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ABSTRACT
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provided by a shift-share instrument combining the spatial distribution of surnames in the 1940 
U.S. Census with thousands of surname-specific shifts based on modern inventor mobility.
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Entrepreneurship—especially driven by novel technologies—has been recognized as an essential 

source of economic growth and improved quality of life since Smith (1776) and Schumpeter 

(1942). Newly founded firms are responsible for job creation (Decker et al., 2014; Glaeser, et al. 

2015), productivity (Gennaioli et al, 2013) and innovation (Kortum & Lerner, 2001). Policymakers 

worldwide have sought to spur startup activity, in hopes of replicating the entrepreneurial 

dynamics of California’s Silicon Valley. That so many efforts have fallen far short (Lerner, 2009) 

speaks to a lack of understanding and causal evidence regarding what drives entrepreneurship. 

Further, given that the vast majority of new firms fail (Haltiwanger et al., 2013)—including 75% 

of venture-capital backed firms (Hall & Woodward, 2010)—what are the critical inputs and 

mechanisms that increase the rate of successful startups? 

Scholars have long observed that human capital, including technical talent, is an important 

ingredient in the entrepreneurial recipe, but causal evidence and mechanisms of how technical 

human capital improves entrepreneurship remains scarce. Lerner & Nanda (2020) claim that 

“[r]egions like Silicon Valley have an abundance of resources for entrepreneurs, [including] 

excellent engineers…” Jensen & Thursby (2001) likewise argue that scientific inventors need to 

be fully engaged and motivated for technologies to be successfully commercialized in new firms 

(see also Zucker et al, 1998; Marx & Hsu, 2021).1 Larger-scale, if suggestive, evidence for the 

role of inventors in successful entrepreneurship comes from correlations between the supply of 

technical workers’ levels of patenting, entrepreneurial firm founding, and employment (e.g. Kerr, 

2013; Maloney & Caicedo, 2016; Azoulay et al., 2020). Glaeser & Kerr (2009) find that talent 

explains 60-80% of the variance in regional entrepreneurship in U.S. manufacturing, concluding 

 
1 Not all high-growth firms in the U.S. are high-tech, and vice-versa. However, Hathaway (2018) reports that high-tech firms are 
overrepresented by 4x among high-growth firms (21% vs. 5% of all firms) as defined by Inc. Magazine’s annual list of the 5,000 
fastest-growing privately held firms in the U.S (see also Lerner and Nanda, 2020; Guzman and Stern, 2020). 
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that “the broad stability of this finding suggests that people and their human capital are probably 

the crucial ingredient for most new entrepreneurs” (p. 659). In this paper, we seek causal 

evidence on this point, in the context of high-growth startups that raise venture capital.  

We begin by establishing an association between the arrival of inventors in a focal county and a 

subsequent increase in venture-backed startups in that county. Moreover, we find that those 

incoming inventors play direct roles in more than 1 of 13 new, VC-backed startups: as a founder, 

executive, or an inventor on the startup’s patent. Even though we find linkages between inbound 

inventors and new startups, these correlations do not address reversal causality. That is, does the 

arrival of inventors in a region drive entrepreneurial activity, or are inventors more attracted to 

regions where they expect higher levels of entrepreneurship? Our approach to providing a more 

causal assessment relies upon a shift-share instrumental variable (SSIV). The “share” is the 

proportion of people in 1940 with a particular last name residing in each of 3,097 counties. The 

“shift” is the number of inventors with a particular last name who move anywhere in the U.S. 

each year from 1987-2007. For each county-year observation, the instrument is computed by 

summing over all surnames the 1940 share for that surname in the focal county multiplied by the 

shift for that surname in the focal year (less the number of inventors of that surname who moved 

to the focal county).  

We employ our SSIV to estimate the impact of an inflow of inventors to a focal county on the 

quantity and quality of venture-capital backed startups in the county. We focus on venture 

financed startups; although only 0.5% of new businesses obtain venture financing (Puri & 

Zarutskie, 2009), nearly half of firms that complete an IPO had raised venture capital (Lerner & 

Nanda, 2020). We combine data from VentureXpert, Crunchbase, and Pitchbook on startups that 

received venture capital funding as early as 1987 and exited as late as 2020.  
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Our results suggest that inbound inventors improve both the quantity and quality of 

entrepreneurship. More venture-backed startups are founded in counties where more inventors 

arrive (the arrival of approximately 28 inventors implies one additional startup). Second, inbound 

inventors yield more startups that eventually yield an attractive return on investment for the 

investor (based on acquisition/IPO values), including billion-dollar “unicorn” exits. Third, 

inbound inventors reduce the number of startups that go bankrupt or are sold in a “fire sale.” 

Therefore, the supply of inventors appears to increase not only the rate but also the efficiency of 

entrepreneurship. 

Our results suggest two ways in which inventors improve the efficiency of entrepreneurship. 

First, the arrival of technical talent shifts venture dollars away from low-tech entrepreneurship to 

high-tech entrepreneurship. Moreover, investments in low-tech startups that fail are displaced by 

investments in high-tech startups that succeed. Second, this displacement happens not only at the 

level of technical vs. non-technical startups but also at the level of sector-specific skills as the 

arrival of inventors in one sector depresses startup founding rates in other sectors. 

We interpret these results cautiously, given the nature of our analysis. Although we attempt to 

validate both the shift and share components of the instrument, the SSIV remains vulnerable to at 

least two issues. First, because we estimate a local average treatment effect, it may be that our 

overall results are driven by counties with more entrepreneurial activity as well as more 

productive and mobile inventors. We still observe that inbound inventors result in more startups 

when removing Silicon Valley and other startup hotspots, albeit in smaller magnitude. Thus, we 

caution against inferring that simply moving inventors to a rural county with little innovative or 

entrepreneurial activity will suddenly yield a venture-backed startup. Second, certain types of 
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simultaneous, interstate shocks to industry demand may yield spatial correlations that threaten 

inference. For this reason, we see our work as a step toward causal evidence. 

The remainder of the paper is organized as follows. Section 1 describes the data. Section 2 

defines the shift-share instrument. Section 3 presents basic results. Section 4 explores 

mechanisms, including sector-specific results. Section 5 concludes. Online appendices detail data 

construction and instrument plausibility and validation. 

 

1. DATA 

We assemble three different sources at varying degrees of aggregation and times to arrive at a 

panel dataset at the U.S. county-year level for 1987-2007. 

1.1 Historic Census data 

We begin with the complete 1940 U.S. Census records for 131,940,709 citizens in 38,382,088 

households (http://sites.mnhs.org/library/content/1940-census). As explained below, our 

identification strategy relies on being able to observe the name and location of each U.S. citizen 

in 1940 in order to predict the mobility of modern inventors. The historic data include 3,363,932 

different surnames, for which the median number of occurrences is 3, the mean is 39, and the 

maximum is 1,359,079 (for Smith). 27% appear only once.  The 1940 U.S. Census records consist 

of 3097 counties and other districts based on the county system in 1940. In order to match the 

location information of inventors, we translate 19 counties or districts that are no longer in use to 

the 2020 concordance (based on https://www.census.gov/programs-surveys/geography/technical-

documentation/county-changes.2010.html from 1970 to 2020). Please see Appendix A1 and A2 for 

details on name matching and geographic disambiguation, respectively. 

http://sites.mnhs.org/library/content/1940-census
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html%20from%201970%20to%202020
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html%20from%201970%20to%202020
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1.2 Inventor data 

We begin with raw data from the United States Patent and Trademark Office (USPTO) from 

1976-2018 (only the overlapping time periods of patent and entrepreneurship data are used, see 

below). Although the USPTO lists inventors for every patent, it does not provide unique 

identifiers for them. For example, even the relatively rare name of Matthew Marx is listed as 

inventing many patents, including 5,995,928, “Method and apparatus for continuous spelling 

speech recognition with early identification, 6,173,266, “System and method for developing 

interactive speech applications,” and 7,271,262, “Pyrrolopyrimidine derivatives.” In this simple 

example, it would seem reasonable based on the titles alone that the same inventor authored the 

first two but not the last patent, and that is indeed the case. Inventor names can be disambiguated 

with a variety of algorithms, here we use Balsmeier et al. (2018). After applying name cleaning 

and standardizing procedures and the matching algorithm, we match 91.1% of inventors’ 

surnames to a surname from the 1940 Census.  

We use the inventor identification number (ID) and location provided in Balsmeier et al. (2018) 

to identify inventor moves across U.S. counties. (We cannot observe an inventor move with 

fewer than two patents.) Using the patent application year as a timestamp, we count an inward 

move in the first year we first observe an inventor in a county. As noted by Cheyre, Klepper, & 

Veloso (2015), patent application dates do not necessarily correspond with dates of employment 

and in particular may lag actual moves. Hence, the inventor may have moved into a county 

earlier than we detect, leading to a fuzzy lower bound of the actual lag between our variable of 

interest and the actual inward moves. In 96% of cases, we observe an incoming inventor 

patenting elsewhere within 5 years earlier (mean = 2.6). Results are robust to excluding inventor 

moves with longer gaps between two patenting events, or intermediate stops at a third county. If 
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an inventor appears on two or more patents within a given year, we follow Moretti & Wilson 

(2014) and take the most frequent location.  

1.3 Entrepreneurship data 

Our main data source of US entrepreneurial activity is VentureXpert, which is part of 

Thompson’s economic data suite and covers all venture-backed firms in the U.S. It offers 

detailed information on the location, industry classification and significant growth events 

(M&As and IPOs) of the funded companies. The data is sourced from venture capital firms, 

company filings and various news sources. Because VentureXpert is sometimes missing capital 

investment, acquisition values, and founding year (and some IPO values), we fill these in using 

Pitchbook and Crunchbase, via exact match on website URL and state (Dorn et al. 2020). 

Our baseline sample consists of all startups with information on founding year, industry and 

location, starting in 1987 (VentureExpert lacks comprehensive coverage beforehand). We use the 

year of founding in our estimations, rather than the year of funding, and our sample ends in 2007 

to avoid truncated measures of whether a startup achieved a significant event (successful M&A 

or IPO) within ten years since founding. We focus on venture-backed startups as they are 

important drivers of economic dynamism, innovation, and long-term growth (Decker et. al. 2014, 

Lerner & Nanda, 2020). 

Following Ewens & Marx (2018), we define a successful startup as having completed a merger, 

acquisition, or initial public offering with valuation exceeding 125% of the total invested venture 

capital within 10 years since founding. We also consider a 500% Rate of Return (RoR) on 

invested capital as well as “unicorns” i.e., startups which exit with a valuation of $1B or greater 

(independent of capital raised). For failed startups, rely on VentureXpert’s classification as 
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“Defunct” or “Bankruptcy.” Where a startup had not exited within ten years of founding, it was 

not counted as having failed or succeeded. Table 1 provides descriptive statistics at the county-

year level. For the sample of 27,619 venture-backed startups, 26% achieve an M&A or IPO 

within 10 years of their foundation, with an average return of 1646% (median 203%) on the 

invested capital. VentureXpert lists 3386 venture-backed startups as “Defunct” or “Bankruptcy.” 

Table 1 – Descriptive statistics at U.S. county level, N=65,247 

Variable mean median std dev min max 

Number of incoming inventors 2.15 0.00 11.96 0.00 700.00 
Instrument 1.98 0.70 8.68 0.00 356.03 
Number of overall venture-backed startups 0.42 0.00 4.20 0.00 314.00 
Number of successful startups (RoR ≥ 125%) 0.04 0.00 0.60 0.00 38.00 
Number of successful startups (RoR ≥ 500%) 0.02 0.00 0.28 0.00 19.00 
Number of successful startups (Exit ≥ 1B) 0.00 0.00 0.05 0.00 4.00 
Number of failed startups 0.05 0.00 0.83 0.00 91.00 
Number of failed startups (inc. RoR < 125%) 0.08 0.00 0.08 0.00 123.00 
Number of high-tech startups 0.34 0.00 3.79 0.00 306.00 
Number of low-tech startups 0.09 0.00 0.70 0.00 38.00 
Notes: This table reports summary statistics at the county-year level, covering 3107 counties 1987-2007. 
“Successful” startups are those that complete an IPO or successful acquisition within 10 years, with three 
different cutoffs at an exit value ≥ 125%, 500% of total venture capital acquired or an absolute exit value 
≥ 1B dollars. “Failed” startups are “Defunct” or “Bankruptcy” in VentureXpert. Another variable for 
“Failed” startups that includes startups with exit value < 125% of invested capital. High- vs. low-tech 
startups are categorized according to VentureXpert (Appendix A3). 
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2. CONSTRUCTING THE SHIFT-SHARE INSTRUMENT 

Estimating the causal impact of mobile inventors on local startup formation is challenging due to 

potentially unobservable confounders at the individual level (e.g., personal reasons for moving to 

a certain region) as well as at the regional level (e.g., local job market prospects). We approach 

this with a shift-share instrumental variable (SSIV) based on Bartik (1991) and its applications to 

international migration (Card (2009); Burchardi et al. (2020)). Our “shift” is the total number of 

nationwide surnames of mobile inventors in a given year. Our “share” uses the proportion of the 

same surnames in a county in the 1940 U.S. Census.2 We discuss first stage, share, and shift 

validity (Goldsmith-Pinkham et al. 2020; Borusyak et al. 2022) in Appendix C and D. 

Prior work finds that immigrants locate near previous immigrants from the same country of 

origin (Bartel, 1989; Lalonde & Topel, 1991). Card (2001) and others (Jaeger, Ruist & Stuhler, 

2018 has an overview) exploited this observation to predict immigrant inflows into particular 

U.S. regions, interacting past shares of immigrants from an origin country to a given region with 

the contemporaneous inflow, or “shift”, of migrants from the same country at the national level. 

We leverage this idea to create an instrument for the contemporaneous inflow of U.S. inventors 

to a particular county based on the spatial distribution of U.S. surnames across counties in 1940 

and the total number of mobile inventor surnames in a given modern year. The intuition is thus: 

although a host of factors influence where inventors locate—or, more important to our study, re-

locate—on the margin, an inventor should prefer to move to a county where there are likely to be 

more relatives. Although we lack data on family structure for the full population of U.S. 

 
2 Guided by recent literature, we address concerns related to both the share (Goldsmith-Pinkham et al. 2020) and 
shift (Borusyak et al. 2022). While both approaches highlight that causality is sufficiently established if either the 
share or the shift is conditionally exogenous, we check that our approach is remain plausible given either emphasis. 
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inventors, we borrow the approach from the immigration literature which utilizes the observation 

that people with a certain family name are found more frequently at places where there were 

other people with same name in the past (see Darlu et. al. 2011, for the example of Savoy, France 

and Clark & Cummins 2015, for England). This literature also found that historic locations of 

family members can serve to predict movements of people decades later (Darlu et. al. 2011; Clark 

& Cummins 2015). Appendix C verifies that these patterns hold for individual U.S. inventors. 

Our approach departs from Card (2009) in two ways. First, resembling recent advances in 

international migration literature (Buchardi et al. 2020, Hunt 2017, and Wozniak & Murray 2012) 

we try to avoid unobserved local demand shocks that might invalidate the instrument by 

removing each county’s own inventor inflows from the nationwide shifts (see below regarding 

the leave-out extension of the instrument). Second, by utilizing more than 200,000 surname-level 

shares, our approach minimizes reliance upon the influence of any particular share as can happen 

with nation-level shares. Ideally, the historic share of any particular name in a certain county 

should not be correlated with unobserved factors that explain why counties with larger shares of 

that name in 1940 will generate larger changes in future entrepreneurship. 

