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1 Introduction

Through the allocation of external financing, lending standards play a key role in the
economy, determining which entrepreneurs get initial funding, which firms grow, and
which consumers buy houses for example. Figure 1 plots a measure of lending standards
in the market for commercial and industrial (C&I) loans from banks. Lending standards,
by this metric and others, are highly countercyclical, tightening in recessions and loosening
in booms. For example, the recent credit boom-bust cycle was associated with relatively
loose lending standards in the lending boom of the mid-2000’s, when credit spreads and
default rates were low, and relatively tight lending standards during the credit crunch and
recession that followed, when spreads and default rates were high. Notably, the relaxation
of lending standards following the crisis has been slow and limited.

We develop a dynamic model of a credit market in which lending standards are en-
dogenous, both influencing and responding to economic circumstances. We define lending
standards in a standard way as the extent to which banks acquire information about po-
tential borrowers and condition lending on this information. We derive four main results.
First, lending standards can lead to hysteresis: temporary changes in market fundamentals,
such as the share of good borrowers approaching banks, can set in motion a self-reinforcing
dynamic culminating in permanent differences in lending volumes, credit spreads, and
default rates. Second, lending standards can be inefficiently tight, and it can be socially
optimal to relax lending standards, such as through a government loan guarantee program.
Third, temporary constraints that limit lending by banks, such as capital constraints, incen-
tivize tight lending standards, and thus can inefficiently cause long-lasting tight lending
standards. Finally, banks may temporarily limit lending and slow credit market recoveries
when lending standards are loose and credit conditions are endogenously improving, a
situation we call slow thawing.

Our credit market model consists of competitive banks and a pool of potential borrowers,
who are identical conditional on public or readily-available information (e.g. conditional
on credit score ). Each instant, borrowers randomly have the opportunity to approach
banks in search of a loan to fund an investment project. Projects differ by borrower type:
projects of high-quality (low-quality) borrowers have positive (negative) net present value.
To focus on the interesting dynamics of our model, we assume that new borrowers who
flow into the pool have projects with positive expected net present value, meaning they are
mostly good or that losses are small when they are bad.

Banks set lending standards by choosing whether to acquire costly private information
about borrowers and to condition lending on this information. Information acquisition can
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Figure 1: Change in Bank Lending Standards for C&I Loans
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Note: Figure shows the shows the percent of banks reporting tightening less the share reporting loosening.
Banks can also report no change in standards. Source: Senior Loan Officer Opinion Survey on Bank Lending
Practices, Board of Governors of the Federal Reserve System (2018).

take many forms, for example an interview with the applicant, verification of reported em-
ployment or income, appraisal of collateral, or an analysis of a business plan. Importantly,
in our model, the additional information collected is private and borrowers whose loan
applications are declined at one bank may apply at another bank later. Thus, lending stan-
dards are dynamic strategic complements: tight lending standards today imply that banks are
confronted with a more adversely-selected pool in the future, which raises their incentive
to impose tight lending standards.

Our first main result is that credit markets exhibit hysteresis: markets with the same set
of fundamentals may see persistently different lending volumes, credit spreads, default
rates, and lending standards, depending on their specific history (i.e. their initial condi-
tions). At any point in time, the equilibrium of our model is unique. However, as long as
information acquisition is not too costly or too cheap, there are multiple steady states in
the single state variable in our model—the share of high-quality potential borrowers in the
pool, the pool quality. In the pooling steady state, the pool quality is high enough that banks
do not find it worth the cost to check the quality of applicants just to avoid the occasional
low-quality borrower. Thus, low-quality borrowers are funded along with high-quality
borrowers, which keeps the pool quality high. In this steady state, the volume of lending is
high and loan spreads are low. Conversely, in the screening steady state, the pool quality is
low enough that banks choose to collect costly private information on borrowers and deny
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loans to low-quality borrowers which keeps the pool quality low. The volume of lending is
low and loan spreads are high.

As a result of the multiplicity of steady states, temporary changes in market fundamen-
tals, e.g. a worsening of borrowers’ projects or of the composition of potential borrowers,
can set in motion a self-reinforcing feedback loop between deteriorating pool quality and
tighter lending standards, culminating in a permanent shift in the credit market equilibrium.
This feature of our model is consistent with the limited relaxation of lending standards
following the Great Recession documented in Figure 1.

Our second main result is that government intervention to relax lending standards
can improve on private market outcomes, a result that follows from the fact that tight
lending standards have negative externalities. Any bank that tightens its lending standard
today increases the share of low-quality borrowers in the pool in the future which makes
the credit market less efficient. As a result, the pooling steady state Pareto dominates
the screening steady state. Further, solving a dynamic planning problem for the socially
optimal lending standards, we show that socially optimal lending standards are weakly
looser than privately optimal ones at all pool qualities. In our model with linear costs of
information acquisition, this inequality is strict for intermediate levels of pool quality.1

Thus, in response to a temporary decline in the quality of new borrowers, the optimal
policy response can be an intervention that ensures that banks do not tighten lending
standards, consistent with the fact that governments often support high-quality credit
markets in downturns. Because the pool of potential borrowers is a common resource,
there is no way for individual banks to recover the short-term losses from later profits
absent collective, i.e. government, actions. We show that such optimal interventions can
be implemented by a loan guarantee programs funded by lump sum taxes which relax
lending standards and increase lending volume. Finally our results have implications for
the timing of interventions. Support for lending markets has short-run costs and long-run
benefits. Thus delayed policy interventions are more costly than immediate interventions,
and too much delay can make it optimal to not intervene at all.

While policies that target lending standards improve outcomes, they do not achieve the
first-best. A first-best policy would eliminate the externality associated with screening by
making any private information acquired by banks public. We discuss why credit bureaus
commonly do not correct this externality.

Our third main result is that binding capital constraints naturally incentivize banks to

1There is also a region of low enough pool quality in which it is efficient to stop lending entirely. Because
this type of lending standard does not have the externality associated with screening, the private threshold
for this type of lending standard can be inefficiently high or low, depending on incidental modeling choices.
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tighten lending standards, setting in motion declines in pool quality, which can ultimately
lead to hysteresis and suboptimal market outcomes as just described. When capital con-
straints bind, the shadow value of banks’ capital increases. Thus, banks have a greater
incentive to screen potential borrowers in order to lend their limited capital to the most
profitable borrowers. This implies that downturns that are accompanied by financial crises
are more likely to lead to the emergence and persistence of tight lending standards or to
benefit from government policies to relax lending standards.

Finally, our fourth main result is the possibility of an intermediate range of pool quality
in which banks restrict lending by rationing credit instead of imposing tight information-
based lending standards, a situation we refer to as slow thawing. The logic behind this credit
rationing is quite different from the typical credit rationing due to adverse selection (Stiglitz
and Weiss 1981, Mankiw 1986). During slow thawing, lending rates are falling sufficiently
quickly that high-quality borrowers are indifferent between getting funded right away and
waiting for the next funding opportunity. This indifference reduces the surplus from bank
lending today, leading to credit rationing as some banks stop lending, and reducing the
speed of improvement in lending volumes and credit spreads. Convergence to the pooling
steady state is thus non-monotonic, and during the initial slow thawing period, the typical
effects of many parameters on lending volumes and interest rates are reversed.

Related literature. In our analysis, lenders face an adversely selected pool of borrowers
when lenders employ tight lending standards, as in the static models of Fishman and
Parker (2015) and Bolton, Santos and Scheinkman (2016) in which the strategic comple-
mentarity leads to multiple equilibria. Ruckes (2004), Dell’Ariccia and Marquez (2006),
and Hachem (2020) analyze static models of lending standards which do not feature a
strategic complementarity in lending standards. In Ruckes (2004), lenders simultaneously
acquire private information about borrowers and then simultaneously quote loan rates.
In that setting, lending standards are strategic substitutes. In Dell’Ariccia and Marquez
(2006) there is cream skimming by informed lenders but these lenders are endowed with
their information. Hachem (2020) studies lending standards in a static model in which
banks can also exert search effort to attract potential borrowers. When banks are resource
constrained, banks put too much effort into searching for borrowers and too little effort
into checking them upon arrival, so that lending standards are inefficiently loose.

As in our model, in both Hu (2018) and Farboodi and Kondor (2020) banks choose
lending standards and the quality of the borrower pool evolves over time. In these papers,
tighter lending standards raise the average quality of newly-entering borrowers and, in
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Farboodi and Kondor (2020) rejected borrowers go bankrupt and leave the pool of potential
borrowers, which imply that lending standards are dynamic strategic substitutes. We
discuss the endogenous determination of the quality of new borrowers in Subsection
7.1.2 In Hu (2018) economic recoveries can have interesting dynamics such as double-
dip recoveries, while Farboodi and Kondor (2020) shows that credit markets can exhibit
endogenous cycles in lending standards and borrower quality.

A number of papers study dynamic adverse selection models without information
acquisition. Daley and Green (2012, 2016) and Malherbe (2014) analyze models where
current markets can break down when high-quality sellers have the incentive to wait for
market prices to improve over time as the composition of sellers improves over time. In
contrast during slow thawing in our model, the equilibrium composition of borrowers does
not change, only the speed of lending is reduced.3

Finally, Our paper is also related to information acquisition and adverse selection in
secondary markets. Zou (2019) analyzes a dynamic model of trade in which an agent’s
incentive to collect information is higher if agents in the future are expected to collect
information. In Asriyan, Fuchs and Green (2017), if future market liquidity and hence
prices are expected to be high (low), then prices today are high (low) and the adverse
selection problem will be less (more) severe. Gorton and Pennacchi (1990), DeMarzo and
Duffie (1999), and Dang, Gorton and Holmstrom (2015), among others, analyze how debt
securities minimize adverse selection problems in secondary markets. While the issues of
information acquisition are similar, our model is designed to address adverse selection at
origination (in primary markets) and largely abstracts from issues of security design.

2 A Model of Lending Standards

Time is continuous and runs from t to infinity, t ∈ [0, ∞). There are two sets of agents: a
unit mass of potential borrowers who have no capital and are looking to fund projects and
a large mass J of competitive banks. All agents are risk neutral with discount rate ρ > 0.
The main state variable in the model is the quality composition of the pool of borrowers,

2It turns out that in our model, it is theoretically ambiguous whether the endogenous composition of new
borrowers mitigates or amplifies our mechanism. The reason for this is that tighter lending standards can
lower the incentive for high-quality borrowers to enter as tighter standards go hand in hand with higher
lending rates, which disproportionately discourage high-quality borrowers. See Subsection 7.1 for details.

3Related, Zryumov (2015) and Caramp (2017) study models where bad sellers strategically enter when
market prices are good. This, in and of itself, does not lead to a market shutdown (lower prices positively
select entrants), but as Caramp (2017) emphasizes, the bigger presence of bad sellers can raise the likelihood
of adverse selection induced market failures in the future.
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defined below and denoted by xt, which both determines and is influenced by the main
control variables, banks’ lending standards, denoted by zjt.

Borrowers and banks

Borrowers. At Poisson rate κ > 0, a potential borrower receives an investment opportu-
nity, a project that requires an up-front investment of 1. Borrowers have no capital and must
fund the investment externally. If the borrower raises the funds and makes the up-front
investment at time t, then the project returns both a pledgeable cash flow at time t + T
and a non-pledgeable private benefit u > 0 (in present value) to the borrower. Given this
private benefit, all borrowers have the incentive to finance their project, even if they know
they will receive no monetary benefit.

There are two types of borrowers: type H (“high quality”) and type-L (“low quality”).
Type-H borrowers always have investment opportunities with positive net present value
(NPV). The pledgeable cash flow of a type-H borrower’s project is DH, with excess return
rH ≡ e−ρTDH − 1 > 0.4 Type-L borrowers always have projects with negative net present
value. Their pledgeable cash flow is DL, and their excess return is rL ≡ e−ρTDL − 1 < 0. A
borrower’s type is permanent, always type H or always type-L. We refer to r∆ ≡ rH−rL

−rL
> 0

as the (normalized) return difference between the investments opportunities of the two types.
It captures how much greater the return on a type H project compared to a type-L project
is, relative to the negative return on type-L projects.

When an investment opportunity arises, borrowers choose whether to apply to the
competitive banking sector for a unit of funding to implement their project. A borrower
who applies for funding is approved or denied depending on whether she satisfies the
bank’s lending standards. If a borrower is funded, she invests in her project and exits the
pool to run the project. Alternatively, if the borrower does not apply for funding or is
denied funding, she returns to the pool where at rate κ > 0 a new investment opportunity
arises.Besides exiting the pool if funded, at Poisson rate δ > 0 borrowers exit the pool by
“dying,” i.e. no longer receiving investment opportunities.

Borrowers who exit the pool because they are funded or because they die are immedi-
ately replaced by new borrowers who enter the pool as type H with exogenous probability
λ and as type-L with probability 1− λ. Our exit/entry assumption implies that the bor-
rower pool size is constant at 1. Partly as a result of this assumption, it will suffice to
keep track of the fraction of type-H borrowers in the pool of potential borrowers at time t,

4It is an excess return because the per-period log return is 1
T ln(1 + rH) =

1
T ln(DH)− ρ.
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xt ∈ [0, 1], which helps make our main results more tractable and transparent.5

We assume throughout that the average project of a borrower entering the pool has
positive net present value based on the pledgeable cash flow.

Assumption 1. The average investment project has a positive excess return λrH + (1− λ)rL > 0.

While we have not explicitly modeled collateral, we can interpret the loan as a collater-
alized loan and u as the private benefit net of the loss of collateral (e.g. u is the net benefit
of purchasing and living in a house until foreclosure; see Section 7.2).6

Banks and lending standards. Banks make two decisions. First, they decide whether to
be active or inactive. Second, conditional on being active, they choose their lending standard,
that is, how aggressively to screen potential borrowers.

At any instant t, a bank may choose to be active, in which case it enters a competitive
lending market, where it may receive a loan application by a borrower. Alternatively a
bank may choose to be inactive in which case it makes no loans and consequently receives
no loan applications. Let θjt denote the probability that bank j is active at time t. While
generally all banks are active in our model, e.g., at all steady-states where x is constant,
there may be a region in the state space with equilibrium credit rationing, θjt < 1, where
banks offer fewer loans than borrowers demand.

An active bank j chooses a lending standard zjt ∈ [0, z], where z ∈ (0, 1] is a fixed param-
eter. With lending standard zjt, a type-L borrower is identified as such with probability zjt,
in which case her loan is denied. Otherwise, the borrower’s loan is approved.7 A bank’s
cost of utilizing the lending standard zjt is c̃zjt, where c ≡ c̃

−rL
> 0 is the (normalized)

marginal cost. The most lax lending standard corresponds to zjt = 0, in which case all
loan applications are deemed to meet bank j’s lending standard. Banks choose lending
standards to maximize expected profit. Given a lending standard zjt, banks offer to lend 1
in exchange for a promised loan payment at time t + T equal to Djt.

