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1 Introduction

In randomized experiments, the units included in the randomization, e.g. villages, are often matched

into pairs, and then one unit of each pair is randomly assigned to treatment. Alternatively, units

may be grouped into small strata of, say, less than ten units, and then a fixed number of units gets

treated in each stratum. Paired experiments or stratified experiments with a small number of units

per strata are commonly used in economics. The American Economic Journal: Applied Economics

published 50 randomized field experiments from 2014 to 2018. Of those, four used a paired design,

and seven used a stratified design with 10 units or less per strata. Indeed, grouping units into

pairs or small strata reduces the variance of the treatment effect estimator, if the variables on

which the units are grouped predict the outcome (Athey and Imbens, 2017). In our survey, we

also found that to estimate the treatment effect, researchers usually regress their outcome on a

treatment indicator and pair or strata fixed effects, and cluster their variance estimator at the

unit-of-randomization level, namely, at the village level in our example. In this paper, we assess

whether this inference method is appropriate. We do so assuming that the units participating in

the experiment are a convenience sample (Abadie et al., 2020) rather than an i.i.d. sample drawn

from a super population, so the only source of randomness is the assignment to the treatment. Our

survey shows that this set-up is applicable to a majority of paired- and small-strata experiments

conducted in economics, where experimental units are rarely drawn from a larger population.

We start by considering paired designs. The treatments of the two villages in the same pair

are perfectly negatively correlated: if village A is treated, then village B must be untreated, and

conversely. The pair-clustered variance estimator accounts for that correlation. Accordingly, it is

unbiased for the variance of the treatment effect estimator when the effect does not vary across

pairs, and conservative otherwise. On the other hand, the village-clustered variance estimator does

not account for that correlation and may be biased. The direction of the bias crucially depends

on whether pair fixed effects are included in the regression. When fixed effects are included, as

is often the case in practice, we show that if all villages have the same number of villagers, the

village-clustered variance estimator is exactly equal to a half of the pair-clustered one. Then, if the

treatment effect does not vary across pairs, when the number of pairs goes to infinity the t-statistic

using village-clustered standard errors converges to a N (0, 2) distribution. Accordingly, comparing

that t-statistic to, e.g., 1.96, the critical value one would use in a 5% level test, actually yields a

16.5% type 1 error rate. In Section E of the Web Appendix, we show that this result is not very
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sensitive to the assumption that all villages have the same number of villagers.

When pair fixed effects are not included in the regression, which is less often the case in practice,

there is no longer a fixed relationship between the village- and pair-clustered variance estimators.

However, we show that the expectation of the difference between the former and the latter is

proportional to the difference between the between-pair and within-pair covariance of the two

potential outcomes. Both covariances should typically be positive, and one may also expect their

difference to be positive. For instance, in the extreme case where the two units in the same pair have

equal potential outcomes, the second covariance is equal to 0, and the village-clustered variance

estimator without fixed effects is too conservative.

We apply our results to revisit the paired randomized experiments we found in our survey. 372

regressions in those papers have pair fixed effects. Using standard errors clustered at the unit-of-

randomization level, the authors found a 5%-level significant treatment effect in 162 regressions.

Using standard errors clustered at the pair level, we find a significant effect in 109 regressions. 54 re-

gressions do not have pair fixed effects. Using standard errors clustered at the unit-of-randomization

level, the authors found a 5%-level significant treatment effect in 31 regressions. Using standard

errors clustered at the pair level, we find a significant effect in 36 regressions.

With heterogeneous treatment effects across pairs, the pair-clustered variance estimator is con-

servative. To increase power, one may want to use a less conservative estimator. We study two

alternatives: the pair-of-pairs variance estimator proposed by Abadie and Imbens (2008), and a

variance estimator proposed by Bai et al. (2019). The properties of these two estimators have not

been studied yet in the finite-population set-up we consider. We show that as the pair-clustered

variance estimator, those two estimators are conservative. They are less conservative than the

pair-clustered estimator when the treatment effect is less heterogeneous within than across pairs

of pairs, and more conservative otherwise. We estimate the three estimators in the regressions we

consider in our empirical application, and find that they are on average equivalent, so it does not

seem one can expect large power gains from using those estimators. Moreover, simulations based

on the data from the paired experiment conducted by Crépon et al. (2015) show that t-tests using

those two estimators have a drawback relative to the t-test using the pair-clustered estimator. They

are approximately normally distributed only if the sample has more than a couple hundred pairs,

a condition met in only one of the paired experiments in our survey. On the other hand, the t-test

based on the pair-clustered estimator is approximately normally distributed with as few as 20 pairs.

Finally, we consider stratified experiments with a small number of units per strata. Using
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simulations, we show that our results for paired designs extend to that case. There as well, the

treatments of units in the same stratum are negatively correlated, so this correlation should be

accounted for. Our simulations show that t-tests based on strata-clustered standard errors have

correct size, irrespective of whether strata fixed effects are included in the regression. On the other

hand, t-tests based on randomization-unit-clustered standard errors do not have correct size. They

tend to be liberal when strata fixed effects are included, conservative otherwise. When strata fixed

effects are included, the liberality of those t-tests decreases with the number of randomization units

per strata: the larger a stratum, the less correlated its units’ treatments. With 5 units per strata,

a 5% level t-test is rejected 8.0% of the time, and with 10 units per strata, it is rejected 6.6% of

the time. With more than 10 units per strata, size distortions become smaller. This is why we use

this 10 units per strata threshold in our survey, though we acknowledge it is somewhat arbitrary.

Our paper is related to several other papers that have considered paired experiments. Our

results may seem to contradict those in Bruhn and McKenzie (2009). Using simulations, they show

that in paired experiments with only one observation per randomization unit (e.g. one villager per

village), t-tests based on fixed effects regressions with no clustering have correct size. This is due to

the fact that in the one-observation-per-randomization-unit case, the fixed effects regression has half

as many regressors as observations. Consequently, the degrees-of-freedom correction embedded in

most statistical software amounts to multiplying the unclustered variance estimator by two, which

then makes it equivalent to the pair-clustered variance estimator. Therefore, the issue we highlight

does not apply to the one-observation-per-randomization-unit case. However, in our survey of

paired and small-strata experiments, only one paper has one observation per randomization unit.

Random assignment is clustered in all the other papers,1 and the median number of observations

per unit of randomization is large (99 for paired experiments, 26 for small-strata experiments).

With clustered assignment, the degree-of-freedom adjusted standard error clustered at the unit of

randomization is no longer equivalent to the pair-clustered one.

Athey and Imbens (2017) and Bai et al. (2019) have also shown that when pair fixed effects are

not included in the regression, standard errors clustered at the unit-of-randomization level tend to

be conservative. We show that when pair fixed effects are included, these standard errors actually

become very liberal.

Imai et al. (2009) have also proposed an estimator of the treatment-effect estimator’s variance

1This is in line with Muralidharan and Niehaus (2017), who find that assignment is clustered in 62% of the RCTs
published in top 5 journals in 2001-2016.

4



in paired experiments, and have shown it is unbiased if the treatment effect is constant across pairs,

and conservative in general. With respect to this paper, our contribution is to show that when the

number of observations is the same in all villages, the pair-clustered variance estimator is equal to

their estimator, up to a degrees-of-freedom correction. Thus, we justify the use of the pair-clustered

variance estimator. Moreover, we present large sample results for t-tests based on pair-clustered

variance estimators, while their paper focuses on finite-sample results.

Finally, two of the variance estimators we study were proposed by Abadie and Imbens (2008)

and Bai et al. (2019). Assuming that units participating in the experiment are an i.i.d. sample

drawn from a super population, both papers have shown that once properly normalized, their

proposed estimator is consistent for the asymptotic variance of the treatment effect estimator. Our

paper is the first to show that those estimators are actually conservative in a finite-population

set-up, and it is also the first to compare them to the pair-clustered variance estimator in a wide

range of empirical applications.

The paper is organized as follows. Section 2 presents our survey of paired and small-strata

experiments in economics. Section 3 introduces the setup and the notation. Section 4 presents our

main results, for paired designs. Section 5 presents our simulation study. Section 6 presents our

empirical applications. In Section B of the Web Appendix, we use simulations to show that our

results for paired designs extend to stratified experiments with small strata.

2 Paired and small-strata experiments in economics

We searched the 2014-2018 issues of the American Economic Journal: Applied Economics (AEJ

Applied) for paired randomized experiments or stratified experiments with ten or less randomization

units per strata. 50 field experiments papers were published over that period. Three relied on a

paired randomization for all of their analysis, while one relied on a paired randomization for part of

its analysis.2 21 papers mentioned that the randomization was stratified (though not paired). For

18 of those papers, we could compute the average number of randomization units per strata, either

by reading the paper or by opening the paper’s data set. For the remaining three papers, either the

data set was not available online, or it did not include the stratification variable. Among those 18

papers, seven have 10 or less randomization units per strata. Overall, at least 22% of the 50 field

2Beuermann et al. (2015) use a paired design to estimate the spillover effects of the intervention they consider.
Their estimation of the direct effects of that intervention relies on another type of randomization. We only include
their spillover analysis in our survey and in our replication.
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experiments published by the AEJ Applied over that period are paired or stratified experiments

with ten or less randomization units per strata.

To increase our sample of paired experiments, we searched the AEA’s registry website for

randomized controlled trials (https://www.socialscienceregistry.org). We looked at all com-

pleted projects, whose randomization method included the prefix “pair” and that had either a

working or a published paper. Thus, we found five more paired experiments.

In total we found 16 papers. The list is in Table 5 in the Web Appendix. 14 are published,

two are not. In one of them, the regression is at the level of the randomization unit. For example,

researchers randomly assigned some firms to the treatment or to the control, and then their regres-

sions are at the firm level. In 15 of them, the regression is at a more disaggregated level than the

randomization unit. For instance, researchers randomly assigned some schools to the treatment or

to the control, and then their regressions are at the student level.

Across the nine paired experiments, the median number of pairs is 28, and the median number

of observations per unit of randomization is 99. To estimate the treatment effect, five articles

include pair fixed effects in all of their regressions, three articles include pair fixed effects in some

but not all of their regressions, and one article does not include pair fixed effects in any regression.

To conduct inference, eight articles out of nine cluster standard errors at the randomization-unit

level, and one article does not cluster standard errors. None clusters standard errors at the pair

level.

Across the seven small-strata experiments, the median number of units per strata is 7, the

median number of strata is 48, and the median number of observations per unit of randomization is

26. To estimate the treatment effect, six articles include strata fixed effects in all their regressions,

and one article does not include strata fixed effects in any regression. To conduct inference, all

articles cluster standard errors at the randomization-unit level.

In the following sections, we focus on paired experiments. However, in Section B of the Web

Appendix, we use simulations to show that the main results we derive for paired experiments extend

to small-strata experiments.

3 Setup and variance estimators

We consider a population of 2P randomization units. Unlike Abadie and Imbens (2008) or Bai et al.

(2019), we do not assume that the randomization units are an i.i.d. sample drawn from a super
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population. Instead, that population is fixed, and its characteristics are not random. This modelling

framework is similar to that in Neyman (1923) or Abadie et al. (2020). Our survey suggests it is

applicable to a majority of paired- and small-strata experiments conducted in economics. The

randomization units are drawn from a larger population in only one of the nine paired experiments

we found.3 In all the other paired experiments, and in all the stratified experiments, the sample

is a convenience sample, consisting of volunteers to receive the treatment, or of units located in

areas where the RCT implementing partner operates, or of units located in areas where conducting

the research was easier.4 When the randomization units are an i.i.d. sample drawn from a super

population, our results still hold, conditional on the sample drawn.