The intuition underlying this instrument, as in prior immigration studies, is that it generates 

variation at the local level by exploiting variation at the national level, which is arguably not 

influenced by local conditions.  Although we employ a larger number of shares than most prior 

SSIV applications, the instrument remains vulnerable to criticisms including that a local demand 

shock in a particular country could drive inbound inventors and entrepreneurship. Our preferred 

SSIV specification addresses one case of local shocks via a “leave-out” approach, and we discuss 

other cases (and remaining limitations) below and in Appendix D.  
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2.1 Definition of the SSIV 

In the absence of endogeneity concerns, we could formally estimate the effect of inventor 

mobility on entrepreneurship via OLS:  

𝑌𝑌𝑑𝑑𝑑𝑑,𝑡𝑡 =  𝛼𝛼0 +  𝛽𝛽 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 × 𝜂𝜂𝑠𝑠 + 𝛾𝛾𝑑𝑑 +  𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑             (1) 

where 𝑌𝑌𝑑𝑑𝑑𝑑,𝑡𝑡 is a dependent variable observed for county d in state s in year t. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑡𝑡−1 is the 

number of inventors who moved to county d in state s in the previous period t-1. As explained in 

the data section above, an inward inventor move is observed from patent documents, leading to a 

fuzzy lag of at least one year (this assumption is robust to estimations of other lags).  𝛿𝛿𝑡𝑡 denotes 

year fixed effects and 𝜂𝜂𝑠𝑠 denotes state fixed effects. We control for unobserved time variant and 

time invariant state specific shocks, such as varying state-level economic conditions and policy 

changes, through state-year fixed effects 𝛿𝛿𝑡𝑡 × 𝜂𝜂𝑠𝑠. 𝛾𝛾𝑑𝑑 controls for time-invariant unobserved 

county characteristics that may confound our identification of 𝛽𝛽. 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠 is the error term. 

The key econometric challenge with Equation (1) is that unobserved factors influence both the 

rate of incoming inventors and local economic conditions; for example, innovative counties are 

attractive to inventors. Although county fixed effects control for any persistent differences in 

innovation levels across counties, this misses temporary local shocks that might attract inventors. 

The SSIV approach aims to address this econometric challenge by constructing an instrument 

that is orthogonal to (or uncorrelated with) time-varying unobservable confounders.  

We define our instrument as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1� = ∑ 𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛
1940𝑛𝑛  ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛,𝑡𝑡−1         (2) 
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where 𝑃𝑃𝑑𝑑𝑑𝑑
1940 is the population of people in county d with surname n in 1940, 𝑃𝑃𝑛𝑛

1940 is the number 

of people with surname n in the entire U.S. in 1940 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛,𝑡𝑡−1 is the number of inventors with 

surname n who move from any county in the U.S. to any other county in the U.S. in year t-1. The 

expected inflow of inventors 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑−1�  in county d at time t-1 is thus the weighted sum of 

inventors that move across the U.S. with surname n at time t-1 (the “shift”) with the historical 

distribution of the same family names (the “shares”) serving as weights.  

Another concern might be that at least some national movements of inventors are still driven by 

local economic conditions, and that these might be correlated with past shocks. It could be, for 

instance, that inventors and families with the name Marx were always interested in mechanical 

engineering and thus would have settled in areas where mechanical engineering was in high 

demand in 1940. If the same area experiences a high demand in mechanical engineering today, 

then inventors with the name Marx might be more likely move to that region for endogenous 

reasons. To reduce these endogeneity concerns, we leave out county d’s own inflows from the 

national flow of inventors with the same surname (see Buchardi et al. 2020, Wozniak & Murray 

2012, or Hunt 2017 for similar approaches, and Borusyak et. al. 2022 for theoretical explanation 

and proofs). Our preferred instrument is thus: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� = ∑ 𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛
1940𝑛𝑛  ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛,𝑑𝑑)     (3) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛,𝑑𝑑) is the total number of inventors with name n who move to counties 

outside of d. The leave-out strategy aims to avoid the possibility that potentially demand driven 

choices, e.g., of Marxes, to move to county d, do not drive changes in the instrument. 
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2.2 Validation and caveats 

Appendix D investigates additional threats to SSIV identification, including correlation with 

modern pull factors (D1), the possibility that certain surnames are drawn to economically 

advantaged counties (D2), and the influence of popular or wealthy surnames (D14). Two points 

deserve particular attention. First, because the instrument estimates a local average treatment 

effect across all counties, it could be that counties with higher levels of entrepreneurship are 

overweighted, as are productive inventors, whose mobility can be more precisely measured 

because they have more patents. This could lead to larger marginal effects than we should expect 

for the average county or inventor. Appendix D14 removes the top 5% of counties according to 

the SSIV, with directionally consistent results at similar significance levels yet smaller 

magnitudes. Therefore, our estimates should not be viewed as applying to every county, 

especially those with little prior activity in innovation or entrepreneurship. 

The second point returns to the issue of demand shocks. Although the leave-out modification to 

the instrument helps to address an isolated demand shock, certain types of simultaneous, 

industry-specific shocks in multiple counties that are spatially separated might nonetheless 

present a challenge. The industry-level version of the instrument we calculated in Section 4.2 

helps to address this, but in Appendix D8 we describe in detail a scenario (requiring several 

jointly-held conditions) that may yield unresolved spatial correlation. 

3. RESULTS 

Table 2 provides baseline results for the impact of inbound inventors on entrepreneurship. These 

models regress the logged number of venture-backed startups founded in county d during year t 

on the logged number of incoming inventors in t-1. We begin with correlations and then move to 

the instrument defined in Section 2.  
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Model (a) of Table 2 estimates Equation (1), including year fixed effects to help absorb 

unobserved macroeconomic changes. This cross-sectional analysis reveals a strong correlation 

between the number of incoming inventors in a county with the count of venture-backed startups 

founded in the next period, consistent with Kerr (2013), Maloney & Caicedo (2016), and Azoulay 

et al. (2020). Model (b) includes state-year fixed effects, suggesting little impact from 

unobserved, state-based policy changes. Model (c) adds county fixed effects. The substantially 

smaller estimated magnitude in model (c) indicates that unobserved time-invariant confounders 

explain a large part of the raw correlation between incoming inventors and entrepreneurship. 

Table 2 – Impact of incoming inventors on local venture backed startups 

 
# VC-backed startups Incoming 

Inventorst-1 
# VC-backed startups 

 a b c d e f 

 OLS OLS OLS 
OLS (first 
stage) IV 

IV (w/o top 
10 counties) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜    0.309***   
    (0.023)   
Incoming 
Inventorst-1 

0.358*** 0.363*** 0.031***  0.180*** 0.119*** 

  (0.019) (0.019) (0.005)  (0.040) (0.036) 
N 65,247 65,247 65,247 65,247 65,247 65,058 
First stage F     175.723 170.535 
Year FE Yes No No No No No 
State-Year FE No Yes Yes Yes Yes Yes 
County FE No No Yes Yes Yes Yes 
R2 0.482 0.509 0.835 0.861   

Notes: Models (a-c) present OLS regressions of log (# venture-backed startups + 1). Incoming inventors and the 
instrument are log-transformed. Model (a) includes year fixed effects; (b) includes state-year fixed effects; (c) adds 
county fixed effects. Model (d) presents first-stage results of incoming inventors on the IV (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� ). 
Model (e) shows our IV regression with state-year and county fixed effects, where incoming inventors are 
instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�  in the first stage as in equation (3). Model (f) shows our IV without the top 10 
entrepreneurial counties (Alameda, Los Angeles, Orange, San Diego, San Francisco, San Mateo, Santa Clara in 
California; Middlesex in Massachusetts; New York County in New York; King in Washington). First stage F is the 
Kleibergen-Paap Wald F statistic. Standard errors clustered at the county level are in parentheses. ***, ** and * 
indicate a significance level of 1%, 5%, and 10%, respectively. 
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The remaining columns of Table 2 explore the instrument. Model (d) reports a strong first stage, 

which is fully characterized in Appendix C where we estimate a dyad model measuring each 

inventor’s mobility to the focal county as well as all other possible counties, net of the surname 

shares used to calculate the instrument. Models (e-f) estimate our IV approach with the 

instrument defined in Equation (3), including fixed effects at the state-year and county level. The 

first stage F value is in both cases well above conventional levels, suggesting that the IV 

regression does not suffer from weak instrument bias (Stock & Yogo, 2002; Lee et al., 2021). The 

instrumented regressions both indicate a significant positive impact of incoming inventors in a 

given county on the local rate of startup formation. Importantly, the effect is not limited to 

entrepreneurial “hotspots” such as Silicon Valley: removing the top ten countries by startup 

activity preserves the result (albeit with somewhat reduced economic significance, to which we 

return below). 

Under the assumption that the estimated coefficient can be interpreted as an elasticity, Model (e) 

indicates that a 10% increase in the rate of incoming inventors increases the rate of venture-

backed startups founded by 1.8% at the mean.3 Translating the relative increases into absolute 

numbers at the mean of 2.15 incoming inventors (from Table 1) suggests that a county can expect 

one additional venture-backed startup for every 28.3 incoming inventors. However, these back of 

the envelope estimates are at the mean of the data, so they may not pertain to a particular region. 

For example, one should not infer from these estimates that a county that has never had a venture 

 
3 Given the estimation of the ln of number of startups and coefficient of 0.18 (model e), a 100% increase in the 
number of incoming inventors implies an 18% increase in the number of startups. At the means, this implies that 2.15 
incoming inventors results in 0.423*0.18 = 0.07614 more startups. To observe one whole startup therefore implies 
2.15*(1/.07614) = 28.3 additional incoming inventors. Again starting at the means for the entire dataset, the number 
outside of the top 10 entrepreneurial regions (model f) is 2.15*(1/(0.423*0.119)) = 42.7 additional inventors. 
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backed start-up can import 29 inventors and expect a VC-backed startup to appear. Interpreting 

the elasticity from Model (f), counties outside of the top ten would require 42.7 incoming 

inventors. Our LATE estimates likely overweight top counties, as well as prolific inventors—

whose mobility is easier to detect from the patent record, and who might move for reasons 

negatively or unrelated to local entrepreneurship, e.g., tax benefits (Moretti & Wilson, 2014) or 

weather, leading to negatively biased OLS estimates. Another reason the OLS estimates in Model 

(c) are smaller than the IV in (e) could be attenuation bias stemming from a measurement error in 

the endogenous variable, possibly due to imprecise time stamps on inventor moves or errors in 

the locations mentioned on patent documents. Appendix D dives more deeply into the validation 

of the SSIV, with D16 exploring the difference in magnitude between OLS and IV. 

3.1 Quality of startups founded 

Table 2 establishes that the arrival of inventors correlates with an increase in the quantity of new 

firms but does not speak to their quality. Although many governments adopt the number of 

startups as an easy-to-count metric of entrepreneurship, startups both create and destroy jobs, 

because failure is the modal outcome (Lerner, 2009), Haltiwanger et. al. (2013). More nuanced 

measures of quality would be preferable, though how to measure “success” is not obvious. 

Although Initial Public Offerings almost always indicate a successful startup, acquisitions can be 

an ambiguous indicator of success. For example, Puri & Zarutski (2012) report that many 

venture-backed failures are “disguised” as acquisitions, often sold for pennies on the dollar. 

Hence, we develop more nuanced success measures using financial data on exits. 

In Table 3 we first consider the venture-backed startups founded in county d during year t that 
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become successful within a ten-year window as the dependent variable.4 In model (a), 

“Successful” is determined retrospectively as the number of firms founded that achieved an IPO 

or were acquired with a 125% rate of return, as per Ewens & Marx, 2018.  The estimates from 

Model (a) suggest that a 10% increase in the rate of incoming inventors increases the rate of 

successful venture-backed startups founded by 1.0% (as in Table 2, at the mean). 

The result in Model (a) indicates that incoming inventors are not only responsible for an increase 

in entrepreneurial activity, as in Table 2, but also in successful startups. One might wonder 

whether these inventors are only responsible for startups that “just barely” succeeded in returning 

capital to investors, as opposed to generating more spectacular returns. We raised the threshold of 

an exit value to 500% of invested capital in model (b), which reduces the magnitude of the 

estimated coefficient but remains statistically significant. In model (c), we show that the arrival 

of inventors even appears to increase “unicorn” startups with exit values in excess of 1 billion 

dollars, albeit with much smaller economic magnitude. 

Of course, this increase in the number of successful startups could be a mechanical result of 

“more shots on goal.” That is, investors who place more bets on more startups could succeed 

more often, even if the odds of success remain unchanged. Therefore, we also test how the 

inflow of inventors affects the failure rate of startups, i.e., venture-backed startups founded in 

county d during year t that eventually failed. In Model (d), we use a traditional measure of 

“failed” startups as those that are currently Defunct or Bankrupt as indicated in VentureXpert. 

Model (d) suggests that incoming inventors reduce the formation of failed startups in the county. 

 
4 Considering sectors where startups often take longer than 10 years to make it to an exit, such as in the biopharmaceutical 
industry, we also test with a 12-year window, instead of a 10-year window, to capture the successful and failed startups. We used 
only county-year observations between 1987 and 2005 as we had to cut the last 2 years to allow for 12 years of observations. The 
estimation results are almost identical to our main results. 
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Mindful of Puri & Zarutskie (2012)’s observation that many failed venture-backed startups are 

“disguised” as acquisitions, in Model (e) we include as failures any exit with a valuation lower 

than 125% of total of invested capital. Model (e) likewise shows a negative effect of incoming 

inventors on failed startup foundings (and is robust to eliminating exits with >100% return on 

investment, or >50%). The results suggest that inventors not only improve the quantity but also 

the quality of entrepreneurship. 

Table 3 – Venture-backed startups: Successful vs. Failure 

  Successful VC-backed startups  Failed VC-backed startups 
 a b c  d e 

 

Successful 
(RoR ≥ 125%) 

 Successful 
(RoR ≥ 
500%) 

Successful 
(Exit ≥ 1B) 

 
Failed 

Failed  
or RoR < 
125% 

 IV IV IV  IV IV 
Incoming  0.104*** 0.068*** 0.014**  -0.212*** -0.123*** 
Inventorst-1 (0.033) (0.023) (0.006)  (0.028) (0.027) 
N 65,247 65,247 65,247  65,247 65,247 
First Stage F 175.723 175.723 175.723  175.723 175.723 
State-Year FE Yes Yes Yes  Yes Yes 
County FE Yes Yes Yes  Yes Yes 
Notes: This table presents OLS regressions of ln (# venture-backed startup foundings + 1). All specifications show 
results of our IV regression as described above, where incoming inventors are instrumented with 
𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� in the first stage. In specification (a), we define “successful” startups as those that complete either 
an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture capital acquired. In 
specification (b), we raised the threshold of an exit value to 500% of total venture capital acquired. In specification 
(c), we define we define “successful” startups as those that complete either an IPO or successful acquisition within 
10 years and achieve an absolute value ≥ 1B dollars, respectively. In specification (d), we define “failed” startups as 
those that are currently “Defunct” or “Bankruptcy” as indicated in VentureXpert database. In specification (e), we 
also include startups that complete either an IPO or successful acquisition within 10 years and achieve a value < 
125% of total venture capital acquired. Incoming inventors as well as the instrument are log-transformed. First stage 
F is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level 
appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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4. MECHANISMS  

Our results indicate that incoming inventors increase both the rate and quality of startup 

formation. How and why does this happen? In this section, we explore three possible 

mechanisms relating to human capital. First, we observe a reallocation from venture capital 

investments from low-tech startups to high-tech following the arrival of inventors in a county. 

Second, we note further reallocation of VC investments into the sectors that match incoming 

inventors’ skills. Third, we find that inbound inventors frequently serve as founders, executives, 

and technical staff for newly-founded startups in that same county. 

4.1 Incoming inventors and VC reallocation from low-tech into high-tech sectors 

Multiple studies suggest that venture capitalists’ investment activity tends to be localized 

(Sorenson & Stuart, 2001; Bernstein et. al. 2016), given their role in mentoring and monitoring 

portfolio companies. To the extent that VCs focus primarily on local opportunities and allocate 

funds accordingly, in the absence of key human capital they might fund startups that do not rely 

on that type of expertise. We first explore this potential reallocation at a broad level, 

distinguishing between high-tech and low-tech startups. As described in Section 1.3 and Table 1, 

we define as “low-tech” those ventures not listed by VentureXpert as biotechnology, life science, 

computers, or communication and semiconductors.  

Table 4 separates our dependent variable into investments in low-tech startups (Models a-c) vs. 

high-tech (Models d-f). Models (a) and (d) resemble Table 2 in using the count of startups as the 

dependent variable. The estimated coefficient on incoming inventors for model (a) is negative, 

compared with positive in model (d). This suggests a reallocation of venture investments from 

low-tech to high-tech startups following the arrival of inventors in a focal county, consistent with 

the increased availability of technical human capital.  
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The remaining models of Table 4 resemble Table 3 in exploring the quality of startups that 

received venture investments, segmented into low-tech (models b-c) vs. high-tech (models e-f). 

