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Figure 1: The disconnect between Wall Street and Main Street. Data: S&P500 index and
continued jobless claims (seasonally adjusted). Source: FRED.

1. Introduction

The blue line in Figure 1 shows the acute drop in the S&P 500 once the economic impact of

the Covid-19 shock became apparent. The figure also shows the equally dramatic recovery

of the S&P 500 after the Fed announced its massive policy response (e.g., it cut the policy

rate to zero and pledged close to 20% of GDP in asset purchases and credit support

facilities). Other financial assets show a similar pattern. While the Fed was successful in

reversing the financial meltdown, it did not prevent a collapse in the real economy. The

red line in Figure 1 shows that the US continued jobless claims (inverted scale) declined

substantially and recovered more slowly.1 Beyond the early confusion brought about by

the unique features of the Covid-19 shock, by 2021-Q1 the stock market vastly exceeded

(it had “overshot”) its pre-Covid-19 value, while the economy still exhibited a significant

negative output gap. The policy support remained massive. In fact, by then a debate had

started about whether macroeconomic policy support was excessive and creating frothy

conditions in financial markets.

In this paper, we show that this type of disconnect and asset price overshooting is not

1This disconnect between the quick recovery of financial markets and the sluggish response of the real
economy was the source of much debate, as highlighted by the cover page of The Economist, May 9th,
2020 (“A dangerous gap: The markets v the real economy”).
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necessarily anomalous: in fact, it is a general feature of well managed recessions. For this

purpose, we develop a New-Keynesian model with the key feature that asset prices affect

aggregate demand with a lag. In this environment, when there is a current or anticipated

output gap, optimal monetary policy overshoots asset prices (i.e., significantly reduces dis-

count rates to increase asset prices) and induces a temporary disconnect between markets

and the economy.

Our model is set in continuous time. Output is determined by aggregate demand due

to nominal rigidities. Aggregate demand depends on asset prices through a wealth effect

on consumption. The key ingredient is that individual agents adjust their consumption in-

frequently, driven by a Poisson process that is independent across individuals. Therefore,

aggregate asset prices (e.g., stocks, bonds, and houses) affect consumption with a trans-

mission lag, consistent with empirical evidence (see, e.g., Chodorow-Reich et al. (2021)).

Monetary policy affects aggregate demand through its impact on asset prices; thus, the

policy also affects consumption and aggregate demand with a lag. The central bank sets

discount rates to minimize output gaps, taking transmission lags into account.2

We focus on a “recovery” scenario in which aggregate demand, dragged down by a

recent history of poor economic conditions, is initially below potential output. Over

time, demand gradually catches up with potential output and closes the negative output

gap. In this context, our main result shows that the equilibrium features asset price

overshooting: aggregate asset prices are initially high (above their levels consistent with

potential output) even though output is low. A central bank that dislikes output gaps

boosts asset prices to close the output gap as fast as possible. This boost creates a

large, temporary disconnect between financial markets and the real economy, but it also

accelerates the recovery. In fact, the asset price boost (and its disconnect with the real

economy) is largest at the beginning of the recovery phase, when the output gap is widest.

In an appendix, we show that the policy also overshoots asset prices when the output gap

is not currently negative but policymakers anticipate it will turn negative in the future

(e.g., when the economy is experiencing a sharp but temporary decline in potential output

as in the early stages of the Covid-19 recession).

Our baseline setting features fully sticky prices, but we also consider the case in which

prices are partially flexible. In this case, inflation is endogenous and determined by a

New-Keynesian Phillips curve. We find that the central bank overshoots real asset prices

2In a recent speech, Federal Reserve Chairman Powell emphasized the importance of transmission lags:
“Finally, we continue to believe that monetary policy must be forward looking, taking into account. . .
the lags in monetary policy’s effect on the economy”(Powell (2020)).
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by even more than in our baseline setting to fight the disinflationary pressure that results

from negative output gaps. Since overshooting closes output gaps more quickly, it also

weakens the relationship between inflation and the output gap. Thus, an increase in

the central bank’s willingness to overshoot asset prices provides one explanation for the

weakening of the Phillips curve relation observed in recent decades (see, e.g., Stock and

Watson (2019)). We also show that the optimal policy in our model is consistent with

the monetary policy rules used in practice. For instance, a Taylor-type rule overshoots

real asset prices as long as the interest rate is suffi ciently sensitive to the output gap or

inflation; and a greater sensitivity to either gap induces more overshooting.

Next, we quantify the policy-induced overshooting driven by risk-free rates, focusing

on the Covid-19 recession.3 To facilitate this exercise, we decompose the aggregate as-

set price in our setting into a “market-bond portfolio”– driven by forward interest rate

changes, and a “residual”– driven by expected cash flows and other factors. The market-

bond portfolio captures the policy support to asset prices through risk-free rates. The

price of this portfolio increased substantially during the Covid-19 recession (close to the

observed increase in stock and house prices). Moreover, while the boom of the market-

bond portfolio in 2020 can be partly a response to the temporary rise in the aggregate

risk premium, its boom later in the recovery more closely resembles the policy-induced

overshooting in our model. We then calibrate the model to benchmark the observed asset

price overshooting and to assess its impact on the path of recovery. The data and our

calibration suggest that monetary policy overshot asset prices in the Covid-19 recession

significantly more than implied by a Taylor-rule benchmark, and that this additional

overshooting substantially accelerated the recovery.

In the last section of the paper we introduce a lower-bound constraint on the discount

rate that restricts the central bank’s ability to achieve a desired level of overshooting.

While this constraint was less binding during the Covid-19 recession, where central banks

were less (politically) constrained to implement LSAPs and other unconventional policies,

it has been (and is likely to remain) a significant constraint for more typical recessions

in a low interest rate environment. This lower-bound constraint not only slows down the

recovery but it also makes overshooting non-monotonic over time. When the economy

starts with a suffi ciently negative output gap, the asset price boost starts low (due to

the constraint), becomes greater as the economy recovers (and the constraint is relaxed),

3While central banks can also have a large impact on the risk premium through unconventional policies
and commitments (and these actions were crucial during the Covid-19 recession), we focus on risk-free
rates because: (i) they can be directly measured from the data and; (ii) we estimate that the wealth effect
they generated accounted for most of the accumulated rise in households’wealth before our calibration
target (2021-Q1).
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and becomes smaller again as the economy approaches full recovery and the discount

rate liftoff. This non-monotonicity provides one explanation for the fact that the impact

of macroeconomic news on stock prices depends on the stage of the business cycle (e.g.,

McQueen and Roley (1993); Boyd et al. (2005); Andersen et al. (2007); Law et al. (2019)).

In this context, good news about aggregate demand is good news for asset prices early in

the recovery, but bad news once the output gap is small.

Literature review. The concept of an overshooting asset price in response to monetary

policy actions was introduced by Dornbusch (1976). While our model shares the sticky

prices and sluggish aggregate demand in his model, our overshooting result is a feature of

optimal monetary policy rather than the implication of an arbitrage condition. The policy

setup in Caballero and Lorenzoni (2014) is closer to our paper. Their small open economy

model starts in an overvaluation phase (abnormally high demand for nontradables), and

randomly transitions to a normal phase. The optimal policy in their setting is to reduce

the overvaluation in the first phase and to overshoot the exchange rate at the transition,

both with the goal of relaxing an export sector’s financial constraint. The optimal policy

also induces overshooting in our model, but for a different reason: to stimulate output in

an environment with nominal rigidities and sluggish adjustment of aggregate demand.

Like in Caballero and Simsek (2020, 2021a,b), monetary policy in our model operates

through financial markets. The central bank affects asset prices, which in turn affects ag-

gregate demand. The distinctive feature of this paper is the delayed response of aggregate

demand to asset prices. In the context of the Covid-19 recession, Caballero and Simsek

(2021a) provides an explanation for the large decline in asset prices and highlights the

key role of LSAPs in reversing that decline, and this paper provides a rationale for the

subsequent Wall/Main Street disconnect (see Figure 1).

Our asset-price decomposition in the context of the Covid-19 recession is related to

recent work by Van Binsbergen (2020); Knox and Vissing-Jorgensen (2021). Our market-

bond portfolio is the same as the duration-matched fixed-income portfolio analyzed by

Van Binsbergen (2020). We focus on the price change of this portfolio, which is central

for our analysis, whereas Van Binsbergen (2020) focuses on the total return. Likewise,

Knox and Vissing-Jorgensen (2021) focus on the total return of the stock market and

provide a more general asset-price decomposition that incorporates the risk-premium and

cash-flow news, in addition to the safe rate news that we analyze. For the Covid-19

recession, Knox and Vissing-Jorgensen (2021) find that the initial decline in stock prices

is driven by an increase in the risk premium, but the subsequent recovery and the boom are

heavily influenced by declining interest rates, consistent with our findings. More broadly,
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a growing empirical literature analyzes the stock price changes after the Covid-19 shock

and finds a large role for monetary policy (see, e.g., Gormsen and Koijen (2020)).4

Our paper is also part of a theoretical New-Keynesian literature (see Woodford (2011);

Galí (2015) for reviews). A strand of this literature analyzes optimal monetary policy in

environments with transmission lags as in our model (see Svensson (2003); Svensson and

Woodford (2007)). The literature typically uses these lags to compare the performance

of different monetary policy rules (such as instrument and targeting rules), whereas we

focus on the asset pricing implications of optimal policy with lags. We also relate the

optimal policy in our environment to Taylor-type policy rules (e.g., Taylor (1993, 1999)).

In terms of the model’s ingredients, this paper is related to and supported by an

extensive empirical literature documenting that: (i) monetary policy affects asset prices

(e.g., Jensen et al. (1996), Thorbecke (1997), Jensen and Mercer (2002), Rigobon and

Sack (2004), Ehrmann and Fratzscher (2004), Bernanke and Kuttner (2005), Bauer and

Swanson (2020))– these papers find that, on average, an unanticipated 100 bps increase in

the policy rate or the one-year treasury yield is associated with a decrease in stock market

returns in the range of 5% to 7%; (ii) asset prices affect aggregate demand and output

(e.g., Davis and Palumbo (2001), Dynan and Maki (2001), Gilchrist and Zakrajšek (2012),

Mian et al. (2013), Kyungmin et al. (2020), Di Maggio et al. (2020), Chodorow-Reich et al.

(2021), Guren et al. (2021))– these papers find wealth and balance sheet effects in the

range of 3—10 cents on the dollar depending on the sample and the specific asset price;5

(iii) the effect of asset prices on aggregate demand and output is gradual (e.g., Davis and

Palumbo (2001); Dynan and Maki (2001); Lettau and Ludvigson (2004); Carroll et al.

(2011); Case and Shiller (2013); Chodorow-Reich et al. (2021))– these papers find that

consumption typically takes about two years to fully adjust to stock price changes.

A central feature of our model is the infrequent adjustment of individual consumption

(aggregate demand). An extensive literature on durables’consumption (and investment)

uses fixed adjustment costs to explain this feature. This literature documents infrequent

adjustment in microeconomic data, and explains the inertia it introduces for aggregate

durables’ consumption and investment (see Bertola and Caballero (1990) for an early

survey). There is also a literature that emphasizes infrequent re-optimization for broader

4Several studies find that unconventional monetary policies (which we discuss in Section 4) also had a
large positive impact on asset prices (e.g., Fed (2020); Cavallino and De Fiore (2020); Arslan et al. (2020);
Haddad et al. (2021)). Other studies analyze the broader set of factors that drive asset prices during the
Covid-19 recession (e.g., Ramelli and Wagner (2020); Landier and Thesmar (2020); Baker et al. (2020);
Davis et al. (2021b,a)).

5In addition, Cieslak and Vissing-Jorgensen (2020) show that the Fed pays attention to the stock
market, mainly because policymakers believe the stock market affects the economy through a wealth
effect.
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consumption categories– due to behavioral or informational frictions– and uses this fea-

ture to explain the inertial behavior of aggregate consumption (e.g., Caballero (1995); Reis

(2006)) as well as asset pricing puzzles (e.g., Lynch (1996); Marshall and Parekh (1999);

Gabaix and Laibson (2001)). We take the infrequent adjustment of individual consump-

tion as given (driven by a Poisson process for simplicity) and study its implications for

optimal monetary policy.

Finally, as we discuss in Section 5, our results with constrained monetary policy shed

some light on the empirical literature documenting that the asset price impact of macro-

economic news depends on the stage of the business cycle.

The rest of the paper is organized as follows. Section 2 introduces our baseline model

and establishes our main overshooting result. Section 3 analyzes asset price overshooting

with endogenous inflation. Section 4 quantifies the extent and the impact of asset price

overshooting in the Covid-19 recession driven by risk-free rates. Section 5 analyzes asset

price overshooting with a discount rate lower-bound. Section 6 provides final remarks.

Appendices A-C contain omitted derivations, extensions, and data sources, respectively.

2. A model with transmission lags

In this section, we describe our baseline model, define the equilibrium, and establish

our main results. We focus on a recovery scenario following a recessionary shock to the

economy, when aggregate demand is below potential output. We show that, when asset

prices affect aggregate demand with transmission lags, optimal monetary policy during

the recovery overshoots asset prices. We keep the baseline model simple and discuss

various extensions at the end of the section.

2.1. Environment and equilibrium

Our model is a continuous-time variant of the textbook New-Keynesian model presented

in Galí (2015). The key difference is the sluggish adjustment of demand to asset prices.

For analytical tractability, we assume there are two types of agents denoted by super-

script i = s (“stockholders”) and i = h (“hand-to-mouth households”). Our focus is on

the stockholders, whose sluggish response to asset prices drives aggregate demand. Stock-

holders own all financial assets (claims on firms’profits) but do not supply any labor.

Hand-to-mouth households supply labor (endogenously) and spend all of their income in

each period. We introduce these additional agents to decouple stockholders’consumption

problem from the labor supply.
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Supply side and nominal rigidities. Time t ≥ 0 is continuous and there is no uncer-

tainty. There is a single factor, labor, supplied elastically by hand-to-mouth households.

They have the per-period utility function logCh (t)− χL(t)
1+ϕ

1+ϕ
, which leads to a standard

labor supply curve relegated to Appendix A.1.

A competitive final goods producer combines the intermediate goods according to

the CES technology, Y (t) =
(∫ 1

0
Y (t, ν)

ε−1
ε dν

)ε/(ε−1)
for some ε > 1. A continuum of

monopolistically competitive firms, denoted by ν ∈ [0, 1], produce the intermediate goods

subject to the Cobb-Douglas technology

Y (t, ν) = AL (t, ν)1−α ,

where 1 − α denotes the share of labor. Notice that the intermediate good firms make
pure profits due to their monopoly power. To simplify the distribution of output across

factors, we assume the government taxes part of these profits (lump-sum) and redistributes

to workers (lump-sum) so that workers earn and spend their production share of output,6

Ch (t) = (1− α)Y (t) . (1)

With these assumptions, the equilibrium labor supply without nominal rigidities solves

χ (L∗)1+ϕ = ε−1
ε
(see Appendix A.1). We refer to L∗ as the potential labor supply and

Y ∗ = A (L∗)1−α as potential output.

Set against this flexible-prices benchmark, our intermediate good firms have, for now,

fully sticky nominal prices (we endogenize inflation in Section 3). Since the intermediate

goods producers operate with a markup, they find it optimal to meet the demand for

their good, even when this demand deviates from potential output (for relatively small

deviations, which we assume). Therefore, output is determined by aggregate demand,

which depends on the consumption of stockholders and hand-to-mouth households:

Y (t) = Cs (t) + Ch (t) . (2)

Combining this with Ch (t) = (1− α)Y (t) from Eq. (1), we obtain

Y (t) =
Cs (t)

α
. (3)

6Formally, letting T (t) denote the appropriate transfer, hand-to-mouth agents’income isW (t)L (t)+

T (t) = (1− α)Q (t)Y (t), where W (t) is the nominal wage and Q (t) =
(∫

Q (t, ν)
1−ε

dν
)1/(1−ε)

is the

nominal price of the final good. Q (t, ν) denotes the nominal price of good ν.
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Hand-to-mouth households create a multiplier effect, but output is ultimately determined

by stockholders’ spending, Cs (t).

Demand side with sluggish adjustment. In financial markets, there are two assets.

First, there is a “market portfolio”that is a claim on firms’profits, αY (t) (the production

share of capital). We let P (t) and R (t) denote the real price and the real discount rate

of the market portfolio. Since there is no risk, by no arbitrage the discount rate satisfies

R (t) =
αY (t) + Ṗ (t)

P (t)
. (4)

Second, there is a risk-free asset in zero net supply with real interest rate Rf (t). The

central bank controls Rf (t) by setting the nominal interest rate. Since there is no inflation

(for now), the nominal and the real interest rates are the same. Since there is no risk, the

interest rate and the discount rate are also the same, Rf (t) = R (t). Going forward, we

drop Rf (t) from the notation and assume the central bank directly controls the discount

rate. We discuss how the risk premium would affect our analysis in Section 2.3.4.

There is a continuum of identical stockholders that own the market portfolio and make

a consumption-savings and a portfolio choice. These stockholders have time-separable log

utility, with discount rate ρ. If there were no other frictions, stockholders would spend a

constant fraction of their wealth, Cs (t) = ρP (t). Assuming the central bank sets the asset

return to target an output level equal to its potential, and using Eq. (3), the economy

would immediately reach a steady-state consistent with the flexible-prices benchmark:

Y (t) = Y ∗, Cs (t) = Cs,∗ = αY ∗ (5)

R (t) = R∗ = ρ and P ∗ =
αY ∗

ρ
.

