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Figure 1: The disconnect between Wall Street and Main Street. Data: S&P500 index and
continued jobless claims (seasonally adjusted). Source: FRED.

1. Introduction

The blue line in Figure 1 shows the acute drop in the S&P 500 once the economic impact of

the Covid-19 shock became apparent. The figure also shows the equally dramatic recovery

of the S&P 500 after the Fed announced its massive policy response (e.g., it cut the policy

rate to zero and pledged close to 20% of GDP in asset purchase and credit support

facilities). Other financial assets show a similar pattern. While the Fed was successful

in reversing the financial meltdown, it did not prevent a dramatic collapse in the real

economy. The red line in Figure 1 shows that the US continued claims (inverted scale)

declined substantially and remained low. This disconnect between the quick recovery of

financial markets and the sluggish response of the real economy has been the source of

much debate, as highlighted by the cover page of The Economist, May 9th, 2020 (“A

dangerous gap: The markets v the real economy”). To explain this discrepancy, some

observers point at what they see as irrational exuberance in financial markets, while

others point at the ineffectiveness of the Fed’s policies in helping main street.

In this paper we present a model where the facts depicted in Figure 1 are the natural

result of optimal monetary policy– not (necessarily) a sign of irrationality or ineffective

policy. As long as the central bank’s principal objective is to minimize the output gap,
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and asset prices influence aggregate demand with a lag, the central bank’s optimal policy

induces an asset price overshoot in response to an output gap. In fact, even if there is

no output gap in the present but the central bank anticipates a weak recovery dragged

down by insuffi cient demand, the optimal policy is to preemptively support asset prices

today. These dynamic aspects of optimal policy give rise to potentially large temporary

gaps between the performance of financial markets and the real economy.

Our model is set in continuous time. Output is determined by aggregate demand due

to nominal rigidities. Aggregate demand depends on asset prices through a wealth effect

on consumption. The key ingredient is that individual agents adjust their consumption

infrequently, driven by a Poisson process that is independent across individuals. There-

fore, asset prices affect consumption with a lag, consistent with empirical evidence (see,

e.g., Chodorow-Reich et al. (2019)). Monetary policy affects aggregate demand through

its impact on asset prices; thus, the policy also affects consumption and aggregate de-

mand with a lag. The central bank sets interest rates to minimize output gaps, taking

transmission lags into account.

We first analyze a “recovery” scenario in which potential output has just recovered

from a large productivity shock (e.g., Covid-19). However, aggregate demand, dragged

down by a recent history of poor economic conditions, is initially below potential output.

Over time, demand gradually catches up with potential output and closes the negative

output gap. In this context, our main result shows that the equilibrium features asset price

overshooting: asset prices are initially high (above their levels consistent with potential

output) even though output is low. Intuitively, a central bank that dislikes output gaps

boosts asset prices to close the output gap as fast as possible. This boost creates a

large temporary disconnect between financial markets and the real economy, but it also

accelerates the recovery. In fact, the asset price boost (and its disconnect with the real

economy) is greatest at the beginning of the recovery phase, when the output gap is

widest.

We then consider the “recession” phase that precedes the “recovery” phase. In the

recession, potential output has experienced a deep contraction but is expected to increase

according to a Poisson event– in which case the economy transitions to the recovery.

The overshooting result also applies in the recession: if output is below its (already

low) potential level, then the central bank boosts asset prices to close the gap. In fact,

the equilibrium in the recession also features preemptive overshooting: the central bank

boosts asset prices even if output is at its potential level. This preemptive overshooting

is stronger when the central bank expects a faster transition to recovery. Intuitively,

the central bank anticipates that the “recovery”will start with a large negative output
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gap due to the inertial behavior of aggregate demand. Therefore, the central bank acts

preemptively to boost asset prices and aggregate demand during the recession– in order to

ensure that aggregate demand is not too depressed during the early stages of the recovery

phase.

Literature review. The concept of an overshooting asset price in response to mon-

etary policy actions or shocks was introduced by Dornbusch (1976). That model and

many others that followed it consider a world where goods’prices and output adjust slug-

gishly and there is a well defined long run equilibrium level of the real exchange rate.

Then, for the interest parity condition to hold across safe bonds, the nominal exchange

rate must overshoot its long run response to a monetary shock. While our model also has

sticky prices and sluggish aggregate demand, our overshooting result concerns asset prices

more broadly– rather than just exchange rates, and it is a feature of optimal monetary

policy– rather than the implication of an arbitrage condition.

Closer to our paper is Caballero and Lorenzoni (2014). Their small open economy

model starts in an overvaluation phase (abnormally high demand for nontradables), and

randomly transitions to a normal phase. Because the export sector faces financial con-

straints, the real exchange rate overshoots at the transition and gradually returns to its

steady state level as the excess depreciation generates large profits for the financially con-

strained export sector. In this context, the optimal policy is to reduce the overvaluation

in the first phase and exacerbate the overshooting at the transition, both with the purpose

of relaxing the export sector’s financial constraint. The optimal policy also induces over-

shooting in our model, but for a different reason: to stimulate output in an environment

with nominal rigidities and sluggish adjustment of aggregate demand.

Like in Caballero and Simsek (2020a,b,c), monetary policy in our model operates

through financial markets. The central bank affects asset prices, which in turn affects ag-

gregate demand. The distinctive feature of this paper is the delayed response of aggregate

demand to asset prices, which is the main ingredient driving our overshooting results. In

the context of the Covid-19 recession, Caballero and Simsek (2020a) provides an expla-

nation for the large decline in asset prices and highlights the key role of large scale asset

purchases (LSAPs) in reversing that decline, and this paper provides a rationale for the

subsequent Wall/Main Street disconnect (see Figure 1).

In terms of the model’s ingredients, this paper is also related to and supported by an

extensive empirical literature documenting that: (i) monetary policy affects asset prices

(e.g., Thorbecke (1997), Jensen et al. (1996), Jensen and Mercer (2002), Rigobon and Sack

(2004), Bernanke and Kuttner (2005), Ehrmann and Fratzscher (2004))– these papers find
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that, on average, an unanticipated 100 bps increase in the federal funds rate is associated

with a decrease in stock market returns in the range of 5.3% to 6.2%; (ii) asset prices affect

aggregate demand and output (e.g., Davis and Palumbo (2001), Gilchrist and Zakrajšek

(2012), Kyungmin et al. (2020), Dynan and Maki (2001), Di Maggio et al. (forthcoming),

Chodorow-Reich et al. (2019), Mian and Sufi (2014), Guren et al. (2018))– these papers

find wealth and balance sheet effects in the range of 5—10 cents on the dollar depending on

the sample and the specific asset price; (iii) the effect of asset prices on aggregate demand

and output is gradual (e.g., Davis and Palumbo (2001); Lettau and Ludvigson (2004);

Carroll et al. (2011), Dynan and Maki (2001), Case et al. (2013), Chodorow-Reich et al.

(2019))– these papers find that consumption typically takes between 8 and 9 quarters to

fully adjust to stock price changes.

A central feature of our model is the infrequent adjustment of individual consumption

(aggregate demand). An extensive literature on durables’consumption (and investment)

uses fixed adjustment costs to explain this feature. This literature documents infrequent

adjustment in microeconomic data, and explains the inertia it introduces for aggregate

durables’ consumption and investment (see Bertola and Caballero (1990) for an early

survey). There is also a literature that emphasizes infrequent re-optimization for broader

consumption categories– due to behavioral or informational frictions– and uses this fea-

ture to explain the inertial behavior of aggregate consumption (e.g., Caballero (1995); Reis

(2006)) as well as asset pricing puzzles (e.g., Lynch (1996); Marshall and Parekh (1999);

Gabaix and Laibson (2001)). We take the infrequent adjustment of individual consump-

tion as given (driven by a Poisson process for simplicity) and study its implications for

optimal monetary policy.

