ− gt)dt + βgσdZt,

where θ governs the degree of persistence in τ and g. Importantly, this specification does not allow the government to

choose a tax process that is more risky in the short run, but less risky at intermediate horizons (See for example Figure

8.)

Then Tt = exp(τt + yt) and Gt = exp(gt + yt). Let Bt denote the real value of debt. Let Pτ
t denote the present value

of the claim on tax and Pg
t denote the present value of the claim on spending. Let Mt denote the SDF. The asset pricing

equations are

0 = A[MtTtdt + d(MtPτ
t )],

0 = A[MtGtdt + d(MtP
g
t )],

0 = A[Mt(Tt − Gt)dt + d(MtBt)].

Note: The last equation can be thought of as the continuous-time version of the government budget condition.

Proposition A.1. When the TVC holds, the value of the debt equals the price of a claim to tax revenue minus the price

of a claim to spending:

Bt = Pτ
t − Pg

t .

Let Mt denote the cumulative SDF, and let mt denote its log. We assume

dmt = −(r + 1
2

γ2)dt− γdZt,

dMt = −Mtrdt−MtγdZt.

We conjecture that the tax claim and the spending claim are priced according to:

Pτ
t = fτ(τt)Tt

Pg
t = fg(gt)Gt.

The debt/GDP ratio is given by: Bt
Yt

= fτ(τt)τt − fg(gt)gt. Then, we conjecture fτ(τt) = exp(pτ + qττt) and

fg(gt) = exp(pg + qggt).
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Proposition A.2. When θ > 0, the risk exposure of the debt return is

[rB
t , dMt] = −Mtγσ

Bt

(
Tt fτ (1 + (1 + qτ)βτ)− Gt fg

(
1 + (1 + qg)βg

))
,

where qτ = − θ

κτ
1 θ + (1− κτ

1 )
,

qg = − θ

κ
g
1 θ + (1− κ

g
1 )

.

κτ
1 and κ

g
1 are the constants that are very close to 1 from the Campbell-Shiller approximation:

κτ
1 =

1
1 + exp(Pτ

t /Tt)

κ
g
1 =

1

1 + exp(Pg
t /Gt)

Random Walk Cash Flows We start with the simplest case in which spending and tax revenue follow a random

walk (θ = 0). In this case qτ = qg = 0, and the debt/output ratio is non-stationary. The risk exposure of the debt claim

is

[rB
t , dMt] = −Mtγ

1
Bt

( fτTt(1 + βτ)− fgGt(1 + βg))σ,

where fτ = (r− µ− 1
2
(1 + βτ)

2σ2 + γ(1 + βτ)σ)
−1,

fg = (r− µ− 1
2
(1 + βg)

2σ2 + γ(1 + βg)σ)
−1.

Risk-free debt is a knife-edge case. The debt is risk-free if and only if

(Bt + Pg
t )(1 + βτ) = Pτ

t (1 + βτ) = Pg
t (1 + βg).

Even when allowing for a non-stationary debt/output ratio, the government has to implement a counter-cyclical tax

policy if it wants to keep the debt risk-free. For example, when βg = 0, i.e. spending is a constant fraction of GDP, this

equation requires that the loading of the average tax rate on the output shock satisfy:

βτ =
fggt

dt + fggt
− 1,

which is negative as long as dt = fττt − fggt > 0. So, risk-free debt implies countercyclical taxation. This result

confirms Barro (1979)’s conjecture that tax rates inherit the random walk property of output and spending if the debt

is to be risk-free. As the debt/output ratio increases, the βτ converges to -1. When the government insures transfer

recipients by spending more in recessions, and hence choosing βg < 0, then βτ will have to be even more negative.

Even when debt is risky, there may still be a random walk component in the tax rates. The only way to eliminate

this random walk component is to set βτ = 0, which would imply that the instantaneous covariance equals that of the

output claim:

−Mtγσ

Bt

(
Tt fτ (1 + (1 + qτ)βτ)− Gt fg

(
1 + (1 + qg)βg

))
= −Mtγσ

Hence, if we want to completely eliminate the random walk component in taxes, then the debt becomes an unlevered

equity claim.

More generally, [rB
t , dMt] is decreasing in βτ . This formula highlights the trade-off between insuring the taxpayers

and insuring the debtholders. If the government wants to smooth the tax burden by increasing βτ , the debt will be

riskier because the instantaneous covariance [rB
t , dMt] decreases.
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Mean-Reverting Cash Flows We consider the case in which θ > 0 . Since 1 + qτ > 0 and 1 + qg > 0, the same

intuition applies: [rB
t , dMt] is decreasing in βτ , implying a trade-off between insuring the taxpayers and insuring the

debtholders. The debt is risk-free if and only if the following condition is satisfied:

( fggt + dt) (1 + (1 + qτ)βτ) = gt fg
(
1 + (1 + qg)βg

)
.

For example, when βg = 0, i.e. spending is a constant fraction of GDP, the sensitivity of the average tax rate to the

output shock is given by:

βτ =
1

1 + qτ

(
fggt

dt + fggt
− 1
)

,

which is negative as long as dt = fττt − fggt > 0. All else equal, mean reversion renders the tax rate even more

countercylical, because 1
1+qτ

> 1, when θ > 0. The higher θ, the larger this ratio. To get the tax rate revert back to its

mean faster, the tax rate has to be more counter-cylical. So, the government can eliminate the random walk in taxes

but only by forcing tax payers to insure the rest of the economy even more against aggregate shocks. So, risk-free debt

implies countercyclical taxation.

General Model with Convenience Yield Now, move on to a general model with convenience yield. The

Euler equation is

0 = A[MtBtλtdt + Mt(Tt − Gt)dt + d(MtBt)],

We define Kt = Btλt as the flow benefit of convenience yield generated by the government debt, define κt = Kt/Yt

as the conv yield-to-gdp ratio, and assume

dκt = θ(κ̄ − κt)dt + βκγdZt.

Then the debt value can be solved from

0 = A[Mt(Tt + Kt − Gt)dt + d(MtBt)].

Similarly, we let Pτ
t denote the present value of the claim on convenience yield. Then

Pτ
t = fκ(κt)Kt,

where fκ(κt) = exp(pκ + qκκt).

Proposition A.3. When θ > 0, the risk exposure of the debt return is

[rB
t , dMt] = −Mtγγ

Bt

(
fτTt(1 + (1 + qτ)βτ) + fκKt(1 + (1 + qκ)βκ)− fgGt(1 + (1 + qg)βg)

)
.

To produce risk-free debt (i.e. [rB
t , dMt] = 0), we need

fτTt(1 + (1 + qτ)βτ) + fκKt(1 + (1 + qκ)βκ) = fgGt(1 + (1 + qg)βg)

A countercyclical convenience yield stream (negative βκ) helps generate a countercyclical spending stream (nega-

tive βg), thereby partially alleviating the pressure for tax to be countercyclical.
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B Return Betas and Cash Flows

What is the relation between the return betas and the cash flow betas? Well, in this simple case, with constant

debt/output and constant spending/output ratios, there is a one-to-one mapping:

Corollary B.1. The expected returns can be expressed as a function of the cash flow betas:

Et

[
RT

t+1 − R f
t

]
=

x
d(1− ξ1) + xξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

=
x

d(1− ξ1) + xξ1
exp(µ +

1
2

σ2)(1− exp(−γσ))

Et

[
RG

t+1 − R f
t

]
=

1
ξ1

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)

=
1
ξ1

exp(µ +
1
2

σ2)(1− exp(−γσ)),

where ξ1 = exp(−ρ− γσ + µ + 0.5σ2).

C Quantifying the Trade-off in Model with Transitory Output Shocks

Next, we consider the impact of transitory shocks to the level of output, but we, in a first pass, we keep our original

pricing kernel with permanent shocks to the level of marginal utility. We call this the goldilocks economy. In this

setting, the government can insure taxpayers at all horizons while keeping the debt risk-free.

C.1 Permanent Shocks to Marginal Utility

Assumption 5. (a) The shocks to output are transitory:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 still denotes the innovation to output growth that is normally distributed and i.i.d.

(b) The log pricing kernel is

mt,t+1 = −ρ− 1
2

γ2 − γεt+1.

This asset pricing model is fundamentally misspecified. This pricing kernel does not reflect the mean-reversion in

output and hence cannot be micro-founded. However, we use this model as an expositional device. In this setting, the

government faces no trade-off between insuring taxpayers and bondholders. When there are no permanent shocks to

output, but the pricing kernel does not reflect this, then the government can insure taxpayers over all horizons.

Proposition C.1. The cash flow beta of the surpluses over j periods is given by:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

when j ≥ 2. The sign of the cash flow covariance is sign
(

γ(ξ j−1σ− φj−1λ
)

.

Hence, the sign of the cash flow covariance is determined by the sign of γ(σξk−1 − φk−1λ). As before, this is the

risk premium on a debt strip, and compensates investors for output risk. Because the innovations are temporary, the

output component of this risk premium converges to zero. The transitory nature of output risk broadens the scope
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for insurance of taxpayers. As we consider ξ → 1, we revert back to the expression derived in the benchmark model:

γ(σ− φk−1λ). If λ > σ, the initial covariance is negative. If the rate of mean-reversion in output is higher than in the

debt/output ratio, φ > ξ, the covariance stays negative for all j. As a result, the government can now insure taxpayers

at all horizons. This was not feasible in the case of permanent innovations.

Corollary C.2. The cash flow beta of taxes have to satisfy the following restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

Quantitative Implications We return to our calibrated economy. Figure 11 plots the risk premium contributions

of the surpluses over different horizons for the benchmark calibration:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
/Et[Mt+1]

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ))− 1)

However, the output process no longer has a unit root. We start by considering the case in which φ = ξ. At all

horizons, the tax claim is risky, contributing positive risk premium across all horizons, because λ exceeds σ. The tax

claim is also risky across all horizons. In this goldilocks scenario, the government can insure taxpayers at all horizons.

γ(σξk−1 − φk−1λ) is positive across all horizons.