Due to symmetry and competition, it is without loss of generality to assume that all
banks choose the same probability of being active, θt, the same lending standard zt, and
the same required loan payment Dt, paid at t + T. With a loan face value of Dt, repayment

5In Appendix B we prove that our main insights carry over to an environment with a constant inflow
rather than a constant pool size. The only exception are the results in Section 3.3 on slow thawing, which are
less tractable to study in a constant-inflow setting.

6With minor modifications, one can also re-interpret the model as capturing a secondary market in which
“borrowers” are selling assets of unknown value in order to raise funds to make an investment.

7A type-H borrower is never misidentified as a type-L, a modeling assumption only important for
tractability, as discussed in Section 7.4.

7



is min{Dt, D}, where D is the payoff on the investment, DL or DH depending on borrower
type. Since type-L borrowers have negative NPV investments, Dt > DL for a bank to break
even in expectation. Thus, type-L borrowers always default. The repayment Dt is without
loss of generality bounded above by DH since any higher Dt will not generate additional
repayment. So if a loan is made (meaning the bank can break even) then type-H borrowers
will not default. We define rt ≡ e−ρTDt − 1 as the credit spread charged by the bank since
ρ + 1

T ln(1 + rt) is per-period (log) return on a loan that does not default. We note that rt

always lies in (rL, rH).

Information structure. Borrowers have no private information about their type when
they enter the pool. And so long as a borrower has no private information, we call her an
average borrower. Some borrowers learn that they are type-L after failing to meet a bank’s
lending standard. We call these borrowers rejected borrowers.8 Whether a borrower is aver-
age or rejected, a bank cannot distinguish between a type-H and a type-L borrower unless
it is probabilistically revealed by paying zc̃.9 The shares of average and rejected borrowers
are endogenously determined. For instance, the lower are past lending standards, the
fewer rejected borrowers will be in the pool. All agents have common knowledge of the
structural parameters of the market and the initial fraction of type-H borrowers in the pool,
x0 ∈ [0, λ].10 All agents can infer past, current, and future xt.

A borrower’s problem

Taking the path of credit spreads {rt} as given, borrowers with investment opportunities
choose whether to apply for a loan at each time t. Let ϕa

t denote the probability that
an average borrower with an investment opportunity applies for a loan—as opposed
to waiting in hope of an improvement in borrowing opportunities. Let ϕr

t denote the
probability that a rejected borrower with an investment opportunity applies for a loan.
Letting Ja

t and Jr
t denote the value functions of an average borrower and a rejected borrower,

respectively, the optimal strategies for the two satisfy the following Hamilton-Jacobi-

8Thus there are three types of borrowers in the pool at any time: average borrowers who are actually
type H, average borrowers who are actually type-L, and rejected borrowers (all type-L). We show however
that optimal behavior depends only on the share of type-H borrowers, xt, because the behavior of all type-L
borrowers is the same.

9For each individual bank, previously screened loan applicants will represent a zero mass in the pool of
borrowers and can therefore be ignored.

10Here, x0 = λ corresponds to a pool consisting entirely of average borrowers.
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Bellman equations:

ρJa
t = max

ϕa
t∈[0,1]

κθt ϕa
t {λ (rH − rt + u) + (1− λ)(1− zt)u + (1− λ)zt Jr

t − Ja
t }+ J̇t

a − δJa
t

(1a)
ρJr

t = max
ϕr

t∈[0,1]
κθt ϕr

t{(1− zt)(u− Jr
t )}+ J̇t

r − δJr
t , (1b)

where Ja
t and Jr

t satisfy the transversality conditions limt→∞ e−(ρ+δ)t Ja
t = limt→∞ e−(ρ+δ)t Jr

t =

0. For an average borrower, (1a) reflects three possible outcomes when she has an in-
vestment opportunity, is matched with an active bank, and applies for financing: with
probability λ she is type H and is funded, receiving a monetary payoff of rH − rt and u
in private benefits; with probability (1− λ)(1− zt), she is type-L but satisfies the lending
standard, receiving a payoff of u in private benefits; and with probability (1− λ)zt, she is
type-L and does not satisfy the lending standard (is rejected), receiving a payoff of Jr

t . For
a rejected borrower who has an investment opportunity, is matched with an active bank,
and applies for a loan, (1b) reflects the fact that with probability 1− zt, she satisfies the
lending standard and receives a payoff of u in private benefits; otherwise, she continues as
a rejected borrower.

With strategies {ϕa
t , ϕr

t}, there is a flow of

κHt ≡ κϕa
t xt (2)

type-H borrowers applying for loans. Note that all of the type-H borrowers belong to the
sub-pool of average borrowers. There is a flow of

κLt ≡ κϕa
t
1− λ

λ
xt + κϕr

t
λ− xt

λ
(3)

type-L borrowers applying for loans. For the derivation of (3), let At denote the share of
average borrowers at time t, with 1− At being the share of rejected borrowers at time t. The
fraction of type-H borrowers in the whole pool is xt = Atλ. The flow of type-L borrowers
equals κϕa

t A(1− λ) + κϕr
t(1− A). Substituting in At = xt/λ yields (3). In equilibrium, it

will be the case that ϕa
t = ϕr

t = 1, so that κHt = κxt and κLt = κ(1− xt).

A bank’s problem

With a flow κHt + κLt of loan applications at time t, it is without loss to assume that there
are at most a flow of κHt + κLt active banks at time t. As will be seen below, there are cases
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where some banks remain inactive in equilibrium, leaving only θt (κHt + κLt) active banks,
with θt ∈ [0, 1]. A fraction θt of the flow κHt + κLt of loan applications is then received by
the θt(κHt + κLt) active banks.

Conditional on flows κHt, κLt and credit spread rt, an active bank’s lending standard z
solves

Πt(rt) ≡ max
z∈[0,z]

κHtrt + κLt(1− z)rL − (κHt + κLt)c̃z. (4)

as type-H borrowers and a fraction 1− z of type-L borrowers are funded. Taking z as given,
Bertrand competition among banks then determines rt by

Πt(rt) = 0. (5)

Whenever (5) cannot be satisfied by any rt, no bank will find it profitable to lend. In this
case, we set θt = 0 (and rt = rH).

Evolution of the borrower pool

The evolution of the fraction of type-H borrowers in the pool is given by

ẋt = θtκLt(1− zt)λ− θtκHt(1− λ) + δ(λ− xt), (6)

which is the combination of three distinct forces: the first term accounts for the θtκLt(1− zt)

type-L borrowers who are funded and leave the pool (improving pool quality); the second
term accounts for the θtκHt type-H borrowers who are funded and leave the pool (reducing
pool quality); and the third term accounts for the birth and death of borrowers (moving
pool quality towards λ).

Equilibrium

We define an equilibrium as follows:

Definition 1. Given an initial share of type-H borrowers x0 ∈ [0, 1] in the pool, an equilib-
rium consists of a path of the fraction of type-H borrowers {xt}, credit spreads {rt}, shares
of active banks {θt}, borrowers’ application decisions {ϕa

t , ϕr
t}, implied application flows

of type-H and type-L borrowers {κHt, κLt}, and screening choices {zt} such that

• {ϕa
t , ϕr

t} solve each type’s maximization problem (1) given {rt, zt, θt},

• {κHt, κLt} are determined by (2) and (3),
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• zt solves the bank’s maximization problem (4) given {rt, κHt, κLt},

• rt is determined by the zero profit condition for banks (5) given κHt, κLt whenever
possible; if not, κHt = 0 (and w.o.l.o.g. rt = rH),

• {xt} follows the law of motion (6),

• at no time t can a bank raise its profit Πt by being active, charging a rate r̃ < rt that
average borrowers would weakly prefer over waiting, and lending to the entire set of
borrower applicants (a flow of κHt type-H and κLt type-L borrowers; see 2 and 3).

A steady state (equilibrium) is an equilibrium in which all equilibrium objects {xt, rt, θt, ϕa
t , ϕr

t , zt}
are constant over time.

To study variation in lending standards, we make the following parameter assumptions:

Assumption 2. The cost of bank screening c is not too low or too high:

1− λ < c < 1− xs + z−1 min
{

xsr∆ − 1, 0
}

,

where xs = λ− λ
(1−λ)z

(1−λz)+δκ−1 .

The first inequality in Assumption 2 ensures that the screening cost c is high enough
that the lending standard z = z̄ does not strictly dominate z = 0. The second inequality
ensures that c is not so high as to rule out a steady state with z = z̄.

Given a linear screening cost, the choice of lending standards will be at a corner, z = 0
or z = z̄. As we will show, the tendency will be for banks to choose too high of lending
standards, z = z̄ instead of z = 0. Henceforth we will refer to z = 0 as a “normal” lending
standard and z = z̄ as a “tight” lending standard.

3 Equilibrium characterization

The model’s tractability allows for an analytical characterization of the set of equilibria,
starting with steady-state equilibria.

3.1 Steady-state equilibria

Borrowers, facing the same interest rate r and lending standard z at all times, have no
incentive to wait and therefore choose ϕa = ϕr = 1.11 Rejected borrowers never have an

11Since prices and quantities are constant, we drop the time subscripts for this subsection.
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incentive to wait. Average borrowers also strictly prefer borrowing to waiting,

λ (rH − r + u) + (1− λ)(1− z)u + (1− λ)zJr − Ja > 0, (7)

because, for any bank to be active, the loan rate needs to be weakly below the highest
pledgeable payoff, r ≤ rH. In that case, an average borrower’s continuation value is strictly
positive, Ja > 0, as they cannot lose any money upon receiving funding and always receive
the private benefit. Using (1a), Ja > 0 is equivalent to (7) in a steady state. Under these
conditions, all banks are active in a steady state, θ = 1.

The steady-state quality of the pool x and the steady-state lending standard z are jointly
determined by the interaction of two forces. On the one hand, the law of motion of x, (6),
implies that when ẋ = 0,

x = λ− λ
(1− λ) z

(1− λz) + δκ−1 . (8)

This equation highlights that tighter lending standards—higher z—are associated with a
lower steady-state quality of the pool of borrowers x, as more low-quality borrowers are
rejected by banks. This effect is greater when the effects of lending standards on the pool
are more persistent (low death rate δ) or when opportunities to invest arise more frequently
(high κ) and so potential investors are evaluated more frequently.

On the other hand, banks solve (4) and choose tighter lending standards precisely when
the pool is more adversely selected,

z =


0 if x > x

[0, z] if x = x

z if x < x

, where x ≡ 1− c. (9)

The combination of the two equations (8) and (9) is illustrated in Figure 2. Both represent
downward-sloping relationships between x and z, and given Assumption 2 admit three
intersections, each of which represents a steady-state equilibrium. This logic is summarized
in the following proposition.

Proposition 1 (Steady state equilibria). There exist three steady-state equilibria:

(i) A pooling steady state with normal lending standards z = 0 and x = xp ≡ λ.

(ii) A screening steady state with tight lending standards z = z and x = xs ≡ λ−λ
(1−λ)z

(1−λz)+δκ−1 .

(iii) A mixed steady state with z = λ−x
λ−λx

(
1 + δκ−1) ∈ (0, z) and x = x.
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Figure 2: The two forces shaping steady-state equilibria.
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Note: This figure shows two curves whose intersections yield the steady-state pool quality x and the steady-
state lending standard z. The solid line represents the optimal choice of the lending standard, (9). The dashed
line represents the pool quality x that is caused by any given lending standard z through the law of motion.

The root of the multiplicity is a dynamic strategic complementarity among banks. By (9),
banks naturally respond to a lower quality pool by tightening their lending standards;
however, according to (8), tighter lending standards worsen the pool itself, creating an
even bigger incentive for banks to tighten their standards in the future. This reasoning
rationalizes the existence of the pooling and screening equilibria, see Figure 2. The mixed
steady state formally exists but will turn out to be unstable and therefore play no role in
the remainder of the analysis.

The pooling and screening steady states have the following important characteristics.

Corollary 1 (Quality of funded borrowers). Compared to the screening steady state, in the
pooling steady state:

1. the credit spread r is lower, r(xp) = − rL
xp (1− xp) < − rL

xs {cz̄ + (1− z̄)(1− xs)} = r(xs)

2. more projects are funded, κ > κx + κ(1− x)(1− z̄)

3. the default rate is higher, 1− xp > (1−xs)(1−z̄)
xs+(1−xs)(1−z̄)

The first point follows from the fact that a lower pool quality, ceteris paribus, hurts
banks’ profits, and therefore requires larger credit spreads for banks to break even. This is
true even though banks choose tight lending standards.12 The second point follows from

12Proposition 3 has a complete characterization of interest rate spreads. .
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the fact that screening reduces the flow of borrowers that receive funding. The third point
follows from the fact that tight lending standards improve the quality of funded borrowers.
But there is a subtlety here. The result relies on rejected borrowers “dying”, that is, exiting
the pool at a rate δ > 0. If instead δ = 0, that is, no death and rebirth in the pool of potential
borrowers, then the default rate would equal 1− λ in any steady state, irrespective of the
screening decision. In that case, the imposition of tight lending standards in the screening
steady state exactly balances the low average project quality in the pool, yielding the same
default rate.13

These patterns match the stylized facts about credit booms and busts we discussed in
the Introduction (see e.g. Greenwood and Hanson 2013): booms feature higher lending
volumes, looser lending standards, lower quality of funded borrowers, and lower credit
spreads conditional on default probability.

3.2 Transitional dynamics

An important factor that simplifies the steady state analysis is that banks are always active
in a steady state, θ = 1. This is no longer true in equilibria with dynamics. In particular,
there are now two regions in which banks may choose to remain inactive. Naturally, this is
the case when the pool quality x is very low, so that even the maximum loan rate does not
make profits for a bank. Thus, Π(rH) = 0 defines an x such that

θ(x) =

0 if x < x

[0, 1] if x = x
, where x ≡ 1− z + cz

r∆ − z
. (10)

More surprising, banks may also remain inactive and so reduce total lending for a range
of x just above x̄ when lending standards are otherwise normal. Since in this region the
speed of convergence to the pooling steady state is slow and increasing, we refer to this
region as the “slow-thawing” region and it is described in detail in Section 3.3. Until then,
we assume parameters are such that there is no such region:14

Assumption 3 (No slow thawing). Assume that there is no slow-thawing region, that is, θ(x) =
1 for all x ≥ x.

