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1 Introduction

Widespread and rising socioeconomic inequality continues to be a pressing concern in the

United States and abroad. School segregation has received particular attention as a way to

address disparities in opportunity, with ample evidence that school segregation widens the

socioeconomic gap in achievement, attainment, college attendance, incarceration, health, and

earnings (Guryan 2004; Hanushek, Kain and Rivkin 2009; Johnson 2011; Billings, Deming

and Rockoff 2014).

Nearly three decades ago, following one of the most ambitious attempts of the twentieth

century to reduce inequality in the United States, the era of court-ordered desegregation came

to a close. Not surprisingly, school segregation rose substantially as a result (Clotfelter, Ladd

and Vigdor 2008; Lutz 2011). This reversal in policy was based, in no small part, on the belief

that school choice reforms (e.g., allowing for magnet and charter schools) and compensatory

redistribution of school resources could achieve a similar end without curtailing parental

schooling decisions.

In recent years, school choice reforms have seen increased adoption in the United States,

though students continue to attend their assigned neighborhood school in the vast majority

of cases. At the same time, federal programs (such as Title I), as well as many state and local

initiatives, have helped reduce the gap in spending across schools (Cascio and Reber 2013).

Yet school segregation has remained stubbornly pervasive, even in urban areas (Orfield et al.

2014), where school choice reforms have been disproportionately embraced.

One seldom explored reason why education policies have been ineffective at reducing

school segregation is its potential first-order dependence on non-school factors, given their

likely importance for residential sorting under the traditional school choice paradigm. In-

tuitively, a household’s decision about where to reside depends on both school and neigh-

borhood amenities, the latter of which being less influenced by education policy, or not at

all. Examples of neighborhood amenities include the quality of parks, prevalence of walk-

able streets, age and style of dwellings, and availability of nearby desirable venues (Jacobs

1961; Glaeser, Kolko and Saiz 2001). Such features tend to vary particularly intensely across

neighborhoods within high density cities.
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The potential for non-school (neighborhood) factors to affect school segregation is best

understood by way of example. Consider the case in which two otherwise similar schools

differ according to some pre-existing natural neighborhood amenity. For instance, suppose

the attendance area of one school contains a picturesque lake, while the other does not.

Further, let affluent families care more about residing near the lake than non-affluent families.

As a result, the socioeconomic composition of the schools would differ entirely because of

neighborhood factors, as the school near the lake would attract more affluent students.

The initial difference due to the lake may then beget additional differences. For instance,

the influx of affluent households could lead to further sorting of affluent households if they

prefer to reside near similar households. It could also lead to gentrification, in which more

desirable venues (e.g., restaurants, retail shops), higher quality buildings and walkable streets

arise to cater to demand. Such amenities might spur even more sorting, which could result

in additional desirable amenities, and so on. Many other positive feedback loops like these

could arise, which would result in increased segregation. Some may in turn lead to an

interaction between neighborhood and school factors: for example, the school near the lake

might respond to the influx of affluent households by altering its features to appeal to its

student body, giving rise to school differences that drive further sorting and set yet more

positive feedback loops in motion (in this case, attributable to school factors).

In this article, we identify the relative importance of school and neighborhood factors in

determining socioeconomic segregation patterns across schools. Our research design builds

on the key insight from Black (1999) that houses located sufficiently close to each other but

served by different schools should share neighborhood features. Thus, with the exception of

differential school factors, households should be indifferent between residing within adjacent

blocks on opposite sides of the boundary separating the schools. We adapt this idea to

address our research question by comparing the socioeconomic composition between two

adjacent Census blocks assigned to different attendance areas. Any systematic difference

in the composition between those blocks must arise as a result of a disparity in the local

provision of school features that are valued heterogeneously along socioeconomic lines. We

draw upon this logic to estimate the degree to which the difference in composition between

two schools sharing a boundary (which depends on both school and neighborhood factors)
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predicts the difference in composition between the two associated adjacent blocks at the

boundary (which depends only on school factors).

Our approach sidesteps important endogeneity concerns raised in the literature. For

instance, a major issue noted by Bayer, Ferreira and McMillan (2007) in the context of the

boundary approach is that endogenous residential sorting due to original differences in school

amenities at the boundary may lead to further local differences in house prices. While, in

the standard context, this observation implies that one needs to control for these differences

in local amenities, the issue does not apply to our analysis. Indeed, under our approach,

any discontinuous change in student socioeconomic composition across the boundary is by

definition attributable to school factors.

Critically, such factors represent not only original differences in school features, but

also any differences that arise from household sorting in response to differences in those

features. These include changes via positive feedback loops that are initiated by school

factors (analogous to the discussion above). Returning to our example, school differences

that cause more affluent neighbors to sort into the attendance area with the lake could

cause a differential investment in housing across the boundary if affluent families take better

care of their houses. In turn, if more affluent families disproportionately value residing

near houses that are well cared for, then additional sorting would ensue, leading to further

segregation. Under our approach, all such effects would contribute to the school (rather than

neighborhood) component of school segregation.

Another strength of our approach is that it does not require the researcher to observe all

relevant school and neighborhood characteristics. Since it only uses information about the

socioeconomic composition of boundary blocks and schools, the approach is agnostic about

whether features are observed or unobserved, picking up both sources of variation. This is

particularly valuable as school features may be disproportionately observed by researchers,

relative to neighborhood features.

We implement our research design using rich data on the socioeconomic status of North

Carolina students, the schools that they attend and the blocks in which they reside. We

report results by student race and economic advantage across all school attendance area

boundaries in the state. We also stratify the results according to whether the schools of
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interest are located in an urban area, and according to the grade level of the schools.

Our analysis reveals that neighborhood features explain about 62% of school racial seg-

regation and 44% of school economic segregation. These percentages are larger in urban

areas (72% and 65%, respectively) than in non-urban areas (57% and 23%, respectively).

As mentioned, we hypothesize this occurs because the density of neighborhood features to

choose from is greater (relative to school features) in urban areas. Indeed, it is easy to

enumerate many non-school features that may differ from one block to the next in urban

areas, such as restaurants, coffee shops, museums, retail stores, green spaces, public spaces,

street width, through traffic, lot size, parking, public transit and proximity to a zoned area

(Turner, Haughwout and Van Der Klaauw 2014). In contrast, these features are perceived

to be more similar from one block to the next in non-urban areas, as non-urban residents

tend to use cars as their primary mode of transportation.

We also find that neighborhood features tend to play a larger role in later grades than

in earlier grades. We speculate this is due to the fact that households with students in high

school have a smaller number of options to choose from regarding school features (given

larger attendance areas) but face the same set of options in terms of neighborhood features.

In addition, the evidence indicates that the way in which school and neighborhood factors

affect school segregation is positively correlated: attendance areas with neighborhood factors

that tend to attract affluent students also include school factors that tend to attract affluent

students. Thus, feedback loops originally arising from neighborhood factors are reinforced

by those arising from school factors, and vice-versa, resulting in greater segregation than

without this interaction. Our results suggest that the positive correlation between school

and neighborhood factors accounts for about half of the school segregation that occurs by

race and income, in both urban and non-urban areas.

Our findings suggest that, in the absence of top-down reassignment policies that constrain

individual choice, education policymakers are considerably more limited in their ability to

affect school segregation than previously thought. A nontrivial portion of school segregation

is subject to neighborhood factors, particularly in urban settings. Consequently, any attempt

to lower segregation across schools will be more successful with the engagement of urban

planners, irrespective of the existing education policy landscape. This is particularly true
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in the face of technological and environmental upheaval (Glaeser 2011), which may grant

planners more latitude in their future urban design ambitions.

The remainder of this article is organized as follows: The next section sets out our

empirical framework, Section 3 describes the data used in our analysis, and Section 4 presents

our results. Section 5 explores and rules out several potential validity concerns associated

with our research design, and Section 6 addresses considerations regarding the sources of

variation we exploit. Section 7 then interprets our results through the lens of a dynamic

model, and Section 8 concludes.

2 Empirical Framework

In this section, we first set out a model of the demand for school and neighborhood amenities.

We then exploit it to identify the relative importance of school and neighborhood factors in

explaining the degree of segregation across schools.

2.1 A Model of School and Neighborhood Choice

Our framework is based upon a model of households jointly choosing their school and neigh-

borhood. The term “neighborhood” refers to a Census block, which we shorten to “block”

for convenience. Each block k is uniquely associated with one attendance area (and thus to

one school) s, where we use Ks to denote the set of blocks associated with s. This implies

that each household chooses the block in which it will reside, with the understanding that

it is selecting both the school and neighborhood amenities to which it will be exposed.

Specifically, each household h of type τ ∈ {A,B} (e.g., white and non-white, or advan-

taged and disadvantaged) observes the vector of school-related amenities S = [S1, . . . ,SK ]′

and the vector of neighborhood-related amenities N = [N1, . . . ,NK ]′, where k indexes the K

neighborhoods in their choice set (each of which is assigned to a school indexed by s).1 Each

1For expositional simplicity, we assume that blocks can be different in the values of only one school
amenity and only one neighborhood amenity. In practice, blocks differ from each other because of many
school and neighborhood amenities, so that S and N should be understood as indices of all corresponding
amenities. Moreover, some amenities inherently conflate school and neighborhood amenities, such as the
block average house price. In that case, the component of the price that capitalizes school amenities is
included in the index S, and the component that capitalizes neighborhood amenities is included in the index
N.
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household selects the option that maximizes its utility:

uh,τk = φτSSk + φτNNk︸ ︷︷ ︸
δτk

+ζh,τk , (1)

where δτk corresponds to the mean utility of households of type τ for neighborhood k, and ζh,τk

is an idiosyncratic error term that captures household-specific deviations from that mean.

The mean utility depends on the preference parameter scalars φτS and φτN , each of which

depends on the household’s type τ .

As is standard in discrete choice frameworks, we assume that ζh,τk is independently and

identically drawn from the extreme value distribution. This yields the familiar expression

for the proportion of students residing in neighborhood k who are of type A:

πk =
nAk

nAk + nBk
,

where nτk = nτ · exp(δτk )∑
k̃ exp(δ

τ
k̃

)
and nτ is the total number of type-τ students across all blocks.

Under the normalization
∑

k̃ exp(δ
τ
k̃
) = nτ , we have:

πk =
exp(δAk )

exp(δAk ) + exp(δBk )

=
exp(φASSk + φANNk)

exp(φASSk + φANNk) + exp(φBS Sk + φBNNk)
. (2)

Similarly, the proportion of students attending school s who are of type A is:

πs =
nAs

nAs + nBs

=

∑
k∈Ks exp(δ

A
k )∑

k∈Ks [exp(δAk ) + exp(δBk )]

=

∑
k∈Ks [exp(φ

A
SSk + φANNk)]∑

k∈Ks [exp(φASSk + φANNk) + exp(φBS Sk + φBNNk)]
. (3)

2.2 Defining the Estimand

Our goal is to identify the relative importance of school factors in explaining school seg-

regation. Before doing so, it is important to define what we mean by “school factors,”
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“neighborhood factors,” and “school segregation” in the context of our framework.

Notice that equation (2) implies

ln

(
πk

1− πk

)
= δAk − δBk =

(
φAS − φBS

)
Sk +

(
φAN − φBN

)
Nk .