Starting with model (c) of Table 4, the negative, precisely estimated coefficient indicates a shift 

away from low-tech startups that fail. The evidence in Model (b) may suggest that successful 

low-tech startups also decrease in response to the arrival of inventors, though the estimated 

coefficient is much smaller in magnitude than that for failed low-tech startups and less precisely 

estimated. This suggests that the shift is primarily away from the failed startups in low-tech 

industries; in other words, investors appear savvy enough to keep investing in low-tech firms that 

prove successful, but they are able to avoid less promising low-tech startups when more high-

tech human capital is available. Models (e) and (f) largely echo the results of Table 3. 

Table 4 – Venture-backed startups: high-tech vs low-tech, successful vs. unsuccessful  

 Low tech  High tech 
 a b c  d e f 
 All startups  Successful Failed  All startups  Successful Failed 
 IV IV IV   IV IV IV 
Incoming Inventorst-1 -0.136*** -0.017* -0.163***  0.356*** 0.128*** -0.083*** 
  (0.029) (0.010) (0.022)  (0.042) (0.034) (0.018) 
N 65,247 65,247 65,247  65,247 65,247 65,247 
First Stage F 175.723 175.723 175.723  175.723 175.723 175.723 
State-Year FE Yes Yes Yes  Yes Yes Yes 
County FE Yes Yes Yes  Yes Yes Yes 
Notes: This table presents OLS regressions of ln (# startup foundings + 1) separated by high tech and low tech 
industries. High- vs. low-tech are categorized according to VentureXpert classifications. Specification (a) and (d) 
show results of all venture-backed startups foundings. Specification (b) and (e) show results of successful venture-
backed startups foundings, where “successful” startups are defined as newly founded venture-backed startups that 
complete either an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture capital 
acquired. Specification (c) and (f) show results of failure venture-backed startups foundings, where “failed” startups 
are defined as those that are currently “Defunct” or “Bankruptcy” as indicated in VentureXpert database. Incoming 
inventors as well as the instrument are log-transformed. All specifications show results of our IV regression as 
described above, where incoming inventors are instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�  in the first stage. First stage F 
is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level 
appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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4.2 Incoming inventors precede the reallocation of investment towards their sector 

Table 5 builds on the human-capital analysis of Table 4, segmenting not just between high-tech 

and low-tech but examining allocation of capital to sectors that match the expertise of incoming 

inventors. Evidence on this point would not only point to a potential mechanism but also suggest, 

similar to the analysis of Table 4, that increased investment in one sector comes at the expense of 

another. If this were not the case, one might question the baseline results. If for example a focal 

county only had an influx of software inventors, yet all of the increase in startup activity was in 

biotechnology, we might wonder whether our informal model accurately captures an application 

of task-specific human capital (Gibbons & Waldman, 2004) to relevant startups. This result might 

also decrease potential measurement error, i.e., a downward bias in the aggregated estimations of 

Table 2, if the arrival of inventors has a negative effect outside of their field.  

To address these theoretical and econometric concerns, we created an additional dataset at the 

destination county-industry-year level. We differentiated between each of the four high-tech 

classifications and the low-tech sector as defined by VentureXpert and matched inventors with 

these industries based on the technology classification assigned to each patent. If an inventor 

patents in multiple technology classifications, we used the most frequent one. In case of a tie, we 

used the earliest classification (see Appendix A3 for details). We used these industry-specific 

classifications to create a county-industry-year version of the county-year SSIV described in 

Section 2. The share is unchanged (as the 1940 Census does not have industry classifications), 

but the shift is calculated according to the yearly number of mobile inventors with the same 

surname in each industry. We then estimate the following equation with OLS:  

𝑌𝑌𝑑𝑑,𝑖𝑖,𝑡𝑡 =  𝛼𝛼0 +  𝛽𝛽 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑖𝑖,𝑡𝑡−1 + 𝛾𝛾𝑑𝑑 × 𝛿𝛿𝑡𝑡 + 𝜃𝜃𝑖𝑖 × 𝛿𝛿𝑡𝑡 +  𝜃𝜃𝑖𝑖 × 𝛾𝛾𝑑𝑑 +  𝜀𝜀𝑑𝑑𝑑𝑑      (4) 
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where 𝑌𝑌𝑑𝑑,𝑖𝑖,𝑡𝑡 stands for a dependent variable observed for county d, industry i at time t. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑖𝑖,𝑡𝑡−1 

is the number of inventors with a technological background closely related to industry i that 

moved to county d in year t-1. The key difference from equation (1) is that the county-industry-

year data allows us to control for unobserved time-varying, county-level characteristics via 

county-year fixed effects  𝛾𝛾𝑑𝑑 × 𝛿𝛿𝑡𝑡. This includes for instance the total number of inventors in a 

county as it grows or shrinks over time or the stock of unobserved factors related to 

entrepreneurship. Put differently, identification of 𝛽𝛽 will only come from relative differences 

across industries within a county and year, so we only expect 𝛽𝛽 to be positive if (for example) a 

higher fraction of biotech inventors out of all inventors moving into a given county at a given 

time leads to a higher fraction of biotech startups within the same county and at the same time.  

To absorb unobserved industry-specific trends, we add industry-year fixed effects 𝜃𝜃𝑖𝑖 × 𝛿𝛿𝑡𝑡, and to 

address unobserved industry-specific regional advantages we add industry-county fixed effects 

𝜃𝜃𝑖𝑖 × 𝛾𝛾𝑑𝑑. Since all fixed effects enter both the first and second stage of our IV regressions, this 

helps to alleviate concerns with respect to unobserved trends in the attractiveness of certain 

regions that may influence the mobility of inventors. As just one example, these fixed effects 

help to account for Silicon Valley’s growth in demand for semiconductor engineers. The match 

between industry-specific human capital and industry-specific entrepreneurship should also 

reduce measurement error, so we expect 𝛽𝛽 to be larger when estimated with county-industry-year 

data in equation (4) than with county-year data in (3). The finer unit of measurement leads to a 

larger number of observations, but the underlying data remain unchanged. 

Table 5 illustrates the results of the county-industry-year instrument, estimating Equation (4). 

The analysis resembles that of Table 2 model (e), but the dependent variable is industry-specific. 

In model (a), we measure the number of startups founded in focal county d, industry i, and time t. 
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The coefficient on incoming inventors in model (a) is positive and precisely estimated, indicating 

that the number of startups in a given industry increases following the arrival of inventors with 

skills in the same industry. Table 5 model (a) implies that a 10% increase in the rate of incoming 

inventors increases the rate of venture-backed startup formations in their field by 5.1% at the 

mean. That this estimated coefficient is larger than that of model (d) in Table 2 is consistent with 

the aforementioned reduction in measurement error.  

Table 5 – Industry-specific inventors and startups 

 Venture-backed startups founded 
  a b 

 
In same  
industry 

In different 
industries 

 IV IV 
Incoming Inventorst-1 0.507*** -0.320*** 
  (0.052) (0.033) 
N 326,235 326,235 
First Stage F 143.955 143.955 
County-Industry FE Yes Yes 
County-Year FE Yes Yes 
Industry-Year FE Yes Yes 

Notes: This table presents OLS regressions of log(number of venture-backed startups + 1). All specifications show 
results of our IV regression as described above, where incoming inventors are instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 in 
the first stage. Specifications (a) and (b) present the results for number of venture-backed startups founded in the same 
and different industries compared to the expertise of incoming inventors, respectively. Incoming inventors are 
instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� in the first stage. First stage F is the Kleibergen-Paap Wald F statistic of the first 
stage regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a 
significance level of 1%, 5%, and 10%, respectively. 

 

The field-specific nature of this exposure is further reinforced by model (b), which instead uses a 

dependent variable of the number VC-backed startups outside the focal industry (i.e., 𝑌𝑌𝑑𝑑,−𝑖𝑖,𝑡𝑡). A 

positive estimate for the coefficient on Incoming Inventors in model (b) would suggest that our 

effect is not driven by task-specific human capital but more generic technical skills; the sign, 
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however, is negative. This offsetting result makes sense in the context of venture-backed 

startups, as venture investors must decide how to allocate a fixed number of dollars. If biotech 

inventors arrive in the county and biotech startups get funded, it follows that fewer (local) dollars 

are available for non-biotech startups, as we see in model (b). These results support Lerner & 

Nanda’s (2020) arguments that VCs look for, “…a very narrow band of technological 

innovations…” (p. 238) and that venture capital reaches a relatively small proportion of 

entrepreneurial startups.  

The results from Table 5 help to characterize the threat to identification raised in Section 2.2. 

That we can establish industry-specific results should help to allay concerns that the county-year 

instrument defined in Section 2 and used to estimate Tables 2-4 is vulnerable to general demand 

shocks. However, and as we discuss further in Appendix D8, under certain conditions 

simultaneous industry-specific shocks across states could still result in spatial correlation. 

4.4 Incoming inventors provide founders and employees for local venture-backed startups 

After establishing a link between industry-specific skills and startups in that sector, we now 

investigate direct linkages between inbound inventors and new startups by tracing the roles taken 

by newly-arriving inventors in those ventures. Perhaps most intuitively, inventors may serve as 

the founders of new ventures (Gambardella, Ganco, & Honore, 2015), but workers have 

heterogeneous preferences regarding founding a startup vs joining one (Roach and Sauermann, 

2015), so we might also expect to incoming inventors among non-founding executives and 

engineers who yet provide crucial human capital to the venture.  

We investigated direct linkages between incoming inventors and newly-founded startups by 

mapping the names of those inventors to those of startup personnel. The VentureXpert database 
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had limited data regarding personnel, so we complemented these with PitchBook and 

Crunchbase. We found names of 169,982 founders and other non-founding executives, 

augmented with inventors who held patents at those ventures (by cross walking the names of 

patent assignees to PitchBook, 89,863 inventors total.) These combined sources yielded data on 

personnel for 78% of startups in our sample. We believe this to be a lower bound, given the 

difficulty of finding personnel for older startups as well as the fact that VentureXpert, 

Crunchbase, and Pitchbook generally limit their lists to founders and executives.  

The next step was to compare these names of startup personnel to the names of incoming 

inventors. We dropped matches where the incoming inventor’s first and last name were in the top 

1% of patenting inventors. The crosswalk was originally built with the same lag structure of the 

paper but then enlarged to 3-year windows before and after the focal year, given the potential for 

incoming inventors to contribute before and after the company was founded. This resulted in an 

incoming inventor among the personnel for 7.4% of startups. (This figure grows to 8.4% if we do 

not exclude common-name matches and drops to 1.6% if we use only a one-year window.) 

Looking at founders only, we located founders for 3.8% of startups. This meaningful fraction of 

startups that are staffed by those who had very recently moved to the same county shows a direct 

link between incoming inventors and newly-founded startups.  

In Table 6, we re-estimated our SSIV model with a dependent variable counting the VC-backed 

startups with a direct link to incoming inventors. The dependent variable is limited to startups 

with (a) an incoming inventor as a founder; (b) an incoming inventor as a non-founding 

executive; (c) as an inventor at the startup, (d) any of the above. In all models, we estimate a 

positive and statistically significant coefficient on Incoming Inventors. The estimated effect of all 

of these groups together is slightly larger than the full sample (0.183 vs. 0.180) while statistical 
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significance remains similar, despite the smaller sample size. In sum, we find consistent results 

when restricting our analysis to newly-founded startups where an incoming inventor can be 

found among the employees of the startup.  

Table 6 – Venture-backed startups with founders or employees from incoming inventors 
 

 Startups with an executive or an inventor traced to an incoming inventor 
 a b c d 

 

Incoming inventor 
was a founder  

Incoming inventor 
was a non-founding 
executive  

Incoming inventor 
held a patent at the 
startup 

Founder, non-
founding executive, 
or held a patent 

 IV IV IV  IV 
Incoming  0.079*** 0.121*** 0.067*** 0.183*** 
Inventorst-1 (0.015) (0.024) (0.017) (0.031) 
N 65,247 65,247 65,247 65,247 
First Stage F 175.723 175.723 175.723 175.723 
State-Year FE Yes Yes Yes Yes 
County FE Yes Yes Yes Yes 
Notes: This table presents OLS regressions of ln (number of startup foundings + 1) for restricted sample of startups 
with an executive or an inventor traced to an incoming inventor. Specification (a) shows the results for all venture-
backed startups with a founder inventor traced to an incoming inventor. Specification (b) shows the results for all 
venture-backed startups with a non-founder executive inventor traced to an incoming inventor. Specification (c) 
shows the results for all venture-backed startups with an inventor who patented at a local startup and can be traced 
to an incoming inventor. Specification (d) shows the results of all venture-backed startups with an executive or an 
inventor traced to an incoming inventor. Incoming inventors as well as the instrument are log-transformed. All 
specifications show results of our IV regression as described above, where incoming inventors are instrumented 
with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�   in the first stage. First stage F is the Kleibergen-Paap Wald F statistic of the first stage 
regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance 
level of 1%, 5%, and 10%, respectively. 

 

 

5. CONCLUSION 

Although a correlation between technical human capital and entrepreneurial success has often 

been observed (Kerr, 2013; Maloney & Caicedo, 2016; Azoulay et al., 2020), causality and 

mechanisms have remained elusive. Do scientists and engineers enable successful startups in 

their field, or do they simply flock to opportunity? We take steps toward causal inference with a 

shift-share instrument based on surnames from the 1940 U.S. Census and modern inventor 

mobility across U.S. counties, building on prior methods in the international-migration literature 
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(Card 2009). Our results suggest that the arrival of inventors in a county increases both the 

quantity and quality of local entrepreneurship by providing task-specific human capital for 

founders, executives, engineers, and scientists for newly founded startups. Venture investments 

shift towards high-tech opportunities, at the expense of unsuccessful low technology 

opportunities. The effect is industry-specific, with incoming inventors with industry-specific 

skills yielding an uptick in related startups and a corresponding decrease in unrelated industries. 

The results hold when Silicon Valley and similar hotspots are dropped from consideration—and 

when examining only inventors who are employed at startups in the focal county.  

We caution that the instrument risks being influenced by multiple, simultaneous demand shocks 

across state lines where a significant number of common names appear. There are also limits to 

generalizability as we estimate local average treatment effects whereas many counties have a 

limited or no history of high-tech entrepreneurship. One should not infer that adding dozens (or 

hundreds) of inventors to a rural county would yield a unicorn in the short run. Our work should 

therefore be viewed as an initial step toward causal evidence of how mobility influences regional 

outcomes. 

Although this work sought to explain how the supply of inventors influenced successful 

entrepreneurship, it can speak to the classic question of why industries cluster geographically 

(Rosenthal & Strange, 2004; Overman & Puga, 2010; Ellison et al. 2010). Much work supports 

the Marshallian agglomeration arguments of production economies, labor pooling, and 

knowledge spillovers, yet this research has struggled to isolate and estimate causal mechanisms 

(Glaeser & Kerr 2009; Myers and Lanahan, 2022; Balsmeier et. al. 2023). These results 

specifically illustrated how inventor arrival could fuel an increase and funding in startups in 

those inventors’ specific industries – at the expense of competing high tech industries in the 
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region. And while this paper counts startup events, it is likely that incoming inventors also help 

young firms scale.  

While our focus has been the impact on the county in receipt of inventors, a complementary 

question is how the loss of inventors and other technical talent impacts the source region. 

Evidence on this point would inform discussions of regional inequality. Although beyond the 

scope of this work, a fuller accounting of these possibly-countervailing effects could enable an 

estimate of the social welfare of inventor mobility. Should policies encourage industries and 

technologies to cluster, or should industries be encouraged to disperse, and jobs distributed in a 

more geographically equitable way?  

 

  



29 
 

REFERENCES 

Agrawal, A., Kapur, D., McHale, J., & Oettl, A. (2011). Brain drain or brain bank? The impact of 
skilled emigration on poor-country innovation. Journal of Urban Economics, 69(1), 43-55. 

Azoulay, P., Jones, B. F., Kim, J. D., & Miranda, J. (2020). Age and high-growth 
entrepreneurship. American Economic Review: Insights, 2(1), 65-82. 

Balsmeier, B., Assaf, M., Chesebro, T., Fierro, G., Johnson, K., Johnson, S., Li, G. Lueck, S., 
O’Reagan, D., Yeh, B. Zang, G., Fleming, L. (2018). Machine learning and natural language 
processing on the patent corpus: Data, tools, and new measures. Journal of Economics & 
Management Strategy, 27(3), 535-553.  