13The results in Corollary 1 are robust to alternative assumptions on the dynamics of the borrower pool,
e.g. assuming a constant inflow, rather than a constant pool size. See Appendix B.

14For the sake of exposition, this assumption is stated in terms of endogenous objects. The analytical
condition is stated in the next section.
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Figure 3: State space and banks’ optimal strategies.
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Under Assumption 3, Proposition 2 completely characterizes the equilibrium transi-
tional dynamics of x. Despite the multiplicity of steady states (Proposition 1), there is a
unique equilibrium for any x0, giving unambiguous model predictions.

Proposition 2 (Transitional dynamics without slow thawing). Suppose Assumption 3 holds
and x0 ∈ [0, λ] is the initial fraction of type-H borrowers in the pool. There is a unique equilibrium,
in which banks’ activity policy satisfies (10) for x ≤ x, their lending standards are given by (9),
and borrowers never wait, ϕa

t = ϕr
t = 1. As t→ ∞, the credit market converges to

(i) the screening steady state, xt → xs, if x0 < x.

(ii) the mixed steady state, xt → x, if x0 = x.

(iii) the pooling steady state, xt → xp, if x0 > x.

Figure 3 illustrates the state space of the credit market and highlights the transitional
dynamics in the three different regions of bank behavior: the “no lending” region for low
pool qualities, where banks are inactive (θt = 0) and the pool quality improves only due to
death and birth; the “tight lending standards” region, where banks screen borrowers zt = z
and the market approaches the screening steady state; and the “normal lending standards”
region where banks choose zt = 0 and the market returns to the pooling steady state.

A crucial part of the diagram is at x = x. This point represents a sharp boundary be-
tween the tight and normal lending standards regions and gives rise to an important model
prediction, a “bifurcation” property: when x0 lies above x, the credit market converges
to the pooling steady state with normal lending standards; and when x0 lies below x, the
self-reinforcing nature of tight lending standards pushes the market to the screening steady
state.

The bifurcation property also comes out in Figure 4 where we simulate the credit market
with two different initial values for x0, one just above x (green, solid) and one just below x
(red, dashed). As can be seen, a small difference in initial conditions leads to quite different
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Figure 4: The self-reinforcing property of lending standards.
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Note. This figure shows two sets of transitional dynamics in a credit market without slow thawing. Green and
solid is a market starting at x0 = x + ε and therefore banks have normal lending standards; red and dashed
is a market starting at x0 = x− ε and therefore banks impose tight lending standards. The parameters used
for this simulation are as follows: ρ = δ = 0.05, λ = 0.95, rL = −0.27, rH = 0.30, c̃ = 0.035, κ = 1, z = 0.8.
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Figure 5: Break-even credit spread as function of pool quality x.
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Note: Grey is the component of the credit spread that is due to default risk (the default spread). Hatched is the
component of the credit spread that is due to intermediation costs (the intermediation spread).

evolutions of pool qualities x, credit spreads r, and lending volumes κHt + κLt(1− z). The
final panel of Figure 4 shows the evolution of default rates, κLt(1− z)/ (κHt + κLt(1− z)),
by lending cohorts. The market with the slightly lower initial pool quality initially has
a much lower lending volume and default rate, as banks are imposing tight lending
standards. Interestingly, the two markets initially have similar credit spreads. Over time,
and foreshadowing our results on efficiency and optimal policy, the slightly lower initial
pool quality causes convergence to a steady-state with much higher credit spreads and
lower lending volume but similar default rates (see our discussion of Corollary 1).

We can characterize equilibrium credit spreads rt across credit markets. In particular,
how do credit spreads vary with pool quality xt? Markets with higher xt have lower
default rates for any given lending standard, suggesting lower credit spreads. But markets
with higher xt have normal lending standards, suggesting higher default rates and higher
credit spreads. As the following proposition shows, the former effect dominates and rt is
inversely related to xt.

Proposition 3 (Equlibrium credit spread). The equilibrium credit spread rt = r(xt) is decreasing
in the fraction of type-H borrowers, x, and is given by

rt = r(xt) =


∞ if xt < x

(−rL)x−1
t {cz + (1− z)(1− xt)} if x ≤ xt < x

(−rL)x−1
t {1− xt} if xt ≥ x

. (11)

Using (11), we can decompose r(x) into a default spread, −rLx−1(1− z(x))(1− x) > 0
where z(x) is the optimal screening choice given x; and into an intermediation spread
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−rLx−1cz(x) > 0. Figure 5 plots the credit spread r(x) and these two components over
the state space. The shaded areas in Figure 5 highlight that the default spread changes
discretely at x = x as banks switch between tight and normal lending standards, but this
change is offset by an equally large change in the intermediation spread. The spread rises
significantly due to intermediation costs at lower pool qualities x. The decoupling of credit
spreads and credit risk in this region of the state space provides a rationale for why, at
times, credit spreads may appear to be high given the credit risk. He and Milbradt (2014)
attribute such high credit spreads to low liquidity. Alternatively one might rely on risk
aversion as an explanation. Here the high credit spread derives from intermediation costs.

The monotonicity of r(x) is also reflected in Figure 4, with a rising loan rate for the
credit market with the lower quality of potential borrowers and a falling loan rate for the
market with higher quality. A falling loan rate raises a question: would average borrowers
have an incentive to wait for lower loan rates? The answer is yes in certain cases. There
may be a reduced demand for credit even with normal lending standards. In this case,
lending volume and the improvement of the borrower pool are slowed, and credit markets
recover - “thaw” - much more slowly than otherwise.

3.3 Slow thawing

Say x0 is just above x and conjecture that all banks are active, θt = 1, and average borrowers
do not wait to apply for loans, ϕa

t = 1. Then it is possible that the resulting increase in
pool quality, xt, over time would lead to so rapid a decline in rt that average borrowers
would prefer not to borrow as conjectured. Rather they would wait for lower credit spreads
before applying for credit ϕa

t = 0. Hence, in this case, our conjecture is not an equilibrium.
Instead, equilibrium must exhibit a slower speed of transition. The improvement in the
borrower pool and the decline in borrowing rates must occur more slowly to induce
average borrowers to apply for loans in equilibrium. For this transition to be slower, it
must be that not all banks are active, θt < 1, which can only be the case if there are no
profits to be made from making a new loan (see Definition 1). This is precisely the case
when borrowers are also indifferent between waiting and applying for loans.

The following proposition establishes that these strategies are indeed an equilibrium.
To keep the derivations and exposition clear, we focus on the case where the private benefit
from running the project, u, is vanishingly small, u→ 0 (in which case Jr

t → 0).

Proposition 4 (Slow thawing). There exists a threshold x̂ ∈ (0, xp), such that: (i) if x̂ ≤ x, there
is no slow thawing region; if (ii) x̂ > x, then for any x ∈ [x, x̂), a positive fraction of banks are
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inactive
θ(x) =

(ρ + δ) (rH − r(x))
−κr′(x)(λ− x)

− δκ−1 < 1 (12)

where r(x) = −rLx−1 {1− x} > 0. Borrowers are indifferent and apply for loans, ϕa
t = ϕr

t = 1,
and x̂ is determined as the unique solution to θ(x̂) = 1 in (0, xp).

The intuition for the expression in (12) comes directly from the indifference condition
of average borrowers. The HJB of an average borrower is given by

ρJa
t = max

ϕa
t∈[0,1]

κθt ϕa
t {λ (rH − rt)− Ja}+ J̇a − δJa

with indifference between applying for a loan or not requiring that Ja(x) = λ (rH − r(x)).
Substituting this back into the HJB yields an equation for the speed ẋ at which the pool
needs to improve for average borrowers to be indifferent,

−λr′(x)ẋ︸ ︷︷ ︸
benefit of waiting

= (ρ + δ)λ (rH − r(x))︸ ︷︷ ︸
opportunity cost of waiting

. (13)

When is ẋ the equilibrium speed? Precisely when θt is such that ẋ satisfies the law of
motion of x, (6). Together, (13) and (6) give (12).

Figure 6 schematically illustrates this logic. The green solid line represents the speed ẋ
at which average borrowers are indifferent between borrowing now and waiting for the
pool to improve. This is an increasing line as the benefit of waiting declines the closer x
is to the pooling steady state. The red dashed line represents the speed at which the pool
quality improves when all banks choose to be active. Clearly, where this line lies below the
green solid line of indifference, it is also equal to the equilibrium speed, shown in black
thick solid line. However, for x < x̂, the growth of ẋ with all banks active lies above the
solid green indifference curve so that borrowers would prefer to wait which cannot be an
equilibrium. In this region, a fraction 1− θ(x) of banks choose to be inactive, bringing
down the equilibrium speed to match the one along the green solid indifference curve.
This leads to a hump-shaped thawing speed: initially little lending due to the threat of
average borrowers waiting, a period of slow thawing as lending volume and the pool
quality accelerate, followed by a period of normal convergence to the steady state.15

Slow thawing is thus a mechanism by which lending is slow to recover after crises,

15Note that Figure 6 does not show ẋ just to the left of x̄ because it is negative. By Proposition 3, ẋ < 0
implies ṙ < 0. With spreads decreasing over time, there is no incentive to delay and so no region of slow
thawing.

19



Figure 6: Slowly thawing credit markets.
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Note. This figure illustrates when there exists a region with “slow thawing” where credit markets recover
only very slowly from a crisis. The green solid line represents the speed at which the pool quality needs to
improve for average borrowers to be exactly indifferent between applying for loans (strictly preferred below
the curve) and waiting (strictly preferred above). The red dashed line represents the speed of improvement
when all banks are active. The equilibrium speed (black solid line) is the minimum of both curves.

based on two intuitive ideas. First, credit spreads rise during crises and come down
afterwards. Second, the more financially sound (average) borrowers have an incentive
to “wait out” crises until credit spreads come down, while low-quality borrowers are
unwilling or unable to do so. These two ideas amplify each other, as banks increase credit
spreads in response to a worse pool of borrowers, further incentivizing average borrowers
to delay borrowing.

What determines how likely or how strong this period of slow thawing is? How could
it be sped up? The following corollary reveals the roles of interest rates, project payoffs,
and meeting frequencies.

Corollary 2 (Credit market recovery with normal lending standards). Fix a quality of the
borrower pool x ∈ (x, xp) and let ẋ denote the speed of improvement in the pool’s quality. Then in
the slow thawing region:

1. Worse projects always slow down the recovery: ẋ falls with lower rL, rH.

2. Increasing the rate at which borrowers apply for loans does not speed up the recovery in the
slow thawing region: for x < x̂, ẋ does not rise with κ; for x > x̂, ẋ rises with κ.
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3. More patient borrowers slow down the recovery: ẋ falls with lower ρ if x < x̂ (holding fixed
rL, rH).

When the rate κ at which borrowers receive investment opportunities increases (part
2 of Corollary 2), the red line in Figure 6 increases. This naturally increases the speed of
the recovery towards the steady state outside the slow-thawing region. Inside that region,
however, it has no effect. In fact, even when κ → ∞, the transition towards the pooling
steady state is slow and entirely determined by the indifference condition (13). The reason
for this is that banks are not finding it profitable to lend more, as the pool of borrowers is
adversely selected, and are thus holding back lending.

Greater patience, lower ρ, makes average borrowers more willing to wait, shifting down
the indifference curve in Figure 6 and slowing down the recovery. In practice, the patience
parameter captures the borrowers’ internal rate of return, reflecting how timely is the
borrower’s need for funding. Thus, paradoxically, when borrowers are less desperate for
funding, the recovery takes longer.

Figure 7 juxtaposes the transitional dynamics with slow thawing (dashed red line)
and the transitional dynamics without slow thawing (solid green line). The latter was
computed by ruling out slow thawing by assumption, imposing ϕa

t = 1, θt = 1, and
dropping equilibrium equation (7) and instead assuming that potential borrowers are
myopic in the sense that when they have the opportunity to invest, they approach the
competitive banking sector and accept the loan and invest rather than optimally choosing
whether instead to wait for their next opportunity to borrow. As is visible in the first panel,
slow thawing can greatly slow the transition back to the pooling steady state and lead to a
relatively low lending volume.

Note that a similar region with slow thawing can also appear in the region between x
and xs and slow down the convergence to the screening steady state from the left.

4 Efficiency

Because one bank’s lending standard affects future banks’ borrower pools, equilibrium
lending standards will, in general, not be efficient. This section characterizes the con-
strained efficient outcomes.16

16The unconstrained efficient allocation (first-best) in our model would allow the planner to fund only
average borrowers, which, given Assumption 2, would be done without screening.
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Figure 7: Slowly thawing credit markets.
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Note. The plots compare two transitions back to the pooling steady state. Green solid is a transition without
“slow thawing”, where average borrowers always accept current loan offers and banks do not ration credit;
red dashed is a transition with slow thawing, where banks ration credit in equilibrium. The parameters used
for this simulation are as follows: ρ = δ = 0.05, λ = 0.95, rL = −0.27, rH = 0.13, c̃ = 0.035, κ = 2, z = 0.8.
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4.1 Constrained efficient policy

Our concept of constrained efficiency allows the planner to control banks’ activity and
screening decisions, subject to borrowers’ application decisions, so as to maximize the sum
of agents’ utilities.17 Throughout this section, we continue to focus on the algebraically
simpler case where u→ 0. In this section, it is further assumed that the planner can set the
path of market interest rates {rt}, and therefore prevent average borrowers from waiting,
i.e. there is no slow thawing. We discuss relaxing this assumption below.

The constrained efficient planning problem is given by

max
zt∈[0,z],θt∈[0,1]

∫ ∞

0
e−ρtκθt {xtrH + (1− zt)(1− xt)rL − c̃zt} dt (14)

subject to the law of motion of xt, (6). The solution to this problem can be characterized as
follows.

Proposition 5 (Second-best policy). There exists a threshold x∗ ∈ [0, x) such that the second-best
planner sets:

zt =

z if xt < x∗

0 if xt > x∗
(15)

For any xt ∈ (x∗, x), equilibrium lending standards are (second-best) inefficiently tight.
For any x∗ > xs, the optimal policy for bank activity is given by

θt =

0 if xt < x∗

1 if xt > x∗

for some x∗ ∈ [0, x∗).

Proposition 5 shows that the optimal lending standard takes a similar form to the
privately-optimal policy: when the quality of the pool is relatively high, x > x∗, normal
lending standards, z = 0, are optimal; and when x < x∗, tight lending standards, z = z̄, are
optimal. But the cutoffs for the optimal policy and for the market equilibrium differ: There
exists a region in the state space, (x∗, x), where equilibrium lending standards are too tight
relative to the constrained-efficient outcome.