Finally, our paper is related to the growing empirical literature that analyzes the

forces that are driving asset prices during the Covid-19 recession (e.g., Gormsen and

Koijen (2020); Ramelli and Wagner (forthcoming); Landier and Thesmar (2020)). This

literature typically attributes the large stock market swing in Figure 1 to changes in the

effective discount rate for stocks. Gormsen and Koijen (2020) argue that the discount rate

initially spiked and then declined to its pre-crisis levels– in part because of the decline

in expected interest rates. This explanation suggests, consistent with our model, that

monetary policy explains part of the recovery in the stock market. Other studies find

that unconventional monetary policies (which we discuss in Remark 1) also had a large

positive impact on asset prices (e.g., Fed (2020); Cavallino and De Fiore (2020); Arslan

et al. (2020); Haddad et al. (2020)).

The rest of the paper is organized as follows. Section 2 introduces our baseline environ-
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ment and describes the equilibrium conditions with optimal monetary policy. Section 3

analyzes the recovery phase and shows that the equilibrium features asset price overshoot-

ing. Section 4 considers the recession phase and shows that it features both overshooting

and preemptive asset price overshooting. Section 5 provides final remarks, and is followed

by several appendices.

2. The baseline model

In this section, we describe our baseline model and define the equilibrium. We envision

a scenario that captures the aftermath of a recessionary shock to the economy, such as

Covid-19. Specifically, potential output has already recovered to its pre-shock level, but

initial aggregate demand and output– which were brought down by the recent negative

shock– are below potential output. We use this setup to study the optimal monetary

policy during the recovery from a recessionary shock. In Section 4, we extend the model

to introduce an ex-ante period with low potential output and study the optimal policy

during the recession (with an anticipated recovery).

Time t ≥ 0 is continuous. There is a single consumption good and a single factor

(capital). Capital is normalized to one unit and there is no investment or depreciation.

Thus, potential output is the productivity of capital. Until Section 4, potential output

Y ∗ = 1 is constant and normalized to one. In particular, there is no aggregate risk.

Actual output, denoted by Y (t), can be different than potential output due to nominal

rigidities. Specifically, there are New-Keynesian firms that have permanently fixed prices

and can change their production by adjusting capital utilization.1 These firms operate

with a markup and find it optimal to meet the demand for their good, even when this

demand deviates from their potential output (for relatively small deviations, which we

assume). This setup ensures that output is determined by aggregate demand. Since there

is no investment, output is determined by aggregate consumption:

Y (t) = C (t) . (1)

There are two financial assets. First, there is a market portfolio that reflects a claim

on all current and future output. We let Q (t) denote the price of the market portfolio.

Second, there is a risk-free asset in zero net supply. We let R (t) denote the risk-free

1Formally, Y (t) = ηY ∗ where η denotes capital utilization. We normalize the utilization that would
obtain absent nominal rigidities to one, η∗ = 1. Operating capital with higher or lower utilization is
feasible but ineffi cient. For simplicity, we do not explicitly model capital utilization costs in this paper
(see Caballero and Simsek (2020b) for a version of the model with these costs).
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interest rate (nominal and real rates are the same since prices are permanently fixed),

and is set by the central bank.

There is a continuum of identical consumer-investors. These consumers make a

consumption-savings choice as well as a portfolio choice. Consumers have time-separable,

log utility with discount rate ρ. With these preferences, if there were no other frictions,

consumers would spend a constant fraction of their wealth, C (t) = ρQ (t). Since there

is no risk, they would also ensure the expected return on the market portfolio is exactly

equal to the risk-free rate, R (t). At this expected return, consumers would be indifferent

between the market portfolio and the risk-free asset. Assuming the central bank sets the

interest rate to ensure output is equal to its potential, the economy would immediately

reach a steady state with potential outcomes:

Y (t) = Y ∗ = 1, C (t) = C∗ = 1, (2)

R (t) = R∗ = ρ and Q∗ =
1

ρ
.

Set against this potential benchmark, our key friction is that consumers do not con-

tinuously adjust their consumption and portfolio allocations. At every instant, a random

fraction of consumers adjusts, with constant hazard θ. Their allocations remain unchanged

until the next time they have a chance to adjust.

First consider the portfolio choice. Since there is no risk, the return on the market

portfolio is equal to the risk-free rate as in the benchmark. That is, the equilibrium asset

price satisfies

R (t) =
Y (t) + Q̇ (t)

Q (t)
. (3)

At this price, the consumers that adjust are indifferent to changing their portfolios. For

concreteness, we assume all consumers invest an identical fraction of their wealth in the

market portfolio. This fraction is equal to one to ensure market clearing.

Next consider the consumption choice. There is a representative consumer whose

wealth equals aggregate wealth, Q (t). When adjusting, we assume this consumer chooses

her new level of consumption according to the rule

Cadjust (t) = C∗ +m (Q (t)−Q∗) + n (Y (t)− Y ∗) .

Here, C∗, Y ∗, Q∗ are the potential levels in (2) and m > 0, n ∈ [0, 1) are parameters.

Individual consumers follow a similar rule scaled by their wealth shares.2 Equivalently,

2Formally, let ai (t) denote a consumer’s wealth and αi (t) = ai(t)
Q(t) denote her wealth share. A consumer
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letting lowercase variables denote gaps relative to the potential, x (t) ≡ X (t) − X∗, we
assume

cadjust (t) = mq (t) + ny (t) . (4)

Hence, the adjusting consumers’spending (measured in gaps from potential) can be writ-

ten as a linear and increasing function of the current asset price and of current output.

Our formulation in (4) allows for a rich set of possibilities for consumption behavior.

For m = ρ and n = 0, adjusting consumers are “myopic”and follow the same rule as in

the benchmark case of a continuously-adjusting consumer, C (t) = ρQ (t). In Appendix

A.2, we also analyze the decisions of a “fully rational” consumer who incorporates the

fact that she might not get to adjust in future periods. Along the equilibrium path, this

consumer’s optimal choice (up to linearization) can be written as in (4)with endogenous

weights m ∈ (0, ρ) and n ∈ (0, 1). We discuss the intuition behind this rule and the

implications for our analysis in Section 3.2. Beyond these cases, the rule in (4) can also

stand in for unmodeled ingredients that make (even unconstrained) households’spending

react to current income changes beyond wealth changes (see, e.g., Parker (2017); Kueng

(2018) for empirical evidence). Our main result applies for arbitrary parameters as long

as they satisfy the mild assumptions m > 0 and n < 1: that is, consumption responds

at least somewhat to asset prices, and its response to output is less than one to one. For

most of our analysis (except in Section 3.2), we take Eq. (4) as an exogenous rule with

fixed parameters m,n.3

Assuming that the adjusting consumers are randomly selected, and using Eq. (1), we

also have an equation that describes the dynamics of output:

Ẏ (t) = θ
(
Cadjust (t)− Y (t)

)
. (5)

Hence, output increases if and only if the adjusted spending exceeds the current level of

spending and output, C (t) = Y (t). The initial level of spending and output, C (0) =

with wealth share αi (t) follows the rule

Ci,adjust (t) = αi (t) (C∗ + n (Y (t)− Y ∗) +m (Q (t)−Q∗)) .

Aggregating across all adjusting consumers, we obtain (4) because the wealth shares satisfy
∑

i α
i (t) = 1.

With this rule, there might be paths in which some consumers’ wealth becomes zero, e.g., if the
consumer does not readjust for a long time. If this happens, the budget constraint binds and consumption
falls to zero. We ignore these paths since we focus on relatively small shocks and linearized dynamics.

3For the fully rational case, the weights m,n are endogenous to the dynamic equilibrium path but
exogenous to monetary policy decisions (as long as the central bank sets interest rates without commit-
ment, which we assume). We do not focus on this case and instead treat m,n as exogenous parameters to
avoid having to deal with complex fixed-point arguments that are unrelated to our main contributions.
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Y (0), is exogenous (determined by unmodeled history). Rewriting the expression in terms

of the gaps from potential, and substituting (4), we also obtain

ẏ (t) = θ (mq (t) + ny (t)− y (t)) given y (0) . (6)

It remains to describe monetary policy. The central bank sets a path of interest rates,

[R (t)]t∈(0,∞), and implements a path of output and asset prices that satisfy Eqs. (3) and

(6). Note that it is equivalent to think of the central bank as setting a path of asset price

gaps, [q (t)]t∈(0,∞). Given this path and the initial output gap y (0), Eq. (6) describes the

equilibrium path of output gaps. Eq. (3) then describes the equilibrium interest rate.