Figure 11: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. The bottom panel plots the risk premium on the debt strips: −(exp(−γ(σξ j−1 − φj−1λ))− 1). Calibration: φ is 0.75 and
ξ is 0.75. Other parameters–Benchmark calibration in Table 1.
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Figure 11 plots the risk premium on the debt strips, which pay off dt+kYt+k, given by

γ(σξk−1 − φk−1λ) ≈ −(exp(−γ(σξk−1 − φk−1λ))− 1).
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Given that λ exceeds σ, the risk premium on the debt strips are uniformly negative. These are the mirror image of

the surplus risk premium in the top panel of Figure 11. As j → ∞, this debt strip risk premium converges to the

risk premium on the output strips, 0%, because the output innovations are transitory, and the pricing kernel does not

have a transitory component which contributes interest rate risk. Why can the government insure taxpayers over long

horizons (by delivering a risky tax claim)? Because the debt strip risk premium are negative at all horizons.

Of course, insurance of taxpayers only works if the governments commits to a debt policy that is at least as per-

sistent as the output process (φ > ξ). Figure 12 plots the risk premia contributions when the output shocks are close

to a unit root, but the debt/output ratio reverts back to the mean at a faster rate. In this case, the government has to

produce safer surplus claims over longer horizons.

Figure 12: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (bottom panel) against
the horizon. Calibration: φ is 0.75 and ξ is 0.98. Other parameters–Benchmark calibration in Table 1.
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C.2 Transitory Shocks to Marginal Utility

Next, we consider an internally consistent model: we shut down permanent shocks to the level of output, as well as to

marginal utility.

Assumption 6. (a) The shocks to output are transitory:

yt+1 = ξ0 + ξyt + σεt+1

where εt+1 still denotes the innovation to output growth that is normally distributed and i.i.d.

(b) The log pricing kernel is

mt,t+1 = −ρ− 1
2

γ2 − γ
σεt+1 + (ξ − 1)yt

σ
.

When shocks to output are transitory, most asset pricing models predict that there are no permanent shocks to the

marginal utility of wealth. This specific modification of the pricing kernel is motivated by the fact that if the agent’s

consumption is equal to the output and has CRRA preference with a relative risk aversion of γ/σ, the marginal utility

growth is mt,t+1 = −ρ̃− γ/σ(ξ0 + (ξ − 1)yt + σεt+1). In this case, the marginal utility of wealth can be written as:

Λt+1 = exp(−ρ̃(t + 1)− (γ/σ)yt+1).

There are no permanent shocks to the marginal utility of wealth. Given this pricing kernel, the log of the risk-free rate

is given by:

r f
t = ρ + γ

(ξ − 1)yt
σ

.

Note that this model has counterfactual asset pricing implications. In the model, the interest rate risk will make

the long bond the riskiest asset in the economy. Modern asset pricing has consistently found that permanent cash flow

shocks receive a high price of risk in the market (e.g., Alvarez and Jermann, 2005; Hansen and Scheinkman, 2009;

Bansal and Yaron, 2004; Borovička, Hansen, and Scheinkman, 2016; Backus, Boyarchenko, and Chernov, 2018). This

model has no permanent priced risk, except when ξ = 1. In that case, we recover the pricing kernel in our benchmark

model.

When there are no permanent shocks to output and the pricing kernel, then the government can insure taxpayers

over longer horizons.

Proposition C.3. The cash flow beta of the surpluses over j periods is given by:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

when j ≥ 2. The sign of the cash flow covariance is sign
(

γ(ξ j−1σ− φj−1λ + γ
σ (1− ξ j−1))

)
.

Hence, the sign of the cash flow covariance is determined by the sign of γ(σξk−1 − φk−1λ + γ
σ (1 − ξk−1)). As

before, this is the risk premium on a debt strip. The first component, γ(ξ j−1σ− φj−1λ), compensates for output risk.

The second component, γ
σ (1− ξ j−1), compensates for interest rate risk. Because the innovations are temporary, the

output component of this risk premium converges to zero. The interest rate risk does not converge to zero; the long

bond is the riskiest asset in an economy with only transitory risk. The transitory nature of output risk broadens the

scope for insurance of taxpayers, but this is counteracted by interest rate risk. As we consider ξ → 1, we revert back to

the expression derived in the benchmark model: γ(σ− φk−1λ). The interest rate risk term disappears.
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Corollary C.4. The cash flow beta of taxes have to satisfy the following restriction.

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

which can be restated as:

covt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kTt+k

)

= −Et[Mt+1]Et+1[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

((γ− σ)ξk−1φk−1λ +
1
2
(φk−1λ)2)

+ φj log dt − φj−1λ((σ− γ)ξ j−1 + γ) +
1
2
(φj−1λ)2)(exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kGt+k

)
.

Quantitative Model Implications We return to our calibrated economy. Figure 13 plots the risk premium

contributions of the surpluses over different horizons j for the benchmark calibration:

−covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kSt+k

)
/Et[Mt+1]

= Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +
γ

σ
(1− ξ j−1)))− 1)

However, the output process no longer has a unit root. At short horizons, the tax claim is safe, contributing negative

risk premium, but the tax claim turns risky over horizons that exceed 10 years.

Figure 13: Risk Premium on Govt. Cash Flows with Transitory Shocks

The figure plots the risk premium contribution of cumulative discounted cash flows (top panel) and the strips (middle panel) against
the horizon. Calibration: φ is 0.75. Other parameters–Benchmark calibration in Table 1.
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D Autocovariances

D.1 Permanent Shocks

Corollary D.1. The conditional autocovariances of the surplus/output ratios are

covt(st+1, st+j)

= exp(2ρ− 2µ + σ2) exp

(
(1 + φj−1)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2(j−1)

1− φ2

)
× (exp(σλφj−2)− 1)

− exp(ρ− µ + .5σ2) exp

(
(φ + φj−1)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2(j−1)

1− φ2 +
1
2

λ2

)
× (exp(λ2φj−2)− 1)

− exp(ρ− µ + .5σ2) exp

(
(1 + φj)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2

)
× (exp(σλφj−1)− 1)

+ exp

(
(φ + φj)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2 +
1
2

λ2

)
(exp(λ2φj−1)− 1),

and the conditional variance of the surplus/output ratio is

vart(st+1) = exp(2ρ− 2µ + σ2) exp(2 log dt)(exp(σ2)− 1)

− 2 exp(ρ− µ + .5σ2) exp
(
(1 + φ)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2
)

× (exp(λσ)− 1)

+ exp
(

2φ(log dt −
φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+ λ2

)
(exp(λ2)− 1)

D.2 Transitory Shocks

Corollary D.2. In the presence of transitory shocks, (a) the conditional autocovariances of the surplus/output ratios

are

covt(st+1, st+j) = exp(2ρ− 2ψ0 + σ2)dt exp(−(ψ− 1)yt)Et[dt+j−1 exp(−(ψ− 1)yt+j−1)]

× (exp(σφj−2(λ + (ψ− 1)σ))− 1)

− exp(ρ− ψ0 + .5σ2)Et[dt+1]Et[dt+j−1 exp(−(ψ− 1)yt+j−1)]

× (exp(λφj−2(λ + (ψ− 1)σ))− 1)

− exp(ρ− ψ0 + .5σ2)dt exp(−(ψ− 1)yt)Et[dt+j](exp(σλφj−1)− 1)

+ Et[dt+1]Et[dt+j](exp(λ2φj−1)− 1)

where the conditional forecasts are

Et[dt+j] = exp

(
φj(log dt −

φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2

)
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and

Et[exp(log dt+j−1 − (ψ− 1)yt+j−1)]

= exp
(

φj−1(log dt −
φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
− (ψ− 1)ψj−1(yt −

ψ0
1− ψ

)− (ψ− 1)
ψ0

1− ψ

+
1
2

j−2

∑
k=0

(φkλ + ψk(ψ− 1)σ)2

)

(b) The conditional variance of the surplus/output ratio is

vart(st+1) = exp(2ρ− 2ψ0 + σ2) exp(2 log dt − 2(ψ− 1)yt)(exp(σ2)− 1)

− 2 exp(ρ− ψ0 + .5σ2) exp
(
(1 + φ)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 − (ψ− 1)yt

)
× (exp(λσ)− 1)

+ exp
(

2φ(log dt −
φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+ λ2

)
(exp(λ2)− 1)

E Proofs

E.1 Proof of Eq. (1) in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019)

Proof. All objects in this appendix are in nominal terms but we drop the superscript $ for ease of notation. The govern-

ment faces the following one-period budget constraint:

Gt − Tt + Q1
t−1 =

H

∑
h=1

(Qh
t −Qh+1

t−1 )Ph
t ,

where Gt is total nominal government spending, Tt is total nominal government revenue, Qh
t is the number of nominal

zero-coupon bonds of maturity h outstanding in period t each promising to pay back $1 at time t + h, and Ph
t is today’s

price for a h-period zero-coupon bond with $1 face value. A unit of h + 1-period bonds issued at t− 1 becomes a unit of

h-period bonds in period t. That is, the stock of bonds evolves of each maturity evolves according to Qh
t = Qh+1

t−1 +∆Qh
t .

Note that this notation can easily handle coupon-bearing bonds. For any bond with deterministic cash-flow sequence,

we can write the price (present value) of the bond as the sum of the present values of each of its coupons.

The left-hand side of the budget constraint denotes new financing needs in the current period, due to primary

deficit G− T and one-period debt from last period that is now maturing. The right hand side shows that the money is

raised by issuing new bonds of various maturities. Alternatively, we can write the budget constraint as total expenses

equalling total income:

Gt + Q1
t−1 +

H

∑
h=1

Qh+1
t−1 Ph

t = Tt +
H

∑
h=1

Qh
t Ph

t ,

We can now iterate the budget constraint forward. The period t constraint is given by:

Tt − Gt = Q1
t−1 −Q1

t P1
t + Q2

t−1P1
t −Q2

t P2
t + Q3

t−1P2
t −Q3

t P3
t

+ · · · −QH
t PH

t + QH+1
t−1 PH

t .