The 2P units are matched into P pairs. Pairs are created by grouping together units with the

closest value of some baseline variables predicting the outcome. In our fixed-population framework,

pairing is not random, as it depends on fixed units’ characteristics. The pairs are indexed by

p ∈ {1, . . . , P}, and the two randomization units in pair p are indexed by g ∈ {1, 2}. Unit g in

pair p has ngp observations, so that pair p has np = n1p +n2p observations, and the population has

n =
∑P

p=1 np observations.

Treatment is assigned as follows. For all p ∈ {1, . . . , P} and g ∈ {1, 2}, let Wgp be an indicator

variable equal to 1 if unit g in pair p is treated, and to 0 otherwise. We assume that the treatments

satisfy the following conditions.

Assumption 1 (Paired assignment).

1. For all p, W1p +W2p = 1.

2. P(Wgp = 1) = 1
2 for all g and p.

3. For all p 6= p′, (W1p,W2p) ⊥⊥ (W1p′ ,W2p′).

Point 1 requires that in each pair, one of the two randomization units gets treated. Point 2

requires that the two units have the same probability of being treated. Finally, Point 3 requires

that the treatments be independent across pairs.

Let yigp(1) and yigp(0) represent the potential outcomes of observation i in randomization

unit g and pair p with and without the treatment, respectively. We follow the randomization

3This is in line with Muralidharan and Niehaus (2017), who show that in only 31% of the RCTs published in top
5 journals between 2001 and 2016, the randomization units are drawn from a larger population.

4For instance, Glewwe et al. (2016) conducted their study in rural counties of the Gansu Chinese province that
were located close to the provincial capital, which eased monitoring by Gansu’s Center for Disease Control.
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inference literature (see Abadie et al., 2020) and assume that potential outcomes are fixed.5 Let

τigp = yigp(1) − yigp(0) be the treatment effect of that observation. The observed outcome is

Yigp = yigp(1)Wgp + yigp(0)(1−Wgp). We focus on the average treatment effect

τ =
1

n

P∑
p=1

2∑
g=1

ngp∑
i=1

(yigp(1)− yigp(0)).

We consider two estimators of τ . Let Tp = n1pW1p+n2pW2p and Cp = n1p(1−W1p)+n2p(1−W2p)

be the number of treated and untreated observations in pair p. Let T =
∑P

p=1 Tp and C =
∑P

p=1Cp

be the total number of treated and untreated observations. The first estimator τ̂ is the OLS

estimator from the regression of the observed outcome Yigp on a constant and Wgp:

Yigp = α̂+ τ̂Wgp + εigp i = 1, 2, . . . , ngp; g = 1, 2; p = 1, . . . , P. (1)

τ̂ is the well-known difference-in-means estimator:

τ̂ =
P∑
p=1

2∑
g=1

ngp∑
i=1

YigpWgp

T
−

P∑
p=1

2∑
g=1

ngp∑
i=1

Yigp(1−Wgp)

C
.

The second estimator is the pair-fixed-effects estimator, τ̂fe, obtained from the regression of the

observed outcome Yigp on Wgp and a set of pair fixed effects (δig1, . . . , δigP ):

Yigp = τ̂feWgp +
P∑
p=1

γ̂pδigp + uigp, i ∈ {1, . . . , ngp}; g ∈ {1, 2}; p ∈ {1, . . . , P}. (2)

It follows from, e.g., Equation (3.3.7) in Angrist and Pischke (2008) and a few lines of algebra that

τ̂fe =

P∑
p=1

ωp

2∑
g=1

[
Wgp

ngp∑
i=1

Yigp
ngp
− (1−Wgp)

ngp∑
i=1

Yigp
ngp

]
, where ωp =

(
n−11p + n−12p

)−1
∑P

p′=1

(
n−11p′ + n−12p′

)−1 .
We study the variance estimators of τ̂ and τ̂fe arising from Regressions (1) and (2) above,

when the regression is clustered at the pair or at the randomization-unit level.6 Lemma 3.1 below

gives simple expressions of those four variance estimators. Let SETp =
∑2

g=1

∑ngp

i=1Wgpεigp and

5In a previous version of the paper, we allowed potential outcomes to be stochastic. For instance, in Crépon et al.
(2015), a villager’s income may be affected by stochastic events like weather shocks. Having stochastic potential
outcomes does not change our main results, see de Chaisemartin and Ramirez-Cuellar (2020).

6The clustered-variance estimators we study are those proposed in Liang and Zeger (1986).
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SEUp =
∑2

g=1

∑ngp

i=1(1−Wgp)εigp respectively be the sum of the residuals εigp for the treated and

untreated observations in pair p. Similarly, let SETp,fe =
∑2

g=1

∑ngp

i=1Wgpuigp and SEUp,fe =∑2
g=1

∑ngp

i=1(1−Wgp)uigp respectively be the sum of the residuals uigp for the treated and untreated

observations in pair p.

Lemma 3.1 (Clustered variance estimators for τ̂ and τ̂fe).

1. The pair-clustered variance estimator (PCVE) of τ̂ is V̂pair(τ̂) =
∑P

p=1

(
SETp
T − SEUp

C

)2
.

2. The randomization-unit-clustered variance estimator (UCVE) of τ̂ is V̂unit(τ̂) =
∑P

p=1

(
SET 2

p

T 2 +
SEU2

p

C2

)
.

3. The PCVE of τ̂fe is V̂pair(τ̂fe) =
∑P

p=1 ω
2
pSET

2
p,fe

(
1
n1p

+ 1
n2p

)2
.

4. The UCVE of τ̂fe is V̂unit(τ̂fe) =
∑P

p=1 ω
2
pSET

2
p,fe

(
1
n2
1p

+ 1
n2
2p

)
.

Proof. See Appendix D.

We also study two other estimators of V (τ̂). Those estimators have been proposed in the one-

observation-per-randomization unit special case, but it is straightforward to extend them to the

case where all randomization units have the same number of observations, as stated below:7

Assumption 2. For all p, n1p = n2p = n
2P .

Let τ̂p =
∑

g[Wgp
1
ngp

∑
i Yigp − (1 −Wgp)

1
ngp

∑
i Yigp] denote the treatment-effect estimator in

pair p. The first alternative estimator we consider is a slightly modified version of the pairs-of-pairs

variance estimator (POPVE) proposed by Abadie and Imbens (2008). We only define it when the

number of pairs P is even, but in our application in Section 6 we propose a simple method to

extend it to cases where the number of pairs is odd. Let xg,p denote the value of a predictor of the

outcome in pair p’s unit g. Pairs are ordered according to their value of
x1,p+x2,p

2 , the two pairs

with the lowest value are matched together, the next two pairs are matched together, and so on

and so forth. Let R = P
2 . For any r ∈ {1, ..., R} and for any p ∈ {1, 2}, let τ̂pr denote the treatment

effect estimator in pair p of pair of pairs r. Then, the POPVE is defined as

V̂pop(τ̂) =
1

P 2

R∑
r=1

(τ̂1r − τ̂2r)2.

xg,p, the variable used to match pairs into pairs of pairs, could be the average value of the outcome

at baseline in pair p’s unit g. Or it could be the covariate used to form the pairs, when only one

7Extending those variance estimators when Assumption 2 fails is left for future work.
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covariate is used. In our application in Section 6, we use the baseline outcome to match pairs

into pairs of pair, because the covariates used to match units into pairs are unavailable in most

of the data sets of the papers we revisit. Based on Lemma 4.1, we will argue below that the

baseline outcome should often be a good choice to match pairs into pairs of pairs. The variable one

uses to form pairs of pairs should be pre-specified and not a function of the treatment assignment.

Otherwise, researchers could try to find the variable minimizing the POPVE, which would obviously

lead to incorrect inference.

There are two differences between V̂pop(τ̂) and the variance estimator proposed in Equation

(3) in Abadie and Imbens (2008). First, we match pairs with respect to a single covariate, while

Abadie and Imbens (2008) consider matching with respect to a potentially multidimensional vector

of covariates. This difference is not of essence: we could easily allow pairs to be matched on several

covariates. We focus on the unidimensional case as that is the one we use in our application, where

the matching is done based on the baseline outcome. Second, the estimator in Abadie and Imbens

(2008) matches pairs with replacement, while V̂pop(τ̂) matches pairs without replacement. If after

ordering pairs according to their value of
x1,p+x2,p

2 , pair 2 is closer to pair 3 than pair 4, pair 2 will

be matched both to pairs 1 and 3 in Abadie and Imbens (2008), while V̂pop(τ̂) will match pair 1 to

pair 2, and pair 3 to pair 4. Matching without replacement makes the finite-sample properties of

V̂pop(τ̂) easier to analyze, but should not change its large-sample properties.

The second alternative variance estimator we consider is that proposed by Bai et al. (2019) in

their Equation (20) (BRSVE). Again, we define this estimator when the number of pairs P is even.

With our notation, their estimator is

V̂brs(τ̂) =
1

P 2

P∑
p=1

τ̂2p −
1

2

(
2

P 2

R∑
r=1

τ̂1r τ̂2r +
τ̂2

P

)
.

Bai et al. (2019) propose another variance estimator in their Equation (27). That estimator is less

amenable to simple comparisons with the UCVE, PCVE, and POPVE, so we do not analyze its

properties. However, we compute it in our applications, and find that it is typically similar to the

POPVE and BRSVE.
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4 Main results

In this section, we present our main findings, that are derived under Assumption 2. Then, the

number of treated and untreated observations are equal: T = C = n/2, so

τ̂ =
P∑
p=1

2

n

2∑
g=1

[
Wgp

ngp∑
i=1

Yigp − (1−Wgp)

ngp∑
i=1

Yigp

]
=

P∑
p=1

τ̂p
P
.

τ̂ is the average of the treatment-effect estimators in each pair. Then, by Point 3 of Assumption 1,

V(τ̂) =
P∑
p=1

V(τ̂p)/P
2. (3)

Finally, under Assumption 2, one can show that the difference-in-means and the fixed-effects

estimators are equal: τ̂ = τ̂fe,
8 and that both are unbiased estimators of the ATE.

4.1 Finite-sample results

In this section, we consider the finite-sample properties of the six variance estimators we study. Let

τ·r = 1
2(τ1r + τ2r) denote the average treatment effect in pair of pairs r.

Lemma 4.1. If Assumptions 1 and 2 hold and P is even,9

1. V̂pair(τ̂) = V̂pair(τ̂fe), and E
[

P
P−1 V̂pair(τ̂)

]
= V(τ̂) + 1

P (P−1)
∑P

p=1(τp − τ)2.

2. E
[
V̂pop(τ̂)

]
= V(τ̂) + 1

P 2

∑R
r=1(τ1r − τ2r)2.

3. V̂brs(τ̂) = 1
2 V̂pair(τ̂) + 1

2 V̂pop(τ̂)

4. If 1
R

∑R
r=1

∑
p=1,2

1
2(τpr − τ·r)2 ≤ 1

R−1
∑R

r=1(τ·r − τ)2,

(a) E
[
V̂pop(τ̂)

]
≤ E

[
P
P−1 V̂pair(τ̂)

]
,

(b) E
[
V̂pop(τ̂)

]
≤ E

[
P
P−1 V̂brs(τ̂)

]
,

(c) E
[
V̂brs(τ̂)

]
≤ E

[
P
P−1 V̂pair(τ̂)

]
.