The difference in this measure across any two blocks k and k′ is then

ln

(
πk

1− πk

)
− ln

(
πk′

1− πk′

)
= ln

[
πk (1− πk′)
πk′ (1− πk)

]
= ∆Sk,k′ + ∆Nk,k′ , (4)

where ∆Sk,k′ := Sk−Sk′ =
(
φAS − φBS

)
(Sk−Sk′) and ∆Nk,k′ := Nk−Nk′ =

(
φAN − φBN

)
(Nk−

Nk′).
2 The term ∆Sk,k′ represents the component of the gap between πk and πk′ that is due

to “school factors,” which jointly arises from a difference in school amenities (Sk − Sk′) and

an across-group difference in the preferences over those amenities (φAS − φBS ). Analogously,

the term ∆Nk,k′ represents the component of the gap between πk and πk′ that is due to

“neighborhood factors,” which depends on the difference in neighborhood amenities (Nk −

Nk′) and the across-group difference in preferences over those amenities (φAN − φBN).

The distinction between S and N is at the heart of our identification strategy, which will

be made explicit in the next subsection. The key difference between them is that school-

related amenities are uniform across blocks served by the same school, while neighborhood-

related amenities need not be. The first part of this statement is made precise by the

following assumption:

Assumption 1. Sk = Ss ∀ k ∈ Ks .

The rationale behind this identifying assumption is that all school-aged children are entitled

to attend the public school to which their residence is assigned, and in the case of North

Carolina the vast majority of them do so.3 Consequently, the school amenity is uniform across

blocks served by the same school, since the benefits of school amenities can be identically

realized irrespective of where within the attendance area a student resides.4 In contrast, the

2These expressions arise from the following definitions: Sk :=
(
φAS − φBS

)
Sk and Nk :=

(
φAN − φBN

)
Nk.

3The exceptions to this rule are students who attend private, charter or magnet schools, or those who
receive home schooling. As discussed in Section 3, charter and magnet schools account for a very small
fraction of public school enrollment in our setting; and, in addition, the degree of home schooling is negligible.
In our framework, private schools contribute to neighborhood factors, but only insofar as the distance between
the student’s residence and the private school is salient.

4Some other public goods are likely to ensure that students residing in different areas of the attendance
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consumption of neighborhood amenities is more optional, often depending on their distance

from a student’s residence. For example, on average, those residing near a park will likely

enjoy it more frequently than those residing far from it.

It is worth noting that Assumption 1 is actually stronger than necessary for identification

to hold.5 A key situation in which Assumption 1, or even its weaker variant, would fail is

if households were heterogeneous in their preferences with respect to the distance between

their residence and the school their child attends. In Section 5.2, we show that this is not a

first-order concern in our context.

For the school-level comparison analogous to equation (4), we apply Assumption 1 to

equation (3), obtaining

ln

(
πs

1− πs

)
=
(
φAS − φBS

)
Ss + ln

(∑
k∈Ks

exp(φANNk)

)
− ln

(∑
k∈Ks

exp(φBNNk)

)
.

Defining Ns := ln
(∑

k∈Ks exp(φ
A
NNk)

)
− ln

(∑
k∈Ks exp(φ

B
NNk)

)
and ∆Ns,s′ := Ns −Ns′ , we

can compare the two schools s and s′ (corresponding to block k and k′, respectively):

ln

(
πs

1− πs

)
− ln

(
πs′

1− πs′

)
= ln

[
πs (1− πs′)
πs′ (1− πs)

]
= ∆Ss,s′ + ∆Ns,s′ . (5)

Using variation across all boundaries contained in our sample, var
(
ln
[
πs(1−πs′ )
πs′ (1−πs)

])
=

var(∆Ss,s′ + ∆Ns,s′) provides a natural measure of school segregation. It is equal to zero if

πs = πs′ for any two schools s and s′, and it tends to grow as the gap in composition between

school pairs increases. In terms of the model notation, within-pair differences only arise if two

conditions are satisfied along at least one dimension (i.e., S, N). For the school dimension,

the conditions are: (i) types differ in preferences over school amenities (φAS 6= φBS ); and (ii)

schools differ in the level of school amenities (Ss 6= Ss′). For the neighborhood dimension, the

conditions are: (i’) types differ in preferences over neighborhood amenities (φAN 6= φBN); and

(ii’) schools differ in their neighborhood amenity (
∑

k∈Ks exp(φ
τ
NNk) 6=

∑
k∈Ks′

exp(φτNNk)

zone have equitable access to the school. For instance, free school busing is a form of public good that is
enjoyed more by those residing further from the school, partially compensating for their longer commute to
the school.

5Identification still holds if Assumption 1 is weakened to the following: Sk1 = Ss + errork1 , where errork1
is uncorrelated with πs (across all schools), and k1 is a boundary block, defined in the next subsection. In
words, the discontinuity we find at the boundary is representative of the overall change in school amenities.
We use the more straightforward Assumption 1 for notational simplicity.
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for τ ∈ {A,B}).

Our goal is to identify the relative role of ∆Ss,s′ and ∆Ns,s′ in explaining total variance

var(∆Ss,s′ + ∆Ns,s′) = var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′) . (6)

We define the relative role of ∆Ss,s′ as

ΩS :=
var(∆Ss,s′) + cov(∆Ss,s′ ,∆Ns,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)
, (7)

and the relative role of ∆Ns,s′ as ΩN := 1− ΩS.

Given the definition above, the covariance term cov(∆Ss,s′ ,∆Ns,s′) may play an impor-

tant role in explaining school segregation. It will be positive if school amenities that attract

a disproportionate number of students of a given type are located near neighborhood ameni-

ties that attract a disproportionate number of students of that same type. As discussed

in Remark 1, that is the case in the context of this article, implying that ΩS is bounded

between 0 and 1, and allowing us to interpret it as a proportion.

Note that the definition of ΩS attributes half of the covariance term to school factors,

and the other half to neighborhood factors. This is an arbitrary attribution. In Section 7, we

offer a theoretically sound method of attributing the covariance term, based on our estimate

of ΩS. Prior to that discussion, however, we must explain our strategy for identifying and

estimating ΩS, which we turn to next.

2.3 Identification Strategy

To identify the role of school and neighborhood factors in explaining school segregation, we

exploit block-level variation at the boundary between two school attendance areas. It is

helpful to visualize our approach using Figure 1. Consider two blocks, k1 and k′1, which are

adjacent to each other but served by different schools, s and s′, respectively. Our research

design involves comparing how the proportion of students of a given type varies across the

boundary at the block level (from πk1 to πk′1) to how it varies at the attendance area level

(from πs to πs′).
6

6Block k2 depicted in Figure 1 is used later to correct for a potential source of bias in our approach.
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School s

πs

School s′

πs′

Boundary

Block k1

πk1

Block k′1
πk′1

Block k2

πk2

Figure 1: Visualizing Sources of Variation

Notes: This Figure illustrates a specific boundary of the many we observe in the data. The key variables of
interest are the proportions (π) of students who are white or economically advantaged for blocks k2, k1 and k′1,
along with the analogous proportions for the associated schools s and s′. Blocks k1 and k′1 are adjacent to each
other but located in different attendance areas. Blocks k2 and k1 are adjacent to each other and located in the
same attendance area s.

A simple cross-boundary comparison of proportions is able to recover the relative im-

portance of each factor. In particular, consider the following regression equation:

ln

[
πk1

(
1− πk′1

)
πk′1 (1− πk1)

]
= αlog + β log · ln

[
πs (1− πs′)
πs′ (1− πs)

]
+ error log . (8)

Substituting the expressions from equations (4) and (5), and applying Assumption 1 so that

∆Sk1,k′1
= ∆Ss,s′ , the regression can be equivalently expressed as

∆Ss,s′ + ∆Nk1,k′1
= α log + β log · [∆Ss,s′ + ∆Ns,s′ ] + error log . (9)
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The ordinary least squares (OLS) slope parameter in equation (9) is

β log = plim(β̂ log) =
cov(∆Ss,s′ + ∆Ns,s′ ,∆Ss,s′ + ∆Nk1,k′1

)

var(∆Ss,s′) + var(∆Ns,s′) + 2cov(∆Ss,s′ ,∆Ns,s′)
. (10)

Thus, β̂ log is a consistent estimator of ΩS under the following identifying assumption:

Assumption 2. cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk1,k′1
) = 0.

In words, the (highly local) difference in neighborhood factors between two adjacent blocks,

∆Nk1,k′1
, is uncorrelated with the school-level difference in composition, ln

[
πs(1−πs′ )
πs′ (1−πs)

]
:=

∆Ss,s′ + ∆Ns,s′ .

Applying Assumption 2 to equation (10), we have:

β log =
cov(∆Ss,s′ + ∆Ns,s′ ,∆Ss,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)

=
var(∆Ss,s′) + cov(∆Ss,s′ ,∆Ns,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)

= ΩS . (11)

Intuitively, as one moves across the boundary from k1 in attendance area s to k′1 in attendance

area s′, only school factors can systematically change the values of both ln

[
πk1

(
1−πk′1

)
πk′1

(1−πk1)

]
and

ln
[
πs(1−πs′ )
πs′ (1−πs)

]
. Thus, under Assumption 2, the slope coefficient from the regression in equation

(10) represents the degree to which segregation across schools is explained by school factors.

Relaxing Assumption 2

While Assumption 2 may seem similar to the one often invoked in the boundary fixed effects

literature (see Black 1999, for instance), that is not the case. To see why, consider two blocks

k1 and k′1 with initial differences in school amenities. Because of this initial difference, people

may sort, leading to further differences between the blocks (e.g., different neighbors, different

investments in housing). Under the boundary fixed effects approach, one is concerned with

identifying the effect on house prices of the initial difference in school features separately

from further sorting-based differences. In contrast, under our approach, it is unnecessary to

separately identify these two sources, as they are both attributable to school factors. More

formally, anything that affects the gap between πk1 and πk′1 because of the difference in
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school amenities is attributed to ∆Ss,s′ , and not to ∆Nk1,k′1
. This rules out concerns related

to post-determined differences at the boundary, but one may still be concerned about pre-

determined differences driving our results, such as major roads or rivers coinciding with a

boundary. Below, we relax the assumption to accommodate some of these concerns, and

Section 5.1 rules out remaining issues in detail.

To better understand Assumption 2, consider the example depicted in Figure 2. For

simplicity, we interpret the figure in terms of race, but the intuition is analogous for income.

Each panel depicts a boundary along with its two associated attendance areas.7 In the middle

of each panel, we depict the boundary, with attendance area s to its left and attendance area

s′ to its right. In keeping with Assumption 1, school factors (represented by horizontal solid

lines Ss and Ss′) do not vary within attendance area. Neighborhood factors vary by block

(as illustrated by the curve denoted as Nk in each panel), and they can vary in unrestricted

ways depending on the specific amenities distributed across the blocks in the two attendance

areas as well as white and non-white preferences for those amenities.8 We also depict Ns

and Ns′ as dashed lines in each panel, representing the weighted average of all Nk within

each attendance area.

