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ABSTRACT

To what extent does high-growth entrepreneurship depend on skilled human capital? We estimate 
the impact of the inflow of inventors into a region on the founding of high-growth firms, 
instrumenting mobility with the county-level share of millions of inventor surnames in the 1940 
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estimates range from 29-55 immigrating inventors for each new high-growth firm, depending on 
the region and model. We also find a smaller but significant negative effect of inventor arrival on 
entrepreneurship in nearby counties.
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Introduction 

Traffic and high rents aside, policymakers worldwide have long sought to replicate Silicon Valley’s 

entrepreneurial success—but typically with middling results (Lerner, 2012). Accordingly, scholars have 

sought to identify the determinants of regional entrepreneurship. Prior studies have suggested a role for 

local culture (Hofstede, 2001; Saxenian, 1994; Florida, 2005), technological spillovers from universities 

(Rosenthal and Strange, 2003; Jaffe et al, 1993), industrial diversity including “anchor” tenants (Duranton 

and Puga, 2001, Agrawal & Cockburn, 2003), and the munificence of financial capital (Samila & Sorenson, 

2011; Grilli & Murtinu, 2014).  

Glaeser & Kerr (2009) review these and other theories in an effort to understand the spatial distribution 

of entrepreneurial activity in U.S. manufacturing. They find that factors such as demographics, culture, and 

industry mix explain only a small share of the geographical variance. Much more consequential is the 

availability of relevant talent, accounting for which enables them to explain 60-80% of the variance and 

conclude that “the broad stability of this finding suggests that people and their human capital are probably 

the crucial ingredient for most new entrepreneurs” (p. 659). They are of course not the first to suggest that 

human capital is crucial to the entrepreneurial process, particularly when considering high-potential 

ventures. By applying scientific principles and research experience to practical problem-solving in the 

economy, technically-trained workers with backgrounds in science, technology and engineering play a 

crucial role in innovation and economic growth (Arrow and Capron, 1959; Romer, 1990; Rosenberg and 

Nelson, 1994; Waldinger, 2016). Jensen and Thursby (2001), for example, argue that scientific inventors 

need to be fully engaged and motivated for technologies to be successfully commercialized in new firms.1 

Startup activity also appears critically dependent upon inventor knowledge from industry (Klepper 2009) 

and universities (Zucker et.al 1999; Stuart and Ding 2006).  

Evidence of the role for skilled human capital in high-growth entrepreneurship comes primarily from 

work illustrating correlations between the supply of technical workers levels of patenting, entrepreneurial 

firm founding, and employment (e.g. Kerr, 2013; Maloney and Caicedo, 2016). However, causality might 

run the other direction. It could be that the correlations established by Glaeser & Kerr (2009) reflect not 

only the importance of talent to entrepreneurship but rather the flocking of skilled workers to opportunity. 

Alternatively, it might be that hiring technical talent is not that important: new ventures might focus on 

fundraising and outsource product development, as did Slack, Skype, Whatsapp, Alibaba, and BaseCamp. 

                                                   

1 Not all high-growth firms in the U.S. are high-tech firms, and vice-versa. However, Hathaway (2018) reports that 
high-tech firms are overrepresented by a factor of four among high-growth firms (21% vs. 5% of all firms) as 
defined by Inc. Magazine’s annual list of the 5,000 fastest-growing privately held firms in the U.S. 
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Either way, the role of local, skilled talent in fueling high-growth entrepreneurship may not be as great as 

typically thought, and correlations may reflect other, unobserved factors. 

To our knowledge, a causal link has not been established between the supply of key technical talent—

including the sort of scientists and engineers who come up with original inventions—and the founding of 

high-growth ventures.2 This is not to say that the entrepreneurial literature has not wrestled with the role of 

talent, but it has done so primarily in the realm of executive leadership. For example, Kaplan et al (2009) 

suggest that most successful startups remain true to their original business plan, upgrading executive as 

they move towards IPO. Ewens and Marx (2017) add causal evidence that startups depend on human capital 

in the executive suite, instrumenting investors’ ability to replace the founder with a seasoned CEO via state-

level shifts in policies regarding employee non-compete agreements. Again, these articles focus on the 

“upper echelons” of organizations, ignoring the vast majority of (potential) employees at new ventures.  

Our aim is to test whether the local supply of inventors is a critical determinant of high-growth 

entrepreneurship. We establish that the arrival of inventors in a region drives the founding of startups that 

grow and become successful, addressing reverse-causality concerns by instrumenting inventor inflows with 

the share of inventors’ surnames in that region based on the nationwide distribution of surnames from the 

1940 U.S. Census. Our shift-share instrument represents an advance over prior efforts in two ways. First, 

because the “shares” stem from more than three million unique surnames across a large number of counties, 

it is less vulnerable to critiques that apply to such instruments with low variation or a few highly-

determinative shares (see Borusayak et al, 2019 for a fuller discussion of the issue). Second, focusing on 

the U.S. lessens concerns regarding endogenous origin-destination combinations (e.g., Indian engineers 

migrating to Silicon Valley) and addreses the issue of potential endogenous choice of regions and selection 

of incoming inventors at the nation level (Moser, Voena, Waldinger 2014; Parey et al., 2017). 

We first establish that the local share of surnames matching a given inventor strongly predicts 

immigration into a county. We then aggregate moves to create a county-wide average likelihood of arrival 

for inventors with a given surname. Application of the instrument indicates that the arrival of 55 inventors 

results in one new high-growth startup on average. In California and Massachusetts, only 29 inventors are 

required to achieve a similar effect. A back-of-the-envelope calculation suggests that incoming inventors 

                                                   

2 Related to this paper, several studies have addressed the role of local inventors in regional productivity. For example, Agrawal, 
et al. (2011) show that inventor emigration decreases local knowledge flow in the source region but also drives knowledge back 
into the departed region. A growing and influential literature on foreign immigration suggests positive impacts on the U.S. of an 
influx of inventors from outside its borders, including greater patenting and innovation (Bernstein et. al., 2018; Hunt and Gauthier-
Loiselle 2010; Moretti et al. 2018; Burchardi et. al. 2020; Kerr and Lincoln 2010), wages (Peri, Shih, and Sparber 2015) and TFP 
(Capelli, Czarnitzki, Doherr, Montobbio 2019). Our study differs from these in that we study internal migration within the U.S. 
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may explain 24.9% of high-growth startups. Results remain robust to a variety of different models, 

instruments, and measures, and even to the inclusion of inventor immigration to surrounding counties, 

which has a negative effect on entrepreneurship in the focal county.  