Consider the period-t + 1 constraint,

Tt+1 − Gt+1 = Q1
t −Q1

t+1P1
t+1 + Q2

t P1
t+1 −Q2

t+1P2
t+1 + Q3

t P2
t+1 −Q3

t+1P3
t+1

+ · · · −QH
t+1PH

t+1 + QH+1
t PH

t+1.
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multiply both sides by Mt+1, and take expectations conditional on time t:

Et [Mt+1(Tt+1 − Gt+1)] = Q1
t P1

t −Et[Q1
t+1 Mt+1P1

t+1] + Q2
t P2

t −Et[Q2
t+1 Mt+1P2

t+1] + Q3
t P3

t

−Et[Q3
t+1 Mt+1P3

t+1] + · · ·+ QH
t PH

t

−Et[QH
t+1 Mt+1PH

t+1] + QH+1
t PH+1

t ,

where we use the asset pricing equations Et[Mt+1] = P1
t , Et[Mt+1P1

t+1] = P2
t , · · · , Et[Mt+1PH−1

t+1 ] = PH
t , and

Et[Mt+1PH
t+1] = PH+1

t .

Consider the period t + 2 constraint, multiplied by Mt+1 Mt+2 and take time-t expectations:

Et [Mt+1 Mt+2(Tt+2 − Gt+2)] = Et[Q1
t+1 Mt+1P1

t+1]−Et[Q1
t+2 Mt+1 Mt+2P1

t+2] + Et[Q2
t+1 Mt+1P2

t+1]

−Et[Q2
t+2 Mt+1 Mt+2P2

t+2] + Et[Q3
t+1 Mt+1P3

t+1]− · · ·

+Et[QH
t+1 Mt+1PH

t+1]−Et[QH
t+2 Mt+1 Mt+2PH

t+2]

+Et[QH+1
t+1 Mt+1PH+1

t+1 ],

where we used the law of iterated expectations and Et+1[Mt+2] = P1
t+1, Et+1[Mt+2P1

t+2] = P2
t+1, etc.

Note how identical terms with opposite signs appear on the right-hand side of the last two equations. Adding up

the expected discounted surpluses at t, t + 1, and t + 2 we get:

Tt − Gt + Et [Mt+1(Tt+1 − Gt+1)] + Et [Mt+1 Mt+2(Tt+2 − Gt+2)] = ∑H
h=0 Qh+1

t−1 Ph
t +

−Et[Q1
t+2 Mt+1 Mt+2P1

t+2]−Et[Q2
t+2 Mt+1 Mt+2P2

t+2]− · · · − −Et[QH
t+2 Mt+1 Mt+2PH

t+2].

Similarly consider the one-period government budget constraints at times t + 3, t + 4, etc. Then add up all one-

period budget constraints. Again, the identical terms appear with opposite signs in adjacent budget constraints. These

terms cancel out upon adding up the budget constraints. Adding up all the one-period budget constraints until horizon

t + J , we get:

H

∑
h=0

Qh+1
t−1 Ph

t = Et

 J

∑
j=0

Mt,t+j(Tt+j − Gt+j)

+ Et

[
Mt,t+J

H

∑
h=1

Qh
t+J Ph

t+J

]

where we used the cumulate SDF notation Mt,t+j = ∏
j
i=0 Mt+i and by convention Mt,t = Mt = 1 and P0

t = 1. The

market value of the outstanding government bond portfolio equals the expected present discount value of the surpluses

over the next J years plus the present value of the government bond portfolio that will be outstanding at time t + J.

The latter is the cost the government will face at time t + J to finance its debt, seen from today’s vantage point.

We can now take the limit as J → ∞:

H

∑
h=0

Qh+1
t−1 Ph

t = Et

 ∞

∑
j=0

Mt,t+j(Tt+j − Gt+j)

+ lim
J→∞

Et

[
Mt,t+J

H

∑
h=1

Qh
t+J Ph

t+J

]
.

We obtain that the market value of the outstanding debt inherited from the previous period equals the expected present-

discounted value of the primary surplus stream {Tt+j−Gt+j} plus the discounted market value of the debt outstanding

in the infinite future.

Consider the TVC:

lim
J→∞

Et

[
Mt,t+J

H

∑
h=1

Qh
t+J Ph

t+J

]
= 0.

which says that while the market value of the outstanding debt may be growing as time goes on, it cannot be growing

faster than the stochastic discount factor. Otherwise there is a government debt bubble.
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If the TVC is satisfied, the outstanding debt today, Dt, reflects the expected present-discounted value of the current

and all future primary surpluses:

Dt =
H

∑
h=0

Qh+1
t−1 Ph

t = Et

 ∞

∑
j=0

Mt,t+j(Tt+j − Gt+j)

 .

This is Eq. (1) in the main text.

E.2 Proof of Proposition 2.1

Proof. From the investor’s Euler equation, we know that the expected excess return on the tax claim is given by

Et

[
RT

t+1 − R f
t

]
=
−cov

(
Mt+1, RT

t+1
)

Et Mt+1
=
−cov

(
Mt+1, RT

t+1
)

vart Mt+1

vart Mt+1
Et Mt+1

= βT
t λt,

and we know that the expected excess return on the spending claim is given by:

Et

[
RG

t+1 − R f
t

]
=
−cov

(
Mt+1, RG

t+1

)
Et Mt+1

=
−cov

(
Mt+1, RG

t+1

)
vart Mt+1

vart Mt+1
Et Mt+1

= βG
t λt.

Finally, the expected excess return on the debt is also given by:

Et

[
RD

t+1 − R f
t

]
=
−cov

(
Mt+1, RD

t+1
)

Et Mt+1
=
−cov

(
Mt+1, RD

t+1
)

vart Mt+1

vart Mt+1
Et Mt+1

= βD
t λt.

E.3 Proof of Proposition 2.3

Proof. Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is given by:

St+1 = dtYt exp(r f
t )− dt+1Yt+1, (16)

and the surplus at t + 2 is given by:

St+2 = dt+1Yt+1 exp(r f
t+1)− dt+2Yt+2. (17)

We assume that {St} satisfies the government budget constraint. Next, suppose the government commits to an

arbitrary perturbation of dt+k by ∆t+k(εt+k). Then we know that the new surplus at t + 1 is:

S̃t+1 = exp(r f
t )dtYt − (dt+1 + ∆t+1(εt+1))Yt+1,

and the new surplus at t + 2 is given by:

S̃t+2 = exp(r f
t+1)(dt+1 + ∆t+1(εt+1))Yt+1 − (dt+2 + ∆t+2(εt+2))Yt+2.

Hence, the sum of the discounted perturbed surpluses S̃t+1 + Et+1[Mt+1,t+2S̃t+2] = St+1 + Et+1[Mt+1,t+2St+2] =

−Et+1[Mt+1,t+2dt+2 + ∆t+2(εt+2))Yt+2] is unchanged, because ∆t+2 only depends on εt+2.

We also know that the future surpluses cannot respond to the shock εt+1:

S̃t+2 = exp(r f
t+1)(dt+1 + ∆t+1(εt+1))Yt+1 − (dt+2 + ∆t+2(εt+2))Yt+2,
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and the surplus at t + 3 is given by:

S̃t+3 = exp(r f
t+2)(dt+2 + ∆t+2(εt+2))Yt+2)− dt+3Yt+3.

So, this rule only allows for a state-contingent shock to the surplus in one period, but it zeros out over two periods.

S̃t+1 + exp(−r f
t+1)S̃t+2 = St+1 + exp(−r f

t+1)St+2 does not depend on εt+1). Hence:

(Et+1 −Et)(St+1 + Et+1[Mt+1,t+2St+2]) = 0

Next, suppose the government commits to an arbitrary perturbation of dt+k by ∆t+k(ε
2
t+k). Then we know that the

new surplus at t + 1 is:

S̃t+1 = exp(r f
t )dtYt − (dt+1 + ∆t+1(ε

2
t+1))Yt+1,

and the new surplus at t + 2 is given by:

S̃t+2 = exp(r f
t+1)(dt+1 + ∆t+1(ε

2
t+1))Yt+1 − (dt+2 + ∆t+2(ε

2
t+2))Yt+2,

The surplus at t + 3 is given by:

S̃t+3 = exp(r f
t+2)(dt+2 + ∆t+2(ε

2
t+2))Yt+2)− (dt+3 + ∆t+3(ε

2
t+3))Yt+3.

So, this rule only allows for a state-contingent shock to the surplus in one period, but it zeros out over three

periods. S̃t+1 + Et+1[Mt+1,t+2(S̃t+2 + Et+2[Mt+2,t+3S̃t+3])] = St+1 + Et+1[Mt+1,t+2(St+2 + Et+2[Mt+2,t+3St+3])] does

not depend on εt+1.

Hence, we obtain the following result:

(Et+1 −Et) (St+1 + Et+1[Mt+1,t+2 (St+2 + Et+2[Mt+2,t+3St+3])]) = 0.

The result follows by induction.

E.4 Proof of Proposition 3.1

Proof. We start from the one-period budget constraint:

Tt = Gt − (Dt − R f
t−1Dt−1).

With TVC,

R f
t−1Dt−1 = St + Dt = St +

R f
t Dt

R f
t

= St + Et[exp(mt,t+1)R f
t Dt],

= St + Et[exp(mt,t+1)(St+1 + exp(mt+1,t+2)R f
t+1Dt+1)] = Et[

∞

∑
k=0

Mt,t+kSt+k].

So, this implies that we can state the value of outstanding debt at t:

R f
t Dt = Et+1[

∞

∑
k=0

exp(mt+1,t+1+k)St+1+k] = Et+1[
∞

∑
k=1

exp(mt+1,t+k)St+k]

Dt = Et[exp(mt,t+1)]Et+1[
∞

∑
k=1

exp(mt+1,t+k)St+k]
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Note that Dt is t-measurable,

Dt = Et[
∞

∑
k=1

Mt,t+kSt+k],

and the measurability condition for risk-free debt is satisfied:

(Et+1 −Et)[
∞

∑
k=1

Mt,t+kSt+k] = 0.