For simplicity, assume that our sample consists of only the two boundaries depicted

in Figure 2. From the figure, note that ∆Nk1,k′1
= Nk1 − Nk′1

is negative in Panel (a)

and positive in Panel (b) (this is inferred by inspecting the slope of the Nk curve at the

boundary in each case), which implies that cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk1,k′1
) = 0. Departing

from this simple example, it is clear that this assumption might fail to hold in practice:

indeed, the slope at the boundaries must be just so in order for the covariance to equal zero.

In general, cov(∆Ns,s′ ,∆Nk1,k′1
) is likely to be positive (as is the case for Panel (a)), and

cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk1,k′1
) will also be positive if cov(∆Ss,s′ ,∆Ns,s′) > 0.9

7Unless stated otherwise, we use “boundary” as shorthand to denote a geographical dividing line between
two schools that is associated with a specific block pair (k1, k

′
1). Indeed, in the data, we observe many

different boundaries for the same pair of attendance school areas (s, s′).
8Distance from the amenity may play an important role for these heterogeneous preferences too. For

instance, the Nk curve in Panel (a) is consistent with a situation in which there exists only one salient
neighborhood amenity (e.g., a park) located in the far right of attendance area s′, and whites prefer residing
close to it more than non-whites do, though at slightly varying degrees depending on the distance.

9Note that cov(∆Ss,s′ ,∆Ns,s′) > 0 in this example: attendance areas with school amenities that attract
a disproportionate number of white students tend to also feature neighborhood amenities that attract a
disproportionate number of white students, and vice-versa.
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Figure 2: Understanding Assumptions 2 and 2 ′

Notes: This figure shows, for two different boundaries (each depicted in one of the panels), how school and neigh-
borhood factors vary across blocks. In the middle of each panel, we depict the boundary separating attendance
areas s and s′. The horizontal axis represents the blocks in both attendance areas, and the vertical axis represents
the school and neighborhood factors, S and N . The dashed lines represent the weighted average of Nk across all
blocks within the attendance area, denoted as Ns and Ns′ depending on the attendance area. We highlight three
blocks closest to the boundary: k2, k1 and k′1, as also described in Figure 1.

To relax Assumption 2, we appeal to an alternative block-level comparison, which is also

highlighted in Figure 2. Consider block k2, which is adjacent to block k1 and is served by

the same school s, and the analogous measure of the difference in proportion between these

two blocks: ln

[
πk2(1−πk1)
πk1(1−πk2)

]
. This difference does not systematically depend on the school

component, since both blocks are contained within the same attendance area. Thus, the OLS

estimator of the slope coefficient of the analogous regression to equation (10) (by regressing

ln

[
πk2(1−πk1)
πk1(1−πk2)

]
on ln

[
πs(1−πs′ )
πs′ (1−πs)

]
) is:

β logplacebo =
cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk2,k1)

var(∆Ss,s′) + var(∆Ns,s′) + 2cov(∆Ss,s′ ,∆Ns,s′)
. (12)

We propose the following alternative to Assumption 2:

Assumption 2 ′. cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk1,k′1
) = cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk2,k1)

A sufficient condition for this assumption to hold is for N to vary around the boundary in a

linear fashion from k2 to k′1 (i.e., in Figure 2, the portion of the Nk curve from k2 to k1 must

have the same slope as the portion of the Nk curve from k1 to k′1). Given the close proximity

of blocks k2 and k′1 (with only block k1 separating them), we view this local approximation as
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plausible. One potential issue, which we consider in detail in Section 5.1, is that attendance

boundaries may separate neighborhoods beyond their school allocation (e.g., due to a major

road or river). In that case, the slope from k2 to k1 may be systematically different than

the slope from k1 to k′1, leading us to attribute to S some of the effect that is due to N . In

practice, we find no evidence that this occurs in enough boundaries for that to be a concern.

Under Assumption 2 ′, we form the corrected estimator of ΩS as:

Ω log
S := β log − β logplacebo , (13)

where β log is defined by equation (10) and β logplacebo is defined by equation (12). Under As-

sumptions 1 and 2 ′, Ω̂ log
S is a consistent estimator of ΩS.

2.4 A Feasible Estimator

It is important to note that estimating Ω̂ log
S depends on being able to properly measure

ln

[
πk1

(
1−πk′1

)
πk′1

(1−πk1)

]
and ln

[
πk2(1−πk1)
πk1(1−πk2)

]
. In practice, for any block k, rather than observing the

population proportions πk, we are only able to obtain sample analogues, which are measured

with error (π̂k = πk + εk). While exploiting variation across highly local blocks makes

Assumption 2 ′ more plausible, blocks are very small geographic units in which few school-age

children tend to reside, making the effect of measurement error more pronounced and making

it more likely that π̂k = 0 or π̂k = 1, even if 0 < πk < 1.10 In such cases, ln

(
π̂k1

(
1−π̂k′1

)
π̂k′1

(1−π̂k1)

)
and ln

[
π̂k2(1−π̂k1)
π̂k1(1−π̂k2)

]
would be undefined and thus the estimation of Ω̂ log

S would be infeasible.

To address this concern, we draw upon a linear approximation that retains our inter-

pretation of the slope parameter in the presence of measurement error. In Appendix A,

and also in the Monte Carlo simulations in Appendix B, we show that the slope β from the

linear-on-linear regression

∆π̂k1,k′1
= α + β ·∆π̂s,s′ + error (14)

(for which the quantities are defined for all observations), provides a very good approximation

of the log-on-log slope β log from equation (8). This is also true for the placebo versions from

10For instance, if the population proportion is 70% and we observe only one student in a block (as is a
frequent occurrence in our data), the block proportion can only take the value 0 or 1, rather than 0.7.
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these equations: the slope estimator obtained from the regression

∆π̂k2,k1 = αplacebo + βplacebo ·∆π̂s,s′ + errorplacebo . (15)

is approximately the same as the log-on-log slope β logplacebo from equation (12).

Based on the concordance between the linear-on-linear and log-on-log regressions, we

henceforth refer to the specifications in equations (14) and (15) when discussing and esti-

mating the effect of school factors on school segregation.

3 Data

To determine the extent to which school and neighborhood factors drive school segregation,

we draw upon rich administrative data provided by the North Carolina Education Research

Data Center (NCERDC), focusing on the 2011-12 school year.11 The dataset contains de-

tailed longitudinal information covering all third through twelfth grade students who attend

North Carolina public schools, including their grade, race, an indicator for economic advan-

tage,12 the school they attend and, crucially for our research design, their Census block of

residence.13 While students are classified as being white, black, Hispanic, Asian, American

Indian or of mixed race, we choose to concentrate on white versus non-white students for

our analysis of segregation along racial lines. We use the indicator of economic advantage to

investigate segregation along economic lines.

The data also include important information about each public school, such as its grade

span (i.e., the lowest and highest grade served) and location (both a latitude-longitude com-

bination and urban-suburban-rural classification). As discussed, each student is connected

to both a school and a Census block of residence. This feature of the data allows us to

discern the location of school boundaries by identifying boundary blocks that are adjacent

11We have also carried out the analysis using data from 2009-10 and 2010-11 school years, obtaining similar
results in each case.

12We define a student as economically advantaged if the student’s household income is above 185% of the
federal poverty threshold, which is recorded in our data as not qualifying for a reduced-price lunch at school.

13The Census block represents a very fine level of geography, encompassing between one and a few hundred
residents (with very large numbers usually due to apartment buildings in urban centers). For the 2011-12
school year, we know the Census block of residence for 93% of public school students. The match rate is fairly
uniform across grade spans, with coverage ranging from 91% for elementary grades to 94% for secondary
grades. We obtained data at the block level from a previously available version of the standard NCERDC
repository. The data has since been updated to only include block groups, but should be available via custom
request.
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to each other but inferred (based on enrollment data) to be served by different schools in

the same district.14 It also allows us to determine the share of students within each school

and block that are of a particular type (e.g., white or economically advantaged).

With these data in hand, we are able to implement our research design for different

student subsets of interest. Using the information about each student’s grade and cross-

checking against school grade spans, we classify schools serving any third through fifth grade

students as elementary schools, those serving any sixth through eighth grade students as

middle schools and those serving any ninth through twelfth grade students as secondary

schools, presenting our results for each category. We also subdivide our results according to

whether schools serve urban or non-urban areas (i.e., suburban or rural). Our final estimation

sample is constructed by removing all magnet and charter schools, which do not strictly

adhere to the attendance area boundary system that we exploit.15 Thus, socioeconomic

proportions at the school and block level are calculated using only traditional public school

students.

Descriptive statistics for our proportions of interest (i.e., white and economically advan-

taged) are reported in Table 1, along with information about the relevant dimensions (i.e.,

local boundary level, school level, and grade level). For each school-grade level, the average

proportions of white and economically advantaged students are reasonably similar across

boundary blocks and across school attendance areas and there is a large degree of variation

across both boundary blocks and schools (though, as one might expect, the variance is sub-

14Geo-coded boundary information is only available for a small minority of North Carolina districts in the
2009-10 school year (and not at all for other years), via the School Attendance Boundary Information System
(SABINS). Motivated by this and the fact that we do not possess exact student addresses to understand
how actual boundaries divide some Census blocks, we restrict our analysis to boundary blocks that are not
bisected by attendance boundaries (i.e., blocks for which all students residing within are served by a single
school). Depending on the grade level, this covers between 67% and 71% of all boundary blocks. Interior
blocks (not adjacent to a block served by a different school) are unaffected by this restriction and are fully
retained in our sample. Whenever we drop a bisected block, we retain the boundary path containing it by
defining the non-bisected blocks adjacent to it as boundary blocks k1 and k′1, rather than blocks k2 and k′2.
Footnote 22 in Section 5.1 shows that this restriction does not affect our results.

15In our data, magnet and charter schools account for about 5% and 3% of total public school enrollment,
respectively. While charter schools in North Carolina place no geographical restrictions on applicants (other
than requiring state residency), many magnet schools rely on a hybrid admission process that grants students
residing within a priority/walk zone the right to enroll before any lottery applicants are considered. As we do
not possess lottery information, we abstract from magnet and charter schools in our analysis. After dropping
them and recognizing that North Carolina does not feature open enrollment for the period of interest, our
sample contains only boundaries which are binding for schooling allocations.
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Table 1: Descriptive Statistics

Elementary Middle Secondary
Boundary School Boundary School Boundary School

Prop. white 0.59 0.53 0.57 0.54 0.59 0.55

(0.46) (0.28) (0.46) (0.27) (0.46) (0.26)

Prop. black 0.23 0.25 0.26 0.26 0.26 0.29

(0.39) (0.23) (0.41) (0.22) (0.41) (0.24)

Prop. economically advantaged 0.42 0.40 0.43 0.41 0.50 0.47

(0.45) (0.23) (0.45) (0.20) (0.46) (0.19)

N - Students 34,001 266,720 29,426 264,295 33,619 368,974

All schools

N - Schools 1,093 471 518

Avg. Students per school 244 561 712

Avg. Blocks per school 93 205 256

N - Boundary block pairs 12,661 9,256 9,700

Urban schools

N - schools 246 92 100

Avg. Students per school 259 669 836

Avg. Blocks per school 100 245 315

N - Boundary block pairs 2,105 1,611 1,469

Notes: Standard deviations in parentheses. “Elementary,” “Middle” and “Secondary” refer to schools
serving third through fifth grade students, sixth through eighth grade students and ninth through
twelfth grade students, respectively. “Urban schools” refers to the sample of school pairs in which
both schools are located in urban areas.

stantially higher for blocks since they are geographically smaller). Regardless of the level,

the proportion of black students tends to be about half of the non-white proportion, with

the remainder consisting mostly of Hispanic students. The total number of students in our

sample is 266,720, 264,295 and 368,974 at the elementary, middle and high school levels, re-

spectively, and the number of students residing next to an attendance area boundary ranges

from 9 to 13 percent of the total. The number of schools serving elementary, middle and

secondary grades is 1,093, 471 and 518, respectively, approximately twenty percent of which

are located in an urban area.16 On a per-school basis, the average number of students is 244,

561 and 712, while the average number of blocks is 93, 205 and 256 (each corresponding to

elementary, middle and high schools, respectively). In terms of our unit of analysis, there are

between 9,256 and 12,661 boundary block pairs depending on the grade level, approximately

16% of which are located in urban areas.