 

Data description 

Historic Census data 

The central challenge in determining the causal effect of inventor mobility upon regional outcomes is to 

disentangle the choice to move from the reasons to move. Ideally, we would observe inventors moving for 

reasons completely unrelated to career opportunities. To approximate this as best as possible, we seek to 

instrument an inventor’s move to a county in which they had not previously patented. We build a variety of 

instruments based on 1940 Census Data (http://sites.mnhs.org/library/content/1940-census), first 

establishing the plausibility of the instrument at the individual inventor level and then aggregating to 

develop a county-level instrument. 

We begin with the 1940 U.S. Census records for 131,940,709 citizens in 38,382,088 households. These data 

include 3,363,932 different surnames, of which 27% appear only once. (The median is 3, the mean is 39, 

and the maximum is 1,359,079 for Smith.) Figures 1 and 2 illustrate the sparse geographical distributions of 

“Marx” and “Fleming”. After some name cleaning and standardizing procedures, described in detail in 

Appendix A1, there were 42,268 Flemings, 6,232 Marxes, 153 Shins, and 9 Balsmeiers in the 1940 census 

data. All analyses are robust to excluding prolific surnames as indicated by high (local) frequency or wealth. 

The 1940 U.S. Census records cover 3,086 counties.3 

                                                   

3 The 1940 U.S. Census records consist of 3097 counties and other districts based on the county system in 1940. In 
order to help matching with the location information of inventors, we translate 19 counties or districts, which are old 
and no longer in use, to a corresponding county in the current county system based on the location, resulting in 3086 
unique counties. 
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Figure 1: Spatial distribution of the surname “Marx” in 1940 (each red dot corresponds to 50 
individuals, 4,762 in total). 

 

 

Figure 2: Spatial distribution of the surname “Fleming” in 1940 (each red dot corresponds to 50 
individuals, 42,268 in total). 

 

 

Inventor data 

We begin with raw data from the United States Patent and Trademark Office (USPTO) from 1976-2018. 

Although the USPTO lists inventors for every patent, it does not provide unique identifiers for them. For 

example, even the relatively rare name of Matthew Marx is listed as inventing many patents, including 

5,995,928, “Method and apparatus for continuous spelling speech recognition with early identification, 
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6,173,266, “System and method for developing interactive speech applications,” and 7,271,262, 

“Pyrrolopyrimidine derivatives.” In this simple example, it would seem reasonable based on the titles alone 

that the same inventor authored the first two but not the last patent, and that is indeed the case. Inventor 

names can be disambiguated with a variety of algorithms, here we use Balsmeier et al. (2017). After applying 

the name cleaning and standardizing procedures and the matching algorithm, described in detail in 

Appendix A1, we match 91.1% of inventors’ surname to a surname from the 1940 Census. Note that the 

name cleaning exercise has no significant effect on the size of the estimated coefficients but decreases 

matching errors and improves precision of the instrument. 

We used the inventor ID and location to identify inventor moves across US counties. We drop all inventors 

with a single patent. Then, using patent application year as a timestamp, we count an inward move in the 

first year we first observe an inventor in a county. As noted by Cheyre, Klepper, and Veloso (2015), patent 

application dates do not necessarily correspond with dates of employment and in particular may lag actual 

moves. Hence, the inventor may have moved into a county earlier than we detect, leading to a fuzzy lower 

bound of the actual lag between our variable of interest and the actual inward moves. In 96% of cases, we 

observe an incoming inventor patenting elsewhere up to 5 years earlier (mean = 2.6). Results are robust to 

excluding inventor moves with longer gaps between two patenting events, or temporary stops at a third 

county. If an inventor appears on two or more patents within a given year, we follow Moretti and Wilson 

(2017) and take the most frequent location. 

 

Entrepreneurship data 

To measure high-growth entrepreneurship, we rely primarily upon business registration data from 

Guzman and Stern (2019). Instead of examining selected samples such as Crunchbase or NETS, they collect 

annual state registers of all businesses founded. They link newly-founded businesses from these registers 

to SDC Platinum and report the number that experience a liquidity event (i.e., and Initial Public Offering 

or acquisition) within six years of founding. This forms our primary dependent variable. As a robustness 

check, we also use their measure of the number of local startups that are expected to experience high growth. 

Finally, as an alternative measure of high-growth potential we count the number of venture-financed 

startups in the region using VenturExpert. 

Table 1 shows descriptive statistics of our key variables at the county level and Figure 3 provides a 

scatterplot of the relationship between incoming inventors and high-growth startups in the raw data. 
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Table 1: descriptive statistics at county level 
 

Variable N mean median stdev min max 
Incoming Inventors  82,259 2.47 0.00 14.71 0.00 939.00 
Instrument  82,259 2.27 0.80 10.22 0.00 443.14 
Number of new high-growth startups 82,259 0.18 0.00 1.58 0.00 90.81 

Notes: This table reports summary statistics of the key variables used in our regression analyses at the county level, covering 3130 
counties 1988-2014. The number of high growth startups is not an integer value in some cases because they are measured by 
Guzman and Stern (2020) at the zip code level and split by an algorithm in case zip code areas overlap county borders.   

 

 

Figure 3 – Graphical representation of raw data 
 

Methodology and instrument construction  

Our goal is to estimate the causal impact of inventor inflows on high-growth entrepreneurship. We can 

write this in an equation that we can estimate with OLS:  

𝑌𝑌𝑑𝑑,𝑡𝑡+1 =  𝛼𝛼0 +  𝛽𝛽 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡 + 𝛿𝛿𝑡𝑡 + 𝛾𝛾𝑑𝑑 +  𝜀𝜀𝑑𝑑𝑑𝑑              (1) 

where 𝑌𝑌𝑑𝑑,𝑡𝑡+1 stands for a dependent variable observed for county d at time t+1. 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡 is the number of 

inventors that moved to county d in t. 𝛿𝛿𝑡𝑡  denotes a full set of year fixed effects to control for varying 

macroeconomic conditions. 𝛾𝛾𝑑𝑑   controls for time-invariant unobserved county characteristics that may 

confound our identification of 𝛽𝛽. 𝜀𝜀𝑑𝑑𝑑𝑑  is the error term. 