Balsmeier, B. and L. Fleming, S. Lueck (2023). “Isolating Personal Knowledge Spillovers: Co-
inventor Deaths and Spatial Citation Differentials.” American Economic Review: Insights, 5 
(1): 21–34. 

Bartel, A. P. (1989). Where do the new US immigrants live? Journal of Labor Economics, 7(4), 
371-391. 

Bartik, T. J. (1991). Who benefits from state and local economic development policies? 
Bernstein, S., Giroud, X., & Townsend, R. R. (2016). The impact of venture capital monitoring. 

The Journal of Finance, 71(4), 1591-1622. 
Borusyak, K., Hull, P., & Jaravel, X. (2022). Quasi-experimental shift-share research designs. 

Review of Economic Studies: Volume 89, Issue 1, pp. 181–213. 
Burchardi, K. B., Chaney, T., Hassan, T. A., Tarquinio, L., & Terry, S. J. (2020). Immigration, 

innovation, and growth (No. w27075). National Bureau of Economic Research. 
Card, D. (2001). Immigrant inflows, native outflows, and the local labor market impacts of higher 

immigration. Journal of Labor Economics, 19(1), 22-64. 
Card, D. (2009). Immigration and Inequality. American Economic Review: Papers & 

Proceedings, 99:2, 1–21. 
Clark, G., & Cummins, N. (2015). Intergenerational wealth mobility in England, 1858–2012: 

surnames and social mobility. The Economic Journal, 125(582), 61-85. 
Cheyre, C., Klepper, S., & Veloso, F. (2015). Spinoffs and the mobility of US merchant 

semiconductor inventors. Management Science, 61(3), 487-506. 
Darlu, P., Brunet, G., & Barbero, D. (2011). “Spatial and temporal analyses of surname 

distributions to estimate mobility and changes in historical demography: the example of Savoy 
(France) from the eighteenth to the twentieth century.” In Navigating time and space in 
population studies (pp. 99-113). Springer, Dordrecht. 

de Chaisemartin, C. and X. D’Haultfoeuille (2020). “Two-Way Fixed Effects Estimators with 
Heterogeneous Treatment Effects.” American Economic Review 110:9 pp. 2964-96. 

Decker, R., Haltiwanger, J., Jarmin, R., & Miranda, J. (2014). The role of entrepreneurship in US 
job creation and economic dynamism. Journal of Economic Perspectives, 28(3), 3-24. 

Degioanni, A., & Darlu, P. (2001). A Bayesian approach to infer geographical origins of migrants 
through surnames. Annals of Human biology, 28(5), 537-545. 

Dorn, D., Hanson, G. H., Pisano, G., & Shu, P. (2020). Foreign competition and domestic 
innovation: Evidence from US patents. American Economic Review: Insights, 2(3), 357-74. 

Ewens, M., & Marx, M. (2018). Founder replacement and startup performance. The Review of 
Financial Studies, 31(4), 1532-1565. 

Gambardella, A., Ganco, M., & Honoré, F. (2015). Using what you know: Patented knowledge in 
incumbent firms and employee entrepreneurship. Organization Science, 26(2), 456-474. 

Gennaioli, N., La Porta, R., Lopez-de-Silanes, F., & Shleifer, A. (2013). Human capital and 



30 
 

regional development. The Quarterly Journal of Economics, 128(1), 105-164. 
Gibbons, R., & Waldman, M. (2004). Task-specific human capital. American Economic Review, 

94(2), 203-207. 
Glaeser, E. L., Kerr, S. P., & Kerr, W. R. (2015). Entrepreneurship and urban growth: An 

empirical assessment with historical mines. Review of Economics and Statistics, 97(2), 498-
520. 

Glaeser, E. L., & Kerr, W. R. (2009). Local industrial conditions and entrepreneurship: how much 
of the spatial distribution can we explain? Journal of Economics & Management Strategy, 
18(3), 623-663. 

Goldsmith-Pinkham, P., Sorkin, I., & Swift, H. (2020). Bartik instruments: What, when, why, and 
how. American Economic Review, 110(8), 2586-2624. 

Grilli, J., & Allesina, S. (2017). Last name analysis of mobility, gender imbalance, and nepotism 
across academic systems. Proceedings of the National Academy of Sciences, 114(29), 7600-
7605. 

Goodman-Bacon, A. (2021). “Difference-in-differences with variation in treatment timing.” 
Journal of Econometrics, 2021, vol. 225, issue 2, 254-277. 

Guzman, J. and S. Stern, (2020).  “The State of American Entrepreneurship: New Estimates of 
the Quality and Quantity of Entrepreneurship for 32 US States, 1988-2014,” American 
Economic Journal: Economic Policy 12(4): 212-243. 

Hall, R. E., & Woodward, S. E. (2010). The burden of the non-diversifiable risk of 
entrepreneurship. American Economic Review, 100(3), 1163-94. 

Haltiwanger, J., Jarmin, R. S., & Miranda, J. (2013). Who creates jobs? Small versus large versus 
young. Review of Economics and Statistics, 95(2), 347-361. 

Hunt, J. (2017). The impact of immigration on the educational attainment of natives. Journal of 
Human Resources, 52(4), 1060-1118. 

Jaeger, D. A., Ruist, J., & Stuhler, J. (2018). Shift-share instruments and the impact of 
immigration (No. w24285). National Bureau of Economic Research. 

Jensen, R., & Thursby, M. (2001). Proofs and prototypes for sale: The licensing of university 
inventions. American Economic Review, 91(1), 240-259. 

Kenney, M., & Patton, D. (2011). Does inventor ownership encourage university research-derived 
entrepreneurship? A six university comparison. Research Policy, 40(8), 1100-1112. 

Kerr, W. R. (2013). US high-skilled immigration, innovation, and entrepreneurship: Empirical 
approaches and evidence (No. w19377). National Bureau of Economic Research. 

Klepper, S., & Thompson, P. (2010). Disagreements and intra-industry spinoffs. International 
journal of industrial organization, 28(5), 526-538. 

Kortum, S., & Lerner, J. (2001). Does venture capital spur innovation?. Emerald Group 
Publishing. 

LaLonde, R.J. and Topel, R.H. (1991). Labor market adjustments to increased immigration. In 
Immigration, trade, and the labor market (pp. 167-199). University of Chicago Press. 

Lerner, J. (2009). Boulevard of broken dreams: why public efforts to boost entrepreneurship and 
venture capital have failed and what to do about it. Princeton University Press. 

Lerner, J., & Nanda, R. (2020). Venture capital's role in financing innovation: What we know and 
how much we still need to learn. Journal of Economic Perspectives, 34(3), 237-61. 

Lee, D. S., McCrary, J., Moreira, M. J., & Porter, J. R. (2021). Valid t-ratio Inference for IV (No. 
w29124). National Bureau of Economic Research. 

Maloney, W. F., & Caicedo, F. V. (2016). The persistence of (subnational) fortune. The Economic 



31 
 

Journal, 126(598), 2363-2401. 
Marx, M., & Hsu, D. H. (2021). Revisiting the Entrepreneurial Commercialization of Academic 

Science: Evidence from “Twin” Discoveries. Management Science, Forthcoming. 
Moretti, E., & Wilson, D. J. (2014). State incentives for innovation, star scientists and jobs: 

Evidence from biotech. Journal of Urban Economics, 79, 20-38. 
Myers, Kyle R., and Lauren Lanahan. 2022. "Estimating Spillovers from Publicly Funded R&D: 

Evidence from the US Department of Energy." American Economic Review, 112 (7): 2393–
2423. 

Puri, M., & Zarutskie, R. (2012). On the life cycle dynamics of venture-capital-and non-venture-
capital-financed firms. The Journal of Finance, 67(6), 2247-2293. 

Roach, M., & Sauermann, H. (2015). Founder or joiner? The role of preferences and context in 
shaping different entrepreneurial interests. Management Science, 61(9), 2160-2184. 

Rosenthal, S.S. and Strange, W.C., (2004). Evidence on the nature and sources of agglomeration 
economies. In Handbook of regional and urban economics (Vol. 4, pp. 2119-2171). Elsevier. 

Schumpeter, J. (1942) Capitalism, socialism and democracy. Vol. 36, Harper & Row, New York. 
Smith, A. (1776). Wealth of nations. Oxford, England: Bibliomania.com Ltd, 2002. 
Sorenson, O., & Stuart, T. E. (2001). Syndication networks and the spatial distribution of venture 

capital investments. American Journal of Sociology, 106(6), 1546-1588. 
Stock, J. H., & Yogo, M. (2002). Testing for weak instruments in linear IV regression. (No. 

w0284). National Bureau of Economic Research. 
Wozniak, A., & Murray, T. J. (2012). Timing is everything: Short-run population impacts of 

immigration in US cities. Journal of Urban Economics, 72(1), 60-78. 
Zucker, L., Darby, M., & Brewer, M. (1998). Intellectual human capital and the birth of US 

biotechnology enterprises. American Economic Review, 88(1), 290-306. 
  



32 
 

Appendix A: Data construction 
A1: Matching algorithm between surnames in patent and Census data 
A2: Disambiguating geographic location and matching to a county 
A3: Concordance between VentureXpert industry groups and NBER patent classification 
 
Appendix B: Data description 
B1: Spatial distribution of the surname “Marx” in U.S. 1940 
B2: Frequency of mobile inventors within the U.S. named Fleming, 1976-2015 
B3: Destination counties of inventors named Fleming, for the 1980s, 1990s, and 2000s 
B4: Origin counties of mobile inventors named Fleming, for the 1980s, 1990s, and 2000s 
B5: Binned scatter plot of raw inventor mobility and county startup data, 1987-2007 
B6: Yearly count of U.S. inventor mobility by technology field, 1987-2007 
B7: Geographical clustering of inventor moves, startups, and successful startups, 1987-2007 
B8: Yearly venture-backed startup creation, in the U.S., 1987 to 2007 
 
Appendix C: First stage plausibility check 

Appendix D: Shift share instrumental variable (SSIV) validation 

D1: Share instrument remains uncorrelated with modern pull factors 
D2: Share instrument remains uncorrelated with most historical regional characteristics 
and future change in startup founding rates 
D3: Share instrument remains robust to removal of correlated surnames 
D4: Share instrument individual treatments are homogenous 
D5: Shift instrument demonstrates low sum of HHI measures 
D6: Shift instrument demonstrates low sum of HHI measures, excluding top 50 surnames 
D7: Shift instrument demonstrates low serial correlation of shifts 
D8: Shift instrument demonstrates robustness to unobserved spatial correlations 
D9: Main specification re-estimated with local income 
D10: Main specification re-estimated without the right tail of the SSIV distribution 
D11: Investigation of potential demand channels 
D12: Main specification re-estimated with inclusion of correlated regional characteristic 
D13: Instrument remains robust to placebo shuffling by random reassignment 
D14: Results hold for alternative instruments 
D15: Instrument remains uncorrelated with occupational change by MSA 
D16: Comparison of OLS and IV results 
 

Appendix E: Robustness checks and additional analyses 

E1: Industry specific estimations 
E2: Regressions scaled by 1940 and current populations 
E3: Regressions weighted by 1940 and current populations 
E4: Alternative models: HIS transformation, time lags, inventor stocks, and growth models 
E5: Different data cuts: exclusion of inventors not in 1940 Census, MSA level estimations, 
no entrepreneurship or mobile inventors, and winsorization 
Appendix A: Data construction 
 



33 
 

A1: Matching algorithm between surnames in patent and Census data  

Matching surnames between Census and patent data requires cleaning of the raw surname 
strings. We convert all surnames to lower cases and delete unnecessary punctuations and other 
noise in the surnames (e.g., ’ ”_ / & ; ( ) - =). We also remove suffixes and other extra words after 
commas (e.g., ‘Foster’, ‘Sr.’, ‘deceased’). This process reduces unique surname strings down to 
3,313,643 unique surnames in the Census data and 330,098 unique surnames in the patent data. 
Out of 374,988 inventor surname raw strings, a total of 275,849 (73.6%) find a match in the 
census surname. Compared to the matching without these cleaning processes, which finds 
230,421 census surname matches out of 374,988 inventor surname raw strings (61.4%), our name 
cleaning process adds 12.2% of matches. In our data sample specifically, out of 3,165,207 unique 
inventors that applied for at least one patent in US, 2,894,917 inventors (91.5%) ultimately match 
their surname to the Census data. 

 

A2: Disambiguating geographic location and matching to a county  

Although most U.S. patent front page data provide strings for the hometown and state of each 
inventor, much work must be done to accurately map those strings to counties. Figure A2 
illustrates the geographic disambiguation process. We begin with updated data processed via 
Balsmeier et al. (2018) methods, from 1976 to 2018, which includes 16,215,831 “patent-inventor 
pairs” because many inventors have multiple patents. Exclusion of non-U.S. and entirely missing 
data fields leaves 8,065,290 U.S. patent-inventor data points. Amongst these there are 72,122 
unique city-state pair strings. Note that this number includes misspellings, neighborhoods and 
unincorporated areas with no correspondence to city or state, and errors. 

We exactly matched 27,299 city-state data points for 7,718,350 patent-inventors using the 
SimpleMaps (https://simplemaps.com/) concordance. We took the remaining unique and 
unmatched locations and ran them through the Google Geocoding API 
(https://developers.google.com/maps/documentation/geocoding/overview). This left 10,413 
unique city-state pairs and 85,046 patent-inventor pairs, which manual inspection revealed to be 
mainly errors. 7,980,244 patent inventor pairs were ultimately matched to a city and state, for a 
98.9% match rate. 

Given that our instrumentation and analysis is at the county level, we need to next map city-state 
locations to counties. This is complicated by the fact that our data span 1940-2018 and that there 
have been minor changes to this mapping over time. To address this, we begin with U.S. census 
records of county changes from 1970 to present: (https://www.census.gov/programs-
surveys/geography/technical-documentation/county-changes.2010.html). Then, we manually 
search for changes between 1940 and 1969. We incorporate substantial changes to counties such 
as county consolidation, part annexation, and FIPS code changes. We build a transitive 
association file which tracks the changes and anchors all historic changes to the 2020 
SimpleMaps concordance (file will be posted upon publication). The 1940 Census doesn't cover 
VI (Virgin Islands), PR (Puerto Rico), AK (Alaska), and HI (Hawaii), hence, these locations are 
dropped. 

 

https://simplemaps.com/
https://developers.google.com/maps/documentation/geocoding/overview
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html
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Figure A2: Geographic disambiguation process for U.S. inventor city and state 

 

 

A3: Concordance between VentureXpert industry groups and NBER patent classification 

To estimate the impact of the influx of technology specific inventors on the startup activities of 
their corresponding industry, we matched NBER technological categories provided by Hall et al. 
(2001) with VentureXpert industry categories. The table details the manual mapping of NBER 
technological categories to VentureXpert’s major industry groups, i.e., Biotechnology, 
Medical/Health/Life Science, Communications and Media, Computer Related, 
Semiconductors/Other Electronic, and Non High-tech Technology. As underlying technologies 
overlap substantially between the Biotechnology and Medical/Health/Life Science industry 
groups, we merged the two industry groups. As VentureXpert does not have corresponding 
industry groups for mechanical and chemical NBER technological categories, we excluded 
patent classes corresponding to these technological categories. 

Using the concordance between VentureXpert industry groups and NBER patent classification, 
we classified inventors into each of the five industry groups based on the most frequent industry 
group that each inventor had patented in. In case of a tie, we took the earliest industry group. We 
excluded inventors who patented only in patent classes without a corresponding VentureXpert 
industry group. As a result, out of 763,715 U.S. inventors who had more than two granted patents, 
we were able to assign 602,971 inventors to each of the five VentureXpert industry groups.  