16The urban schools in our sample are located across about twenty cities in the state, with over 80% of the
schools located in (by descending share) Charlotte, Fayetteville, Greensboro, Raleigh, Durham, Winston-
Salem, Burlington, and Wilmington.
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4 Results

In this section, we implement the approach detailed in Section 2.3 to estimate the relative

role of school features in explaining school segregation, both in terms of race (white vs.

non-white students) and income (economically advantaged vs. economically disadvantaged

students). To provide more intuition, we present estimates of both β and βplacebo, which

allow us to calculate the estimate of primary interest, Ω̂S := β̂ − β̂placebo.

4.1 All Schools

Our main results for race are presented in Panel (a) of Figure 3. The horizontal axis mea-

sures the difference in the proportions of white students between schools s and s′ (∆πwhites,s′ ),

while the vertical axis measures the difference in the proportions of white students between

boundary blocks k1 and k′1 (∆πwhitek1,k′1
). The scatter plot shows averages of ∆πwhitek1,k′1

across all

boundaries with similar values of ∆πwhites,s′ (in increments of 2.5 percentage points). The line

represents the ordinary least squares fit of the disaggregated regression at the boundary block

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 3: The Relative Role of School Factors on School Segregation by Race

Notes: In the left panel, we relate each pair of adjacent blocks k1 and k′1 in different attendance areas to their
corresponding assigned school pair s and s′. The horizontal axis measures the difference in the proportion of
students in school s who are white relative to the analogous proportion in school s′. The vertical axis measures
the difference in the proportion of students in block k1 who are white relative to the analogous proportion in block
k′1. The scatter plot represents averages of the variable in the vertical axis across all block pairs with similar values
of the variable in the horizontal axis (in increments of 2.5 percentage points). The line represents the ordinary
least squares fit of the disaggregated regression at the block-pair level. The regression slope estimate along with
its standard error (in parenthesis) are also shown. The right panel shows an analogous plot, but with a different
vertical axis: instead of considering blocks k1 and k′1, it considers blocks k2 and k1. These results were obtained
from a sample of 31,617 block pairs along with their associated schools.
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(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 4: The Relative Role of School Factors on School Segregation by
Income

Notes: See the notes for Figure 3, which presents the analogous results by race.

pair level. The corresponding regression slope estimate and standard error (in parenthesis)

are reported in the top right-hand portion of the panel. Panel (a) of Figure 3 suggests that

45% of racial school segregation is due to school factors. Panel (a) of Figure 4 reports the

analogous results for income, suggesting that 57% of economic school segregation is due to

school factors.

As discussed, one potential issue with the estimates from Panel (a) is that they may

reflect highly local variation in neighborhood features, in addition to school features. This

concerns Assumption 2, which states that no systematic change in neighborhood features

across adjacent blocks should exist. If it is violated, then the results from Panel (a) would

represent an upper bound of the true value (see discussion pertaining to Figure 2). We use

the “placebo” estimates from Panel (b) of the respective figures to provide a correction for

the estimates in Panel (a). In particular, we construct a plot that is similar to Panel (a)

but uses a different vertical axis: rather than considering the difference between adjacent

blocks k1 and k′1 (which are served by different schools), we calculate the difference between

adjacent blocks k2 and k1 (which are served by the same school). The placebo estimates

for race and income are both equal to 3%. Thus, under Assumption 2 ′, our estimates for

the relative role of school factors in explaining racial and economic school segregation are

respectively 42% (= 45− 3) and 54% (= 57− 3). This indicates that neighborhood factors
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play a key role in both racial and economic segregation across schools.

4.2 Urban Status

We carry out our analysis separately for school pairs located in urban and non-urban areas,

the estimates for which are reported in Table 2 alongside the overall estimates discussed

above. We find that school factors matter substantially less in urban areas: they account for

35% (= 37− 2) of racial segregation in urban areas and 45% (= 51− 6) of racial segregation

in non-urban areas. The analogous estimates for economic segregation are 40% (= 42−2) for

urban areas and 69% (= 71−2) for non-urban areas. (All pairwise differences are significant

at the 1% level.)

Table 2: The Relative Role of School Factors on School Segregation

All Schools Urban Schools Non-Urban Schools

β̂ols β̂placebo β̂ols β̂placebo β̂ols β̂placebo

Race 0.45∗∗∗ 0.03∗ 0.37∗∗∗ 0.02 0.51∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.03) (0.03) (0.02) (0.02)

Income 0.57∗∗∗ 0.03∗ 0.42∗∗∗ 0.02 0.71∗∗∗ 0.02

(0.02) (0.02) (0.03) (0.03) (0.02) (0.03)

Observations 31,617 5,185 21,002

Notes: “All Schools” refers to the full sample of school pairs. “Urban Schools” refers to
the sample of school pairs in which both schools are located in urban areas, and “Non-
Urban Schools” refers to the sample of school pairs in which both schools are located in
a non-urban area. β̂ols represents the OLS estimate of β, defined in equation (14), and

β̂placebo represents the OLS estimate of βplacebo, defined in equation (15). “Observations”
refers to the number of unique block pairs used in the regressions. Standard errors, shown
in parentheses, are corrected for heteroskedasticity and clustered by attendance area pair,
(s, s′). *** denotes significance at the 1% level; and * denotes significance at the 10% level.

4.3 Grade Level

We also report our results by grade level, presenting the associated results in Table 3. The

columns “Elementary grades,” “Middle grades” and “Secondary grades” restrict attention

to students enrolled in grades 3 through 5, 6 through 8, and 9 through 12, respectively.

The estimates indicate that the importance of school features in explaining racial school

segregation is monotonically decreasing in the grade level, with such features accounting

for 51% (=53-2), 42% (=45-3) and 32% (=35-3) of the variation in the elementary, middle
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and high grades, respectively. The analogous income results are 60%, 47% and 55%. (All

pairwise differences are significant at the 1% level.)

Table 3: The Relative Role of School Factors on School Segregation by Grade

Elementary Grades Middle Grades Secondary Grades

β̂ols β̂placebo β̂ols β̂placebo β̂ols β̂placebo

Race 0.53∗∗∗ 0.02 0.45∗∗∗ 0.03 0.35∗∗∗ 0.03

(0.02) (0.02) (0.03) (0.03) (0.03) (0.02)

Income 0.62∗∗∗ 0.02 0.50∗∗∗ 0.03 0.58∗∗∗ 0.03

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

Observations 12,661 9,256 9,700

Notes: “All Schools” refers to the full sample of school pairs. “Elementary Grades,”
“Middle Grades” and “Secondary Grades” refers to the sample of school pairs that serve
students in grades 3 through 5, 6 through 8, and 9 through 12, respectively. β̂ols represents
the OLS estimate of β, defined in equation (14), and β̂placebo represents the OLS estimate
of βplacebo, defined in equation (15). “Observations” refers to the number of unique block
pairs used in the regressions. Standard errors, shown in parentheses, are corrected for
heteroskedasticity and clustered by attendance area pair, (s, s′). *** denotes significance
at the 1% level.

5 Addressing Potential Validity Concerns

In this section, we assess the extent to which our results are robust to potential concerns

about the validity of our estimates.

5.1 Geographical Features (e.g., Major Roads, Lakes) Coinciding

with Boundaries

As in the boundary fixed effects literature, a key validity concern is that boundaries may

coincide with particular geographical features, such as rivers, lakes or major roads. In this

scenario, differences in the socioeconomic composition of those residing in block k1 and those

residing in block k′1 would reflect not only S, but N as well. Assumption 2 ′ would then be

violated, as the difference between k1 and k′1 would tend to be larger than the difference

between k2 and k1. Importantly however, this would bias our estimates of the role of S

upward, making our conclusion that N plays a key role conservative.

Regardless, Figure 5 shows why local differences at the boundary, if they exist, are
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Figure 5: Proportion of Elementary Students who are White in Each Block

Notes: This figure plots the average proportion of students who are white across all boundaries for each block kl
(k′l). The index l reflects the number of degrees of separation from the boundary in their corresponding attendance
area. See footnote 19 for details on how l is measured. The attendance area on the right of each pair is the one
that attracts white students disproportionately.

not first order in our context.17 It plots the average proportion of elementary students

in each block who are white (πwhite
k ) for blocks ranging from k30 to k′30.18 This average

is calculated across all boundaries for each block kl (k′l), where l reflects the number of

degrees of separation from the boundary.19 In the plot, we assign the school with the largest

proportion of students who are white to the right-hand-side attendance area (s′).20

Note a salient feature of the figure: as one approaches the boundary from the left (block

k1), the slope is similar to the slope as one approaches it from the right (block k′1). This

leads us to conclude that geographical features coinciding with a boundary do not play a

first-order role in our analysis, and that Assumption 2 ′ (N varies linearly at the boundary)

17Appendix Figure C.1 presents analogous plots for each combination of grade range, race and income.
18Note that Figure 5 is the empirical analog of the theoretical Figure 2 aggregated across all boundaries,

given that only πk is observed directly (rather than Sk or Nk).
19Block k2 is indexed as “2” because it is the nearest block (in terms of the Euclidian distance) to block

k1, among all blocks located within attendance area s that are adjacent to block k1 but not to block k′1. For
l ≥ 3, block kl is indexed as “l” because it is the nearest block to block kl−1, among all blocks located within
attendance area s that are adjacent to block kl−1 but not to block kl−2. We use an analogous definition for
each block in attendance area s′. We truncate the plot at 30 to avoid any potential selection issue, as some
attendance areas have no more than 30 degrees of separation from the boundary. Results are unchanged if
we use different notions of distance.

20We have not done so when implementing our approach in the previous sections, as our research design
is agnostic to which side is more attractive to a given group. Indeed, our approach yields virtually the same
estimates when we choose attendance area s to be the one that attracts whites disproportionately.
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is valid. We now explain the logic of this conclusion in greater detail.

Figure 5 looks very different from what it would look like if major roads, lakes or rivers

tended to coincide with attendance area boundaries. For instance, consider a case in which

all boundaries coincide with a disamenity, which attracts a disproportionately low number

of affluent families (e.g., a major road). Then one would expect affluent families on both

sides of the boundary would disproportionately want to reside farther from the boundary. In

terms of Figure 5, this would imply a negative slope when approaching the boundary from

the left and a positive slope when approaching it from the right (in other words, opposite

signed slopes).21 We discuss this concern in detail in Appendix B.3, in which we implement

a series of Monte Carlo experiments to convey this point, and conclude that Figure 5 rules

out biases of this type that are larger than two percentage points.