The key econometric challenge with equation (1) is that unobserved factors influence both the rate of 

incoming inventors and local economic conditions. Counties with a high innovation rate are attractive to 
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inventors. Although county fixed effects will effectively control for any persistent differences in innovation 

levels across counties, it is difficult to control for temporary local trends that might attract inventors. To 

address this threat to identification, we construct a shift-share instrument for inventor inflows that builds 

on the work of Bartik (1991) and its application to the case of international immigration to the US (Card, 

2001). Prior immigration studies noted that immigrants from a certain country of origin tend to locate near 

previous immigrants from the same origin country (Bartel, 1989, and Lalonde and Topel, 1991). Card (2001) 

and others (see Jaeger et al. 2018 for an overview) have exploited this to predict immigrant inflows into 

certain regions by interacting past shares of immigrants from an origin country in a given region with the 

contemporaneous inflow of migrants from the same country at the national level. 

We leverage this idea further to create an instrument for the contemporaneous inflow of US inventors to 

a certain county based on the spatial distribution of US surnames across counties in 1940. Analogous to the 

prior immigration literature, we utilize the observation that people with a certain family name can be found 

more frequently at places where there were other people with same name in the past (see Darlu, Brunet, 

and Barbero, 2011, for the example of Savoy, France and Clark & Cummins, 2014, for England). We illustrate 

below that these patterns hold for individual US inventors.  

Specifically, we define our instrument as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑� = ∑ 𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛1940𝑛𝑛  ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛          (2) 

where 𝑃𝑃𝑑𝑑𝑑𝑑1940 is the population of people in county d with surname n in 1940, 𝑃𝑃𝑛𝑛1940 is the number of people 

with surname n in the entire US in 1940 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛  is the number of inventors with surname n who move 

from any county in the US to any other county in the US in year t. The expected inflow of inventors 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑�  in 

county d at time t is thus the weighted sum of inventors that move across the US with surname n (the “shift”) 

with the historical distribution of the same family names (the “shares”) serving as weights. The intuitive 

appeal behind this instrument (as in prior immigration studies) is that it generates variation at the local level 

by exploiting variation at the national level, which is arguably not influenced by local conditions. (That is, 

the total number of inventors with the name Fleming who move from within entire US is unlikely to be 

driven by the local economic conditions of one out of the more than 3,000 U.S. counties.) 

One advantage of this instrument over prior shift-share instruments generally, and settlement instruments 

in particular, is the extensive amount of variation in the distribution of names (i.e., the “shares”) that stem 

from more than 3 million unique surnames in 1940 across varying destination and origin areas. (By contrast, 

immigration studies typically analyze 192 different countries, often with particularly influential origin-

destination relationships.) Our estimation should therefore be less vulnerable to problems that arise from 
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low variation in shares or overly strong influences of a single or few shares (see critiques in the recent 

literature, Borusyak et al., 2019, Goldsmith-Pinkham et al., 2020, or Adao et al. 2019).  

A second advantage of our U.S.-focused shift-share instrument is that a given surname is typically not 

bound to a specific county of origin (as is more common with country-level analysis, see Moser, Voena, 

Waldinger 2014; Parey et al., 2017). Thus the spatial distribution of origin of mobile inventors with a 

surname varies substantially over time (and is the only variation we exploit in our IV). This makes an 

endogenous origin-destination combination (such as Indian engineers coming into Silicon Valley for long 

periods of time) highly unlikely to drive our results.  Put differently, that mobile inventors with certain 

names come from various origin counties means that it is less likely that our “shift” is correlated with 

unobserved endogenous characteristics of origin areas. Our instrument thus minimizes serial correlation 

between specific origin and destination regions, as criticized in studies of international migration. 

Figures 4-6 illustrate the variation over time and space with the example of all inventors that moved 

across the US between 1976 to 2014 and have the last name Fleming (75 moves in total). Figure 2 shows 

how the number of mobile inventors with surname Fleming varies over time yet does not exhibit a trend. 

The heatmaps in Figure 3 show to which counties the Flemings moved to in the 1980s, 1990s, and 2000s, 

and the heatmaps in Figure 4 show the origin counties the Flemings moved away from in the 1980s, 1990s, 

and 2000s, illustrating significant variation in origin and destination counties over time. 
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Figure 4: Frequency of moving inventors within the US named Fleming over time 
  

 

 

Figure 5: Destination counties of moving inventors within the US named Fleming 
 

  

1980s 1990s 

2000s 
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Figure 6 - Origin counties of moving inventors within the US named Fleming 
 

A remaining concern could be that at least some national movements of inventors are still driven by 

local economic conditions, and that these might be correlated with past shocks. It could be, for instance, 

that inventors and families with the name Fleming were always interested in mechanical engineering and 

thus would have settled in areas where mechanical engineering was in high demand as of 1940. If the same 

area experiences a high demand in mechanical engineering today, then inventors with the name Fleming 

might more likely move to that region for endogenous reasons. To reduce endogeneity concerns in this 

respect, we augment our instrument by leaving out county d’s own inflows from the national flow of 

inventors with same surname. (Buchardi et al. 2020, Wozniak & Murray, 2012 and Hunt, 2017 use similar 

strategies in the immigration literature). Our preferred instrument is thus: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜� = ∑ 𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛1940𝑛𝑛  ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛,𝑑𝑑)      (3) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 ,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛,𝑑𝑑) is the total number of inventors with name n who move to counties outside of d. 

1980s 1990s 

2000s 
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The leave-out strategy ensures that the potentially-endogenous choice of Flemings to move to county d  

does not drive changes in our instrument.  

It should further be noted that both stages of our IV regression include county fixed effects. Identification 

thus derives from weighted time-varying changes in the number of moving inventors with a given surname 

at the national level, excluding those moving to county d, combined with representation of the same 

surname in county d in 1940. Since it is highly unlikely that the Flemings who move in year t are equally 

distributed across the country as the Flemings that move in year t+1 (as illustrated above), our instrument 

is also unlikely to suffer from any unobserved persistent endogenous relationship between any pair of 

counties (e.g. trade relationships or the oft-cited, persistent link between Indian software engineers and 

immigration from India to Silicon Valley). The considerable variation in the distribution of surnames over 

time also addresses the “persistence problem” with shift-share instruments in the immigration literature 

(Jaeger et al., 2018). Arguably, 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜  is truly exogenous and can be used to estimate the causal 

impact of inventor inflows on using equation (1), instrumenting 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑,𝑡𝑡 with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜  as in (3).  

 

First stage plausibility check - individual inventor level regressions 

Before applying our instrument at the county level, we establish its plausibility by investigating the 

linkage between the historical surname distribution and geographical mobility of individual inventors. 

