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“It’s important to put this on the table: This virus may become just an-

other endemic virus in our communities, and this virus may never go away,” Dr.

Michael Ryan, WHO, May 14, 2020

Efforts to fight the global COVID-19 pandemic comprise medical/scientific activities and

social policies. Medical/scientific activities include pursuit of therapies to accelerate recovery

and reduce the death rate among infected people, as well as development of a safe and

effective vaccine. Social policies aim to reduce the spread of the disease through shutdowns

of business and social activities, social distancing, wearing of face coverings, contact tracing

and quarantine. Such policies have had massive impacts on output and employment that

have led to bitter divisions about how aggressively to pursue these policies and when to relax

them.

As in the burgeoning economics literature, we treat medical/scientific efforts as exogenous

and focus on social policies. We use a version of the SIR model with vital dynamics and

excess deaths to provide the constraints in a planner’s optimal control problem. As in

Alvarez et al. (2020), Piguillem and Shi (2020), and Acemoglu et al. (2020), the planner’s

objective function rewards output and penalizes excess deaths. The key tradeoff facing the

planner is that increased interaction leads to more output, but also more deaths from the

disease. We characterize the optimal solution of this problem and compare it to the outcome

of a “laissez-faire” economy, an economy where the social interaction rate is chosen freely

by individuals, as in the optimization frameworks of Eichenbaum et al. (2020) and Toxvaerd

(2020), or informally as in Cochrane (2020).

A surprising finding of our analysis is that even though it is feasible for the planner to

eradicate the disease by limiting interactions, it is not optimal to do so, even in the long

run. That is, the planner’s optimal policy leads to an endemic equilibrium. Remarkably,

this finding holds no matter how large is the penalty on excess deaths. Nevertheless, it is

optimal for the planner to limit interactions until the random arrival of a cure and vaccine.

Moreover, the planner restricts interactions more than individuals would in a laissez-faire

economy.

Two features distinguish our paper from existing economics literature on pandemics.
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First, by using versions of the SIR model in which there is no entry in the pool of susceptible

people, existing papers (including all of the work cited above, as well as Atkeson (2020),

Berger et al. (2020), and Fernandez-Villaverde and Jones (2020)) preclude the possibility of

endemic equilibria in which the infection share remains positive even in the long run. We

overcome this problem by including vital dynamics (births and non-disease deaths) to al-

low replenishment of the pool of susceptible people, thus opening the possibility of endemic

equilibria. (Alternatively, we could specify that recovered people lose their immunity after

a period of time and become susceptible, which would also open the possibility of endemic

equilibria.) Second, our analysis produces robust theoretical results that do not depend on

specific parameter values, unlike the papers above that typically1 rely on numerical simula-

tions, which, of course, depend on specific parameter values.

1 SIR Model with Population Growth and Excess Deaths

The total population, N , is the sum of susceptible people, S, infected people, I, and recovered

people, R, who are no longer susceptible to the disease. Let φ > 0 be the birth rate per

unit of population per unit of time, µ ≥ 0 be the baseline death rate per unit of population

per unit of time, γ > 0 be the recovery rate per infected person per unit of time and

δ > 0 be the excess death rate of infected people per unit of time. As in conventional SIR

epidemiological models, the flow of new infections per unit of time is βS I
N

, where β > 0

is a contagion parameter reflecting the extent of social and professional interactions. In

this section we treat β as a fixed parameter. From section 2 onward, we treat beta as a

time-varying, choice variable.

The differential equations governing the evolution of S, I, and R are

dS

dt
= φN − µS − βS I

N
(1)

1Toxvaerd (2020) provides analytic results in a laissez-faire context.
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dI

dt
= βS

I

N
− (µ+ δ + γ) I (2)

and

dR

dt
= γI − µR. (3)

Because population can potentially grow without bound, we work with the population shares

s ≡ S
N

, i ≡ I
N

, and r ≡ R
N

, where s + i + r = 1. The change in population per unit time is

gN = φN − µN − δI, which is births, φN , less baseline deaths, µN , and less excess deaths,

δI, so

g = g (i) ≡ φ− µ− δi. (4)

The change in the susceptible share s ≡ S
N

is ds
dt

= 1
N
dS
dt
− gs, so

ds

dt
= φ− βsi− (µ+ g) s. (5)

Similarly,

di

dt
= [βs− (δ + γ + µ+ g)] i (6)

and

dr

dt
= γi− (µ+ g) r. (7)

Since g always appears as g + µ, define the “adjusted growth rate,” Γ, which satisfies

φ− δ ≤ Γ ≡ g + µ = φ− δi ≤ φ. (8)
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Define

R0 ≡
β

δ + γ + Γ
, (9)

which generalizes the basic reproduction rate in a conventional SIR model. R0 depends on

the endogenous growth rate g, so it is endogenous. R0 plays a pivotal role in determining

whether the long-run equilibrium of the economy is a disease-free equilibrium (DFE) with a

zero measure of infected people or an endemic equilibrium (EE) with a positive measure of

infected people.

1.1 Steady-State Equilibria

In a steady state, S, I, R, and N all grow at the rate g, so s, i, and r are constant and

equal s∗, i∗, and r∗, respectively. Throughout, an asterisk (*) denotes steady-state values

of variables. In a steady state, the rates of change of the population shares in (5) - (7) are

zero. In a DFE steady state, s∗ = 1 and i∗ = r∗ = 0, so (4) implies that the population

growth rate is g∗ = φ− µ.