We assume the central bank’s objective function is

V (0, y (0)) =

∫ ∞
0

e−ρt

(
−y (t)2

2
− ψq (t)2

2

)
dt. (7)

As usual, the central bank dislikes output gaps, y (t). We assume a quadratic cost function,

which leads to closed-form solutions. In addition, the central bank also dislikes asset price

gaps, q (t). The parameter ψ is the relative weight on asset price gaps. In the limit ψ → 0,

we have the conventional setup in which the central bank does not (directly) pay attention

to asset prices. Our main results hold in this conventional limit but optimal asset price

behavior is extreme and unrealistic; in practice, central banks do not tolerate, let alone

induce, very large fluctuations in asset prices (see, e.g., Cieslak and Vissing-Jorgensen

(2020)). We capture this “aversion-to-overshooting” with the parameter ψ > 0. The

reasons for this aversion range from distributional considerations to financial stability.

The central bank’s discount rate is the same as that of the consumers, ρ.

Finally, we assume the central bank sets the current policy without commitment: that

is, it sets the current asset price gap q (t), taking the path of future gaps as given. In this

case, the central bank’s policy problem can be formulated recursively as4

ρV (y) = max
q
−y

2

2
− ψq

2

2
+ V ′ (y) ẏ, (8)

ẏ = θ (mq − (1− n) y) ,

V (y) ≤ 0 and V (0) = 0.

The constraints in the last line follow from the objective function in (7) and ensure that

4The lack of commitment does not restrict monetary policy as long as the consumption function in
(4) is exogenous to the policy. That is, as long as m and n are exogenous parameters, the Principle of
Optimality implies that maximizing (7) subject to (6) is equivalent to solving problem (8).
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we pick the correct solution to the recursive problem.

For closed form solutions, we also linearize Eq. (3) around the potential levels in (2)

to obtain

r (t) = ρ (y (t)− q (t) ρ+ q̇ (t)) , (9)

where r (t) ≡ R (t)− ρ denotes the interest rate gap. Thus, we define the equilibrium as

follows.

Definition 1. A (linearized) equilibrium with optimal monetary policy,

[y (t) , q (t) , r (t)]∞t=0, is such that the path of asset price and output gaps, [q (t) , y (t)],

solve the recursive problem (8) and the interest rate gap is given by (9).

Remark 1 (LSAPs). In Caballero and Simsek (2020a) we demonstrated that Large Scale
Asset Purchases (LSAPs) can be viewed as close substitutes to interest rate cuts in terms of

their impact on asset prices and output when there is risk (and risk-aversion). Moreover,

LSAPs are an ideal policy instrument to stabilize aggregate demand when conventional

monetary policy is constrained. For these reasons, a broader interpretation of the interest

rate policy in this paper (i.e., extended to an environment that includes risk considerations)

includes not only the policy rate but also LSAPs. In fact, LSAPs were a crucial component

of the Fed’s response to the Covid-19 shock.

Remark 2 (Interpreting Infrequent Adjustment). In the literature review section we cited
a variety of reasons for infrequent adjustment of individual consumption, ranging from

fixed costs for durable purchases to behavioral and informational reasons for broader cat-

egories of consumption. Yet another reason is habit formation: e.g., returning to restau-

rants and traveling after the Covid-19 threat is over may take a while.

Remark 3 (Households without Financial Wealth). For simplicity, we focus on relatively
wealthy households that can adjust their spending in response to asset price changes. We

can extend the model to accommodate households that do not hold financial wealth without

changing anything substantive. For example, suppose we split consumers (and income)

between our agents (share 1− h) and a group of hand-to-mouth consumers (share h) that
spend all of their income, Ch (t) = Y (t). Then, in discrete time, output satisfies

Y (t) = (1− h)C (t) + hY (t) , (10)

and C (t) = θCadjust (t) + (1− θ)C (t−∆t) .

Here, we have used C (t) to denote spending by consumers that are not hand-to-mouth.

The first equation implies Y (t) = C (t). Substituting this into the second equation and
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taking the limit as ∆t → 0, we obtain Eq. (5): that is, output dynamics are exactly

the same. Hence, our results are robust to allowing for households that do not have any

financial wealth. These households reduce the direct impact of asset prices on output, but

they also create a multiplier effect that leaves the total impact unchanged [cf. (10)].

3. Overshooting during the recovery

We next solve for the equilibrium and establish our main results about overshooting. To

capture the recovery from a recessionary shock such as Covid-19, we focus on the case

with a negative initial output gap, y (0) < 0. Specifically, potential output has already

adjusted to its long-run level but actual output (driven by spending) has not, since it

still reflects the recent decline in productivity and output. Our main result shows that

the optimal policy features asset-price overshooting: the central bank optimally chooses

a positive asset price gap. That is, even though output is below its potential level, the

asset price is high and above its potential level.

The optimality condition for problem (8) is

q =
θm

ψ
V ′ (y) . (11)

This condition is intuitive. The asset price is the central bank’s policy lever. Since

the asset price increases the output gap, the central bank increases the price whenever

increasing the output gap improves its value function. As we will see, this is the case for

negative output gaps, y < 0, where raising the output gap toward zero is valuable.

We next differentiate Eq. (8) with respect to y and use the Envelope Theorem to

obtain

(ρ+ θ (1− n))V ′ (y) = −y + V ′′ (y) θ (mq − (1− n) y) . (12)

Eqs. (11) and (12) correspond to a second order ODE that characterizes the value func-

tion. We conjecture (and verify in the appendix) that the solution is a quadratic function,

V (y) = − 1

2v
y2 (13)

where 0 = v2 − (ρ+ 2θ (1− n)) v − θ2m2

ψ
. (14)

Here, v (“value”) denotes a normalized parameter that shifts the value function. Since

V (y) < 0, we also have v > 0: the solution corresponds to the positive root of (14).
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Combining this with (11), we solve for the optimal asset price as

q (t) = −θm
ψv

y (t) . (15)

This expression illustrates the overshooting of asset prices. Starting with a negative

output gap, the optimal asset price is above its potential level.

Next consider the change in output gaps along the optimal path. Combining Eqs. (15)

and (6), we obtain

ẏ (t) = −γy (t) (16)

where γ ≡ θ

(
θm2

ψv
+ 1− n

)
= v − (ρ+ θ (1− n)) > 0. (17)

The composite parameter, γ, captures the convergence rate. We used (14) to simplify

the expression for this convergence rate. Starting with a negative output gap, and an

associated positive asset price gap (in view of overshooting), both gaps monotonically

converge to zero at rate γ.

Finally, consider the linearized interest rate gap. Using Eq. (9), we obtain

r (t) = ρq (t)

(
y (t)

q (t)
− ρ+

q̇ (t)

q (t)

)
(18)

= −ρq (t)

(
ψv

θm
+ ρ+ γ

)
,

where the second line uses Eqs. (15) and (16). Hence, the interest rate gap is inversely

proportional to the asset price gap. Starting with a negative output gap, and an associated

positive asset price gap, the interest rate gap starts below zero and gradually increases,

r (0) < 0 and ṙ (t) > 0. The following result summarizes this discussion.

Proposition 1. The value function is given by (13) , where v > 0 is the positive solution

to the quadratic equation (14). The equilibrium path of the asset price gaps, the output

gap, and the linearized interest rate gap [q (t) , y (t) , r (t)]∞t=0, is characterized by Eqs.

(15) , (16) , (18). Starting with a negative output gap, y (0) < 0, the equilibrium features

asset price overshooting : the asset price is above its potential level, q (0) > 0, and the

interest rate is below its potential level, r (0) < 0. Over time, output and asset price gaps

monotonically converge to zero at the exponential rate γ = v − (ρ+ θ (1− n)) > 0.

Figure 2 illustrates the equilibrium dynamics for a particular parameterization starting

with a negative output gap. The equilibrium (the solid lines) features overshooting: the
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central bank sets a positive asset price gap and gradually improves the output gap. The

central bank achieves this outcome by starting with a low interest rate, and then gradually

increasing the interest rate and reducing the asset price gap.5

The figure also illustrates the effect of increasing the central bank’s aversion to over-

shooting, ψ (the dashed lines). In this case, there is less overshooting, hence output gaps

are closed more slowly and the economy operates below its potential for a longer time.