We depart from this environment by assuming that stockholders do not continuously

adjust their allocations. This is our key friction: At every instant, a random fraction of

stockholders adjusts, with constant hazard θ. Their allocations remain unchanged until

the next time they have a chance to adjust. Formally, there is a representative stockholder

whose wealth equals aggregate wealth, P (t). When adjusting, this stockholder chooses

her new consumption level according to the following rule:

cs,adj (t) = mp (t) + ny (t) . (6)

Here, x (t) = log
(
X(t)
X∗

)
is the log-deviation of the corresponding variable from its potential
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level in (5). The parameters, m,n ∈ (0, 1), capture the sensitivity of consumption to asset

prices and output. Individual stockholders follow a similar rule scaled by their wealth.7

We adopt the consumption rule in (6) to simplify the exposition. When m = 1 and

n = 0, we have the optimal rule of a continuously-adjusting stockholder, cs,adj (t) =

p (t) (equivalently, Cs,adj (t) = ρP (t)). This rule, however, is not optimal for a sluggish

stockholder who incorporates the fact that she might not get to adjust in future periods.

In Appendix B.1, we show that the optimal (log-linearized) consumption rule is given

by (6) with appropriate weights m,n (see Section 2.3.2). The weights are endogenous

to the dynamic equilibrium path but exogenous to monetary policy decisions (as long as

the central bank sets discount rates without commitment, which we assume). We do not

focus on this case and instead treat m,n as exogenous parameters to avoid fixed-point

arguments that are orthogonal to our main contributions. In Appendix B.1, we show that

our main result also holds with the optimal consumption rule.

Recall that stockholders adjust with constant hazard θ. Assuming that the adjusting

stockholders are randomly selected, stockholders’total spending follows

Ċs (t) = θ
(
Cs,adj (t)− Cs (t)

)
.

Hence, total spending increases if and only if the adjusted spending exceeds the current

level of spending, Cs (t). Log-linearizing around the potential steady-state, we obtain

ċs (t) = θ
(
cs,adj (t)− cs (t)

)
.

Using Eqs. (3) and (6), the output gap follows

ẏ (t) = θ (mp (t) + ny (t)− y (t)) . (7)

The initial output gap, y (0) = cs (0), is exogenous (determined by an unmodeled history).

The asset price gap, p (t), affects the output gap, but with a lag.

For symmetry, we assume stockholders are also sluggish with respect to their portfolio

choices, although this does not play any role in our analysis. Specifically, Eq. (4) also

holds with sluggish stockholders. Given these returns, the stockholders that adjust are

7Formally, let ai (t) denote a stockholder’s wealth and αi (t) = ai(t)
P (t) denote her wealth share. A stock-

holder with wealth share αi (t) follows the rule Ci,adj (t) = Cs,∗αi (t) exp (mp (t) + ny (t)). Aggregating
across all adjusting stockholders, we obtain (6) since wealth shares satisfy

∑
i α

i (t) = 1. With this rule,
there might be paths along which some stockholders’wealth becomes zero, e.g., if the stockholder does
not readjust for a long time. If this happens, the budget constraint binds and consumption falls to zero.
We ignore these paths since we focus on relatively small shocks and log-linearized dynamics.
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indifferent to changing their portfolios. We assume all stockholders invest all of their

wealth in the market portfolio, which ensures market clearing. We also log-linearize Eq.

(4) around the potential levels in (5), to obtain

r (t) =
ρ

1 + ρ
(y (t)− p (t)) +

1

1 + ρ
ṗ (t) . (8)

Here, r (t) ≡ log 1+R(t)
1+ρ

is the log-deviation of the gross discount rate from its potential.

Eq. (8) is a continuous time version of the standard Campbell-Shiller approximation.

Monetary policy. The central bank implements a path of output, asset price, and

discount rate gaps, [y (t) , p (t) , r (t)]t∈(0,∞), that satisfy Eqs. (7) and (8) given y (0).

We can think of the central bank as targeting a path of output and asset price gaps,

[y (t) , p (t)]t∈(0,∞), that satisfy Eq. (7) given y (0). Then Eq. (8) describes the equilibrium

rate path, [r (t)]t∈(0,∞), that the central bank needs to set to achieve its target.

We assume the central bank’s objective function is

V (0, y (t)) =

∫ ∞
0

e−ρt
(
−1

2
y (t)2 − ψ

2
p (t)2

)
dt. (9)

As usual, the central bank dislikes output gaps, y (t). We assume a quadratic cost function,

which leads to closed-form solutions. In addition, the central bank also dislikes asset price

gaps, p (t). In the limit ψ → 0, we have the conventional setup in which the central bank

does not (directly) pay attention to asset prices. Our main results hold in this conventional

limit, but optimal policy overshoots asset prices by an extreme amount. In practice, a

large asset price overshooting could lead to a number of concerns that range from financial

stability (e.g., high asset prices can increase the risk of a collapse) to wealth redistribution

(e.g., high asset prices can increase inequality). We capture these types of concerns with

the parameter ψ > 0, which we refer to as “aversion-to-overshooting.”The central bank’s

discount rate is the same as that of the stockholders, ρ.

Finally, we assume the central bank sets the current policy without commitment: that

is, it sets the current asset price gap p (t), taking the path of future gaps as given. In this
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case, the central bank’s policy problem can be formulated recursively as8

ρV (y) = max
p
−y

2

2
− ψp

2

2
+ V ′ (y) ẏ, (10)

ẏ = θ (mp− (1− n) y) ,

V (y) ≤ 0 and V (0) = 0.

The constraints in the last line follow from the objective function in (9) and ensure that we

pick the correct solution to the recursive problem. We define the equilibrium as follows.

Definition 1. A (log-linearized) equilibrium with optimal monetary policy,

[y (t) , p (t) , r (t)]∞t=0, is such that the path of output and asset price gaps, [y (t) , p (t)],

solve the recursive problem (10) and the discount rate satisfies Eq. (8).

2.2. Optimal overshooting during the recovery

We next solve for the equilibrium and establish our main results about overshooting. To

capture the recovery from a recessionary shock, we focus on the case with a negative

initial output gap, y (0) < 0, where aggregate demand has yet to catch up with potential

output. Our main result shows that the optimal policy features asset-price overshooting:

the central bank optimally chooses a positive asset price gap. That is, even though output

is below its potential level, the asset price is high and above its potential level.

Consider the planner’s problem (10). In the appendix, we conjecture and verify that

the solution is a quadratic function,

V (y) = − 1

2v
y2, (11)

where 0 = v2 − (ρ+ 2θ (1− n)) v − θ2m2

ψ
. (12)

Here, v > 0 (“value”) denotes an endogenous coeffi cient. Since V (y) < 0, we also have

v > 0: the solution corresponds to the positive root of (12).

Combining the value function in (11) with the optimality condition, we solve for the

optimal asset price as

p =
θm

ψ
V ′ (y) =⇒ p (t) = −θm

ψv
y (t) . (13)

8The lack of commitment does not restrict monetary policy in our baseline model. The Principle
of Optimality implies that maximizing (9) subject to (7) is equivalent to solving problem (10). Lack
of commitment is restrictive when we introduce inflation (see Section 3) or when we endogenize the
consumption function in (6) (see Section 2.3).
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This expression illustrates the overshooting of asset prices. Starting with a negative

output gap, the optimal asset price is above its potential level. The asset price is the

central bank’s policy lever. Since the asset price increases the output gap, the central

bank increases the price whenever the output gap is negative.

Next consider the change in output gaps along the optimal path. Combining Eqs. (13)

and (7), we obtain

ẏ (t) = −γy (t) , where γ ≡ θ

(
θm2

ψv
+ 1− n

)
> 0. (14)

The composite parameter, γ, captures the convergence rate. Starting with a negative

output gap, and an associated positive asset price gap (in view of overshooting), both

gaps monotonically converge to zero at rate γ.

Finally, consider the discount rate gap. Combining Eqs.(8) , (13) , and (14), we obtain

r (t) =
ρ

1 + ρ
(y (t)− p (t)) +

1

1 + ρ
ṗ (t)

=
ρ

1 + ρ

(
1 +

θm

ψv

)
y (t) +

1

1 + ρ

θm

ψv
γy (t)

= Ry (t) ,

where R ≡ ρ

1 + ρ
+
θm

ψv

(
γ + ρ

1 + ρ

)
. (15)

Hence, the discount rate gap is (positively) proportional to the output gap. Starting with

a negative output gap, the discount rate gap starts below zero and gradually increases,

r (0) < 0 and ṙ (t) > 0. The following result summarizes this discussion.

Proposition 1. The value function is given by (11) , where v > 0 is the positive so-

lution to (12). The equilibrium path of the output, asset price, and discount rate gaps,

[y (t) , p (t) , r (t)]∞t=0, is characterized by Eqs. (13) , (14) , (15). Starting with a negative

output gap, y (0) < 0, the equilibrium features asset price overshooting : the asset price
is above its potential, p (0) > 0, and the discount rate is below its potential, r (0) < 0.

Over time, all gaps converge to zero at the exponential rate γ = v − (ρ+ θ (1− n)) > 0.

Figure 2 illustrates the equilibrium dynamics for a particular parameterization starting

with a negative output gap. The equilibrium (the solid lines) features overshooting: the

central bank sets a positive asset price gap and gradually closes the output gap. The

central bank achieves this outcome by starting with a low discount rate, and then gradually

increasing the discount rate and reducing the asset price gap. The figure also illustrates

the case without overshooting (ψ =∞), where the central bank sets the asset price equal
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Figure 2: A simulation of the equilibrium with low ψ (solid lines) and high ψ (dashed
lines). The dotted lines correspond to the potential levels for the corresponding variables.

to its potential. In this case, output gaps are closed more slowly and the economy operates

below its potential for a longer time.

In Appendix A.2, we further establish the comparative statics of overshooting. We

find that the central bank overshoots by more (greater
∣∣∣ p(t)y(t)

∣∣∣ = θm
ψv
) and induces a faster

recovery (greater γ) when the output-asset price relation is stronger– in the sense that the

spending response to asset prices is either faster (with smaller lags) or larger. Strengthen-

ing the output-asset price relation generates two counteracting effects. On the one hand,

it makes the asset price overshooting more effective– which induces more overshooting.

On the other hand, it enables the central bank to achieve the same impact on the out-

put gap with smaller (or shorter) overshooting– which induces less overshooting. With

quadratic preferences (which are standard and commonly used in the literature), the first

force dominates and the central bank induces more overshooting when it is more effective.

2.3. Overshooting in richer environments

While we keep our baseline model simple, our main overshooting result extends to richer

environments.
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2.3.1. Overshooting with growth

In our model, the asset price level also declines over time (after an initial jump). This

feature is not essential to the argument. The same result would still apply for the asset

price gap in a variant with productivity growth. In this case, the potential asset price

would also be increasing over time (at the growth rate), so overshooting would not nec-

essarily imply a declining asset price level. It would only imply a frontloading of some of

the future gains on the market portfolio.

2.3.2. Overshooting with sophisticated stockholders

For simplicity, we assume that adjusting stockholders exogenously follow the rule in (6).

In Appendix B.1, we consider the case with fully sophisticated stockholders who choose

their consumption optimally anticipating that they will readjust in the future with Poisson

probability θ. Proposition 6 shows that, as long as stockholders’adjustment is not too

sluggish (θ > ρ) and the planner sets monetary policy without commitment (which is the

case we focus on), our main result holds in this setting. Along the equilibrium path, the

optimal consumption rule takes the form in (6) with endogenous coeffi cients:

cs,adj (t) = m (γ) p (t) + n (γ) y (t) ,

where m (γ) =
θ − ρ
θ + γ

∈ (0, 1) and n (γ) =
ρ

θ + γ
.

Absent commitment, the planner takes these coeffi cients as given. Therefore, our earlier

analysis also applies in this case. Recall that the convergence rate γ also depends on the

coeffi cients of the consumption rule, m,n. Hence, with fully rational stockholders, the

equilibrium corresponds to a fixed point that we characterize in the appendix.

2.3.3. Preemptive overshooting

In the main text, we focus on a recovery scenario in which the output gap is negative

and the central bank’s main concern is to close it as quickly as possible. In Appendix

B.2, we extend our analysis to a situation in which the main concern is not the current

output gap but the anticipation that it will widen in the near future. This situation may

arise, for example, when the economy is experiencing a sharp but temporary decline in

potential output, as in the Covid-19 recession. In the recession phase, potential output has

experienced a deep contraction but is expected to increase according to a Poisson event–

in which case the economy transitions to a recovery phase (as in the main text). We
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show that the recession features preemptive overshooting: the central bank boosts asset

prices even if output is at its (depressed) potential level. The central bank anticipates

that the recovery will start with a large negative output gap due to the inertial behavior

of aggregate demand. Therefore, the central bank acts preemptively to boost asset prices

and aggregate demand during the recession, to ensure that aggregate demand is not too

depressed during the early stages of the recovery. We also find that the central bank

overshoots asset prices more when it anticipates a faster transition to recovery. In fact,

by frontloading much of the overshooting to the recession, the central bank might do less

overshooting when the recovery arrives (compared to the early stages of the recession).

2.3.4. Overshooting with a time-varying risk premium

A more important omission from our analysis is the lack of a risk premium. In prac-

tice, aggregate wealth is associated with a time-varying risk premium (see, e.g., Cochrane

(2011)). We could incorporate a risk premium without changing our main conclusions.

Suppose the discount rate on the market portfolio is given by r (t) = rf (t) + ξ (t), where

rf (t) is the risk-free rate and ξ (t) is the risk premium. As long as the elasticity of in-

tertemporal substitution is equal to one, our analysis would still apply, but the central

bank would target the discount rate on the market portfolio, r (t), as opposed to the

risk-free rate, rf (t). For instance, Eq. (13) would apply: the optimal policy would still

overshoot asset prices. Eq. (15) would also apply and imply that the central bank should

set the risk-free rate according to, rf (t) = −ξ (t)+Ry (t). If the risk premium is counter-

cyclical (as suggested by empirical evidence), ξ (t) = ξ0 − ξ1y (t), then the risk-free rate

becomes more procyclical than in our model rf (t) = −ξ0 + (ξ1 +R) y (t). In a demand

recession, the optimal policy cuts the risk-free rate aggressively to first “undo”the rise in

the risk premium and then to overshoot asset prices as in our model.

The presence of a risk premium not only leaves our main result unchanged but it also

expands the policies the central bank can use to affect the discount rate on the market

portfolio, r (t). Even if conventional monetary policy is constrained due to, e.g., an

effective lower bound on the interest rate, the central bank can reduce the risk premium,

ξ (t), via unconventional policies. In Caballero and Simsek (2020), we formalize this

argument in a model without transmission lags. In that model, large-scale asset purchases

can reduce the risk premium by transferring risk to the government’s balance sheet. These

policies are especially powerful after a large surprise shock, such as Covid-19, that leads

to an endogenous asset price spiral that increases the risk premium. We discuss the role

of different types of monetary policies in the Covid-19 recession in Section 4.
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3. Overshooting with endogenous inflation

So far we have assumed nominal prices are fully sticky. In this section, we allow some price

flexibility and endogenize inflation. In this environment, negative output gaps induce

disinflation, and these disinflationary concerns induce the central bank to overshoot by

more than in our baseline model. We also find that overshooting weakens the relationship

between inflation and the output gap. Hence, an increase in the central bank’s willingness

to overshoot asset prices can provide one explanation for the weakening of the Phillips

curve relation observed in the data in recent decades. Finally, we show that the optimal

policy in our model is consistent with the monetary policy rules used in practice.

Consider the same model as in Section 2 with the difference that intermediate firms’

nominal prices are not fully sticky. We adopt the standard Calvo setup: at each instant

a randomly selected fraction of firms reset their nominal price, with constant hazard.

This price remains unchanged until the firm gets to adjust again. In Appendix A.1, we

characterize the firm’s optimal price setting decision. We log-linearize the equilibrium

around a zero-inflation benchmark and obtain the New-Keynesian Phillips curve,

ρπ (t) = κy (t) + π̇ (t) =⇒ π (t) = κ

∫ ∞
t

e−ρ(s−t)y (s) ds. (16)

Here, π (t) denotes the log-deviation of the price level from its steady-state level. The

parameter, κ, is a composite price flexibility parameter that depends on the rate of price

adjustment along with other parameters. We also express inflation as a discounted sum

of future output gaps (assuming inflation is bounded, which is the case in equilibrium).

Since the economy features inflation, the nominal and the real rates are no longer

the same. We denote the log-linearized nominal and real discount rates with rn (t) and

r (t) = rn (t) − π (t). The planner effectively “chooses”the real discount rate by setting

the nominal rate appropriately, given its implemented inflation path. We now assume the

planner maximizes a value function that incorporates the costs of inflation [see (9)],

V (0, y (0)) =

∫ ∞
0

e−ρt

(
−y (t)2

2
− φπ (t)2

2
− ψp (t)2

2

)
dt. (17)

The parameter, φ ≥ 0, captures the planner’s weight on inflation relative to output gaps.