1.1.1. An EE Steady State

An EE steady state has strictly positive values of s∗, i∗, and r∗.

Proposition 1 If R∗0 ≥ 1, then

1. s∗ = R∗−1
0

2. i∗ = Γ∗

γ+Γ∗

(
1−R∗−1

0

)
3. r∗ = γ

γ+Γ∗

(
1−R∗−1

0

)
.

Proof of Proposition 1 . Use (8) and (9) to rewrite (6) as di
dt

=
(
s−R−1

0

)
βi. Consider

two cases for R∗0. Case I: R∗0 = 1, so di
dt

= (s∗ − 1) βi∗ = 0 implies that s∗ = 1 or i∗ = 0.

Thus, the steady state is DFE with s∗ = 1, i∗ = r∗ = 0 and Statements 1 - 3 are satisfied.

Case II: R∗0 > 1. Assume that the steady state is DFE. In the neighborhood of i = 0 and
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s = 1, di
dt

=
(
1−R−1

0

)
βi > 0 so i will not approach 0. Therefore, the steady state is EE

with i∗ > 0 and di
dt

=
(
s∗ −R−1

0

)
βi∗ = 0 so s∗ = R−1

0 (Statement 1). Set ds
dt

= 0 in (5)

to obtain φ − Γs∗ = βs∗i∗ and use s∗ = R∗−1
0 to obtain i∗ =

φR∗0−Γ∗

β
. Set the change in r

in (7) equal to zero to obtain γ i
∗

r∗
= Γ∗, which implies r∗ = γ

Γ∗
i∗. Since s∗ + i∗ + r∗ = 1,

R
∗−1
0 +

(
1 + γ

Γ∗

)
i∗ = 1, so i∗ = Γ∗

γ+Γ∗

(
1−R∗−1

0

)
(Statement 2). Statement 3 follows from

Statement 2 and r∗ = γ
Γ∗
i∗.

Corollary 1 A steady state will be an EE if and only if R∗0 > 1.

Proof of Corollary 1. From Proposition 1, if R∗0 > 1, then i∗ > 0, so the steady state

is EE. If R∗0 = 1, Proposition 1 implies that s∗ = 1 and i∗ = r∗ = 0, so the steady state is

DFE. If R∗0 < 1, then di
dt

in (6) equals zero if and only if i∗ = 0, so the steady state is DFE.

Define the critical value of the contagion parameter β

βc ≡ δ + γ + φ. (10)

The definition in (8) implies i∗ = φ−Γ∗

δ
and, if R∗0 ≥ 1, Statement 2 in Proposition 1

implies i∗ ≤ Γ∗

γ+Γ∗
, so

φ− Γ∗

δ
≤ Γ∗

γ + Γ∗
. (11)

Proposition 2 If β > βc, then

1. R∗0 > 1, so the steady state is EE

2. the steady-state adjusted growth rate, Γ∗ ≡ g∗ + µ, is the positive root of q (Γ) ≡

(β − δ) Γ2 + [(β − δ) (δ + γ)− φβ] Γ− γφβ = 0.

Sketch of Proof of Proposition 2. See Appendix B, which rewrites the inequality in (11)

as a quadratic function of Γ∗ and shows that one root of that function satisfies (8).
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Remark 1 If the birth rate, φ, equals 0, then the roots of q (Γ) = 0 are 0 and − (δ + γ), so

Γ∗ = 0. Therefore, Statement 2 of Proposition 1 implies that i∗ = 0 and the steady state is

DFE, even if R∗0 > 1. As stated in the introduction, if there is no replenishment of the pool

of susceptible people, the steady state cannot be endemic.

Corollary 2 If β ≤ βc then

1. the steady state adjusted growth rate is Γ∗ = φ

2. R∗0 ≤ 1, so the steady state is DFE.

Proof of Corollary 2. From the proof of Proposition 2, q (φ) = (β − βc) δφ. If β = βc,

then q (φ) = 0, and therefore Γ∗ = φ. If β < βc, then q (φ) < 0, and since q (Γ∗) is convex,

the positive root of q (Γ∗) = 0 is greater than φ, which violates the inequality in (8). In

this case, Γ∗ = φ, which satisfies inequalities (B.1) in the proof of Proposition 2 and (8);

therefore i∗ = −Γ∗−φ
δ

= 0.

Proposition 3 If β > βc, then i∗′ (β) > 0.

Proof of Proposition 3. Since the quadratic function q (Γ) is linear in β, it can be written

as q (Γ) = −δΓ2 − δ (δ + γ) Γ + β dq(Γ)
dβ

. Thus q (Γ∗) = 0 implies dq(Γ∗)
dβ

= (Γ∗ + δ + γ) δ
β
Γ∗ =

δΓ∗R−1
0 > 0. Since Γ∗ is the larger root of the convex function q (Γ), q′ (Γ∗) > 0. Therefore,

dΓ∗

dβ
= −dq(Γ∗)/dβ

q′(Γ∗)
< 0. Since Γ∗ = φ− δi∗, di∗

dβ
= −1

δ
dΓ∗

dβ
> 0.