Also note that by overshooting less when ψ is high, the central bank might have to over-

shoot for longer. That is, asset prices can eventually be higher (and the interest rate

lower) when the central bank has a greater aversion to overshooting asset prices.

3.1. Comparative statics of overshooting

We next characterize how different parameters in our model affect the overshooting result.

In particular, the following result describes the extent of overshooting for a given output

gap,
∣∣∣ q(t)y(t)

∣∣∣ = θm
ψv
(cf. (15)) as well as the convergence rate, γ (cf. (16)).

Proposition 2. Consider the equilibrium path with optimal monetary policy. Then, the

asset price overshoots by more per unit of output gap (greater
∣∣∣ q(t)y(t)

∣∣∣) and output gaps are
closed faster (greater γ) in each of the following cases:

(i) When the central bank has smaller aversion to overshooting (smaller ψ)

(ii) When a larger fraction of consumers adjusts at any moment (larger θ)

(iii) When adjusting consumers respond more to the asset price (larger m)

In addition:

(iv) The asset price overshoots by more (larger
∣∣∣ q(t)y(t)

∣∣∣) but output gaps are closed more
slowly (smaller γ), when adjusting consumers respond more to current income (larger n).

The first part of Proposition 2 formalizes the comparative statics illustrated in Fig-

ure 2. The second and the third parts say that the central bank overshoots more (and

induces a faster recovery) when the output-asset price relation is stronger– in the sense

that the spending response to asset prices is either faster (with smaller lags) or larger.

Strengthening the output-asset price relation generates two counteracting effects. On the

one hand, it makes the asset price overshooting more effective– which induces more over-

shooting. On the other hand, it enables the central bank to achieve the same impact on

5In our model, the asset price level also declines over time (after an initial jump). This feature is
not essential to the argument. The same result would still apply for the asset price gap in a variant with
productivity growth. In this case, the potential asset price would also be increasing over time (at the
growth rate), so overshooting would not necessarily imply a declining asset price level. It would only
imply a frontloading of some of the future capital gains.
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Figure 2: A simulation of the equilibrium for a parameterization with low ψ (solid lines)
and high ψ (dashed lines). The dotted lines correspond to the potential levels for the
corresponding variables.
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the output gap with smaller (or shorter) overshooting– which induces less overshooting.

With quadratic preferences (which are standard and commonly used in the literature),

the first force dominates and the central bank induces more overshooting when it is more

effective.

The final part of Proposition 2 considers the effect of increasing the consumers’re-

sponse to current income. This strengthens the amplification force by which current

output gaps persist: for instance, negative output gaps tend to reinforce further negative

gaps (cf. (6)). This induces the central bank to overshoot more in order to mitigate the

amplification loop and speed up the convergence. Despite the central bank’s response,

the amplification force prevails and implies that the output gaps are closed more slowly.

3.2. Overshooting with fully rational consumers

So far, we have assumed consumers exogenously follow the rule in (4). In Appendix A.2,

we generalize our analysis to the case with fully rational consumers. Here, we briefly

discuss the results.

The analysis proceeds in three steps. First, we characterize the general optimal (lin-

earized) consumption rule for a rational consumer who anticipates she will readjust in the

future with Poisson probability θ. In the benchmark with θ =∞ (continuous adjustment),

the consumer has a constant marginal propensity to consume (MPC) out of wealth. Un-

like this benchmark, the consumer with finite θ has an endogenous MPC out of wealth

that depends on the future path of interest rates. As we explain below, keeping current

wealth constant, a higher interest rate increases the MPC. That is, since the consumer

cannot reoptimize in the future (in some states), the substitution effect becomes weaker.

Therefore, despite log preferences, the substitution and income effects do not net out. In-

stead, the income effect dominates and implies that– keeping wealth constant– increasing

the interest rate increases spending. Equivalently, higher interest rates reduce the cost of

a fixed consumption stream until the next adjustment opportunity.

Second, we characterize the consumption rule further for the equilibrium path with

optimal policy. Specifically, when the (linearized) output and the interest rate both

converge to the steady state at a constant rate γ > 0, we show

cadjust (0) = ρ

(
(1− ñ) q (0) + ñ

y (0)

ρ+ γ

)
where ñ =

θ + ρ

θ − 3ρ

ρ+ γ

θ + γ
. (19)

For intuition, note that y(0)
ρ+γ

=
∫∞
0
y (0) e

−γt
e−ρtdt corresponds to the consumer’s “fixed-

rate wealth”: her expected lifetime budget evaluated at the steady-state interest rate ρ.
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Hence, the consumer reacts to a weighted average of her actual wealth, q (0), and her

“fixed-rate wealth,” y(0)
ρ+γ
. When asset prices increase because of an increase in current

income (y (0)), the two wealth measures increase by the same amount and the consumer’s

MPC out of wealth is as usual (ρ). However, when asset prices increase because of an

interest rate cut, actual wealth increases while “fixed-rate wealth”remains constant. In

this case, the consumer’s MPC out of wealth is smaller (ρ (1− ñ)). This reflects the

income effects associated with interest rate changes that we discussed earlier. Hence, Eq.

(19) says that the consumer does react to wealth changes induced by interest rate changes,

but less so than when she can adjust continuously. As expected, θ → ∞ implies ñ → 0:

when consumption adjustment is suffi ciently rapid, we recover the usual consumption rule.

Finally, note that Eq. (19) is equivalent to the consumption rule in (4) with coeffi cients

m = ρ (1− ñ) and n = ρñ/ (ρ+ γ). Hence, our earlier analysis also applies in this case.

However, the coeffi cients m and n are endogenous to the convergence rate γ. Recall that

the convergence rate γ also depends on the coeffi cientsm and n. Hence, with fully rational

consumers, the equilibrium corresponds to a fixed point. In the appendix, we establish

the existence of a fixed point with the desired properties and prove the following result.

Proposition 3. Consider the equilibrium with fully rational consumers analyzed in Ap-

pendix A.2. As long as θ > 9ρ, there exists an equilibrium in which consumption satisfies

Eq. (19) with weight ñ (γ) ∈ (0, 1)– and thus Eq. (4) with weights m = ρ (1− ñ) ∈ (0, ρ)

and n = ρñ/ (ρ+ γ) ∈ (0, 1); and the equilibrium variables converge to the steady state at

the rate γ > 0 characterized in Proposition 1. In particular, the equilibrium with fully
rational consumers also features asset price overshooting.

Thus, as long as consumers’adjustment is not too sluggish, our main result applies in

this case. Intuitively, rational consumers still respond to asset price increases [cf. (19)],

so the central bank also overshoots asset prices in this case.6

4. Preemptive asset price overshooting

So far, we have focused on an episode in which potential output has just recovered but

aggregate demand and output are below potential output due to a recent recessionary
6Our analysis in Appendix A.2 also reveals that, with fully rational consumers, the convergence rate

has a finite upper bound γ independent of aversion to overshooting ψ [cf. Lemma 2]. In particular, in
the limit in which aversion approaches zero, ψ → 0, the convergence rate does not approach infinity– as
one might have expected from the analysis with exogenous m,n. As convergence becomes more rapid,
the coeffi cient m (MPC out of actual wealth) endogenously declines toward zero. This in turn reduces
the extent of overshooting and slows convergence. In the limit ψ → 0, the coeffi cient m approaches zero
and the convergence rate approaches its upper bound γ.
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shock. We next explicitly analyze the preceding “recession” episode and show that it

features an even more extreme form of overshooting in order to accelerate the recovery

once potential output improves.

Specifically, there are now two aggregate states denoted by subscript s ∈ {1, 2}. State
s = 2 (the “recovery”) corresponds to our analysis up to now. In particular, potential

output is constant and normalized to one, Y ∗2 (t) = 1. State s = 1 (the “recession”)

corresponds to an earlier period in which potential output is given by Y ∗1 (t) = 1− κ < 1

for some κ > 0. The economy starts in the recession state s = 1 and transitions to

the recovery state s = 2 according to a Poisson process with intensity λ > 0. Once the

economy transitions, it remains in state s = 2 forever.