Finally, there is an alternative manifestation of this concern that is not addressed by

Figure 5. Perhaps the disamenity of residing near a major road (or the amenity of residing

near a lake) dissipates over a very short distance, in no more than one block. This cannot

be detected by Figure 5, as it will only affect the discontinuity at the boundary, but not

the slopes around both sides of the boundary. An approach that handles this concern is one

exactly like our primary one, but without considering the existence of the blocks closest to

the boundary, k1 and k′1 (analogously to a “donut” regression discontinuity design approach

– for example, see Barreca et al. 2011). Specifically, we estimate Ω̂ donut
S := β̂2 − β̂placebo

where β̂2 is the OLS estimate of the regression of ∆πk2,k′2
on ∆πs,s′ . We find Ω̂ donut

S to be

very similar to Ω̂S, suggesting that this potential issue is not of primary importance in our

context.22

Remark 1. The interpretation of ΩS as a proportion hinges on it being bounded between 0

and 1. Upon inspection of equation (7), it should be clear that this is violated only under a

very rare set of circumstances: the covariance cov(∆S,∆N) needs to be negative and larger

21Alternatively, consider the case of a boundary amenity, which attracts a disproportionately high number
of affluent families (e.g., a picturesque lake). Using the same logic, affluent families on both sides of the
boundary would tend to concentrate around the boundaries. This would imply a positive slope when ap-
proaching the boundary from the left and a negative slope when approaching it from the right (i.e., opposite
signed slopes once again).

22The similarity between Ω̂S and Ω̂ donut
S also suggests that restricting our sample to only boundary blocks

that were not bisected by the attendance boundary does not generate any bias (as noted in footnote 14).
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in magnitude than only one of the variance terms. However, Figure 5 strongly suggests that

cov(∆S,∆N) > 0, which guarantees ΩS ∈ [0, 1]. To see why, note that there is a positive

discontinuity at the boundary and a positive slope on both sides of the boundary. While the

discontinuity speaks to the role of ∆S, the slopes speak to the role of ∆N . Thus, we conclude

that attendance areas tending to attract a disproportionate number of affluent families because

of their school amenities also tend to attract a disproportionate number of affluent families

because of their neighborhood amenities.

5.2 Distance Between Residence and School

Another potential concern is the possibility that households care about how close to the

school they reside within the attendance area. For instance, parents may care about the

commute cost from their home to the school. Alternatively, it may be beneficial to reside

closer to the school, since they would have disproportional access to some of the school’s

off-hours amenities (e.g., playground).

This concern could generate bias in our main estimate only if students of one type have

more intense preferences than students of the other type. For instance, consider the example

in which affluent families care more about residing near the school than non-affluent families.

Then Assumption 1 would be violated, since S would vary within the attendance area.23

Fortunately, Figure 5 is capable of detecting such an issue. Given that the school’s

location tends to be in the interior of the attendance area (as opposed to exactly at the

boundary), we would observe a higher proportion of affluent families clustering near the

school on both sides. In this case, Figure 5 would look very different from what we see: the

slope as one approaches the boundary from the left would be negative, while the slope as one

approaches it from the right would be positive. In particular, these slopes would be different

from each other.

In Appendix B.4, we discuss this concern in greater detail, implementing a series of

Monte Carlo experiments to convey this point, and concluding that Figure 5 rules out biases

23Even the weaker version of Assumption 1 (defined in footnote 5) would be violated in this case, as the
discontinuity in Sk at the boundary would not be representative of the discontinuity overall. However, the
weaker version would not be violated if preferences over the residence-school distance were homogeneous,
even if the location of the school were farther from the boundary on one side versus the other.
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(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 6: The Effect of ∆πrich whites,s′ on ∆πrich whitek1,k′1
– All Schools

Notes: See the notes for Figure 3, which presents the analogous results by race.

of this type that are larger than one percentage point.

5.3 Multidimensional Sorting

Another potential concern is that the primary dimension along which sorting occurs (e.g.,

race or income) is setting-dependent. For example, sorting in urban areas may happen

predominantly by race, while sorting in non-urban areas may be mainly due to income. If

that were the case, then the race estimate in Table 2 would more accurately reflect the role

of school factors in urban areas, while the income estimate would more accurately reflect the

role of school factors in non-urban areas.

To assess this concern, we perform a robustness check by estimating versions of equations

(14) and (15) using two dimensions simultaneously. Specifically, in the case of equation (14),

we calculate the extent to which ∆πrich whites,s′ helps predict ∆πrich whitek1,k′1
, where πrich whites and

πrich whitek respectively represent the proportion of students in school s and block k who are

both economically advantaged and white, compared to all other types (non-white of any

income, or economically disadvantaged and white). Equation (15) is estimated analogously.

The corresponding plots are shown in Figure 6 for all schools and Figure 7 for urban

schools, for comparison purposes with respect to the results in Table 2. Consistent with

the example above, the estimate across all schools (51%=55% - 4%) is closer to the main
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(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 7: The Effect of ∆πrich whites,s′ on ∆πrich whitek1,k′1
– Urban Schools Only

Notes: See the notes for Figure 3, which presents the analogous results by race and for all schools.

unidimensional estimate for income (54%=57%-3%), while the estimate for the urban sub-

sample (33%=37%-4%) is closer to the unidimensional estimate for race (35%=37%-2%).

This suggests that sorting by race (due to both S and N) is better at explaining school

segregation in urban areas, while sorting by income has more explanatory power outside of

them.

6 Sources of Variation

In this section, we address considerations regarding the sources of variation we exploit,

through several sensitivity analyses summarized in Table 4. For convenience, the first column

reports the baseline estimates of Ω̂S for all schools in our sample, as implied by the first

column of Table 2.

6.1 Are comparisons too local?

One concern is that the relative role of school features in explaining school segregation may

depend on the locality of between-school comparisons. Indeed, schools within the same dis-

trict are likely to be more similar than schools located in different districts. Thus, focusing

exclusively on school comparisons within the same district may fail to recover the full scope of

school policies affecting segregation (particularly those that vary across districts). However,
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Table 4: Robustness Tests

Baseline Within and Across Control for Intensity of Control for

Districts School Choice School Observables

Race 0.42 0.44 0.43 0.39

(0.02) (0.02) (0.02) (0.03)

Income 0.54 0.53 0.54 0.43

(0.02) (0.02) (0.03) (0.03)

Observations 31,617 41,332 31,617 31,617

Notes: This table shows the estimates of Ω̂S := β̂ − β̂placebo (obtained from equations (14) and
(15)) for different specifications and samples. The first column refers to the “all schools” results
from Tables 2, which are our baseline results to which the results in the other columns should
be compared. In the second column (“Within and Across Districts”), we also include boundaries
separating schools from different districts. In the third column (“Control for Intensity of School
Choice”), we add controls for the total number of blocks in attendance areas s and s′ (a cubic
B-spline for this quantity) and indicators for whether charter or magnet schools are located near
either of the two attendance areas s and s′. Finally, in the fourth column (“Control for School
Observables”) we add as control variables the difference across schools s and s′ of a wide list of
observable characteristics of the schools - see footnote 27 for details. “Observations” refers to the
number of unique observations used in the regressions. Standard errors, shown in parentheses, are
corrected for heteroskedasticity and clustered by attendance area pair, (s, s′).

an analogous argument applies to neighborhood amenities: it is likely that neighborhoods

within the same district would be more similar than neighborhoods in different districts,

which implies that we may also not recover the full scope of non-school policies (again, par-

ticularly those that vary across districts). Ultimately, which of these forces prevails is an

empirical question. Accordingly, we assess whether the relative role of school factors changes

substantially if our analysis includes school pairs that are located in different districts. Com-

paring the first (within-district baseline) and second (within and across districts) columns of

Table 4, we do not find a systematic difference for race or income when we include schools

in different districts in our analysis.24

A related concern is that we do not compare schools that are located in different cities.

Indeed, while |∆πs,s′| ranges from 0 to 0.9 in our sample of adjacent school pairs, it ranges

from 0 to 1 in the full sample, containing all school pairs in the state. As with the discussion

above, this raises a potential external validity issue: our findings using adjacent schools (in

order to address internal validity concerns) may not be relevant to across-city comparisons.

To the extent that is the case, our estimates are likely to understate the importance of non-

24These results corroborate our finding in Section 5.1 that pre-existing differences at the boundary (e.g.,
due to a major road or river) do not drive our results. Indeed, it is intuitive that boundaries separating
school districts are more likely to be coincident with such barriers than boundaries within districts.
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school factors in explaining school segregation overall. To see this, note that the choice of the

metropolitan or rural area in which to reside should depend predominantly on non-school

factors, such as employment prospects. It is only once families have selected a commuting

zone that school considerations are likely to become first order, with school and neighborhood

amenities determining local sorting patterns. Thus, the inclusion of school comparisons

across commuting zones (for example, Durham versus Charlotte) would make non-school

factors even stronger determinants of school segregation.

6.2 Does the relative role of N depend on the size of the atten-

dance areas or the presence of charter and magnet schools?

Yet another potential concern is that the relative role of S and N may depend on the degree

of school choice available to parents. For instance, although North Carolina does not allow

open enrollment during our period of interest, one may be concerned that there is increased

scope for N to change within an urban attendance area, given that attendance areas in

urban settings contain a greater number of blocks than in non-urban settings (as Table 1

shows). This could imply a larger role for N in urban settings, relative to their non-urban

counterparts. This mechanical effect contrasts with our explanation for the prominent role of

N in urban areas, which is that the density of neighborhood features change more intensely

from one block to the next in urban relative to non-urban areas.

Another related possibility is that charter and magnet schools, which are more prevalent

in urban areas, may be indirectly affecting our results. In our calculations, we did not count

students who were attending those schools, potentially leading to a selection issue that affects

urban areas more intensely than non-urban areas.

To rule out these alternative mechanical explanations, we flexibly control for the total

number of blocks in attendance areas s and s′,25 as well as for whether charter or magnet

schools are located near either of the two attendance areas s and s′.26 The results are reported

25To account for non-linearities, we add them as cubic B-splines with five equally spaced knots (so there
are a total of four control variables added).

26In the table, we report results using a strict notion of distance: whether either type of choice school is
located within one of the two attendance areas. Our results are essentially invariant to alternative notions
of distance.
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in column three of Table 4. They are statistically indistinguishable from the baseline effects

in column one, supporting our explanation.

6.3 To what extent does S project onto observable school charac-

teristics?

Finally, we assess the extent to which the component we construe as being related to school

factors (S) is correlated with a rich set of observable school characteristics. We do so by

comparing our baseline estimate Ω̂S to the analogous coefficient in a regression that also

conditions on differences between observed school characteristics.27 Intuitively, as the char-

acteristics are likely to be more correlated with S than with N , their inclusion in the re-

gression should disproportionately absorb school factors and lower the value of Ω̂S. That is

precisely what we find for both race and income (see column four of Table 4). We view this

evidence as an independent confirmation of what S represents. Moreover, the fact that Ω̂S

remains substantial even with school controls suggests that unobserved school amenities are

important determinants of school sorting.