Given widely accepted transmission rules (Piazza et al., 1987; Rossi, 2013) and diversity of surnames 

(3,363,932 unique surnames appear in 1940 US census data), demographics on surnames are adopted in a 

variety of studies, such as research on migration of people, social networks and mobility. Piazza et al. (1987) 

tracks migration rates using surname distribution in Italy. Degioanni and Darlu (2001) infer geographical 

origin of migrants in a given area using surnames. Darlu, Brunet, and Barbero (2011) show that surname 

distribution can be used to estimate mobility using the example of Savoy, France. Studies also use surnames 

to investigate social mobility, e.g., whether social status changes over centuries (Clark & Cummins, 2014) 

and whether wealth moves over generations (Clark & Cummins, 2015). In a recent study, Grilli and Allesina 

(2017) perform a surname analysis on academic professors to compare academic systems in the US, France, 

and Italy. Our first stage plausibility check contributes to this literature by exploiting the complete US 1940 

Census surname and location information, linking to the complete set of US patenting inventors.  

Our IV approach rests on the assumption that historic surname shares can discriminate between 
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destination counties of moving inventors with a given last name, conditional on moving.4 We empirically 

test this assumption by estimating a dyadic model that reflects the complete choice set a moving inventor 

is confronted with. To this end, we construct a dataset at the inventor-origin-destination county level that 

contains each potential destination county combined with the actual county a given inventor is emigrating 

from. We mark the county the inventor actually moved to with a dummy and for the actual and each potential 

destination county, include the share of people in the 1940 Census with the same surname. Armed with this 

dyadic dataset covering 258,657 moves from 1988-2014, we estimate the following model with OLS: 

𝑃𝑃𝑃𝑃(𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐#𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑜𝑜,𝑑𝑑,𝑡𝑡 = 1|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡) =  𝛼𝛼0 +  𝛽𝛽 ∙ (𝑃𝑃𝑑𝑑𝑑𝑑
1940

𝑃𝑃𝑛𝑛1940
) + 𝛿𝛿𝑡𝑡 + 𝛾𝛾𝑑𝑑 + 𝛾𝛾𝑜𝑜 +  𝜀𝜀𝑖𝑖,𝑑𝑑,𝑜𝑜,𝑡𝑡 (4) 

where 𝑃𝑃𝑃𝑃(𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐#𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛,𝑜𝑜,𝑑𝑑,𝑡𝑡 = 1|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡) is a dummy indicating the destination county (𝑑𝑑. 𝑐𝑐𝑐𝑐𝑐𝑐) a 

given inventor i with name n moved to from origin county 𝑜𝑜. 𝑐𝑐𝑐𝑐𝑐𝑐 in year t. 𝑃𝑃𝑑𝑑𝑑𝑑1940 is the population in county 

d with surname n in 1940; 𝑃𝑃𝑛𝑛1940 is the population with surname n in the entire U.S. in 1940; 𝛿𝛿𝑡𝑡 denotes a 

full set of year fixed effects to control for varying macroeconomic conditions; 𝛾𝛾𝑑𝑑  controls for time-invariant 

unobserved destination county characteristics; and 𝛾𝛾𝑜𝑜 controls for time-invariant unobserved origin county 

characteristics that may confound our identification of 𝛽𝛽, and 𝜀𝜀𝑖𝑖,𝑑𝑑,𝑜𝑜,𝑡𝑡 is the error term. We estimate four 

versions of equation (4): (a) only with year fixed effects; (b) year and destination-county fixed effects; (c) 

year and origin-county fixed effects; (d) year and destination-origin county combination fixed effects. 

Variant (d) absorbs time-invariant county-pair relationship characteristics including, for instance, the 

geographic distance between two counties. Table 2 presents the results. 

 

 

 

 

                                                   

4 Adding to the plausibility of our instrument, we also find that the historical share of the same surname in a given location is 
negatively associated with the inventor’s emigration from the location. This supports the argument that inventors are not only more 
likely to move to regions with a higher historic share of the same surname but also more likely to stay in a region in which more 
of their families and relatives have resided. Several additional analyses verify the robustness of the results and suggest conditions 
in which the historical surname effect is moderated. The surname effect is amplified as the average value of houses owned by 
individuals with the same surname in the county increases, as the foreign-born ratio of individuals with the same surname in the 
county decreases, or when the inventor resides in a state that enforces non-compete agreements. We find no evidence that the 
surname effect is susceptible to invention-related inventor characteristics, such as invention productivity, quality, or years of 
experience as an inventor. 
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Table 2 – Destination county choice 
 

 origin-destination county move 
  a b c d 
Destination county 0.044*** 0.021*** 0.044*** 0.013*** 
Historic surname fraction (0.006) (0.002) (0.006) (0.001) 

N  524,583,139 524,583,139 524,583,139 523,553,217 
Year FEs Yes Yes Yes Yes 
Destination county FEs No Yes No No 
Origin county FEs No No Yes No 
Origin-destination county FEs No No No Yes 
R2 0.000 0.008 0.000 0.061 

Notes: This table presents OLS regressions of a dummy indicating a origin-destination county move of 
an inventor within the period 1980 to 2015 on destination counties’ historic surname shares in 1940. Unit 
of observation is the origin-destination county dyad. Standard errors clustered at the destination county 
appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 

 

Although we cannot interpret our LPM specification as a probability model, all specifications consistently 

show that an increase in the historic surname share in a potential destination county leads to a significantly 

higher probability of observing a given inventor moving to that specific destination county as compared 

to all other potential destination choices. The results in Table 2 support the plausibility of our instrument. 

(Since the dependent variable vector is sparse a low R2 is to be expected.) The increase in explained 

variation when destination and destination-origin county fixed effects are included reinforces that 

unobserved time invariant factors explain mobility decisions. 