In this section, we use the notation ys = Ys (t)−Y ∗, qs = Qs (t)−Q∗, rs = Rs (t)−R∗ to
denote normalized variables: their difference from potential levels in the recovery state [cf.

(2)]. We use ỹs, q̃s to denote output and asset price gaps: their difference from potential

levels within the corresponding state. For the recovery state, the normalized and the gap

variables are the same, y2 = ỹ2, q2 = q̃2; but for the recession state they are different,

y1 6= ỹ1, q1 6= q̃1 (since the potential levels are lower).

We make three additional simplifying assumptions. First, consumers have Epstein-

Zin preferences with discount rate ρ, EIS equal to one, and RRA equal to 0. Hence,

consumers effectively have log utility with respect to consumption-savings decisions as

before, but they are risk neutral with respect to portfolio decisions. This ensures that the

asset pricing side of the model (which is not our focus) is the same as before. The risk-free

rate is the same as the expected return on the market portfolio. Thus, the normalized

interest rate is given by (9) in state s = 2 and by the following expression in state s = 1:7

r1 (t) = ρ (y1 (t)− ρq1 (t) + q̇1 (t) + λ (q2 (t)− q1 (t))) . (20)

The expected return on the market portfolio accounts for the change in the asset price if

there is a transition.

Second, adjusting consumers follow the rule in (4) in both the recovery and the reces-

sion states. When consumers are fully rational, the optimal consumption rule would take

this form with possibly state-dependent coeffi cients ms, ns. We assume the same rule for

7We obtain (20) by linearizing the following equation that describes the interest rate (around the
potential levels in the recovery state (Y ∗, Q∗, R∗)):

R1 (t) =
Y1 (t) + Q̇1 (t) + λ (Q2 (t)−Q1 (t))

Q1 (t)
.
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both states to keep the notation simple, although our results would qualitatively apply

in the more general case (as long as ms > 0, ns ∈ (0, 1) for both states). In view of this

assumption, normalized output follows the same dynamics in the recession state [cf. (6)]:

ẏ1 = θ (mq1 − (1− n) y1) . (21)

Finally, we let the central bank solve the following version of problem (8) in state 1:

ρV1 (y1) = max
q1
− ỹ

2
1

2
− ψ q̃

2
1

2
+ V ′1 (y1) ẏ1 + λ (V2 (y1)− V1 (y1)) , (22)

where ỹ1 = y1 − y∗1 with y∗1 = −κ < 0,

and q̃1 = q1 − q∗1 with q∗1 = −κ (1− n) /m < 0.

Given current normalized output y1, the central bank solves a gap-minimizing problem as

before. However, the gaps in state s = 1 are no longer equal to the normalized variables.

The potential output, y∗1, is lower (recall that Y
∗
1 = 1−κ). The potential asset price, q∗1, is

also lower and reflects the lower potential output. If consumers adjusted instantaneously

(θ = ∞), then keeping the asset price at its potential would ensure that output is also
at its potential [cf. (21)]. The value function also accounts for the expected transition

to the recovery state. In particular, V2 (·) denotes the recovery value function that we
characterized earlier [cf. (13)].

We define the equilibrium with optimal monetary policy as before. In the recession

state, output and asset prices solve problem (22) given (21), and the interest rate is given

by (20). After transition to the recovery state, the equilibrium is given by Definition 1.

To analyze the equilibrium, note that Eq. (21) also holds in terms of the gaps:

dỹ1
dt

= θ (mq̃1 − (1− n) ỹ1) . (23)

Thus, problem (22) has a similar structure to the earlier problem (8). In the appendix,

we show that the solution also has a similar form [cf. (13)]:

V1 = a+ bỹ1 −
1

2v
ỹ21, (24)

where b =
λ

λ+ ρ+ γ

κ

v
> 0. (25)

Here, v, γ > 0 are the same as before. In this case, the value function features an

additional linear component, a + bỹ1, with b > 0. In particular, a positive output gap,
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ỹ1 > 0, increases the value function relative to the recovery state, bỹ1 > 0.

Intuitively, a positive gap is now less costly since it will reduce the size of the output

gap once potential output recovers. This suggests that the central bank might preemptively

induce positive gaps in the recession state. We next state our main result in this section,

which completes the characterization and verifies that the equilibrium features preemptive

overshooting.

Proposition 4. (i) In the recession state s = 1, the value function is given by (24), where

a is a constant and b > 0 is given by (25). Absent transition, the optimal asset price and

output gaps follow the dynamics

q̃1 (t) =
θm

ψ

(
b− 1

v
ỹ1 (t)

)
,

dỹ1 (t)

dt
=

θ2m2

ψ
b− γỹ1 (t) .

These gaps monotonically converge to strictly positive steady state levels given by

ỹ1 (∞) ≡ γ − θ
γ

λ

λ+ ρ+ γ
κ > 0 and q̃1 (∞) =

1− n
m

ỹ1 (∞) > 0. (26)

The normalized output and asset price y1 (t) , q1 (t) converge to corresponding steady states

y1 (∞) = ỹ1 (∞)+y∗1 and q1 (∞) = q̃1 (∞)+q∗1. The steady state output exceeds its potential

in the recession state but remains below its potential in the recovery state, y1 (∞) ∈ (−κ, 0)

(equivalently, ỹ1 (∞) ∈ (0, κ)).

(ii) Suppose the normalized output is initially not too high, y1 (0) < y1 (∞) (e.g., it is

at potential y1 (0) = y∗1 = −κ). Before transition, the equilibrium features preemptive
asset price overshooting: The normalized asset price starts above its steady state level
as well as its potential, q1 (0) > q1 (∞) > q∗1. Absent transition, the normalized output

monotonically increases toward y1 (∞), and the normalized asset price monotonically de-

creases toward q1 (∞). At the moment of transition to recovery (time t′), asset price
overshooting increases: the normalized output remains unchanged but the output gap
becomes negative, ỹ2 (t′) = y2 (t′) = y1 (t′) < 0, and the normalized asset price level as

well as its gap jump upward, q̃2 (t′) = q2 (t′) > q̃1 (t′) > q1 (t′).

Figure 3 illustrates the equilibrium (the solid lines) for a particular parameterization

in which the economy starts with a zero output gap and the transition takes place at its

expected time, t′ = 1/λ. The dotted lines illustrate the within-state potential levels (the

gaps are the distance from these lines). The equilibrium features preemptive overshooting:
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Figure 3: A simulation of the equilibrium variables starting in the shock state s = 1 with
overshooting (solid lines) and with extreme aversion to overshooting (ψ = ∞, dashed
lines). The dotted lines correspond to the within-state potential output and asset price.
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Figure 4: Equilibrium with a greater expected transition rate (λ̃ > λ, solid lines) and
with the baseline rate (λ, dashed lines).

the central bank sets a positive asset price gap, which gradually induces a positive output

gap. After transition, the central bank overshoots the asset price even more, which helps

close the negative output gap. For comparison, the figure also illustrates what happens

when the aversion to overshooting is extreme (ψ = ∞) so that the central bank always
keeps the asset price at its potential. In this case, output does not start to recover until

productivity actually recovers. As a result, the economy enters the recovery with a greater

aggregate demand gap and closes this gap more slowly [cf. Figure 2].

Figure 4 illustrates the effect of increasing λ– the expected transition rate to recovery.

The solid lines plot the equilibrium when the expected transition rate is higher (λ̃ > λ)

but the actual transition takes place at the same time as in the previous figure (t′ = 1/λ).

In this case, preemptive overshooting is stronger: asset prices increase by more and the

output in the recession converges to a level closer to its potential in the recovery [cf. (26)].