The following Proposition provides a simple upper bound on i∗ that holds for both EE

and DFE steady states.

Proposition 4 0 ≤ i∗ < φ
γ+φ

< 1.

Proof of Proposition 4. If β > βc, then R∗0 > 1 and Statement 2 of Proposition 1 implies

i∗ < Γ∗

γ+Γ∗
≤ φ

γ+φ
< 1. If β ≤ βc, then from Corollary 2, the steady state is DFE so i∗ = 0.

The quantitative analysis in Section 5 uses φ = 0.015 and γ = 12, so Proposition 4

implies i∗ < φ
γ+φ

= 0.0012. Remarkably, this upper bound holds for any finite value of the

contagion parameter β, even arbitrarily large values.
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2 Effect of Public Health Policy on Output

Public health policies aimed at reducing the contagion parameter β, such as those designed

to restrict interaction, can reduce aggregate output. In this section, we specify output as a

function of β.

Define zs as an index of a susceptible person’s social and productive interactions. A

susceptible person’s effective labor is strictly increasing in zs for zs < z and is constant for

z ≥ z. The contagion parameter β is strictly increasing in zs, so we can write effective labor

per susceptible worker as e (β) with e′ (β) > 0 for β < β and e′ (β) ≡ 0 for β ≥ β, where β

is the value of β when zs = z.

Recovered people are not susceptible to the disease, so they do not restrain interactions

below z. Therefore, zr = z and a recovered person’s effective labor is e
(
β
)
.

We assume that infected people are not engaged in production, so the total amount of

effective labor in the economy is L = Se (β) +Re
(
β
)
.

As an example,2 we assume that aggregate output equals AL, where A is the productivity

of an effective unit of labor. Therefore, output per capita is A L
N

= A
(
se (β) + re

(
β
))

, which

we write as

Y (β, s, r) = sy (β) + ry
(
β
)
, (12)

where y (β) ≡ Ae (β) is the output per susceptible person and y
(
β
)
≡ Ae

(
β
)

is output per

recovered person. Differentiating Y (β, s, r) yields

Yβ (β, s, r) = sy′ (β) ≥ 0 (13)

and

Ys (β, s, r) = y (β) ≤ y
(
β
)

= Yr (β, s, r) . (14)

2More generally, if aggregate output F (L,K) is linearly homogeneous in L and K, where K is
the aggregate capital stock, then output per capita is Y

(
β, s, r, KN

)
= 1

N F (L,K) = F
(
L
N ,

K
N

)
=

F
(
se (β) + re

(
β
)
, KN
)
. Therefore, Yβ = FLse

′ (β) ≥ 0, and Ys = FLe (β) ≤ FLe
(
β
)

= Yr. The specifica-
tion in (12) is a special case in which F (K,L) is linearly homogeneous and FK ≡ 0.
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The inequalities in (13) and (14) hold with equality if and only if β = β.

3 Optimal β

As in Alvarez et al. (2020), we assume that there is a constant hazard of a “breakthrough

date,” denoted T , when medical therapies lead to complete and instantaneous recovery of all

infected people and a vaccine prevents any new infections, so that the disease is completely

eradicated. The recovery rate, γ, and the excess death rate, δ, remain constant until T ;

from T onward, i = 0, g (i) = φ− µ, and optimal β = β. Therefore,

NT Ṽ ≡ NT

∫ ∞
T

y
(
β
)
e−(ρ−(φ−µ))(t−T )dt = NT

y
(
β
)

ρ− (φ− µ)
(15)

is the present value, discounted at rate ρ > 0, of aggregate output from date T onward. To

ensure that Ṽ is finite, assume that

ρ > φ− µ. (16)

Before T , the optimal time path of β balances the benefit of reducing β in terms of

reducing excess deaths against the cost of reducing β in terms of lost output. This tradeoff

is reflected in the objective function

max
βu,t≤u≤T

Et

{∫ T

t

Nue
−ρu [Y (βu, su, ru)− ωδiu] du+NT e

−ρ(T−t)Ṽ

}
, (17)

where 0 < ω < ∞ is the weight the planner places on an excess death relative to a unit of

aggregate output per capita.

Using Nu = Nt exp
(∫ u

t
gzdz

)
, the objective function at time t in (17), per unit of popu-

lation, Nt, at time t is

V (st, it, rr) = maxEt

{∫ T

t

e−
∫ u
t (ρ−gz)dz [Y (βu, su, ru)− ωδiu] du+ Ṽ e−

∫ T
t (ρ−gz)dz

}
. (18)
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The value function in (18) satisfies

(ρ− g (i))V (s, i, r) = max
β

 Y (β, s, r)− ωδi

+Vs
ds
dt

+ Vi
di
dt

+ Vr
dr
dt

+ p
(
Ṽ − V (s, i, r)

)
 , (19)

where p is the (assumed constant) hazard rate of the breakthrough date, T . The left side

of (19) is the required return per unit time, which is the growth-adjusted discount rate,

ρ − g (i), multiplied by V . The right side of this equation is the expected return, which

comprises the instantaneous flow of welfare, Y (β, s, r) − ωδi, and the expected change in

V (i, s, r), which consists of the change resulting from changes in the state variables, s,

i, and r, Vs
ds
dt

+ Vi
di
dt

+ Vr
dr
dt

, and the expected change associated with the breakthrough,

p
(
Ṽ − V (s, i, r)

)
.