 

The impact of incoming inventors on regional entrepreneurship 

We now move to our IV regression analysis to the county level, where the dependent variable is a (logged) 

measure of the number of high-growth startups founded in county d during year t. “High-growth” is 

determined retrospectively as the number of firms founded in year t+1 that achieved an IPO or successful 

acquisition within 6 years after founding.  Results are in Table 3. Model (a) estimates equation (1) via OLS 

and without the instrument. Model (b) re-estimates model (a) using the instrument from (3). Models (c) and 

(d) and state-year and then county fixed effects. Finally, in model (e) we re-estimate (d) but exclude 

California and Massachusetts. 
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Table 3 – Impact of incoming inventors on local high growth startup foundation 
 

 High-growth startups founded  
  a b c d e 
 OLS IV IV IV IV (w/o CA, MA) 
Incoming Inventorst-1 0.188*** 0.377*** 0.380*** 0.248*** 0.232*** 

  (0.015) (0.027) (0.027) (0.043) (0.043) 
N 82,259 82,259 82,259 82,259 80,330 
First Stage F  400.2 387.8 115.5 107.2 
Year FE Yes Yes No No No 
State FE Yes Yes No No No 
State-Year FE No No Yes Yes Yes 
County FE No No No Yes Yes 
R2 0.341     

Notes: This table presents OLS regression of log(number of high growth startup foundation + 1), where high growth 
startups are defined following Guzman and Stern (2020) as newly registered companies that complete either an IPO 
or successful acquisition within 6 years. Incoming inventors as well as the instrument are log-transformed. 
Specifications (b)-(e) show results of our IV regression as described above, where incoming inventors are 
instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 in the first stage. First stage F is the Kleibergen-Paap Wald F statistic of the first 
stage regression. Model e excludes all counties of California and Massachusetts. Standard errors clustered at the 
county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 

 

We begin in model (a) of Table 3 by correlating of the number of incoming inventors in a county with the 

count of high-growth startups founded the following year. Consistent with Glaeser & Kerr (2009), we 

observe a strong relationship between the supply of relevant talent and entrepreneurial activity, as shown 

by the positive and statistically significant estimated coefficient on Incoming Inventors. The remaining 

models (b-e) employ our IV approach, all showing a significant positive impact of incoming inventors in a 

given county on the local rate of high growth startup formations. The strength of the instrument and the 

coefficient size drops after the inclusion of county fixed effects, however, the first stage F value is still far 

above conventional levels, suggesting that our IV regression does not suffer from weak instrument biases.  

Under the assumption that a log specification can be interpreted as an elasticity, model (d) suggests that 

a 10% increase in the rate of incoming inventors increases the rate of high growth startup foundations by 

2.48% against the mean. Translating the relative increases into absolute numbers suggests that 10 more 

inventors lead to 0.181 more startups. Put differently, a county can expect one additional high growth startup 

per 55 incoming inventors. It should be noted though that the distribution of incoming inventors, as well as 

the number of high-growth startups founded in a county, is highly skewed. Hence, mean values are not 

representative. The log transformation addresses skewness, but caution is warranted when calculating 

elasticities in absolute terms. Taking, for instance, the higher averages of incoming inventors (27.79) and 

growth events (2.96) of California and Massachusetts counties as the benchmark, we approach an elasticity 

of 1 additional high growth startup per 29 incoming inventors. The figure is even higher if we restrict the 

sample to California and Massachusetts (see Appendix Table A1), as we find not only a higher mean value 
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but also a higher estimated coefficient (β=0.325).  

Taking our full sample estimates and summary statistics as a baseline, a back-of-the-envelope calculation 

suggests that incoming inventors may explain 24.9% of all high growth startups. We took all observed high 

growth startups in the sample (14,783) and the total number of incoming inventor events (202,911). Given 

the 55:1 elasticity we would expect a total of 202,911/55 = 3,689 new startups from all incoming inventors, 

which represents 24.9% of high-growth startups in the sample. 

 

Robustness checks 

Alternative instrument constructions 

Although the validity of shift-share instruments does not require exogeneity of the shares, and 

although concerns should be lessened by the inclusion of county fixed effects, we nonetheless estimate 

robustness checks that should further alleviate concerns of potentially-endogenous share characteristics. To 

this end, we re-estimate model (d) of Table 3, replacing the instrument with alternative calculations of the 

historic name shares (while still applying our leave out strategy).  

For the first alternative instrument, we consider only people in US 1940 Census that lived in a given 

county before 1935. We thus effectively enlarge the gap between the shares and the actual moves of inventors 

and reduce potential correlation between historic and current inventor migration shocks. Second, we 

exclude the 50 surnames that appear most frequently in the historic data, which should reduce concerns that 

correlated shares of two counties may lead to an over-rejection problem (as shown by Adao et al., 2019). In 

our third construction, we exclude wealthy families of each county as inventors may benefit even 

generations later from their ancestors’ wealth. Using the historic house value in the 1940 Census, we 

excluded families holding more than 1% of the total house value of a given county. 

Our fourth construction departs from the shift-share approach, instead calculating the inventor’s 

separation from his or her surname’s historic geographic centroid. We use the inverse squared geographic 

distance between each county centroid and the geographic centroid for an inventor’s surname as weights 

when constructing the instrument. The distance between a county’s centroid and a surname’s historic 

geographic centroid has the advantage of a very low correlation with any future county or inventor specific 

characteristics.5 Table 4 shows the results for these alternative instruments. 

                                                   

5  A limitation of this fourth instrument construction is that some surname are clustered in multiple geographic 
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Table 4 – Alternative instruments 
 

 High-growth startups founded  
  a b c d 
 IV IV IV IV 
Incoming Inventorst-1 0.255*** 0.248*** 0.253*** 0.261** 
  (0.047) (0.043) (0.044) (0.113) 
N 82,259 82,259 82,259 82,259 
First Stage F 101.1 115.5 116.7 25.56 
State-Year FE Yes Yes Yes Yes 
County FE Yes Yes Yes Yes 
Notes: This table presents OLS regression of log (number of high-growth startups founded 
+ 1), where high-growth startups are defined following Guzman and Stern (2020) as newly 
registered companies that complete either an IPO or successful acquisition within 6 years. 
Incoming inventors as well as the instrument are log-transformed. Model (a) restricts the 
instrument to those who settled in the county of the 1940 Census by 1935; (b) excludes 
excludes the 50 most frequent surnames; (c) excludes the wealthiest 1% of surnames per 
1940 Census house value; (d) replaces the shift-share approach with the inverse squared 
geographic distance between the county and the centroid for the inventor’s surname. First 
stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors 
clustered at the county level appear in parentheses. ***, ** and * indicate a significance 
level of 1%, 5%, and 10%, respectively. 

 

The coefficient sizes remain robust across different specifications, although the strength of the instrument 

declines in models (a) and (d) compared to our original instrument. Especially with respect to our centroid-

distance instrument, this is not surprising. That the instrument strength and coefficient size does not decline 

greatly when excluding particularly influential families supports the assumption that either 1) there is no 

direct link between the historic name shares and the second stage regression, or 2) the county fixed effects 

effectively absorb such potentially worrying relationships.     