Conjecture the pricing of the surplus strip is

Et
[
Mt,t+kYt+k

]
= ξkYt (18)

for k ≥ 0. Then the pricing of the first spending strip is

Et [exp(mt,t+1)Yt+1] = exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− 1)2)Yt,

ξ1Yt = exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt.

Similarly, the pricing of the second spending strip is

Et [exp(mt,t+2)Yt+2] = Et [exp(mt,t+1)Et+1[exp(mt+1,t+2)Yt+2]] ,

= Et [exp(mt,t+1)ξ1Yt+1] ,

ξ2Yt = ξ1Et [exp(mt,t+1 + µ + εt+1)]Yt,

= ξ1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt.

The price of the output strips is given by

Et
[
Mt,t+kYt+k

]
= ξkYt, where

ξk = ξk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2), k ≥ 1

ξ1 = exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2).

We define a k-period surplus strip as a claim to St+k. The price of the surplus strips is given by

Et
[
Mt,t+kSt+k

]
= χkYt, where

χk = χk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2),

χ1 = d
[

1− exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)

]
.

To replicate safe debt, we short dYt risky strips to output next period, and we take a similarly sized long position in the

risk-free. We implement the same strategy for all future output strips. Note that we cannot simply price these strips off

the risk-free yield curve, even though the entire debt is risk-free.

The pricing of the first surplus strip is

Et [exp(mt,t+1)St+1] = Et

[
exp(mt,t+1){−dYt+1

(
1− R f

t exp[−(µ + εt+1)]
)
}
]

,

= −dEt [exp(mt,t+1)Yt+1] + dYtR
f
t Et [exp(mt,t+1)] ,

= −dEt [exp(mt,t+1)Yt+1] + dYt,
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= −d exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt + dYt,

=

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
dYt.

χ1Yt =

[
1− exp(−ρ− 1

2
γ2 + µ +

1
2
(γ− σ)2)

]
dYt.

Similarly, the pricing of the second surplus strip is

Et [exp(mt,t+2)St+2] = Et [exp(mt,t+1)Et+1[exp(mt+1,t+2)St+2]] ,

= Et [exp(mt,t+1)χ1Yt+1] ,

χ2Yt = χ1Et [exp(mt,t+1 + µ + σεt+1)]Yt,

= χ1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2)Yt.

We short a risky strip to output 2 periods from now, and go long in the risk-free. The problem then becomes solving

the fixed-point problem for the sequence zk:

χ2 = χ1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2),

χk = χk−1 exp(−ρ− 1
2

γ2 + µ +
1
2
(γ− σ)2).

This fixed-point problem has a unique solution:

∞

∑
k=1

χk = χ1(1 + K + K2 + . . .) =
1

1− K
χ1 = d,

where K = exp(−ρ− 1
2 γ2 + µ + 1

2 (γ− σ)2). We also have the following TVC:

lim
j→∞

Et

[
mt,t+jDt+j

]
= lim

j→∞
dEt

[
mt,t+jYt+j

]
= 0.

E.5 Proof of Corollary 3.2

Proof. From the gross risk-free rate xpression R f
t+1 = exp(ρ) and the one-period government budget constraint, we get

that:

Tt
Yt

= x− d
(

1− R f
t−1

Yt−1
Yt

)
,

we have that the return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
)Yt+1

(d + x ξ1
1−ξ1

)Yt
,

=
x 1

1−ξ1
Yt+1

(d + x ξ1
1−ξ1

)Yt
+

d exp(ρ)

(d + x ξ1
1−ξ1

)
.

Similarly, the return on the spending claim can be stated as:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1

x ξ1
1−ξ1

Yt
,
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=
x 1

1−ξ1
Yt+1

x ξ1
1−ξ1

Yt
.

Armed with these expressions, we get the following expression for the covariance:

cov(RT
t+1, Mt,t+1) =

x ξ1
1−ξ1

(d + x ξ1
1−ξ1

)
cov(RG

t+1, Mt,t+1),

which also translates to

Et

[
RT

t+1 − R f
t

]
=

x ξ1
1−ξ1

d + x ξ1
1−ξ1

Et

[
RY

t+1 − R f
t

]
.

E.6 Proof of Proposition 4.1: Case of AR(1)

Proof. From

Tt = Gt − (Dt − R f
t−1Dt−1).

This implies that:

Tt
Yt

= x−
(

dt − R f
t−1dt−1

Yt−1
Yt

)
= x−

(
dt − R f

t−1dt−1 exp[−(µ + σεt)]
)

.

Assume that the debt/output ratio evolves according to a martingale process: dt = dt−1 exp(−λεt − (1/2)λ2). To

guarantee risk-free debt, the tax process has to satisfy

Tt
Yt

= x− dt−1

(
dφ−1

t−1 exp(φ0 − λεt − (1/2)λ2)− R f
t−1

Yt−1
Yt

)
,

= x− dt−1

(
dφ−1

t−1 exp(φ0 − λεt − (1/2)λ2)− R f
t−1 exp[−(µ + σεt)]

)
.

The surplus process that results is given by:

St
Yt

= dt−1R f
t−1 exp[−(µ + σεt)]− dφ

t−1 exp(φ0 − λεt −
1
2

λ2).

We conjecture that the price of the surplus strips is given by:

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip is

Et [exp(mt,t+1)St+1] = Et

[
exp(mt,t+1){−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ log dt + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,

= − exp(φ log dt + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,

(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.
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So, we define:

(χ1,t)Yt = dtYt,

(ψ1,t)Yt = exp(φ0 + φ log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.

Similarly the pricing of the k-th surplus strip is

Et
[
Mt,t+kSt+k

]
= Et

[
exp(mt,t+1)Et+1[exp(mt+1,t+k)St+k]

]
,

(χk,t − ψk,t)Yt = Et
[
exp(mt,t+1)(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [exp(mt,t+1)χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ log dt + φ0),

= exp(φ0 + φ log dt − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2),

and where the ψ’s are defined by the following recursion:

ψ2,tYt = Et [exp(mt,t+1)ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ log dt+1 − ρ− 1

2
(γ2 + λ2) + g +

1
2
(γ + λ− σ)2 + µ + σεt+1)

]
,

ψ2,t = exp(−2ρ + φ0 + φφ0 + φ2 log dt −
1
2
(γ2 + φλ2),

− 1
2
(γ2 + λ2) + 2g +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ− σ)2),

= ψ1,t exp(−ρ + φφ0 + (φ2 − φ) log dt −
1
2
(γ2 + φλ2) + µ +

1
2
(γ + λφ− σ)2).

Finally, we note that χk+1,t = ψk,t, so that implies that:

∞

∑
k=1

Et
[
Mt,t+kSt+k

]
= χ1,tYt = Dt,

For some 0 < φ < 1, we have that

Et[exp(mt,t+1)Dt+1] = Et[exp(mt,t+1)Yt+1dt+1],

= dφ
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt,

= exp(κ1) exp(φ log dt)Yt,

where we used the debt/output dynamics. Define κ1 = φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

Et[exp(mt,t+2)Dt+2] = Et[exp(mt,t+1)Et+1[exp(mt+1,t+2)Dt+2]],

= Et[exp(mt,t+1) exp(κ1) exp(φ log dt+1)Yt+1],

= Et[exp(mt,t+1) exp(κ1) exp(φ2 log dt + φφ0 − φλεt+1 −
1
2

φλ2) exp(µ + σεt+1)]Yt,
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= exp(κ1 + κ2) exp(φ2 log dt)Yt.

Define κ2 = φφ0 − ρ− 1
2 (γ

2 + φλ2) + g + 1
2 (γ + φλ− σ)2. Then:

lim
j→∞

Et[exp(mt,t+j)Dt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(φj log dt)Yt,

= lim
j→∞

exp(
φ0

1− φ
− ρj− 1

2
(γ2 j +

λ2

1− φ
) + µj +

j

∑
k=1

1
2
(γ + λφk−1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ
− ρj− 1

2
(γ2 j +

λ2

1− φ
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ and λ. So, this case is similar to

the i.i.d. debt case φ = 0. When λ = 0, dt = exp(φ0) is a constant. Now, assume φ = 1. Then κj = φ0 − ρ− 1
2 (γ

2 +

λ2) + µ + 1
2 (γ + λ− σ)2, and limj→∞ Et[exp(mt,t+j)Dt+j] = limj→∞ exp(∑

j
k=1 κk) exp(log dt)Yt, which is 0 if and only

if φ0 − ρ− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2 < 0.

E.7 Proof of Proposition 4.1: Case of AR(2)

Proof. From

Tt = Gt − (Dt − R f
t−1Dt−1).

This implies that:

St = −
(

dtYt − R f
t−1dt−1Yt−1

)
,

= dt−1R f
t−1Yt−1 − exp(φ0 + φ1 log dt−1 + φ2 log dt−2 − λεt −

1
2

λ2)Yt.

Conjecture the price of the surplus strips is given by

Et
[
Mt,t+kSt+k

]
= (χk,t − ψk,t)Yt.

The pricing of the first surplus strip is

Et [exp(mt,t+1)St+1] = Et

[
exp(mt,t+1){−Yt+1

(
dt+1 − R f

t dt exp[−(µ + σεt+1)]
)
}
]

,

= Et

[
− exp(φ1 log dt + φ2 log dt−1 + mt,t+1 + φ0 − λεt+1 −

1
2

λ2)Yt+1

]
+ dtYt,

= − exp(φ1 log dt + φ2 log dt−1 + φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt + dtYt,

(χ1,t − ψ1,t)Yt =

[
dt − exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)

]
Yt.