7 The Role of cov(∆Ss,s′,∆Ns,s′)

Note that ΩS attributes half of the covariance term, 2 · cov(∆Ss,s′ ,∆Ns,s′), to each factor.

Of course, this attribution is arbitrary. Without imposing further restrictions, we only know

from Remark 1 that the covariance is positive. While it is possible that the term is entirely

driven by ∆Ss,s′ affecting ∆Ns,s′ , or entirely driven by ∆Ns,s′ affecting ∆Ss,s′ , it is more

likely that some combination of the two causal relationships prevails.28

It is infeasible to estimate how the covariance should be attributed for two reasons.

27The included variables are the differences between schools s and s′ of the following school characteristics:
standardized mathematics and reading test scores, whether the school met adequate yearly progress under
the federal No Child Left Behind act, average class size, the proportion of fully licensed teachers, the rate
of teacher turnover, the proportion of teachers with 0 to 3, 4 to 10, and 11 or more years of experience, the
proportion of teachers with an advanced college degree, Title I status, the proportion of classrooms connected
to the Internet, the number of library books and their average age, total enrollment, and the proportion of
students who are female, are limited English proficient, are classified as gifted (separately for mathematics
and reading), are classified as disabled, and attend school daily.

28By assumption in our decomposition, there is no room for a third type of amenity originally causing
both ∆Ss,s′ and ∆Ns,s′ .
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First, we would have to identify two causal relationships without stating ex ante what ∆Ss,s′

and ∆Ns,s′ represent in terms of observables. Second, even if we were able to uncover these

relationships, we would only do so for a specific geographic area and a specific period of time,

which would raise issues of external validity. For instance, it is likely that the direction of

causality from ∆Ss,s′ to ∆Ns,s′ would dominate during periods in which educational policies

are more prevalent, while the opposite direction of causality would dominate during periods

in which residential policies are more prevalent. We are only able to observe a cross-sectional

snapshot, reflecting the cumulative impact of both causal relationships over time.

In what follows, we consider a simple dynamic model of how this covariance came to be.

Through the lens of this model, we are able to enhance the interpretation of our results by

offering a theoretically sound attribution of the covariance term.

7.1 A Dynamic Model Generating cov(∆Ss,s′,∆Ns,s′) 6= 0

Suppose that, for some initial period (period 0), two adjacent attendance areas differ by a

small set of amenities. These amenities are considered to be “exogenous” for our purposes;

they are not of direct interest, but rather provide the initial seed that generates differences in

proportions across neighborhoods. A good example of an exogenous amenity is an inherent

topographical feature, including the distance to a river, the degree to which the land is

fertile, and the elevation of the terrain.29 Accordingly, we model the initial difference for

each pair of attendance areas s and s′ as arising from a shock ∆η0 := ∆ηN0 , which is entirely

attributable to neighborhood features.30

People then sort based on these original differences, which begets additional differences

in amenities – denoted as “endogenous.” While some of these endogenous amenities evolve

mechanically with socioeconomic composition (e.g., racial composition of school peers or

neighbors), other endogenous amenities may vary with the socioeconomic composition via

a less well-known and potentially more complex process (e.g., educational and residential

policies, local taxes, and the provision of local goods and services, such as schools and

venue offerings). Households may sort further based on these endogenous changes, leading

29Lee and Lin (2017) studies the dynamic consequences of persistent natural neighborhood amenities.
30For expositional convenience, we omit the subscript referring to the school pair.
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to yet more endogenous changes in amenities, potentially creating a positive feedback loop.

Attendance areas are observed by the researcher only after several decades of this endogenous

process taking place.

The evolution of the difference in socioeconomic composition between two schools can

be expressed as:

∆πt −∆πt−1 = ∆ηNt−1 + ψS [∆πt−1 −∆πt−2] + ψN [∆πt−1 −∆πt−2] , (16)

where the relationship depends linearly on the prior shock and the endogenous shocks trig-

gered by that prior shock. The last two terms of equation (16) represent endogenous shocks

attributable to schools and neighborhoods, reflected by the parameters ψS and ψN , respec-

tively. We view these parameters as being representative of the true time-varying parameters

ψ̃St and ψ̃Nt over the long run, averaging across them from period 0 to the period in which

we observe the data. Thus, ψS and ψN subsume endogenous sorting and policies that have

taken place over time, including any potential frictions that limit the degree of sorting.31

Based on equation (16), we are able to develop a generic expression for ∆πt, the difference

in socioeconomic composition between the two schools in period t, which depends only on the

initial shock ∆ηN0 , and parameters ψS and ψN . Given initial conditions ∆πt′ = 0 for t′ ≤ 0

(neighborhoods are identical prior to period 0), we have ∆π0 − ∆π−1 = 0. Consequently,

the period 1 difference is determined only by the overall period 0 shock: ∆π1 = ∆η0. The

general expression for t > 1 is ∆πt =
∑t−1

w=0 Ψw∆η0, where Ψ := ψS + ψN .32 As long as

Ψ 6= 1, the expression simplifies to ∆πt =
(

1−Ψt

1−Ψ

)
∆η0. We focus on stable non-oscillatory

solutions by restricting attention to 0 ≤ Ψ < 1.33 Thus, in the limit as t → ∞ (long-run

stable equilibrium), we have ∆π = ∆η0

1−Ψ
.

We now describe ∆S and ∆N in terms of these parameters:

31Note that, in a context of infinite moving costs, we would have ψS = ψN = 0, as no endogenous sorting
would take place.

32This can be proven by induction. For example, the period 2 expression is ∆π2 = (1 + Ψ) ∆η0, while the
period 3 expression is ∆π3 = (1 + Ψ) ∆π2 −Ψ∆π1 =

(
1 + Ψ + Ψ2

)
∆η0.

33Our main conclusions are also valid in the context of oscillatory trajectories to the stable equilibrium
(−1 < Ψ ≤ 0). Many frictions in residential sorting, such as moving costs, lead us to conclude that a
multiplicity of equilibria (|Ψ| > 1) is not realistic for most schools in our context (see Caetano and Maheshri
2020).
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∆S =
[
ψS + ψSΨ + ψSΨ2 + . . .

]
∆ηN0

= ψS

[
∞∑
w=0

Ψw

]
∆ηN0

=
ψS∆ηN0
1−Ψ

and

∆N = ∆ηN0 +
[
ψN + ψNΨ + ψNΨ2 + . . .

]
∆ηN0

= ∆ηN0 +
ψN∆ηN0
1−Ψ

=

(
1− ψS

)
∆ηN0

1−Ψ
.

With these expressions in hand, we can compute var(∆S), var(∆N) and cov(∆S,∆N), and

thus var(∆π) := var(∆S) + var(∆N) + 2 · cov(∆S,∆N). Assuming that the shock ∆ηN0 is

drawn from a distribution with variance σ2, we obtain:

var(∆π) =
1

(1−Ψ)2
σ2 ,

var(∆S) =
(ψS)2

(1−Ψ)2
σ2 ,

var(∆N) =
(1− ψS)2

(1−Ψ)2
σ2 ,

cov(∆S,∆N) =
ψS(1− ψS)

(1−Ψ)2
σ2 .

Using these expressions, we can then compute the following ratios:

var(∆S)

var(∆π)
= (ψS)2 , (17)

var(∆N)

var(∆π)
= (1− ψS)2 , (18)

cov(∆S,∆N)

var(∆π)
= ψS · (1− ψS) , (19)

and relate the estimand ΩS to the model parameters:
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ΩS =
var(∆S) + cov(∆S,∆N)

var(∆π)

= (ψS)2 + ψS(1− ψS)

= ψS . (20)

Thus, the dynamic model tells us that by identifying ΩS we are also identifying ψS,

which, in turn, allows us to recover the quantities in equations (17), (18) and (19). For any

value γ, we define:

ΩS(γ) :=
var(∆S) + 2 · γ · cov(∆S,∆N)

var(∆π)
. (21)

The term ΩS(γ) attributes the proportion γ of the covariance term (2 · cov(∆S,∆N)) to ∆S

and the proportion (1− γ) of the term to ∆N .

We are able to identify ΩS(γ) for any arbitrary γ. However, the model also imposes

restrictions on the value γ can take. Based on equation (19), the covariance ratio is the

product of ψS and 1− ψS. This suggests a theoretically sound attribution of the covariance

term: ΩS = ψS of the component should be attributed to ∆S, while ΩN = 1 − ψS of the

component should be attributed to ∆N .34

7.2 Results Through Lens of Dynamic Model

Table 5 reports our key findings obtained through the lens of the dynamic model. Irrespective

of the dimension of segregation or urban status, we find that the covariance component is

positive and accounts for approximately 50% of the total variance, var(∆π) (see the first

row of each panel). Our finding of the covariance being positive independently corroborates

Remark 1. In theory, the covariance between ∆S and ∆N could have been negative if school

and neighborhood amenities had opposing effects on segregation, as would be the case if

either ψS < 0 (so that ψN > 0, from 0 ≤ ψS +ψN < 1) or ψS > 1 (so that ψN < 0). Instead,

34Note also that equation (19) rules out performing a bounding exercise in which ΩS is recalculated
assuming all (γ = 1) or none (γ = 0) of the covariance term is attributable to ∆S. This is due to the
covariance term itself depending on γ. For instance, consider the case in which γ = ψS . If we had found
that ψS = 0 or ψS = 1, then equation (19) would imply the covariance term would be zero.
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Table 5: Corrected Estimates – The Relative Role of School and
Neighborhood Factors on School Segregation (Overall and by Urban Status)

Panel A: Race

All schools Urban Schools Non-Urban Schools

2·cov(∆S,∆N)
var(∆π)

0.49 0.46 0.50

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.42 0.35 0.45

ΩS(γ = ΩS) :=
var(∆S)+2·ΩS ·cov(∆S,∆N)

var(∆π)
0.38 0.28 0.43

var(∆S)
var(∆S)+var(∆N)

0.34 0.22 0.40

Panel B: Income

All schools Urban Schools Non-Urban Schools

2·cov(∆S,∆N)
var(∆π)

0.50 0.48 0.43

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.54 0.40 0.69

ΩS(γ = ΩS) :=
var(∆S)+2·ΩS ·cov(∆S,∆N)

var(∆π)
0.56 0.35 0.77

var(∆S)
var(∆S)+var(∆N)

0.58 0.31 0.83

Notes: This table reports the results from Table 2 through the lens of the dynamic model. Standard
errors, calculated via the Delta method, are always below three percentage points and are omitted for
clarity.

we find 0 < ΩS = ψS < 1 in all cases (reproduced from Table 2 and reported in the second

row of each panel). This is an intuitive result: for instance, schools with higher test scores

are likely to attract a disproportionate number of affluent students (all else equal), which

may in turn attract a disproportionate number of affluent households without children.