 

Table A3: VentureXpert industry groups and NBER patent classification concordance 
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Industry 
(VentureXpert) 

Sub-Category 
Code 

Sub-Category Name Patent Classes 

Biotechnology + 
Medical/Health/Li

fe Science 

31 Drugs 424, 514 
32 Surgery & Medical 

Instruments 
128, 600, 601, 602, 604, 606, 607 

33 Biotechnology 435, 800 
39 Miscellaneous-Drug 

& Med 
351, 433, 623 

Communications 
and Media 

21 Communications 178, 333, 340, 342, 343, 358, 367, 370, 375, 379, 
385, 455 

Computer Related 22 Computer Hardware 
& Software 

341, 380, 382, 395, 700, 701, 702, 704, 705, 706, 
707, 708, 709, 710, 712, 713, 714 

23 Computer 
Peripherals 

345, 347 

24 Information Storage 360, 365, 369, 711 
Semiconductors/

Other Elect 
41 Electrical Devices 174, 200, 327, 329, 330, 331, 332, 334, 335, 336, 

337, 338, 392, 439 
42 Electrical Lighting 313, 314, 315, 362, 372, 445 
43 Measuring & Testing 73, 324, 356, 374 
44 Nuclear & X-Rays 250, 376, 378 
45 Power Systems 60, 136, 290, 310, 318, 320, 322, 323, 361, 363, 388, 

429 
46 Semiconductor 

Devices 
257, 326, 438, 505 

49 Miscellaneous-Elec 191, 218, 219, 307, 346, 348, 377, 381, 386 
Non-High-
Technology 

61 Agriculture, 
Husbandary, Food 

43, 47, 56, 99, 111, 119, 131, 426, 449, 452, 460 

62 Amusement Devices 273, 446, 463, 472, 473 
63 Apparel & Textile 2, 12, 24, 26, 28, 36, 38, 57, 66, 68, 69, 79, 87, 112, 

139, 223, 450 
64 Earth Working & 

Wells 
37, 166, 171, 172, 175, 299, 405, 507 

65 Furniture, House 
Fixtures 

4, 5, 30, 70, 132, 182, 211, 256, 297, 312 

66 Heating 110, 122, 126, 165, 237, 373, 431, 432 
67 Pipes & Joints 138, 277, 285, 403 
68 Receptacles 53, 206, 215, 217, 220, 224, 229, 232, 383 
69 Miscellaneous Others 1, 14, 15, 27, 33, 40, 52, 54, 59, 62, 63, 84, 101, 108, 

109, 116, 134, 135, 137, 150, 160, 168, 169, 177, 181, 
186, 190, 199, 231, 236, 245, 248, 249, 269, 276, 
278, 279, 281, 283, 289, 292, 300, 368, 404, 412, 
428, 434, 441, 462, 503 
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Appendix B: Data description 
B1: Spatial distribution of the surname “Marx” in U.S. in 1940 

 
Figure B1: Spatial distribution of the surname “Marx” in 1940 (each red dot = 50 

individuals). 
 

B2: Frequency of mobile inventors within the U.S. named Fleming, 1976-2015 

Figure B2 illustrates how the number of mobile inventors with surname Fleming varies over time 
yet does not exhibit a trend (75 moves in total). 

 

 
Figure B2: Frequency of mobile inventors named Fleming, 1976-2015. 
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B3: Destination counties of mobile inventors within the U.S. named Fleming, for the 1980s, 
1990s, and 2000s 
 
The maps in Figure B3 show to which counties Flemings moved in the 1980s, 1990s, and 2000s, 
and the maps in Figure B4 show from which counties Flemings moved in the 1980s, 1990s, and 
2000s, illustrating significant variation in origin and destination counties over time. This 
provides an anecdotal example of why a county-level instrument should be less susceptible than 
a country-level instrument to the “persistence problem.”  

 

 

 
Figure B3: Destination counties of mobile inventors within the U.S. named Fleming, for the 

1980s, 1990s, and 2000s. 
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B4: Origin counties of mobile inventors within the U.S. named Fleming, 1980s, 1990s, and 
2000s 

 
Figure B4 illustrates the origin counties from which Flemings moved away in the 1980s, 1990s, 
and 2000s. It would appear that only one or two of the counties from which Flemings emigrated 
in the 1990s were also a source of Flemings in the 2000s. 

 

 
Figure B4: Origin counties of moving inventors within the U.S. named Fleming, for the 

1980s, 1990s, and 2000s. 
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B5: Binned scatter plot of raw inventor mobility and county startup data, 1987-2007 
 

Figure B5 provides a binned scatter plot that illustrates a positive relationship between incoming 
inventors and new startups in a county. 
 

 

 
Figure B5: Binned scatter plot of raw inventor mobility and county startup data, 1987-2007. 
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B6: Yearly count of U.S. inventor mobility by technology field, 1987-2007 
 
Figure B6 breaks out the yearly mobility of US inventors by field. All fields increase almost 
monotonically, with the exception of non high-tech.  
 

 
 
Figure B6: Yearly count of U.S. inventor mobility across U.S. counties by VentureExpert 
defined technology field, 1987-2007. 
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B7: Geographical clustering of inventor moves, startups, and successful startups, 1987 to 
2007 

 
 
Figure B7 illustrates the spatial correlation of entrepreneurship and mobile inventors. 

 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B7: Geographical clustering of inventor moves, startups, and successful startups, 
1987 to 2007. 
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B8: Yearly venture-backed startup creation, in the U.S., 1987 to 2007 
 
Figure B8 illustrates the temporal trends on VC backed startups, by field. 

 

 
 

Figure B8: Yearly venture-backed startup creation, in the U.S., 1987 to 2007 
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Appendix C: First stage plausibility check 

C1: First stage regressions of historical surname distribution and modern mobility 
 

We establish the plausibility of the instrument’s first stage by investigating the linkage between 
the historical surname distribution and the geographical mobility of individual inventors. This 
approach builds on an extensive demographic literature, including studying the migration of 
people, social networks and mobility (Rossi, 2013), tracking migration and mobility using 
surname distribution in Italy and France (Piazza et al. 1987, Darlu et. al. 2011), inferring the 
geographical origin of migrants with surnames (Degioanni & Darlu 2001), using surnames to 
estimate academic mobility (Grilli & Allesina 2017) and social mobility and intergenerational 
wealth transfer (Clark & Cummins, 2014, 2015). 

Our IV approach rests on the assumption that historic surname shares can discriminate between 
destination counties of moving inventors with a given last name, conditional on moving.5 We 
empirically test this assumption by estimating a dyadic model that reflects the complete choice 
set of a moving inventor. To this end, we construct a dataset at the inventor-origin-destination 
county level that contains each potential destination county combined with the actual county a 
given inventor is emigrating from. We mark the county the inventor actually moved to with a 
dummy and for the realized and each potential destination county, include the share of people in 
the 1940 Census with the same surname. Using this dyadic dataset covering 258,657 moves from 
1988-2014, we estimate the following model with OLS: 

𝑃𝑃𝑃𝑃(𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐#𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡 = 1|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡) =  𝛼𝛼0 +  𝛽𝛽 ∙ (𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛
1940) + 𝛿𝛿𝑡𝑡 + 𝛾𝛾𝑑𝑑 + 𝛾𝛾𝑜𝑜 +  𝜀𝜀𝑖𝑖,𝑑𝑑,𝑜𝑜,𝑡𝑡       (5) 

where 𝑃𝑃𝑃𝑃(𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐#𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛,𝑜𝑜,𝑑𝑑,𝑡𝑡 = 1|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡) is a dummy indicating the destination county 
(𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐) a given inventor i with name n moved to from origin county 𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐 in year t. 𝑃𝑃𝑑𝑑𝑑𝑑

1940 is the 
population in county d with surname n in 1940; 𝑃𝑃𝑛𝑛

1940 is the population with surname n in the 
entire U.S. in 1940; 𝛿𝛿𝑡𝑡 denotes a full set of year fixed effects to control for varying 
macroeconomic conditions; 𝛾𝛾𝑑𝑑 controls for time-invariant unobserved destination county 
characteristics; and 𝛾𝛾𝑜𝑜 controls for time-invariant unobserved origin county characteristics that 
may confound our identification of 𝛽𝛽, and 𝜀𝜀𝑖𝑖,𝑑𝑑,𝑜𝑜,𝑡𝑡 is the error term.  

Table C1 presents estimations for four versions of Equation (5): (a) only with year fixed effects; 
(b) year and destination-county fixed effects; (c) year and origin-county fixed effects; (d) year 
and destination-origin county combination fixed effects. Variant (d) absorbs time-invariant 
county-pair relationship characteristics including, for instance, the geographic distance between 
two counties. 

 

 
5 Adding to the plausibility of our instrument, we also find that the historical share of the same surname in a given location is 
negatively associated with the inventor’s emigration from the location. This supports the argument that inventors are not only 
more likely to move to regions with a higher historic share of the same surname but also more likely to stay in a region in which 
more of their families and relatives have resided. Several additional analyses verify the robustness of the results. We find no 
evidence that the surname effect is susceptible to invention-related inventor characteristics, such as invention productivity, 
quality, or years of experience as an inventor. 
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Table C1 – First stage validation check: destination county choice 

 origin-destination county move 
  a b c d 
Destination county 0.044*** 0.021*** 0.044*** 0.013*** 
historic surname fraction (0.006) (0.002) (0.006) (0.001) 

N  524,583,139 524,583,139 524,583,139 523,553,217 
Year FEs Yes Yes Yes Yes 
Destination county FEs No Yes No No 
Origin county FEs No No Yes No 
Origin-destination county FEs No No No Yes 
R2 0.000 0.008 0.000 0.061 

Notes: This table presents OLS regressions of a dummy indicating an origin-destination county move of an inventor 
within the period 1980-2015 on destination counties’ historic surname shares in 1940. Unit of observation is the origin-
destination county dyad. Standard errors clustered at the destination county appear in parentheses. ***, ** and * 
indicate a significance level of 1%, 5%, and 10%, respectively. 

 

All specifications consistently show that an increase in the historic surname share in a potential 
destination county correlates with a significantly higher probability of observing a given inventor 
moving to that specific destination county as compared to all other potential destination choices. 
Note that since the dependent variable vector is sparse a low R2 is to be expected. The large 
increase in explained variation when destination and destination-origin county fixed effects are 
included illustrates how unobserved time invariant factors also explain mobility decisions. 
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Appendix D: Shift share instrumental variable (SSIV) validation 

Due to the novelty of the instrument and recent innovations in the econometric literature (Adao 
et.al. 2019; Goldsmith-Pinkham 2020; Borusyak et. al. 2022), we present a variety of analyses to 
explore the validity of the instrument. While recent methodological research agrees that causality 
is sufficiently established if either the share or the shift is conditionally exogenous (Goldsmith-
Pinkham et al. 2020; Borusyak et al. 2022), we explore the validity of our approach under either 
set of assumptions. 

It should also be noted that both stages of the IV include county and time fixed effects. 
Identification thus derives from weighted time-varying changes in the number of moving 
inventors for a given surname at the national level, excluding those moving to county d, 
combined with representation of the same surname in county d in 1940. As in the canonical 
difference-in-differences setup, we only exploit variation from the interaction of a share varying 
at the unit level, i.e., the proportion of historic surnames in a county, and shocks varying at the 
time dimension outside of that county. Variation in our instrument should thus not impacted by 
differences in levels of any unobserved county characteristic. The key assumption we will 
explore is that, conditional on unit and time fixed effects, the instrument remains exogenous and 
can thus be used to estimate the causal impact of inventor inflows on startup creation using 
Equation (1).  

We group and first discuss the share, and then the shift, component of the instrument.  
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D1: Share instrument remains uncorrelated with modern pull factors 

Inventors are probably attracted to wealthy, large, and economically vibrant counties. Indeed, as 
shown in model a, inbound mobility strongly correlates with these factors. The instrument, 
however, does not, as shown in model b. 
 
 
 

Table D1: Regression of incoming inventors and shift-share instrument on modern 
observable pull factors 

    
 a b 

 
Incoming 
Inventorst-1 

Shift-share 
instrumentt-1 

Incomet-1 0.505*** -0.007 
  (0.042) (0.043) 
N 64,133 64,133 
within-R2 0.021 0.000 
   
Employmentt-1 0.324*** -0.030 
  (0.038) (0.030) 
N 52,788 52,788 
within-R2 0.006 0.001 
   
Populationt-1 0.694*** -0.021 
  (0.053) (0.065) 
N 64,133 64,133 
within-R2 0.024 0.000 

Notes: This table presents OLS regression of treatment variation (i.e., incoming inventors) and the shift-share 
instrument, column (a) and (b) respectively, "on observable contemporary factors,” including yearly income level 
and population of counties obtained from the Bureau of Economic Analysis as well as yearly employment of 
counties obtained from the U.S. Bureau of Labor Statistics. Each model includes state-year and county fixed effects. 
Incoming inventors, the instrument as well as the observable factors are log-transformed. Standard errors clustered 
at the county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, 
respectively. Note that the number of observations varies according to the availability of values on regional factors. 
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D2: Share instrument remains uncorrelated with most historical regional characteristics 
and future change in startup founding rates 
 
One possible concern is that county-level characteristics in 1940 predict modern entrepreneurial 
activity, calling into question the exogeneity of the shares, despite the Fixed Effects estimations. 
To explore this possibility, we begin by regressing our dependent variable -- the yearly change in 
modern entrepreneurship -- on historical county characteristics. First, we test the gender ratio of 
the county, given extensive evidence of a gender gap in entrepreneurship (Guzman & 
Kacperczyk, 2019; Miric & Yin, 2000; Marx, 2021). Second, we test the racial composition of 
counties given studies suggesting bias against minority entrepreneurs (Chatterji & Seamans, 
2012; Younkin & Kuppuswamy, 2018) and recent evidence of dramatic under-representation of 
racial minorities among venture-backed ventures (Wang & Marx, 2022). Third, we test 
educational levels in a county given that venture investors are less likely to fund startups in low-
skilled sectors, in favor of sectors that require higher levels of human capital and education. 
Finally, we test average historical income levels (to measure changes, the dependent variable is 
de-meaned by the county’s average level of entrepreneurship). 

Precisely estimated coefficients for any of these three factors would raise the concern that 
modern entrepreneurial activity, including the founding of successful venture-backed startups, is 
strongly tied to historical regional characteristics. While Table D2 illustrates no relationships 
between the change in the number of successful modern startups founded in the focal county and 
the 1940 ratio of male citizens, the ratio of white citizens, the ratio of citizens who completed 12th 
grade or college, it does illustrate a correlation with average income level. Hence, in the next 
Appendix, we dropped correlated surnames in instrument construction. 
 

Table D2: Correlation between historical regional characteristics and change in modern 
outcome variable of entrepreneurship 

 

 

Successful venture-
backed startups 
founded 

Obs. 

Ratio of Male -4.88E-9 64,890 
  (3.73E-9)  
Ratio of White 1.31E-10 64,890 
 (2.03E-10)  
12th grade or College 3.36E-9 64,365 
 (2.16E-9)  
Average income 1.71E-12** 64,365 
 (6.71E-13)  
Notes: This table presents OLS regression of log(number of successful 
venture-backed startups founded + 1) demeaned within each county. 
“Successful” startups are defined as newly found venture backed companies 
that complete either an IPO or successful acquisition within 10 years and 
achieve a value > 125% of total venture capital acquired. Each model includes 
state-year fixed effects. Standard errors clustered at the state level appear in 
parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, 
respectively. 
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D3: Share instrument remains robust to removal of correlated surnames 
 
Because we found in the regression above that historical county-level average income correlates 
with changes in modern entrepreneurial activity, we show that our results hold when the 
instrument excludes all surnames which are correlated with a modern county characteristic. 
To do this, we first run a regression for every individual surname in order to establish its 
correlation with the historical county characteristics. We then show that the purged instrument 
remains relevant for predicting local inventor inflows and that our final estimates remain stable 
in terms of statistical significance as well as economic magnitude.  

For each surname, we ran an individual regression of historic surname fraction on a historical 
regional characteristic from the 1940 Census (Tables a-c). We then plotted p-value vs. 
coefficients for each characteristic and noted the percentage and data points of significant 
regressions with p < 0.05 (to the left of the red line in plots). This exercise supports the 
assumption that there is no unobserved factor correlated with historic surname shares that would 
simultaneously predict inventors moving to a given county and changes in modern 
entrepreneurial activity. Note that even before these analyses, that differences in levels of historic 
county characteristics, surname characteristics and startup rates should not pose a threat to 
identification, as those should be absorbed by unit fixed effects. 