We assume the planner sets the discount rate without commitment.9

9Unlike in Section 2, the no-comitment constraint binds in this section. The planner might want to
promise to fight inflation more aggressively in the future in order to influence current inflation expec-
tations. We abstract from these types of commitment policies since they are not our focus and their
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In this setting, the equilibrium is a fixed point of an inflation function, π (y), and an

asset price policy function, p (y). Given the policy function, and the implied path for the

output gap, inflation satisfies (16) . Given the inflation function, the asset price policy is

optimal for the planner. That is, it solves the following analogue of problem (10):

ρV (y;π) = max
p
−y

2

2
− φπ (y)2

2
− ψp

2

2
+
dV (y;π)

dy
ẏ,

ẏ = θ (mp− (1− n) y) ,

V (y) ≤ 0 and V (0) = 0.

The equilibrium has the same structure as in the previous section. In particular,

the output gap converges to zero at a constant, endogenous rate, y (s) = y (t) e−γ(s−t).

Substituting this into Eq. (16), the inflation function has a closed-form solution,

π (y) =
κ

ρ+ γ
y. (18)

Output gaps translate into more inflation when prices are more flexible (greater κ) and

when the gaps converge more slowly (smaller γ).

Likewise, the value function is still a quadratic, V (y;π) = − 1
2v(γ)

y2, which leads to a

similar policy function as before [cf. (13)],

p (y) = − θm

ψv (γ)
y. (19)

The difference is that the value coeffi cient, v (γ), is now endogenous to the convergence

rate and solves a quadratic that we relegate to the appendix. The equilibrium is then a

fixed-point of Eq. (14), which describes the convergence rate as a function of v (γ),

γ ≡ θ

(
θm2

ψv (γ)
+ 1− n

)
. (20)

The following result establishes the existence and comparative statics of equilibrium.

Proposition 2. Consider the model with endogenous inflation. In equilibrium, the output
gap converges to zero at a constant rate, γ > 0. The convergence rate corresponds to the

fixed point of Eq. (20), where v (γ) is the positive solution to Eq. (A.30) in the appendix.

Inflation and output are linear functions of the output gap given by Eqs. (18) and (19).

The equilibrium features asset price overshooting, dp(y)
dy

= − θm
ψv(γ)

< 0. Greater price

benefits are well understood (see, e.g., Clarida et al. (1999)).
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flexibility strengthens the relation between inflation and the output gap, d
dκ

∣∣∣dπdy ∣∣∣ > 0; it

decreases the planner’s value for a given output gap, dv(γ)
dκ

< 0; it increases the extent of

overshooting, d
dκ

∣∣∣dpdy ∣∣∣ > 0; and it accelerates convergence to potential outcomes, dγ
dκ
> 0.

The result shows that the planner also overshoots asset prices in this case. In fact,

greater price flexibility induces greater overshooting. Intuitively, price flexibility makes

output gaps costlier due to the endogenous inflation response. The planner then induces

greater asset price overshooting to close the output gaps more quickly.

Implications for the slope of the Phillips curve. In recent decades, the slope of

the Phillips curve in the U.S. has declined substantially: specifically, the output gap does

not seem to correlate with inflation as strongly as it did before the early 2000s (see, e.g.,

Ball and Mazumder (2011); Stock and Watson (2019)). Our model in this section offers

one explanation based on an increase in the central bank’s willingness to overshoot asset

prices.

Corollary 1. Consider the model with inflation. Reducing the planner’s aversion to

overshooting induces faster convergence of output gaps to zero, dγ
−dψ > 0; and weakens the

relation between inflation and the current output gap, d
−dψ

∣∣∣dπdy ∣∣∣ < 0.

When the planner overshoots asset prices by more, it closes the output gaps faster.

This keeps future inflation expectations close to the inflation target. When price setters

expect future inflation to be close to the target, they change their prices by a smaller

amount in response to the current output gap [see Eq. (16)]. Therefore, overshooting

weakens the correlation between inflation and the current output gap, even if the struc-

tural price flexibility coeffi cient, κ, remains unchanged.10

Relationship to monetary policy rules. A strand of the New-Keynesian literature

focuses on interest rate rules for monetary policy that are easy to implement and that

approximate the fully optimal policy. For instance, Taylor rules prescribe the interest

rate response to output and inflation gaps (see, e.g., Taylor (1993, 1999)). These rules

describe the actual monetary policy in the U.S. reasonably well in recent decades, and

they are used as benchmarks at the Fed’s policy meetings. We next show that these rules

10In recent work, Hazell et al. (2020) use cross-regional data to argue that κ has indeed remained
relatively stable over time. They offer a complementary interpretation of the weakening of the Phillips
curve that relies on changes in long-run inflation expectations, whereas we emphasize the medium-run
inflation expectations associated with changes in (anticipated) output-gap dynamics.
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are related to the optimal policy in our setting. To see the relationship, consider the

Taylor rule in our setting:

rn (t) = π (t) + τ yy (t) + τππ (t) . (21)

In particular, the policy sets the real discount rate relative to the steady state, r (t) =

rn (t)−π (t), as a function of the output gap and inflation relative to the target (which we

assume to be zero). The parameters τ y, τπ capture the rule’s sensitivities to the output

gap and inflation, respectively. In our model with optimal policy, inflation is proportional

to the output gap, π (t) = κ
ρ+γ

y (t). Substituting this relation into Eq. (21) and comparing

the resulting expression with Eq. (15), we establish an equivalence result.

Corollary 2. Consider the model with inflation. Let v (ψ) , γ (ψ) denote the equilibrium

coeffi cients as a function of the aversion to overshooting (characterized in Proposition 2).

The optimal policy is equivalent to a Taylor rule with coeffi cients that satisfy

τ y + τπ
κ

ρ+ γ (ψ)
= R (ψ) , (22)

where R (ψ) = ρ
1+ρ

+ θm
ψv(ψ)

γ(ψ)+ρ
1+ρ

. For any τ y, τπ that satisfy,

τ y + τπ
κ

ρ+ γ (∞)
>

ρ

1 + ρ
, (23)

there exists a unique ψ ∈ (0,∞) that ensures Eq. (22). In particular, a Taylor rule that is

suffi ciently sensitive to the output gap or inflation is equivalent to an optimal overshooting

policy. All else equal, the implied aversion to overshooting is smaller when the Taylor rule

is more sensitive to either gap, ∂ψ
∂τy

< 0, ∂ψ
∂τπ

< 0.

When the policy follows a Taylor rule, the output gap has counteracting effects on the

price of the market portfolio. On the one hand, a low output gap decreases cash flows,

which tends to reduce the asset price. On the other hand, a low output gap decreases

the real discount rate, which tends to increase the asset price. Condition (23) says that

the second effect dominates– the asset price overshoots– as long as the discount rate

is suffi ciently sensitive to the output gap. The required condition is satisfied for the

parameters proposed by Taylor (1993), τ y = τπ = 0.5, when we set the steady-state

dividend yield to a standard level, ρ = 0.03. Hence, asset price overshooting is implied

by the Taylor rules used in practice. Moreover, making the rule more sensitive to either

the output gap or inflation is equivalent to decreasing the aversion to overshooting. As
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observed by Taylor (1999), the policy has become more sensitive to gaps in recent years,

which suggests that central banks have become less averse to overshooting asset prices.

An important caveat is that Taylor rules apply to the risk-free rate, whereas the

overshooting policy targets the discount rate on the market portfolio, which might also

include a risk premium. In general, our model suggests the Taylor rule should be modified

to include a direct response to the aggregate risk premium, ξ (t) (see also Section 2.3.4):

rf,n (t)− π (t) = −ξ (t) + τ yy (t) + τππ (t) . (24)

If the policy does not respond to the risk premium, then it might fail to overshoot asset

prices in recessions in which the risk premium increases substantially (such as financial

crises). Viewed from this lens, our model suggests overshooting has been particularly

salient in the Covid-19 recession because this recession was not driven by a financial shock,

and the initial damage to financial markets was contained by aggressive unconventional

monetary policy (as well as fiscal policy).

Finally, while we focus on Taylor-type interest rate rules for concreteness, it should

be clear from our analysis that asset price overshooting is also implied by other monetary

policy rules as long as the rule prescribes a suffi ciently aggressive response of the interest

rate to output or inflation gaps. In fact, inflation-targeting rules (as discussed in, e.g.,

Svensson and Woodford (2007); Svensson (2010)) might be more likely to induce asset

price overshooting because they are more flexible. For instance, these rules would allow

the interest rate to respond to risk-premium shocks as in (24), as long as this response

helps achieve the inflation target in subsequent periods, which is the case in our model.

4. Quantifying the overshooting in the Covid-19 re-

cession

Although our main results are qualitative, in this section we attempt to quantify the

extent and impact of asset price overshooting. We focus on the recovery from the Covid-

19 recession, but our approach is flexible and can be applied to other recessions. While

there were many policy tools used during the Covid-19 shock (see Section 2.3.4), we focus

on risk-free rates because: (i) they can be directly measured from the data and; (ii) we

estimate that the wealth effect they generated accounts for most of the accumulated rise

in households’wealth before our calibration target date (2021-Q1).

To quantify the overshooting through risk-free rates, we decompose the market port-
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folio into a component driven by forward interest rates (“market-bond portfolio”) and a

component driven by other factors (“residual/other”), along the lines of Van Binsbergen

(2020); Knox and Vissing-Jorgensen (2021). The market-bond portfolio provides a mea-

sure of the policy support (on asset prices) that operates through risk-free rates. This

component increased substantially in the Covid-19 recession (close to the observed in-

crease in stock and house prices). While its increase in 2020 might be partly in response

to a rise in the risk premium, its subsequent behavior (as of 2021-Q1) more closely re-

sembles the policy-induced overshooting in our model– since the aggregate risk premium

was no longer elevated. Our analysis also suggests that the Fed’s LSAP programs for safe

assets played an important role in driving the market-bond portfolio in this recession.

We conclude the section with a calibration exercise to benchmark the observed asset

price overshooting and to assess its impact on the path of recovery. The data and our

calibration suggest that monetary policy overshot asset prices in the Covid-19 recession

substantially more than implied by a Taylor-rule benchmark, and that this additional

overshooting significantly accelerated the recovery.

4.1. A price decomposition based on the market-bond portfolio

To state our decomposition result, we define a fixed-income portfolio that matches the

duration of the market portfolio strip-by-strip. Formally, consider a portfolio of zero-

coupon bonds with face values that match the steady-state payoffs of the dividend strips

of the market portfolio (αY ∗). We refer to this portfolio as the market-bond portfolio and

denote its price with PMB (t). By no-arbitrage, this price satisfies

PMB (t) =

∫ ∞
0

PMB (t, µ) dµ, where PMB (t, µ) ≡ αY ∗e−
∫ t+µ
t R(s)ds. (25)

PMB (t, µ) is the time-t price of the µ-maturity strip of the market-bond portfolio. We

also let pMB (t) ≡ log PMB(t)
PMB,∗ denote the log-linearized price of the market-bond portfolio;

y (t, µ) =
∫ t+µ
t R(s)ds

µ
denote the continuously compounded zero-coupon yield with maturity

µ; and f (t, µ) = R (t+ µ) denote the µ-period-ahead instantaneous forward rate.

Proposition 3. Consider the baseline model. Let [y (t) , p (t) , r (t)]∞t=0 denote a feasible

path that satisfies Eqs. (7− 8) along with the no-bubble condition, limt→∞ e
−ρtp (t) = 0.

The following identities hold up to a log-linear approximation:
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(i) Decomposition: The log-price of the market portfolio satisfies

p (t) = pMB (t) + pO (t) , (26)

where pMB (t) = −
∫ ∞
t

e−ρ(s−t) (1 + ρ) r (s) ds

and pO (t) =

∫ ∞
t

e−ρ(s−t)ρy (s) ds.

(ii) Yield-based measurement: The log-price change of the market-bond portfolio
satisfies

ṗMB (t) = −
∫ ∞
0

wµµ
∂y (t, µ)

∂t
dµ, where wµ =

PMB∗ (µ)

PMB∗ = e−ρµρ. (27)

(iii) Forward-rate-based measurement: The log-price change of the market-bond
portfolio also satisfies

ṗMB (t) = −
∫ ∞
0

Wµ
∂f (t, µ)

∂t
dµ, where Wµ =

∫ ∞
µ

wµ̃dµ̃ = e−ρµ. (28)

The first part of the proposition decomposes the price of the market portfolio into

the market-bond portfolio and a residual. The market-bond portfolio isolates asset price

changes driven by the risk-free rates. In our model, monetary policy affects asset prices

primarily through pMB (t): by changing the forward rates, the central bank has a direct

effect on the valuation of cash flows. This change in asset prices also affects expected cash

flows, creating indirect knock-on effects captured by pO (t). In general, monetary policy

can affect asset prices through other channels, e.g., by changing the risk premium. We

view the market-bond portfolio as capturing the asset price impact of monetary policy

via risk-free rates, and the residual term as capturing other channels of monetary policy

as well as other drivers of asset prices such as a time-varying risk premium.

The price of the market-bond portfolio can be measured from data on treasury yields

or forwards. The last two parts of the proposition facilitate this measurement. Eq. (27)

shows that the price change of the portfolio depends inversely on the yield changes of the

individual strips multiplied by the weighted duration, wµµ. The weights are proportional

to the (steady-state) value of the corresponding strip, wµ = PMB∗(µ)
PMB∗ . Eq. (28) expresses

the price change in terms of forward rates. The price depends inversely on a cumulative-

weighted-average of forward rates at all horizons µ. The cumulative weights capture the

weights of bond strips with maturity beyond µ, that is, Wµ =
∫∞
µ
wµ̃dµ̃. Intuitively, each

forward rate affects the valuation of strips with maturities that exceed its horizon.
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Since we do not observe yields or forward rates for distant horizons, we fix some µ and

bunch the values of all bond strips with maturities beyond µ at the strip with maturity

µ. This bunching yields the following approximation to Eqs. (27) and (28):

ṗMB (t) ' −
∫ µ

0

wµµ
∂y (t, µ)

∂t
dµ−Wµµ

∂y (t, µ)

∂t
(29)

' −
∫ µ

0

Wµ
∂f (t, µ)

∂t
dµ, (30)

where recall that wµ = e−ρµρ and Wµ = e−ρµ. Our bunching procedure and the resulting

approximation are similar to the bond portfolio return analyzed by Van Binsbergen (2020).

4.2. Overshooting in the Covid-19 recession via risk-free rates

We next use Eq. (29− 30) to measure the policy support in the Covid-19 recession

through risk-free rates. We adopt a yearly calibration for the bond maturity (µ) and

let ρ = 0.03 = αY ∗

P ∗ to roughly match the annual dividend-price ratio (and the inverse

duration) of the stock market index. This choice generates bond-strip weights that are

consistent with the available data from dividend futures (see Van Binsbergen (2020)). We

focus on real (inflation-adjusted) prices and obtain daily one-year-ahead TIPS forward

rates up to a 30-year horizon (µ = 30) from the term structure data provided by the

Federal Reserve, based on the approach by Gürkaynak et al. (2007). We use the forward-

rate-based measure in Eq. (30) (see Appendix C for details).

The blue line in the top panel of Figure 3 illustrates the evolution of pMB (t) from

January 2020 until June 2021. The market-bond portfolio increased substantially during

the Covid-19 recession. It reached its peak in early August 2020 (about 19 log points) and

it was still sizeable in 2021-Q1 (our calibration target). The figure also plots the S&P500

index and the house price index, as well as household net worth (from the Federal Reserve)

which aggregates various sources of wealth. We view these assets as proxies for p (t) in

our model and normalize them by potential output (from the CBO) to adjust for inflation

and growth. In the stock market, the residual component dragged prices down earlier

in the recession, whereas the increase of the market-bond component helped stabilize

the price drop. More recently, the residual has recovered (and this recovery was partly

driven by aggressive monetary policy), contributing to the stock price boom. In the

housing market, which adjusts more slowly to shocks, the increase of the market-bond

component gradually increased prices. Accordingly, household net worth increased by an

unprecedented amount: from about $117.8 trillion in 2019-Q4 to about $137 trillion in
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Figure 3: The evolution of the log price of the market-bond portfolio, pMB (t), along with
the log S&P500 index, log house price index, and log household net worth normalized by
potential output. All series are normalized to zero at the last trading date of 2019.

2021-Q1 (an 11 log points increase even after normalizing by potential output).

Figure 3 also illustrates that, while the increase in pMB (t) in 2020 was in all likelihood

partly an endogenous response to the rise in the risk premium, this is unlikely to still

be the case in early 2021. The recovery of the residual component in the stock market

suggests the risk premium is no longer elevated. In fact, Knox and Vissing-Jorgensen

(2021) provide a more detailed decomposition of the stock market returns and argue that

the risk premium increased substantially earlier in the recession but had declined to close

to its pre-shock level by the end of 2020. These observations suggest that the behavior of

pMB (t) as of 2021-Q1 (our calibration target) more closely resembled the policy-induced

overshooting of our model– rather than a passive response to a rise in the risk premium.

Figure 4 plots select TIPS forward rates to illustrate the drivers of pMB (t) over this

period. Early in the recession, the shorter-term forward rates were compressed due to

the zero lower bound (ZLB) on the nominal rates and expected disinflation. Nonetheless,

pMB (t) increased because the longer-term forward rates also declined (except for March

2020). Over time, the policy support for pMB (t) gradually shifted from longer-term to

shorter-term rates, which declined substantially due to an increase in expected inflation.