To obtain expressions for the dynamic behavior of Vj(s, i, r), j ∈ {s, i, r}, differentiate

both sides of (18) with respect to j and use
dVj
dt

= Vjs
ds
dt

+ Vji
di
dt

+ Vjr
dr
dt
. Appendix A shows

that these calculations lead to

(ρ+ µ+ p)Vs = Ys +
dVs
dt

+ βi (Vi − Vs) (20)

(ρ+ µ+ p+ δ)Vi = −ωδ+
dVi
dt

+γ (Vr − Vi)−δ [V − (sVs + iVi + rVr)]−(Vs − Vi) βs (21)

and

(ρ+ µ+ p)Vr = Yr. (22)

In (20), the effective discount rate on the left side is ρ+µ+p. As in models of uncertain

lifetimes going back to Yaari (1965), the effective discount rate includes the rate of pure time

preference, ρ, and the instantaneous hazard rate of death. Here, the hazard rate of death is

the baseline death rate, µ, plus the hazard rate that T will arrive, terminating the regime in

which the disease is present. Thus, the left side of (20) is the required return associated with
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increasing s by one unit. It is equated with the expected return on the right side, which

consists of the output Ys produced by an additional unit of s and the change in valuation

reflecting: (1) the passage of time, dVs
dt

, and (2) the increased hazard of becoming infected,

βi, multiplied by the change in valuation, Vi − Vs, as a person moves from susceptible to

infected. The interpretation of (22) is similar except there is no term reflecting the change

in health status because there are no transitions to susceptibility or infected status from the

recovered status.

The interpretation of (21) is more complicated. On the left side, the effective discount

rate, ρ+µ+ p+ δ, includes δ because a unit increase in i increases excess deaths by δ. The

first three terms on the right side are similar to the terms on the right side of (20): The first

term reflects that a unit increase in i increases deaths by δ, which reduces the flow of welfare

by ωδ; the second term, dVi
dt

, captures the change in Vi with the passage of time; and the

third term, γ (Vr − Vi), is the hazard rate γ of switching from status i to status r, multiplied

by the change in valuation, Vr − Vi, associated with that change. The fourth term reflects

that a unit increase in i reduces the population change by δN , reducing the aggregate flow

of utility by δ ∂
∂N
NV

(
S
N
, I
N
, R
N

)
, which equals3 δ [V − (sVs + iVi + rVr)]. The fifth term,

− (Vs − Vi) βs, reflects an important externality, namely, that an increase in the infection

share i increases by βs the hazard rate that a susceptible person will become infected. The

planner takes account of this externality by including the change in welfare associated with

this new infection − (Vs − Vi) multiplied by βs.

The first-order condition for optimal β is

Yβ (β, s, r) = (Vs − Vi) si. (23)

The left side of (23), Yβ (β, s, r), is the marginal benefit of increasing β, which is the increase

in per-capita output facilitated by an increase in β. The right side of (23) is the marginal

cost of increasing β. A unit increase in β increases the infection rate by si, which reduces

s by si units and increases i by si units, causing V (s, i, r) to fall by (Vs − Vi) si.
3 ∂
∂NNV

(
S
N ,

I
N ,

R
N

)
= V (s, i, r) − sVs (s, i, r) − iVi (s, i, r) − rVr (s, i, r).
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3.1 Steady State Under Optimal Policy

Let β∗ denote the steady-state value of β under the optimal policy.

Lemma 1 If β∗ ≥ βc ≡ δ + γ + φ, then V ∗s − V ∗i is positive and finite.

Sketch of Proof of Lemma 1. The full proof of Lemma 1 in Appendix B uses the steady-

state versions of (20), (21), and (22) and shows that if V ∗s − V ∗i ≤ 0, then β∗ = β. That

proof shows that if β∗ = β, then V ∗s − V ∗i > 0, thereby contradicting V ∗s − V ∗i ≤ 0.

Lemma 1 helps prove the following proposition.

Proposition 5 If β ≥ βc ≡ δ + γ + φ, and ω > 0 is finite, then under the optimal policy,

the steady state is EE.

Proof of Proposition 5. Suppose that, contrary to what is to be proved, the steady state

under optimal policy is DFE, so that s∗ = 1 and i∗ = r∗ = 0. Therefore, since V ∗s − V ∗i > 0

is finite (Lemma 1), the marginal cost of β, (V ∗s − V ∗i ) s∗i∗, equals zero. Since Yβ > 0 for

β < β, the first-order condition for β in (23) implies that β∗ ≥ β > βc, which implies that

i∗ > 0. Therefore, the steady state under optimal policy cannot be DFE and hence is EE.

The first-order condition in (23) along with Yβ
(
β, s∗, r∗

)
= 0 and (Vs − Vi) s∗i∗ > 0 in

an EE steady state imply

Corollary 3 If β ≥ βc ≡ δ + γ + φ and ω > 0 is finite, then β∗ < β.