 

Table D3a: Ratio of Male: significantly correlated with 6.9% of surnames’ shares 
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Table D3b: Ratio of White: significantly correlated with 2.6% of surnames’ shares 

 
 

Table D3c: Level of education (Ratio of 12th grade or higher education): significantly 
correlated with 17.0% of surnames’ shares 
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Table D3d: Average income: significantly correlated with 53.5% of surnames’ shares 

 
 

Table D3e re-estimates our regressions while excluding any name where the individual 
regression was significant at p < 0.05, i.e., all points on prior graphs to left of the red line.  
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Table D3e: Results remain robust to removal of correlated surnames from the instrument 

 

     
 a  b  c d 

 

Exclude 
surnames 
correlated 
w/ ratio of 
male 

Exclude 
surnames 
correlated 
w/ ratio of 
white 

Exclude surnames 
correlated w/ ratio 
of educated to 
non-educated (12th 
grade or college) 

Exclude 
surnames 
correlated 
w/ 
average 
income 

 IV IV IV IV 
Incoming 
Inventorst-1 0.159*** 0.122*** 0.149** 0.302** 

  (0.053) (0.038) (0.071) (0.137) 
N 65,247 65,247 65,247 65,247 
First Stage 
F 95.049 150.073 55.777 18.795 

State-Year 
FE Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 
Notes: This table presents OLS regression of log(number of successful venture-backed startups founded 
+ 1), where  “successful” startups are defined as newly found venture backed companies that complete 
either an IPO or successful acquisition within 10 years and achieve a value > 125% of total venture capital 
acquired. Incoming inventors as well as the instrument are log-transformed. Model (a) excludes 
surnames that are correlated with the ratio of male; (b) excludes surnames that are correlated with the 
ratio of white; (c) excludes surnames that are correlated with the education level (measured by the 
fraction of people received 12th grade or college education; (d) excludes surnames that are correlated 
with average county income. First stage F is the Kleibergen-Paap Wald F statistic of the first stage 
regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a 
significance level of 1%, 5%, and 10%, respectively. 
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D4: Share instrument individual treatments are homogenous 

Although Appendix C established the plausibility of the first stage, we further investigate that the 
first- and second-stage results do not mask heterogeneity in individual treatment effects. Similar 
to recently articulated concerns for difference-in-differences models with multiple continuous 
treatments (de Chaisemartin and D’Haultfoeuille 2020; Goodman-Bacon 2021), caution would be 
warranted if an analysis of individual treatment effects revealed a substantial number of negative 
relationships with inventor mobility, because we should expect only positive effects (negative 
effects would also imply that families prefer to live away from one another, which would be 
inconsistent with prior research, i.e., Darlu et. al. 2011 and Clark & Cummins 2015). 

To investigate potential heterogeneity with respect to surname shares that correlate with 
incoming inventors of the same name, we ran individual regressions of mobility into a particular 
county on the historical surname fraction for the same name in that county (e.g., the number of 
Balsmeiers moving into a given county in a year is regressed on the 1940 share of Balsmeiers in 
that county). By construction, this regression is restricted to individual inventor surnames that 
moved in the sampling period (33,444 different surnames). Figures D4a and D4b illustrate the 
results of these 33,444 regressions. We would be concerned if the predicted coefficients were a 
heterogeneous mix of positive and negative coefficients, suggesting that even if most surname 
shares predicted inbound inventor mobility, other surname shares predicted the opposite. If this 
were true, we would expect to see a large number of negative and precisely-estimated dots in the 
lower-left-hand section of Figure 4Db, where we zoom into the 90% of data that does not involve 
outlier predictions. 

As is visible in Figure 4Db, there do not appear to be any precisely estimated negative 
predictions (i.e., to the left of the red line and below zero). In fact, there are only a handful of 
negative predictions, and almost all are rather imprecisely estimated (p>0.5). The vast majority 
of predictions have a positive sign, and although a number of these are also imprecisely 
estimated, we find ~20% of surnames to be individually significant (p < 0.05). This might appear 
low but should not be entirely surprising given the baseline rarity of mobility events, as well as 
the fact that moves occur for many reasons besides the location of the inventor’s extended family 
(e.g., partner’s family, climate, cost of real estate, schools for children, etc.). Unlike the negative 
and significant correlations demonstrated in Goldsmith-Pinkham et al. (2020), nearly all of our 
correlations demonstrate a positive coefficient, suggesting homogeneity in individual treatment 
effects. 
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Table D4a: Regressions of mobility on historical surname fraction in county for mobile 
surnames 

 
 
Table D4b: Closeup of regressions of mobility on historical surname fraction in county for 
mobile surnames 

        
Note: Table D4b zooms in to show the distribution of plots in detail, highlighting betas between -
0.05 and 0.05. (Note that 90.8% of data points are included in this plot), and in particular, all 
negatively estimated coefficients). 

Armed with these measures of the predictive power for each individual surname (i.e., the beta 
coefficient of each individual regression), we additionally tested whether the instrument might be 
vulnerable to an ethnicity bias. One might imagine that moving to a particular county is driven 
more by ethnicity than by family ties (as proxied via shared surnames). Using information from 
the 1940 Census we first construct dummy variables indicating family names with a majority of 
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people being labeled as Black, Asian, American Indian, or White, respectively. We then regress 
the predicted correlation for each of the 33,444 surnames from Figure D4a on these ethnic 
indicators (in a single regression).  

Even though we do not have indicators for all possible ethnicities, if inbound mobility in a 
county were driven substantially by such factors, we might expect at least one of these ethnic 
indicators to have a positive and precisely estimated coefficient. However, Appendix Table D4c 
also shows that none of these indicators has a significant correlation with the size of beta, i.e., the 
strength with which a given surname predicts a move of an inventor with the same surname. In 
fact, most estimated coefficients are negative (albeit imprecisely estimated). This remains true 
whether evaluating all surnames (model a) or only those with statistically significant betas 
(model b, i.e., those to the left of the red line in Table D4b). 

Although it is impossible to formally prove the exogeneity of the instrument shares, the stability 
of the results after various substantial adjustments suggests that the high number of historic 
surname shares and destination counties contribute to a plausible SSIV -- and arguably meet the 
conditions for a causal interpretation based on the exogeneity of shares assumption (Goldsmith-
Pinkham et al. 2020).  

 

Table D4c: Heterogeneity in the marginal effect of surname share and lack of ethnicity bias 
    
 Marginal effect of surname share (β) 
 a b 

 

All surnames ever 
moved in the 
sampling period 

Only surnames with 
significant share 
effect 

   
Ethnicity   
White == 1 0.017 0.098 
  (0.024) (0.109) 
Black == 1 -0.039 -0.168 
  (0.043) (0.296) 
American Indian == 1 -0.042 (No names with  

 
(0.146) significant share 

effect) 
Asian == 1 -0.005 -0.087 
 (0.030) (0.117) 
   
N 33,444 6,822 
Notes: This table presents OLS regression of marginal effect sizes of surname shares on 
the heterogeneity of individual surnames, i.e., ethnicity. While column (a) shows the results 
based on a sample with all surnames ever moved in the sampling period, column (b) shows 
the results based on a sample with only surnames whose historic surname fractions have a 
significant marginal effect on the inventor mobility. Ethnicity variables are indicator 
variables. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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D5: Shift instrument demonstrates low sum of HHI measures 
 
Borusyak et al. (2022) show that SSIVs can be valid even in the absence of share exogeneity if 
shocks are large in number and as good as randomly assigned. Although appendices D1-D4 
suggest that our SSIV may be valid with regards share-endogeneity concerns, we also analyze 
the validity of the shift (and follow the convention of using ‘shift’ and ‘shock’ interchangeably). 

Intuitively, the number of moving inventors with the name ‘Fleming’ in a given year should not 
correlate with any single county’s number of startup foundings – especially if the ‘Flemings’ 
moving into the specific county are purged from the shock, as is the case with our leave-out 
SSIV construction in equation (3). Further, given that we observe more than 200,000 inventor 
surnames, it seems unlikely that our results are driven by any single shock or group of shocks.  

Borusyak et al. (2022) formalize this intuition with the assertion that the sum of the quadratic 
shock proportions ∑ 𝑠𝑠𝑛𝑛𝑛𝑛2𝑛𝑛,𝑡𝑡  should be minimized and ideally approach zero and that the inverse of 
the Hirschman Herfindahl Index (1/HHI = 1/∑ 𝑠𝑠𝑛𝑛𝑛𝑛2𝑛𝑛,𝑡𝑡 ) is a good metric with which to proxy the 
effective sample size that drives identification. For our baseline sample, Table D5 shows the HHI 
to vary between 0.00324 (sample year 1987) and 0.01401 (sample year 2007), which translates 
into effective sample sizes of 308.1 and 71.38. 

 
Table D5: HHI of shifts per year 

 
Note: HHI values here are multiplied by 10,000 

o Min: 32.457 (in 1987); Max: 140.116 (in 2007) 
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D6: Shift instrument demonstrates low sum of HHI measures, excluding top 50 most 
popular surnames 
 
Since the distribution of shocks is skewed towards the most frequent surnames, we also re-ran 
this validation check without the top 50 most frequent surnames (consistent with the alternate 
instrument that proved robust in section 5.1.5). Table D6a shows the list of the top 50 most 
popular shift surnames between 1987 and 2007. In Table D6b we find the HHI to vary between 
0.00041 (sample year 1998) and 0.00060 (sample year (1989), which translates into effective 
sample sizes ranging from 2439.02 to 1666.07.  Note that these numbers are large (and preferred) 
in comparison to prominent SSIV results in the literature, e.g. Autor et al. (2013) who report 
sample sizes between 1.7 and 191.6. 
 

Table D6a: Top 50 most popular shift surnames between 1987 and 2007 

 

 

  

Rank Surname Mobility 
frequency Rank Surname Mobility 

frequency 
1 smith 2719 26 white 355 
2 johnson 2098 27 huang 354 
3 miller 1801 28 king 350 
4 wang 1144 29 young 344 
5 brown 1138 30 allen 343 
6 chen 1106 31 peterson 342 
7 anderson 1042 32 lewis 321 
8 lee 1011 33 kim 316 
9 williams 1006 34 harris 303 
10 jones 885 35 chang 298 
11 li 785 36 adams 296 
12 davis 764 37 baker 272 
13 wilson 658 38 walker 271 
14 liu 632 39 wright 270 
15 martin 605 40 xu 260 
16 nelson 489 41 yu 235 
17 taylor 487 42 jackson 232 
18 thompson 480 43 wong 230 
19 clark 426 44 kelly 229 
20 wu 422 45 green 224 
21 moore 411 46 mitchell 219 
22 yang 404 47 roberts 218 
23 hall 380 48 evans 218 
24 thomas 368 49 lu 218 
25 lin 361 50 edwards 217 
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Table D6b: HHI of shifts per year excluding top 50 most popular surnames 

 
Note: HHI values here are multiplied by 10,000. Min: 4.066 (in 1998); Max: 6.006 (in 1989) 

 

D7: Shift instrument demonstrates low serial correlation 

Assuming shocks to be as good as randomly assigned might be problematic if they remain 
influenced by unobserved trends. While a graphical inspection of the ‘Fleming’ shocks presented 
in the Appendix Tables B2-4 illustrates no clear trend, we also perform a more systematic test for 
serial correlations and trends by running individual regressions for every individual surname 
observation on the prior period’s individual observation (individual regressions of the shift in 
year t on the shift in t-1, for each surname), as well as a linear trend. Figures D7a-b illustrate that 
5.78% of surname measures are serially correlated and Figures D7c-d show that 5.80% of 
surname shocks show a significant linear trend. Both of these numbers are close to a purely 
random association of 5%.  

Nonetheless, in Table D7e, we show that our results are not influenced even if we exclude those 
potentially problematic shocks from the instrument construction. Model a excludes the 5.78% of 
surnames that were identified as exhibiting serial correlation. The 5.80% of surnames exhibiting 
linear time trends are dropped from model b. Both exclusions yield little impact on the results. 
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Figure D7a: Serial correlations of shocks, for each surname 

 
 
 
 
Figure D7b: Serial correlations of shocks, for each surname, scatter plot 
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Figure D7c: Serial correlations of shocks and a linear trend, for each surname 

  
 
 
Figure D7d: Serial correlations of shocks and a linear trend, for each surname, scatter plot 
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Table D7e – Alternative instruments which remove inventors with surnames whose 
mobility is serially correlated or exhibit significant time trends 

 

 
Successful venture-backed startups 

founded 
  a  b  

 

Exclude surnames 
from shift with 
serially correlated 
mobility 

Exclude surnames 
from shift that 
have significant 
time trends in 
mobility 

 IV IV 
Incoming 
Inventorst-1 0.095*** 0.107*** 

  (0.028) (0.028) 
N 65,247 65,247 
First Stage F 223.699 221.343 
State-Year FE Yes Yes 
County FE Yes Yes 

Notes: This table presents OLS regression of log(number of successful venture-backed startups 
founded + 1), where  “successful” startups are defined as newly found venture backed companies 
that complete either an IPO or successful acquisition within 10 years and achieve a value > 125% 
of total venture capital acquired. Incoming inventors as well as the instrument are log-transformed. 
Model (a) excludes surnames with serially correlated shifts; (b) excludes surnames with shifts that 
have significant time trends. First stage F is the Kleibergen-Paap Wald F statistic of the first stage 
regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * 
indicate a significance level of 1%, 5%, and 10%, respectively. 

 

D8: Shift instrument demonstrates robustness to unobserved spatial correlations 
 

To rule out potentially problematic spatial correlations of shocks, we provide Table D8, showing 
that our SSIV produces similar results if we leave out not only same-destination-county moves 
(as in equation (3)) but also same-state moves (that is, all counties of the state the county is in) in 
model c. This expanded leave-out approach helps to allay concerns that moves to nearby 
counties, but not the focal county, might influence entrepreneurial activity in the focal county. 
Table D8 also illustrates robustness to using all U.S. inventors as the shift, independent of 
whether they moved or not (model a) or even when constructing the shift only from inventors 
who did not move (in which case the leave-out adjustment is not necessary). 

Overall, these additional shift tests support the assumption that our surname specific shocks are 
large in number and hopefully as good as randomly assigned. The SSIV could thus arguably 
remain valid even in the absence of conditional share exogeneity (Borusyak et al. 2022). 
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Table D8: Alternative shift instruments 
 

 
Successful venture-backed startups 

founded  
  a  b  c 

 

Total 
inventors in 
US 

Non-moving 
inventors  

State leave-
out 

 IV IV IV 
Incoming 
Inventorst-1 0.148** 0.143*** 0.103*** 

  (0.062) (0.060) (0.036) 
N 65,247 65,247 65,247 
First Stage 
F 24.413 25.717 183.772 

State-Year 
FE Yes Yes Yes 

County FE Yes Yes Yes 
Notes: This table presents OLS regression of log(number 
of successful venture-backed startups founded + 1), where  
“successful” startups are defined as newly found venture 
backed companies that complete either an IPO or 
successful acquisition within 10 years and achieve a value 
> 125% of total venture capital acquired. Incoming 
inventors as well as the instrument are log-transformed. 
Model (a) uses the count of total inventors in US at the 
national level as the shift; (b) uses the count of non-moving 
inventors at the national level as the shift; (c) leaves out 
states’ own inflows, instead of counties’ own inflows, from 
national flows with the same surname. First stage F is the 
Kleibergen-Paap Wald F statistic of the first stage 
regression. Standard errors clustered at the county level 
appear in parentheses. ***, ** and * indicate a significance 
level of 1%, 5%, and 10%, respectively. 

 

Column (c) of Table D8 is helpful in understanding the limitations of the SSIV, especially 
regarding demand shocks. To fix ideas, consider a scenario where universities in Buffalo NY, 
Albany NY, and Atlanta GA achieve unprecedented breakthroughs in EV battery technology 
during 2014. These demand shocks lead to the founding of VC-backed EV startups the following 
year in those counties. Assume also that inventors named Balsmeier are particularly skilled in EV 
technology and therefore moved to Buffalo, Albany, and Atlanta in 2014, increasing that year’s 
nationwide “shift” for Balsmeier. Finally, assume that in 1940 there were some Balsmeiers in 
Albany and Buffalo but none in Atlanta.  
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The leave-out provision of the instrument prevents the additional Balsmeiers moving into 
Buffalo during 2014 (due to the EV shock) from being counted toward the calculation of the 
instrument. Therefore, a demand shock that occurs only in one county should not threaten the 
instrument. However, the additional Balsmeiers moving into Albany would still count toward 
Buffalo’s instrument; therefore, a simultaneous demand shock might threaten the instrument. 
However, column (c) of Table C5 above shows that the instrument is also strong when the leave-
out provision is calculated at the state level, where the additional Balsmeiers moving into Albany 
do not count toward Buffalo’s instrument. Therefore this concern is limited to demand shocks 
that occur simultaneously in multiple states. We set aside Albany for the remainder of our 
example. 