The decline of the forward rates at distant horizons suggests that monetary policy partly
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Figure 4: The drivers of the market-bond portfolio in the Covid-19 recession: One-year
TIPS forward rates at select horizons.

operated through LSAPs. We return to the role of LSAPs at the end of the section.

Figure 5 compares the evolution of pMB (t) in the last two recessions. While monetary

policy also supported asset prices through risk-free rates in the Great Recession, the

response was much more gradual: it took about five years for pMB (t) to reach its peak.

This is in sharp contrast with the Covid-19 recession, where the policy was swift and

pMB (t) peaked within one year. One interpretation is that the Fed gradually discovered

the power of LSAPs during the recovery from the Great Recession, and they deployed

these tools immediately in the Covid-19 recession.11

4.3. The impact of overshooting on the recovery

Policy-induced overshooting in the Covid-19 recession was unprecedented not only in its

speed but also in its magnitude relative to the size of the shock. We next calibrate our

model to benchmark the overshooting of aggregate wealth, and to assess its likely impact

on the path of recovery. We start the calibration in 2021-Q1 (t = 0). By that time, the

U.S. economy was well on its way to recovery: people were getting vaccinated rapidly

and the supply constraints were significantly relaxed. Another advantage of this quarter

11The same interpretation applies to the magnitude and speed of the fiscal response, which in all
likelihood contributed to preventing deflationary expectations from undoing the monetary policy effort.
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Figure 5: The evolution of the log price of the market-bond portfolio, pMB (t), in the
Covid-19 recession (solid line) and in the Great Recession (dotted line).

is that, as illustrated by Figure 3, the increase in household net worth (normalized by

potential output) is close to the increase in the market-bond portfolio. Hence, in this

quarter the residual factors were on net small and the aggregate wealth increase was

arguably driven by policy support through risk-free rates.

For parsimony, we focus on the baseline model with exogenous inflation (κ = 0).

Recent empirical studies typically find that the Phillips curve is very flat, which implies

endogenizing inflation would not significantly change our analysis.12 As before, we set ρ =

0.03 to match the duration of the stock market index (see Section 4.2). That leaves us with

the consumption parameters, m,n, θ, along with the planner’s aversion to overshooting,

ψ.13

We calibrate the consumption parameters, θ,m, based on the estimates from

Chodorow-Reich et al. (2021). They find that the MPC out of a dollar of stock’s wealth is

12For instance, the cross-regional analysis in Hazell et al. (2020) suggests a very low κ. Setting a
positive but small κ would complicate the calibration by adding a parameter: the planner’s perceived
cost of inflation φ (see Section 3).
13There is also the parameter, α, which captures the share of output that accrues to stockholders. This

parameter does not affect the dynamics of output. Setting a higher α strengthens the direct wealth effect
from stocks but weakens the Keynesian multiplier effect (see Eq. (3)). We set α = 0.40 to roughly match
the share of capital. This implied partial-equilibrium Keynesian multiplier, 1/α = 2.5, is relatively high
but not too far from the estimates of the aggregate multiplier when monetary policy remains passive (see,
e.g., Chodorow-Reich (2019)).
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around 3 cents per year, but the adjustment is sluggish and the effects stabilize in about

two years after the wealth shock. In our model, the MPC out of a dollar stock wealth is

approximately mCs∗

P ∗ = mρ (see Eq. (6)). Given ρ = 0.03, we set m = 1 to hit the MPC

target. We also set θ = 0.5 to match the adjustment target: in the calibrated model, the

average time it takes a stockholder to adjust her consumption level is two years.

The consumption parameter, n, affects the speed of recovery in the model: all else

equal, increasing n slows down the recovery (see Appendix A.2). We calibrate this pa-

rameter to match the CBO’s February 2021 projections for the convergence rate of the

output gap between 2021-Q1 and 2024-Q1. Note, however, that the aversion to overshoot-

ing, ψ, also affects the convergence rate. As a benchmark, we calibrate n together with

ψ to match the CBO-implied convergence rate, γ, along with a standard Taylor rule for

monetary policy.14

The first panel of Figure 6 shows that this benchmark calibration (black dotted line)

is similar to the CBO’s February 2021 projections for the output gap (purple solid line).

On the other hand, the second panel shows that the calibration misses the observed asset

price overshooting: The calibration predicts about two log points initial increase in the

asset price gap, p (t), whereas the actual increase in household net worth normalized by

potential output was about 11 log points as of 2021-Q1 (see Figure 3). While the standard

Taylor rule also implies overshooting, the magnitudes are small. With an initial output

gap between two and three percent, and an expected recovery in about three years, the

Taylor rule cuts the risk-free interest rate by about one percentage point for a few years

(bottom panel). This response implies less overshooting than observed in the data.

We then turn to our main calibration, where we keep n unchanged but recalibrate ψ

to match the observed response of p (t) (as of 2021-Q1). The blue solid lines in Figure 6

show that overshooting substantially accelerates the recovery relative to the benchmark

case with a Taylor rule (and even more so relative to the case without overshooting). With

the observed amount of overshooting, our model predicts that the output gap recovers

almost fully by 2022, whereas a Taylor rule predicts a similar outcome by 2024. The

second and the third panels show that optimal policy tapers overshooting very quickly: in

view of the transmission lags, the initial burst of overshooting gradually closes the output

gaps, obviating the need for further overshooting. Why does the model predict a very fast

recovery? As we mentioned earlier, household net worth increased by about $20 trillion

14The CBO relies on a Taylor rule to construct its projections for interest rates (see Arnold (2018)).
That said, the purpose of this calibration is not to replicate the CBO’s projection exercise (which is much
more detailed than in our analysis) but to obtain a reasonable benchmark with a Taylor rule against
which we can measure the extent and the impact of asset price overshooting.
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Figure 6: Dotted black line: Benchmark calibration with a Taylor rule that matches the
CBO’s February 2021 projections for future output gap (purple line). Blue solid line:
Main calibration that matches the overshooting of p (t) as of 2021-Q1. Red dashed line:
Calibration without overshooting.
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between 2019-Q4 and 2021-Q1– close to the size of the U.S. annual GDP (see Figure 3).

This large increase in wealth translates into a large increase in spending, even with a

conservative MPC calibration, which quickly fills a two or three percent output gap.

The role of LSAPs. The bottom panel of Figure 6 shows that in our model the optimal

policy induces and then tapers overshooting by adjusting the short-term discount rates

by a large amount and then quickly undoing this aggressive cut. This aspect of our

model does not fully match the data: in the Covid-19 recession, monetary policy partly

operated through distant-horizon forward rates (see Figure 3). These very long-term rate

changes were in all likelihood driven by the large LSAP programs for safe assets the Fed

implemented in this recession.15 The Fed purchased trillions of dollars of treasuries and

agency mortgage-backed securities between March and June 2020; and about $120 billion

a month between June 2020 and 2021-Q1 (and beyond).16

Our model is stylized and does not have the appropriate frictions, such as risk ab-

sorption by the government (e.g., Caballero and Simsek (2021a)) or segmented markets

(e.g., Vayanos and Vila (2021); Ray (2019); Sims et al. (forthcoming)), that make LSAPs

operational. Nonetheless, from the perspective of our model, we view LSAPs as a close

substitute for conventional monetary policy, conditional on them inducing the same im-

pact on aggregate wealth, p (t). In particular, the price of the market-bond portfolio also

captures the wealth effect driven by long-term safe asset purchases typical of quantitative

easing policies. These purchases can substitute for short-term rate cuts by reducing the

long-term rates, e.g., by absorbing the duration risk and reducing the term premium. By

now, there is an extensive empirical literature documenting that the LSAPs in recent years

have indeed been good substitutes for conventional monetary policy (see, e.g., Swanson

and Williams (2014); Swanson (2018); Sims and Wu (2020, 2021)).

In sum, our analysis in this section quantifies the policy-induced asset price overshoot-

ing through risk-free rates in the Covid-19 recession and its likely impact on the recovery.

The data and our calibration suggest asset-price overshooting in this recession was signifi-

cantly greater than implied by a Taylor-rule benchmark, and this additional overshooting

substantially accelerated the recovery.

15Although, see Hanson and Stein (2015) for the puzzling finding that conventional monetary policy
shocks seem to affect real long-term interest rates. See also Bianchi et al. (forthcoming) for an explanation
of these long lasting effects of monetary policy over real rates and asset prices based on a regime-switching
model with sticky inflation expectations. Note, however, that the space for conventional monetary policy
during the Covid-19 recession was very limited, which suggests that LSAPs also played a central role in
driving pMB (t) in this episode.
16For the Fed’s response, see https://www.brookings.edu/research/fed-response-to-covid19/
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5. Overshooting with constrained monetary policy

So far, we have assumed that the planner faces no constraints in adjusting the discount

rate to achieve its target level of overshooting. While such constraints appear to have

been less binding during the Covid-19 recession, where central banks were able to quickly

implement large LSAPs and other unconventional policies, they have become a central

feature of recent recessions. In practice, central banks might find it diffi cult or costly

to reduce the policy rate– due to, e.g., the zero lower-bound constraint, concerns about

financial institutions’balance sheets, or a rapidly depreciating exchange rate. Central

banks might also be unable to implement significant LSAPs– due to, e.g., political and

institutional constraints.

In this section, we analyze the optimal policy when there is a limit on how much the

policy can reduce discount rates. We focus on a lower-bound constraint on the discount

rate but interpret it more broadly as a limit on both conventional monetary policy and

LSAPs. We find that the lower-bound constraint makes overshooting non-monotonic over

time: When the economy starts with a suffi ciently negative output gap, the asset price

boost starts low, grows as the economy recovers, and eventually shrinks as the economy

approaches full recovery. This pattern also implies that good macroeconomic news about

aggregate demand can raise or lower asset prices depending on the stage of the recovery.

Consider the baseline model in Section 2 with the only difference that the central bank

sets the discount rate subject to a lower-bound constraint,

r (t) ≥ r for each t. (31)

The parameter, r < 0, captures the severity of the constraint. Combining Eqs. (10) and

(8), the central bank’s recursive problem becomes

ρV (y) = max
p
−y

2

2
− ψp

2

2
+ V ′ (y) ẏ, (32)

ẏ = θ (mp− (1− n) y)

r (t) =
ρ

1 + ρ
(y (t)− p (t)) +

1

1 + ρ
ṗ (t) ≥ r

As before, we assume the central bank sets the current policy without commitment. The

planner takes future output and asset price gaps (as well as the price drift ṗ (t)) as given

and sets the instantaneous asset price, p (t), subject to the lower-bound constraint.17

17Unlike in Section 2, the no-comitment constraint binds in this section. The planner might want to
promise low interest rates in the future so as to relax the current lower bound constraint. We abstract from
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Consider the solution corresponding to a negative initial output gap, y (0) < 0. Recall

that when there is no lower-bound constraint the discount rate is increasing over time

[cf. (15)]. With a lower-bound constraint, there exists a cutoff output gap, y ≤ 0, such

that the discount rate constraint binds for y (t) < y but not for y (t) ∈ (y, 0). When

the constraint does not bind, the solution is exactly as in Section 2.2. In particular, the

optimal asset price gap is given by Eq. (13) and the corresponding discount rate is given

by (15). Setting r (t) = r, we solve for the cutoff output and asset price gaps as follows,

y =
r

ρ
1+ρ

+ θm
ψv

γ+ρ
1+ρ

< 0 and p = −
θm
ψv
r

ρ
1+ρ

+ θm
ψv

γ+ρ
1+ρ

> 0. (33)

When the discount rate constraint binds, the solution satisfies the following differential

equation system over time in variables y (t) , p (t):

ẏ = θ (mp− (1− n) y) (34)

r =
ρ

1 + ρ
(y (t)− p (t)) +

1

1 + ρ
ṗ (t) .

Starting with the point, (y, p), we can uniquely solve this system backward over time.

The resulting path describes the optimal asset price gap p corresponding to each output

gap y ≤ y. Over time, the gaps travel along the solution path until they reach the point

(y, p). Subsequently, the gaps follow the unconstrained solution.

Our main result in this section characterizes the solution for the constrained range.

We show that the asset price gap follows a non-monotonic path over time, increasing in

time for suffi ciently low levels of the output gap but decreasing in time for higher levels of

the output gap. The proof (in the appendix) relies on the phase diagram corresponding

to the differential equation system in (34). We assume the parameters satisfy a technical

condition that ensures the system has two real eigenvalues and a unique steady-state.

Proposition 4. Consider the model with a lower-bound on the discount rate r < 0 for

parameters that satisfy (θ (1− n)− ρ)2 > 4θρ (m− (1− n)) 6= 0. Let y < 0, p > 0 denote

the output and asset price gap cutoffs given by (33).

When y (0) ≥ y, the constraint does not bind and the solution is the same as in

Proposition 1. The asset price gap is a function of the output gap, p = p (y) = − θm
ψv
y.

When y (0) < y, the constraint binds and the path, (y (t) , p (t)), solves the system in

(34) and reaches (y, p) in finite time. The output gap is increasing over time (ẏ (t) > 0).

these types of forward guidance policies as they are not our focus and their benefits are well understood
(see, e.g., Eggertsson and Woodford (2003)).
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Figure 7: Equilibrium with an interest rate lower bound (the solid curve) and without a
lower bound (the dashed line).

There exists another output gap cutoff below the first cutoff, y< y, such that the asset

price gap is increasing over time (ṗ (t) > 0) iff y <y. The asset price gap is a function of

the output gap, p (y), and it is increasing in the output gap (dp(y)
dy

> 0) iff y <y.

Below a cutoff output gap (y), the asset price and the output gap both increase over

time. Above the cutoff, the asset price gap decreases over time whereas the output gap

continues to increase. Equivalently, the asset price gap is a non-monotonic function of the

output gap, p (y): increasing below a cutoff level of the output gap (y) and decreasing for

higher levels of the output gap. Figure 7 illustrates this function for a numerical example.

For intuition, consider Figure 8, which illustrates the dynamics over time starting with

a low level of output gap (y (0) = −0.25). In this example, the discount rate stays at the

lower-bound until time T ∈ [4, 5] at which point the gaps satisfy y (T ) = y and p (T ) = p,

and the discount rate “lifts off”above the lower-bound. Before time T the output gap

shrinks over time (although more slowly than in the unconstrained case), whereas the asset

price gap follows a non-monotonic path. To understand the non-monotonic behavior of

asset prices, note that Eq. (26) implies the present discounted value formula:

p (t) =

∫ ∞
t

e−ρ(s−t) [ρy (s)− (1 + ρ) r (s)] ds.
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Figure 8: A simulation of the equilibrium over time with an interest rate lower bound
(solid lines) and no lower bound (dotted lines).

Starting backwards, when t is suffi ciently close to the liftoff time T , the planner is nearly

unconstrained and she effectively “sets” the asset price by adjusting the discount rates

beyond T . In this range, as the output gap recovers, the extent of overshooting declines

as in the baseline model. While expected cash flows increase, expected discount rates

increase by even more and the asset price gap decreases. In contrast, when t is suffi ciently

far from the liftoff time T , the planner is severely constrained: she would like a greater

overshooting but cannot achieve it. In this range, as the output gap recovers over time,

the asset price gap increases and the planner allows asset prices to stay high. Expected

cash flows increase and expected discount rates mostly remain constant.

Implications for the stock price impact of aggregate demand news. An empiri-

cal literature finds that the impact of macroeconomic news on stock prices depends on the

stage of the business cycle. For instance, Law et al. (2019) show that stock prices react

to macroeconomic news announcements more strongly when the output gap is suffi ciently

negative, and the relationship becomes weaker (and it can have a negative sign) when

the output gap is closer to zero. In earlier work, Boyd et al. (2005) observe a similar

pattern and attribute the cyclicality of the response to changes in the relative strength of
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the interest-rate and the cash-flow effects of news (see also McQueen and Roley (1993);

Andersen et al. (2007)). Our analysis in this section provides an explanation for these

findings when good news reflects mostly stronger aggregate demand.

Corollary 3. Consider the setup in Proposition 4. Suppose there is a one-time surprise
change in the initial output gap, y (0), after which the economy follows the equilibrium we

have analyzed. Good news (a surprise improvement in the output gap) decreases the price

of the market portfolio if and only if the output gap is suffi ciently high,

dp (0)

dy (0)
< 0 iff y (0) > y.

As we discussed earlier, the intuition stems from competing effects of good news (about

demand) on cash flows and discount rates. A greater initial output gap accelerates the

recovery, which increases the expected future output and cash flows. This is good news for

capital when the discount rate is mostly constrained (the economy is far from the discount

rate liftoff) and the planner does not overturn the price impact of higher cash flows.

Conversely, a larger output gap is bad news for capital when the discount rate is mostly

unconstrained (the economy is close to the liftoff) and the planner optimally overturns

the price impact of higher cash flows by accelerating interest-rate hikes. Importantly, this

interest-rate response is strong enough to dominate the cash-flow effect of news, because

the planner chooses to undo some of the induced overshooting.

An important caveat is that these results apply for good news that increases aggre-

gate demand without changing aggregate supply. In our context, good news that raises

aggregate supply (beyond aggregate demand) would increase asset prices. In practice,

macroeconomic news is likely to reflect a mix of news about aggregate demand and sup-

ply. Our analysis suggests that the asset price impact is likely to be more procyclical

(and good news is more likely to be bad news) for news that primarily concerns aggregate

demand, e.g., announcements about inflation, unemployment, or fiscal policy.