4 Laissez Faire

In the absence of centralized policy to control β, individual susceptible people may choose

to limit their interactions to reduce their own risks of becoming infected. Consider the

decision of a susceptible person, who knows that in the future she may become infected and

subsequently may recover from the disease. Using backward induction, first consider the

recovered stage of life. The expected present value, discounted at rate ρ, of a recovered
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person’s earnings until the time of her death, or the arrival of T , whichever comes first, is

vR and satisfies

(ρ+ µ+ p) vr = y
(
β
)
. (24)

For an infected person, the effective discount rate, ρ + µ + δ + p, includes the hazard

rate, δ, that the person dies from the disease. Let vI be the value of being in the infected

state. The instantaneous flow of welfare, −ωδ, and the hazard-weighted change in value

when recovering from the disease, γ
(
vR − vI

)
, satisfy

(ρ+ µ+ δ + p) vI = −ωδ + γ
(
vR − vI

)
. (25)

A susceptible person chooses how much to expose herself to infection according to the

Bellman equation

(ρ+ µ+ p) vS = max
β

{
y (β) +

dvS

dt
+ βi

(
vI − vS

)}
, (26)

where, unlike vI and vR, vS is not constant. It depends on the aggregate infection share, i,

which evolves over time. The first-order condition for the maximization in (26) is

y′ (β) = i
(
vS − vI

)
. (27)

Now compare an individual’s vR, vI , and vS with the derivatives of the planner’s value

function Vr, Vi, and Vs, respectively. Comparing (24) with (22) and noting that Yr = y
(
β
)
,

implies that vR = Vr. Similarly, noting that Ys = y (β) and Yβ = sy′ (β) shows that (20) has

the same form as (26) and the first-order condition (23) has the same form as (27), where

Vs corresponds to vS and Vi corresponds to vI .

The optimal values of β in the two problems differ because the expression for vI in (25)

has a different form than the expression for Vi in (21). The last two terms on the right side of

(21) have no counterpart in (25). In addition, the solution Vi of the ODE (21) is a function
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of time, while the solution of (25) is a time-invariant, constant vI . Because vI differs from

Vi, the laissez-faire choice of β differs from the planner’s choice so welfare can be improved

by mandating β rather than relying on individual precaution.

The two terms on the right side of (21) that are responsible for the discrepancy between

Vi and vI are δ [V − (sVs + iVi + rVr)], and (Vs − Vi) βs. The first term is related to the fact

that the planner takes into account the impact of i on population growth. The second term,

(Vs − Vi) βs, reflects an important externality, as discussed earlier. An infected individual

does not internalize the contagion of her infection, while the planner does. This externality

is the fundamental reason that public health policy is useful.

5 Quantitative Behavior Along the Transition Path

This section presents a quantitative illustration of transition paths. We set φ = 0.015, which

is the sum of the annual birth and net immigration rates, and µ = 0.01, the annual death

rate in the United States.4 The values of disease-related parameters are based on the US

experience with Covid-19. We set γ = 12 to reflect that the average person who recovers

was infected for about one month. We set δ = 0.01γ = 0.12 to reflect that infected people

are about 1% as likely to die from the disease as to recover from it. Therefore, the critical

value βc ≡ δ + γ + φ = 12.135. To calibrate β, we use (9) and the fact that δi is so much

smaller than βc to obtain β = (δ + γ + φ− δi)R0 ≈ βcR0, where R0 is the maximal value

of R0 observed at the beginning of the pandemic before any individual actions or any public

health policies to reduce contagion. We use the high end of estimates for R0 across US states

in the last week of February 2020 and set R0 = 3.5, which implies β = 42.473.5 The value

of the discount rate used by the planner and by individuals, ρ, is set to 0.03.

We specify the production function y (β) to be quadratic with maximal value y
(
β
)

nor-

malized to one. Therefore, y (β) = 1 − α
(
β − β

)2
, y′ (β) = 2α

(
β − β

)
for β ≤ β, and the

“output gap” is y
(
β
)
− y (β) = α

(
β − β

)2
. Let ∆ ≡ y

(
β
)
− y (βc) be the reduction in y

4Source: United Nations Population Division, (2015-2020).
5Source: Estimates of the reproductive rate provided by the websites http://rt.live and

http://epiforecasts.io. For instance, rt.live estimates that on February 27, 2020, the effective reproduction
rate of Covid 19 was 3.98 in New Jersey and approximately 3.6 in New York and Illinois.
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when β is reduced from its pre-pandemic level, β, to βc, the level of β at which R0 = 1, which

was approximately the value of the reproductive rate for most states during the second quar-

ter of 2020. We set ∆ = 0.09 to match the 9% drop in output in that quarter. Therefore,

α
(
β − βc

)2
= ∆, which implies α = ∆

(β−βc)
2 . Setting ∆ = 0.09 yields α = 9.779× 10−5.

To calibrate ω we use the concept of “Quality Adjusted Life Year” (QALY), defined as the

value of extending quality life by an extra year. The World Health Organization consensus is

that QALY is 1 - 3 annual GDP per capita.6 Using a discount rate of ρ+µ = 0.03 + 0.01 to

discount the foregone stream of 1 QALY per year over the lost years of life implies that the

present value of the losses from an excess death is 25 QALY. Assigning a value of 2 times

GDP per capita to each QALY implies ω = 50 times GDP per capita. With y
(
β
)

= 1, we

set ω equal to 50.7

Finally, i0, the infection share of the population on the initial day of our simulation

(March 1), is chosen so that the daily excess death count implied by the model matches the

daily Covid-related deaths observed three weeks later (March 22). This calibration implies

δi0
365

= Daily Deaths
population

= 270
330×106

. With δ = 0.12, i0 = 0.0025.