We define

(χ1,t)Yt = dtYt,

(ψ1,t)Yt = exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt.
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Similarly the pricing of the k-th surplus strip is

Et
[
Mt,t+kSt+k

]
= Et

[
exp(mt,t+1)Et+1[exp(mt+1,t+k)St+k]

]
,

(χk,t − ψk,t)Yt = Et
[
exp(mt,t+1)(χk−1,t+1 − ψk−1,t+1)Yt+1

]
,

where the χ’s are defined by the following recursion:

χ2,tYt = Et [exp(mt,t+1)χ1,t+1Yt+1] ,

χ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1) exp(−λεt+1 −

1
2

λ2) exp(µ + σεt+1)

]
exp(φ1 log dt + φ2 log dt−1 + φ0),

= exp(φ0 + φ1 log dt + φ2 log dt−1 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2).

and the ψ’s are defined by the following recursion:

ψ2,tYt = Et [exp(mt,t+1)ψ1,t+1Yt+1] ,

ψ2,t = Et

[
exp(−ρ− 1

2
γ2 − γεt+1 + φ0 + φ1 log dt+1 + φ2 log dt − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2 + µ + σεt+1)] ,

ψ2,t = exp(−2ρ + φ0 + φ1φ0 + (φ2
1 + φ2) log dt + φ1φ2 log dt−1 −

1
2
(γ2 + φ1λ2),

− 1
2
(γ2 + λ2) + 2µ +

1
2
(γ + λ− σ)2 +

1
2
(γ + λφ1 − σ)2).

We note that χk+1,t = ψk,t, so this expression can be simplified as follows:

∞

∑
k=1

Et
[
Mt,t+kSt+k

]
= χ1,tYt = Dt

dt = exp(φ1 log dt−1 + φ2 log dt−2 + φ0 − λεt −
1
2

λ2).

Et[exp(mt,t+1)Dt+1] = Et[exp(mt,t+1)Yt+1dt+1],

= dφ
t Et[exp(mt,t+1 − λεt+1 −

1
2

λ2)Yt+1],

= dφ
t exp(φ0 − ρ− 1

2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2)Yt,

= exp(κ1) exp(φ1 log dt + φ2 log dt−1)Yt,

Define κ1 = φ0 − ρ +− 1
2 (γ

2 + λ2) + µ + 1
2 (γ + λ− σ)2.

Et[exp(mt,t+2)Dt+2] = Et[exp(mt,t+1)Et+1[exp(mt+1,t+2)Dt+2]],

= Et[exp(mt,t+1) exp(κ1) exp(φ1 log dt+1 + φ2 log dt)Yt+1],

= Et[exp(mt,t+1) exp(κ1) exp((φ2
1 + φ1φ2 + φ2) log dt + φ1φ0 − φ1λεt+1 −

1
2

φ1λ2) exp(µ + σεt+1)]Yt,

= exp(κ1 + κ2) exp((φ2
1 + φ1φ2 + φ2) exp(log dt)Yt.

Define κ2 = φ1φ0 − ρ− 1
2 (γ

2 + φ1λ2) + µ + 1
2 (γ + φ1λ− σ)2.

lim
j→∞

Et[exp(mt,t+j)Dt+j] = lim
j→∞

exp(
j

∑
k=1

κk) exp(ψj log dt)Yt,
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= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj +

j

∑
k=1

1
2
(γ + λψk−1 − σ)2)Yt,

= lim
j→∞

exp(
φ0

1− φ1 − φ2
− ρj− 1

2
(γ2 j +

λ2

1− φ1 − φ2
) + µj + j

1
2
(γ− σ)2 + C)Yt,

which is 0 if and only if −ρ + µ + 1
2 σ(σ− 2γ) < 0. This equality does not depend on φ and λ. So this case is similar to

the i.i.d. debt case φ = 0. More extremely, when λ = 0, dt = exp(φ0) is a constant. Now, assume φ = 1. Then

κj = φ0 − ρ− 1
2
(γ2 + λ2) + µ +

1
2
(γ + λ− σ)2,

and limj→∞ Et[exp(mt,t+j)Dt+j] = limj→∞ exp(∑
j
k=1 κk) exp(log dt)Yt, which is 0 if and only if φ0 − ρ− 1

2 (γ
2 + λ2) +

µ + 1
2 (γ + λ− σ)2 < 0.

E.8 Proof of Proposition 4.2 : Case of AR(1)

Proof. When the log of the debt/output process follows an AR(1), the surplus/output ratio is given by:

St+1
Yt+1

= exp(r f
t − g− σεt+1 −

∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
)− exp(+φ(−

∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
) + φ0 − λεt+1 −

1
2

λ2).

We assume that r f
t = g. This expression for the surplus/output ratio can be restated as:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
)− exp(−

∞

∑
j=0

φjλεt+1−j +
φ0 − 1

2 λ2

1− φ
).

Next, we compute the derivative of the surplus/output ratio at t + 1:

∂ St+1
Yt+1

∂εt+1
= (λ) exp(g + σεt+1 −

∞

∑
j=0

φjλεt+1−j +
φ0 − 1

2 λ2

1− φ
)− σ exp(−σεt+1 −

∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(

φ0 − 1
2 λ2

1− φ
).

Next, we compute the derivative of the surplus/output ratio at t + 2. The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= −λ exp(−
∞

∑
j=0

φjλεt+1−j +
φ0 − 1

2 λ2

1− φ
) + λφ exp(σεt+1 −

∞

∑
j=0

φjλεt+2−j +
φ0 − 1

2 λ2

1− φ
).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(

φ0 − 1
2 λ2

1− φ
) + λφ exp(

φ0 − 1
2 λ2

1− φ
).

This generalizes to the following expression. For j ≥ 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λφj−1 exp(

φ0 − 1
2 λ2

1− φ
) + λφj exp(

φ0 − 1
2 λ2

1− φ
).
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Assume r f = g. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= λφj−1(φ− 1) exp(d), j > 1,

∂ St+1
Yt+j

∂εt+1
= (λ− σ) exp(d), j = 1.

E.9 Proof of Proposition 4.2: Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that r f
t = g. When

the log of the debt/output process follows an AR(2), the surplus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)− exp(+d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0 :

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(d)).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)− exp(+d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(d) + λ(φ1) exp(d)).

The surplus/output ratio at t + 3 is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j)− λεt+3 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).

This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(+d)) + λψj exp(d)).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(φ1 − 1) exp(d), for j = 2,
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= λ(ψj−1 − ψj−2) exp(d), for j > 2.

E.10 Proof of Proposition 4.2: Case of AR(3)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. We assume that the risk-free

rate equals the growth rate of the economy. When the log of the debt/output process follows an AR(3), the sur-

plus/output ratio is given by:

St+1
Yt+1

= exp(−σεt+1 −
∞

∑
j=0

ρjλεt−j + d)

− exp(+d + φ1(−
∞

∑
j=0

ψjλεt−j) + φ2(−
∞

∑
j=0

ψjλεt−1−j + φ3(−
∞

∑
j=0

ψjλεt−2−j)− λεt+1 −
1
2

λ2).

Next, we compute the derivative of the surplus/output ratio at t + 1, and we evaluate this derivative at εt+j = 0:

∂ St+1
Yt+1

∂εt+1
= + (λ− σ) exp(d)).

The surplus/output ratio at t + 2 is given by:

St+2
Yt+2

= exp(−σεt+2 −
∞

∑
j=0

ρjλεt+1−j + d)

− exp(d + φ1(−
∞

∑
j=0

ψjλεt+1−j) + φ2(−
∞

∑
j=0

ψjλεt−j) + φ3(−
∞

∑
j=0

ψjλεt−1−j)− λεt+2 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+2
Yt+2

∂εt+1
= −λ exp(d)) + λ(φ1) exp(d)).

The surplus/output ratio at t + 3 is given by:

St+3
Yt+3

= exp(−σεt+3 −
∞

∑
j=0

ψjλεt+2−j + d)

− exp(d + φ1(−
∞

∑
j=0

ψjλεt+2−j) + φ2(−
∞

∑
j=0

ψjλεt+1−j + φ3(−
∞

∑
j=0

ψjλεt−j)− λεt+3 −
1
2

λ2).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+3
Yt+3

∂εt+1
= −ψ1λ exp(d) + λ(φ1ψ1 + φ2) exp(µ + d).

We evaluate this derivative at εt+j = 0 to obtain:

∂ St+4
Yt+4

∂εt+1
= −ρ2λ exp(d) + λ(φ1ρ2 + φ2ψ1 + φ3) exp(µ + d).
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This generalizes to the following expression. For j > 2, we obtain:

∂
St+j
Yt+j

∂εt+1
= −λψj−1 exp(d) + λψj exp(µ + d).

Assume r f = µ. Then we obtain the IRF:

∂
St+j
Yt+j

∂εt+1
= (λ− σ) exp(d), for j = 1,

= λ(φ1 − 1) exp(d), for j = 2,

= λ(φ1ψ1 + φ2 − ψ1) exp(d), for j = 3,

= λ(ψj−1 − ψj−2) exp(d), for j > 3.

E.11 Proof of Proposition 5.1: Case of AR(1)

Proof. As a result, we can solve for an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

φjλεt−j +
φ0 − 1

2 λ2

1− φ
.

Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is given by:

St+1 = dtYt exp(r f
t )− exp(φ log dt + φ0 − λεt+1 −

1
2

λ2)Yt+1.

We get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)]

= covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2])

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− φλ))− 1)

Check the proof of Prop. 2.3 to see why the sum of the discounted surpluses drop out, and only the debt issuance term

remains. We get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])
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= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1).

E.12 Proof of Proposition 5.1: case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. As a result, we can solve for

an expression of the log debt/output ratio as a function of the past shocks:

log dt = −
∞

∑
j=0

ψjλεt−j +
φ0 − 1

2 λ2

1− φ1 − φ2
.

where ψj = φ1ψj−1 + φ2ψj−2. Consider a government that only issues risk-free debt. Note that the surplus at t + 1 is

given by:

St+1 = dtYt exp(r f
t )− exp(+φ1 log dt + φ2 log dt−1 + φ0 − λεt+1 −

1
2

λ2)Yt+1.