 

Alternative dependent variables 

We further verify the robustness of our results by testing two alternative dependent variables. First, we 

replicate the results of Table 4 by replacing the count of startups that achieved a liquidity even with Guzman 

& Stern’s (2020) projection of the number of startups in a county that are expected to do so (whether or not 

they actually did). Their Regional Entrepreneurship Cohort Potential Index is an aggregation of several 

startup characteristics including high tech industry classification (Biotech, IT, E-Commerce, Medical and 

                                                   

regions. Thus, even if there is one largest centroid, we will calculate distance from it even if a somewhat smaller but 
much-closer aggregation exists. The share-of-surnames instrument does not suffer from this limitation. 
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Semiconductors), trademark registration, incorporation in Delaware, having applied for a patent, and 

eponymy (Belenzon et al., 2017). The RECPI has the advantage of more broadly reflecting a county’s startup 

quality. It will thus not only capture startups that actually achieve high growth within 6 years but also those 

that did not achieve a liquidity event, or that took longer to do so.6 Table 5 shows similar findings when 

using this dependent variable.  

 
Table 5 – Impact of incoming inventors on regional entrepreneurship potential 

 
 Regional Entrepreneurship Cohort Potential Index 
  a b c d e 
 OLS IV IV IV IV (w/o CA, MA) 
Incoming Inventorst-1 0.203*** 0.410*** 0.412*** 0.475*** 0.435*** 
  (0.013) (0.027) (0.027) (0.039) (0.042) 

N 82,259 82,259 82,259 82,259 80,330 
First stage F  400.2 387.8 115.5 107.2 
Year FE Yes Yes No No No 
State FE Yes Yes No No No 
State-Year FE No No Yes Yes Yes 
County FE No No No Yes Yes 
R2 0.517     
Notes: This table presents OLS regression of log(RECPI + 1), where RECPI is the Regional Entrepreneurship 
Cohort Potential Index as defined and calculated by Guzman and Stern (2020). Incoming inventors as well as the 
instrument are log-transformed. Specifications b to e represent results of our IV regression as described above, 
where Incoming Inventors are instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 in the first stage. First stage F is the Kleibergen-Paap 
Wald F statistic of the first stage regression. Model e excludes all counties of California and Massachusetts. 
Standard errors clustered at the county level appear in parentheses. ***, ** and * indicate a significance level of 
1%, 5%, and 10%, respectively. 

 

One concern with using RECPI in this context is that one of the variables used in its construction is 

whether the startup had a patent upon being incorporated. This might be problematic, as we use patent data 

to observe mobility. Thus as a second robustness check we re-estimate our baseline models using the count 

of startups in county d during year t that eventually received venture capital financing. This variable is 

calculated using VenturExpert, a dataset of venture-backed companies, covering 1980 -2010.  The results of 

Table 6 are consistent with Tables 3-5. 

 

 

                                                   

6 Guzman and Stern (2020) and Andrews et al. (2019) show that the RECPI accurately reflects a region’s startup 
potential and that it is not dependent on modelling choice (results below are based on their so called ‘academic’ 
approach which takes twelve startup characteristics into account and are robust to using their less sophisticated but 
easier to calculate ‘policy’ approach). The correlation of the log transformed variables is r=0.839.  
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Table 6 – Impact of incoming inventors on local venture backed startups 
 

 Venture-backed companies founded 
  a b c d e 
 OLS IV IV IV IV (No CA, MA) 
Incoming Inventorst-1 0.299*** 0.592*** 0.607*** 0.154*** 0.123*** 
  (0.020) (0.036) (0.037) (0.034) (0.031) 
N 97,247 97,247 97,247 97,247 95,015 
First stage F  388.9 366.4 240.9 221.1 
Year FE Yes Yes No No No 
State FE Yes Yes No No No 
State-Year FE No No Yes Yes Yes 
County FE No No No Yes Yes 
R2 0.341     

Notes: This table presents OLS regression of log (number of venture-backed startups + 1) from VentureExpert. 
Incoming inventors as well as the instrument are log-transformed. Specifications (b)-(e) show results of our IV 
regression as described above, where incoming inventors are instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 in the first stage. First 
stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. Model e excludes all counties of 
California and Massachusetts. Standard errors clustered at the county level appear in parentheses. ***, ** and * 

indicate a significance level of 1%, 5%, and 10%, respectively. 

 

 

Spillover vs. displacement effects  

Locally increased entrepreneurial activity spurred by incoming inventors might imply a positive impact 

of inventor mobility on aggregated entrepreneurship for the country as a whole. Our regressions, however, 

do not account for potential spillovers to neighboring counties, and internal migration is a zero-sum game. 

Regional spillovers could be positive if incoming inventors’ entrepreneurial activities are not bound to 

county borders—i.e., at least some inventors are involved with new ventures in counties other than where 

they live. Alternatively, incoming inventors may displace entrepreneurial activity in nearby counties if 

startups in proximate counties compete for resources. Given that venture capitalists prefer to invest locally 

(Stuart & Sorenson, 2003; Bernstein, Giroud, & Townsend, 2016), a surge of high-growth new ventures 

following an influx of inventors may crowd out funding possibilities for companies in neighboring counties. 

We address the possibility of negative spillovers by adding the spatially surrounding counties’ incoming 

inventors to our baseline regressions. Motivated by Moretti and Wilson (2014) and Agrawal et al., (2017) 

we weigh the number of incoming inventors in surrounding counties by the inverse distance between the 

focal county’s i geographic centroid and each surrounding county’s j geographic centroid:  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡 =  ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗≠𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗,𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑡𝑡         (5) 

where 𝑤𝑤𝑖𝑖𝑖𝑖   represents the inverse distance between each county pair i and j and 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗,𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡 is the number of incoming inventors into county j excluding 

those that come from i.  

We generate three spatial lags—incoming inventors from counties within a distance of 50 miles, 70 miles 

and 100 miles of the focal county—and add this variable to our baseline model estimated above. We 

construct the corresponding instrument for equation (5) using the same weights 𝑤𝑤𝑖𝑖𝑖𝑖  combined with our 

instrument defined in (2). To avoid the confounding influences of inventors moving from the surrounding 

regions, we deviate from our baseline model by excluding inventors moving in from surrounding counties 

j when measuring the number of incoming inventors into i (within 50, 70, and 100 miles respectively). Our 

spillover regressions thus also address the question to which degree our baseline estimates reflect effects of 

short distance moves within broader regions.  