17Since borrowers and banks are risk-neutral, this is without loss when transfers between agents are
feasible.
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Figure 8: Constrained efficient vs. equilibrium lending standards.
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ρx + αsxs

ρ + αs rH + (1− z)
(

1− ρx + αsxs

ρ + αs

)
rL − c̃z︸ ︷︷ ︸

Average social benefit of screening

≥ ρx + αpxp

ρ + αp rH +

(
1− ρx + αpxp

ρ + αp

)
rL︸ ︷︷ ︸

Average social benefit of pooling

(16)

To develop an intuition for this finding, say the current pool quality is x and banks operate
normal lending standards, z = 0, in all periods from now on so that the credit market
ultimately converges to the pooling steady state xp. In (16), one can think of ρx+αpxp

ρ+αp as
the time-averaged fraction of type-H borrowers funded. The weight on current x is ρ, as
with greater discounting the present becomes relatively more important; the weight on the
(long-run) steady state xp is αp = κ + δ, which is the speed at which x converges to xp. The
average social benefit of z = 0 is therefore the weighted average surplus from lending to
each type of borrower,

ρx + αpxp

ρ + αp rH +

(
1− ρx + αpxp

ρ + αp

)
rL.

An analogous expression describes the social benefit of tight lending standards, where we
additionally account for both the costs of screening and the fact that banks successfully
screen a fraction z̄ of of low-quality borrowers, giving rise to (16).

By contrast, the private cut-off, x, is the largest value satisfying

xr + (1− z) (1− x) rL − c̃z︸ ︷︷ ︸
Average private benefit of screening

≥ xr + (1− x) rL︸ ︷︷ ︸
Average private benefit of pooling

(17)

which is calculated using the current fraction x of type-H borrowers and ignores the
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Figure 9: Early interventions dominate late ones.
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Note. This figure shows how intervention policies affect a credit market that is transitioning towards
the screening steady state. The horizontal axis shows the time at which an intervention starts (where 0
corresponds to the immediate, constrained efficient intervention). The parameters used for this simulation
are as in Figure 4.

dynamic consequences from screening and pooling. In particular, since in the relevant
region it holds that

ρx + αsxs

ρ + αs < x <
ρx + αpxp

ρ + αp

agents privately ignore the dynamic costs from screening relative to pooling. Therefore,
x∗ < x. The private and social thresholds are shown in Figure 8.18

Another way to highlight the differential dynamic consequences of pooling and screen-
ing is to compare steady states.

Corollary 3. When both steady states exist (a result of Assumption 2), the screening steady state
has strictly lower welfare than the pooling steady state.

If δ = 0, this result would be a simple consequence of the fact that screening potential
borrowers is costly and the quality of funded borrowers is independent of the steady state
(see discussion below Corollary 1). But with δ > 0, screening borrowers has a social benefit
because a share of them are never funded. Still, the corollary shows that welfare in the
pooling steady state is higher.

There are two important practical implications from the existence of a non-empty
interval (x∗, x) where the market equilibrium diverges from the constrained optimum.

18The logic that lending standards are only inefficiently tight in the region (x∗, x) follows from the linearity
of the cost function. If banks’ screening costs were nonlinear such that the optimal z∗(x) were continuous
and strictly decreasing, then lending standards could be generically too tight.
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1. Intervention timing matters. Figure 9 illustrates the welfare consequences of inter-
vention in a credit market that starts at a given x0 ∈ (x∗, x) for various times when an
intervention starts (on the horizontal axis). The later the time of intervention is, the lower
is the quality of the borrower pool when the policy switches from screening to pooling (left
panel). Later intervention times thus increase the short-run losses incurred at the start of
the intervention and are therefore welfare-inferior to early interventions. In fact, after a
sufficiently long time, if xt has fallen below x∗, intervening may even be welfare-dominated
by not intervening at all and allowing the market to converge to the screening steady state,
despite its having lower welfare than the pooling steady state. That a late intervention may
be worse than no intervention underscores the importance of the timing of interventions in
our model.

2. Better screening technology may be detrimental to welfare. Say the cost c̃ of operating
tight lending standards falls. While a cost reduction necessarily raises efficiency in any
steady-state equilibrium, it can decrease welfare because it raises thresholds both for the
market convergence to a screening equilibrium and for the efficient intervention, x and
x∗. Therefore, if a market is just recovering from a crisis, with x0 just above x, such a
technological improvement may cause x to rise above x0 and thereby prevent a recovery
and lead to a reduction in welfare. If x∗ also rises above x0 then it is too costly for policy to
mitigate this decline in welfare.

A decrease in cost c̃ represents an improvement in private information technology.
What happens if instead public information technology (e.g. credit reporting) improves?
A crude way to capture such a change is as an increase in δ, the probability that rejected
borrowers die. While the death of average borrowers has no effect on equilibrium as they
are replaced in the pool by an equal measure of new average borrowers, a greater death
rate of rejected borrowers does matter for equilibrium. A larger δ increases (decreases) the
speed of convergence when x is increasing (decreasing), and raises the pool quality in the
screening steady state, so therefore unambiguously increases welfare. Thus, the welfare
effects of improving public information are unambiguously positive, a point that leads
naturally into a discussion of the first-best policy.

4.2 First-best policy

While inconsistent with our modeling assumptions, the first-best policy would be to
eliminate the externality associated with screening, for example by making the outcome
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of any borrower screening public.19 One might expect therefore that market participants
might design institutions to track and make public such information in situations where
the externalities associated with lending standards are severe. We discuss in Section 7.3
(and Appendix C) the extent to which credit bureaus in some countries may mitigate
this externality in some markets by reporting credit checks. But credit bureaus do not
track rejections. Our model suggests why eliminating the externality is difficult: it is not
privately optimal for a borrower/bank pair to report a rejection.

4.3 Implementation of the constrained optimum

There are several ways a government or a regulator could implement the constrained
efficient outcome, that is, normal lending standards when x ∈ (x∗, x). We continue to
assume that there is no region of slow thawing. Since such an intervention entails short-run
losses and the model’s banking sector is competitive, either the government or type-H
borrowers have to bear these losses.

An example of such a policy is a government-funded loan insurance program in which
the government provides an insurance benefit b > 0 (in present value) to be paid to a bank
when a borrower defaults. This policy incentivizes banks to use normal lending standards
as long as

b
−rL

> 1− c
1− x

.

This condition is satisfied for b = 0 in the region x > x where pooling is privately optimal.
It requires nonzero insurance benefits b = b(x) > 0 when x < x. As a function of the
pool quality, b(x) is decreasing in x. This means a typical intervention starting from some
x0 < x requires large insurance benefits early on, which are then phased out over time.

Our model is thus consistent with the ability of government loan guarantees to increase
the efficiency of credit markets by decreasing lending standards and interest rates. Exam-
ples of such loan guarantees in the US include mortgage markets (e.g. the FHA), student
loans, and credit for international trade. All these loan guarantees require that the borrower
meet eligibility requirements and/or condition rates on readily-available, verifiable infor-
mation. Also notably, the retraction of a loan guarantee arguably characterized the start of

19A partial step in this direction would be information on how long the borrowers have been in the
market for a loan. Since bank borrowing rates are publicly observed, such information would be informative
regarding whether borrowers have been denied credit and are thus type-L and not worth financing as in
Daley and Green (2012, 2016) – in which the history of offers received by the informed party is not observable
– or Chari, Shourideh and Zetlin-Jones (2014) – in which this history is observed and the equilibrium features
a partial separation of the high- and low-quality types.
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the US financial crisis of 2008-2009. By allowing Lehman Brothers to fail, the US govern-
ment retracted an implicit guarantee of the short-term debt of large financial institutions
(as exhibited in the resolution of Bear Sterns in March 2018). In response, lenders (buyers
of short-term commercial paper of financial institutions) tightened lending standards and
interest rates rose and lending volumes declined. The government responded with a set
of policies – explicit and implicit guarantees, and liquidity provision – that decreased the
probability of losses and so reduced interest rate spreads and increased lending volumes to
large financial institutions.

A second way to implement the constrained optimum would be to require that, whenever
x ∈ (x∗, x), all loans made at each point in time are placed into a common pool from
which each bank receives a proportionate payout as the loans mature. Such mandated
securitization requires only that a loan origination is observable and contractible, not
that a rejection is observable. Under this policy, no individual bank has the incentive to
tighten lending standards when x ∈ (x∗, x) since they receive no benefits from placing a
higher-quality loan into the securitized pool.

We assume that banks cannot observe which borrowers are rejected. But if the govern-
ment could monitor banks and measure either lending standards or rejections (but, like
the private sector, not observe the identity of the rejected agent), then another policy that
implements the constrained optimum is to tax lending standards or rejections at a high
enough rate to ensure normal lending standards (when x ∈ (x∗, x)). This policy is the
most direct: taxing the activity – tight lending standards – that has the negative externality.
Interestingly, this policy increases equilibrium spreads even though no tax is collected
because the profits from type-H borrowers have to cover the losses from lending to more
type-L projects.

Note finally, that all such policies are not privately optimal without market-wide
collusion. Thus, there is a role for government in a competitive market.

4.4 Limits to constrained efficiency

In practice, policies like government-funded loan subsidies or insurance programs are
rarely undertaken for the entire financial sector, but instead usually apply only to certain
types of institutions, such as traditional banks but not money market mutual funds or
shadow banks.20 So consider a setting where the government can affect the lending

20In the U.S., bank deposits are insured, but not other short-term “deposit”-taking institutions such as
money market mutual funds (MMMFs). In the financial crisis of 2008-2009, the government actually did
extend deposit guarantees from traditional banks to MMMFs, but did not extend the guarantees to other
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decisions of banks but not shadow banks, where the former comprise a fraction η ∈ [0, 1)
of financial institutions and the latter comprise a fraction 1− η. What is the optimal policy
under such circumstances? For this section, we focus on the case without slow thawing or
bank inactivity, i.e., θ = 1. We further assume that banks always charge the same interest
rates as their shadow bank competitors.

To state the new planning problem for a given x0, denote by zp(x) the optimal screening
action of a shadow bank, that is, zp(x) = 0 for x > x and zp(x) = z for x < x. Then, the
planner has the same objective as before,

max
zt

∫ ∞

0
e−ρtκ {xtrH + (1− zt)(1− xt)rL − c̃zt} dt

subject to the same law of motion of xt,

ẋt = (κ + δ) (λ− xt)− κztλ(1− xt),

but now with a constraint on the average lending standard zt,

zt ∈ [(1− η)zp(xt), (1− η)zp(xt) + ηz], (18)

rather than zt ∈ [0, z]. This is because only a fraction η of overall lending standards can be
controlled by the government.

Constraint (18) significantly changes optimal policy. When x ∈ (x∗, x), normalizing
lending standards for banks entails a slower improvement in credit conditions because
shadow banks continue to apply tight lending standards, reducing ẋ. The optimal policy
still takes a threshold form but the threshold x∗(η) now depends on the share of banks
η. For low levels of η, x∗(η) = x, and the planner wants to implement the competitive
equilibrium. Only when banks comprise a large enough share of the lending sector,

η > 1− (κ + δ) (λ− x)
κzλ(1− x)

, (19)

is it optimal to intervene in some region of the state space, that is x∗(η) < x.
Why is not optimal for the planner to intervene for low η? The motivation for inter-

vention is to shift from convergence to the screening steady state to convergence to the
pooling steady state. If, however, η is below the threshold in (19), the planner is unable to

short-term debt markets. Similarly, the government took over the government-sponsored mortgage lending
agencies and traditional banks but allowed private label securitizers and mortgage brokers to fail.
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relax overall lending standards enough to induce the state xt to move towards pooling for
values of xt close to the private threshold x. Further even when achieving ẋ > 0 is possible,
credit conditions might improve too slowly to make it worthwhile. Thus, the government
can lack the “firepower” to get to pooling and optimally choose not to intervene at all. This
discussion illustrates that a large but hard to regulate shadow banking sector constrains
optimal government policy.

If the government intervenes for low η, it is forced to cover increasingly large losses as
shadow banks impose tight lending standards, reducing the pool quality. Banks then face
a more adversely selected pool. This point may have been relevant for the failure of the
government sponsored mortgage agencies in the US in 2008.

5 Economic fluctuations and hysteresis

In this section we explore the implications of our model for economic fluctuations. In
particular, we study a slowdown caused by a temporary decline in the inflow of type-H
borrowers. We show how lending standards can tighten in such periods and propagate a
temporary downturn into permanent increases in interest rate spreads and intermediation
costs and declines in lending volume. Such hysteresis does not follow from shorter or
smaller declines in quality, consistent with lending standards normalizing following the
milder 2001 US recession but not the 2008-2009 Great Recession, as displayed in Figure 1.

5.1 Downturn in fundamentals

We feed into the model a temporary decline in the size and quality of the pool of potential
borrowers. More specifically, we reduce the quantity of type-H new borrowers entering
the pool of potential borrowers from time 0 to time T. Our model in Section 2 involves
a fixed pool size N = 1 and therefore needs to be amended to allow for dynamics in N.
However, as one can easily show, since the law of motion of N is exogenous in the model,
the model still applies to a “normalized” version of the credit market, where all absolute
quantities (volume of loans, welfare, profit, etc.) are to be thought of as normalized by N.

For the period of the lending slowdown, we reduce the inflow of new type-H borrowers
into the pool by µ. During this period, only a share (1− µ)λ of new potential borrowers
are type-H. As a result, the fraction of type-H borrowers, x, evolves according to

ẋt = θtκ(1− xt)(1− zt)λt − θtκxt(1− λt) + δN−1
t

(
λ− x− µ1{t≤T}λ(1− x)

)
(20)
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where λt is the average quality of new borrowers entering into the pool,

λt ≡


λ(1−µ)

λ(1−µ)+(1−λ)
t ≤ T

λ t > T

The last term in (20) represents the modified impact of the birth-death process of borrowers
for pool quality. It is modified to allow for a reduction in pool quality when µ > 0.

Following the slowdown, when λt returns to λ, the inflow of new borrowers increases
to return the pool to its original size of 1, as shown by the law of motion of the total pool
size Nt

Ṅt = δ(1− Nt)− δλµ1{t≤T}. (21)

For the simulations in this section, we keep the model parameters from Figure 4 and
choose µ = 0.66. Under this parameterization the market has no slow thawing region.