As a result, we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− 1
2

γ2 +
1
2
(γ + λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

+ exp(−ρ) exp(
1
2
(λ− σ)2 + µ + yt + φ1 log dt + φ2 log dt−1 + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over two periods:

covt(Mt+1, St+1 + Et+1[Mt+1,t+2St+2)]

= covt(Mt+1,−Et+1[Mt+1,t+2dt+2Yt+2])

= −Et[Mt+1]Et+1[Mt+1,t+2dt+2Yt+2](exp(−γ(σ− ψ1λ))− 1)

Check the proof of Prop. 2.3 to see why the sum of the discounted surpluses drop out, and only the debt issuance term

remains. And we get the following expression for the covariance of the discounted surpluses over j periods:

covt(Mt+1,
j

∑
k=1

Et+1[Mt+1,t+jSt+j])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1]Et+1[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1).

E.13 Proof of Corollary ??: Case of AR(1)

Proof. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
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= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kYt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− φj−1λ))− 1)

+ x
j

∑
k=1

Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γσ)− 1)

We substitute for the price of debt strips:

Et[Mt,t+jdt+jYt+j]

= exp(
j

∑
k=1

κk) exp(φj log dt)Yt

= exp(
φ0(1− φj)

1− φ
− ρj− 1

2
(γ2 j +

λ2(1− φj)

1− φ
) + µj +

j

∑
k=1

1
2
(γ + λφk−1 − σ)2) exp(φj log dt)Yt

For j > 1, we obtain the following expression:

Et+1[Mt+1,t+jdt+jYt+j]

= exp(
φ0(1− φj−1)

1− φ
− ρ(j− 1)− 1

2
(γ2(j− 1) +

λ2(1− φj−1)

1− φ
) + µ(j− 1) +

j−1

∑
k=1

1
2
(γ + λφk−1 − σ)2)

exp(φj−1 log dt+1)Yt+1,

and, for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ
) exp(log dt+1)Yt+1.

For j > 1, this simplifies to the following expression:

Et[Mt+1,t+jdt+jYt+j]

= exp(
1− φj

1− φ
(φ0 −

1
2

λ2)− ρ(j− 1)− 1
2

γ2(j− 1) + µj +
j−1

∑
k=1

1
2
(γ + λφk−1 − σ)2)

exp(φj log dt +
1
2
(−φj−1λ + σ)2)Yt.

Note that by a similar logic, the price of the output strips is given by:

Et[Mt+1,t+jYt+j]

= exp(−ρ(j− 1)− 1
2

γ2(j− 1) + µj + (j− 1)
1
2
(γ− σ)2 +

1
2
(σ)2)Yt

To summarize, for j > 1, this implies that we have the following expression:

Et[Mt+1,t+jdt+jYt+j]

= Et[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

1
2
((λφk−1)2 + 2(γ− σ)λφk−1))

exp(φj log dt +
1
2
((φj−1λ)2 − 2σφj−1λ)).
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and for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ
) exp(φ log dt) exp(µ +

1
2

σ2)Yt.

E.14 Proof of Corollary 5.2: Case of AR(2)

Proof. We use ψ(L) to denote the infinite MA representation of the debt/output process. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)∑j

k=1 Mt+1,t+kYt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(σ− ψj−1λ))− 1)

+ x
j

∑
k=1

Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γσ)− 1)

We substitute for the price of debt strips:

Et[Mt,t+jdt+jYt+j]

= exp(
j

∑
k=1

κk) exp(ψj log dt)Yt

= exp(
j

∑
k=1

ψk−1φ0 − ρj− 1
2
(γ2 j +

j

∑
k=1

ψk−1λ2) + gj +
j

∑
k=1

1
2
(γ + λψk−1 − σ)2) exp(ψj log dt)Yt

For j > 1, we obtain the following expression:

Et+1[Mt+1,t+jdt+jYt+j]

= exp(
j−1

∑
k=1

ψk−1φ0 − ρ(j− 1)− 1
2
(γ2(j− 1) +

j−1

∑
k=1

ψk−1λ2) + µ(j− 1) +
j−1

∑
k=1

1
2
(γ + λψk−1 − σ)2)

exp(ψj−1 log dt+1)Yt+1,

and, for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp(
φ0

1− φ1 − φ2
) exp(log dt+1)Yt+1.

For j > 1, this simplifies to the following expression:

Et[Mt+1,t+jdt+jYt+j]

= exp(
j

∑
k=1

ψk−1(φ0 −
1
2

λ2)− ρ(j− 1)− 1
2

γ2(j− 1) + µj +
j−1

∑
k=1

1
2
(γ + λψk−1 − σ)2)

exp(ρj log dt +
1
2
(−ψj−1λ + σ)2)Yt.

Note that by a similar logic, the price of the output strips is given by:

Et[Mt+1,t+jYt+j]
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= exp(−ρ(j− 1)− 1
2

γ2(j− 1) + µj + (j− 1)
1
2
(γ− σ)2 +

1
2
(σ)2)Yt.

To summarize, for j > 1, this implies that we have the following expression:

Et[Mt+1,t+jdt+jYt+j]

= Et[Mt+1,t+jYt+j] exp(
j

∑
k=1

ψk−1(φ0 −
1
2

λ2) +
j−1

∑
k=1

1
2
((λψk−1)

2 + 2(γ− σ)λψk−1))

exp(ψj log dt +
1
2
((ψj−1λ)2 − 2σψj−1λ)),

and for j = 1, we get that:

Et+1[Mt+1,t+jdt+jYt+j] = exp((
φ0

1− φ1 − φ2
) exp(φ1 log dt + φ2 log dt−1) exp(g +

1
2

σ2)Yt.

E.15 Proof of Proposition A.2

Proof. Notice

dTt = d exp(yt) exp(τt) + exp(yt)d exp(τt) + [d exp(yt), d exp(τt)]dt

= Tt((µdt +
1
2

γ2dt + γdZt) + (θ(τ̄ − τt)dt +
1
2
(βτγ)2dt + βτγdZt) + βτγ2dt)

= Tt((µ + θ(τ̄ − τt) +
1
2
(1 + βτ)

2γ2)dt + (1 + βτ)γdZt)

Conjecture

Pτ
t = fτ(τt)Tt

Pg
t = fg(gt)Gt

then

dPτ
t = d fτTt + fτdTt + [d fτ , dTt]dt

= Tt( f ′τdτt +
1
2

f ′′τ β2
τγ2dt) + f ′τ βτγTt(1 + βτ)γdt

+ fτTt((µ + θ(τ̄ − τt) +
1
2
(1 + βτ)

2γ2)dt + (1 + βτ)γdZt)

= Tt

(
f ′τθ(τ̄ − τt) +

1
2

f ′′τ β2
τγ2 + f ′τ βτ(1 + βτ)γ

2 + fτ(µ + θ(τ̄ − τt) +
1
2
(1 + βτ)

2γ2)

)
dt

+ Tt
(

fτ(1 + βτ) + f ′τ βτ
)

γdZt

Substitute into the Euler equation,

0 = A[MtTtdt + dMtPτ
t + MtdPτ

t + [dMt, dPτ
t ]dt]

−1 = −r fτ + f ′τθ(τ̄ − τt) +
1
2

f ′′τ β2
τγ2 + f ′τ βτ(1 + βτ)γ

2 + fτ(µ + θ(τ̄ − τt) +
1
2
(1 + βτ)

2γ2)

− γ fτ(1 + βτ)γ− γ f ′τ βτγ
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We take a continuous time version of Campbell-Shiller approximation (Eraker Shaliastovich (2008)):

drτ
t = log

Pτ
t+dt + Tt+dt

Pτ
t

≈ κτ
0 dt + κτ

1 d log fτ − (1− κτ
1 ) log fτdt + d log Tt

The Euler equation is

0 = A[d exp(mt +
∫ t

0
drτ

k )]

= A[dmt + drτ
t +

1
2
[dmt + drτ

t , dmt + drτ
t ]dt]

Then, we conjecture fτ(τt) = exp(pτ + qττt),

0 = A[dmt + drτ
t +

1
2
[dmt + drτ

t , dmt + drτ
t ]dt]

= A[−(r + 1
2

γ2)dt− γdZt + κτ
0 dt + κτ

1 d log fτ − (1− κτ
1 ) log fτdt + d log Tt

+
1
2
[−γdZt + drτ

t ,−γdZt + drτ
t ]dt]

= −(r + 1
2

γ2) + κτ
0 + κτ

1 qτθ(τ̄ − τt)− (1− κτ
1 )(pτ + qττt) + µ + θ(τ̄ − τt)

+
1
2
((1 + βτ + κτ

1 qτ βτ)γ− γ)2

which implies

r = µ− 1
2

γ2 + κτ
0 + κτ

1 qτθτ̄ − (1− κτ
1 )pτ + θτ̄ +

1
2
((1 + βτ + κτ

1 qτ βτ)γ− γ)2

qτ = − θ

κτ
1 θ + (1− κτ

1 )

Since κτ
1 is a constant close to but lower than 1, and 0 < θ < 1, −1 < qτ < 0. To see this, note

qτ − (−1) =
(1− κτ

1 )(1− θ)

κτ
1 θ + (1− κτ

1 )
> 0.