All models of Table 7 indicate that inventors moving into surrounding counties lead to a displacement 

effect, (i.e. fewer high-growth startups in the focal county), as shown by the negative and statistically-

significant estimated coefficients for the SpatialInventors covariates at various distances. Accounting for 

spatial correlations and disentangling the mechanisms of this effect is beyond the scope of this paper but 

unsurprising given localized knowledge spillovers (Jaffe, Tratenberg, & Henderson, 1993, Singh & Marx, 

2013; Balsmeier et al. 2020). Also consistent with localized knowledge flows and agglomerative forces, we 

find that the displacement effect is decreasing in the distance between the focal and neighboring counties. 

It is important to note that accounting for the displacement effect of inventors arriving in neighboring 

counties does little to disturb the main findings of Tables 3-6. Excluding inventors coming in from 

surrounding counties still leads to declining effect sizes with increasing distance, though the effects remain 

economically and statistically significant, suggesting that the main impact comes from inventors moving in 

from counties farther away than 100 miles. The results also cannot be explained by short distance moves 

within broader regions.  Although it is impossible to derive an estimate of the impact of inventor mobility 

on an aggregated and national level entrepreneurship without a structural model, our regressions suggest 

that displacement effects may play a crucial role in such calculations. 
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Table 7 – Impact of local and spatially proximate incoming inventors on local high growth startup 
foundation 

 
 High-growth startups founded 
  a b c 
 IV IV IV 
Incoming Inventorst-1, ex 50 miles 0.330***   
  (0.076)   
SpatialInventorst-1, 50 miles -0.162**   
 (0.069)   
Incoming Inventorst-1, ex 70 miles  0.312***  
  (0.066)  
SpatialInventorst-1, 70 miles  -0.118**  
  (0.048)  
Incoming Inventorst-1, ex 100 miles   0.297*** 
   (0.062) 
SpatialInventorst-1, 100 miles   -0.088** 
   (0.038) 
N 82,259 82,259 82,259 
First Stage F   
   Incoming Inventorst-1, ex X miles 

52.22 61.31 66.60 

First Stage F 
   SpatialInventorst-1, X miles 

51.80 63.39 72.30 

State-Year FE Yes Yes Yes 
County FE Yes Yes Yes 
Notes: This table presents OLS regression of log(number of high growth startup 
foundation + 1), where high growth startups are defined following Guzman and Stern 
(2020) as newly registered companies that complete either an IPO or successful 
acquisition within 6 years. Incoming Inventors, Spatial Inventors as well as the 
corresponding instruments are log-transformed. First stage Fs are Sanderson-
Windmeijer multivariate F test statistics of the first stage regressions where the linear 
projection of the other endogenous regressor is partialled out. Standard errors 
clustered at the county level appear in parentheses. ***, ** and * indicate a 
significance level of 1%, 5%, and 10%, respectively. 

 

Discussion 

The importance of scientists and inventors to positive economic and societal outcomes has been 

recognized since at least Vannevar Bush in 1945. We explicitly linked one mechanism for that positive 

relationship, tying scientists and inventors to entrepreneurship, which in turn has been shown to lead to 

other desirable outcomes, such as future employment growth (Glaeser, Kerr, and Kerr 2015). Bringing 

evidence to the argument, this work estimates the benefits of inventors to high-growth regional 

entrepreneurship. Geography in this respect is just an instrument to get at that estimate, however, it allowed 

us to back out an estimate that the arrival of 55 inventors to a county increased entrepreneurship in that 

county by one firm, on average. 
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While the work remains preliminary and premature for policy recommendations, it would seem that 

regions should seek to bolster their STEM workforces. Given that many children demonstrate the capability 

to become inventors at an early age, and yet many do not, would appear to offer a straightforward (though 

certainly not inexpensive) path to increasing entrepreneurship, through early STEM education (Bell et. al. 

2019). While this work used immigration to back out the value of an inventor, it would seem reasonable that 

a home grown inventor might be just as useful to local entrepreneurship. Indeed, if a home grown inventor 

had easier access to existing networks of friends, family, investors, and fellow entrepreneurs, they might be 

even more effective at starting high tech firms. It would also be interesting to understand if immigration 

crowds out – or complements -- locally grown inventors. 

Taking our full sample estimates and summary statistics as the baseline for a back-of-the-envelope 

calculation of the relative importance of inventors suggests that incoming inventors can explain 24.9% of 

all high growth startups. This estimate is preliminary and does not include home grown inventor 

contributions, scientists who do not patent, or the negative effects on surrounding counties. If this estimate 

holds, however, it would indicate that inventors and technical professionals create a very substantial part of 

high growth entrepreneurship.  

Caveats notwithstanding, we connect the current results with prior work on research on competition 

covenants. Strengthening of non-compete policies has been shown to precede inventor emigration (Marx, 

Singh, and Fleming, 2015). While policy makers might hope to encourage regional investment in research 

with stronger non-competes, because such policies make it more difficult for an engineer to leave for a local 

competitor, such policies might also dampen local entrepreneurship (startups are also typically covered by 

non-competes). Emigration to entrepreneurial opportunities might be one cause of the historically observed 

shift of inventors, especially the most highly cited and most collaborative, from states which enforce non-

competes to those that do not (Marx and Fleming 2012). 

There are some obviously immediate directions for the current work. While this paper established a 

baseline for all inventors, it would be straightforward to investigate the impact of a variety of characteristics 

on entrepreneurship, such as highly cited or collaborative inventors, inventors in different fields, inventors 

who rely upon or publish in the scientific literature, those whose professional history is in large firms, small 

firms, startups, or academia, or those who have been supported by Federal research. Individual level 

analyses could also be productive, for example, if one can instrument away the technology motivation for 

moving towards or away from similar inventors, then what is the productivity and career impact of moving 

towards or away from the center of technology in an inventor’s field? Furthermore, what is the impact of 

more diverse inventors on a region’s innovation and productivity? Does the region become more creative 

with increasing diversity, or does it become less productive? Are there time lags as inventors learn new 
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fields and develop new collaborative relationships? The methods here might also be applied to scientists, 

though the lack of widely available and robust disambiguation of the science bibliometric databases 

presents a sobering barrier to easy progress. Inventors and scientists may also have other positive impacts 

on a regional economy, for example, by increasing productivity and decreasing unemployment. 