6. Final Remarks

We proposed a model to illustrate that large gaps between the performance of financial

markets and the real economy can result from optimal monetary policy when aggregate

demand is below its potential and responds to asset prices with a lag. The central bank

boosts asset prices to close the output gap as fast as possible. In fact, the central bank

also boosts asset prices if aggregate demand is currently at its potential but is expected
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to fall below potential in the near future (see Appendix B.2). These optimal policy

responses create large temporary gaps between financial markets and the real economy,

but they also accelerate the recovery. We also showed that in this context endogenous

inflation leads to more overshooting, and an aggressive overshooting policy weakens the

relationship between inflation and the output gap (i.e., it flattens the Phillips curve).

We argued that the optimal overshooting policy is consistent with the monetary policy

rules used in practice. When the interest rate rule is more sensitive to the output gap or

inflation, the policy involves more asset price overshooting. Having said this, we gauged

the extent of policy-induced overshooting in the Covid-19 recession driven by risk-free

rates and found it to be exceptionally large. To facilitate this exercise, we decomposed

the aggregate asset price in our setting into a “market-bond portfolio”– driven by ex-

pected interest rate changes, and a “residual”– driven by expected cash flows and other

factors. The market-bond portfolio increased substantially in the Covid-19 recession, and

its boom as of early 2021 resembles the policy-induced overshooting in our model. Our

calibrated model suggests that this policy-induced overshooting is significantly greater

than implied by a Taylor-rule benchmark, and that this additional overshooting substan-

tially accelerated the recovery. Our quantitative analysis shows that this overshooting

was driven partly by distant-horizon forward rates, suggesting a key role for the Fed’s

LSAP programs for safe assets.

We also showed that, when the central bank faces a lower-bound on the discount

rate it can set, the overshooting result still holds but becomes non-monotonic: When

the economy starts with a suffi ciently negative output gap, the asset price boost starts

low, grows as the economy recovers, and eventually shrinks as the economy approaches

full recovery and the interest-rate liftoff. This result connects our analysis to a literature

documenting that stock prices react to macroeconomic news announcements more strongly

when the output gap is more negative (see, e.g., Law et al. (2019)).

While we do not explicitly model fiscal policy, our analysis of the price impact of news

suggests that fiscal policy is likely to complement monetary policy when the output gap

is significantly negative, and substitute for it when the output gap is small. When the

output gap is large (and negative), fiscal policy increases asset prices and the extent of

overshooting– an outcome that the central bank desires but cannot achieve due to the

discount rate constraint. When the output gap is small, fiscal policy induces the central

bank to accelerate the interest-rate hikes suffi ciently to decrease asset prices and the extent

of overshooting.

Throughout our analysis we assume that all firms are equally affected by the recession.

Adding heterogeneity in productivity (a central feature of the Covid-19 recession) does not
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change our main results, but it introduces a large dispersion in asset prices across firms.

In particular, firms whose relative productivity is positively affected by the recession see

their shares’value rise by even more since they benefit from the central bank’s attempt

to boost asset prices without suffering from a decline in productivity. In the Covid-19

recession, this provides a rationale for the extraordinary performance of indices such as

the Nasdaq 100, whose main components consist of “Covid-sheltered”firms.

Finally, while we demonstrated that the broad features of asset markets during the

Covid-19 episode are consistent with a well managed monetary policy framework, we do

not wish to imply that there are no anomalies or pockets of irrational exuberance in some

markets. Having said this, the logic of the model suggests that experiencing an episode of

irrational exuberance during a deep recession with a diffi cult recovery ahead has a positive

dimension, since it reduces the burden on the central bank to engineer an overshooting.
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Online Appendices: Not for Publication

A. Appendix: Omitted derivations and proofs

This appendix presents the analytical derivations and proofs omitted from the main text.

We first provide the microfoundations for the supply side with nominal rigidities that we

describe in Sections 2 and 3. We then characterize the comparative statics of overshooting

that we discuss in Section 2.2. We then present the proofs for the results in the main

text.

A.1. Microfoundations for the supply side

There are two types of agents denoted by superscript i = s (“stockholders”) and i = h

(“hand-to-mouth”). There is a single factor, labor.

Hand-to-mouth households supply labor according to relatively standard intra-period

preferences. They do not hold financial assets and spend all of their income. We write

the hand-to-mouth agents’problem as,

max
L(t)

logCh (t)− χL (t)1+ϕ

1 + ϕ
(A.1)

Q (t)Ch (t) = W (t)L (t) + T (t) .

Here, ϕ denotes the Frisch elasticity of labor supply, Q (t) denotes the nominal price for

the final good, W (t) denotes the nominal wage, and T (t) denotes lump-sum transfers

to labor (described subsequently). Using the optimality condition for problem (A.1), we

obtain a standard labor supply curve,

W (t)

Q (t)
= χL (t)ϕCh (t) . (A.2)

Stockholders own (and trade) the market portfolio and they supply no labor. We

analyze these agents’consumption-savings problem in the main text as well as in Appendix

B.1. They receive the profits from the production firms that we will describe subsequently.

Production is otherwise similar to the standard New Keynesian model. There is a con-

tinuum of monopolistically competitive firms, denoted by ν ∈ [0, 1]. These firms produce
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differentiated intermediate goods, Y (t, ν), subject to the Cobb-Douglas technology,

Y (t, ν) = AL (t, ν)1−α . (A.3)

Here, 1− α denotes the share of labor in production and A is a productivity shifter.
A competitive final goods producer combines the intermediate goods according to the

CES technology,

Y (t) =

(∫ 1

0

Y (t, ν)
ε−1
ε dν

)ε/(ε−1)
, (A.4)

for some ε > 1. This implies the price of the final consumption good is determined by

the ideal price index,

Q (t) =

(∫ 1

0

Q (t, ν)1−ε dν

)1/(1−ε)
, (A.5)

and the demand for intermediate good firms satisfies,

Y (t, ν) ≤
(
Q (t, ν)

Q (t)

)−ε
Y (t) . (A.6)

Here, Q (t, ν) denotes the nominal price set by the intermediate good firm ν.

Labor market clearing condition is∫ 1

0

L (t, ν) dν = L (t) . (A.7)

Goods market clearing condition is

Y (t) = Cs (t) + Ch (t) . (A.8)

Finally, to simplify the distribution of output across factors, we assume the government

taxes part of the profits lump-sum and redistributes to workers to ensure they receive

their production share of output. Specifically, each intermediate firm pays lump-sum

taxes determined as follows:

T (t) = (1− α)Q (t)Y (t)−W (t)L (t) . (A.9)

This ensures that in equilibrium hand-to-mouth households receive and spend their pro-

duction share of output, (1− α)Q (t)Y (t), and consume [see (A.1)]

Ch (t) = (1− α)Y (t) . (A.10)
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Stockholders receive the total profits from the intermediate good firms, which amounts

to the residual share of output, Π (t) ≡
∫ 1
0

Π (t, ν) dν = αQ (t)Y (t).

Benchmark equilibrium without nominal rigidities. To characterize the equilib-

rium, it is useful to start with a benchmark setting without nominal rigidities. In this

benchmark, an intermediate good firm ν solves the following problem,

Π = max
Q,L

QY −W (t)L− T (t) (A.11)

where Y = AL1−α =

(
Q

Q (t)

)−ε
Y (t)

The firm takes as given the aggregate price, wage, and output, Q (t) ,W (t) , Y (t), and

chooses its price, labor input, and output Q,L, Y .

The optimal price is given by

Q =
ε

ε− 1
W (t)

1

(1− α)AL−α
. (A.12)

Intuitively, the firm sets an optimal markup over marginal costs of output, where the

marginal cost depends on the wage and (inversely) on the marginal product of labor.

In equilibrium, all firms choose the same prices and allocations, Q (t) = Q and L (t) =

L. Substituting this into (A.12), and using Y = AL1−α, we obtain a labor demand

equation,
W (t)

Q (t)
=
ε− 1

ε
(1− α)AL−α. (A.13)

Combining this with the labor supply equation (A.2), and substituting the hand-to-mouth

consumption (A.10), we obtain the equilibrium labor as the solution to,

χ (L∗)ϕ (1− α)Y ∗ =
ε− 1

ε
(1− α)A (L∗)−α .

In equilibrium, output is given by Y ∗ = A (L∗)1−α. Therefore, the equilibrium condition

simplifies to,

χ (L∗)1+ϕ =
ε− 1

ε
.

Fully sticky prices. We next describe the equilibrium with nominal rigidities for the

baseline case with full price stickiness. In particular, intermediate good firms have a preset

nominal price that remains fixed over time, Q (t, ν) = Q∗. This implies the nominal price

for the final good is also fixed and given byQ (t) = Q∗ [cf. (A.5)]. Then, each intermediate
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good firm ν at time t solves the following version of problem (A.11),

Π = max
L

QY −W (t)L− T (t) (A.14)

where Y = AL1−α ≤ Y (t) .

Here, we dropped the index, (t, ν), from firm-specific variables to simplify the notation.

By symmetry, each firm chooses the same allocation. For small aggregate demand shocks

(which we assume) each firm optimally chooses to meet the demand for its goods, Y =

AL1−α = Y (t). Therefore, each firm’s output is determined by aggregate demand, which

is equal to spending by stockholders and hand-to-mouth households [cf. (A.8)],

Y (t) = Cs (t) + Ch (t) .

This establishes Eq. (2) in the main text.

Finally, recall that hand-to-mouth agents’spending is given by Ch (t) = (1− α)Y (t)

[see Eq. (A.10)]. Combining this with Y (t) = Cs (t) + Ch (t), the aggregate demand for

goods is determined by the stockholders’spending,

Y (t) =
Cs (t)

α
.

This establishes Eq. (3) in the main text.

Partially flexible prices and the New-Keynesian Phillips curve. We next con-

sider the case with partially flexible prices that we analyze in Section 3. Specifically,

at each instant, a random fraction of intermediate good firms adjusts their price, with

constant hazard ζ. Their prices remain unchanged until the next time they have a chance

to adjust. We characterize the optimal price for an adjusting firm. We then characterize

the dynamics of inflation and derive the New-Keynesian Phillips curve.

Consider the firms that adjust their price in period t. These firms’ optimal price,

Qadj (t), solves

max
Qadj(t)

∫ ∞
T=t

e−ζ(T−t)e−
∫ T
t R(s)ds

(
Qadj (t)Y (T |t)−W (T )L (T |t)

)
dT (A.15)

where Y (T |t) = AL (T |t)1−α =

(
Qadj (t)

Q (T )

)−ε
Y (T ) .

The integral captures the sum of expected profits over histories at which the firm’s price
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remains unchanged. At time T , the price set at time t remains unchanged with probability

e−ζ(T−t). Since there is no aggregate risk, the firm discounts the profits at time T according

to the discount rate between times t and T . The terms, L (T |t) , Y (T |t), denote the input
and the output of the firm at time T (for a firm that reset its price at time t). We dropped

the lump-sum taxes from the expression since they do not affect the firm’s optimal pricing

decision.

The optimality condition is given by,

∫ ∞
T=t

e−ζ(T−t)e−
∫ T
t R(s)dsQ (T )ε Y (T )

(
Qadj (t)

− ε
ε−1

W (T )

(1−α)AL(T |t)−α

)
dT = 0 (A.16)

L (T |t) =

(
Qadj (t)

Q (T )

) −ε
1−α
(
Y (T )

A

) 1
1−α

.

Here, we have substituted Y (T |t)
Qadj(t)

= Qadj (t)−(1+ε)Q (T )ε Y (T ) and dropped Qadj (t)−(1+ε)

since it is common across all of the terms inside the integral.

We next combine Eq. (A.16) with the remaining equilibrium conditions to derive

the New-Keynesian Phillips curve. Specifically, we log-linearize the equilibrium around

the allocation that features potential real outcomes and zero nominal inflation, that is,

Lt = L∗, Yt = Y ∗ and Qt = Q∗ for each t. Recall that we use the notation x (t) = log X(t)
X∗

to denote the log-deviation of the corresponding variable X (t) from its potential.

We first log-linearize the labor supply Eq. (A.2) (after substituting (A.10)) to obtain

w (t)− q (t) = ϕl (t) + y (t) . (A.17)

Likewise, we log-linearize Eqs. (A.4− A.3) and (A.7), to obtain

y (t) = (1− α) l (t) . (A.18)

Finally, we log-linearize the optimality condition (A.16) to obtain,

∫ ∞
T=t

e−(ρ+ζ)(T−t)

 (εq (T ) + y (T )) (Q∗)ε Y ∗
(
Q∗ − ε

ε−1
W ∗

(1−α)A(L∗)−α

)
+ (Q∗)ε Y ∗

(
Q∗qadj (t)− ε

ε−1
W ∗

(1−α)A(L∗)−α (w (t) + αl (T |t))
)  dT

After substitutingQ∗ = ε
ε−1

W ∗

(1−α)A(L∗)−α [see Eq. (A.12)] and calculating l (T |t) [see (A.16)]
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we obtain ∫ ∞
T=t

e−(ρ+ζ)(T−t)
(
qadj (t)− (w (T ) + αl (T |t))

)
dT = 0 (A.19)

where l (T |t) =
−ε

1− α
(
qadj (t)− q (T )

)
+ l (T ) .

Here, the second line uses 1
1−αy (T ) = l (T ).

We next combine Eqs. (A.17− A.19) to express the optimality condition in terms of

the firm’s price, qadj (t), the aggregate price after each history, q (T ), and the aggregate

labor after each history, l (T ):∫ ∞
T=t

e−(ρ+ζ)(T−t)
((
qadj (t)− q (T )

) 1− α + εα

1− α − ϕ+ 1

1− αy (T )

)
dT = 0.

After rearranging terms, we obtain an expression for the optimal price of an adjusting

firm,

qadj (t) = (ρ+ ζ)

∫ ∞
T=t

e−(ρ+ζ)(T−t) (Θy (T ) + q (T )) dT

where Θ =
1 + ϕ

1− α + εα
.

Since the expression is recursive, we can also write it as a differential equation

(ρ+ ζ) qadj (t) = (ρ+ ζ) (Θy (t) + q (t)) + q̇adj (t) . (A.20)

Next, we consider the aggregate price index (A.5). Log-linearizing the expression

around Q∗, we obtain q (t) =
∫
q (t, ν) dν. Differentiating over time and using the obser-

vation that firms adjust their prices with constant hazard ζ, we obtain,

π (t) ≡ q̇ (t) = ζ
(
qadj (t)− q (t)

)
. (A.21)

Differentiating this, we also have

π̇ (t) = ζ
(
q̇adj (t)− q̇ (t)

)
. (A.22)

47



Substituting Eqs. (A.21− A.22) into (A.20), we obtain the New-Keynesian Phillips curve

ρπ (t) = κy (t) + π̇ (t) (A.23)

where κ = ζ (ρ+ ζ)
1 + ϕ

1− α + εα
.

This completes the microfoundations for the supply side that we use in the main text.

A.2. Comparative statics of overshooting

In Section 2.2, we show that the central bank optimally induces asset price overshooting

in response to an output gap. In this section, we discuss how different parameters in

our model affect the overshooting result. In particular, the following result describes

the extent of overshooting for a given output gap,
∣∣∣ p(t)y(t)

∣∣∣ = θm
ψv
(cf. (13)) as well as the

convergence rate, γ (cf. (14)).

Proposition 5. Consider the equilibrium path with optimal monetary policy. Then, the

asset price overshoots by more per unit of output gap (greater
∣∣∣ p(t)y(t)

∣∣∣) and output gaps are
closed faster (greater γ) in each of the following cases:

(i) When the central bank has smaller aversion to overshooting (smaller ψ)

(ii) When a larger fraction of stockholders adjusts at any moment (larger θ)

(iii) When adjusting stockholders respond more to the asset price (larger m)

In addition:

(iv) The asset price overshoots by more (larger
∣∣∣ p(t)y(t)

∣∣∣) but output gaps are closed more
slowly (smaller γ), when adjusting stockholders respond more to current income (larger

n).

The first part of Proposition 5 formalizes the comparative statics illustrated in Fig-

ure 2. The second and the third parts say that the central bank overshoots more (and

induces a faster recovery) when the output-asset price relation is stronger– in the sense

that the spending response to asset prices is either faster (with smaller lags) or larger.

Strengthening the output-asset price relation generates two counteracting effects. On the

one hand, it makes the asset price overshooting more effective– which induces more over-

shooting. On the other hand, it enables the central bank to achieve the same impact on

the output gap with smaller (or shorter) overshooting– which induces less overshooting.

With quadratic preferences (which are standard and commonly used in the literature),

the first force dominates and the central bank induces more overshooting when it is more

effective.
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The final part of Proposition 5 considers the effect of increasing the stockholders’

response to current income. This strengthens the amplification force by which current

output gaps persist: for instance, negative output gaps tend to reinforce further negative

gaps (cf. (7)). This induces the central bank to overshoot more in order to mitigate the

amplification loop and speed up the convergence. Despite the central bank’s response,

the amplification force prevails and implies that the output gaps are closed more slowly.

A.3. Omitted proofs

Proof of Proposition 1. Most of the analysis is presented in the main text. Here, we
verify that the value function is a quadratic function as in (11) and we characterize the

endogenous coeffi cient, v > 0.