Similarly, fg(gt) = exp(pg + qggt), where

r = µ− 1
2

γ2 + κ
g
0 + κ

g
1 qgθ ḡ− (1− κ

g
1 )pg + θ ḡ +

1
2
((1 + βg + κ

g
1 qgβg)γ− γ)2

qg = − θ

κ
g
1 θ + (1− κ

g
1 )

Then,

dBt = dPτ
t − dPg

t

= Tt

(
f ′τθ(τ̄ − τt) +

1
2

f ′′τ β2
τγ2 + f ′τ βτ(1 + βτ)γ

2 + fτ(µ + θ(τ̄ − τt) +
1
2
(1 + βτ)

2γ2)

)
dt

+ Tt
(

fτ(1 + βτ) + f ′τ βτ
)

γdZt

− Gt

(
f ′gθ(ḡ− gt) +

1
2

f ′′g β2
gγ2 + f ′gβg(1 + βg)γ

2 + fg(µ + θ(ḡ− gt) +
1
2
(1 + βg)

2γ2)

)
dt

− Gt

(
fg(1 + βg) + f ′gβg

)
γdZt
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The risk exposure of the debt return is

[rB
t , dMt] = −Mtγγ

Bt

(
Tt
(

fτ(1 + βτ) + f ′τ βτ
)
− Gt

(
fg(1 + βg) + f ′gβg

))
= −Mtγγ

Bt

(
Tt fτ (1 + (1 + qτ)βτ)− Gt fg

(
1 + (1 + qg)βg

))

E.16 Proof of Proposition A.3

In this case,

dBt = dPτ
t + dPκ

t − dPg
t

= (...)dt

+ ( fτTt(1 + (1 + qτ)βτ) + fκKt(1 + (1 + qκ)βκ)− fgGt(1 + (1 + qg)βg))γdZt

and the return on the government debt is

rB
t =

(Tt + Kt − Gt)dt + dBt
Bt

The risk exposure of the debt return is

[rB
t , dMt] = −Mtγγ

Bt

(
fτTt(1 + (1 + qτ)βτ) + fκKt(1 + (1 + qκ)βκ)− fgGt(1 + (1 + qg)βg)

)
E.17 Proof of Proposition A.1

Proof. Iterate the debt valuation equation,

lim
u→∞

E0 MuBu = M0B0 + lim
u→∞

E0[
∫ u

0
d(MtBt)] (19)

If the following TVC,

lim
u→∞

E0 MuBu = 0 (20)

is satisfied, then

M0B0 = − lim
u→∞

E0[
∫ u

0
d(MtBt)] = E0[

∫ ∞

0
Mt(Tt − Gt)dt] (21)

or

Bt = Pτ
t − Pg

t (22)

E.18 Proof of Corollary B.1

Proof. From R f
t+1 = ρ exp(ρ) and Tt

Yt
= x− d

(
1− R f

t−1
Yt−1
Yt

)
, we have that the return on the tax claim can be stated as:

RT
t+1 =

PT
t+1

PT
t − Tt

=
(d + x ξ1

1−ξ1
)Yt+1 + (x− d

(
1− R f

t
Yt

Yt+1

)
)Yt+1

(d + x ξ1
1−ξ1

)Yt
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=
x 1

1−ξ1
Yt+1

(d + x ξ1
1−ξ1

)Yt
+

d exp(ρ)

(d + x ξ1
1−ξ1

)
.

Similarly, we have an expression for the return on the spending claim:

RG
t+1 =

PG
t+1

PG
t − Gt

=
x ξ1

1−ξ1
Yt+1 + xYt+1

x ξ1
1−ξ1

Yt
=

x 1
1−ξ1

Yt+1

x ξ1
1−ξ1

Yt
.

As a result, we can state the risk premium as follows:

Et

[
RT

t+1 − R f
t

]
= −

cov
(

Mt+1, RT
t+1
)

Et(Mt+1)
=

x
d(1− ξ1) + xξ1

−cov (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

Et

[
RG

t+1 − R f
t

]
= −

cov
(

Mt+1, RG
t+1

)
Et(Mt+1)

=
1
ξ1

−cov (Mt+1, Yt+1/Yt)

Et(Mt+1)
,

where we have used that ξ1 = exp(−ρ− 1
2 γ2 + g + 1

2 (γ− σ)2) = exp(−ρ− γσ + g + 1
2 σ2).

Then plug in

−covt (Mt+1, Yt+1/Yt)

Et(Mt+1)
=
−covt

(
exp(−ρ− 1

2 γ2 − γεt+1), exp(g + σεt+1)
)

Et(exp(−ρ− 1
2 γ2 − γεt+1))

=
−covt (exp(−γεt+1), exp(σεt+1))

exp(−ρ)
exp(−ρ− 1

2
γ2 + g)

= −(exp(
1
2
(γ2 + σ2))(exp(−γσ)− 1)) exp(−1

2
γ2 + g)

= exp(g +
1
2

σ2)(1− exp(−γσ))

E.19 Proof of Proposition C.3

Proof. Since

St+1 = dtYt exp(r f
t )− dt+1Yt+1,

we get the following expression for the covariance:

covt(Mt+1, St+1) = covt(Mt+1,−dt+1Yt+1)

= −Et[Mt+1dt+1Yt+1] + Et[Mt+1]Et[dt+1Yt+1]

= − exp(−ρ− γ

σ
(ψ− 1)yt −

1
2

γ2 +
1
2
(γ + λ− σ)2 + ξ0 + ξyt + φ log dt

+ φ0 −
1
2

λ2)

+ exp(−ρ− γ

σ
(ξ − 1)yt) exp(

1
2
(λ− σ)2 + ξ0 + ξyt + φ log dt + φ0 −

1
2

λ2)

= −(exp(−1
2

γ2 +
1
2
(γ + λ− σ)2 − 1

2
(λ− σ)2)− 1)Et[Mt+1]Et[dt+1Yt+1]

= −Et[Mt+1]Et[dt+1Yt+1](exp(−γ(σ− λ))− 1).

By the same token, we get the following expression for the covariance of the discounted surpluses over j ≥ 2
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periods:

covt(Mt+1, Et+1[
j

∑
k=1

Mt+1,t+kSt+k])

= covt(Mt+1,−Et+1[Mt+1,t+jdt+jYt+j])

= −Et[Mt+1 Mt+1,t+jdt+jYt+j] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(. . .− γ(ξ − 1)
σ

(1 + ξ + . . . + ξ j−2)yt+1)

exp(φj log dt − φj−1λεt+1 + . . .) exp(ξ jyt + ξ j−1σεt+1 + . . .)] + Et[Mt+1]Et[Mt+1,t+jdt+jYt+j]

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ− γ(ξ − 1)
σ

1− ξ j−1

1− ξ
))− 1)

= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +
γ

σ
(1− ξ j−1)))− 1)

E.20 Proof of Corollary C.4

Proof. Start from the restriction:

covt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kTt+k

)
= −Et[Mt+1]Et[Mt+1,t+jdt+jYt+j](exp(−γ(ξ j−1σ− φj−1λ +

γ

σ
(1− ξ j−1)))− 1)

+ xcovt

(
Mt+1, (Et+1 −Et)

j

∑
k=1

Mt+1,t+kYt+k

)

where

covt
(

Mt+1, (Et+1 −Et)Mt+1,t+kYt+k
)

= Et[Mt+1 Mt+1,t+kYt+k]− Et[Mt+1]Et[Mt+1,t+kYt+k]

= Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1)Mt+1,t+k exp(ξkyt + ξk−1σεt+1 + . . .)]

− Et[Mt+1]Et[Mt+1,t+kYt+k]

= −Et[Mt+1]Et[Mt+1,t+kYt+k](exp(−γ(ξk−1σ +
γ

σ
(1− ξk−1)))− 1).

Next, we conjecture

Et[Mt,t+jdt+jYt+j] = exp(
j

∑
k=1

κ̃k) exp(φj log dt + f jyt)

Note

Et[Mt,t+jdt+jYt+j] = Et[Mt,t+1 exp(
j−1

∑
k=1

κk) exp(φj−1 log dt+1 + f j−1yt+1)]

= Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1) exp(
j−1

∑
k=1

κ̃k)

exp(φj−1(φ log dt + φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + ξyt + σεt+1))]
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So we confirm the conjecture,

exp(κ̃j) = Et[exp(−ρ− γ

σ
(ξ − 1)yt −

1
2

γ2 − γεt+1 + φj−1(φ0 − λεt+1 −
1
2

λ2) + f j−1(ξ0 + σεt+1))]

κ̃j = −ρ− 1
2

γ2 + φj−1(φ0 −
1
2

λ2) + f j−1ξ0 +
1
2
(−γ− φj−1λ + f j−1σ)2

and

f j = −γ

σ
(ξ − 1) + f j−1ξ

= ξ j +
γ

σ
(1− ξ j) =

σ− γ

σ
ξ j +

γ

σ

So, for j > 1,

Et[Mt+1,t+jdt+jYt+j]

= Et[exp(
j−1

∑
k=1

κ̃k) exp(φj−1 log dt+1 + (
σ− γ

σ
ξ j−1 +

γ

σ
)yt+1)]

= exp((−ρ− 1
2

γ2)(j− 1) +
1− φj−1

1− φ
(φ0 −

1
2

λ2) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ− φk−1λ + ((σ− γ)ξk−1 + γ))2

+ φj−1(φ log dt + φ0 −
1
2

λ2) + (
σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(−φj−1λ + ((σ− γ)ξ j−1 + γ))2)

By a similar logic,

Et+1[Mt+1,t+jYt+j]

= exp((−ρ− 1
2

γ2)(j− 1) +

(
1− ξ j−1

1− ξ

σ− γ

σ
+

γ

σ
(j− 1)

)
ξ0

+
j−1

∑
k=1

1
2
(−γ + ((σ− γ)ξk−1 + γ))2 + (

σ− γ

σ
ξ j−1 +

γ

σ
)(ξ0 + ξyt) +

1
2
(((σ− γ)ξ j−1 + γ))2)

So

Et+1[Mt+1,t+jdt+jYt+j]

= Et+1[Mt+1,t+jYt+j] exp(
1− φj

1− φ
(φ0 −

1
2

λ2) +
j−1

∑
k=1

((γ− σ)ξk−1φk−1λ +
1
2
(φk−1λ)2)

+ φj log dt − φj−1λ((σ− γ)ξ j−1 + γ) +
1
2
(φj−1λ)2)

E.21 Proof of Corollary D.1

Proof. We plug in the expressions for the respective surpluses:

St+1
Yt+1

= dt exp(r f
t − µ− σεt+1)− dt+1,

St+j

Yt+j
= dt+j−1 exp(r f

t+j−1 − µ− σεt+j)− dt+j,

76



into the expression for the conditional covariances:

covt(st+1, st+j) = Et[dt exp(r f
t − µ− σεt+1)dt+j−1 exp(r f

t+j−1 − µ− σεt+j)]

− Et[dt exp(r f
t − µ− σεt+1)]Et[dt+j−1 exp(r f

t+j−1 − µ− σεt+j)]

+ Et[−dt+1dt+j−1 exp(r f
t − µ− σεt+j)]−Et[−dt+1]Et[dt+j−1 exp(r f

t − µ− σεt+j)]

+ Et[dt exp(r f
t − µ− σεt+1)×−dt+j]−Et[dt exp(r f

t − µ− σεt+1)]Et[−dt+j]

+ Et[−dt+1 ×−dt+j]−Et[−dt+1]Et[−dt+j].