5.2 Lending cycle and hysteresis

We simulate the response to two different lengths of the downturn, T = 2 period and
4 period. The results are shown in Figure 10. As the solid green line shows, the short
downturn is associated with a decrease in lending volume, as fewer borrowers seek loans,
and an increase in interest rate spreads, as the pool quality declines and the ex post default
rate increases. When the downturn in fundamentals ends, the increase in the demand for
loans and the increase in the quality of potential borrowers both lead to increased lending
and decreased interest rate spreads. After a short downturn, the credit market returns to
its previous equilibrium with normal lending standards.

By contrast, the longer downturn (dashed red line) is associated with a larger decline
in the quality of the average potential borrowers so that, roughly at T = 3, banks tighten
lending standards leading to an abrupt decline in lending. Following this tightening, pool
quality deteriorates more rapidly, credit spreads increase, and the lending volume continues
to contract. When the slowdown ends at T = 4 and more higher-quality borrowers start to
enter the pool of potential borrowers again, the lending volume increases, but interest rate
spreads remain high and lending never fully recovers.

While it is individually optimal for banks to tighten lending standards in the long
downturn, it is not socially optimal. For the parameters in Figure 10, optimal policy is to
maintain normal lending standards and can be implemented, for example, with a loan
guarantee program as described in Section 4.3. Under optimal policy, the long downturn in
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Figure 10: Recession and hysteresis.
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Note. This figure shows a credit market in response to two shocks: the green solid line represents a 2-period
downturn, the red dashed line a 4-period downturn. A “downturn” is modeled as a reduction in the inflow
of type-H borrowers. The transitions were computed using µ = 0.66. The other parameters used for this
simulation are as in Figure 4.
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Figure 10 would instead look like an extended version of the short one. With no tightening
of lending standards at the end of period 3, the lending volume would continue its smooth
decline during the fourth year and then slowly rise back to one following the end of the
recession, like a longer version of the two-year downturn. Similarly, the rise in credit
spreads and (ex post) defaults continues to slow, and starts to recover rapidly at the end of
year 4. In short, the credit market deteriorates by less and recovers more quickly.

In Figure 10, we modeled the downturn as a decline in λ, and studied downturns of
different lengths. However, similar dynamics would follow from a downturn in which
recovery rates after loans default, rL, worsened. In this case, banks would maintain normal
lending standards for small declines in rL, leading to no lasting damage to credit markets.
In contrast, deep downturns, in which rL falls enough to trigger tight lending standards,
could trigger permanent declines in lending volume and increases in interest rate spreads
due to the costs of intermediation.

We now turn to another source of tightening of lending standards and propagation of
fluctuations in the real economy—capital constraints.

6 Capital constraints and lending standards

In this section, we show how regulatory or market-based limits on banks’ capacity to lend,
such as from balance sheet constraints, raise lending standards and propagate and amplify
credit crunches through the mechanisms just analyzed.

6.1 Balance sheet constraints

We consider a stylized model of bank balance sheet constraints in which a capital constraint,
V̄t, restricts the amount of lending proportionally by each bank so that

Vt ≤ Vt (22)

where Vt ≡ θt{κHt + κLt(1− zt)} denotes total bank lending. We assume that V̄t grows
exogenously over time so that banks eventually become unconstrained which implies that
the bank optimization problem remains static. We also assume that Vt grows sufficiently
quickly such that, even in the face of fluctuations in exogenous variables, once banks
are unconstrained they remain unconstrained thereafter. We can thus separately analyze
periods in which the constraint, (22), binds and periods in which it is slack.21

21As in Section 3.3, we work here in the limit u→ 0 to simplify the exposition.
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When the constraint stops binding, the equilibrium is as described in Sections 2 and
3. While the constraint binds, each bank charges the interest rate that makes average
borrowers indifferent as to whether to i) apply for a loan when given the opportunity and
so receive rH − r̃t with probability λ, or to instead ii) return to the pool and wait for a
future borrowing opportunity at a lower rate and so get Ja

t . We denote this rate by r̃t so

rt = r̃t (23)

and indifference implies that Ja
t = λ (rH − r̃t). Substituting into (1a), implies J̇t

a
= (ρ+ δ)Ja

t

so that r̃t evolves according to

˙̃rt = −(ρ + δ)(rH − r̃t) (24)

with the terminal condition that at a time τ′, when banks become unconstrained, r̃τ′ =

r(xτ′) with r(x) as in (11) in Proposition 3. Equation (23) replaces the bank zero-profit
condition in our definition of equilibrium. Since (24) implies that r̃t will always lie strictly
below rH, all borrowers accept loans in equilibrium and κHt = κxt and κLt = κ(1− xt).

To understand how capital constraints affect lending standards, consider first the effect
of lending standards on the profits from making one and only one loan which is given by

Πsingle
t (z, r) ≡ xtr + (1− xt)(1− z)rL

xt + (1− xt)(1− z)
− c̃z

xt + (1− xt)(1− z)
(25)

The first term is the expected return on the loan, where xt
xt+(1−xt)(1−z) is the probability that

the borrower is type-H and thus that the bank earns r on the loan, and (1−xt)(1−z)
xt+(1−xt)(1−z) is

the probability that the borrower is type-L and the bank loses rL. The second term is the
expected cost of lending standards and exceeds c̃ because several potential borrowers may
have to be checked before finding one that passes the lending standard. The bank chooses
tight lending standards if Πsingle

t (z̄, r) > Πsingle
t (0, r) which collapses to the condition

xt(1− xt)(r− rL) > c̃. (26)

Given the ability to make one loan, the bank prefers tight lending standards when costs of
screening are low, when the information uncovered has high variance (when xt(1− xt) is
large), and when the losses from lending to type−L borrowers are large (rL large negative).
Most importantly, the propensity to impose tight lending standards is greater the higher r.
Thus binding capital constraints—which endogenously lead to higher interest rates—also
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incentivize tighter lending standards.
The arguments of the previous paragraph apply when the capital constraint is tight in

the sense that it binds even when lending standards are tight and so the desired lending
volume is low. When the capital constraint is at an intermediate level so that it would not
bind if z = z̄ but would bind if z = 0, banks have three possible strategies for lending
standards. First, they can impose tight standards, which generates profits

κ (xt + (1− xt)(1− z))Πsingle
t (z̄, rt).

Since the capital constraint does not bind when banks impose tight standards, the interest
rate equals that in the competitive economy. Thus tight lending standards only occur for
x < x̄. Second, banks can impose normal lending standards in which case total profits are

VtΠ
single
t (0, rt).

Finally, banks can set intermediate lending standards, zt =
1−Vt/κ

1−xt
, such that applying these

standards to all potential borrowers leads banks to make Vt loans.22 At this intermediate
lending standard, bank profits are

κxtr + (Vt − κxt)rL −
1−Vt/κ

1− xt
c̃.

Optimal lending standards are then characterized as follows:

Proposition 6 (Optimal lending standard with capital constraints).

1. (Loose constraint). If Vt > κ, the capital constraint does not bind: all current and future
variables are identical to those in the market without constraints.

2. (Tight constraint; Screening region). If Vt < κxt + κ(1− xt)(1− z), the capital con-
straints binds: There exists a threshold

x̄C
t =

1
2

(
1 +

√
1− 4c̃

rt − rL

)
≥ x̄

such that banks impose tight lending standards, z = z̄, if xt < x̄C
t , and impose normal

lending standards, z = 0, if xt > x̄C
t .

22This strategy has the same payoff as applying the lending standard z̄ to a share 1−Vt/κ
(1−xt)z̄

of borrowers and
lending to the remaining borrowers at z = 0.
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Figure 11: Optimal lending standards with capital constraints
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banks impose intermediate lending standards,
zt =

1−Vt/κ
1−xt

, and the capital constraint binds.

(c) (Unconstrained region) For x < x̄t, banks impose tight lending standards and the
constraint does not bind.

We illustrate Proposition 6 in Figure 11. The figure shows the volume of bank lending
on the vertical axis and the quality of the pool of potential borrowers on the horizontal axis.
The thick (red) line which increases from x to x̄ and then rises to remain at κ from x̄ to 1
displays the equilibrium volume of lending when the constraint does not bind (Proposition
6.1 and 6.3.c). Following Proposition 2, when the credit market is unconstrained, to the
right of x, the lending volume equals Vt = κ and xt rises towards the pooling steady
state; to the left of x, the economy has volume Vt = κxt + κ(1− xt)(1− z) and xt declines
towards the screening steady state.

Strictly below this thick (red) line there are three regions that the credit market can be
in when capital constraints bind. In all three regions, the lending volume is always rising
as capital constraints are (exogenously) relaxing. Similarly, in these constrained regions,
interest rate spreads are always (weakly) declining, following (24).
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In the right “pooling” region (bounded on the left by the curved solid line which
intersects x = xp), the pool quality is high enough that even with binding constraints,
banks set normal lending standards (z = 0) because (26) is not met. Note that credit spreads
are higher than if banks were unconstrained, but not so high that lending standards are
tightened.

By contrast, within the “screening” region, x is low enough given V̄ that lending
standards are tight. For x < x̄, lending standards are simply tight as before without
lending constraints, although again, interest rate spreads are higher than without lending
constraints. However, the more interesting region is the screening region where x > x̄.
Banks would impose normal lending standards if not constrained. But in this region the
volume of lending is sufficiently constrained that banks impose tight lending standards.
As shown in Proposition 6, this region always exists for some range of V̄ < κ and x > x̄.

Focusing on x just above x̄, when V̄ is not too large the credit market is in the screening
region (Proposition 6.2) and banks set tight lending standards. If on the other hand,
V̄ is large enough that banks would be unconstrained if z = z̄, then banks instead set
intermediate lending standards, z ∈ (0, z̄), which are either tightened or loosened over
time as pool quality improves or declines at the chosen lending standards, depending on
the tightness of the constraint (Proposition 6.3.b). The higher (green) convergence path
illustrated in Figure 11 shows an example dynamic path for a credit market which passes
through this “Mix” region.

Figure 11 provides a first illustration of how the effects of balance sheet constraints
can be amplified and propagated by lending standards. For a tight enough constraint
on lending, banks impose tight lending standards not only for x just above x̄ but also at
much higher levels of pool quality such as that at the pooling steady state, xp, and even
higher, x > xp. Thus, even when the market starts at a high pool quality at or above the
pooling steady state xp, tight balance sheet constraints can lead to tight lending standards,
declines in pool quality, and ultimately to convergence to the screening steady state xs that
persists even when the constraint on lending is fully relaxed. An example of this dynamic
is depicted in the lower (blue) convergence path in the Figure 11 and explored in the next
subsection.

6.2 Booms and busts in lending standards and balance sheets

This subsection presents a simulation of a credit market hit by a balance sheet shock to
illustrate the dynamic interaction of lending standards and balance sheet constraints. We
start the economy just to the right of x. Thus, unperturbed, it converges towards the
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Figure 12: Balance sheet constraints and lending standards
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This figure simulates two economies starting at x0 = x. One experiences a shock at t = 0.5, reducing available
capital for loans to V = 0.7. The other experiences a shock at t = 1, reducing capital to V = 0.3. In both
economies, capital improves with V̇ = 0.05. The other parameters used for this simulation are as in Figure 4.

pooling steady state. One may think of this convergence as a “lending boom.”
After some time T, we assume that an unanticipated negative balance sheet shock hits

banks, reducing the volume of loans that they can make to some low level VT, after which
this constraint monotonically increases at exogenous speed V̇. We further assume that VT

is decreasing in T. These assumptions capture the idea of an economic shock at T that
causes greater one-time losses (bigger −rL) for type-L borrowers which have received
loans in the past. These (un-modeled) defaults would then cause banks’ balance sheet
constraints to bind. Further, the longer the “lending boom”, i.e. the convergence towards
the pooling steady state has progressed, the more type-L projects have been funded shortly
before T and the tighter the balance sheet constraints are at T when the shock hits.
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Figure 12 depicts the dynamics for the credit market for T = 0.5 and for T = 1.
When the “short boom”, T = 0.5, bursts, depicted by the solid (green) lines in Figure 12,
balance sheet constraints bind, both reducing the volume of lending and tightening lending
standards. Credit credit spreads rise, and the quality of lending rises (default rates fall).
Tight lending standards cause the pool quality to start declining over time, an effect which
amplifies the initial downturn in the credit market. However, because the exposure to the
aggregate shock VT is not yet that large, this amplification is temporary and goes away as
the balance sheet constraint relaxes.As banks grow out of the balance sheet constraint, they
start to relax lending standards, partially at first, but then more over time as the constraint
relaxes further and as pool quality starts to increase. Ultimately, the economy converges to
the pooling equilibrium as the balance sheet constraint on lending ceases to bind. These
dynamics are those depicted in the upper (green) convergence path in Figure 11.

When the “long boom”, T = 1, bursts, as depicted by the dashed (red) lines in Figure 12,
lending standards increase as when the short boom ends, but lending volume declines
further because the capital constraint VT is tighter than following the short boom. Credit
spreads increase by more than in the short boom both because it will be longer until lending
is unconstrained and because when it is unconstrained, interest rates are higher because
the pool quality is lower. As following the short boom, tight lending standards amplify
the credit downturn, but after the long boom there is a sufficiently long period with tight
lending standards that the credit crunch becomes becomes permanent. Persistent tight
lending standards reduce the pool quality sufficiently such that the market converges to
and remains at the screening steady state even when the balance sheet constraints have
passed. As pictured in Figure 12, because lending standards are never relaxed, lending
never returns to its pre-crisis level and credit spreads remain permanently high. These
dynamics are those depicted in the lower (blue) convergence path in Figure 11.

These experiments emphasizes that lending standards can amplify and propagate the
negative effects of capital losses on credit markets. Capital constraints on lending not
only lead to declines in lending and increases in spreads, but by incentivizing tighter
lending standards, they further increase credit spreads, and can slow recovery or even
cause self-reinforcing dynamics that perpetuate high interest rate spreads, low lending
volumes, and tight lending standards.

6.3 Constrained-efficient policy when capital constraints bind

While we assume that the evolution of VT is exogenous, our example illustrates that a richer
version of our model, which links VT to the amount of type-L loans on banks’ balance
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sheets, would similarly imply that the longer an economy is in the pooling region, the
more constrained banks will be upon impact of the shock. In such a model with an explicit
capital constraint, the planner may find it optimal to pursue policies to loosen lending
standards if capital constraints tighten lending standards in a crash. To be slightly more
precise in the context of our model, there is a region in Figure 12 just to the left of the
cutoff between pooling and screening or mixing, in which the planner who can control
only lending standards prefers normal lending standards. This policy prescription follows
for the same arguments as in section 4.1 and because, conditional on lending, the interest
rate charged by banks only determines the division of surplus.