Proof. See Appendix A.

8For this result to hold, we can relax Assumption 2 as long as the two randomization units in a pair have the
same number of observations.

9Point 1 of the lemma holds even if P is uneven.
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Point 1 shows that the PCVEs without and with pair fixed effects are equal, and that after a

degrees-of-freedom correction, they are conservative estimators of the variance of τ̂ . This second

statement follows from Proposition 1 in Imai et al. (2009), once noted that the PCVE without pair

fixed effects is equal to the sample variance of the pair-level-treatment-effect estimators τ̂p. The

PCVEs are unbiased if the treatment effect is constant across pairs.

Point 2 shows that the POPVE is conservative in general, and unbiased if the treatment effect

is constant within pairs-of-pairs. The less treatment effect heterogeneity within pairs of pairs, the

less conservative the POPVE. An important practical consequence of Point 2 is that the variable

used to form pairs of pairs should be a good predictor of pairs’ treatment effect. The baseline value

of the outcome may often be a good predictor of pairs’ treatment effect. For instance, treatments

sometimes produce a stronger effect on units with the lowest baseline outcome, thus leading to a

catch-up mechanism (see for instance Glewwe et al., 2016). Point 2 of Lemma 4.1 is related to

Theorem 1 in Abadie and Imbens (2008), though there are a few differences. Abadie and Imbens

(2008) assume that the experimental units are drawn from a super population, and show that

once properly normalized, their estimator is consistent for the normalized variance of τ̂ conditional

on the covariates used for pairing. The fact that the POPVE is conservative in Lemma 4.1 and

consistent in their Theorem 1 comes from the fact we do not assume that the experimental units

are an i.i.d. sample from a super population. In our setting, P V̂pop(τ̂) remains conservative even

when the number of units and pairs goes to infinity, as shown in Theorem 4.4 below.

Point 3 shows that the BRSVE is equal to the average of the PCVE and POPCVE. Then,

it follows from Points 1 and 2 that P
P−1 V̂brs(τ̂) is conservative. Point 3 is related to Lemma 6.4

and Theorem 3.3 in Bai et al. (2019), where the authors show that P V̂brs(τ̂) is consistent for the

normalized variance of τ̂ . Here as well, the fact that P V̂brs(τ̂) is conservative in Lemma 4.1 and

consistent in Bai et al. (2019) comes from the fact we do not assume that the experimental units

are an i.i.d. sample drawn from a super population.

Finally, Point 4 shows that if the treatment effect varies less within than across pairs of pairs,

the POPVE is less conservative than the degrees-of-freedom-adjusted PCVE and BRSVE, and the

BRSVE is less conservative than the degrees-of-freedom-adjusted PCVE. A sufficient condition to

have that the treatment effect varies less within than across pairs of pairs is 1
R

∑R
r=1(τ1r − τ)(τ2r −

τ) ≥ 0, meaning that the covariance between the treatment effects of the two pairs in the same

pair of pairs is positive. In Section 6, we compare the three variance estimators in a number of

empirical applications.
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Overall, Lemma 4.1 shows that four of the variance estimators we consider are conservative.

In the fixed population framework of Neyman (1923) and Abadie et al. (2020) we adopt here, it

is common to have conservative variance estimators when the treatment effect is heterogeneous.

For instance, Abadie et al. (2020) show that in randomized experiments where n1 units out of n

are assigned to the treatment, the standard heteroskedasticity-robust variance estimator is also

conservative if the treatment effect is heterogeneous, so having a conservative variance estimator is

not specific to our paper.

Contrary to the four estimators in Lemma 4.1, the UCVE with fixed effects may be very liberal.

Lemma 4.2. If Assumption 2 holds, then V̂pair(τ̂) = 2V̂unit(τ̂fe).

Proof. See Appendix D.

Lemmas 4.1 and 4.2 imply that the UCVE with pair fixed effects may be downward biased:

under constant treatment effects, its expectation is equal to a half of the true variance of τ̂ . Then,

using that estimator may severely distort inference on τ . In Section E of the Web Appendix, we

show that Lemma 4.2 still approximately holds when Assumption 2 fails, unless randomization

units in the same pair have very heterogeneous numbers of observations. Specifically, Lemma E.1

shows that V̂unit(τ̂fe)/V̂pair(τ̂fe) is included between 1/2 and 5/9 as long as n1p/n2p is included

between 0.5 and 2 for all p, meaning that in each pair the first randomization unit has between half

and twice as many observations as the second one. This condition should hold in most applications.

Intuitively, the UCVE is biased because it does not account for the perfect negative correlation

of the treatments of the two units in the same pair, a correlation accounted for by the PCVE.10

However, the direction of the bias depends on whether fixed effects are included in the regression.

Indeed, the next lemma shows that without fixed effects, the UCVE will often be upward biased,

and more upward biased than the PCVE without fixed effects. For all d ∈ {0, 1}, let yp(d) ≡
1
2

∑
g ygp(d), and y(d) ≡

∑
p yp(d)/P .

10In matching studies, Abadie and Spiess (2016) highlight a different but related phenomenon: matching on
covariates leads to a correlation between the matched units’ outcomes, which has to be accounted for, for instance
by clustering.

13



Lemma 4.3. If Assumptions 1 and 2 hold, then

E
[

P

P − 1

(
V̂unit(τ̂)− V̂pair(τ̂)

)]
=

2

P

(
1

P − 1

∑
p

(
yp(0)− y(0)

) (
yp(1)− y(1)

)
− 1

P

∑
p

∑
g

1

2

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

))
.

Proof. See Appendix D.

Lemma 4.3 shows that the expectation of the difference between the UCVE and PCVE in

regressions without fixed effects is proportional to the difference between the between-pair and

within-pair covariance of the two potential outcomes. In most applications, both terms should be

positive, as the two potential outcomes should be positively correlated. One may also expect their

difference to be positive, as units in the same pair should have more similar potential outcomes than

units in different pairs. For instance, in the extreme case where units in the same pair have equal

potential outcomes, the second term is equal to 0. Then, the expectation of the difference between

the UCVE and PCVE is positive, and it follows from Point 1 of Lemma 4.1 that the UCVE is

upward biased. Contrary to the PCVEs, POPVE, and BRSVE, the UCVE in regressions without

fixed effects is biased even when the treatment effect is homogeneous across pairs.

The clustered-variance estimators we study are those proposed in Liang and Zeger (1986). Typ-

ically, statistical softwares report degrees-of-freedom (DOF) adjusted versions of those estimators:

the Liang and Zeger estimator is multiplied by n/(n −K), where n is the sample size and K the

number of regressors (see (StataCorp, 2017)).11 In general, this DOF adjustment does not change

the estimator very much. An exception is when the regression has pair fixed effects, and when each

randomization unit has only one observation. Then, n/(n−K) = 2P/(P − 1): the regression has

2P observations and P + 1 regressors. This fact and Lemma 4.2 imply that in this special case,

the unclustered DOF adjusted variance estimator is almost equal to the PCVE. Then, Theorem

4.4 below implies that if the treatment effect is constant across pairs, t-tests using the unclustered

DOF adjusted variance estimator have nominal size, as found by Bruhn and McKenzie (2009). On

the other hand, the DOF-adjusted PCVE is too large, and becomes conservative. Outside of the

one-observation-per-randomization-unit special case, the DOF adjustment does not matter much,

especially when randomization units have a large number of observations. In our survey of paired

11In Stata, this degrees-of-freedom adjustment is implemented when one uses the regress command with pair
indicators, not when one uses the xtregress command (see Cameron and Miller (2015)).
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experiments above, the median number of observations per randomization unit is equal to 99.

4.2 Large sample results

Let

σ2pair = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
p(τp − τ)2

σ2pop = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
r(τ1r − τ2r)2

σ2brs = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
2P

∑
r(τ1r − τ2r)2 + 1

2P

∑
p(τp − τ)2

∆cov,P =
1

P

∑
p

(yp(0)− y(0))(yp(1)− y(1))− 1

P

∑
p

1

2

∑
g

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

)
σ2unit = lim

P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
p(τp − τ)2 + 2∆cov,P

,

where Assumption 3 below ensures the limits in the previous display exist.

Assumption 3.

1. For every d, g and p,
∣∣ygp(d)

∣∣2+ε ≤M < +∞, for some M , ε > 0.

2. When P → +∞, 1
P

∑
p τp,

1
P

∑
p(τp − τ)2, 1

P

∑
r(τ1r − τ2r)2, and ∆cov,P converge towards

finite limits, and PV(τ̂) and PV(τ̂) + 1
P

∑
p(τp − τ)2 + 2∆cov,P converge towards strictly

positive finite limits.

3. As P →∞,
∑P

p=1 E[|τ̂p − τp|2+ε]/S2+ε
P → 0 for some ε > 0, where S2

P ≡ P 2V(τ̂).

Point 1 of Assumption 3 guarantees that we can apply the strong law of large numbers (SLLN)

in Lemma 1 in Liu (1988) to the sequence (τ̂2p )+∞p=1. Point 2 ensures that PV (τ̂) and P V̂unit(τ̂) do

not converge towards 0. Point 3 guarantees that we can apply the Lyapunov central limit theorem

to (τ̂p)
+∞
p=1. Then,

Theorem 4.4. (t-stats’ asymptotic behavior) Under Assumptions 1, 2 and 3,

1. (τ̂ − τ)/
√

V̂pair(τ̂) = (τ̂fe − τ)/
√

V̂pair(τ̂fe)
d−→ N (0, σ2pair). σ2pair ≤ 1, and if τp = τ for

every p, σ2pair = 1.

2. (τ̂ − τ)/
√
V̂pop(τ̂)

d−→ N (0, σ2pop). σ
2
pop ≤ 1, and if τ1r = τ2r for every r, σ2pop = 1.
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3. (τ̂ − τ)/

√
V̂brs(τ̂)

d−→ N (0, σ2brs). σ
2
brs ≤ 1, and if τp = τ for every p, σ2brs = 1.

4. (τ̂fe − τ)/
√

V̂unit(τ̂fe)
d−→ N (0, 2σ2pair).

5. (τ̂ − τ)/

√
V̂unit(τ̂)

d−→ N (0, σ2unit).

6. (a) σ2pair ≤ σ2brs ≤ σ2pop if and only if 0 ≤ limP→+∞
1
R

∑R
r=1(τ1r − τ)(τ2r − τ).

(b) σ2unit ≤ σ2pair if and only if ∆cov,P converges towards a positive limit.

Proof. See Appendix D.

Point 1 (resp. 2, 3) shows that when the number of pairs grows, the t-statistic of the difference-

in-means or fixed-effects estimator using the PCVEs (resp. POPVE, BRSVE) converges to a normal

distribution with a mean equal to 0 and a variance lower than 1 in general, but equal to 1 when

the treatment effect is homogenous across pairs. Therefore, those t-tests are conservative. Point 6a

shows that whenever there is a positive correlation between the treatment effects of the two pairs in

the same pair of pair, the t-test using the POPVE is less conservative than that using the BRSVE,

which is itself less conservative than that using the PCVE.