To interpret data on the reproduction rate, we distinguish the basic reproduction rate at

time t, R0,t ≡ βt
γ+φ+Γt

, from the effective reproduction rate at time t, Rt,t ≡ βtst
γ+φ+Γt

, which

is stR0,t, the product of the susceptible share of the population and the basic reproduction

rate. Using Rt,t, (6) can be written as

di

dt
= (Rt,t − 1) (δ + γ + µ+ g) i. (28)

Therefore, the sign of Rt,t − 1 determines whether the infection share, it, is increasing or

decreasing; in contrast, the sign of R∗0 − 1 determines whether the steady state is EE or

DFE, where R∗0 is the steady-state value of R0,t. Since available data typically refer to the

effective reproduction rate, Rt,t, we will focus on that measure in Figure 1. However, near

6Source: “Overview of the ICER value assessment framework and update for 2017-2019”, p. 15, avail-
able at: https://icer-review.org/wp-content/uploads/2018/03/ICER-value-assessment-framework-update-
FINAL-062217.pdf

7Alvarez et al. (2020), citing Hall et al. (2020), set ω = 20, but note that this value “is on the low range of
the estimates in the literature.” Our fundamental result that optimal policy leads to an endemic equilibrium
holds for any positive value of ω.
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the beginning of an epidemic of a new disease, st is very close to one, so the distinction

between R0,t and Rt,t is virtually immaterial.

In Figure 1, the optimal policy scenario (OP) shows the value of Rt,t when the contagion

parameter βt is the socially optimal value determined by the first-order condition in (23)

at each point of time. The laissez-faire scenario (LF) shows the value of Rt,t when the

contagion parameter βt is the laissez-faire value determined by the first-order condition in

(27) at each point of time. Figure 1 also shows data that are estimates of Rt,t for the 50

individual US states.8 The most notable feature of Figure 1 is that scenario OP exhibits

more aggressive policy to fight the disease than scenario LF. Specifically, the values of Rt,t,

which reflect values of βt, are lower in scenario OP than in scenario LF. In particular, during

the first 4-6 weeks, Rt,t is substantially smaller than one in scenario OP and is substantially

higher than one in scenario LF.

Figure 2 shows that under scenario OP, daily excess deaths initially decline and continue

to decline throughout the 5 months shown. In contrast, under scenario LF, daily excess

deaths spike upward abruptly, and after 2-3 months begin to decline very slowly. To illustrate

the quantitative difference under the two scenarios, we find that on May 1, daily excess deaths

are 114 under scenario OP and are 1501 under scenario LF. The data for nationwide daily

excess deaths in Figure 2 resemble scenario LF for the first 6 weeks. Thereafter, daily excess

deaths decline rapidly reflecting the effect of policies instituted by various states.

6 Concluding Remarks

Proposition 5 states that under the socially optimal policy, the steady state is an endemic

equilibrium with a strictly positive measure infection share i∗. To avoid misunderstanding

this finding, it is important to understand what the proposition does not say.

First, the proposition does not imply that public health policies should be abandoned in

the steady state. On the contrary, Corollary 3 states that in the steady state, the optimal

value of β is less than β, which requires restraint on interaction.

8Source: http://rt.live. Data from http://epiforecasts.io imply quantitatively similar values.
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Second, since the steady state under optimal policy is EE, R∗0 > 1 in the steady state.

However, consistent with the comment regarding Corollary 3, R∗0 is less than its unfettered

value, and may, for high values of ω be close to one.

Third, though R0 is greater than one in the steady state, its optimal value can be smaller

than one for a period of time along the transition path to the steady state. In the quantitative

example in Section 5, socially optimal policy immediately decreases R0,t to 0.22. The steady-

state value of i∗ is small, implying δi∗ = 0.006%, which — for a population of 330 million —

amounts to 19, 800 excess deaths annually.

Fourth, while Proposition 5 implies that it is not optimal to eradicate the disease solely

by reducing β, it leaves open the possibility that it is optimal to eradicate the disease by

developing an effective vaccine that is widely used by the population.

Fifth, the finding that optimal policy does not reduce β enough to eradicate the disease

does not depend on the possibility of a medical breakthrough that eliminates the disease.

This finding prevails even if p = 0.

Sixth, the objective function in (17) treats deaths as the only harmful effect of the

disease, though many survivors of the disease may have serious health problems that linger

indefinitely. These non-fatal harmful effects can be incorporated into the objection function

by increasing the value of ω. Since Proposition 5 holds for arbitrarily large ω, increasing ω

will not change the result that under optimal policy, the steady state is EE.
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Appendix

A System of ODEs

Use µ+ g = φ− δi to write equations (5) - (7) as

ds

dt
= φ (1− s)− (β − δ) si (A.1)

di

dt
= [βs− (δ + γ + φ− δi)] i (A.2)

dr

dt
= γi− (φ− δi) r. (A.3)

Differentiate both sides of (19) with respect to s and use dVs
dt

= Vss
ds
dt

+ Vsi
di
dt

+ Vsr
dr
dt

and

(A.1) - (A.3) to obtain

(ρ− g (i))Vs = Ys +
dVs
dt
− (φ+ (β − δ) i)Vs + βiVi − pVs. (A.4)