Intuitively, since the central bank expects a fast recovery, it also engages in considerable

overshooting in the recession. In fact, the figure highlights that, by frontloading much of

the overshooting to the recession, the central bank might do less overshooting when the

recovery finally arrives (compared to the early stages of the recession).
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5. Final Remarks

We proposed a model to illustrate that large gaps between the performance of financial

markets and the real economy need not reflect an unsustainable situation. In our model,

such gaps result from optimal monetary policy when aggregate demand is below its po-

tential and responds to asset prices with a lag. The central bank boosts asset prices to

close the output gap as fast as possible. In fact, the central bank also boosts asset prices

if aggregate demand is currently at potential but expected to fall below potential– due to

an anticipated recovery of potential output. These optimal policy responses create large

temporary gaps between financial markets and the real economy, but they also accelerate

the recovery.

In practice, policymakers face effective lower bound constraints for a variety of reasons:

e.g., a zero lower bound, an exchange rate stabilization concern, or a fear of destabilizing

the banking sector or money markets. While LSAPs can partially alleviate these con-

straints (see Remark 1), they are likely to face their own limits. In our model, the impact

of these limits can be captured in reduced form by increasing the parameter ψ during the

recovery phase. The main implication of increasing this parameter, aside from reducing

the size of the overshooting during the recovery, is that the central bank has an even

larger incentive to preemptively boost asset prices before the recovery.

Similarly, if we were to introduce fiscal policy, the anticipation of a reversal of fiscal

support in the future, and the corresponding contraction in aggregate demand, would

also lead the central bank to preemptively boost asset prices today. Conversely, the

anticipation of further fiscal stimulus reduces the need for the central bank to boost asset

prices in the present.

Throughout our analysis we assume that all firms are equally affected by the recession.

Adding heterogeneity (a central feature of the Covid-19 recession) does not change our

main results, but it introduces a large dispersion in asset prices across firms during the

recession phase. In particular, firms that are not adversely affected by the productivity

shock see their shares’ value rise above its pre-recession level since they benefit from

the central bank’s attempt to boost asset prices without suffering from the decline in

potential output. In the Covid-19 recession, this provides a rationale for the extraordinary

performance of indices such as the Nasdaq 100, whose main components consist of “Covid-

sheltered”firms.

Finally, while we have demonstrated that the broad features of asset markets during

the Covid-19 episode are consistent with a well managed monetary policy framework, we

do not wish to imply that there are no anomalies or pockets of irrational exuberance in
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some markets. Having said this, the logic of the model suggests that experiencing an

episode of irrational exuberance during a deep recession with a diffi cult recovery ahead

has a positive dimension, since it reduces the burden on the central bank to engineer an

overshooting.
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A. Appendix: Omitted derivations

A.1. Omitted proofs

Proof of Proposition 1. Most of the analysis is provided in the main text. It remains to
verify that the value function conjectured in (13) solves the HJB equation for appropriate

v > 0. Substituting the conjecture together with q = θm
ψ
V ′ (y) into (12), we obtain:

(ρ+ 2θ (1− n))
y

v
= y − θ2m2

ψ

y

v2
.

After canceling y’s from both sides and rearranging terms, we obtain the quadratic equa-

tion in (14):

P (v) ≡ v2 − (ρ+ 2θ (1− n)) v − θ2m2

ψ
= 0.

This quadratic equation has one positive root and one negative root. The solution corre-

sponds to the positive root, v > 0, since we require V (y) = − 1
2v
y2 ≤ 0. This root has the

following closed form solution:

v =
ρ+ 2θ (1− n) +

√
(ρ+ 2θ (1− n))2 + 4 θ

2m2

ψ

2
. (A.1)

The rest of the analysis is in the main text. Using Eq. (A.1), we can also calculate

the convergence rate in closed form as follows [cf. (17)]:

γ = v − (ρ+ θ (1− n)) =

√
(ρ+ 2θ (1− n))2 + 4 θ

2m2

ψ
− ρ

2
. (A.2)

This completes the proof.

We next prove Proposition 2 that describes the comparative statics of the equilibrium.

The following lemma facilitates the proof.

Lemma 1. Consider the normalized value v which corresponds to the positive root of the
polynomial (14) given by (A.1).

(i) Increasing ψ decreases v and increases vψ.

(ii) Increasing θ increases v and decreases v/θ.

(iii) Increasing m increases v and decreases v/m.

(iv) Increasing n decreases v and v/m.
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Proof of Lemma 1. Eq. (A.1) implies v is decreasing in ψ, but vψ is increasing in ψ

because

vψ =
(ρ+ 2θ (1− n))ψ +

√
ψ2 (ρ+ 2θ (1− n))2 + 4ψθ2m2

2

This proves the first part.

The same equation also implies v is increasing in θ, but v/θ is decreasing in θ because:

v

θ
=

ρ
θ

+ 2 (1− n) +
√(

ρ
θ

+ 2 (1− n)
)2

+ 4m
2

ψ

2
.

This proves the second part.

The same equation also implies v is increasing in m, but v/m is decreasing in m

because:

v

m
=

ρ+2θ(1−n)
m

+

√(
ρ+2θ(1−n)

m

)2
+ 4 θ

2

ψ

2
.

This proves the third part. Finally, this expression together with Eq. (A.1) imply that

both v and v/m are decreasing in n. This proves the last part.

Proof of Proposition 2. Note that the overshooting and the convergence rate satisfy,∣∣∣ q(t)y(t)

∣∣∣ = θm
ψv
and γ = v − (ρ+ θ (1− n)) [cf. (17)]. Thus, parts (i) and (iii) follow directly

from the corresponding parts in Lemma 1.

Consider part (ii). Lemma 1 implies increasing θ increases θ/v. Thus, it also increases

the overshooting,
∣∣∣ q(t)y(t)

∣∣∣ = θm
ψv
as well as the convergence rate, γ ≡ θ

(
θm2

vψ
+ 1− n

)
[cf.

(17)].

Consider part (iv). Lemma 1 implies increasing n increases m/v. Therefore, it in-

creases overshooting,
∣∣∣ q(t)y(t)

∣∣∣ = θm
ψv
. Eq. (A.2) illustrates that it also decreases the conver-

gence rate, γ, completing the proof.

Proof of Proposition 4, Part (i). First consider the value function that solves problem
(22). After changing the variables to gaps, and using (6), we can rewrite the problem as:

ρV1 (ỹ1) = max
q̃1
− ỹ

2
1

2
−ψ q̃

2
1

2
+V ′1 (ỹ1) θ (mq̃1 − (1− n) ỹ1)+λ (V2 (ỹ1 − κ)− V1 (ỹ1)) . (A.3)

Here, with a slight abuse of notation, we continue to use V1 (·) to denote the value function
defined over the output gap ỹ1 instead of the normalized output level y1. After transition

to recovery, the output gap declines by κ even though the normalized output remains

unchanged (since potential output increases by κ).

28



Using the optimality conditions, we obtain analogues of Eqs. (11) and (12):

q̃1 =
θm

ψ
V ′1 (ỹ1) (A.4)

(ρ+ θ (1− n) + λ)V ′1 (ỹ1) = −ỹ1 − λ
1

v
(ỹ1 − κ) + V

′′

1 (y1) θ (mq̃1 − (1− n) y1) .(A.5)

Here, the second line uses (13) to substitute for V ′2 (ỹ1 − κ).

We conjecture that the solution has the form in (24):

V1 (ỹ1) = a+ bỹ1 −
1

2v
ỹ21,

Combining this conjecture with Eq. (A.5), and using y = ỹ1 to denote gaps, we obtain:

(ρ+ θ (1− n) + λ)

(
b− 1

v
y

)
= −y − λ1

v
(y − κ)− 1

v

θ2m2

ψ

(
b− 1

v
y

)
+

1

v
θ (1− n) y.

Collecting the terms with y, we obtain:

−1

v
(ρ+ θ (1− n) + λ) y = −1− 1

v
λy +

1

v2
θ2m2

ψ
y +

1

v
θ (1− n) y.

After canceling − 1
v
λy from both sides, and dropping y, we obtain the same quadratic

(14). Hence, v is the same as before.

Likewise, collecting the terms without y, we obtain:

(ρ+ θ (1− n) + λ) b =
λκ

v
− 1

v

θ2m2

ψ
b.

After rearranging terms, we solve:

b =
λκ
v

ρ+ θ (1− n) + λ+ 1
v
θ2m2

ψ

=
λ

ρ+ λ+ γ

κ

v

Here, the second equality substitutes for γ from (17). This proves the value function takes

the form in (24) with the coeffi cient b > 0 given by (25).