Point 4 shows that the t-statistic of the fixed-effects estimator using the UCVE converges to a

normal distribution with a mean equal to 0 and a variance twice as large as that of the t-statistic

using the PCVE. Therefore, comparing that t-statistic to critical values of a standard normal could

lead to a test with a size larger than its nominal size. For instance, if τ = 0 and the treatment effect

is homogenous across pairs, comparing

∣∣∣∣τ̂fe/√V̂unit(τ̂fe)∣∣∣∣ to 1.96 would lead the analyst to reject

the null hypothesis that τ = 0 16.5% of the times. With heterogeneous treatment effects across

pairs, the t-tests using the PCVEs, POPVE, and BRSVE may be conservative, while that using

the UCVE with fixed effects may be exact. However, in practice, we do not know if the treatment

effect is constant or heterogeneous, and it is common to require that a test control size uniformly

across all possible data generating processes. The t-tests making use of the PCVEs, BRSVE, and

POPVE satisfy that property, unlike the t-test making use of the UCVE with fixed effects.

Finally, Point 5 shows that in general the t-statistic of the difference-in-means estimator using

the UCVE converges towards a normal distribution with a mean equal to 0 and a variance that

differs from 1. As shown in Point 6b, the asymptotic variance of this t-statistic is lower than that

of the t-statistic using the PCVE whenever the difference between the between- and within-pairs

covariance between the two potential outcomes is positive. Then, that t-statistic is conservative,
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and it is more conservative than that using the PCVE. Point 5 is related to Theorem 3.1 in Bai et al.

(2019), who show that when ngp = 1, the t-test in Point 5 is conservative. The asymptotic variance

we obtain is different from theirs, because our two results are derived under different assumptions.

For instance, we assume a fixed population, while Bai et al. (2019) assume that the experimental

units are an i.i.d. sample drawn from an infinite superpopulation, and that asymptotically the

expectation of the potential outcomes of two units in the same pair become equal.

5 Simulations using real data

To assess if in practice, the size of the t-tests we consider is close to that predicted by Theorem

4.4, we performed Monte-Carlo simulations using a real data set. We use the data from the

microfinance experiment in Crépon et al. (2015). The authors matched 162 Moroccan villages into

81 pairs, and in each pair, they randomly assigned one village to a microfinance treatment. They

sampled households from each village and measured their outcomes such as their credit access and

income. In the paper, the authors report the effect of the microfinance intervention on 82 outcome

variables.

For each outcome variable, we construct potential outcomes under the assumption of no effects,

i.e., yigpk(0) = yigpk(1) = Yigpk, where Yigpk is the value of outcome k for household i in village g and

pair p. We then simulate 1000 vectors of treatment assignmentsW j
k = ((W j

11,k,W
j
21,k), . . . , (W

j
1P,k,W

j
2P,k)),

assigning one of the two villages to treatment in each pair. Then, we regress Yigpk on the simulated

treatment W j
gp,k. We estimate regressions with and without pair-fixed effects, clustering standard

errors at the pair level and at the village (unit-of-randomization) level. Thus, we obtain four t-

statistics, and four 5% level t-tests. The estimated size of each t-test is just the percentage of times

the test is rejected across the 82,000 regressions (82 outcomes × 1000 simulations). Because the

data is generated under the hypothesis of no treatment effect, these t-tests should be rejected 5%

of the time.

Table 1 shows the estimated sizes of the four t-tests. The sizes of the t-tests using pair-clustered

standard errors are close to 5%, irrespective of whether pair fixed effects are included in the re-

gression. On the other hand, when standard errors are clustered at the village level and pair fixed

effects are included, the size of the t-test is 17%, very close to the 16.5% level predicted by point 4

of Theorem 4.4. Finally, the size of the t-test with village-clustered standard errors without fixed

effects is equal to 1.3%. In this application, this t-test is very conservative.
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The fourth column of the table shows that we obtain similar results if we use a random sample of

20 of the 81 pairs. With less than 20 pairs, standard errors clustered at the pair level become liberal.

One may then have to use randomization inference tests. Similarly, in a small-strata experiment

with too few strata to cluster at that level, one could use randomization inference, or the variance

estimator proposed in Section 9.5.1 of Imbens and Rubin (2015), provided each stratum has at

least two treated and two control units.

Table 1: Fraction of times t-test is rejected

Clustering level Pair Fixed Effects
5% level t-test size

With 81 pairs With 20 pairs

Pair Yes 0.0505 0.0581
Pair No 0.0521 0.0595
Village Yes 0.1719 0.1851
Village No 0.0132 0.0204

Table 1 reports the empirical size of four 5% level t-tests in Crépon et al. (2015).
For each of the 82 outcomes in the paper, we randomly drew 1000 simulated
treatment assignments, following the paired assignment used by the authors,
and regressed the outcome on the simulated treatment. The four t-tests are
computed, respectively, without and with fixed effects in the regression, and
clustering standard errors at the village or at the pair level. The size of each test
is the percent of times it is rejected across the 82,000 regressions (82 outcomes ×
1000 replications). Column 3 (resp. 4) shows the results using the original sample
of 81 pairs (resp. a smaller sample of 20 randomly selected pairs).

For 26 of the 82 regressions in (Crépon et al., 2015), the baseline outcome is available in the

authors’ data set, so for those outcomes we can simulate the POPVE and BRSVE as well. Those

estimators are defined under Assumption 2, which does not hold. Therefore in those simulations,

we aggregate the data at the village level. We use two samples of 80 and 20 randomly selected pairs

out of the original 81 pairs, so as to have an even number of pairs. For each outcome, we simulate

3,000 vectors of treatment assignments, assigning one of the two villages to treatment in each pair.

Then, we compute τ̂ , V̂pair(τ), V̂pop(τ), and V̂brs(τ), and the three corresponding 5% level t-tests.

The estimated size of each t-test is shown in Table 2 below. As above, the t-test using the PCVE has

close to nominal size with as few as 20 pairs. On the other hand, the t-tests using the POPVE and

BRSVE have greater than nominal size, even with 80 pairs. Accordingly, we run simulations again,

duplicating the random sample of 80 pairs twice to have 160 pairs. The t-test using the BRSVE now

has close to nominal size, but the t-test using the POPVE still has greater than nominal size. With

a sample of 320 pairs obtained by duplicating the random sample of 80 pairs four times, all tests

have close to nominal size. With 20 and 80 pairs, we find in our simulations that the correlation

between V̂pop(τ) and |τ̂ | is much weaker than that between V̂pair(τ) and |τ̂ |. This explains why the
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t-test using V̂pop(τ) is liberal, despite the fact V̂pop(τ) is unbiased: when |τ̂ | is large, V̂pop(τ) is less

likely to be large than V̂pair(τ), so the POPVE t-test is more liberal. With 160 and 320 pairs, this

phenomenon becomes less pronounced. Overall, the asymptotic approximations in Points 2 and 3

of Theorem 4.4 seem to hold only with a large number of pairs, contrary to that in Point 1. In

our survey of paired experiments, only one paper has more than 160 pairs, so it seems that t-tests

based on the POPVE and BRSVE can only be used in a minority of paired experiments.

Table 2: Simulations with data aggregated at village-level to compute V̂pop and V̂brs

Variance estimator
5% level t-test size

With 20 pairs With 80 pairs With 160 pairs With 320 pairs

V̂pair(τ) 0.0591 0.0515 0.0500 0.0510

V̂pop(τ) 0.1307 0.0834 0.0638 0.0568

V̂brs(τ) 0.0826 0.0623 0.0551 0.0531

Table 1 reports the empirical size of three 5% level t-tests in Crépon et al. (2015), aggregating the
data at the village level. For each of the 26 outcomes in the paper for which the baseline outcome is
available, we randomly drew 3,000 simulated treatment assignments, following the paired assignment
used by the authors, and computed the treatment effect estimator τ̂ , the variance estimators V̂pair(τ),

V̂pop(τ), and V̂brs(τ), and the three corresponding t-tests. The size of each test is the percent of times
it is rejected across the 78,000 regressions (26 outcomes × 3,000 replications). Column 2 (resp. 3,
4, 5) shows the results using a random sample of 20 pairs (resp. a random sample of 80 pairs, the
same random sample of 80 pairs duplicated twice, the same random sample of 80 pairs duplicated four
times).

6 Application

In this section, we revisit the paired randomized experiments we found in our survey. The data

used in four of those papers is publicly available. Therein, the authors estimated the effect of

the treatment in 294 regressions, clustering standard errors at the unit-of-randomization level. In

Panel A of Table 3, we re-estimate those regressions, clustering standard errors at the pair level, and

including the same controls as the authors. In the 240 regressions with fixed effects, the average

ratio of the UCVE and PCVE is equal to 0.548. Those ratios are not all exactly equal to 1/2

because Assumption 2 is not always satisfied, but they all are quite close to 1/2, as predicted by

Lemma E.1 in the Web Appendix. The authors originally found that the treatment has a 5%-

level significant effect in 110 regressions. Using pair-clustered standard errors, we find significant

effects in 74 regressions. In the 54 regressions without fixed effects, the UCVE is on average 1.18

times larger than the PCVE. The authors originally found 31 significant effects, whereas we find

36 significant significant effects using PCVE.
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Of the remaining five papers, one used standard errors assuming homoskedastic errors. This

is not an inference method we consider so we do not include it in our replication. Three papers

estimated 132 regressions with fixed effects, clustering standard errors at the unit-of-randomization

level. For those regressions, we multiply the UCVE by the average ratio of the PCVE and UCVE

found in Panel A of Table 3 to predict the value of the PCVE. Panel B of Table 3 shows that while

the authors originally found a 5%-level significant effect in 52 regressions, we find significant effects

in 35 regressions using our predicted PCVE. The last paper only estimated regressions without pair

fixed effects. As the ratio of the PCVE and UCVE can vary a lot across applications, we do not

try to predict the PCVE in that paper.

Table 3: Using unit- or pair-level clustered variance estimators in paired experiments

Unit-level divided
by pair-level
clustered variance
estimators

Number of
5%-level
significant
effects with
UCVE

Number of
5%-level
significant
effects with
PCVE

Number of
Regressions

Panel A: Articles with publicly available data
with pair fixed effects 0.548 110 74 240
without pair fixed effects 1.184 31 36 54

Panel B: Articles without publicly available data
with pair fixed effects 52 35 132

The table shows the effect of using pair- rather than unit-level clustered standard errors in seven of the paired
randomized experiments we found in our survey. In Panel A, we consider four papers whose data is available
online, and re-estimate their regressions clustering standard errors at the pair level. Column 1 shows the ratio
of the unit- and pair-level clustered variance estimators, separately for regressions without and with pair fixed
effects. Column 2 (resp. 3) shows the number of 5%-level significant effects using unit- (resp. pair-) clustered
standard errors. In Panel B, we consider three other papers whose data is not available online, and use the
average ratio of the unit- and pair- clustered variance estimators found in Panel A to predict the value of the
pair-clustered estimator in the regressions with fixed effects estimated by those papers. Column 2 (resp. 3)
shows the number of 5%-level significant effects using unit- (resp. predicted pair-) clustered standard errors.

For 152 of the 294 regressions in Panel A of Table 3, the baseline outcome is available in the

authors’ data set, so we can estimate the POPVE and BRSVE as well. Those estimators are

defined under Assumption 2, which does not hold in all those regressions. Therefore, we compute

the POPVE and BRSVE after aggregating the data at the unit-of-randomization level. When the

number of pairs is odd, we compute the POPVE twice, first excluding the pair with the lowest value

of the baseline outcome, then excluding the pair with the highest value of the baseline outcome, and

we finally take the average of the two estimators. We do the same for the BRSVE when the number

of pairs is odd. We also recompute the PCVE without pair fixed effects with the aggregated data,

using the exact same sample as that used to compute the POPVE and BRSVE. Across those 152
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regressions, the POPVE divided by the PCVE is on average equal to 1.003. The BRSVE divided

by the PCVE is on average equal to 1.002.12 Overall, it does not seem one can expect large power

gains from using the POPVE and BRSVE.