Use g (i) = φ− µ− δi to obtain

(ρ+ µ+ p)Vs = Ys +
dVs
dt

+ βi (Vi − Vs) . (A.5)

Differentiate both sides of (19) with respect to i and use dVi
dt

= Vis
ds
dt

+ Vii
di
dt

+ Vir
dr
dt

, g (i) =

φ− µ− δi and (A.1) - (A.3) to obtain

(ρ− φ+ µ+ δi)Vi+δV = −ωδ+dVi
dt
−(β − δ) sVs+(βs− (δ + γ + φ− δi) + δi)Vi+(γ + δr)Vr−pVi,

(A.6)
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which can be rearranged to obtain

(ρ+ µ+ p+ δ)Vi = −ωδ+
dVi
dt

+ γ (Vr − Vi)− δ [V − (sVs + iVi + rVr)]− βs (Vs − Vi) . (A.7)

Differentiate both sides of (19) with respect to r and use dVr
dt

= Vrs
ds
dt

+ Vri
di
dt

+ Vrr
dr
dt

,

g (i) = φ − µ − δi, and equations (A.1) - (A.3) and rearrange to obtain (ρ+ µ+ p)Vr =

Yr + dVr
dt

. The only solution of this differential equation consistent with the transversality

condition limt→∞ e
−(ρ+µ+p)tVr = 0 is

(ρ+ µ+ p)Vr = Yr. (A.8)

Equations (A.5), (A.7), and (A.8) can be written as a first-order system of nonhomoge-

neous linear ordinary differential equations with nonconstant coefficients
dVs
dt

dVi
dt

dVr
dt

 = A


Vs

Vi

Vr

− b (A.9)

where

A ≡


ρ+ µ+ p+ βi −βi 0

(β − δ) s ρ+ µ+ p+ δ + γ − δi− βs − (γ + δr)

0 0 ρ+ µ+ p

 (A.10)

and

b ≡


Ys

−δ (V + ω)

Yr

 , (A.11)
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A.1 Steady State

In the steady state, ds
dt

= di
dt

= dr
dt

= dVs
dt

= dVi
dt

= dVr
dt

= 0. Inspection of (A.8) reveals

V ∗r =
Y ∗r

ρ+ µ+ p
. (A.12)

Equation (19) along with Ṽ ≡ y(β)
ρ+µ−φ implies

V ∗ =
Y ∗ − ωδi∗ + p

y(β)
ρ+µ−φ

ρ+ p− g (i∗)
. (A.13)

Using g (i∗) = φ− µ− δi∗, (A.13) implies

V ∗ + ω =
Y ∗ + p

y(β)
ρ+µ−φ

ρ+ p− g (i∗)
+

(
1− δi∗

ρ+ p− (φ− µ) + δi∗

)
ω > 0. (A.14)

Notably, the coefficient on ω in (A.14) is positive, since ρ + p + δi∗ > ρ > φ− µ, where the

second inequality is (16).

Since the off-diagonal elements of the third row of A are zero, the expression for V ∗r in

(A.12) implies

M∗
33

 V ∗s

V ∗i

 =

 Y ∗s

−δ (V ∗ + ω) + (γ + δr∗)V ∗r

 . (A.15)

where

M∗
33 ≡

 ρ+ µ+ p+ β∗i∗ −β∗i∗

(β∗ − δ) s∗ ρ+ µ+ p+ δ + γ − δi∗ − β∗s∗

 (A.16)

is the matrix obtained by deleting the third row and the third column of A and

M∗−1
33 =

1

detM∗
33

 ρ+ µ+ p+ δ + γ − δi∗ − β∗s∗ β∗i∗

− (β∗ − δ) s∗ ρ+ µ+ p+ β∗i∗

 . (A.17)
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Multiply both sides of (A.15) by M∗−1
33 to obtain

 V ∗s

V ∗i

 =
1

detM∗
33

 (ρ+ µ+ p+ δ + γ − δi∗ − β∗s∗)Y ∗s + β∗i∗ [−δ (V ∗ + ω) + (γ + δr∗)V ∗r ]

− (β∗ − δ) s∗Y ∗s + (ρ+ µ+ p+ β∗i∗) [−δ (V ∗ + ω) + (γ + δr∗)V ∗r ]

 ,
(A.18)

which implies

V ∗s − V ∗i =
1

detM∗
33

 (ρ+ µ+ p+ δ + γ − δi∗ − δs∗)Y ∗s
− (ρ+ µ+ p) [−δ (V ∗ + ω) + (γ + δr∗)V ∗r ]

 . (A.19)

Use the fact that δ − δs∗ − δi∗ = δr∗ and (A.12) to simplify (A.19) to obtain

V ∗s − V ∗i =
1

detM∗
33

 (ρ+ µ+ p) [Y ∗s + δ (V ∗ + ω)]

− (γ + δr∗) (Y ∗r − Y ∗s )

 . (A.20)

B Selected Proofs

Proof of Proposition 2. First, prove Γ∗ > 0. Inequality (11) can be written as

f (Γ∗) ≥ 0, (B.1)

where f (z) ≡ z2 + (γ + δ − φ) z − γφ. Since f ′′ (z) > 0 and f (0) = −φγ < 0, the quadratic

equation f (z) = 0 has two real roots, z1 < 0 < z2. Therefore, Γ∗ satisfies (B.1) if and only if

Γ∗ < z1 or Γ∗ > z2. Observe that f (φ− δ) = (φ− δ)2 +(γ + δ − φ) (φ− δ)−φγ = −γδ < 0

so z1 < φ− δ and hence Γ∗ < z1 violates (11). Observe that f (φ) = φ2 + (γ + δ − φ)φ−φγ

= δφ > 0 so that z2 < φ. Therefore, Γ∗ ∈ [z2, φ] satisfies inequalities (B.1) and (11) so

Γ∗ > 0.