Next consider the solution. Substituting the value function into Eq. (A.4), we obtain:

q̃1 (t) =
θm

ψ

(
b− 1

v
ỹ1 (t)

)
. (A.6)
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Combining this with (23), and using (17) to substitute γ, we obtain:

dỹ1 (t)

dt
=
θ2m2

ψ
b− γỹ1 (t) . (A.7)

This equation implies that the output gap converges to a steady state given by:

ỹ1 (∞) =
θ2m2

ψ

b

γ
=
γ − θ (1− n)

γ

λ

ρ+ λ+ γ
κ

Here, we have substituted for b [cf. (25)] as well as θ2m2

ψv
= γ − θ (1− n) [cf. (17)]. Note

that this also implies ỹ1 (∞) ∈ (0, κ). Then, Eq. (23) implies the asset price gap converges

to a steady state given by:

q̃1 (∞) =
1− n
m

ỹ1 (∞) > 0.

This establishes Eq. (26) completes the proof of the first part.

Part (ii). Suppose y1 (0) < y1 (∞), which implies the output gap starts below its

steady state, ỹ1 (0) < ỹ1 (∞). Absent transition, Eq. (A.7) implies that the output

gap monotonically increases toward its steady state. Combining this with Eq. (A.6), we

also obtain that the asset price gap starts above its steady state, q̃1 (0) > q̃1 (∞), and

monotonically declines toward its steady state. This also implies the normalized output

y1 (0) monotonically increases towards its steady state y1 (∞); and the normalized asset

price monotonically decreases toward its steady state.

Next consider the time t′ at which the economy transitions to the recovery (starting

with y1 (0) < y1 (∞)). Normalized output remains unchanged. It is below its new poten-

tial because, y2 (t′) = y1 (t′) < y1 (∞) < 0. The asset price gap after transition is given

by Eq. (15) whereas the asset price gap before transition is given by Eq. (A.6). That is:

q̃2 (t′) = q2 (t′) = −θm
ψv

y1 (t′)

q̃1 (t′) =
θm

ψ

(
b− 1

v
(y1 (t′)− y∗1)

)
After taking the difference, and substituting y∗1 = −κ, we obtain:

q̃2 (t′)− q̃1 (t′) =
θm

ψ

(κ
v
− b
)

=
θm

ψ

κ

v

ρ+ γ

ρ+ λ+ γ
> 0.

Here, the second equality substitutes b from (25). Since q∗1 < 0, we also have q̃1 (t′) >
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q1 (t′). Thus, we obtain q̃2 (t′) = q2 (t′) > q̃1 (t′) > q1 (t′). At the time of transition, the

normalized asset price as well as its gap increases. This completes the proof.

A.2. Overshooting with rational consumers

Consider the baseline model analyzed in Sections 2 and 3. In the main text, we assume

adjusting consumers exogenously follow the rule in (4) with parameters m ∈ (0, ρ) , n ∈
(0, 1). In this appendix, we generalize the analysis to the case with fully rational adjusting

consumers that incorporate the fact that they will get to readjust in the future with

Poisson probability θ.

The analysis proceeds in three steps. First, we characterize the (linearized) optimal

consumption rule for an arbitrary path of (linearized) future income and interest rate

gaps, [y (t) , r (t)]∞t=0. Second, we show that, along the equilibrium path in which y (t)

and r (t) converge to zero at an exponential rate γ > 0, consumption rule is given by

Eq. (19), which implies Eq. (4) for endogenous coeffi cients m (γ) , n (γ). Third, we prove

Proposition 3 that generalizes our main overshooting result to this setting.

Optimal consumption with Poisson adjustment. Consider a consumer with as-

sets a (0) that gets to adjust her consumption. For now, we take the initial asset level

as exogenous (from the interest rate) and endogenize it subsequently. The consumer’s

recursive problem is given by:

V (a (0)) = max
c

∫ ∞
0

θe−θT
[∫ T

0

e−ρt log cdt+ e−ρTV (a (T ))

]
dT (A.8)

= max
c

∫ ∞
0

θe−θT
[

1− e−ρT
ρ

log c+ e−ρTV (a (T ))

]
dT

where ȧ (t) = R (t) a (t)− c

Here, we write the consumer’s problem as an integral over adjustment times T . The

probability that adjustment takes place at time T is θe−θT . Conditional on adjustment

at time T , the consumer receives the utility in the brackets.

Suppose consumption is strictly positive along the optimal path (this will be the case

since we focus on small deviations from the steady state). Then, the value function has

the homogeneity property:

V (a (t)) =
log a (t)

ρ
+ v (t) .
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Note also that we can integrate the budget constraint forward to solve for the value of

assets at time T . In particular, the present value of a (T ) is equal to the initial assets net

of the present value of the fixed consumption path until time T :

a (T )

exp
(∫ T

0
R (s) ds

) = a (0)− c
∫ T

0

exp

(
−
∫ t

0

R (s) ds

)
dt

= a (0)− c
∫ T

0

exp

(
−
∫ t

0

(r (s) + ρ) ds

)
dt

= a (0)− c
∫ T

0

exp (−ρt) exp

(
−
∫ t

0

r (s) ds

)
dt

The last line writes the solution in terms of the interest rate gap, r (s) = R (s)− ρ.
Substituting these observations into (A.8), we obtain the following optimality condi-

tion:

∫ ∞
0

θe−θT

1− e−ρT
cρ

− exp (−ρT )

ρ

∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt

a (0)− c
∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt.

 dT = 0.

After rearranging terms, we have:

1

c

1

θ + ρ
=

∫ ∞
0

θ

ρ
e−(θ+ρ)T

∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt

a (0)− c
∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt.
dT.

The solution scales with initial wealth. Thus it can be written as

c = ρ (1 + χ (0)) a (0) (A.9)

for some χ (0). After substituting, we further obtain

1

1 + χ (0)
=

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T

∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt

1− ρ (1 + χ (0))
∫ T
0

exp (−ρt) exp
(
−
∫ t
0
r (s) ds

)
dt.
dT.

(A.10)

Consider the potential steady state, R∗ (t) = ρ for each t, which corresponds to r∗ (t) =

0 for each t. In this case, it is easy to check χ∗ (0) = 0 and thus c = ρa (0). Consider also

the special case θ →∞. It can be checked that this also gives the same solution χ (0) = 0

and c = ρa (0).

Beyond these special cases, the solution is complicated. In particular, χ (0) depends
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on the whole future path of interest rates. To make progress, we view (A.10) as an im-

plicit function of the variables χ (0) , [r (t)]∞t=0. We then linearize this function around the

potential steady state χ∗ (0) = 0 and r∗ (t) = 0 for each t. This gives:

χ (0) =

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T


ρχ (0)

∫ T
0
e−ρtdt

∫ T
0 e−ρtdt

(1−ρ
∫ T
0 e−ρtdt)

2+

−
∫ T
0
e−ρt

(
−
∫ t
0
r (s) ds

)
dt 1

1−ρ
∫ T
0 e−ρtdt

−ρ
∫ T
0
e−ρt

(
−
∫ t
0
r (s) ds

)
dt

∫ T
0 e−ρtdt

(1−ρ
∫ T
0 e−ρtdt)

2

 dT

=

∫ ∞
0

θ (θ + ρ) e−(θ+ρ)T

{
χ (0)

(
1− e−ρT

)2
ρ (e−ρT )2

+

∫ T
0
e−ρt

∫ t
0
r (s) dsdt

(e−ρT )2

}
dT .