However, there are two interesting and informative differences between optimal lending
standards policy with and without capital constrains (as described in Section 4). First,
with a constraint on lending, the optimal cutoff for normal vs. tight lending standards
from the planner perspective is not the same as x̄∗, and in fact a planner facing capital
constraints chooses to intervene in a wider range of situations for the following reason.
Lending volume is lower when capital constraints bind relative to a situation without a
constraint on lending, so that the costs of imposing normal lending standards in the present
are lower. Lending volume rises over time, so that the benefits of normal standards later
are more valuable. Thus, a constraint on lending increases the private incentive to raise
lending standards but also reduces the cost of polices to normalize them again.

The second difference of note is that when lending standards are tight due to only to
the capital constraint, an interest rate cap can increase efficiency by normalizing lending
standards at no fiscal cost. This optimal policy can be implemented by entering the market
and lending with normal standards so as to relax the market-wide lending constraints.
Examples of this type of program include asset purchases aimed at normalizing spreads
associated with new loans, such as those pursued by the U.S. policymakers following the
2008 financial crisis (e.g. the first round of quantitative easing in 2008-09) and the pandemic
recession (the Main Street lending program in 2020).

While we have discussed only policies to change lending standards when a constraint
on lending binds, optimal policy may be to increase capital requirements prior to the crash
so that the constraint is less binding and lending standards are not tightened during a
crash. Our model of capital constraints is of course too simple to capture the benefits
and costs of policies to recapitalize banks with any realism. However, our analysis does
highlight another benefit of recapitalization. When x̄C(xt) > xt > x̄ and lending standards
are tight, recapitalizing banks not only increases lending volume but also has the benefit of
decreasing lending standards.
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7 Discussion of assumptions and extensions

We discuss the importance of several modeling assumptions and sketch model extensions.

7.1 Borrower effort to raise project quality

Suppose that borrowers could exert effort to improve the quality of their projects. Will this
change our model’s predictions? To investigate this question, we sketch a simple extension
of our model.

Suppose that after an average borrower is matched with a bank, but before he is
screened, the borrower chooses private costly effort, where more effort increases the
likelihood of being a type-H borrower. The effective share of type-H borrowers in the pool
now depends on borrower effort. Let x denote this effective pool quality. Banks take x as
given so that a bank’s problem is unchanged. A type-H borrower with an opportunity
to fund a project receives a payoff rH − rt(xt) + u while a type-L borrower receives an
expected payoff of (1− z)u + zJr

t . With small u (and hence small Jr
t ), the payoff to a type-L

borrowers is independent of lending standards (their payoff is always zero). Thus, in this
case, the payoff to a type-H borrowers, rH − rt(xt), determines the incentive to be type-H
relative to type-L. This incentive is decreasing in x through higher interest rates. So a
larger x associated with tighter lending standards is associated with a lower incentive to be
type-H relative to type-L. 23

Note that if tight lending standards increase the incentive to be type-L, then our strategic
complementarity would be even stronger, possibly to the extent of leading to equilibrium
multiplicity. The reason for this is that whenever the effective pool quality xt is low, not
only are banks screening, further reducing future pool quality; but due to higher credit
spreads, fewer borrowers now exert effort, reducing current effective pool quality. Thus,
the complementarity at the core of this paper is amplified.

7.2 Screening with contracts

Rejected borrowers know they are type-L. Our modeling assumptions imply that banks
cannot use contract terms like fees or covenants to screen out these low-quality borrowers.

Consider instead a situation in which banks use collateral requirements to screen
potential borrowers. Let borrowers be endowed with a collateral asset and suppose banks

23When u > 0, there is a countervailing force that increases the incentive to be type-H. This is that a type-L
borrower gets funded sooner when lending standards are loose, but this incentive is proportional to the small
utility benefit.
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require borrowers to post their collateral to receive a loan. As long as the value of the
collateral exceeds the private benefits, previously rejected borrowers would not apply for
loans if all banks require collateral. In this situation, the strategic complementarity remains,
but the negative externality is eliminated.

However, in practice, several issues arise. First, when private benefits are unknown
to banks, as long as the private value is greater than the collateral value for some type-L
borrowers, they still apply for loans. In this case, collateral does not resolve the negative
externality. Second, collateral values vary, and banks may be able to acquire costly private
information about this value (e.g. appraise the collateral). In this case, the share of
borrowers with good collateral would determine whether banks applied normal or tight
lending standards to the collateral of borrowers, and these lending standards would
act much like those in our model, exhibiting strategic complementarities and negative
externalities among banks.

7.3 Credit bureaus

One reason underlying the negative externality from tight lending standards is the assump-
tion that information on previous rejections is unobservable and non-verifiable. Does this
mean our model is inapplicable to credit markets in which credit bureaus track potential
borrowers?

First, note that our model applies to information above and beyond publicly available
information. As we described, it applies to potential borrowers within a given credit score
bracket, which summarizes the past credit information contained in the credit bureau.
Second, credit bureaus typically do not track much of the information that lenders might
investigate prior to making a loan, and that might be uncovered by tight lending standards
in our model. Appendix C contains extensive details about the prevalence, coverage, and
information provided by credit bureaus around the world. None of the countries that we
investigated have credit bureaus that report whether credit was denied or instead turned
down by the potential borrower. While many credit bureaus, like consumer bureaus in
the US, delineate whether a credit check is hard, meaning associated with an application
for credit, or soft, due to account review, marketing, or possibly hiring, only about half of
the credit bureaus report the purpose of previous credit checks. Even with information
on hard credit checks, lenders typically cannot tell whether a potential borrowers who
recently applied for a loan, applied for a mortgage, a car loan, or a credit card (again, see
Appendix C for details).24

24Further, a past credit check without a subsequent loan does not indicate that a given borrower failed a
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Finally, we note that our model may apply even in situations in which credit bureaus
accurately track borrowers if lending standards are applied to collateral instead of borrow-
ers. That is, if tight lending standard evaluate and reject on the basis of collateral (e.g. an
appraisal of a house), then credit bureaus do not address the externality of tight lending
standards because they track borrowers, not the assets they wish to fund.

Given the negative externality in our model, why do credit bureaus not arise to track
rejections fix the negative externality? Our model suggests that bureaus do not track credit
rejections because it is not incentive compatible for a bank borrow pair to report a negative
evaluation or to report a rejection.25 Statements from credit bureaus are consistent with
this reasoning and suggest that credit bureaus are unable to enforce the reporting of soft
information that it is not privately optimal to report (see Appendix C).

We conclude that mature credit markets in legal environments with low-cost enforce-
ment mechanisms may exhibit various mechanisms that mitigate but unlikely eliminate
the negative externality associated with tight lending standards.

7.4 Further non-essential assumptions

We simplified the analysis by assuming that the banking sector is competitive so that banks
make zero profits. We conjecture that the qualitative features of the steady-states, dynamics
and welfare results would remain if banks shared the surplus of a match with a given
potential borrower.

Do our main results rely on our specific screening technology? Our screening technology
never mistakes a type-H for a type-L. Such mistakes would imply that borrowers who
are screened do not learn their type with certainty, and so there would be a distribution
of beliefs among potential borrowers, with beliefs depending on the number of times a
borrower had been screened and rejected for a loan. Such complexity would change the

past lending standard. The borrower may have applied for a job, or may have simply decided not to take the
loan (decided not to buy that house or car, or decided to pick a different credit card). Importantly, in practice,
lenders can evaluate potential borrowers before verifying their information via a credit report and leave no
trail of credit checks for rejected borrowers. That is, as is common in mortgage markets for example, banks
can fully apply their lending standards on the basis of information reported by the borrower and additional
information gathered by the bank, and only verify information with a credit report for borrowers that pass
the lending standard. Thus many applications are not recorded.

25Other models suggest different reasons. For example Axelson and Makarov (2019) show the striking
result that introducing a credit registry that tracks borrowers’ loan application histories but not the borrowing
rates offered can lead to more adverse selection and quicker market breakdown. In that model, acquiring
information on a borrower is costless and the result follows from the fact that a lender who knows that a
borrower’s offer was rejected does know whether the borrower was bad or whether the borrower made a
too-low interest rate offer.
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exact formula for ẋ. And it would complicate the analysis of the slow thawing region by
potentially making possible regions with different speeds of slow thawing. Apart from
this region however, since borrowers with different beliefs behave identically in the model
(outside of any slow thawing region), our main results would remain intact.

Other changes to the screening technology are less consequential. Our model can easily
incorporate a screening technology with a cost that is non-linear in the lending standard
z. Concavity replicates our current results. Convexity would imply that rather than
necessarily screening at a level of z̄, banks might choose a lower level instead, equating
the marginal benefit and cost of screening. Then a bank’s lending standard would be
increasing in x. There is also the possibility of more than two steady states, which occurs
when the optimal lending standards line in Figure 2 decreases more smoothly and so has
more intersections with the ẋ = 0 line. We assumed that screening produces a binary signal,
and it would be inconsequential to instead assume a continuous signal as banks would
simply choose a cutoff value for their binary lending decision. Lastly, if screening were
correlated across banks, this would increase the strategic complementarity at the heart of
our model since when one bank screens and rejects a potential borrower, it makes it easier
for the next bank to detect that borrower as bad and so raises the private value to screening.

Finally, our model has debt contracts. But there is an equity contract that delivers
exactly the same payoffs to banks and borrowers of each type. This equivalence arises
because the model has only two types of borrowers. With more types, our model could
become significantly more complex in general. While the degree of complexity would
depend on how well the screening technology detected different types, the extensions we
have considered have all involved more state variables, which raises the possibility of
non-linear dynamics that can occur in such systems.

8 Concluding remarks

We develop a dynamic theory of lending standards, based on two intuitive ideas. First,
tighter lending standards lead to the rejection of unprofitable loan applications. And
second, it is not costless for banks to identify unprofitable applicants, even those previously
rejected by other banks. These two ideas give rise to a dynamic strategic complementarity
between banks, which leads to more persistence in lending standards than in business
cycles themselves. The ideas also generate negative externalities of tight lending standards,
implying that lending standards are too tight for too long after negative shocks.

Which markets does our theory apply to? These principle ideas provide some guid-
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ance. The first idea is likely true for any kind of lending standard. The second suggests
that markets in which borrowers are likely to shop for loans from multiple lenders are
particularly exposed to the results in this paper. This includes markets in which borrowers
have pre-existing relationships with many lenders (such as corporate lending markets)
and markets in which borrowers need to roll over loans (as this raises the likelihood of
looking for loans after rejection). In addition, the second idea requires lenders to rely
on costly private information when applying lending standards. In contrast, markets in
which borrowers have limited ability or need to approach multiple banks, or in which the
outcome of lending depends purely on public information, are unlikely to be subject to the
conclusions from our theory.

Our paper opens up several avenues for future research that build on our model and
analysis of the negative externality associated with tight lending standards. For example,
the government intervention that is analyzed effectively assumes that the negative shock
that put the market on the path to the inefficient steady state is expected to never recur. But
suppose it might recur. Is government intervention still optimal? Addressing this question
requires a specification of the social cost of a government policy, e.g., a subsidized loan
guarantee. We expect that it can be shown that if the likelihood that the shock recurs is low
enough, then government intervention will be value enhancing. This is because with a low
probability of a negative shock, the cost of an intervention can be amortized over a longer
period of time.

Another interesting extension is to investigate the interaction of lending standards
with other factors that drive bank profits and dynamic choices, such as variation in the
competitiveness of the banking sector or dynamic choices of capacity to perform careful
evaluation of borrowers. Similarly, we study the effect of simple, exogenous capital
constraints on lending volume, and there may be interesting feedback dynamics from
lending standards back into bank balance sheets and constraints. Finally, our analysis is
partial equilibrium, an analysis of a single lending market. An interesting question is how
and whether lending standards interact across credit markets, and how general equilibrium
effects through interest rates in particular feed back into lending standards.
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A Proofs and derivations

A.1 Steady state equilibria: Proof of Proposition 1

The three pairs (x, z) mentioned in Proposition 1 are solutions to (8) and (9) if λ > x, xs < x,
and λ−x

λ−λx
(
1 + δκ−1) < z. The first two of these hold by Assumption 2 and the third is a

straight consequence of the second.
We claim that the three pairs indeed constitute equilibria, with θ = 1, ϕa = ϕr = 1 and

with r pinned down by Proposition 3. To prove this, first note that the law of motion (6) as
well as the bank’s maximization problem (4) are satisfied due to (8) and (9). The zero profit
condition (5) pins down the interest rate (see our proof to Proposition 3). Finally, in any
steady state the average borrower strictly prefers a loan today, that is,

λ (rH − r + u) + (1− λ)(1− z)u + (1− λ)zJr − Ja > 0,

and since r ≤ rH (which holds since xs ≥ x with x as in (10) due to Assumption 2) we have
that θ = 1 and ϕa = ϕr = 1.

A.2 Proof of Corollary 1

The flow of projects being funded in the pooling steady state is κ, compared to κxs + κ(1−
xs)(1− z) in the screening steady state. The credit spread result follows directly from
Proposition 3 and the fact that r(x) is strictly decreasing in x. The equilibrium default rate
is given by

κ(1− x)(1− z)
κ(1− x)(1− z) + κx

=

(
1 +

x
(1− x)(1− z)

)−1

which can further be simplified to

(1− λ)

(
1 +

λzδκ−1

(1 + δκ−1)(1− z)

)−1

.

Thus, when δ = 0, the equilibrium default rate is always equal to 1− λ, irrespective of the
steady state.

48



A.3 Proof of Proposition 2

Begin with x0 ∈ (x, λ]. In that case, z = 0 is is the optimal bank strategy (see (4)), and
therefore the law of motion of x, (6), reads

ẋt = κ(1− xt)λ− κxt(1− λ) + δ(λ− xt) = (κ + δ)(λ− xt) > 0

which is positive for any xt < λ, implying convergence to the pooling steady state.
Next turn to x0 ∈ [x, x). In that case, z = z is the optimal bank strategy (see (4)), and

therefore the law of motion of x, (6), reads

ẋt = κ(1− xt)(1− z)λ− κxt(1− λ) + δ(λ− xt) = (δ− κzλ + κ) (xs − xt)

implying convergence to the screening steady state.
For x0 < x, note that θt = 0 and so

ẋt = δ(λ− xt) > 0

implying that the pool quality improves until it crosses x and thereafter converges to the
screening steady state.

The case of x0 = x is straightforward as x is already a steady state.

A.4 Proof of Proposition 3

The zero profit condition (5) implies that

Π(R) = κHr + κL(1− z)rL − (κH + κL)c̃z = 0.