This expression can be restated as:

covt(st+1, st+j) = dtEt[exp(r f
t − µ− σεt+1)]Et[dt+j−1 exp(r f

t+j−1 − µ− σεt+j)]

× (exp(σλφj−2)− 1)

− Et[dt+1]Et[dt+j−1 exp(r f
t − µ− σεt+j)](exp(λ2φj−2)− 1)

− dtEt[exp(r f
t − µ− σεt+1)]Et[dt+j](exp(σλφj−1)− 1)

+ Et[dt+1]Et[dt+j](exp(λ2φj−1)− 1)

which implies

covt(st+1, st+j) = exp(2ρ− 2µ + σ2)dtEt[dt+j−1](exp(σλφj−2)− 1)

− exp(ρ− µ + .5σ2)Et[dt+1]Et[dt+j−1](exp(λ2φj−2)− 1)

− exp(ρ− µ + .5σ2)dtEt[dt+j](exp(σλφj−1)− 1)

+ Et[dt+1]Et[dt+j](exp(λ2φj−1)− 1)

We have the following expressions for the conditional forecasts:

Et[log dt+j] = exp
(

φj(log dt −
φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ

)
and

Et[dt+j] = exp
(

φj(log dt −
φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
+

1
2

λ2(1 + φ2 + . . . + φ2(j−1))

)
= exp

(
φj(log dt −

φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2

)

We plug these conditional forecasts into the conditional covariances: For j > 1,

covt(st+1, st+j)

= exp(2ρ− 2µ + σ2) exp

(
(1 + φj−1)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2(j−1)

1− φ2

)
(exp(σλφj−2)− 1)

− exp(ρ− µ + .5σ2) exp

(
(φ + φj−1)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2(j−1)

1− φ2 +
1
2

λ2

)
× (exp(λ2φj−2)− 1)

− exp(ρ− µ + .5σ2) exp

(
(1 + φj)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2

)
(exp(σλφj−1)− 1)
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+ exp

(
(φ + φj)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2 +
1
2

λ2

)
(exp(λ2φj−1)− 1)

Also, when j = 1,

vart(st+1) = Et[dt exp(r f
t − µ− σεt+1)dt exp(r f

t − µ− σεt+1)]

− Et[dt exp(r f
t − µ− σεt+1)]Et[dt exp(r f

t − µ− σεt+1)]

+ Et[−dt+1dt exp(r f
t − µ− σεt+1)]−Et[−dt+1]Et[dt exp(r f

t − µ− σεt+1)]

+ Et[dt exp(r f
t − µ− σεt+1)×−dt+1]−Et[dt exp(r f

t − µ− σεt+1)]Et[−dt+1]

+ Et[−dt+1 ×−dt+1]−Et[−dt+1]Et[−dt+1]

= exp(2ρ− 2µ + σ2) exp(2 log dt)(exp(σ2)− 1)

− 2 exp(ρ− µ + .5σ2)dtEt[dt+1](exp(λσ)− 1)

+ Et[dt+1]Et[dt+1](exp(λ2)− 1)

which implies

vart(st+1) = exp(2ρ− 2µ + σ2) exp(2 log dt)(exp(σ2)− 1)

− 2 exp(ρ− µ + .5σ2) exp
(
(1 + φ)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2
)
(exp(λσ)− 1)

+ exp
(

2φ(log dt −
φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+ λ2

)
(exp(λ2)− 1)

E.22 Proof of Corollary D.2

Proof. We plug in the expressions for the respective surpluses:

St+1
Yt+1

= dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)− dt+1,

St+j

Yt+j
= dt+j−1 exp(r f

t+j−1 − ψ0 − (ψ− 1)yt+j−1 − σεt+j)− dt+j,

into the expression for the conditional covariances:

covt(st+1, st+j)

= Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)dt+j−1 exp(r f

t+j−1 − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

− Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]Et[dt+j−1 exp(r f

t+j−1 − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

+ Et[−dt+1dt+j−1 exp(r f
t − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

− Et[−dt+1]Et[dt+j−1 exp(r f
t − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

+ Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)×−dt+j]

− Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]Et[−dt+j]

+ Et[−dt+1 ×−dt+j]−Et[−dt+1]Et[−dt+j].

This expression can be restated as:

covt(st+1, st+j) = dtEt[exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]
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× Et[dt+j−1 exp(r f
t+j−1 − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

× (exp(σφj−2(λ + (ψ− 1)σ))− 1)

− Et[dt+1]Et[dt+j−1 exp(r f
t − ψ0 − (ψ− 1)yt+j−1 − σεt+j)]

× (exp(λφj−2(λ + (ψ− 1)σ))− 1)

− dtEt[exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]Et[dt+j](exp(σλφj−1)− 1)

+ Et[dt+1]Et[dt+j](exp(λ2φj−1)− 1)

which implies

covt(st+1, st+j) = exp(2ρ− 2ψ0 + σ2)dt exp(−(ψ− 1)yt)Et[dt+j−1 exp(−(ψ− 1)yt+j−1)]

× (exp(σφj−2(λ + (ψ− 1)σ))− 1)

− exp(ρ− ψ0 + .5σ2)Et[dt+1]Et[dt+j−1 exp(−(ψ− 1)yt+j−1)]

× (exp(λφj−2(λ + (ψ− 1)σ))− 1)

− exp(ρ− ψ0 + .5σ2)dt exp(−(ψ− 1)yt)Et[dt+j](exp(σλφj−1)− 1)

+ Et[dt+1]Et[dt+j](exp(λ2φj−1)− 1)

where the conditional forecasts are

Et[dt+j] = exp

(
φj(log dt −

φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
+

1
2

λ2 1− φ2j

1− φ2

)

and

Et[exp(log dt+j−1 − (ψ− 1)yt+j−1)]

= exp
(

φj−1(log dt −
φ0 − .5λ2

1− φ
) +

φ0 − .5λ2

1− φ
− (ψ− 1)ψj−1(yt −

ψ0
1− ψ

)− (ψ− 1)
ψ0

1− ψ

+
1
2

j−2

∑
k=0

(φkλ + ψk(ψ− 1)σ)2

)

Also, when j = 1,

vart(st+1) = Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)dt exp(r f

t − ψ0 − (ψ− 1)yt − σεt+1)]

− Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]Et[dt exp(r f

t − ψ0 − (ψ− 1)yt − σεt+1)]

+ Et[−dt+1dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]

− Et[−dt+1]Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]

+ Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)×−dt+1]

− Et[dt exp(r f
t − ψ0 − (ψ− 1)yt − σεt+1)]Et[−dt+1]

+ Et[−dt+1 ×−dt+1]−Et[−dt+1]Et[−dt+1]

which implies

vart(st+1) = exp(2ρ− 2ψ0 + σ2) exp(2 log dt − 2(ψ− 1)yt)(exp(σ2)− 1)

− 2 exp(ρ− ψ0 + .5σ2) exp
(
(1 + φ)(log dt −

φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+

1
2

λ2 − (ψ− 1)yt

)
× (exp(λσ)− 1)
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+ exp
(

2φ(log dt −
φ0 − .5λ2

1− φ
) + 2

φ0 − .5λ2

1− φ
+ λ2

)
(exp(λ2)− 1)

F Notes about Convenience Yields

The government debt portfolio return is the return on a portfolio that goes long in the tax claim and short in the

spending claim:

Et

[
RD

t+1 − R f
t

]
=

PT
t − Tt

Bt − St
Et

[
RT

t+1 − R f
t

]
+

Pλ
t − Tt

Bt − St
Et

[
Rλ

t+1 − R f
t

]
− PG

t − Gt

Bt − St
Et

[
RG

t+1 − R f
t

]
,

where RD
t+1, RT

t+1,Rλ
t+1 and RG

t+1 are the holding period returns on the bond portfolio, the tax claim, and the spending

claim, respectively. We take government spending process, and the debt return process as exogenously given, and we

explore the implications for the properties of the tax claim.

Proposition F.1. In the absence of arbitrage opportunities, if the TVC holds, the expected excess return on the tax claim

is the unlevered return on the spending claim and the debt claim:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
Et

[
RG

t+1 − R f
t

]
+

Dt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
Et

[
RD

t+1 − R f
t

]
− Pλ

t − Kt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
Et

[
Rλ

t+1 − R f
t

]
If we want the debt to be risk-free, then the following equation holds for expected returns:

Et

[
RT

t+1 − R f
t

]
=

PG
t − Gt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
Et

[
RG

t+1 − R f
t

]
− Pλ

t − Kt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
Et

[
Rλ

t+1 − R f
t

]

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
βG

t

− Pλ
t − Kt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
βλ

t .

Suppose we consider the case of a constant spending ratio and a constant convenience yield ratio. Then this implies

that the beta of the tax revenue process is given by:

βT
t =

(PG
t − Gt)− (Pλ

t − Kt

Dt + (PG
t − Gt)− (Pλ

t − Kt)

On the other hand, suppose that the convenience yield seignorage process has a zero beta. Then the implied beta of the

tax revenue process

βT
t =

PG
t − Gt

Dt + (PG
t − Gt)− (Pλ

t − Kt)
,
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which exceeds the beta of the tax revenue without seignorage: βT
t =

PG
t −Gt

Dt+(PG
t −Gt)

. If the seignorage revenue is sufficiently

counter-cyclical, then the government can insure both taxpayers and bondholders at the same time. For example,

consider the case in which the government runs zero primary surpluses in all future states of the world. Then the beta

of the tax revenue is one βT
t = 1, where Dt = Pλ

t − Kt. In this case, the average tax rate is constant: ∆ log τt+1 = 0.
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