7 Conclusion

Researchers conducting paired or small-strata experiments often use pair- or strata-fixed-effects

regressions and cluster standard errors at the unit-of-randomization level to make inference about

the average treatment effect. We show that the corresponding t-test can overreject the null of no

effect. Instead, we recommend using standard errors clustered at the pair or strata level.

12The second variance estimator proposed by Bai et al. (2019) in their Equation (27) is also on average higher than
the PCVE.
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A Main text proofs

Proof of Lemma 4.1

Point 1

Proof of V̂pair(τ̂) = V̂pair(τ̂fe)

It follows from Equations (1) and (2) that

α̂+ τ̂Wgp + εigp = τ̂feWgp +
P∑
p=1

γ̂pδigp + uigp.

Rearranging and using the fact that under Assumption 2 τ̂ = τ̂fe, one obtains that for every p:

εigp = γ̂p − α̂+ uigp. (4)

Then,

V̂pair(τ̂) =
1

T 2

P∑
p=1

(SETp − SEUp)2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)εigp

]2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)(γ̂p − α̂+ uigp)

]2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)uigp + (γ̂p − α̂)
∑
g

∑
i

(2Wgp − 1)

]2

=
4

T 2

∑
p

(∑
g

∑
i

Wgpuigp

)2

. (5)

The first equality follows from Point 1 of Lemma 3.1 and Assumption 2. The third equality follows

from Equation (4). The fifth follows from the following two facts. First,
∑

g

∑
i(2Wgp − 1)uigp =

2
∑

g

∑
iWgpuigp −

∑
g

∑
i uigp = 2

∑
g

∑
iWgpuigp, since

∑
g

∑
i uigp = 0 by definition of uigp.

Second, (γ̂p−α̂)
∑

g

∑
i(2Wgp−1) = (γ̂p−α̂)

[∑
g

∑
iWgp −

∑
g

∑
i(1−Wgp)

]
= (γ̂p−α̂)[Tp−Cp] =

0, where the last equality comes from the fact that n1p = n2p by Assumption 2.
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Similarly,

V̂pair(τ̂fe) =
4

T 2

P∑
p=1

SET 2
p,fe =

4

T 2

P∑
p=1

(∑
g

∑
i

Wgpuigp

)2

, (6)

where the first equality follows from Point 3 of Lemma 3.1 and Assumption 2. Combining Equations

(5) and (6) yields V̂pair(τ̂) = V̂pair(τ̂fe).

Proof of E
[

P
P−1 V̂pair(τ̂)

]
= V(τ̂) + 1

P (P−1)
∑P

p=1(τp − τ)2

Under Assumption 2, T = C = n/2, so

V̂pair(τ̂) =

P∑
p=1

(
SETp
T
− SEUp

C

)2

=
4

n2

P∑
p=1

(SETp − SEUp)2

=
4

n2

P∑
p=1

(∑
g

∑
i

(Wgpεigp − (1−Wgp)εigp)

)2

=
4

n2

P∑
p=1

(∑
g

∑
i

(2Wgp − 1)εigp

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

(Yigp − τ̂Wgp − α̂)

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)

(∑
i

Yigp − τ̂Wgp
np
2
− α̂np

2

))2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

∑
g

(2Wgp −Wgp)− α̂
np
2

∑
g

(2Wgp − 1)

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

∑
g

Wgp

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

)2

=
4

n2

P∑
p=1

(
τ̂p
np
2
− τ̂ np

2

)2
=

1

P 2

P∑
p=1

(τ̂p − τ̂)2 . (7)
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The third equality comes from the definition of SETp and SEUp. The fifth equality follows from

the Equation (1). The sixth equality follows from n1p = n2p = np/2, which is a consequence of

Assumption 2. The eighth equality comes from the fact that
∑

g(2Wgp−1) = 0, which follows from

Point 1 of Assumption 1. The ninth equality follows from Point 1 of Assumption 1. The tenth

equality follows from
∑

g(2Wgp − 1)
∑

i Yigp =
∑

gWgp
∑

i Yigp −
∑

g(1 −Wgp)
∑

i Yigp = npτ̂p/2.

The eleventh equality follows from Assumption 2.

Now, consider Equation (7). Adding and subtracting τ and τp ≡ E[τ̂p],

V̂pair(τ̂) =
1

P 2

P∑
p=1

((τ̂p − τp)− (τ̂ − τ) + (τp − τ))2

=
1

P 2

P∑
p=1

[
(τ̂p − τp)2 + (τ̂ − τ)2 + (τp − τ)2 − 2(τ̂p − τp)(τ̂ − τ)

+2(τ̂p − τp)(τp − τ)− 2(τ̂ − τ)(τp − τ)] .

Taking the expected value, and given that E[τ̂ ] = τ and E[τ̂p] = τp,

E[V̂pair(τ̂)] =
1

P 2

P∑
p=1

[
V(τ̂p) + V(τ̂) + (τp − τ)2 − 2Cov(τ̂ , τ̂p)

]
=

1

P 2

P∑
p=1

[(
1− 2

P

)
V(τ̂p) + V(τ̂) + (τp − τ)2

]

=

(
1− 2

P

)
V(τ̂) +

1

P 2

P∑
p=1

V(τ̂) +
1

P 2

P∑
p=1

(τp − τ)2

=

(
1− 1

P

)
V(τ̂) +

1

P 2

P∑
p=1

(τp − τ)2.

The second equality follows from the fact that by Point 3 of Assumption 1 and Assumption 2,

Cov(τ̂p, τ̂) = Cov
(
τ̂p,
∑

p′
1
P τ̂p′

)
= 1

P V(τ̂p). The third equality comes from Equation (3). This

proves the result.
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Point 2

V̂pop(τ̂) =
1

P 2

R∑
r=1

(τ̂1r − τ̂2r)2,

=
1

P 2

R∑
r=1

(τ̂21r + τ̂22r − 2τ̂1r τ̂2r).

Taking expected value,

E[V̂pop(τ̂)] =
1

P 2

R∑
r=1

E(τ̂21r + τ̂22r − 2τ̂1r τ̂2r),

=
1

P 2

R∑
r=1

(V(τ̂1r) + V(τ̂2r) + τ21r + τ22r − 2τ1rτ2r),

=
1

P 2

P∑
p=1

V(τ̂p) +
1

P 2

R∑
r=1

(τ1r − τ2r)2,

= V(τ̂) +
1

P 2

R∑
r=1

(τ1r − τ2r)2. (8)

The second equality follows from properties of the variance and that E[τ̂1r] = τ1r and E[τ̂2r] = τ2r.

The third equality follows from P = 2R. The fourth equality follows from Equation (3).

Point 3

V̂brs(τ̂) =
1

P 2

∑
p

τ̂2p −
1

2

(
2

P 2

∑
r

τ̂1r τ̂2r +
τ̂2

P

)
.

=
1

2P 2

∑
p

(τ̂p − τ̂)2 +
1

2P 2

∑
r

(τ̂21r + τ̂22r − 2τ̂1r τ̂2r).

=
1

2
V̂pair(τ̂) +

1

2
V̂pop(τ̂).
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Point 4

E[V̂pop(τ̂)] ≤ E
[

P

P − 1
V̂pair(τ̂)

]
,

⇔ (2R− 1)

R∑
r=1

(τ1r − τ2r)2 ≤ 2R

P∑
p=1

(τp − τ)2,

⇔ (2R− 1)

R∑
r=1

(τ21r + τ22r − 2τ1rτ2r) ≤ 2R

R∑
r=1

[τ21r − 2τ1rτ + τ2 + τ22r − 2τ2rτ + τ2],

⇔ 0 ≤
R∑
r=1

(τ1r − τ2r)2 + 2R

R∑
r=1

[2τ1rτ2r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤
R∑
r=1

(τ1r − τ2r)2 + 4R

R∑
r=1

(τ1r − τ)(τ2r − τ).

The second inequality follows from Points 1 and 2 of this lemma. Let τ·r = 1
2(τ1r + τ2r). Then,

E[V̂pop(τ̂)] ≤ E
[

P

P − 1
V̂pair(τ̂)

]
,

⇔ 0 ≤
R∑
r=1

∑
p=1,2

2(τpr − τ·r)2 + 4R
R∑
r=1

(τ1r − τ·r + τ·r − τ)(τ2r − τ·r + τ·r − τ),

⇔ 0 ≤
R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 +R

R∑
r=1

[(τ1r − τ·r)(τ2r − τ·r) + (τ·r − τ)2],

⇔ 0 ≤
R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 +R

R∑
r=1

− ∑
p=1,2

1

2
(τpr − τ·r)2 + (τ·r − τ)2

 ,
⇔ 1

R

R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 ≤

1

R− 1

R∑
r=1

(τ·r − τ)2.

This proves inequality a).

Then, if 1
R

∑R
r=1

∑
p=1,2

1
2(τpr+τ·r)

2 ≤ 1
R−1

∑R
r=1(τ·r−τ)2, it follows from Point 3 of the lemma

and the previous display that

E
[
V̂pop(τ̂)

]
≤1

2
E
[
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
≤1

2
E
[

P

P − 1
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
=E

[
P

P − 1
V̂brs(τ̂)

]
,
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which proves inequality b).

Similarly, if 1
R

∑R
r=1

∑
p=1,2

1
2(τpr + τ·r)

2 ≤ 1
R−1

∑R
r=1(τ·r − τ)2, it follows from Point 3 of the

lemma and the previous display that

E
[
V̂brs(τ̂)

]
≤1

2
E
[
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
≤1

2
E
[

P

P − 1
V̂pair(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
=E

[
P

P − 1
V̂pair(τ̂)

]
,

which proves inequality c).

QED.

Proof of Lemma 4.2

It follows from Lemma 3.1 that

V̂pair(τ̂fe) =
P∑
p=1

ω2
pSET

2
p,fe

(
1

n1p
+

1

n2p

)2

and

V̂unit(τ̂fe) =

P∑
p=1

ω2
pSET

2
p,fe

(
1

n21p
+

1

n22p

)
.

Under Assumption 2, n1p = n2p = np/2, for all p. Then,

V̂pair(τ̂fe) =

P∑
p=1

ω2
pSET

2
p,fe

(
2

np
+

2

np

)2

= 16

P∑
p=1

ω2
pSET

2
p,fe

n2p
.

Similarly,

V̂unit(τ̂fe) =

P∑
p=1

ω2
pSET

2
p,fe

(
4

n2p
+

4

n2p

)
= 8

P∑
p=1

ω2
pSET

2
p,fe

n2p
.

QED.
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Proof of Lemma 4.3

Let Y gp ≡
∑

i Yigp/ngp, Ŷp(1) ≡
∑

gWgpY gp, Ŷp(0) ≡
∑

g(1 −Wgp)Y gp, and Ŷ (d) ≡
∑

p Ŷp(d)/P ,

d = 0, 1.