Reformulating this we obtain

κxr/rL + κ(1− x)(1− z) + κcz = 0

r = −rL
cz + (1− x)(1− z)

x
which proves Proposition 3.
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A.5 Proof of Proposition 4

Define θ(x) as in (12) and define x̂ implicitly as the unique value of x < λ with θ(x) = 1.
Such a value exists since θ(x) is strictly increasing and continuous in x with θ(0) =

−δκ−1 < 0 and limx→λ θ(x) = ∞.
Assume x̂ > x. Conjecture for any x0 ∈ [x, x̂) that the equilibrium is one with θt = θ(xt).

To verify the conjecture, we need to show that average borrowers are indifferent between
taking a loan and waiting. Assuming u→ 0 in (1a), this is equivalent to

Ja
t = λ(rH − r(xt))

with
ρJa

t = J̇a
t − δJa

t .

Putting the two together, we obtain (13),

−λr′(x)ẋ = (ρ + δ)λ (rH − r(x)) .

The law of motion for x with θ < 1 is ẋt = (κθ + δ)(λ − x), which, together with (13)
yields (12) and therefore confirms that average borrowers are, by construction, precisely
indifferent.

A.6 Proof of Corollary 3

By Assumption 2, c ≥ 1− λ. Therefore, welfare in the screening steady state is bounded
above,26

Ws = xsrH − (1− z) (1− xs) rL − c̃z = xs rH

−rL
− (1− z) (1− xs) rL − cz

≤ xs rH

−rL
− (1− xs) (1− z̄)− (1− λ)z = xs

(
rH

−rL
+ 1− z

)
− (1− λz)

Welfare in the pooling steady state is Wp = λ( rH
−rL

+ 1)− 1. Observe that Ws increases in
xs, so Ws can only ever be above Wp if xs is as large as possible. Clearly, given the formula

26We define all welfare expressions here as multiples of κ, for expositional clarity. κ multiplies both Ws and
Wp equally.
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for xs, xs is largest as a function of δ if δ = ∞ where xs = λ. In that case, we find

Ws ≤ xs
(

rH

−rL
+ 1− z

)
− (1− λz) < λ

(
rH

−rL
+ 1− z

)
− (1− λz) = λ

(
rH

−rL
+ 1
)
− 1 = Wp

Therefore, welfare of the pooling steady state always dominates that of the screening steady
state.

A.7 Proof of Proposition 5

We prove Proposition 5 in two steps. First, we determine the efficient screening policy
z∗(x) conditional on banks operating. Then we determine the optimal behavior for banks
to operate θ∗(x).

A.7.1 Optimal screening policy z∗(x)

To do so, let V(x, z) denote the present value of welfare if the current state of the market is
x and the screening policy is z from hereafter, that is,

V(x, z) ≡ ρx + αzxz

ρ + αz rH + (1− z)
(

1− ρx + αzxz

ρ + αz

)
rL − c̃z. (27)

where αz ≡ κ + δ− λκz and xz ≡ λ− λ
(1−λ)z

(1−λz)+δκ−1 . Also, denote by

v(x, z) ≡ ρ {xrH + (1− z)(1− x)rL − c̃z} (28)

the flow value of policy z at state x. Finally, we call

d(x, z) ≡ κ(1− x)(1− z)λ− κx(1− λ) + δ(λ− x) (29)

the derivative of x at state x under policy z (see the law of motion in (6)). Observe that

ρV(x, z) = v(x, z) + Vx(x, z)d(x, z) (30)

as well as
d(xs, z) = 0 d(xp, 0) = 0. (31)

We first prove the following helpful lemma.

Lemma 1. We have:
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1. If λκr∆ ≥ ρ + κ + δ, pooling is strictly optimal for any state x, i.e. z∗(x) = 0.

2. If λκr∆ < ρ + κ + δ, V(x, z) has negative cross-partials, Vxz < 0.

3. If λκr∆ < ρ + κ + δ and V(x, 0) > V(x, z1) for some z1 > 0, then also V(x, 0) >

V(x, z2) for any z2 ∈ (0, z1).

Proof. Assume λκr∆ ≥ ρ + κ + δ. Suppose pooling were not strictly optimal for every state
x. First, if d(x, z∗(x)) is ever negative for some x < λ, there must be a steady state at some
x0 ∈ [0, λ) with some z0 = z∗(x0) > 0. This cannot be optimal since

V(x0, z0) < V(x0, 0)

is equivalent to (after a few lines of algebra)

−
(

ρ + (1− λ)αp − ρx0
) (

r∆κλ− (ρ + κ + δ)
)
< (ρ + αs)(ρ + αp)c

which is true since the left hand side is negative. Second, assume d(x, z∗(x)) is positive
everywhere. Then, xp = λ is still the unique steady state. Let V(x) be the optimal value
function. It has to hold that

rV(x) = v(x, z∗(x)) + V′(x)d(x, z∗(x)). (32)

Rearranging,

V′(x) =
rV(x)− v(x, z∗(x))

d(x, z∗(x))
≡ F(V(x), x).

Compare this to the ODE describing the value of pooling,

Vx(x, 0) =
rV(x, 0)− v(x, 0)

d(x, 0)
= F0(V(x, 0), x)

Observe that F(V, x) > F0(V, x) for any x for which z∗(x) > 0.27 Since V(xp) = V(xp, 0),
it must be that V(x) < V(x, 0) for some x if there is a positive measure where z∗ > 0.
This contradicts our assumption that V(x) is the optimal value function. Thus, pooling is
optimal for every state.

Assume λκr∆ < ρ + κ + δ. Simple algebra based on (27) implies that

Vx =
ρ

ρ + αz rH + (1− z)
r

ρ + αz rL > 0

27Note that V′(x) > 0 by a simple envelope argument.
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and

Vxz = ρ
λκr∆ − (ρ + κ + δ)

(ρ + αz)2rL
< 0.

For point 3 in the lemma, fix x ∈ [0, λ]. Define the positive constants

c0 ≡
ρx + λκ + λδ

λκ
, c1 ≡

ρ + κ + δ

λκ
, c2 ≡ r∆, c3 = −rL

Then, after some algebra, we can write

V(x, z) = (1− z)rL − c̃z + c3
c0 − z
c1 − z

(c2 − z)

= rL − c̃z + c3 (c0 + c2 − c1) + c3
(c1 − c2) (c1 − c0)

c1 − z

c1 is always greater than c0. Also, given λκr∆ < ρ + κ + δ, c1 is greater than c2. Therefore,
V(x, z) is a convex function in z, and thus in particularly quasi-convex, from which the
stated property follows.

In the next lemma, we narrow down the set of optimal policies using the necessary (but
not sufficient) first order conditions of (14).

Lemma 2. Describe an efficient screening policy z∗(x) by the following general form: Let I1, I2, I3 ⊂
[0, λ] be (possibly empty) connected intervals such that I1 ≤ I2 ≤ I3, I1 ∪ I2 ∪ I3 = [0, λ], and

• z∗(x) = z for x ∈ I1

• z∗(x) ∈ [0, z] for x ∈ I2

• z∗(x) = 0 for x ∈ I3

where we construct I1 to be the largest connected interval where z∗(x) = z, and similarly I3 for
z∗(x) = 0.

Then: If I2 is non-empty (and thus z∗(x) not bang-bang), there exists a x0 ∈ I2 with
d(x0, z∗(x0)) = 0.

Proof. We begin by writing down the necessary first order conditions of (14). Denoting by
η the costate of x, we have the law of motion

η̇ = ρη − κ {rH − (1− zt)rL}
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Figure 13: Phase diagram for constrained efficient problem
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as well as the first order condition for z, showing that zt = z if

κ {−(1− xt)rL − c̃} − η (κ(1− xt)λ) > 0 (33)

and zt = 0 if (33) hold with “<” inequality; with equality, zt can be anywhere in [0, z].
Together with the law of motion of x in (6), this gives a system of two ODEs. We first

note that there are three possible steady states. The two steady states for z = 0 and z = z,
as well as a third one, z = z0 pinned down by η̇ = ẋ = 0 and (33) holding with equality,

−rL

λ
− c̃/λ

1− x0 =
κ

ρ

{
rH − (1− z0)rL

}
(34)

where

x0 = λ
1− z0 + δκ−1

(1− λz0) + δκ−1 . (35)

Observe that, after substituting (35) into (34), the left hand side of (34) is increasing in z0,
while the right hand side is decreasing, so there is at most a single solution to (34).

Now consider the phase diagram in Figure 13. As can be seen, there are 3 types of
candidate optimal paths. Type 1 converges to xs, with z = z along the path and constant
η; Type 3 converges to xp, with z = 0 along the path and constant η; and finally type 2
converges to x0 as in (35). Observe that the second type of paths only works if z0, x0 exist,
solving (34) and (35).
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This implies that, unless the optimal policy z∗(x) is bang-bang, there has to exist a x0

with d(x0, z∗(x0)) = 0.

With this result in mind, we assume in the following that λκr∆ < ρ + κ + δ and
characterize z∗(x).

Lemma 3. Assume λκr∆ < ρ + κ + δ. The efficient screening policy z∗(x) is to screen if x < x∗

and to pool if x > x∗, where
V(x∗, 0) = V(x∗, z) (36)

as long as the solution to that equation is greater or equal to xs. Otherwise, x∗ is determined by

vz(x∗, 0) + Vx(x∗, 0)dz(x∗, 0) = 0. (37)

Proof. First, notice that x∗ is indeed well-defined, in that if the solution to (36) is xs, then
(37) is also solved by xs. Assume

V(xs, 0) = V(xs, z).

Combining (30) and (31), we can rewrite V(xs, 0) and V(xs, z) and obtain

v(xs, 0) + Vx(xs, 0)d(xs, 0) = v(xs, z) + Vx(xs, z)d(xs, z).

Since d(xs, z) = 0, this can be combined into

v(xs, z)− v(xs, 0) + Vx(xs, 0) (d(xs, z)− d(xs, 0)) = 0 (38)

which is equivalent to (37) as v and d are linear in z. Moreover, going these steps backwards,
if x∗ < xs, then (38) holds with inequality and therefore

V(xs, 0) > V(xs, z). (39)

Now we proceed to our main argument, a proof by contradiction. We distinguish four
possible cases.

Case 1: There exists x > x∗ with x ≥ xs where pooling is not optimal. If true, by
Lemma 2, this would require there to be at least one point x0 ∈ [x∗, λ) where the planner
strictly prefers to remain at x0 forever (by choosing strategy z0 ∈ (0, z] such that d(x0, z0) =
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0) over pooling. In math,
V(x0, z0) > V(x0, 0).

Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) >

V(x∗, 0) and V(xs, z0) > V(xs, 0), which, by point 3 in Lemma 1, is contradicting either
(36) or (39).

Case 2: There exists x < x∗ with x ≥ xs where screening is not optimal. If true, by
Lemma 2, this would require there to be at least one point x0 ∈ (xs, x∗] where the planner
strictly prefers to remain at x0 forever (by choosing strategy z0 ∈ [0, z) such that d(x0, z0) =

0) over screening. In math,
V(x0, z0) > V(x0, z).

Since V has a negative cross-partial Vxz < 0 (Lemma 1), this implies that V(x∗, z0) >

V(x∗, z), which by point 3 in Lemma 1, contradicts (36).

Case 3: There exists x > x∗ with x ≤ xs where screening is optimal. If true, this would
require there to be at least one point x0 ∈ [x∗, xs] where the planner strictly prefers to screen
with some intensity z0 > 0 in the current instant while pooling is chosen thereafter. That is,

v(x0, z0) + Vx(x0, 0)d(x0, z0) > v(x0, 0) + Vx(x0, 0)d(x0, 0).

Due to linearity of this equation, it also has to hold with z0 = z, and therefore also expressed
as derivative,

vz(x0, 0) + Vx(x0, 0)dz(x0, 0) > 0. (40)

Since this is a linear equation in x0, to be consistent with (37), it must be that (40) in fact
holds for any x0 > x∗, including x0 = xp = λ. In that case, however, (40) simplifies
to vz(xp, 0) + Vx(xp, 0)dz(xp, 0) > 0, which is false, since Vx(x, 0) > 0, dz(x, 0) < 0 and
vz(xp, 0) = −κrL (c− (1− λ)) < 0 by Assumption 2.

Case 4: There exists x < x∗ ≤ xs where pooling is optimal. Let V(x) be our conjectured
value function left of x∗. By design, V(x) solves

ρV(x) = v(x, z) + V′(x)d(x, z)
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where d(x, z) = αz(xs − x) and V′(x) solves

(r + αz)V′(x) = vx(x, z) + V′′(x)d(x, z).

This ODE can be solved explicitly, giving28

V′(x) = ρrL

(
r∆

ρ + αp −
r∆ − z
ρ + αz

)(
xs − x
xs − x∗

)−β

+ ρrL
r∆ − z
ρ + αz

where β = 1 + ρ
αz . The coefficient on the first term is positive, since we assumed r∆λκ <

ρ + κ + δ. Thus, V′(x) is bounded above by

V′(x) ≤ V′(x∗) = r(1− RL)
r∆

ρ + αp . (41)

Could it ever be that the planner prefers pooling in this region? If so, we would have an
x < x∗ with

vz(x, 0) + V′(x)dz(x, 0) < 0

which due to (41) and the fact that dz(x, 0) = −κλ(1− x) < 0 implies that

vz(x, 0) + V′(x∗)dz(x, 0) < 0.

Using the expressions in (28) and (29) we then see that this cannot hold as the left hand
side is zero at x∗ (by definition), and has a negative slope throughout,

vxz + V′(x∗)dxz = ρrL

[
−1 +

r∆λκ

ρ + αp

]
< 0

where again we used r∆λκ < ρ + κ + δ. This is a contradiction: there cannot be an x < x∗

where pooling is optimal.

A.7.2 Optimal bank operation policy θ∗(x)

Next we focus on the optimal policy θ∗(x) for banks to operate. We prove the following
result.

Lemma 4. If it is strictly optimal to have banks operate at x∗, the optimal policy describing when

28Note that vx(x, z) is a constant in x.
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banks operate is bang-bang, that is,

θ∗(x) =

0 x < x∗

1 x > x∗
(42)

The threshold x∗ is the supremum of all x ∈ [0, λ] that solve

v(x, z∗(x)) + V′(x) (κ (λ− x)− κ(1− x)z∗(x)λ) < 0 (43)

where V(x) is the value function associated with the optimal screening policy z∗(x).

Proof. Let x∗ be defined as in (43) and let V(x) be the value function conditional on banks
operating with screening policy z∗(x). If it is optimal for the planner to follow the bang-
bang policy (42), then its value function for x ≥ x∗ is given by V(x), whereas for x < x∗

the value function solves
ρV(x) = V′(x)δ(λ− x)

which can be solved to express the marginal value in state x as

V′(x) = V′(x∗)
(

λ− x
λ− x∗

)−1−ρ/δ

.