In our example, the additional Balsmeiers moving into Atlanta would count toward Buffalo’s 
instrument. But because Atlanta did not have any Balsmeiers in 1940, the additional Balsmeiers 
moving into Buffalo do not count toward Atlanta’s instrument. Even for Buffalo, it is not clear 
how much the additional Balsmeiers moving into Atlanta will affect its instrument if Buffalo had 
a very small number of Balsmeiers in 1940. We might be more worried if Wilsons were highly 
skilled at EV technology, although in that case models (b) and (f) of Appendix Table C7 show 
that the instrument is strong when omitting the top 10% of surnames.  

In sum, there is a risk that our instrument can suffer from simultaneous, industry-specific 
demand shocks in multiple states where the surnames of inventors skilled in that industry who 
moved to the shocked counties in other states were well represented in 1940 for a focal county.  
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D9: Main specification re-estimated with local income 
 

To control for potential confounding effects of local income, we tested the same specifications as 
Table 2 but controlling for local per capita income in period t-1. Per capita income is calculated 
based on yearly income level and population of counties obtained from the Bureau of Economic 
Analysis. The results remain consistent. 

 
Table D9: Impact of incoming inventors on local venture backed startups, controlling for 

local per capita income in period t-1 

 
Incoming 
Inventorst-1 Number of venture-backed startups founded 

 a b c d e f 

 

OLS  
(first stage) OLS OLS OLS IV 

IV  
(w/o top 
10 
counties) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 0.755***      
 (0.032)      
Incoming Inventorst-1  0.341*** 0.342*** 0.031*** 0.179*** 0.119*** 
   (0.019) (0.019) (0.005) (0.039) (0.035) 
Per Capita Incomet-1 1.411*** 0.116*** 0.156*** 0.078*** 0.048*** 0.037*** 
 (0.024) (0.033) (0.042) (0.016) (0.014) (0.013) 
N 64,133 64,133 64,133 64,133 64,133 63,944 
First stage F     183.146 177.432 
Year FE Yes Yes No No No No 
State-Year FE No No Yes Yes Yes Yes 
County FE No No No Yes Yes Yes 
R2 0.545 0.488 0.516 0.836   

Notes: This table reports the results of specifications (a) – (f) from Table 2, with controlling for local per capita 
income in period t-1. Specification (a) in this table present the first stage OLS results of the regression of 
incoming inventors on the IV (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� ). Specification (b) – (d) present OLS regressions of log 
(number of venture-backed startups + 1). Incoming inventors as well as the instrument are log-transformed. 
Specification (b) includes year fixed effects. Specification (c) includes state-year fixed effects. Specification 
(d) includes state-year and county fixed effects. Specifications (e) shows the results of our IV regression with 
state-year and county fixed effects, where incoming inventors are instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�  in the 
first stage as defined in equation (3). Specification (f) shows results of our IV regression, but excluding the top 
10 entrepreneurial counties from the sample (Alameda County, Los Angeles County, Orange County, San Diego 
County, San Francisco County, San Mateo County, Santa Clara County in California, Middlesex County in 
Massachusetts, New York County in New York and King County in Washington). First stage F is the 
Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level 
appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. Note that 
the county-year observations with missing data on the variable controls are dropped in this analysis. 
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D10: Main specification re-estimated without the right tail of the SSIV distribution 

One may be concerned that the result may be driven by the right tail of the distribution of SSIV. 
To investigate this, we excluded the top 5% of observations with the highest values of SSIV and 
modeled the same specifications as Table 2. The results remain consistent after excluding these 
observations. 
 
 

Table D10: Impact of incoming inventors on local venture backed startups, excluding the 
top 5% of observations with the highest values of the instrumental variable 

 
Incoming 
Inventorst-1 Number of venture-backed startups founded 

 a b c d e f 

 

OLS  
(first stage) OLS OLS OLS IV 

IV  
(w/o top 
10 
counties) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 0.755***      
 (0.032)      
Incoming Inventorst-1  0.227*** 0.232*** 0.018*** 0.090** 0.090** 
   (0.015) (0.016) (0.004) (0.043) (0.043) 
N 61,976 61,976 61,976 61,976 61,976 61,965 
First stage F     84.710 84.765 
Year FE Yes Yes No No No No 
State-Year FE No No Yes Yes Yes Yes 
County FE No No No Yes Yes Yes 
R2 0.191 0.313 0.343 0.698   

Notes: This table reports the results of specifications (a) – (f) from Table 2, based on a sample excluding the 
top 5% of observations with the highest SSIV values. Specification (a) in this table present the first stage OLS 
results of the regression of incoming inventors on the IV (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� ). Specification (b) – (d) present 
OLS regressions of log (number of venture-backed startups + 1). Incoming inventors as well as the instrument 
are log-transformed. Specification (b) includes year fixed effects. Specification (c) includes state-year fixed 
effects. Specification (d) includes state-year and county fixed effects. Specifications (e) shows the results of 
our IV regression with state-year and county fixed effects, where incoming inventors are instrumented with 
𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�   in the first stage as defined in equation (3). Specification (f) shows results of our IV 
regression, but excluding the top 10 entrepreneurial counties from the sample (Alameda County, Los Angeles 
County, Orange County, San Diego County, San Francisco County, San Mateo County, Santa Clara County in 
California, Middlesex County in Massachusetts, New York County in New York and King County in 
Washington). First stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors 
clustered at the county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 
10%, respectively. 
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D11: Investigation of potential demand channels 

To investigate potential confounds with modern day regional demand channels (e.g., certain 
regions are attractive to inventors with entrepreneurial ambitions), we obtained data on per capita 
income, the existing stock of venture-backed startups, and firm entry and exit rates. Per capita 
income is calculated based on yearly income level and population of counties obtained from the 
Bureau of Economic Analysis. The existing stock of venture-backed startups is captured by 
counting the venture-backed startups founded in the ten years prior to the focal year (i.e., in t-11 
to t-1) in a given county, as recorded in the VentureXpert database. Firm entry and exit rates 
were obtained from the 2021 Business Dynamics Statistics (BDS) Datasets of the US Census. 

Table D11 reports regressions of the SSIV on characteristics and Figure D12 below shows 
corresponding scatter plots. Most relationships are insignificant, however, we find a modest but 
statistically significant correlation with the existing stock of startups. Besides the demand 
channel that would call the SSIV into question, this might occur for two reasons: a) local startup 
foundation rates are unlikely to randomly vary over time within county, b) our measure of local 
incoming inventors has a fuzzy lag structure of more than one year, i.e. a correlation with the 
stock may be partly driven by prior incoming inventors. The following appendix includes a 
control for the existing stock and re-estimates the models. 

 

Table D11: Correlations between SSIV and entrepreneurship-relevant county 
characteristics 

 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 
 a 
 OLS 
Per Capita Incomet-1 -0.007 
 (0.019) 
Existing stock of venture-backed startupst11-1 0.089*** 
 (0.009) 
Firms entry ratest-1 0.003 
 (0.002) 
Firms exit ratest-1 0.001 
  (0.002) 
N 62,693 
State-Year FE Yes 
County FE Yes 
R2 0.969 

Notes: Per capita income is calculated based on yearly income level and population of counties obtained from 
the Bureau of Economic Analysis. The existing stock of venture-backed startups captures the count of all 
venture-backed startups founded up to 10 years prior to the focal year. BDS firm entry and exit rates were 
obtained from the 2021 Business Dynamics Statistics Datasets of the US Census. All variables are log-
transformed and residualized by subtracting state-year and county fixed effects. 
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Figure D11: Scatter plot of residuals of entrepreneurship-relevant county characteristics 

 
Notes: Per capita income is calculated based on yearly income level and population of counties obtained from the 
Bureau of Economic Analysis. The existing stock of venture-backed startups captures the count of all venture-
backed startups founded up to 10 years prior to the focal year. BDS firm entry and exit rates were obtained from the 
2021 Business Dynamics Statistics Datasets of the US Census. All variables are log-transformed and residualized by 
subtracting state-year and county fixed effects. 
 

 

D12: Main specification re-estimated with inclusion of correlated regional characteristic 

D11 uncovered a correlation between the stock of modern-day startups and the instrument. To 
minimize potential problems stemming from the correlation between the existing stock of 
venture-backed startups and the instrument for our main regressions, we re-estimated our main 
model controlling for the startup stock. As presented in Table D12, the results remain similar to 
of our main specification. However, it remains unlikely that the instrument effectively strips out 
all influences of modern-day demand. 
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Table D12: Impact of incoming inventors on local venture backed startups, controlling for 
the existing stock of venture-backed startups 

 
Incoming 
Inventorst-1 Number of venture-backed startups founded 

 a b c d e f 

 

OLS  
(first stage) OLS OLS OLS IV 

IV  
(w/o top 10 
counties) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 0.193***      
 (0.020)      
Incoming 
Inventorst-1  0.070*** 0.083*** 0.031*** 0.202*** 0.141*** 

   (0.008) (0.009) (0.004) (0.043) (0.038) 
Existing stock of 
venture-backed 
startupst-1 

0.671*** 0.322*** 0.321*** 0.000 -0.043*** -0.044*** 

 (0.015) (0.015) (0.015) (0.013) (0.012) (0.011) 
N 65,247 65,247 65,247 65,247 65,247 65,058 
First stage F     169.308 159.897 
Year FE Yes Yes No No No No 
State-Year FE No No Yes Yes Yes Yes 
County FE No No No Yes Yes Yes 
R2 0.692 0.629 0.648 0.835   

Notes: This table reports the results of specifications (a) – (f) from Table 2, with controlling for the existing 
stock of venture-backed startups. The existing stock of venture-backed startups captures the count of all 
venture-backed startups founded up to 10 years prior to the focal year. Specification (a) in this table present the 
first stage OLS results of the regression of incoming inventors on the IV (i.e. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� ). Specification 
(b) – (d) present OLS regressions of log (number of venture-backed startups + 1). Incoming inventors as well 
as the instrument are log-transformed. Specification (b) includes year fixed effects. Specification (c) includes 
state-year fixed effects. Specification (d) includes state-year and county fixed effects. Specifications (e) shows 
the results of our IV regression with state-year and county fixed effects, where incoming inventors are 
instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜�  in the first stage as defined in equation (3). Specification (f) shows results 
of our IV regression, but excluding the top 10 entrepreneurial counties from the sample (Alameda County, Los 
Angeles County, Orange County, San Diego County, San Francisco County, San Mateo County, Santa Clara 
County in California, Middlesex County in Massachusetts, New York County in New York and King County 
in Washington). First stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard 
errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, 
and 10%, respectively. Note that the county-year observations with missing data on the variable controls are 
dropped in this analysis. 
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D13: Instrument remains robust to placebo shuffling by random reassignment 
 

Given the strength of the instrument, one might be concerned that the IV absorbs unobserved 
local characteristics and leads to an overly strong rejection of the null hypothesis. To address 
these concerns, we run three placebo tests in the spirit of Adao, Kolesár, & Morales (2019). We 
randomly reassign computed values of the instrument for a focal county-year in three ways: (1) 
across the entire sample, i.e., the instrument for a focal county-year can be reassigned to any 
other county in any other year (2) across counties within a given year, and (3) across time within 
a given county (e.g., shuffling the value for Alameda County in 1994 to 2003 or 1976 but keeping 
it in Alameda County). Then, we re-run our baseline model with each placebo 1000 times. 

 Appendix Table D13 summarizes the first and second stages. All three placebos consistently 
show a random reassignment of instrument values effectively eliminates a significant prediction 
of incoming inventors in the first stage, as well as false identification of a causal impact of 
incoming inventors on the number of successful VC-backed startups in the second stage. Hence, 
our IV estimates do not appear to suffer from the artificial over-rejection of the null hypothesis as 
identified in other applications of shift-share instruments by Adao, Kolesár, & Morales (2019). 

Table D13: Results from placebo shuffle analysis 
 

 a b c d 
 Coefficient Std. Err. Rejection rate 
 (Mean) (Std. Dev.) (Median) (%) 

Panel A: Placebo IV randomly shuffled across the overall sample 
1st stage 0.000 0.002 0.002 5.5 
2nd stage 2.223 67.497 0.598 0.0 
 
Panel B: Placebo IV randomly shuffled across counties within each year 
1st stage 0.000 0.002 0.002 5.2 
2nd stage 0.090 11.871 0.638 0.1 
 
Panel C: Placebo IV randomly shuffled across years within each county 
1st stage -0.004 0.008 0.007 8.5 
2nd stage -0.264 4.164 0.742 0.1 
Notes: We randomly shuffle our instrument to construct placebo instrument 
variables across the overall sample (Panel A), across counties within each year 
(Panel B), and across years within each county (Panel C). For each placebo 
instrument variables, we ran 1000 regressions of ln (number of successful venture-
backed startup foundation + 1) on incoming inventors, instrumented with the 
placebo IV that is newly generated for each regression. Incoming inventors as well 
as the placebo instrument are log-transformed. Column (a) and (b) report the mean 
and standard deviation of the coefficients obtained from 1000 placebo regressions, 
respectively. Column (c) reports the median value of the standard error for the 
coefficient of each regression over 1000 placebo regressions. Column (d) reports 
the rate of which the regression rejects the null hypothesis of no effect at the 5% 
significance level over 1000 placebo regressions. We report these values 
corresponding to each of the first and second stages of the placebo regressions. 
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D14: Results hold for alternative instrument constructions 
 
We address a common inferential challenge in SSIV analyses: that particular shares may have an 
overly strong influence on the results. This is more of a concern with a small number of shares 
and may thus be ameliorated by our tracking more than 200,000 inventor surnames. Still, we 
investigate this by extending the temporal gap between contemporaneous inventors and those in 
the Census, by dropping the top 50 surnames in 1940, by entirely reformulating the instrument 
using the geographic centroid, and by dropping the top 5% of the distribution of modern surname 
frequencies. The table illustrates results consistent with the preferred instrument. 

For the first alternative instrument (Table D14, model a), we consider only people in the 1940 
Census who already lived in a given county before 1935. This effectively enlarges the temporal 
gap between the shares and the actual inventor moves, reducing potential correlation between 
historic and current inventor migration dynamics. In model (b), we exclude the 50 surnames that 
appear most frequently in 1940, addressing concerns that some families have an overly strong 
influence on the results. In our third construction (model c), we exclude wealthy families of each 
county, as inventors may benefit even generations later from their ancestors’ wealth. Using the 
historic house value in the 1940 Census, we excluded families holding more than 1% of the total 
house value of a given county. Model (d) drops individuals from the 1940 Census in engineering 
occupations. Model (e) uses an entirely different approach, namely, the inverse distance to the 
geographic centroid of the name. In model (f) we aggregate the total number of mobile modern 
inventors and exclude the top 5% of observations in the name frequency distribution. 
 

Table D14: Successful startups funded, using alternate instruments 

 
  a b  c  d e f 

 

Only 
individuals 
who settled 
by 1935 

Drop top 
50 1940s 
surnames 

Drop 
wealthy 
families  

Drop 
engineers  

Inverse 
distance to 
the centroid 

Dropped top 
5% modern 
surnames 

 IV IV IV IV IV IV 
Incoming 
Inventorst-1 

0.110*** 0.109*** 0.106*** 0.108*** 0.272** 0.111*** 

  (0.036) (0.035) (0.033) (0.033) (0.109) (0.032) 
N 65,247 65,247 65,247 65,247 65,247 65,247 
First Stage F 159.068 162.303 183.076 173.968 22.971 179.771 
State-Year FE Yes Yes Yes Yes Yes Yes 
County FE Yes Yes Yes Yes Yes Yes 

Notes: This table presents OLS regression of log(number of successful venture-backed startups founded + 1), where  
“successful” startups are defined as newly found venture backed companies that complete either an IPO or successful 
acquisition within 10 years and achieve a value > 125% of total venture capital acquired. Incoming inventors as well 
as the instrument are log-transformed. Model (a) restricts the instrument to those who settled in the county of the 1940 
Census by 1935; (b) excludes the 50 most frequent surnames; (c) excludes the wealthiest 1% of surnames per 1940 
Census house value; (d) excludes individuals who list engineer as their occupation in the 1940 Census; (e) replaces 
surname shares with the inverse of distance to the centroid of each surname in 1940; (f) excludes top 5% most common 
surnames from modern mobile inventors. First stage F is the Kleibergen-Paap Wald F statistic of the first stage 
regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance 
level of 1%, 5%, and 10%, respectively. 
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D15: Instrument remains uncorrelated with occupational change by MSA 
 

It is possible that the instrument intended for inventors might also pick up other professions that 
enable entrepreneurship, e.g., managers, accountants, and lawyers. To investigate this possibility, 
we aggregated yearly MSA occupational data from the BLS (https://www.bls.gov/oes/tables.html, 
available mostly for the 2000s) and were able to calculate the change in managers, accountants, 
and lawyers by year and MSA (based on aggregating each occupation that had the string 
“Manag” or “Exec”, “Account”, or “Lawyer”). Given that some MSAs experienced a year to 
year decrease, we transformed the data using an IHS, and regressed these yearly changes on the 
IV. Table D15 illustrates no significant results for the non-technical professions. 
 