E[Ŷp(1)] = E

[∑
g

Wgpygp(1)

]
=

1

2

∑
g

ygp(1) = yp(1). (9)

The second equality follows from Points 2 of Assumption 1. Similarly,

E[Ŷp(0)] = E[yp(0)] (10)

E[Ŷ (d)] = y(d), for d ∈ {0, 1}. (11)

Then, one has

V̂unit(τ̂)− V̂pair(τ̂) =
8

n2

∑
p

SETpSEUp

=
8

n2

∑
p

(∑
g

Wgp

∑
i

(yigp(1)− Ŷ (1))

)(∑
g

(1−Wgp)
∑
i

(yigp(0)− Ŷ (0))

)

=
8

n2

∑
p

n2p
4

(∑
g

Wgp

∑
i

yigp(1)

ngp
− Ŷ (1)

)(∑
g

(1−Wgp)
∑
i

yigp(0)

ngp
− Ŷ (0)

)

=
2

P 2

∑
p

Ŷp(1)Ŷp(0)− 2

P
Ŷ (1)Ŷ (0) (12)

The first equality follows from Points 1 and 2 of Lemma 3.1 and Assumption 2. The second equality

follows from the definitions of SETp, SEUp, and εigp. The third equality follows from Point 1 of

Assumption 1, and Assumption 2. The fourth equality follows from Assumption 2 and some algebra.

Taking the expectation of (12),

E
[
V̂unit(τ̂)− V̂pair(τ̂)

]
=

2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0))− 2

P
Cov(Ŷ (1), Ŷ (0))

=
2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0))− 2

P
Cov

(
1

P

∑
p

Ŷp(1),
1

P

∑
p

Ŷp(0)

)

=
2(P − 1)

P 3

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0)).

31



The first equality follows from adding and substracting 2
P E[Ŷ (1)]E[Ŷ (0)] and 2

P 2

∑
p E[Ŷp(1)]E[Ŷp(0)],

and from Equations (9), (10) and (11). The third equality follows from Point 3 of Assumption 1.

Therefore,

P

P − 1
E
[
V̂unit(τ̂)− V̂pair(τ̂)

]
=

2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P (P − 1)

∑
p

(yp(0)− y(0))(yp(1)− y(1)).

(13)

Finally,

Cov
(
Ŷp(1), Ŷp(0)

)
= E[Ŷp(1)Ŷp(0)]− E[Ŷp(1)]E[Ŷp(0)]

=

(
1

2
y1p(1)y2p(0) +

1

2
y2p(1)y1p(0)

)
−

(
1

2

∑
g

ygp(1)

)(
1

2

∑
g

ygp(0)

)

=
1

4
y1p(1)y2p(0) +

1

4
y2p(1)y1p(0)− 1

4
y1p(1)y1p(0)− 1

4
y2p(1)y2p(0)

=
1

4

(
y1p(1)− y2p(1)

) (
y2p(0)− y1p(0)

)
= −1

2

∑
g

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

)
(14)

The second equality follows from Points 1 and 2 of Assumption 1, and Equations (9) and (10). The

third, fourth, and fifth equalities follow after some algebra. The result follows plugging Equation

(14) into (13).

QED.
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B Extension: stratified experiments with few units per strata

In this section, we perform Monte-Carlo simulations to assess how our results in section 4 extend to

stratified experiments where the number of units per strata is larger than two, but still fairly small.

Three main findings emerge. First, t-tests using stratum-clustered standard errors have nominal

size. Second, t-tests using standard errors clustered at the unit of randomization level are liberal in

regressions with strata fixed effects, but become less liberal as the number of randomization units

per strata increases. With 5 units per strata, the empirical size of a 5% level test with UCVE and

fixed effects is around 7.8%, while with 10 units per strata it is around 6.6%. Finally, t-tests using

standard errors clustered at the unit of randomization level are typically conservative in regressions

without strata fixed effects.

We draw the potential and observed outcomes from the following data generating process

(DGP),

Yigp = Wgpyigp(1) + (1−Wgp)yigp(0) + γp, i = 1, . . . , ngp; g = 1, . . . , G; p = 1, . . . , P, (15)

where yigp(1) and yigp(0) are independent and both follow aN (0, 1) distribution, {γp}p ∼ iid N (0, σ2γ),

and (yigp(1), yigp(0)) ⊥⊥ γp. We either let ση = 0 or ση =
√

0.1. ση = 0 corresponds to a model

with no stratum common shock, while ση =
√

0.1 corresponds to a model with a shock. We

draw potential outcomes once and keep them fixed, so yigp(1), yigp(0) and γp do not vary across

simulations.

Each stratum has G randomization units. We vary G from two to ten. If G is even, then half

of the units are randomly assigned to the control and the remaining to the treatment. If G is odd,

then (G+ 1)/2 units are randomly assigned to the control. We also set ngp = 5 or ngp = 100, and

we let P = 100.

For each simulation, treatment is randomly assigned to G/2 or (G−1)/2 units per stratum. We

compute t-tests based on unit- and stratum-clustered standard errors in regressions of the outcome

on the treatment with and without strata fixed effects. We perform 10,000 simulations for each

DGP. Table 4 presents the size of the t-tests in each DGP.

t-tests using stratum-clustered standard errors achieve 5% size for all values of the number
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of units per strata, G. In contrast, t-tests based on unit-clustered standard errors in regressions

with fixed effects overreject the true null of no treatment effect. These results are in line with

Points 1 and 2 of Theorem 4.4, which covered the special case where G = 2. t-tests based on unit-

clustered standard errors in regressions with fixed effects overreject less as the number of units per

strata increases from two (column 2) to ten (column 10). Interestingly, it seems that unit-clustered

standard errors are approximately equal to
√

G−1
G times the stratum-clustered standard errors. If

G = 2, the ratio of those two standard errors is exactly equal to
√

(2− 1)/2 =
√

1/2 as shown in

Lemma 4.1, but this relationship seems to still hold in expectation for larger values of G.

In Panel A, t-tests based on unit-clustered standard errors in regressions without fixed effects

have the right size. When ση = 0, there is no between and within strata heterogeneity in ygp(0),

so it follows from Point 5 of Theorem 4.4 that in the special case where G = 2, t-tests based on

unit-clustered standard errors in regressions without fixed effects have correct size. Our simulations

suggest that this result still holds when G > 2. However, in Panel B, t-tests using unit-clustered

standard errors in regressions without fixed effects are conservative, because there is now between

strata heterogeneity in ygp(0).

We obtain similar results with five observations per unit of randomization (Panels C and D).

The only change is that the DOF correction in regressions with fixed effects makes the stratum-

clustered variance estimator slightly conservative and the unit-cluster variance estimator slightly

less liberal than in Panels A and B.
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Table 4: Size of t-test in simulated stratified experiments with small strata

Number of units per strata
2 3 4 5 6 7 8 9 10

Panel A. iid standard normal potential outcomes and ngp = 100
UCVE without FE 0.0342 0.0470 0.0491 0.0511 0.0492 0.0472 0.0532 0.0476 0.0525
UCVE with FE 0.1633 0.1121 0.0907 0.0797 0.0724 0.0667 0.0703 0.0619 0.0663
SCVE without FE 0.0516 0.0504 0.0534 0.0517 0.0514 0.0506 0.0548 0.0513 0.0567
SCVE with FE 0.0510 0.0502 0.0533 0.0516 0.0511 0.0502 0.0547 0.0512 0.0566
ŝ.e.unit(τ̂fe)/ŝ.e.strat(τ̂fe) 0.7053 0.8164 0.8703 0.8996 0.9181 0.9320 0.9405 0.9487 0.9559

Panel B. Stratum-level shock affecting potential outcomes and ngp = 100
UCVE without FE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCVE with FE 0.1683 0.1096 0.0901 0.0841 0.0730 0.0683 0.0702 0.0633 0.0629
SCVE without FE 0.0538 0.0520 0.0540 0.0560 0.0522 0.0513 0.0546 0.0533 0.0532
SCVE with FE 0.0529 0.0516 0.0535 0.0558 0.0520 0.0512 0.0545 0.0533 0.0532
ŝ.e.unit(τ̂fe)/ŝ.e.strat(τ̂fe) 0.7053 0.8166 0.8722 0.8980 0.9178 0.9309 0.9409 0.9487 0.9549

Panel C. iid standard normal potential outcomes and ngp = 5
UCVE without FE 0.0696 0.0505 0.0518 0.0486 0.0487 0.0514 0.0523 0.0550 0.0534
UCVE with FE 0.1496 0.1019 0.0807 0.0722 0.0697 0.0648 0.0635 0.0631 0.0653
SCVE without FE 0.0560 0.0522 0.0514 0.0509 0.0531 0.0511 0.0530 0.0545 0.0553
SCVE with FE 0.0425 0.0448 0.0462 0.0475 0.0488 0.0483 0.0503 0.0517 0.0520
ŝ.e.unit(τ̂fe)/ŝ.e.strat(τ̂fe) 0.7053 0.8166 0.8697 0.8977 0.9183 0.9308 0.9403 0.9494 0.9546

Panel D. Stratum-level shock affecting potential outcomes and ngp = 5
UCVE without FE 0.0296 0.0152 0.0173 0.0140 0.0191 0.0167 0.0199 0.0248 0.0219
UCVE with FE 0.1422 0.1032 0.0830 0.0752 0.0680 0.0669 0.0603 0.0632 0.0611
SCVE without FE 0.0507 0.0544 0.0523 0.0542 0.0517 0.0542 0.0504 0.0530 0.0517
SCVE with FE 0.0408 0.0473 0.0479 0.0499 0.0478 0.0512 0.0480 0.0505 0.0489
ŝ.e.unit(τ̂fe)/ŝ.e.strat(τ̂fe) 0.7053 0.8168 0.8692 0.9008 0.9183 0.9324 0.9415 0.9481 0.9555

The table shows the size of t-tests based on unit- and stratum-clustered standard errors in regressions with and without
stratum fixed effects. Across simulations, we vary the number of randomization units per strata from two to ten (G =
2, . . . , 10); we vary the number of observations per randomization unit to either ngp = 5 or ngp=100; and we set the
number of strata to P = 100. For each value of G, we simulated 10,000 samples from the following data generating
processes: independent and identically distributed (iid) standard normal potential outcomes in Panel A, and a model with
an additive stratum-level shock affecting both potential outcomes in Panel B. UCVE and SCVE stand for unit- and stratum-
clustered variance estimators, respectively. FE stands for strata fixed effects. ŝ.e.unit(τ̂fe)/ŝ.e.strat(τ̂fe) is the average across
simulations of the ratio of standard errors clustering at the unit and stratum levels in regressions with stratum fixed effects.
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C Articles in our survey of paired or small strata experiments

Table 5: Paired experiments and stratified experiments with small strata

Reference Search source

Paired Experiments

Ashraf et al. (2006) AEA registry

Panagopoulos and Green (2008) AEA registry

Banerjee et al. (2015) AEJ: Applied

Crépon et al. (2015) AEJ: Applied

Beuermann et al. (2015)1 AEJ: Applied

Fryer Jr et al. (2016) AEA registry

Glewwe et al. (2016) AEA registry

Bruhn et al. (2016) AEJ: Applied

Fryer Jr (2017) AEA registry

Small-strata experiments

Attanasio et al. (2015) AEJ: Applied

Angelucci et al. (2015) AEJ: Applied

Ambler et al. (2015) AEJ: Applied

Björkman Nyqvist et al. (2017) AEJ: Applied

Banerji et al. (2017) AEJ: Applied

Lafortune et al. (2018) AEJ: Applied

Somville and Vandewalle (2018) AEJ: Applied

The table presents economics papers that have conducted
paired experiments or stratified experiments with ten or less
units per strata. We searched the AEJ: Applied Economics
for papers published in 2014-2018 and using the words “ran-
dom” and “experiment” in the abstract, title, keywords, or
main text. Four of those papers had conducted a paired ran-
domized experiment and seven had conducted a stratified ex-
periment with ten units or less per stratum. We also searched
the AEA’s registry website for randomized controlled tri-
als (https://www.socialscienceregistry.org). We looked
at all completed projects, whose randomization method in-
cluded the prefix “pair” and that had either a working or a
published paper. Thus, we found five more papers that had
conducted a paired randomized experiment.
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D Online appendix proofs