Observe that this is increasing in x. To prove that the bang-bang policy (42) is indeed
optimal, we need to prove that

max
z∈[0,z]

v(x, z) + V′(x)d(x, z, 1) ≤ max
z∈[0,z]

V′(x)d(x, z, 0) (44)

for x < x∗, where

d(x, z, θ) ≡ θκ(1− x)(1− z)λ− θκx(1− λ) + δ(λ− x)

is the speed at which the pool improves given (x, z, θ). Simplifying (44), we obtain

max
z∈[0,z]

v(x, z) + V′(x) [κλ(1− z)− κx(1− zλ)] ≤ 0.

The left hand side of this inequality has a negative cross-partial in (x, z), since vxz < 0 and
V′(x)(1− x) ∝ (λ− x)−ρ/δ 1−x

λ−x increases in x. Thus, given that z = z is optimal for x = x∗,
it is also optimal for any x < x∗.
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The problem then reduces from (44) to showing that for x < x∗

F(λ− x) ≡ v(x, z) + V′(x) [κλ(1− z)− κx(1− zλ)] < 0. (45)

To see this, we first show that F(y) is quasi-concave (only has a single local maximum) and
therefore can at most have two roots. F(y) is of the form

F(y) = −F0y + F1y−α−1(y− y0) + const

where α = ρ/δ > 0, F0 = ρrH + ρ(1− z)rL > 0, F1 = κ(1− λz)V′(x∗)(λ− x∗)1+α > 0 ,
y0 = λ− xs > 0. F can only ever have a single local maximum as long as these parameters
are positive:

F′(y) = 0 ⇔ y−α−2 [(1 + α)y0 − αy] = F1/F0

The left hand side of this equation is strictly decreasing for y ∈ (0, (1 + α)y0/α) with range
(0, ∞) and thus admits a unique solution for any F1/F0 > 0. This establishes that F(y) is
quasi-concave.

Since F(y) is quasi-concave, it admits at most two roots, y1 < y2, in between which
F(y) is positive, and negative outside of [y1, y2]. Root y2 must correspond to λ− x∗: if y1

were to correspond to λ− x∗, x∗ would not be the supremum of x with F(λ− x) < 0 since
for any ε > 0 small enough, F(λ− (x∗ − ε)) > 0. But if y2 = λ− x∗, then F(λ− x) < 0 for
any x < x∗, which proves (45).

A.8 Proof of Proposition 6

There exists x̄C ≥ x̄ such that banks screen if x < x̄C and V̄t < κxt + κ(1− xt)(1− z̄).
Banks prefer to screen at rate z> 0 iff

xtrt + (1− xt)(1− z)rL

1− (1− xt)z
− c̃z

1− (1− xt)z
> xtrt + (1− xt)rL

which simplifies to

0 > (rt − rL)x2
t − (rt − rL)x + c̃.

The roots are

xC
t =

1
2

[
1±

√
1− 4c̃

rt − rL

]
(46)
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where we denote the larger one by

xC
t =

1
2

[
1 +

√
1− 4c̃

rt − rL

]
.

As c̃→ 0, the two roots (46) converge to 0 and 1, meaning tight standards everywhere.

Proof that x̄C
t ≥ x̄. We first prove a useful property. The interest rate at x in the uncon-

strained equilibrium is given by

r(x) = (−rL)
1− x

x
.

With this interest rate we find a cutoff xC of

xC(r = r(x)) =
1
2

[
1 +

√
1− 4c̃

r(x)− rL

]
= 1− c = x. (47)

Next we prove that x̄C
t ≥ x̄ more generally. We proceed by contradiction. Suppose

there existed an x0 < x and a continuous unbounded increasing function Vt starting with
V0 < κx0 + κ(1− x0(1− z) such that pooling is optimal, that is, x0 > xC

t . Observe that
since r̃t declines monotonically along the transition and xt increases, this also implies that
xt > xC

t at any future time t. Thus, pooling remains optimal.
Let T be the time at which banks become unconstrained. It has to be the case that

xT > x. If not, we would have a contradiction since xC
T < xT per the discussion above, but

at the same time
xC

T = xC(r = r(xT)) > xC(r = r(x)) = x

following from (47) and the fact that r(·) is monotone (Proposition 3). Thus, xT > x.
Now compare the path xt that ultimately reaches xT to a different path that reaches

xT. This second path has unconstrained banks and begins an ε to the right of x. On
its way to the pooling steady state, it crosses xT. Observe that this second path has a
slower decline in the interest rate rt as average borrowers are not indifferent along the
path, 0 > ṙt > ˙̃rt. Moreover, the transition along the second path is faster as banks are
unconstrained. Together, this implies that the initial interest rate r̃0 along the first path
must have been greater than the initial interest rate r(x) along the second path. But this
means that

xC(r = r̃0) > xC(r = r(x)) = x
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which is a contradiction to our assumptions x0 < x and x0 > xC(r = r̃0) = xC
0 .

The case κxt + κ(1 − z̄)(1 − xt) < Vt < κ. Consider first xt > x̄. If banks were to
impose tight lending standards, zt = z̄ , then they would be unconstrained and the interest
rate equals the interest rate in the competitive equilibrium. At the competitive interest
rate, banks prefer tight lending standards only if xt ≤ x̄. Thus for xt > x̄, it can only
be that zt < z̄ and we need only consider whether normal lending standards dominate
intermediate ones. The largest zt that does not make banks unconstrained is zt =

1−Vt/κ
1−xt

.
Given our derivation in Section 6 and the fact that z did not enter (26), pooling is

preferable if and only if xt > xC
t . For xt < xC

t , zt =
1−Vt/κ

1−xt
is the optimum. For xt ≤ x,

banks can screen without binding constraints. Given xt < xC
t , this is their optimal policy.

B Model with non-constant pool size

For this section, we assume that the pool size is not constant. We demonstrate that this
economy gives rise to the exact same steady states and the exact same welfare predictions.29

B.1 Equilibria

Without a constant pool size, there are two state variables: mH, the number of type-H
borrowers in the pool and mL, the number of type-L borrowers in the pool. The laws of
motion of the state variables are given by

ṁH = δλ− δmH − κmH (48)

ṁL = δ(1− λ)− δmL − κ(1− zt)mL (49)

The first term in both laws of motion stems from the constant inflow of δλ type-H borrowers
and δ(1− λ) type-L borrowers. The second term captures the constant exit probability of
borrowers in the pool. The final term is the flow rate of borrowers who receive a loan.

Observe that the first equation is independent of zt. We can thus treat mH as if it was at
its steady state forever,

mH = m∗H =
δλ

δ + κ
(50)

We continue to denote the share of type-H borrowers by xt ≡ mH/(mH + mL). Given (50),

29For simplicity, we focus on the case of active banks, θt = 1, throughout this section.
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the law of motion of xt can then be shown to be given by

ẋ
x/λ

= κ(1− x)(1− z)λ− κx(1− λ) + δ(λ− x) (51)

The right hand side of (51) is identical to the one of (6) after substituting out κHt and κLt

and setting θt = 1. Thus, the only difference between the constant-pool-size model and the
one in this section is that the speed in this one is altered by a factor x/λ, on the left hand
side of (51). In particular, all results on steady states and their properties in Sections 3 carry
over one-for-one to the model in this section.30

B.2 Welfare

The social planning problem now becomes

max
zt∈[0,z]

∫ ∞

0
e−ρtκ {m∗HrH + (1− zt)mLrL − c̃zt(mL + mH)} dt

subject to the law of motion for mL, (49). One can show that it has the exact same properties
as the planning problem in Section 4. Relative to the privately optimal threshold x = 1− c,
which corresponds to

mL =
λ

1 + κδ−1
c

1− c

there exists a socially optimal threshold x∗ ≡ m∗H
m∗H+m∗L

where m∗L is determined by

(1− z + cz)
ρm∗L + αsms

L
ρ + αs + czm∗H︸ ︷︷ ︸

Average social cost from lending to type-L when screening

=
ρm∗L + αpmp

L
ρ + αp︸ ︷︷ ︸

Average social cost from lending to type-L when pooling
(52)

Here, we define the transition speeds for mL under pooling and screening by αp ≡ κ + δ

and αs ≡ κ(1− z) + δ. The associated steady state values for mL are given by mp
L = δ(1−λ)

δ+κ

and ms
L = δ(1−λ)

δ+κ(1−z) . Similar to Section 4, one can show here, too, that the social planner
marginally prefers more pooling, that is,

m∗L > mL

The reason is identical to that in Section 4.
30What becomes harder to analyze with a non-constant pool size is slow thawing, since θt < 1 affects both

type-H and type-L borrowers, i.e. mH is no longer constant at m∗H .
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An especially simple welfare result is the comparison of steady state welfares across
steady states. Here, the question is whether it is the case that welfare in the pooling steady
state exceeds that in the screening steady state. In the context of this model, this is satisfied
if

(1− z + cz)ms
L + czm∗H > mp

L

After some algebra, this simplifies to

1 + δ−1κ > (1− λ)c−1 + λδ−1κz

which is necessarily the case given our Assumption 2: c > 1− λ. Thus, Corollary 3 also
carries over to this model.

C Credit bureaus

This appendix provides additional information on credit bureaus around the world. The
on-line Appendix D provides the data that underlie this Appendix.

Credit bureaus, as opposed to credit registries, track potential borrowers and provide
information about them to potential lenders.31 When a potential borrower approaches a
lender that is a member of a credit bureau, the lender can perform a credit check before
making a loan, which involves getting a credit report from the bureau. Credit reports provide
information on potential borrowers including existing credit and payment histories. In
addition, many credit bureaus keep track of information about past credit checks and
include this information on credit reports. Table 1 describes credit reports for credit
bureaus in different countries around the world (underlying data sources are provided in
on-line Appendix D).

In most countries, a bank that conducts a credit check can generally observe past credit
checks and whether the potential borrower subsequently did or did not receive a loan. The
information in the bureaus tends to be available only to entities in the bureau’s network,
although some countries’ bureaus sell the information to entities outside the credit market.
In some countries like Japan and Germany, bureau members are required to report in

31Credit registries are more widespread than credit bureaus, but registries only track the history of out-
standing credit and/or loan payments and delinquencies. In our model, and probably in reality, outstanding
loans do not assist banks in discriminating among borrowers who have recently been rejected. Credit
registries seem to serve the purpose of providing information to assist a bank in setting loan terms, such as
loan amount and interest rate based on payments-to-income ratio and/or pre-existing liens on collateral.
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Table 1: Data captured by credit bureaus
Credit checks

Coverage? Reporting On report for Hard check Who Rejections
(consumers/firms) required? ≤months labeled? requested? Purpose? reported?

Advanced Economies
Australia Both 60 Yes Yes Yes No
Canada Both 72 Yes Yes No No
European Union (AnaCredit) Firms By law 0 NA No No No
France Firms By law 0 NA No No No
Germany Both For access 12 Yes No No No
Ireland Both By law 60 Yes Yes Yes No
Italy Both 6 Yes Yes No
Japan Consumers For access 6 Yes Yes Yes No
Singapore Both 24 Yes Yes Yes No
South Korea Both 0 NA No No No
Taiwan Both 3 Yes Yes Yes No
United Kingdom Both 24 Yes Yes Yes No
United States Both Voluntary 24 Yes Yes Yes No
Emerging Economies
China Both By law 24 Yes Yes Yes No
India Both 24 Hard only Yes Yes No
Malaysia Both 12 Hard only Yes No No

Blank cells are missing data.
Note: All information is from consumer credit reports and Bureau FAQs, except for EU and France, see Appendix for sources.

exchange for access, but in other countries reporting is voluntary or only required by
bureau members (second column of Table 1, ). Most credit bureaus, like consumer bureaus
in the US, delineate whether a credit check is hard, meaning associated with an application
for credit, or soft, due to account review, marketing, or possibly hiring. Records of credit
inquiries stay in credit report from 2 months in Taiwan to 24 months in the U.S. to 60
months in Ireland.

Importantly, however, none of the countries that we investigated have credit bureaus
that report whether credit was denied or turned down by the potential borrower (final
column of Table 1).32 Further, credit bureaus generally contain only rudimentary infor-
mation about the initiator of previous credit checks, such as whether they were banks,
mortgage brokers, utilities, etc., and some in some countries, such as South Korea, France,
and Germany, even this information is not recorded (fifth column). And only about half
of the credit bureaus report the purpose of previous credit checks (sixth column), so that
a credit card issuer for example does not know if a previous credit check was associated
with an application for a credit card, mortgage, car loan or job.

A past credit check without a subsequent loan does not indicate that a given borrower
failed a past lending standard. The borrower may have simply decided not to take the loan
(decided not to buy that house or car, or decided to pick a different credit card). Importantly

32For example, Experian UK states “Here’s what our role doesn’t involve: - We aren’t told which applica-
tions are successful or refused. - We don’t know why you may have been refused credit.”A possible exception
is Experian Italy.
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in practice, lenders can evaluate potential borrowers before verifying their information
via a credit report and leave no trail of credit checks for rejected borrowers. That is, as is
common in mortgage markets for example, banks can fully apply their lending standards
on the basis of information reported by the borrower and additional information gathered
by the bank, and only verify information with a credit report for borrowers that pass the
lending standard. Thus many applications are not recorded.

As noted, our theoretical model suggests that bureaus do not track credit rejections
because it is not incentive compatible for banks to report rejections. Statements from credit
bureaus are consistent with this reasoning and suggest that credit bureaus are not able to
enforce the reporting of soft information that it is not privately optimal to report. First,
bureaus state that they want to avoid arbitrating arguments over rejections. Rejection is
easy to hide (e.g. just offer unfavorable loan terms) and hard to verify (consistent with our
assumptions). Second, bureaus store only verifiable information due to privacy and legal
concerns. Credit checks are hard information, rejections are not. Every credit bureau lists
data verification and correction measures on their website.

Finally, we re-emphasize that our model may apply even in situations in which credit
bureaus accurately track borrowers if lending standards are applied to collateral instead of
borrowers. That is, if tight lending standard evaluate and reject on the basis of collateral
(e.g. an appraisal of a house), then credit bureaus do not address the externality of tight
lending standards because they track borrowers not the assets they wish to fund.

We conclude that mature credit markets in legal environments with low-cost enforce-
ment mechanisms may exhibit various mechanisms for mitigating, but maybe not eliminat-
ing, the negative externality associated with tight lending standards.
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