Table D15: Correlation of instrument and occupational change by MSA 
 a b c d 
 Inventors Managers Accountants Lawyers 
Instrument 0.439*** 1.054 -0.924 -0.717 
  (0.165) (0.872) (1.198) (1.428) 
N 1,517 1,517 1,517 1,169 
Major State-Year FE Yes Yes Yes Yes 
MSA FE Yes Yes Yes Yes 
First stage F 6.878 1.232 0.379 0.321 
Within-R2 0.021 0.001 0.001 0.000 

Notes: This table presents OLS regressions of change in each occupation, i.e., inventor, manager, accountant, 
and lawyer, on the instrument. The inventor variable, i.e., Inventors, is the incoming inventor count, and all the 
other occupation variables, i.e., Managers, Accountants, and Lawyers, are the difference between the 
employment of each occupation in the current and previous years. All variables are inverse hyperbolic sine 
transformed. Specification (a) presents the results for inventors; (b) for managers; (c) for accountants; (d) for 
lawyers. Each model includes the major state-year and MSA fixed effects. Standard errors clustered at the MSA 
level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 

 

D16: Comparison of OLS and IV results 
 
As Table 2 and other results illustrate, the SSIV coefficient estimates are larger than OLS, 
particularly when county FE are included. We discuss three possible reasons here, including 
attenuation bias, measurement error, and heavier weighting of entrepreneurial hotspots by the IV. 
While the first two mechanisms would bias the estimates toward zero, the third cannot be 
dismissed, and should be recognized as a weakness of the IV. 

That the OLS FE models produce much smaller coefficients might stem from attenuation bias, a 
common problem for FE models, e.g., because of measurement error or serial correlation. 
Consistent with this is the observation that the coefficients from the FE models are closer to zero 
irrespective of whether we estimate a positive (startups) or negative (failed startups) effect.  

There is surely measurement error as well, as we infer inventor mobility from patent documents. 
OLS estimates will be biased towards zero in the presence of such measurement error in the main 
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explanatory variable. Our IV estimates on the other hand are consistent even with measurement 
error (assuming instrument validity), which would lead to larger IV estimates compared to OLS. 

One contributor to the OLS-IV gap might be that our instrument appears to be stronger for long-
run high startup regions, where the elasticity between incoming inventors and startup 
foundations is, for various reasons, larger than in the rest of the country. This is clear because the 
OLS-IV gap as well as instrument strength shrinks when we exclude the top 10 counties (as 
measured by total amount of startup foundings over the sampling period). Hence the IV 
estimates for the full sample might be driven disproportionally by the hot spots of long-run 
startup activity. 

We further investigated whether the strength of the IV varies with the ability of inventors as 
stronger predictive power for higher quality inventors may overweight high performers, which in 
turn might also explain the larger estimates from IV regressions. To shed light on this, we 
separated inventors by their ability, approximated by the number of future patent citations 
received within the previous five-year window. The first-stage F-statistic came out as 71.96 for 
the bottom half, whereas it was 187.94 for inventors in the upper half of the performance 
distribution. This shows how the IV is stronger and puts more weight on the top performing 
inventors. Furthermore, we observe differences in the pattern of inventor mobility based on 
performance. As shown in Figure D16, a county with higher startup activities tends to attract 
more high-performing inventors compared to low-performing inventors.  

Hence the IV does not weight each county uniformly. Interpreting it as a local average treatment 
effect, the IV results are larger because the instrument puts higher weights on the local centers of 
long-run US startup activity, where more top performing inventors move to. This contributes to 
larger coefficients estimated with our IV estimation as compared to other models where each 
county receives the same weight.  

 
 

Figure D16. Inventor mobility against startup stock by performance of inventors (as measured by 
number of citations in five years prior to move). 
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Appendix E: Robustness checks and additional analyses 

E1: Industry specific estimations 

Table E1 provides insights into each industry (including non-tech startups). The strength of effect 
on the number of startups is greatest for Computers, Biotech, Communications and Media, 
Semiconductors, and negative for non-tech. For successful startups, it is Computer related, 
Communications and Media, Semiconductors, and insignificant for Biotech and non-tech. For 
failed startups, the effect is most negative for non-tech, also negative for Biotech and Computers, 
not significant for Communications and Media and Semiconductors, and positive for Computers. 

Table E1: Industry specific estimations 
 a b c 
 Startups founded Successful 

   
Failed 

Panel 1: Biotechnology + Medical/Health/Life Science 
Incoming Inventorst-1 0.198*** 00.015 -0.073*** 
  (0.030) (0.013) (0.016) 
First stage F 188.672 188.672 188.672 
Panel 2: Communications and Media 
Incoming Inventorst-1 0.181*** 0.050** -0.020 
  (0.046) (0.020) (0.016) 
First stage F 119.321 119.321 119.321 
Panel 3: Computer Related 
Incoming Inventorst-1 0.390*** 0.130*** 0.025* 
  (0.044) (0.036) (0.014) 
First stage F 214.315 214.315 214.315 
Panel 4: Semiconductors/Other Electronics 
Incoming Inventorst-1 0.154*** 0.024* -0.008 
  (0.029) (0.013) (0.012) 
First stage F 88.459 88.459 88.459 
Panel 5: Non-high-tech 
Incoming Inventorst-1 -0.594*** -0.047 -0.624*** 
  (0.179) (0.042) (0.16) 
First stage F 20.219 20.219 20.219 
Notes: This table present IV regressions for each industry. Panel 1 – 5 presents the results for Biotechnology + 
Medical/Health/Life Science, Communications and Media, Computer Related, Semiconductors/Other 
Electronics, and Non-high-tech industries, respectively. Dependent variables of Columns (a)-(c) are 
log(number of venture-backed startups + 1), log(number of successful venture-backed startups + 1), and 
log(number of failed venture-backed startups + 1), respectively. We define successful startups as those that 
complete either an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture 
capital acquired. We define failed startups as those that are currently “Defunct” or “Bankruptcy” as indicated 
in VentureXpert database. First stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. 
Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance level 
of 1%, 5%, and 10%, respectively. The number of observations is 65,247. 
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E2: Regressions scaled by 1940 and current populations 

To increase confidence in the model specifications, Table E2 provides results scaling the left- and 
right-hand side variables by the 1940 and current county populations. 

 

Table E2: Regressions scaled by 1940 and current populations  
 

Successful venture-backed startups founded 
  a b 

 

Variables 
scaled by 1940 
population 

Variables 
scaled by 
current 
population 

 IV IV 
Incoming 
Inventorst-1 0.081*** 0.108** 

  (0.029) (0.043) 
N 64,890 64,136 
First Stage F 112.630 64.602 
State-Year 
FE Yes Yes 

County FE Yes Yes 
Notes: This table presents OLS regression of log(number of 
successful venture-backed startups founded + 1), where  
“successful” startups are defined as newly found venture 
backed companies that complete either an IPO or successful 
acquisition within 10 years and achieve a value > 125% of 
total venture capital acquired. Incoming inventors as well as 
the instrument are log-transformed. Model (a) and (b) present 
the results of regressions in which variables are scaled by log-
transformed 1940 population and current population, 
respectively. First stage F is the Kleibergen-Paap Wald F 
statistic of the first stage regression. Standard errors clustered 
at the county level appear in parentheses. ***, ** and * 
indicate a significance level of 1%, 5%, and 10%, respectively. 
Note that the county-year observations with zero population 
were dropped in the weighted regressions.  
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E3: Regressions weighted by 1940 and current populations 

To increase confidence in the model specifications, Table E3 provides results weighted by the 
1940 and current county populations. 

 

Table E3: Regressions weighted by 1940 and current populations  
 

Successful venture-backed startups founded 
  a  b  

 

Weighted by  
1940 
population 

Weighted by  
current 
population  

 IV IV 
Incoming 
Inventorst-1 0.116** 0.114*** 

  (0.039) (0.038) 
N 64,890 64,136 
First Stage F 169.710 170.931 
State-Year 
FE Yes Yes 

County FE Yes Yes 
Notes: This table presents OLS regression of 
log(number of successful venture-backed startups 
founded + 1), where  “successful” startups are 
defined as newly found venture backed companies 
that complete either an IPO or successful 
acquisition within 10 years and achieve a value > 
125% of total venture capital acquired. Incoming 
inventors as well as the instrument are log-
transformed. Model (a) and (b) present the results 
of regressions weighted by log-transformed 1940 
population and current population, respectively. 
First stage F is the Kleibergen-Paap Wald F statistic 
of the first stage regression. Standard errors 
clustered at the county level appear in parentheses. 
***, ** and * indicate a significance level of 1%, 
5%, and 10%, respectively. Note that the county-
year observations with zero population were 
dropped in the weighted regressions. 
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E4: Alternative model specifications: IHS transformation, time lags, inventor stocks, and 
growth models 

Table E4 uses an Inverse Hyperbolic Sine transformation (Panel 2), 2- and 3-year lags (Panels 3-
4), county controls for outward mobility, population, income, and employment (Panel 5), and 
growth models including inventor stocks, w/ and w/o controls (Panels 8 and 9). 

Table E4: Alternative model specifications 
 a b c 
 Startups founded Successful 

   
Failed 

Panel 1: Raw count of dependent variables 
Incoming Inventorst-1 4.367*** 0.502*** -0.216** 
  (1.178) (0.175) (0.094) 
First stage F 175.723 175.723 175.723 
Panel 2: Inverse hyperbolic sine transformation 
Incoming Inventorst-1 0.153*** 0.089*** -0.194*** 
  (0.039) (0.030) (0.028) 
First stage F 151.429 151.429 151.429 
Panel 3: Different time lag: Two-year lag 
Incoming Inventorst-2 0.144*** 0.092*** -0.224*** 
  (0.036) (0.030) (0.026) 
First stage F 204.518 204.518 204.518 
Panel 4: Different time lag: Three-year lag 
Incoming Inventorst-3 0.118*** 0.082*** -0.235*** 
  (0.035) (0.028) (0.026) 
First stage F 238.116 238.116 238.116 
Panel 5: Main specification with controls included 
Incoming Inventorst-1 0.420*** 0.122** -0.175*** 
  (0.072) (0.050) (0.035) 
First stage F 91.094 91.094 91.094 
N 54,964 54,964 54,964 
Panel 6: Inventor stock 
Inventor Stockt-1 0.143*** 0.092*** -0.207*** 
  (0.044) (0.033) (0.038) 
First stage F 56.668 56.668 56.668 
Panel 7: Inventor stock with controls included 
Inventor Stockt-1 0.251*** 0.096* -0.243*** 
  (0.080) (0.050) (0.063) 
First stage F 23.534 23.534 23.534 
N 54,964 54,964 54,964 
Panel 8: Growth model 
Incoming Stockt-1 – Incoming Stockt-2 0.008** 0.001* -0.002*** 
  (0.004) (0.001) (0.001) 
First stage F 23.404 23.404 23.404 
Panel 9: Growth model with controls included 
Incoming Stockt-1 – Incoming Stockt-2 0.011*** 0.002* -0.002*** 
  (0.004) (0.001) (0.001) 
First stage F 23.300 23.300 23.300 
N 48,854 48,854 48,854 

Notes: Panel 1 uses the raw count of dependent variables. Incoming inventors and the instrument are log-transformed. Panel 2 has all DVs, incoming 
inventors, and instrument inverse hyperbolic sine transformed. Panels 3 & 4 present the results of the log specification with a 2- & 3-year lag applied between 
the DVs and incoming inventors, respectively. Panel 5 presents log-transformed results using outward mobility, population, income, and employment as 
controls. Panel 6 examines inventor stocks instead of inventor inflows. Panel 7 shows inventor stocks with log-transformed controls. Panel 8 has a growth 
model with level differences from the previous year for each DV, incoming inventors, and instrument. Panel 9 shows the growth model including log-
transformed controls. DVs of Columns (a)-(c) are log(# venture-backed startups + 1), log(# successful venture-backed startups + 1), and log(# failed venture-
backed startups + 1). “Successful” startups as those that complete either an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total 
venture capital acquired. We define failed startups as those that are currently “Defunct” or “Bankruptcy” as indicated in VentureXpert database. Standard 
errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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E5: Different data cuts: exclusion of inventors not in 1940 Census, MSA level estimations, 
no entrepreneurship or mobile inventors, and winsorization 
 
Table E5 excludes inventor names not present in the 1940 Census (Panel 1), as well as estimation 
at the MSA level (Panel 2), counties that never had a venture-backed startup or incoming 
inventor (Panels 3 and 4, respectively), and a winsorized data sample (Panel 7). 

Table E5: Exclusion of inventors not in 1940 Census and sample variations 
 a b c 
 Startups founded Successful 

   
Failed 

Panel 1: Exclude inventors whose surname does not appear in Census 
Incoming Inventorst-1 0.185*** 0.106*** -0.212** 
  (0.041) (0.033) (0.028) 
First stage F 181.869 181.869 181.869 
Panel 2: Metropolitan Statistical Area (MSA) level analysis 
Incoming Inventorst-1 0.196*** 0.133*** -0.326** 
  (0.056) (0.047) (0.053) 
First stage F 82.991 82.991 82.991 
N 19,047 19,047 19,047 
Panel 3: Exclude counties that never had a venture-backed startup founded 
Incoming Inventorst-1 0.356*** 0.229*** -0.406*** 
  (0.091) (0.076) (0.075) 
First stage F 47.612 47.612 47.612 
N 21,105 21,105 21,105 
Panel 4: Exclude counties that never had an incoming inventor 
Incoming Inventorst-1 0.214*** 0.127*** -0.253*** 
  (0.048) (0.040) (0.034) 
First stage F 125.013 125.013 125.013 
N 48,195 48,195 48,195 
Panel 5: Only counties with always positive values of venture-backed startups founded 
Incoming Inventorst-1 2.040* 2.479 -0.446 
  (1.115) (1.489) (0.977) 
First stage F 1.569 1.569 1.569 
N 1,071 1,071 1,071 
Panel 6: Only counties with always positive values of incoming inventors 
Incoming Inventorst-1 1.914 2.466 -2.972 
  (1.571) (2.147) (2.914) 
First stage F 1.058 1.058 1.058 
N 5,418 5,418 5,418 
Panel 7: Winsorized incoming inventors 
Incoming Inventorst-1 0.216*** 0.124*** -0.254*** 
  (0.052) (0.042) (0.037) 
First stage F 156.852 156.852 156.852 
N 65,247 65,247 65,247 

Notes: Panel 1 excludes inventors whose surname does not appear in Census data. Panel 2 presents MSA level analysis 
including major state-year and MSA FE. Panel 3 excludes counties that never had a venture-backed startup. Panel 4 
excludes counties that never had an incoming inventor. Panel 5 includes only counties with always positive values of 
venture-backed startups founded. Panel 6 includes only counties with always positive values of incoming inventors. 
Panel 7 winsorizes incoming inventors at 99% percentile. DVs in Columns (a)-(c) are log(# VC-backed startups + 1), 
log(# successful VC-backed startups + 1), and log(# failed VC-backed startups + 1). “Successful” startups complete 
either an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture capital acquired. 
“Failed” startups are “Defunct” or “Bankruptcy” in VentureXpert. Standard errors clustered at the county level; . ***, 
** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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