Proof of Lemma 3.1

Point 1

First, we introduce the formulas for the PCVE and UCVE in a general linear regression. Let εigp

be the residual from the regression of Yigp on a K-vector of covariates Xigp, and X the (n ×K)

matrix whose rows are X ′igp. The PCVE of the OLS estimator, β̂, is defined as follows (Liang and

Zeger (1986), Abadie et al. (2017))

V̂pair(β̂) = (X ′X)−1

 P∑
p=1

 2∑
g=1

ngp∑
i=1

εigpXigp

 2∑
g=1

ngp∑
i=1

εigpXigp

′ (X ′X)−1. (16)

The UCVE of the OLS estimator, β̂, is defined as follows

V̂unit(β̂) = (X ′X)−1

 P∑
p=1

2∑
g=1

(ngp∑
i=1

εigpXigp

)(ngp∑
i=1

εigpXigp

)′ (X ′X)−1. (17)

Subtract from Equation (1) the average outcome in the population Y ≡ 1
n

∑
p

∑
g

∑
i Yigp =

α̂+ τ̂W gp + ε, where W ≡ 1
n

∑
p

∑
g

∑
iWgp, and ε ≡ 1

n

∑
p

∑
g

∑
i εigp = 0 by construction. Then,

Yigp − Y = τ̂(Wgp −W ) + εigp. (18)

Apply Equation (16) to the residuals and covariates of the regression defined by Equation (18).13

Then,

V̂pair(τ̂) =

∑
p

[∑
g(Wgp −W )

∑
i εigp

]2
[∑

p

∑
g

∑
i(Wgp −W )2

]2 . (19)

13The clustered variance estimator using the residuals from the demeaned formula is equivalent to the clustered
variance estimator including an intercept as in Equation (1) (Cameron and Miller, 2015).
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The numerator of V̂pair(τ̂) equals

∑
p

[∑
g

(Wgp −W )
∑
i

εigp

]2
=
∑
p

[
(1−W )SETp −WSEUp

]2
=
∑
p

[
C

n
SETp −

T

n
SEUp

]2
. (20)

The first equality follows from the definition of SETp and SEUp. The second equality follows from

the definition of T and C.

The denominator of V̂pair(τ̂) equals

[∑
p

∑
g

∑
i

(Wgp −W )2

]2
=

[∑
p

∑
g

(Wgp −W )2ngp

]2

=

[
(1−W )2

∑
p

Tp +W
2∑

p

Cp

]2

=

[
C2

n2
T +

T 2

n2
C

]2
=

[
CT

n

]2
. (21)

The first equality follows from (Wgp−W ) being constant across units. The second equality follows

from the definition of Tp and Cp. The third equality follows from the definition of T and C.

Then, combining Equations (19), (20) and (21),

V̂pair(τ̂) =

∑
p

[
C
nSETp −

T
nSEUp

]2[
CT
n

]2
=
∑
p

[
SETp
T
− SEUp

C

]2
.

Point 2

Apply Equation (17) to the residuals and covariates of the regression defined by Equation (18).

Then,

V̂unit(τ̂) =

∑
p

∑
g

[
(Wgp −W )

∑
i εigp

]2[∑
p

∑
g

∑
i(Wgp −W )2

]2 . (22)
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The numerator of V̂unit(τ̂) equals

∑
p

∑
g

[
(Wgp −W )

∑
i

εigp

]2
=
∑
p

∑
g

(Wgp −W )2

(∑
i

εigp

)2

=
∑
p

[
(1−W )2SET 2

p +W
2
SEU2

p

]
=
∑
p

[
C2

n2
SET 2

p +
T 2

n2
SEU2

p

]
. (23)

The second equality follows from the defintion of SETp and SEUp. The third equality follows from

the definition of T and C. Then, combining Equations (21), (22) and (23),

V̂unit(τ̂) =

∑
p

[
C2

n2 SET
2
p + T 2

n2 SEU
2
p

]
[
CT
n

]2
=
∑
p

[
SET 2

p

T 2
+
SEU2

p

C2

]
.

Point 3

First, consider Equation (2) and, for each pair p, take averages across units to obtain the following

Y p = τ̂feW p + γ̂p + up, (24)

where Y p = 1
np

∑2
g=1

∑ngp

i=1 Yigp, W p = 1
np

∑2
g=1

∑ngp

i=1Wgp = 1
np

∑2
g=1Wgpngp =

Tp
np

. Substract

Equation (24) from Equation (2) to remove the fixed effect γ̂p (note that δigp′ = 0 for all p′ 6= p)

Yigp − Y p = τ̂fe(Wgp −W p) + uigp − up. (25)

Given that {uijp′} is an OLS residual, then it is orthogonal to any regressor by construction. In

particular, {uijp′} is orthogonal to the pair-p fixed effect indicator {δigp},

P∑
p′=1

2∑
g=1

njp′∑
i=1

uijp′δigp = 0.
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By the definition of δigp, δigp = 1 if unit i belongs to pair p, and δigp = 0 if unit i does not belong

to pair p, so that the above equation reduces to

2∑
g=1

ngp∑
i=1

uigp = 0, (26)

which implies that for all p the within-pair residual average is zero

up =
1

np

2∑
g=1

ngp∑
i=1

uigp = 0.

Equation (25) then becomes a regression with one covariate and the same residuals as in Equation

(2):

Yigp − Y p = τ̂fe(Wgp −W p) + uigp. (27)

Now, apply Equation (16) to obtain the PCVE of τ̂fe, which simplifies given that there’s only

one regressor Wgp −W p,
14 to

V̂pair(τ̂fe) =

[∑P
p=1

(∑2
g=1

∑ngp

i=1 uigp(Wgp −W p)
)2]

(∑P
p=1

∑2
g=1

∑ngp

i=1(Wgp −W p)2
)2 (28)

14The clustered variance estimator using the residuals from the deviations-from-means formula (Equation (27)) is
equivalent to the clustered variance estimator including the full set of pair dummies as in Equation (2) (Cameron
and Miller, 2015).
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The denominator of V̂pair(τ̂fe) equals

[∑
p

∑
g

∑
i

(Wgp −W p)
2

]2
=

[∑
p

∑
g

(Wgp −W p)
2ngp

]2

=

[∑
p

[Tp(1−W p)
2 + CpW

2
p]

]2

=

[∑
p

(
Tp
C2
p

n2p
+ Cp

T 2
p

n2p

)]2

=

[∑
p

TpCp
np

]2

=

[∑
p

n1pn2p
n1p + n2p

]2

=

[∑
p

(n−11p + n−12p )−1

]2
. (29)

The second and third equalities follow from the definitions of Tp and Cp. The numerator of

V̂pair(τ̂fe) is equal to

P∑
p=1

 2∑
g=1

ngp∑
i=1

uigp(Wgp −W p)

2

=
P∑
p=1

 2∑
g=1

(Wgp −W p)

ngp∑
i=1

uigp

2

=

P∑
p=1

(
−W p(SETp,fe + SEUp,fe) + SETp,fe

)2
=

P∑
p=1

(SETp,fe)
2 , (30)

where SETp,fe + SEUp,fe =
∑2

g=1

∑ngp

i=1 uigp = 0 from Equation (26). Therefore, combining Equa-

tions (28), (29) and (30),

V̂pair(τ̂fe) =

∑P
p=1 SET

2
p,fe[∑P

p=1

(
n−11p + n−12p

)−1]2 =
P∑
p=1

ω2
pSET

2
p,fe

(
1

n1p
+

1

n2p

)2

. (31)
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Point 4

Consider the deviations-from-means formula of the fixed effects regression from Equation (27)

Yigp − Y p = τ̂fe(Wgp −W p) + uigp.

Apply the definition of the UCVE from Equation (17), which simplifies given that there’s only one

regressor Wgp −W p, to

V̂unit(τ̂fe) =

[∑P
p=1

∑2
g=1

(∑ngp

i=1 uigp(Wgp −W p)
)2](∑P

p=1

∑2
g=1

∑ngp

i=1(Wgp −W p)2
)2 . (32)

The numerator of V̂unit(τ̂fe) equals

P∑
p=1

2∑
g=1

(ngp∑
i=1

uigp(Wgp −W p)

)2

=

P∑
p=1

2∑
g=1

(Wgp −W p)
2

(ngp∑
i=1

uigp

)2

=

P∑
p=1

(
(1−W p)

2SET 2
p,fe +W

2
pSEU

2
p,fe

)

=

P∑
p=1

SET 2
p,fe

(
C2
p

n2p
+
T 2
p

n2p

)

=
P∑
p=1

C2
pT

2
p

n2p
SET 2

p,fe

(
1

T 2
p

+
1

C2
p

)

=
P∑
p=1

(n−11p + n−12p )−2SET 2
p,fe

(
1

n21p
+

1

n22p

)
. (33)

The second equality follows from the definitions of SETp,fe and SEUp,fe. The third equality follows

from Equation (26), i.e., SETp,fe + SEUp,fe =
∑

g

∑
i uigp = 0, for all p, so SET 2

p,fe = SEU2
p,fe,

and the definitions of Tp and Cp.

Then, combining Equations (29), (32) and (33),

V̂unit(τ̂fe) =

P∑
p=1

ω2
pSET

2
p,fe

(
1

n21p
+

1

n22p

)
. (34)

QED.

Proof of Theorem 4.4
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We start by proving a few auxiliary results that will be useful in the proof of Theorem 4.4. Note

that, for all p,

E
[
|τ̂p|2+ε

]1/(2+ε)
= E

[∣∣∣Ŷp(1)− Ŷp(0)
∣∣∣2+ε]1/(2+ε)

≤
(
E
[∣∣∣Ŷp(1)

∣∣∣2+ε])1/(2+ε)

+

(
E
[∣∣∣Ŷp(0)

∣∣∣2+ε])1/(2+ε)

=

E

∣∣∣∣∣∑
g

Wgpygp(1)

∣∣∣∣∣
2+ε
1/(2+ε)

+

E

∣∣∣∣∣∑
g

(1−Wgp)ygp(0)

∣∣∣∣∣
2+ε
1/(2+ε)

≤
∑
g

(
E
[∣∣Wgpygp(1)

∣∣2+ε])1/(2+ε) +
∑
g

(
E
[∣∣(1−Wgp)ygp(0)

∣∣2+ε])1/(2+ε)
=
∑
g

(
E[Wgp]

∣∣ygp(1)
∣∣2+ε)1/(2+ε) +

∑
g

(
E[1−Wgp]

∣∣ygp(0)
∣∣2+ε)1/(2+ε)

=
∑
g

(
1

2

∣∣ygp(1)
∣∣2+ε)1/(2+ε)

+
∑
g

(
1

2

∣∣ygp(0)
∣∣2+ε)1/(2+ε)

≤ 4

(
1

2
M

)1/(2+ε)

< +∞. (35)

The first equality follows from the denifition of τ̂p. The first inequality follows from Minkowski’s

inequality. The third line follows from the definitions of Ŷp(1) and Ŷp(0). The fourth line follows

from Minkowski’s inequality. The fifth line follows from Wgp being a binary variable. The sixth

line follows from Point 2 of Assumption 1. The seventh line follows from Point 1 of Assumption 3.