We first consider the optimality condition for problem (10),

p =
θm

ψ
V ′ (y) . (A.24)

We then differentiate Eq. (10) with respect to y and use the Envelope Theorem to obtain

(ρ+ θ (1− n))V ′ (y) = −y + V ′′ (y) θ (mp− (1− n) y) . (A.25)

Eqs. (A.24) and (A.25) correspond to a second order ODE that characterizes the value

function. We conjecture that the solution is a quadratic function [see Eq. (11)]

V (y) = − 1

2v
y2.

Substituting the conjecture together with p = θm
ψ
V ′ (y) into (A.25), we obtain:

(ρ+ 2θ (1− n))
y

v
= y − θ2m2

ψ

y

v2
.

After canceling y’s from both sides and rearranging terms, we obtain the quadratic Eq.

(12):

P (v) ≡ v2 − (ρ+ 2θ (1− n)) v − θ2m2

ψ
= 0.

This quadratic equation has one positive root and one negative root. The solution corre-

sponds to the positive root, v > 0, since we require V (y) = − 1
2v
y2 ≤ 0. This root has the
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following closed form solution:

v =
ρ+ 2θ (1− n) +

√
(ρ+ 2θ (1− n))2 + 4 θ

2m2

ψ

2
. (A.26)

The rest of the analysis is in the main text. Note that Eq. (12) implies the convergence

rate in Eq. (14) also satisfies

γ ≡ θ

(
θm2

ψv
+ 1− n

)
= v − (ρ+ θ (1− n)) > 0. (A.27)

Combining this with Eq. (A.26), we can also calculate the convergence rate in closed form

as follows:

γ =

√
(ρ+ 2θ (1− n))2 + 4 θ

2m2

ψ
− ρ

2
. (A.28)

This completes the proof.

We next prove Proposition 5 that describes the comparative statics of the equilibrium.

The following lemma facilitates the proof.

Lemma 1. Consider the normalized value v which corresponds to the positive root of the
polynomial (12) given by (A.26).

(i) Increasing ψ decreases v and increases vψ.

(ii) Increasing θ increases v and decreases v/θ.

(iii) Increasing m increases v and decreases v/m.

(iv) Increasing n decreases v and v/m.

Proof of Lemma 1. Eq. (A.26) implies v is decreasing in ψ, but vψ is increasing in ψ

because

vψ =
(ρ+ 2θ (1− n))ψ +

√
ψ2 (ρ+ 2θ (1− n))2 + 4ψθ2m2

2

This proves the first part.

The same equation also implies v is increasing in θ, but v/θ is decreasing in θ because:

v

θ
=

ρ
θ

+ 2 (1− n) +
√(

ρ
θ

+ 2 (1− n)
)2

+ 4m
2

ψ

2
.

This proves the second part.

The same equation also implies v is increasing in m, but v/m is decreasing in m
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because:

v

m
=

ρ+2θ(1−n)
m

+

√(
ρ+2θ(1−n)

m

)2
+ 4 θ

2

ψ

2
.

This proves the third part. Finally, this expression together with Eq. (A.26) imply that

both v and v/m are decreasing in n. This proves the last part.

Proof of Proposition 5. Note that the overshooting and the convergence rate satisfy,∣∣∣ p(t)y(t)

∣∣∣ = θm
ψv
and γ = v−(ρ+ θ (1− n)) [cf. (A.27)]. Thus, parts (i) and (iii) follow directly

from the corresponding parts in Lemma 1.

Consider part (ii). Lemma 1 implies increasing θ increases θ/v. Thus, it also increases

the overshooting,
∣∣∣ p(t)y(t)

∣∣∣ = θm
ψv
as well as the convergence rate, γ ≡ θ

(
θm2

vψ
+ 1− n

)
[cf.

(A.27)].

Consider part (iv). Lemma 1 implies increasing n increases m/v. Therefore, it in-

creases overshooting,
∣∣∣ p(t)y(t)

∣∣∣ = θm
ψv
. Eq. (A.28) illustrates that it also decreases the conver-

gence rate, γ, completing the proof.

Proof of Proposition 2. We first complete the characterization of equilibrium and

establish the existence of a unique fixed point that solves Eq. (20). After substituting the

inflation function, π (y) = κ
ρ+γ

y [see Eq. (18)], the planner’s recursive problem becomes

ρV (y;π) = max
p
−
(

1 + φ

(
κ

ρ+ γ

)2)
y2

2
− ψp

2

2
+
dV (y;π)

dy
ẏ (A.29)

where ẏ = θ (mp− (1− n) y)

As before, we conjecture a quadratic value function

V (y;π) = − 1

2v (γ)
y2.

The coeffi cient, v (γ), depends on the growth rate through the inflation function π (y).

The optimality condition implies Eq. (19) in the main text,

p (y) =
θm

ψ

dV (y;π)

dy
=
−θm
ψv (y)

y.
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Differentiating Eq. (A.29) with respect to y and using the Envelope Theorem, we obtain

(ρ+ θ (1− n))
dV (y;π)

dy
= −

(
1 + φ

(
κ

ρ+ γ

)2)
y +

d2V (y;π)

dy2
θ (mp (y)− (1− n) y) .

After substituting the functional form for the value function and the optimal policy,

p (y), we obtain the following analogue of the quadratic in (12),

0 = v (y)2
(

1 + φ

(
κ

ρ+ γ

)2)
− v (y) (ρ+ 2θ (1− n))− θ2m2

ψ
. (A.30)

As before the coeffi cient, v (γ), corresponds to the positive root of this quadratic. Using

the shape of the quadratic, it is easy to check that v′ (γ) > 0. Note also that v (∞)

corresponds to the solution in the benchmark with fully sticky prices.

Next note that Eq. (7) implies Eq. (20),

γ =
−ẏ (t)

y (t)
= θ

(
θm2

ψv (y)
+ 1− n

)
.

The left side of this expression is an increasing function of γ whereas the right side is a

decreasing function. There exists a unique fixed point over the range γ ∈ (0,∞), which

corresponds to the equilibrium convergence rate.

We next establish the comparative statics of the equilibrium with respect to the price

flexibility parameter, κ. Eq. (A.30) implies ∂v(γ)
∂κ

< 0: all else equal, greater price

flexibility induces smaller value coeffi cient. Intuitively, with more flexible prices, the

planner obtains a lower value due to the endogenous response of inflation to output gaps.

The observation, ∂v(γ)
∂κ

< 0, implies that increasing κ shifts the function on the right

side of Eq. (20) upward. This increases the fixed point, dγ
dκ
> 0, and decreases the value

coeffi cient corresponding to the fixed point, dv(γ)
dκ

< 0. Intuitively, the endogenous increase

in the convergence rate, γ, mitigates but does not overturn the decline in the planner’s

value induced by greater κ.

Combining dv(γ)
dκ

< 0 with the quadratic in (A.30) also implies
d
(
1+φ( κ

ρ+γ )
2
)

dκ
> 0 (since

otherwise the positive root of the quadratic would increase). This implies d
dκ

∣∣∣dπdy ∣∣∣ =
d
dκ

κ
ρ+γ

> 0. As before, the endogenous increase in the convergence rate, γ, mitigates but

does not overturn the increase in the inflation response to the output gap induced by

greater κ. This completes the proof of the proposition.

Proof of Corollary 1. Next consider the comparative statics of equilibrium with re-
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spect to the planner’s aversion to overshooting, ψ. Adapting the proof for the first part

of Lemma 1 to this case implies that smaller ψ increases v (γ) but decreases the product,

v (γ)ψ. This in turn implies smaller ψ shifts the function on the right side of Eq. (20)

upward. This increases the fixed point, dγ
−dψ > 0, and increases the extent over over-

shooting evaluated at the fixed point, d
−dψ

∣∣∣dpdy ∣∣∣ = d
−dψ

θm
ψv(y)

> 0. Using Eq. (18), we

conclude that smaller ψ also weakens the relation between inflation and the output gap,
d
−dψ

∣∣∣dπdy ∣∣∣ = d
−dψ

κ
ρ+γ

< 0.

Proof of Corollary 2. Consider a Taylor rule that satisfies the condition in (23). We

first show that there is a unique ψ ∈ (0,∞) that solves Eq. (22). Consider the function

f (ψ) = R (ψ)− τ y − τπ
κ

ρ+ γ (ψ)

where R (ψ) =
ρ

1 + ρ
+
θm

ψv

(
γ + ρ

1 + ρ

)
.

From the proof of Corollary 1, we have d
dψ

θm
ψv(ψ)

< 0 and dγ
dψ
< 0. It is also easy to check

that limψ→0
θm
ψv(ψ)

=∞ and limψ→∞
θm
ψv(ψ)

= 0. Combining these observations, we obtain

df (ψ)

dψ
< 0,

lim
ψ→0

f (ψ) = ∞, and

lim
ψ→∞

f (ψ) =
ρ

1 + ρ
− τ y − τπ

κ

ρ+ γ (∞)
< 0.

Here, the last inequality follows from condition (23). It follows that there is a unique

ψ ∈ (0,∞) such that f (ψ) = 0.

We next establish the comparative statics of the solution to Eq. (22). Consider an

increase in either τ y or τπ. This shifts the function f (ψ) downward and reduces ψ ∈ (0,∞)

that solves Eq. (22). This implies dψ
dτy

< 0 and dψ
dτπ

< 0.

Proof of Proposition 3. Consider part (i). We first integrate Eq. (8) forward and use

limt→∞ e
−ρtp (t) = 0 to obtain a present discounted value formula:

p (t) =

∫ ∞
t

e−ρ(s−t) [ρy (s)− (1 + ρ) r (s)] ds. (A.31)
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We then log-linearize Eq. (25) to obtain:

pMB (t) =

∫ ∞
0

PMB∗ (µ)

PMB∗ log
PMB (t, µ)

PMB∗ (µ)
dµ (A.32)

= −
∫ ∞
0

e−ρµρ

∫ t+µ

t

(R (s)− ρ) dµ

= −
∫ ∞
0

∫ t+µ

t

e−ρµρ (1 + ρ) r (s) dsdµ

= −
∫ ∞
t

(∫ ∞
s−t

ρe−ρµdµ

)
(1 + ρ) r (s) ds

= −
∫ ∞
t

e−ρ(s−t)r (s) (1 + ρ) ds.

Here, the second line uses PMB∗ = αY ∗

ρ
and PMB∗ (µ) = αY ∗e−ρµ along with Eq. (25).

The third line substitutes r (s) ' R(s)−ρ
1+ρ

. The fourth line uses Fubini’s Theorem to switch

the order of integration; and the last step simplifies the expression. Combining the final

expression with Eq. (A.31), we establish Eq. (26).

Differentiating the second line in (A.32) with respect to time, we obtain

ṗMB (t) =

∫ ∞
0

e−ρµρ

(
− d

dt

(∫ t+µ

t

R (s) ds

))
dµ.

After substituting the definition of the zero-coupon yield, y (t, µ) =
∫ t+µ
t R(s)ds

µ
, we establish

Eq. (27).

Finally consider part (iii). Note that the last line in (A.32) implies

pMB (t) = −
∫ ∞
0

e−ρµ (R (t+ µ)− ρ) dµ.

Here, we have substituted r (s) (1 + ρ) ' R (s) − ρ and applied the change-of-variables,
µ = s− t. After differentiating the expression with respect to time, and substituting the
definition of the forward rate, f (t, µ) = R (t+ µ), we establish Eq. (28). This completes

the proof of the proposition.

Proof of Proposition 4. Consider the constrained region y (0) < y. The equilibrium
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corresponds to the solution to the differential equation system in (34), which we write as[
ẏ

ṗ

]
= A

[
y

p

]
+ b

where A =

[
−θ (1− n) θm

−ρ ρ

]
and b =

[
0

r (1 + ρ)

]
.

In view of the parametric condition, this system has a unique steady-state given by,[
y∗

p∗

]
=

[
ζm

ζ (1− n)

]
where ζ =

r (1 + ρ)

ρ (m− (1− n))
. (A.33)

Away from the steady-state, the qualitative behavior of the system is governed by the

eigenvalues of the matrix, A, which correspond to the zeros of the polynomial,

P (λ) = λ2 + λ (θ (1− n)− ρ) + θρ (m− (1− n)) . (A.34)

Under the parametric condition, there are two real eigenvalues, λ1 < λ2, with correspond-

ing eigenvectors given by

e1 =

[
λ1 − ρ
−ρ

]
and e2 =

[
λ2 − ρ
−ρ

]
. (A.35)

We denote the eigenmatrix with E = [e1, e2]. Given a generic vector

[
y − y∗

p− p∗

]
(measured

in deviation from the steady-state), we find the corresponding eigencoordinates by solving[
z1

z2

]
= E−1

[
y − y∗

p− p∗

]
. Given an initial vector with eigencoordinates

[
z1 (0)

z2 (0)

]
, the

solution is given

by [
y (t)− y∗

p (t)− p∗

]
= E

[
z1 (t)

z2 (t)

]
where

[
z1 (t)

z2 (t)

]
=

[
z1 (0) eλ1t

z2 (0) eλ2t

]
. (A.36)

To characterize the solution further, we consider two cases depending on the sign of

the term, m− (1− n).

Case (i) m − (1− n) > 0. In this case, ζ < 0 so the steady-state lies in the lower-left

quadrant in the y − p space [see (A.33)]. Moreover, Eqs. (A.34− A.35) (together with
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Figure 9: Phase diagram for the system in (34) when m− (1− n) > 0.

parametric condition) imply that both eigenvalues are negative λ1 < λ2 < 0 and that

both eigenvectors, e1, e2, have a strictly positive slope in the y − p space. Moreover, the
eigenvector e1 corresponding to the smaller (more negative) eigenvalue λ1 has a smaller

slope. Figure 9 illustrates the steady-state, the eigenvalues, and the eigenvectors for to

this case.

Now consider a generic initial vector in the upper-left quadrant in the eigenspace: that

is, with eigencoordinates z1 (0) < 0 < z2 (0). For such vectors, Eq. (A.36) together with

the fact that λ1 < λ2 < 0 implies limt→∞
z1(t)
z2(t)

= 0. Hence, as we solve the equation

forward, the solution becomes qualitatively similar to the paths along the eigenvector e2.

Conversely, we have limt→−∞
z2(t)
z1(t)

= 0. As we solve the equation backward, the solution

becomes qualitatively similar to the paths along the eigenvector e1. Combining the two

cases, a generic solution path for the upper-left quadrant in the eigenspace has the shape

illustrated in Figure 9. In particular, ẏ (t) > 0, ṗ (t) > 0 when t is suffi ciently small and

negative, whereas ẏ (t) < 0, ṗ (t) < 0 when t is suffi ciently large and positive.

Now consider the vector (y, p) at which the discount rate constraint starts to bind.

Since the discount rate is effectively unconstrained, our analysis in Section 2.2 implies

ẏ (t) > 0 and ṗ (t) < 0 (this can also be seen from (34)). Combining this observation

with Figure 9, the vector, (y, p), must be in the upper-left quadrant in the eigenspace.
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Figure 10: Phase diagram for the system in (34) when m− (1− n) < 0.

Moreover, (y, p) must lie on the part of a solution path where ṗ (t) has become strictly

negative but ẏ (t) has not yet become negative. These observations prove the proposition

for case (i). As illustrated in Figure 9, the function p (y) corresponds to the solution path

over the range, y < y, and the cutoff y corresponds to the maximum of the function

p (y).

Case (ii) m − (1− n) < 0. In this case, ζ > 0 so the steady-state lies in the upper-

right quadrant in the y − p space [see (A.33)]. Moreover, Eq. (A.34) implies that one

eigenvalue is strictly negative while the other one is strictly positive λ1 < 0 < λ2 and

that the positive eigenvalue satisfies, λ2 < ρ. Therefore, Eq. (A.35) still implies that both

eigenvectors have a positive slope and the eigenvector e1 corresponding to the smaller

(negative) eigenvalue λ1 has a smaller slope. Figure 10 illustrates the steady-state, the

eigenvalues, and the eigenvectors corresponding to this case.

Now consider a generic initial vector in the lower-left quadrant in the eigenspace: that

is, with eigencoordinates z1 (0) < 0, z2 (0) < 0. For such vectors, Eq. (A.36) together

with the fact that λ1 < 0 < λ2 implies limt→∞ z1 (t) = 0 and limt→∞ z2 (t) = −∞. Hence,
as we solve the equation forward, the solution moves away from the steady-state at an

exponential rate along the eigenvector e2. Conversely, we also have limt→−∞ z1 (t) = −∞
and limt→−∞ z2 (t) = 0. Hence, as we solve the equation backward, the solution moves

away from the steady-state at an exponential rate along the eigenvector e1. Combining

57



the two cases, a generic solution path in the lower-left quadrant in the eigenspace has

the shape illustrated in Figure 10. In particular, ẏ (t) > 0, ṗ (t) > 0 when t is suffi ciently

small and negative whereas ẏ (t) < 0, ṗ (t) < 0 when t is suffi ciently large and positive.

Now consider the vector (y, p) at which the discount rate constraint starts to bind. As

before, this vector satisfies ẏ (t) > 0 and ṗ (t) < 0. Combining this observation with Figure

10 implies that (y, p) must be in the lower-left quadrant in the eigenspace. Moreover, it

must lie on the part of a solution path where ṗ (t) has become strictly negative but ẏ (t)

has not yet become negative. These observations prove the proposition for case (ii). As

illustrated in Figure 10, the function, p (y), corresponds to the solution path over the

range, y < y, and the cutoff y corresponds to the output gap where p (y) is maximized.