Here, the first line uses the chain rule to evaluate the derivatives and cancels the constant

terms from both sides (since the equation holds for χ (0) = r (t) = 0). The second line

calculates the integrals. After rearranging terms, we further obtain

χ (0)

[
1−

∫ ∞
0

θ (θ + ρ)

ρ
e−(θ−ρ)T

(
1− e−ρT

)2
dT

]
=

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
∫ t

0

r (s) dsdtdT

Calculating the integrals and simplifying further, we obtain:

χ (0)

(
θ − 3ρ

θ − ρ

)
=

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
∫ t

0

r (s) dsdtdT . (A.11)

Recall that c = (1 + χ (0)) ρa (0). Hence, Eq. (A.11) illustrates that the slope of

the consumption function deviates from the usual slope iff the interest rates are different

from their steady state levels. As long as θ > 3ρ (which we assume), keeping current

wealth constant, greater interest rate increases (resp. decreases) spending. Intuitively,

since consumer cannot reoptimize in the future (in some states), the substitution effect

becomes weaker. Therefore, despite log preferences, the substitution and income effects

do not net out. Instead, the income effect dominates and implies– keeping the wealth

constant– increasing the interest rate increases spending. Intuitively, a higher interest

rate makes it cheaper to finance a steady consumption stream (c), which induces the

consumer to spend more.

As before, there is also a wealth effect once we endogenize the initial wealth a (0). In

particular, note that the wealth of the representative adjusting consumer is equal to the
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price of the market portfolio, a (0) = Q (0). This implies:

Cadjust (0) = (1 + χ (0)) ρQ (0)

where Q (0) =

∫ ∞
0

e−ρtY (t) e−
∫ t
0 r(s)dsdt.

Linearizing these expressions around the steady state (Y ∗ = C∗ = 1, Q∗ = 1/ρ), we

obtain:

cadjust (0) = χ (0) + ρq (0) (A.12)

q (0) =

∫ ∞
0

e−ρt
[
y (t)−

∫ t

0

r (s) ds

]
dt (A.13)

As usual, increasing the interest rate reduces the value of the market portfolio. All else

equal, this reduces spending.

Optimal consumption along the equilibrium path. We next calculate consump-

tion along the equilibrium path and prove Eq. (4). In equilibrium, we have:

y (t) = y (0) e−γt and r (t) = r (0) e−γt.

Substituting these expressions, we solve for the asset price along the equilibrium path:

q (0) =
y (0)

γ + ρ
− r (0)

ρ (ρ+ γ)
. (A.14)

As expected a greater initial output increases the price and a greater initial interest rate

decreases the price.

Next, we define ñ such that:

χ (0) =
r (0)

ρ+ γ
ñ. (A.15)

This normalization is useful since it leads to a simple consumption function. Specifically,

combining this with Eqs. (A.12) and (A.13), we obtain:

cadjust (0) =
r (0)

ρ+ γ
ñ+ ρq (0)

= ρ

(
y (0)

ρ+ γ
− q (0)

)
ñ+ ρq (0)

= ρ

(
(1− ñ) q (0) + ñ

y (0)

ρ+ γ

)
(A.16)
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Here, the second line substitutes r(0)
ρ+γ

= ρ
(
y(0)
ρ+γ
− q (0)

)
from Eq. (A.13) to express the

consumption function in terms of y (0) , q (0) (instead of y (0) , r (0)).

It remains to solve for ñ along the equilibrium path. Combining Eqs. (A.11) and

(A.15), and substituting r (s) = r (0) e−γs, we calculate:

ñ =
(ρ+ γ) (θ − ρ)

θ − 3ρ

∫ ∞
0

θ (θ + ρ) e−(θ−ρ)T
∫ T

0

e−ρt
1− e−γt

γ
dtdT

=
(ρ+ γ) (θ − ρ) θ (θ + ρ)

γ (θ − 3ρ)

∫ ∞
0

e−(θ−ρ)T
[

1− e−ρT
ρ

− 1− e−(ρ+γ)T
ρ+ γ

]
dT

=
(ρ+ γ) (θ − ρ) θ (θ + ρ)

γ (θ − 3ρ)

{
1

ρ

(
1

θ − ρ −
1

θ

)
− 1

ρ+ γ

(
1

θ − ρ −
1

θ + γ

)}
=

(ρ+ γ) (θ − ρ) θ (θ + ρ)

γ (θ − 3ρ)

{
1

(θ − ρ) θ
− 1

(θ − ρ) (θ + γ)

}
=

θ + ρ

θ − 3ρ

ρ+ γ

θ + γ
. (A.17)

The final expression has intuitive comparative statics. For instance, as θ → ∞, we have
ñ→ 0. That is, when the consumer adjusts very rapidly, we recover the standard rule.

Combining Eqs. (A.16) and (A.17), we prove the consumption rule in Eq. (19) (see

the main text for intuition). This rule also implies Eq. (4) with coeffi cients

n = ρ
ñ

ρ+ γ
=

θ + ρ

θ − 3ρ

ρ

θ + γ
(A.18)

m = ρ (1− ñ) = ρ

(
1− θ + ρ

θ − 3ρ

ρ+ γ

θ + γ

)
. (A.19)

Overshooting with rational consumers. Note that the slope coeffi cients depend on

the equilibrium convergence rate, that is, m = m (γ) and n = n (γ). Conversely, our

analysis in the main text shows the convergence rate, γ, depends on m,n. Specifically,

Proposition 1 implies [cf. (A.2)]:

γ = F (γ) ≡

√
(ρ+ 2θ (1− n (γ)))2 + 4 θ

2m(γ)2

ψ
− ρ

2
. (A.20)

Therefore, the equilibrium with rational consumers corresponds to the fixed point of

function F (·). We next establish the following lemma, which shows that (as long as θ
is suffi ciently large) there exists an interior fixed point that satisfies the properties we

assumed in the main text. We then use the lemma to prove Proposition 3, which shows

that our main overshooting result also applies with fully rational consumers.
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Lemma 2. Suppose θ > 9ρ. Then, the function F (·) has an interior fixed point γ ∈ (ρ, γ)

that satisfies ñ (γ) ∈ (0, 1) (and thus m (γ) ∈ (0, ρ) and n (γ) ∈ (0, 1)). There is a finite

upper bound on this fixed point given by:

γ =
(θ − ρ) (θ + ρ)

4ρ
− θ > ρ. (A.21)

Proof. Rewriting Eqs. (A.18− A.19), we have:

n (γ) = ρ
θ + ρ

θ − 3ρ

1

θ + γ
,

m (γ) = ρ

(
1− θ + ρ

θ − 3ρ

ρ+ γ

θ + γ

)
=

ρ

θ − 3ρ

(
(θ − ρ) (θ + ρ)

θ + γ
− 4ρ

)
.

Thus, as long as θ > 3ρ, the functions m (·) and n (·) are both strictly decreasing in γ.
Note also that the upper bound in (A.21) ensures m (γ) = 0. As long as θ > 9ρ, this

upper bound also satisfies γ > θ > 0. We claim F (ρ) > ρ and F (γ) < γ, which implies

there exists a fixed point that satisfies, γ ∈ (ρ, γ).

To prove the claim, first consider F (γ). We have m (γ) = 0 and n (γ) > 0. Combining

this with Eq. (A.20), we obtain:

F (γ) = θ (1− n (γ)) < θ < γ.

Next consider F (ρ). We have:

n (ρ) =
ρ

θ − 3ρ
∈ (0, 1)

m (ρ) =
ρ

θ − 3ρ
(θ − 5ρ) ∈ (0, ρ) .

Combining this with Eq. (A.20), we obtain:

F (ρ) ≥ θ (1− n (γ)) = θ
θ − 4ρ

θ − 3ρ
> ρ.

Here, the last inequality follows since θ > 5ρ. This proves the claim.

It remains to check that the fixed point satisfies ñ (γ) ∈ (0, 1). Note that ñ (γ) =

1−m/ρ. Since m (γ) is decreasing in γ, ñ (γ) is increasing in γ. In addition, Eq. (A.17)

implies ñ (ρ) = 2ρ
θ−3ρ > 0 and m (γ) = 1 implies ñ (γ) = 1. This establishes ñ (γ) ∈ (0, 1),

completing the proof.
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Proof of Proposition 3. Let γ denote the fixed point characterized by Lemma 2. Our
analysis in this section shows that, given the convergence rate γ, the optimal consumption

rule is given by (4) withm (γ) ∈ (0, ρ) and n (γ) ∈ (0, 1). Proposition 1 implies that, given

this consumption rule, the optimal policy induces the equilibrium variables to converge

to zero at rate γ > 0.
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