Using a similar reasoning, one can show that

E
[∣∣∣Ŷp(d)

∣∣∣2+ε] ≤M1 < +∞. (36)

for all d and p and for some M1 > 0.

By Equation (35), E [|τ̂p|] is bounded uniformly in p, and by Point 3 of Assumption 1, (τ̂p)
+∞
p=1

is an independent sequence of random variables, so that

τ̂ =
1

P

∑
p

τ̂p
P−→ lim

P→+∞

1

P

∑
p

E[τ̂p] = lim
P→+∞

1

P

∑
p

τp = lim
P→+∞

τ (37)

by the SLLN in Lemma 1 in Liu (1988), the fact that almost sure convergence implies convergence

in probability, and Point 2 of Assumption 3.
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Point 1

Note that by Point 3 of Assumption 1, τ̂−τ = τ̂−E[τ̂ ] =
∑

p(τ̂p−E[τ̂p])/P is a sum of independent

random variables (τ̂p − E[τ̂p])
P
p=1 with mean zero and with a finite variance by Equation (35). As∑P

p=1 E[|τ̂p − τp|2+ε/S2+ε
P ]→ 0 for some ε > 0 (by Point 3 of Assumption 3), then, by Lyapunov’s

central limit theorem, (τ̂ − τ)/(SP /P ) =
∑

p(τ̂p − τp)/SP
d−→ N (0, 1) as P → ∞, where S2

P =∑P
p=1V(τ̂p) = P 2V(τ̂). Therefore,

(τ̂ − τ)/
√

V(τ̂)
d−→ N (0, 1). (38)

Then,

P V̂pair(τ̂)− PV(τ̂) =
P∑
p=1

τ̂2p
P
− τ̂2 −

P∑
p=1

V(τ̂p)

P

=

P∑
p=1

τ̂2p
P
− τ̂2 −

P∑
p=1

E[τ̂2p ]− E[τ̂p]
2

P

=

P∑
p=1

τ̂2p − E[τ̂2p ]

P
− τ̂2 +

P∑
p=1

τ2p
P

(39)

P−→ lim
P→+∞

1

P

P∑
p=1

(τp − τ)2 (40)

The first equality follows from Equations (3) and (7). The third equality follows from E[τ̂p] = τp.

Let’s consider each of the terms in Equation (39). As P → ∞, by Lemma 1 in Liu (1988),∑P
p=1

τ̂2p−E[τ̂2p ]
P

P−→ 0, by Equation (35), Point 3 of Assumption 1, and the fact almost sure con-

vergence implies convergence in probability. Then, τ̂2
P−→ lim

P→+∞
τ2 by Equation (37) and the

continuous mapping theorem (CMT). Equation (40) follows from these facts, and from Point 2 of

Assumption 3.

Given Equation (40), Point 2 of Assumption 3, the Slutsky Lemma and the CMT, as P →∞,

τ̂ − τ√
V̂pair(τ̂)

=
τ̂ − τ√
V(τ̂)

√
PV(τ̂)

P V̂pair(τ̂)

d−→ N (0, σ2pair). (41)

Finally, by Lemma 4.1, V̂pair(τ̂) = V̂pair(τ̂fe), and by Assumption 2, τ̂ = τ̂fe.
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Point 2

P V̂pop(τ̂)− PV(τ̂) =
1

P

R∑
r=1

[τ̂21r − 2τ̂1r τ̂2r + τ̂22r]−
1

P

P∑
p=1

V(τ̂p)

=
1

P

P∑
p=1

τ̂2p −
2

P

R∑
r=1

τ̂1r τ̂2r −
1

P

P∑
p=1

[E(τ̂2p )− τ2p ]

=
P∑
p=1

τ̂2p − E[τ̂2p ]

P
− 1

R

R∑
r=1

τ̂1r τ̂2r +
1

P

R∑
r=1

(τ21r + τ22r)

P−→ lim
P→+∞

1

P

R∑
r=1

(τ1r − τ2r)2 (42)

The second equality follows from the properties of the variance. As P → ∞, by Lemma 1 in

Liu (1988),
∑P

p=1
τ̂2p−E[τ̂2p ]

P
P−→ 0. Likewise, as R = P/2 → ∞, by Lemma 1 in Liu (1988),∑R

r=1 τ̂1r τ̂2r/R−
∑R

r=1 τ1rτ2r/R
P−→ 0, because E[|τ̂1r τ̂2r|1+ε/2] is uniformly bounded in r by Equa-

tion (35) and the Cauchy-Schwarz inequality, (τ̂1r τ̂2r)
+∞
r=1 is a sequence of independent random

variables by Point 3 of Assumption 1, and E(τ̂1r τ̂2r) = E(τ̂1r)E(τ̂2r) = τ1rτ2r. Finally, the conver-

gence arrow follows from Point 2 of Assumption 3 and some algebra.

The result follows from Equations (38) and (42) and a reasoning similar to that used to prove

Equation (41).

Point 3

P V̂bsr(τ̂)− PV(τ̂) =
1

2
P (V̂pair(τ̂)− V(τ̂)) +

1

2
P (V̂pop(τ̂)− V(τ̂))

P−→ 1

2
lim

P→+∞

1

P

P∑
p=1

(τp − τ)2 +
1

2
lim

P→+∞

1

P

R∑
r=1

(τ1r − τ2r)2.

The first equality follows from Point 3 of Lemma 4.1. The convergence arrow follows from Equations

(40) and (42). The result follows from the previous display, Equation (38), and a reasoning similar

to that used to prove Equation (41).

Point 4

By Lemma 4.2, V̂pair(τ̂) = 2V̂unit(τ̂fe), so given Point 1 of this theorem, the result follows.

45



Point 5

P V̂unit(τ̂)− P V̂pair(τ̂)

=
2

P

∑
p

Ŷp(1)Ŷp(0)− 2
1

P

∑
p

Ŷp(1)
1

P

∑
p

Ŷp(0)

P−→ 2 lim
P→+∞

{
1

P

∑
p

E[Ŷp(1)Ŷp(0)]− E[Ŷ (1)]E[Ŷ (0)]

}

= 2 lim
P→+∞

1

P

∑
p

{(
yp(0)− y(0)

) (
yp(1)− y(1)

)
− 1

2

∑
g

(ygp(0)− yp(0))(ygp(1)− yp(1))

}
. (43)

The first equality follows from Equation (12). The convergence arrow follows from the fact

E
[∣∣∣Ŷp(1)Ŷp(0)

∣∣∣1+ε/2] is bounded uniformly in p by Equation (36) and the Cauchy-Schwarz in-

equality, from the fact E
[∣∣∣Ŷp(d)

∣∣∣1+ε/2] is also bounded uniformly in p, from Point 3 of Assumption

1, from the SLLN in Lemma 1 in Liu (1988), from the CMT, and from Point 2 of Assumption 3.

The last equality follows from the same steps as those used to prove Lemma 4.3. The result follows

from Equations (43), (40), and (38), and a reasoning similar to that used to prove Equation (41).

Point 6a

σ2pair ≤ σ2pop,

⇔ lim
P→+∞

1

R

R∑
r=1

(τ1r − τ2r)2 ≤ lim
P→+∞

1

R

P∑
p=1

(τp − τ)2,

⇔ lim
P→+∞

1

R

R∑
r=1

(τ21r + τ22r − 2τ1rτ2r) ≤ lim
P→+∞

1

R

R∑
r=1

[τ21r + τ22r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤ lim
P→+∞

1

R

R∑
r=1

[2τ1rτ2r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤ lim
P→+∞

1

R

R∑
r=1

(τ1r − τ)(τ2r − τ),

Then, σ2pair ≤ σ2bsr ≤ σ2pop ⇔ σ2pair ≤ σ2pop.

Point 6b is straightforward so we do not prove it.
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E Results when randomization units do not all have the same

number of observations.

In this subsection, we extend Lemma 4.2 without requiring Assumption 2.

Lemma E.1 (Ratio of the UCVE and PCVE with fixed effects and when Assumption 2 fails).

V̂unit(τ̂fe)/V̂pair(τ̂fe) =
∑

pmpζp, where, for all p, 1
2 ≤ mp =

(
n1p

np

)2
+
(
n2p

np

)2
≤ 1, ζp ≥ 0 and∑

p ζp = 1. Therefore, V̂unit(τ̂fe)/V̂pair(τ̂fe) ∈
[
1
2 , 1
]
.

Proof of Lemma E.1

Take the ratio between V̂unit(τ̂fe) and V̂pair(τ̂fe) from Equations (31) and (34),

V̂unit(τ̂fe)
V̂pair(τ̂fe)

=

∑P
p=1 ω

2
pSET

2
p,fe

(
1
n2
1p

+ 1
n2
2p

)
∑P

p=1 SET
2
p,fe[∑P

p=1(n
−1
1p +n−1

2p )
−1

]2

=

∑P
p=1(n

−1
1p + n−12p )−2SET 2

p,fe

(
1
n2
1p

+ 1
n2
2p

)
∑P

p=1 SET
2
p,fe

=

P∑
p=1

mpζp,

where ζp =
SET 2

p,fe∑P
p=1 SET

2
p,fe

≥ 0 and mp = (n−11p + n−12p )−2
(

1
n2
1p

+ 1
n2
2p

)
. The second equality follows

from the definition of ωp. Clearly,
∑P

p=1 ζp = 1.

Now,

mp =
1(

1
n1p

+ 1
n2p

)2
(

1

n21p
+

1

n22p

)

=
1(

1 +
n1p

n2p

)2 +
1(

n2p

n1p
+ 1
)2

=
n22p + n21p

(n1p + n2p)2

=

(
n1p
np

)2

+

(
n2p
np

)2

.

Let’s show that 1
2 ≤ mp ≤ 1 for all p. Given that n21p + n22p ≤ (n1p + n2p)

2, then mp ≤ 1. Now,

given that (n1p−n2p)2 = n21p−2n1pn2p+n22p ≥ 0, then 2n21p+ 2n22p ≥ (n1p+n2p)
2, so that mp ≥ 1

2 .
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Then, the ratio of V̂unit(τ̂fe) to V̂pair(τ̂fe) is in [1/2, 1] since mp ∈ [1/2, 1] for all p, and
∑

p ζp = 1.

QED.

Lemma E.1 shows that V̂unit(τ̂fe)/V̂pair(τ̂fe) is a weighted average across pairs of the sum of

squared randomization-unit shares within pairs. Accordingly, this ratio is bounded between a half

and one. Figure 1 plots this ratio when n1p/n2p is constant across pairs. V̂unit(τ̂fe)/V̂pair(τ̂fe) is

very close to 1/2 when n1p/n2p is included between 0.5 and 2, meaning that the first randomization

unit has between half and twice as many observations as the second one. For instance, if in every

pair, one randomization unit has twice as many observations as the other, then the ratio of the two

variances is equal to 5/9. Moreover, the fact that V̂unit(τ̂fe)/V̂pair(τ̂fe) is a weighted average across

pairs implies that even if there is a pair with randomization units that are highly unbalanced,

this ratio will still be close to 1/2 if other pairs are balanced. Overall, Lemma E.1 shows that

Lemma 4.2 still approximately holds when randomization units in each pair have different numbers

of observations, unless they have an extremely unbalanced number of observations.

Figure 1: Ratio of Randomization-Unit-Clustered and Pair-Clustered Variance Estimator in Re-
gressions with Paired Fixed Effects
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