(Statement 1) The definition of R∗0 in (9) and the steady-state growth rate g∗ = φ−µ−δi∗

imply that R∗0 = β
δ+γ+µ+g∗

= β
δ+γ+φ−δi∗ = β

βc−δi∗ ≥
β
β∗c
> 1, where the final inequality follows

from the assumption that β > βc. (Statement 2) To calculate Γ∗ when R∗0 ≥ 1, set ds
dt

in (5) equal to zero to obtain φ − Γs∗ = βs∗i∗ and use s∗ = R∗−1
0 from Statement 1 of
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Proposition 1 to obtain i∗ =
φR∗0−Γ∗

β
. Then subtract both sides of this equation from the

corresponding sides of Statement 2 in Proposition 1 and use the definitions of Γ∗ and R0 to

obtain the quadratic equation9 q (Γ∗) ≡ (β − δ) Γ∗2 + [(β − δ) (δ + γ)− φβ] Γ∗ − γφβ = 0.

Since β > βc > δ, q (β) is convex and since q (0) = −γφβ < 0, q (Γ) = 0 has two distinct

real roots Γ1 < 0 < Γ2. Since Γ∗ > 0, ignore Γ1 < 0. To prove that Γ2 < φ, it suffices

to prove q (φ) > 0 since q (0) < 0. Evaluate q (φ) = [(β − δ) (φ+ δ + γ)− φβ − γβ]φ =

[−δ (φ+ δ + γ) + βδ]φ = (β − βc) δφ > 0.

Proof of Lemma 1. First prove that detM∗
33 > 0 is finite. Since all four elements of M∗

33

are finite and since ρ+µ+p+β∗i∗ > 0 and −β∗i∗ ≤ 0, it suffices to prove (a) (β∗ − δ) s∗ ≥ 0

and (b) ρ + µ + p + δ + γ − δi∗ − β∗s∗ > 0. The assumption β∗ ≥ βc ≡ δ + γ + φ implies

β∗ − δ ≥ γ + φ > 0 which proves (a). To prove (b), consider two separate cases: (i) i∗ = 0

and (ii) i∗ > 0. In case (i), i∗ = 0 implies β∗ ≤ βc, which together with the assumption

β∗ ≥ βc implies that β∗ = βc. Therefore, since s∗ = 1, ρ + µ + p + δ + γ − δi∗ − β∗s∗ ≥

ρ + µ + p + δ + γ − βc = ρ + p− (φ− µ) > 0. In case (ii), setting di
dt

in equation (6) equal

to zero implies β∗s∗ = δ + γ + µ+ g∗ = δ + γ + φ− δi∗, so ρ+ µ+ p+ δ + γ − δi∗ − β∗s∗ =

ρ+ p− (φ− µ) > 0. Therefore, detM∗
33 > 0 is finite.

Suppose, contrary to what is to be proved, that V ∗s − V ∗i ≤ 0. Then the first-order

condition for optimal β in (23) implies that β∗ = β. Therefore, using (A.14), which im-

plies that V ∗ + ω > 0 is finite, along with detM∗
33 > 0 finite and (14), which states that

Ys
(
β, s∗, r∗

)
= Yr

(
β, s∗, r∗

)
, together in (A.20) implies that

V ∗s − V ∗i =
1

detM∗
33

(
(ρ+ µ+ p)

[
Ys
(
β, s∗, r∗

)
+ δ (V ∗ + ω)

])
> 0,

which contradicts the supposition that V ∗s − V ∗i ≤ 0. Therefore, V ∗s − V ∗i must be positive.

90 = Γ∗

γ+Γ∗

(
1−R∗−1

0

)
− φR∗

0−Γ∗

β = Γ∗ (β − (γ + δ + Γ∗)) − φ (γ + Γ∗)R∗0 + (γ + Γ∗) Γ∗ = (β − δ) Γ∗ −
φ (γ + Γ∗)R∗0 = (β − δ) (γ + δ + Γ∗) Γ∗ − φ (γ + Γ∗)β = (β − δ) Γ∗2 + [(β − δ) (γ + δ)− φβ] Γ∗ − φβγ ≡
q (Γ∗) .
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Figure 1: The thick lines depict the effective reproduction rate (Rt,t) according to the model
under the optimal policy (OP) and laissez faire (LF) scenarios from beginning of March to
end of July, 2020. The thin lines depict estimated Rt,t for each US state.
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Figure 2: Model-implied daily excess deaths under the optimal policy (OP) and laissez faire
(LF) scenarios. The line “Data” corresponds to the daily excess deaths observed in the US
over this period. The line “Data Excl NY” excludes New York from the computation of
daily excess deaths.
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