The third row of each panel in Table 5 reports ΩS(γ = ΩS), which attributes ΩS of the

covariance term to S and 1 − ΩS to N . The resulting estimates constitute our headline

results. They reveal even stronger gaps between urban and non-urban estimates: the role of

school factors in explaining racial and income segregation is substantially smaller in urban

areas (28% and 35%, respectively) than in non-urban areas (43% and 77%, respectively). As

discussed in the introduction, these results are likely due to the greater complexity of neigh-

borhood features in urban relative to non-urban settings. Features, such as specific venues

or sidewalks, tend to be perceived as being more similar in non-urban areas, particularly

given that residents of those places are more likely to travel by car. It is noteworthy that

school sorting on the basis of income and race are more similar in urban areas but differ

dramatically in non-urban areas. Indeed, in non-urban areas, neighborhood factors matter

much less for school sorting on the basis of income than for sorting on the basis of race,
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which would occur if more affluent households use cars to access neighborhood amenities in

non-urban areas more intensely than less affluent households.

For completeness, the fourth row of each panel reports estimates corresponding to an

alternative measure of the importance of school factors in explaining school segregation. This

quantity, var(∆S)
var(∆S)+var(∆N)

, removes the covariance term entirely, providing a useful measure

that is agnostic about the attribution of the covariance term. Note that ΩS(γ = ΩS) can be

thought of as an intermediate measure between ΩS and var(∆S)
var(∆S)+var(∆N)

. Regardless of the

measure, we find that neighborhood factors are key for understanding school segregation,

particularly in urban areas.

Table 6 reports analogous estimates by grade level. As with the results overall and by

urban status, the covariance component represents approximately 50% of the total variance,

irrespective of the grade level. After re-attributing the covariance term, the third row shows

that school factors explain 52%, 38% and 24% of racial segregation in elementary, middle

and secondary grades, respectively. The analogous estimates for income segregation are 65%,

46% and 57%.

To provide context for these findings, note that attendance areas tend to be geograph-

ically smaller for earlier grades (as shown in Table 1). Thus, households with students

Table 6: Corrected Estimates – The Relative Role of School and
Neighborhood Features on School Segregation (By Grade Level)

Panel A: Race

Elementary Grades Middle Grades Secondary Grades

2·cov(∆S,∆N)
var(∆π)

0.50 0.49 0.44

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.51 0.42 0.32

ΩS(ΩS) :=
var(∆S)+2·ΩS ·cov(∆S,∆N)

var(∆π)
0.52 0.38 0.24

var(∆S)
var(∆S)+var(∆N)

0.52 0.34 0.18

Panel B: Income

Elementary Grades Middle Grades Secondary Grades

2·cov(∆S,∆N)
var(∆π)

0.48 0.50 0.50

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.60 0.47 0.55

ΩS(ΩS) :=
var(∆S)+2·ΩS ·cov(∆S,∆N)

var(∆π)
0.65 0.46 0.57

var(∆S)
var(∆S)+var(∆N)

0.69 0.44 0.60

Notes: This table shows the results from Table 3 through the lens of the dynamic model. Standard errors
calculated via the Delta method are always below three percentage points and are omitted for clarity.
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in elementary grades have a greater number of school options to choose from, relative to

households with students in middle grades (with a similar but less pronounced relationship

between middle and secondary grades). Yet these households have identical housing options

(and thus neighborhood amenities) from which to choose. If household valuations of school

and neighborhood features are grade-invariant, then school factors should explain more of

the variation in school segregation for earlier grades, which is broadly in line with the pat-

terns we uncover. The exception is the income result for secondary grades. We conjecture

that the income gap in valuation of school amenities for secondary grades is higher than the

corresponding gap for middle grades.35

8 Conclusion

This article has attempted to underscore the key role that neighborhood factors play in

explaining school socioeconomic segregation. Given that school and residential decisions are

often made jointly, both school and neighborhood factors should affect school segregation,

but little has been previously established about their relative importance. We found that

62% of school segregation by race and 44% of school segregation by income is attributable to

neighborhood factors. Importantly, they tend to matter even more in urban environments,

settings in which school segregation has received disproportionate attention.

Our results have implications for the efficiency and efficacy of widely implemented policies

that hold educators accountable for scholastic outcomes. It is inefficient to reward or punish

them for outcomes that are beyond their control. As student outcomes depend on the degree

of school segregation, the first-order importance of neighborhood factors in explaining such

segregation implies that a substantial portion of outcome variation is under the control

of urban policymakers, especially in urban areas. Without urban policymakers playing an

active role in the process, efforts to lower school segregation through well meaning educational

policies are likely to be insufficient.

In future research, it would be interesting to replicate these results for additional states.

Many areas of North Carolina have been subject to a variety of educational policies over the

35Consistent with this finding, Caetano (2019) reports that households, particularly wealthier ones, tend
to value school quality more at the secondary school level than at the middle grade level.
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past few decades, including those providing school choice. At the same time, many school

boards have repeatedly attempted to lower segregation through attendance boundary shifts

in order to counteract gradual household re-sorting (Macartney and Singleton 2018). The

fact that neighborhood factors are central in explaining school segregation given this policy

backdrop suggests that our conclusions about their importance may be conservative when

applied to other regions.

More broadly, using Census data, our approach can be adapted to study the role of

school and neighborhood factors in explaining neighborhood segregation. Doing so could

uncover important heterogeneity between school and neighborhood sorting beyond what can

be studied using our data. Related, additional demographic information about the parents

of students, such as their marital status, age and education,36 could allow us to investigate

patterns of sorting along many dimensions beyond race and income. We view this article as

enabling a new line of inquiry into confronting segregation, a matter of great importance to

society.

36Parental education and a student’s residential location are never simultaneously reported in the
NCERDC data.
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Appendices

A Justifying the Linear-on-Linear Approximation

As discussed in Section 2, it is infeasible to estimate Ω̂ log
S , since ln

(
π̂k1

(
1−π̂k′1

)
π̂k′1

(1−π̂k1)

)
is undefined

for many blocks. Indeed, π̂k is equal to either 0 or 1 even when 0 < πk < 1. Here, we

argue that Ω̂S, obtained from the linear-on-linear regressions (14) and (15), offers a feasible

alternative estimator to Ω̂ log
S .

It is evident that Ω̂S is always well defined, even when π̂k is equal to 0 or 1. So it is

sufficient to show that Ω̂S and Ω̂ log
S approximately estimate the same object. In Section

B.2, we provide a Monte Carlo simulation showing that this is the case even when there is

only one student per block, so that π̂k can only take values 0 or 1 irrespective of πk. Here,

we provide more direct evidence demonstrating that, whenever Ω̂ log
S is feasible, it yields the

same results in our empirical analysis as Ω̂S.

We accomplish this by reducing the role of noise in the estimation of β log. We aggregate

across all school pairs with sufficiently similar values of ∆πs,s′ . The proportion difference

∆πs,s′ , which is a continuous variable bounded between -1 to 1, is discretized in intervals

of width m, and we calculate the average of ln

(
π̂k1

(
1−π̂k′1

)
π̂k′1

(1−π̂k1)

)
for each of these intervals.

For comparison, we also discretize ∆π̂s,s′ in intervals of width m and calculate the average

of ∆π̂k1,k′1
for each interval in order to estimate an aggregated version of the linear-on-

linear regression. The left panels of Figures 3 and 4 in the text provide examples of this

aggregation. The scatter plot in each panel of those figures is obtained by discretizing ∆πs,s′

on the horizontal axis using intervals of m = 0.025 (2.5 percentage points), and calculating

the average of ∆πk1,k′1
for each discretized value.

Figure A.1 compares the slope of the aggregated version of the linear-on-linear regression

(solid black line) and the slope of the aggregated version of the log-on-log regression (dashed

black line) for different values of the aggregation interval m.37 The corresponding 95%

confidence intervals are also shown in gray. The larger the value of m, the more aggregated

the data used in the regressions. As Figure A.1 shows, the slope estimates are very similar

37We weight the aggregated regressions by the number of block pairs in each interval.
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to each other, and are in turn similar to the disaggregated slopes shown in the left panel

of Figures 3 and 4 (0.45 for race and 0.57 for income). Importantly, as m becomes smaller,

the confidence interval of the log-on-log slope estimator increases while the corresponding

confidence interval of the linear-on-linear slope estimator continues to be well behaved. A

similar pattern is found in all stratified regressions we attempted (e.g., by urban status, by

grade level).
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Figure A.1: Relationship Between Slopes in the Aggregated Log-on-Log
Regression (Dashed) and the Aggregated Linear-on-Linear Regression (Solid)

Notes: This figure plots the slope parameter of the aggregated log-on-log regression (dashed line) and the ag-
gregated linear-on-linear regression (solid line), along with their respective 95% confidence intervals. Block pairs
and their corresponding school pairs are aggregated across all boundaries on intervals of width m of the value
∆πs,s′ , where m changes in the horizontal axis of the figure. The corresponding disaggregated linear-on-linear
slope estimates are 0.45 (race) and 0.57 (income), as shown in the left panels of Figures 3 and 4.

We conclude that the linear-on-linear version of the regression yields the same interpre-

tation of the slope as the log-on-log version of the regression, but with the advantage of

being robust to noise. Thus, as discussed in Section 2.3, we can safely interpret ∆Ss,s′

as (φAS − φBS )(Ss − Ss′) and ∆Ns,s′ as Ns − Ns′ , where Ns := ln
(∑

k∈Ks exp(φ
A
NNk)

)
−

ln
(∑

k∈Ks exp(φ
B
NNk)

)
.
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B Monte Carlo

In this appendix, we use a series of Monte Carlo experiments to verify that our method

works as expected, and to consider the implications of key violations of our assumptions.

We first describe the Monte Carlo setup, and then discuss the results from our simulation.

B.1 Monte Carlo Setup

Our simulation includes nS = 3, 000 pairs of attendance areas, with each pair corresponding

to two schools, denoted s and s′, and each attendance area containing K = 30 blocks. The

number of students residing in block k is given by nk. We begin by specifying the d.g.p.

primitives of equation (2) in the main text, repeated here for convenience:

πk =
exp(φASSk + φANNk)

exp(φASSk + φANNk) + exp(φBS Sk + φBNNk)
. (B.1)

Let k represent the distance from the middle of the block to the boundary (located at 0), so

that k = −1.5 refers to block k2, k = −0.5 refers to block k1, k = 0.5 refers to block k′1, and

so on.38

The school and neighborhood amenities are set as Sk = λS · 1{k>0} and Nk = λN
2·K · k,

where (λS, λN) ∼ N

(0, 0),

1 1

1 10

.39 We set the preference parameters to φAS = 3,

φAN = 2.5, φBS = 2, and φBN = 2. Note that preferences for S are assumed to be more intense

than preferences for N. Moreover, type A tends to have more intense preferences than type

B for both amenities, which implies that the majority of students in the population are of

type A.40 Finally, Sk := (φAS −φBS ) · Sk and Nk := (φAN −φBN) ·Nk are positively correlated to

each other: blocks with school amenities that disproportionately attract students of type A

tend to also have neighborhood amenities that disproportionately attract students of type

A.

38This way we make sure the distance (in terms of k) between any two adjacent blocks is the same: for
instance, the distance between k1 and k′1 is the same as the distance between k2 and k1.

39We assume that the variance of λN is much larger than the variance of λS to account for the division
by 2 ·K = 60 in the definition of Nk.