Finally, to facilitate the numerical solution, we also write the function, p (y), as a

solution to a differential equation in y-domain. Observing that dp
dy

= dp
dt
/dy
dt
, we combine

the two differential equations in (34) to obtain,

dp (y)

dy
=

(1 + ρ) r + ρ (p (y)− y)

θ (mp (y)− (1− n) y)
with p (y) = p. (A.37)

We can obtain the functions p (y) illustrated in Figures 9− 10 by solving this differential

equation backward in y-domain.

Proof of Proposition 7, Part (i). First consider the value function that solves problem
(B.17). After changing the variables to log-deviations, and using (7), we can rewrite the

problem as:

ρV1 (ỹ1) = max
p̃1
− ỹ

2
1

2
− ψ p̃

2
1

2
+ V ′1 (ỹ1) θ (mp̃1 − (1− n) ỹ1) + λ (V2 (ỹ1 − k)− V1 (ỹ1)) .

(A.38)

Here, with a slight abuse of notation, we continue to use V1 (·) to denote the value function
defined over the output gap ỹ1 instead of the normalized output level y1. After transition

to recovery, the log output gap declines by k even though the normalized output remains

unchanged (since log potential output increases by k).

Using the optimality conditions, we obtain analogues of Eqs. (A.24) and (A.25):

p̃1 =
θm

ψ
V ′1 (ỹ1) (A.39)(

ρ+

θ (1− n) + λ

)
V ′1 (ỹ1) = −ỹ1 −

λ

v
(ỹ1 − k) + V

′′

1 (y1) θ

(
mp̃1−

(1− n) y1

)
.(A.40)

Here, the second line uses (11) to substitute for V ′2 (ỹ1 − k).
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We conjecture that the solution has the form in (B.19):

V1 (ỹ1) = a+ bỹ1 −
1

2v
ỹ21,

Combining this conjecture with Eq. (A.40), and using y = ỹ1 to denote gaps, we obtain:

(ρ+ θ (1− n) + λ)

(
b− 1

v
y

)
= −y − λ1

v
(y − k)− 1

v

θ2m2

ψ

(
b− 1

v
y

)
+

1

v
θ (1− n) y.

Collecting the terms with y, we obtain:

−1

v
(ρ+ θ (1− n) + λ) y = −y − 1

v
λy +

1

v2
θ2m2

ψ
y +

1

v
θ (1− n) y.

After canceling − 1
v
λy from both sides, and dropping y, we obtain the same quadratic

(12). Hence, v is the same as before.

Likewise, collecting the terms without y, we obtain:

(ρ+ θ (1− n) + λ) b =
λk

v
− 1

v

θ2m2

ψ
b.

After rearranging terms, we solve:

b =
λk
v

ρ+ θ (1− n) + λ+ 1
v
θ2m2

ψ

=
λ

ρ+ λ+ γ

k

v

Here, the second equality substitutes for γ from (A.27). This proves the value function

takes the form in (B.19) with the coeffi cient b > 0 given by (B.20).

Next consider the solution. Substituting the value function into Eq. (A.39), we obtain:

p̃1 (t) =
θm

ψ

(
b− 1

v
ỹ1 (t)

)
. (A.41)

Combining this with (B.18), and using (A.27) to substitute γ, we obtain:

dỹ1 (t)

dt
=
θ2m2

ψ
b− γỹ1 (t) . (A.42)

This equation implies that the output gap converges to a steady-state given by:

ỹ1 (∞) =
θ2m2

ψ

b

γ
=
γ − θ (1− n)

γ

λ

ρ+ λ+ γ
k.
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Here, we have substituted for b [cf. (B.20)] as well as θ2m2

ψv
= γ − θ (1− n) [cf. (A.27)].

Note that this also implies ỹ1 (∞) ∈ (0, k). Then, Eq. (B.18) implies the asset price gap

converges to a steady-state given by:

p̃1 (∞) =
1− n
m

ỹ1 (∞) > 0.

This establishes Eq. (B.21) completes the proof of the first part.

Part (ii). Suppose y1 (0) < y1 (∞), which implies the output gap starts below its

steady-state, ỹ1 (0) < ỹ1 (∞). Absent transition, Eq. (A.42) implies that the output

gap monotonically increases toward its steady-state. Combining this with Eq. (A.41), we

also obtain that the asset price gap starts above its steady-state, p̃1 (0) > p̃1 (∞), and

monotonically declines toward its steady-state. This also implies the normalized output

y1 (0) monotonically increases towards its steady-state y1 (∞); and the normalized asset

price monotonically decreases toward its steady-state.

Next consider the time t′ at which the economy transitions to the recovery (starting

with y1 (0) < y1 (∞)). Normalized output remains unchanged. It is below its new poten-

tial because, y2 (t′) = y1 (t′) < y1 (∞) < 0. The asset price gap after transition is given

by Eq. (13) whereas the asset price gap before transition is given by Eq. (A.41). That is:

p̃2 (t′) = p2 (t′) = −θm
ψv

y1 (t′)

p̃1 (t′) =
θm

ψ

(
b− 1

v
(y1 (t′)− y∗1)

)
After taking the difference, and substituting y∗1 = −k, we obtain:

p̃2 (t′)− p̃1 (t′) =
θm

ψ

(
k

v
− b
)

=
θm

ψ

k

v

ρ+ γ

ρ+ λ+ γ
> 0.

Here, the second equality substitutes b from (B.20). Since p∗1 < 0, we also have p̃1 (t′) >

p1 (t′). Thus, we obtain p̃2 (t′) = p2 (t′) > p̃1 (t′) > p1 (t′). At the time of transition, the

normalized asset price as well as its gap increases. This completes the proof.
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B. Appendix: Omitted extensions

This appendix presents the extensions of the model omitted from the main text. We

first generalize the analysis to the case in which adjusting stockholders are fully rational

and incorporate the fact that they will infrequently readjust in future periods (see Section

2.3.2). We then consider a scenario in which the output gap is not negative at the moment

but anticipated to turn negative in the near future (see Section 2.3.3).

B.1. Overshooting with sophisticated stockholders

Consider the baseline model analyzed in Sections 2 and 2.2. In the main text, we assume

adjusting stockholders exogenously follow the rule in (6) with coeffi cientsm > 0, n ∈ [0, 1).

In this appendix, we generalize the analysis to the case with fully sophisticated adjusting

stockholders that incorporate the fact that they will get to readjust in the future according

to a Poisson process with intensity θ. Specifically, our main result in this section shows

that there exists an equilibrium in which the sophisticated consumers follow the rule in

(6) with endogenous coeffi cients, that is:

cs,adj (t) = m (γ) p (t) + n (γ) y (t)

where m (γ) =
θ − ρ
θ + γ

and n (γ) =
ρ

θ + γ
(B.1)

Proposition 6. Consider the baseline model with fully rational stockholders. When θ > ρ,

there exists an equilibrium in which the linearized optimal consumption rule for adjusting

stockholders satisfies

cs,adj (t) = (1− η) p (t) + η
ρy (t)

ρ+ γ
where η =

ρ+ γ

θ + γ
. (B.2)

Equivalently, the equilibrium consumption rule is given by Eq. (6) with the endoge-

nous coeffi cients in (B.1) that satisfy m (γ) , n (γ) ∈ (0, 1). The equilibrium path,

[y (t) , p (t) , r (t)]∞t=0, is characterized by Proposition 1 given the coeffi cients m (γ) , n (γ).

In particular, the equilibrium with fully rational stockholders also features asset
price overshooting. The equilibrium convergence rate, γ > 0, solves:

γ = F (γ) ≡

√
(ρ+ 2θ (1− n (γ)))2 + 4 θ

2m(γ)2

ψ
− ρ

2
. (B.3)

Eq. (B.2) characterizes the optimal linearized consumption rule along a path in which
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the linearized equilibrium variables converge to zero at a constant rate γ > 0. The remain-

ing equilibrium variables are then characterized by Proposition 1 given the endogenous

coeffi cients m (γ) , n (γ). Recall from our earlier analysis that the convergence rate, γ,

depends on the coeffi cients, m,n. Since the endogenous coeffi cients also depend on γ, the

equilibrium convergence rate corresponds to a fixed point.

Before we prove Proposition 6, we discuss the intuition behind the consumption rule in

(B.2). Note that ρy(t)
ρ+γ

captures the log wealth change driven by the consumer’s fixed-rate

wealth: the present value of her lifetime income discounted at the steady-state discount

rate ρ (along the equilibrium path with convergence rate γ). Hence, Eq. (B.2) says that

log consumption reacts to a weighted average of the log actual wealth change, p (t), and

the log fixed-rate wealth change, ρy(t)
ρ+γ

. When asset prices increase because current income

increases, the two wealth measures increase by the same amount and log consumption

reacts one-to-one to log wealth changes. However, when asset prices increase because of a

discount rate cut, log consumption reacts less than one-to-one to log wealth change (m <

1). Hence, the consumer does react to wealth changes induced by discount rate changes,

but less so than when she can adjust continuously. As expected, θ → ∞ implies η → 0:

when consumption adjustment is suffi ciently rapid, we recover the usual consumption rule.

Why does a sophisticated consumer react to the interest-rate driven wealth changes

relatively less? As we show below, this is because interest-rate-driven wealth changes are

associated with net income effects that mitigate the wealth effect. Intuitively, since the

consumer cannot reoptimize in the future (in some states), the substitution effect becomes

relatively weak. Therefore, despite log preferences, the substitution and income effects

do not net out. Instead, the income effect dominates and implies that– keeping wealth

constant– decreasing the discount rate decreases spending. Equivalently, lower discount

rates make it costlier to finance a fixed consumption stream until the next adjustment

opportunity.

We next prove Proposition 6 in three steps. First, we characterize the (log-linearized)

optimal consumption rule for an arbitrary path of (log-linearized) future income and

discount rate gaps, [y (t) , r (t)]∞t=0. Second, we show that, along the equilibrium path in

which y (t) and r (t) converge to zero at an exponential rate γ > 0, the consumption rule

is given by (B.2). Third, we show there exists a convergence rate that solves the fixed

point equation (B.3) and prove Proposition 6.

Optimal consumption with Poisson adjustment. We establish optimal consump-

tion rule for t = 0. Since the model is stationary, the results also apply for other times

t > 0. Consider a stockholder with assets A (0) that gets to adjust her consumption. For
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now, we take the initial asset level as exogenous (from the discount rate) and endogenize

it subsequently. The stockholder’s recursive problem is given by:

V (A (0)) = max
C

∫ ∞
0

θe−θT
[∫ T

0

e−ρt logCdt+ e−ρTV (A (T ))

]
dT (B.4)

= max
C

∫ ∞
0

θe−θT
[

1− e−ρT
ρ

logC + e−ρTV (A (T ))

]
dT

where Ȧ (t) = R (t)A (t)− C

Here, we write the stockholder’s problem as an integral over adjustment times T . The

probability that adjustment takes place at time T is θe−θT . Conditional on adjustment

at time T , the stockholder receives the utility in the brackets.

Suppose consumption is strictly positive along the optimal path (this will be the case

since we focus on small deviations from the steady-state). Then, the value function has

the homogeneity property:

V (A (t)) =
logA (t)

ρ
+ V (1) .

Note also that we can integrate the budget constraint forward to solve for the value of

assets at time T . In particular, the present value of A (T ) is equal to the initial assets net

of the present value of the fixed consumption path until time T :

A (T )

exp
(∫ T

0
R (s) ds

) = A (0)− C
∫ T

0

exp

(
−
∫ t

0

R (s) ds

)
dt

Substituting this into (B.4), we obtain the following optimality condition:

∫ ∞
0

θe−θT

1− e−ρT
Cρ

− exp (−ρT )

ρ

∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt

A (0)− C
∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt

 dT = 0.

After rearranging terms, we have:

1

C

1

θ + ρ
=

∫ ∞
0

θ

ρ
e−(θ+ρ)T

∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt

A (0)− C
∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt.
dT.

The solution scales with initial wealth. Thus it can be written as

C = ρX (0)A (0) (B.5)
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for some X (0) > 0. After substituting, we further obtain

1

X (0)
=

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T

∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt

1− ρX (0)
∫ T
0

exp
(
−
∫ t
0
R (s) ds

)
dt.
dT. (B.6)

Consider the potential steady-state, R∗ (t) = ρ for each t. In this case, it is easy to

check X∗ (0) = 1 and thus C = ρA (0). Consider also the special case θ → ∞. It can be
checked that this also gives the same solution X (0) = 1 and C = ρA (0).

Beyond these special cases, the solution is complicated. In particular, X (0) depends

on the whole future path of discount rates. To make progress, we log-linearize Eq. (B.6)

around the potential steady-state. Specifically, we define the log-deviation terms x (0) =

log X(0)
X∗(0) and r (t) = log 1+R(t)

1+ρ
. Substituting these variables into (B.6) and using the

approximation r (s) ' R(s)−ρ
1+ρ

along with X∗ (0) = 1, we obtain:

1

exp (x (0))
=

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T

∫ T
0

exp (−ρt) exp
(
−
∫ t
0

(1 + ρ) r (s)
)
dsdt

1− ρ exp (x (0))
∫ T
0

exp (−ρt) exp
(
−
∫ t
0

(1 + ρ) r (s)
)
dt
dT .

Linearizing this expression around x (0) = r (t) = 0, we further obtain:

x (0) =

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T


−ρx (0)

∫ T
0
e−ρtdt

∫ T
0 e−ρtdt

(1−ρ
∫ T
0 e−ρtdt)

2+

−
∫ T
0
e−ρt

(
−
∫ t
0

(1 + ρ) r (s) ds
)
dt 1

1−ρ
∫ T
0 e−ρtdt

−ρ
∫ T
0
e−ρt

(
−
∫ t
0

(1 + ρ) r (s) ds
)
dt

∫ T
0 e−ρtdt

(1−ρ
∫ T
0 e−ρtdt)

2

 dT

=

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T

{
−x (0)

(
1− e−ρT

)2
ρ (e−ρT )2

+

∫ T
0
e−ρt

∫ t
0

(1 + ρ) r (s) dsdt

(e−ρT )2

}
dT .

Here, the first line uses the chain rule to evaluate the derivatives and cancels the constant

terms from both sides (since the equation holds for x (0) = r (t) = 0). The second line

calculates the integrals. After rearranging terms, we further obtain

x (0)

[
1 +

∫ ∞
0

θ (θ + ρ)

ρ
e−(θ−ρ)T

(
1− e−ρT

)2
dT

]
=

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
∫ t

0

(1 + ρ) r (s) dsdtdT
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Calculating the integrals and simplifying further, we obtain:

x (0)

(
θ + ρ

θ − ρ

)
=

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
∫ t

0

(1 + ρ) r (s) dsdtdT . (B.7)

Recall that C = X (0) ρA (0) where X (0) ' X∗ exp (x (0)). Hence, Eq. (B.7) il-

lustrates that the slope of the consumption function deviates from the usual slope iff

the discount rates are different from their steady-state levels. As long as θ > ρ (which

we assume), keeping current wealth constant, greater discount rate increases (resp. de-

creases) spending. Intuitively, since stockholder cannot reoptimize in the future (in some

states), the substitution effect becomes weaker. Therefore, despite log preferences, the

substitution and income effects do not net out. Instead, the income effect dominates and

implies– keeping the wealth constant– increasing the discount rate increases spending. A

higher discount rate makes it cheaper to finance a steady consumption stream (C), which

induces the stockholder to spend more.

As before, there is also a wealth effect once we endogenize the initial wealth A (0). In

particular, note that the wealth of the representative adjusting stockholder is equal to the

price of capital, A (0) = P (0). This implies:

Cs,adj (0) = X (0) ρP (0) (B.8)

where P (0) =

∫ ∞
0

αY (t) e−
∫ t
0 R(s)dsdt.

Log-linearizing the price of capital around the potential steady-state and using r (s) '
R(s)−ρ
1+ρ

, we obtain

p (0) =

∫ ∞
0

e−ρtρy (t) dt−
∫ ∞
0

∫ t

0

e−ρtρr (s) (1 + ρ) dsdt

=

∫ ∞
0

e−ρtρy (t) dt−
∫ ∞
0

(∫ ∞
s

e−ρtρdt

)
r (s) (1 + ρ) ds

=

∫ ∞
0

e−ρt (ρy (t)− (1 + ρ) r (t)) dt. (B.9)

Here, the second line switches the order of integration and the last line collects the terms

(see Eq. (A.31) in the main text for an alternative derivation). As usual, increasing the

discount rate reduces the value of capital. All else equal, this reduces spending.

Finally, log-linearizing Eq. (B.8) around the potential steady-state, we conclude that
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the optimal consumption rule is approximately,

cs,adj (0) = x (0) + p (0) , (B.10)

where x (0) is given by Eq. (B.7) and p (0) is given by (B.9).

Optimal consumption along the equilibrium path. We next calculate consump-

tion along the equilibrium path and prove Eq. (6). In equilibrium, we have:

y (t) = y (0) e−γt and r (t) = r (0) e−γt.