40This implication follows from the normalization
∑
k̃ exp(δ

τ
k̃
) = nτ . See the discussion preceding equation

(2) in the main text.
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Given these primitives, one can calculate πk, Nk, ∆Ss,s′ and ∆Ns,s′ , and thus ΩS in

equation (7) from the main text, reproduced here for convenience:

ΩS :=
var(∆Ss,s′) + cov(∆Ss,s′ ,∆Ns,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)
(B.2)

The parameterizations above describe the population, with key quantities πk, πs, πs′ and

ΩS. Although ΩS is calculated directly using equation (B.2), it can also be estimated via

Ωlog
S = βlog − βlog

placebo under Assumption 2 ′, using the population quantities πk, πs and πs′ .

We find that ΩS agrees with Ωlog
S to six decimal places. This is not surprising, given that

Assumption 2 ′ is valid in this baseline case.

As researchers do not observe the population, we designed the Monte Carlo to take that

into account. We exploit the exact source of randomness we discuss in the main text; namely

that only one or two students typically reside within a given block. This implies that we do

not actually observe πk, but only an estimate of it. For each Monte Carlo iteration i, instead

of observing the population quantity πk for each block, we observe nk independent draws of

a Bernoulli distribution with probability πk, which allows us to estimate the realization π̂ik.

For instance, if πk = 0.5 but nk = 1 for some block k, then π̂ik can only be equal to 0 or 1,

and it will take either value in a given iteration with 50% probability.

Thus, for each iteration of the Monte Carlo, we draw a random sample from the pop-

ulation for all blocks k across all attendance area pairs (s, s′), under the assumption that

each block k contains only nk students. Each student within block k is assigned to type

A (as opposed to type B) based on nk independent draws from the Bernoulli distribution

with probability πk. For each Monte Carlo iteration i, π̂ik is calculated as the number of

type A students drawn in block k divided by the number of draws nk. Next, we estimate

Ω̂i
S := β̂i− β̂iplacebo, where β̂i and β̂iplacebo are obtained for each iteration i from equations (14)

and (15), respectively. We repeat this process a total of I = 10, 000 iterations.

B.2 Baseline Results

In Figure B.1 we compare Ω̂I
S = 1

I

∑
i Ω̂

i
S with ΩS for different values of nk. Given that ΩS

is a population parameter, it is by definition invariant to the value of nk. However, while Ω̂I
S
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can change with nk, it is in practice remarkably similar for different values of nk. We also

show that the 95% confidence interval narrows as nk increases; though even for nk = 100,

ΩS lies well within the confidence interval.

This suggests that our method allows us to circumvent the issue of small samples that

makes it infeasible to estimate the log-on-log regression (equation (8)).41 Indeed, our method

performs very well irrespective of the value of nk. While Ω̂I
S = 0.6010 for nk = 1 and

Ω̂I
S = 0.6014 for nk = 100, the true value of the parameter is ΩS = 0.5972.
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Figure B.1: Ω̂I
S (solid) and ΩS (dashed)

Notes: This figure plots Ω̂IS (solid curve) and ΩS (dashed curve) for each value of nk. There is a total of I = 10, 000
iterations for each value of nk.

To provide some context, Figure B.2 shows a plot analogous to Figure 5 from a typical

iteration of the Monte Carlo with nk = 1 ∀ k. It shows the proportion of students of type

A for each block kl. This figure looks very similar to Figure 5. In particular, the slope

as we approach the boundary from the left is very similar to the slope as we approach the

boundary from the right. We will show below how Figure B.2 would look very different from

Figure 5 under violations of Assumption 2 ′.

41To see why the regression is infeasible, note that the left-hand-side of equation (8), ln

 π̂i
k1

(
1−π̂i

k′
1

)
π̂i
k′
1

(
1−π̂i

k1

)
, is

undefined for nk = 1. In practice the regression is not feasible for nk ≤ 100, as one can always find at least
one block k with either π̂ik = 0 or π̂ik = 1, especially for blocks with low or high values of πk.
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Figure B.2: Analogous Plot to Figure 5 for a typical iteration of the Monte
Carlo

Notes: This figure is analogous to Figure 5, for a typical iteration of the Monte Carlo with nk = 1. It shows the
proportion of students of type A for each block indexed based on their distance to the boundary, calculated across
all attendance area pairs. For each pair, the school on the right is the one with the higher school proportion of
type A students.

B.3 Geographic Features Coinciding with Boundaries

In this section we consider one specific type of violation from our identifying assumptions.

We assume that boundaries coincide with geographic features for all 3,000 boundary pairs.

We report the case in which people do not want to reside near that geographic feature (e.g.,

a major road), although we also find similar conclusions for the case in which people prefer

to reside near it (e.g., a lake). Specifically, we use the parameter values from the baseline

case, with the following exception: instead of the neighborhood component being represented

simply by φτ .Nk, as in the baseline case, we define it to be φτ · Nk + θτ · |dk|, where |dk|

represents the absolute value of the distance from block k to the boundary. Higher values

of θτ imply that people of type τ prefer residing farther from the boundary with a greater

intensity. We report the case in which θA ≥ θB, although a similar conclusion can be drawn

from the opposite case. We carry out several different Monte Carlo experiments, considering

different preference gaps between θA and θB.
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Figure B.3: Ω̂I
S (solid) and ΩS (dashed) for Different Values of ρ:

Distance-to-Boundary

Notes: This figure plots Ω̂IS (solid curve) and ΩS (dashed curve) for each value of ρ. We hold constant θB = 0.01

and set θA = ρθB . There is a total of I=10,000 iterations for each value of ρ.

The results are shown in Figure B.3. In the horizontal axis, ρ represents the gap between

θA and θB. Specifically, we compare Ω̂I
S and ΩS as we change ρ := θA

θB
with θB = 0.01. There

is no bias for ρ = 1, but the bias increases as ρ increases.

We now show how Figure B.2 (or its empirical version, Figure 5) serves as a good

diagnostic tool for detecting this potential bias. Figure B.4 shows what Figure B.2 would

look like for selected hypothetical values of ρ. When ρ = 1, we see that the figure looks very

similar to Figure B.2 (the baseline case). When ρ = 2, we already see evidence that Figure

B.4 looks different from Figure B.2. In particular, the two sides of the boundary have very

different slopes. This pattern becomes even clearer when ρ grows further, with a pronounced

difference in the slopes across the boundary.

Figure B.4 is obtained from a typical Monte Carlo iteration, and it is shown here simply

for concreteness in the discussion. In reality, there are I such figures, one for each iteration.

More formally, for each value of ρ, we test the equality of the slopes on the left-hand-side

and right-hand-side of the boundary for all iterations. We use the sample of observations

for the half of each attendance area closer to the boundary. In all I = 10, 000 iterations,

we are able to reject the null hypothesis that the slopes are the same for ρ ≥ 2 at the 95%

level of confidence. For ρ = 2, we calculate ΩS = 0.5328 and Ω̂S = 0.5461. We believe a

conservative conclusion from this exercise is that Figure 5 has the power to detect biases due

to this concern on the order of two percentage points or larger.
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(a) ρ = 1
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(b) ρ = 2
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(c) ρ = 3
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(d) ρ = 5

Figure B.4: Simulated Versions of Figure 5 for Different Values of ρ:
Distance-to-Boundary

Notes: These panels show simulated figures analogous to Figure 5 for the distance-to-boundary analysis. We hold
constant θB = 0.01 and set θA = ρθB , and change the values of ρ.

B.4 Distance to School

In the following Monte Carlo experiment, we study the implications of another violation from

our identifying assumptions. We consider the scenario in which parents also care about the

distance between their residence and assigned school. They may care about it, for instance,

because of commuting to school, or rather because the school serves as a coordinated location

for students to interact outside school hours (e.g., using the playground).

We keep the same parameter values as in the baseline case, except for the following

change: instead of the school component of the utility function being represented simply by

φτ ·Sk, as before, we define it to be φτ ·Sk− θτ · |dk|, where |dk| represents the absolute value
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of the distance from block k to the school assigned to block k. We assume that the school

location is in the middle of the attendance area, and we report the results for the case in

which θA ≥ θB.42

Figure B.5 shows what happens with Ω̂S and ΩS as the preference gap (represented on

the horizontal axis) increases. Specifically, we compare Ω̂S and ΩS as we change ρ := θA

θB

with θB = 0.01. As before, there is no bias when ρ = 1, and the bias increases as ρ grows.

Once again, we find that Figure B.2 is a good diagnostic tool for detecting whether our

estimates will be biased due to this reason. To see why, Figure B.6 shows what Figure B.2

would look like for selected hypothetical values of ρ. For ρ = 1, the plot looks very similar

to Figure B.2 in the baseline case, as expected. For ρ = 2, it already looks very different,

and this difference only grows as ρ grows. In particular, the two sides of the boundary have

very different slopes.

As in the previous Monte Carlo experiment, we test the equality of the slopes on the

left-hand-side and right-hand-side of the boundary for all iterations and for all values of ρ.

In all I = 10, 000 iterations, we are able to reject the null hypothesis that the slopes are the

same for ρ ≥ 2 at the 95% level of confidence. For ρ = 2, we calculate ΩS = 0.5843 and

Ω̂S = 0.5778. We believe a conservative conclusion from this exercise is that Figure 5 has

the power to detect biases due to this concern on the order of one percentage point or larger.
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Figure B.5: Ω̂S (solid) and ΩS (dashed) for Different Values of ρ:
Distance-to-School

Notes: This figure plots Ω̂S (solid curve) and ΩS (dashed curve) for each value of ρ. We hold constant θB = 0.01
and set θA = ρθB . The school’s location is assumed to be in the middle of the attendance area.

42The conclusions from the opposite case (θA ≤ θB) are very similar.
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(a) ρ = 1
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(b) ρ = 2
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(c) ρ = 3

0
.2

.4
.6

.8
1

Pr
ob

ab
ilit

y 
of

 T
yp

e 
A

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Block

(d) ρ = 5

Figure B.6: Simulated Versions of Figure 5 for Different Values of ρ:
Distance-to-School

Notes: These panels show simulated figures analogous to Figure 5 for the distance-to-school analysis. We hold
constant θB = 0.01 and set θA = ρθB , and change the values of ρ.

Remark 2. The approach of using Figure 5 as a diagnostic check may also be relevant to the

boundary fixed effects literature. For instance, a common approach to allay the concern raised

in Section B.3 is to drop from the analysis boundaries that are close to observable features,

such as roads or rivers. Our approach complements this approach for three reasons: (i) not

all observed features anticipated to be barriers necessarily render the identifying assumptions

invalid (false negative); (ii) it is possible that other boundaries should be dropped because of

unobserved or unanticipated barriers (false positive); and (iii) Figure 5 allows us to indirectly

gauge whether the identifying assumption is a good approximation, in the sense that there

are not enough boundaries coinciding with geographic features for this issue to be of practical

concern.
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C Supporting Figures
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(a) White, Elementary
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(b) Economically Advantaged, Elementary
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(c) White, Middle
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(d) Economically Advantaged, Middle
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(e) White, Secondary
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(f) Economically Advantaged, Secondary

Figure C.1: Proportion of Students of a Given Type in Each Block

Notes: This figure plots the average proportion of students who are white (left panel) or economically advantaged
(right panel) across all blocks of type kl (k′l) (each block representing a different boundary). The upper, middle
and lower panel corresponds to elementary, middle and secondary grade ranges, respectively. The index l reflects
the number of degrees of separation from the boundary. See footnote 19 for details on how l is measured.
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