Substituting these expressions in (B.9), we solve for the asset price along the equilibrium

path:

p (0) =
ρy (0)− (1 + ρ) r (0)

ρ+ γ
. (B.11)

As expected a greater initial output increases the price and a greater initial discount rate

decreases the price.

Next, we define η such that:

x (0) =
(1 + ρ) r (0)

ρ+ γ
η. (B.12)

This normalization is useful to simplify consumption function. Specifically, combining

this with Eqs. (B.10) and (B.11), we obtain:

cs,adj (0) =
(1 + ρ) r (0)

ρ+ γ
η + p (0) (B.13)

=

(
ρy (0)

ρ+ γ
− p (0)

)
η + p (0)

= (1− η) p (0) + η
ρ

ρ+ γ
y (0)

Here, the second line substitutes (1+ρ)r(0)
ρ+γ

= ρy(0)
ρ+γ
− p (0) from Eq. (B.11) to express the

consumption function in terms of y (0) , p (0) (instead of r (0) , p (0)).

It remains to solve for η along the equilibrium path. Combining Eqs. (B.7) and
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(B.12), and substituting r (s) = r (0) e−γs, we calculate:

η =
(ρ+ γ) (θ − ρ)

θ + ρ

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
1− e−γt

γ
dtdT

=
(ρ+ γ) (θ − ρ) θ

γ

∫ ∞
0

e−(θ−ρ)T
[

1− e−ρT
ρ

− 1− e−(ρ+γ)T
ρ+ γ

]
dT

=
(ρ+ γ) (θ − ρ) θ

γ

{
1

ρ

(
1

θ − ρ −
1

θ

)
− 1

ρ+ γ

(
1

θ − ρ −
1

θ + γ

)}
=

(ρ+ γ) (θ − ρ) θ

γ

{
1

(θ − ρ) θ
− 1

(θ − ρ) (θ + γ)

}
=

ρ+ γ

θ + γ
. (B.14)

The final expression has intuitive comparative statics. For instance, as θ → ∞, we have
η → 0. That is, when the stockholder adjusts very rapidly, we recover the standard rule.

Combining Eqs. (B.13) and (B.14), we prove the consumption rule in Eq. (B.2).

This rule also implies the consumption rule in Eq. (6) with the endogenous coeffi cients

in (B.1) since

m (γ) = 1− η =
θ − ρ
θ + γ

and n (γ) = η
ρ

ρ+ γ
=

ρ

θ + γ
.

Note that m,n ∈ (0, 1) since we assume θ > ρ.

The equilibrium convergence rate. Note that the slope coeffi cients depend on the

equilibrium convergence rate, that is, m = m (γ) and n = n (γ). Conversely, Proposition

1 shows that the convergence rate, γ, depends on m and n. Specifically, Eq. (A.28) shows

the convergence rate solves the fixed point equation (B.3). We next complete the proof

of Proposition 6.

Proof of Proposition 6. It remains to show that when θ > ρ there exists a solution to

the fixed point equation (B.3), which we replicate here:

γ = F (γ) ≡

√
(ρ+ 2θ (1− n (γ)))2 + 4 θ

2m(γ)2

ψ
− ρ

2
,

where m (γ) =
θ − ρ
θ + γ

and n (γ) =
ρ

θ + γ
.

We claim there is a solution that satisfies γ ∈ (0, γ) where γ = θ
(

1 + 1√
ψ

)
.
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First note that

F (γ = 0) ≥

√
(ρ+ 2θ (1− n (0)))2 − ρ

2
= θ (1− n (0)) = θ − ρ > 0.

Here, the inequality follows since θ > ρ. Next note that

F (γ) ≤

√(
ρ+ 2θ (1− n (γ)) + 2 θm(γ)√

ψ

)2
− ρ

2

= θ

(
1− n (γ) +

m (γ)√
ψ

)
< θ

(
1 +

1√
ψ

)
= γ

Here, the last equality uses n (γ) ,m (γ) ∈ (0, 1). In particular, F (γ) < γ. It follows that

Eq. (B.3) has a solution that satisfies γ ∈ (0, γ). This establishes the existence of a fixed

point and completes the proof.

B.2. Preemptive asset price overshooting

In the main text, we focus on a recovery scenario in which the output gap is negative

and the central bank’s concern is to close the output gap as quickly as possible. We next

extend the analysis to a case when the output gap is not (necessarily) negative at the

moment but the central bank anticipates that it will turn negative in the near future.

This situation may arise, for example, when the economy is experiencing a sharp but

temporary decline in potential output that drags aggregate demand down with it, as in

the Covid-19 recession. Our main result in this section shows that the central bank may

find it optimal to preemptively overshoot asset prices also in this scenario.

Specifically, there are now two aggregate states denoted by subscript s ∈ {1, 2}. State
s = 2 (the “recovery”) corresponds to our analysis up to now. In particular, potential

output is given by Y ∗2 (t) = Y ∗. State s = 1 (the “recession”) corresponds to an earlier

period in which potential output is lower, Y ∗1 (t) = exp (−k)Y ∗ for some k > 0. The

economy starts in the recession state s = 1 and transitions to the recovery state s = 2

according to a Poisson process with intensity λ > 0. Once the economy transitions, it

remains in state s = 2 forever.18

18Our analysis is robust to the exact parametric change that induces the decline in potential output.
For concreteness, suppose we only change the total factor productivity (TFP): that is, A1 (t) = A exp (−k)
and A2 (t) = A, and the remaining parameters are the same across states (see Appendix A.1).
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In this section, we use the notation ys = log Ys
Y ∗ , ps = log Ps

P ∗ , rs = log 1+Rs
1+ρ

to denote

normalized log variables: their difference from potential levels in the recovery state [cf.

(5)]. We use ỹs = log Ys
Y ∗s
, p̃s = log Ps

P ∗s
to denote the log output and the log asset price gaps:

their difference from potential levels within the corresponding state. For the recovery state,

the normalized and the gap variables are the same, y2 = ỹ2, p2 = p̃2; but for the recession

state they are different, y1 ≤ ỹ1, p1 ≤ p̃1 (since the potential levels are lower).

We make three additional simplifying assumptions. First, stockholders have Epstein-

Zin preferences with discount rate ρ, EIS equal to one, and RRA equal to 0. Hence,

stockholders effectively have log utility with respect to consumption-saving decisions as

before, but they are risk neutral with respect to portfolio decisions. This ensures that the

asset pricing side of the model is the same as before, and the discount rate is the same

as the expected return on capital. Thus, the log-linearized return is given by (8) in state

s = 2 and by the following expression in state s = 1:19

r1 (t) =
ρ

1 + ρ
(y1 (t)− p1 (t)) +

ṗ1 (t) + λ (p2 (t)− p1 (t))

1 + ρ
. (B.15)

The expected return on the market portfolio accounts for the change in the asset price

when there is a transition.

Second, adjusting stockholders follow the rule in (6) in both the recovery and the

recession states.20 Thus, normalized output follows the same dynamics in the recession

state [cf. (7)]:

ẏ1 = θ (mp1 − (1− n) y1) . (B.16)

Finally, we let the central bank solve the following version of problem (10) in state 1:

ρV1 (y1) = max
p1
− ỹ

2
1

2
− ψ p̃

2
1

2
+ V ′1 (y1) ẏ1 + λ (V2 (y1)− V1 (y1)) , (B.17)

where ỹ1 = y1 − y∗1 with y∗1 = −k < 0,

and p̃1 = p1 − p∗1 with p∗1 = −k (1− n) /m < 0.

19We obtain (B.15) by log-linearizing the following equation that describes the interest rate (around

the potential levels in the recovery state
(
Y ∗, P ∗ = αY ∗

ρ , R∗ = ρ
)
:

1 +R1 (t) = 1 +
αY1 (t) + Ṗ1 (t) + λ (P2 (t)− P1 (t))

P1 (t)
.

20When consumers are fully rational, the optimal consumption rule would take this form with possibly
state-dependent coeffi cients ms, ns. We assume the same rule for both states to keep the notation simple,
although our results would qualitatively apply in the more general case (as long as ms, ns ∈ (0, 1) for
both states).
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Given current normalized output y1, the central bank solves a gap-minimizing problem as

before. However, the gaps in state s = 1 are no longer equal to the normalized variables.

The potential output, y∗1, is lower (recall that Y
∗
1 = exp (−k)Y ∗). The potential asset

price, p∗1, is also lower and reflects the lower potential output. If stockholders adjusted

instantaneously (θ =∞), then keeping the asset price at its potential would ensure that
output is also at its potential [cf. (B.16)]. The value function also accounts for the

expected transition to the recovery state. In particular, V2 (·) denotes the recovery value
function that we characterized in Section 2.2.

We define the equilibrium with optimal monetary policy as before. In the recession

state, output and asset prices solve problem (B.17) given (B.16), and the discount rate

is given by (B.15). After transition to the recovery state, the equilibrium is given by

Definition 1.

To analyze the equilibrium, note that Eq. (B.16) also holds in terms of the gaps:

dỹ1
dt

= θ (mp̃1 − (1− n) ỹ1) . (B.18)

Thus, problem (B.17) has a similar structure to the earlier problem (10). In the appendix,

we show that the solution also has a similar form [cf. (11)]:

V1 = a+ bỹ1 −
1

2v
ỹ21, (B.19)

where b =
λ

λ+ ρ+ γ

k

v
> 0. (B.20)

Here, v, γ > 0 are the same as before. In this case, the value function features an

additional linear component, a + bỹ1, with b > 0. In particular, a positive output gap,

ỹ1 > 0, increases the value function relative to the recovery state since bỹ1 > 0.

A positive gap is now less costly since it will reduce the size of the output gap once

potential output recovers. This suggests that the central bank might preemptively in-

duce positive gaps in the recession state. We next state our main result in this section,

which completes the characterization and verifies that the equilibrium features preemptive

overshooting.

Proposition 7. (i) In the recession state s = 1, the value function is given by (B.19),

where a is a constant and b > 0 is given by (B.20). Absent a transition, the optimal asset
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price and output gaps follow the dynamics

p̃1 (t) =
θm

ψ

(
b− 1

v
ỹ1 (t)

)
,

dỹ1 (t)

dt
=

θ2m2

ψ
b− γỹ1 (t) .

These gaps monotonically converge to strictly positive steady-state levels given by

ỹ1 (∞) ≡ γ − θ
γ

λ

λ+ ρ+ γ
k > 0 and p̃1 (∞) =

1− n
m

ỹ1 (∞) > 0. (B.21)

The normalized output and asset price y1 (t) , p1 (t) converge to corresponding steady-

states y1 (∞) = ỹ1 (∞) + y∗1 and p1 (∞) = p̃1 (∞) + p∗1. The steady-state output exceeds

its potential in the recession state but remains below its potential in the recovery state,

y1 (∞) ∈ (−k, 0) (equivalently, ỹ1 (∞) ∈ (0, k)).

(ii) Suppose the normalized output is initially not too high, y1 (0) < y1 (∞) (e.g., it is

at potential y1 (0) = y∗1 = −k). Before transition, the equilibrium features preemptive
asset price overshooting: The normalized asset price starts above its steady-state level
as well as its potential, p1 (0) > p1 (∞) > p∗1. Absent a transition, the normalized output

monotonically increases toward y1 (∞), and the normalized asset price monotonically de-

creases toward p1 (∞). At the moment of the transition to recovery (time t′), asset price
overshooting increases: the normalized output remains unchanged but the output gap
becomes negative, ỹ2 (t′) = y2 (t′) = y1 (t′) < 0, and the normalized asset price level as

well as its gap jump upward, p̃2 (t′) = p2 (t′) > p̃1 (t′) > p1 (t′).

Figure 11 illustrates the equilibrium (the solid lines) for a particular parameterization

in which the economy starts with a zero output gap and the transition takes place at its

expected time, t′ = 1/λ. We set k = 0.05 so that the recession corresponds to a 5% decline

in potential output. The dotted lines illustrate the within-state potential levels (the gaps

are the distance from these lines). The equilibrium features preemptive overshooting: the

central bank sets a positive asset price gap, which gradually induces a positive output

gap. After transition, the central bank overshoots the asset price even more, which helps

close the negative output gap. For comparison, the figure also illustrates what happens

when the aversion to overshooting is extreme (ψ = ∞) so that the central bank always
keeps the asset price at its potential. In this case, output does not start to recover until

productivity actually recovers. As a result, the economy enters the recovery with a greater

aggregate demand gap and closes this gap more slowly [cf. Figure 2].

Figure 12 illustrates the effect of increasing λ– the expected transition rate to recovery.
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Figure 11: A simulation of the equilibrium variables starting in the shock state s = 1
with overshooting (solid lines) and with extreme aversion to overshooting (ψ =∞, dashed
lines). The dotted lines correspond to the within-state potential output and asset price.
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Figure 12: Equilibrium with a greater expected transition rate (λ̃ > λ, solid lines) and
with the baseline rate (λ, dashed lines).

The solid lines plot the equilibrium when the expected transition rate is higher (λ̃ > λ)

but the actual transition takes place at the same time as in the previous figure (t′ = 1/λ).

In this case, preemptive overshooting is stronger: asset prices increase by more and the

output in the recession converges to a level closer to its potential in the recovery [cf.

(B.21)]. Intuitively, since the central bank expects the recovery to start soon, it also

engages in considerable overshooting in the recession. In fact, the figure highlights that,

by frontloading much of the overshooting to the recession, the central bank might do

less overshooting when the recovery finally arrives (compared to the early stages of the

recession).
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C. Appendix: Data sources

This appendix presents the data sources and variable construction used in the main text.

S&P 500 Index. Data for the S&P 500 index used in Figures 1 and 3 is taken from the
St. Louis Fed’s online database of Federal Reserve Economic Data (FRED) (available at

https://fred.stlouisfed.org/series/SP500).

Continued Jobless Claims. Data for continued claims (seasonally adjusted) used in
Figure 1 is also taken from FRED (available at https://fred.stlouisfed.org/series/CCSA).

Real Yields and One-Year-Ahead Forward Rates. To construct the forward rates
in 4 and the market-bond portfolio in Figures 3 and 5, we use the estimated TIPS term

structure data provided by the Federal Reserve, based on the approach by Gürkaynak et al.

(2007) (available at https://www.federalreserve.gov/data/tips-yield-curve-and-inflation-

compensation.htm).

Specifically, Gürkaynak et al. (2007) estimate the TIPS term structure by properly

tuning the parameters of the Nelson-Siegel-Svensson yield curve to approximate actual

TIPS yield data. In order to estimate real yields of maturity beyond what is already

included in the data set, we use the Nelson-Siegel-Svensson yield curve formula:

y(t, µ) =
β0 + β1

(
1−exp(− µ

τ1
)

µ
τ1

)
+ β2

(
1−exp(− µ

τ1
)

µ
τ1

− exp
(
− µ
τ1

))
+β3

(
1−exp(− µ

τ2
)

µ
τ2

− exp
(
− µ
τ2

)) .

Here, y(t, µ) is the (continuously-compounded) yield of a zero-coupon bond of maturity

µ (in years) at date t. The parameters, β0, β1, β2, τ 1, τ 2 are the Nelson-Siegel-Svensson

yield curve parameters at date t (we suppress the dependence on t in the notation). More

details can be found in Gürkaynak et al. (2007). From these estimated real yields, we

then obtain the real one-year-ahead forward rates as follows:

f(t, µ, 1) = (µ+ 1)y(t, µ+ 1)− µy(t, µ).

Here, f(t, µ, 1) is the (continuously-compounded) one-year-ahead forward rate at date t

beginning at horizon µ. It is the (continuously-compounded) rate one can obtain at date

t for making a risk-free investment µ years later (at date t+µ) for payment one year later

(at date t+ µ+ 1).

74

https://fred.stlouisfed.org/series/SP500
https://fred.stlouisfed.org/series/CCSA
https://www.federalreserve.gov/data/tips-yield-curve-and-inflation-compensation.htm
https://www.federalreserve.gov/data/tips-yield-curve-and-inflation-compensation.htm


Market-Bond Portfolio. We construct the price change of the market-bond portfolio
by using discrete versions of Eqs. (29− 30). We adopt a yearly calibration for the bond

maturity (µ) and set ρ = 0.03 and µ = 30 as described in the main text. We approximate

the weights with their discrete-time counterparts:

wµ = ρe−ρ and Wµ =

∞∑
µ̃=µ

wµ̃ =
ρ

1− e−ρ e
−ρ.

For each date t, we then construct a yield-based and a forward-based measure:

pMB,yld (t) = −
µ−1∑
µ=1

wµµy (t, µ)−Wµy (t, µ)

pMB,fw (t) = −
µ∑
µ=1

Wµf (t, µ, 1) .

The time derivative of these measures provides a discrete-time approximation for Eqs.

(29) and (30), respectively. The two measures are approximately the same. In Figures 3

and 5, we plot the change of the forward-based measure over time.

Potential Output. Data for potential output used in Figures 3 and 6 is taken from
the Congressional Budget Offi ce (CBO) (available at https://www.cbo.gov/data/budget-

economic-data#11). We use the projections made in February 2021.

Household Net Worth. Data for household net worth used

in Figure 3 is taken from the Federal Reserve (available at

https://www.federalreserve.gov/releases/z1/dataviz/z1/balance_sheet/table/).

House Price Index. Data for house price index used in Figure 3

is taken from the Federal Housing Finance Agency (FHFA) (available

at https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-

Datasets.aspx#mpo).
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