 

Conclusion 

Has Silicon Valley become the world’s hub of entrepreneurship due in part to its supply of inventive 

human capital, or has the region simply acted as a “magnet” to attract scientists and inventors to its former 

orchards? Should would-be entrepreneurs locate in a region with a vibrant supply of creatives and inventors 

(Florida, 1995), or should founders focus on finding sufficient financial capital to outsource and/or in-

license innovative resources? Ought policymakers—especially those in areas without a strong record of 

entrepreneurship—prioritize science parks and accelerators, or might their efforts be productively 

redirected toward attracting and retaining skilled human capital locally? 

Our results suggest that the local availability of skilled human capital is a critical determinant of high-

growth entrepreneurship. Our shift-share instrument, based on the county-level distribution of surnames in 

the 1940 census, overcomes limitations of prior approaches, enabling us to provide estimates of the impact 

of a marginal inventor on entrepreneurial activity. We find that in some regions, an increase of only 29 

inventors predicts one additional high-growth startup in a county. We also find that immigration of inventors 

to surrounding counties has a negative and significant effect on entrepreneurship in the focal county.  

The mobility instrument developed here might also provide purchase into other questions on regional 

success, for example, how important is the agglomeration of inventors – is Silicon Valley exciting because 

it draws inventors, or because inventors moved there? We know that scientists and engineers tend to be in 

areas where there is more going on, but is that demand or supply? Surely they flock to opportunities, so it 

is hard to know which way the arrows point, or assuming they point in both directions, their net effect. The 

work underscores prior findings regarding the importance of labor mobility for entrepreneurship, for 

example by limiting the ability of firms to use employee non-compete agreements (Samila & Sorenson, 

2011). In short, both stocks and flows matter. 

  



24 
 

References 

Acemoglu, D., Akcigit, U., Alp, H., Bloom, N., Kerr, W. (2018). Innovation, Reallocation and 
Growth. American Economic Review 108(11), 3450-91 

Ackerberg, D. A., Caves, K., & Frazer, G. (2015). Identification properties of recent production 
function estimators. Econometrica, 83(6), 2411-2451. 

Adao, R., Kolesár, M. and Morales, E., 2019. Shift-share designs: Theory and inference. The 
Quarterly Journal of Economics, 134(4), pp.1949-2010. 

Agrawal, A. and Cockburn, I., 2003. The anchor tenant hypothesis: exploring the role of large, 
local, R&D-intensive firms in regional innovation systems. International journal of industrial 
organization, 21(9), pp.1227-1253. 

Agrawal, A., Galassso, A. and A. Oettl (2017). Roads to Innovation. Review of Economics and 
Statistics 99 (3), 417-434. 

Agrawal, A., Kapur, D., McHale, J. and Oettl, A., 2011. Brain drain or brain bank? The impact of 
skilled emigration on poor-country innovation. Journal of Urban Economics, 69(1), pp.43-55. 

Arrow, K.J. and Capron, W.M., 1959. Dynamic shortages and price rises: the engineer-scientist 
case. The Quarterly Journal of Economics, 73(2), pp.292-308. 

Balsmeier, B., Fierro, G., Li, G., Johnson, K., Kaulagi, A., O’Reagan, D., Yeh, W., Lueck, S., and 
L. Fleming (2017).  Machine learning and natural language processing applied to the patent corpus.  
Forthcoming, Journal of Economics and Management Strategy. 

Bartel, A.P., 1989. Where do the new US immigrants live? Journal of Labor Economics, 7(4), 
pp.371-391. 

Bartik, T.J., 1991. Who benefits from state and local economic development policies? 
Bell, A. and R. Chetty, X. Jaravel, N. Petkova, J. Van Reenen 2019. “Who Becomes an Inventor in 

America? The Importance of Exposure to Innovation.” The Quarterly Journal of Economics, Volume 
134, Issue 2, May 2019, Pages 647–713. 

Bernstein, S. and R. Diamond, T. McQuade, B. Pousada (2018). “The Contribution of High-Skilled 
Immigrants to Innovation in the United States, “ Working paper, Stanford University. 

Bernstein, S., Giroud, X., & Townsend, R. R. (2016). The impact of venture capital monitoring. 
The Journal of Finance, 71(4), 1591-1622. 

Borusyak, K., Hull, P. and Jaravel, X., 2018. Quasi-experimental shift-share research designs (No. 
w24997). National Bureau of Economic Research. 

Burchardi, K.B., Chaney, T., Hassan, T.A., Tarquinio, L. and Terry, S.J., 2020. Immigration, 
Innovation, and Growth (No. w27075). National Bureau of Economic Research. 

Cappelli, R., Czarnitzki, D., Doherr, T. and Montobbio, F., 2019. Inventor mobility and 
productivity in Italian regions. Regional Studies, 53(1), pp.43-54. 

Card, D., 2001. Immigrant inflows, native outflows, and the local labor market impacts of higher 
immigration. Journal of Labor Economics, 19(1), pp.22-64. 

Clark, G. and Cummins, N., 2015. Intergenerational wealth mobility in England, 1858–2012: 
surnames and social mobility. The Economic Journal, 125(582), pp.61-85. 

Cheyre, C., Klepper, S., & Veloso, F. (2015). Spinoffs and the mobility of US merchant 
semiconductor inventors. Management Science, 61(3), 487-506. 

Darlu, P., Brunet, G. and Barbero, D., 2011. Spatial and temporal analyses of surname distributions 
to estimate mobility and changes in historical demography: the example of Savoy (France) from the 
eighteenth to the twentieth century. In Navigating time and space in population studies (pp. 99-113). 
Springer, Dordrecht. 

Duranton, G. and Puga, D., 2001. Nursery cities: Urban diversity, process innovation, and the life 



25 
 

cycle of products. American Economic Review, 91(5), pp.1454-1477. 
Ewens, M. and Marx, M., 2018. Founder replacement and startup performance. The Review of 

Financial Studies, 31(4), pp.1532-1565. 
Florida, R., 2005. Cities and the creative class. Routledge. 
Glaeser, E.L. and Kerr, W.R., 2009. Local industrial conditions and entrepreneurship: how much 

of the spatial distribution can we explain?. Journal of Economics & Management Strategy, 18(3), 
pp.623-663. 

Glaeser, E.L. and Kerr, S., Kerr, W. 2015. Entrepreneurship and Urban Growth: An Empirical 
Assessment with Historical Mines. Review of Economics and Statistics. 97:2: 498-520. 

Grilli, L. and Murtinu, S., 2014. Government, venture capital and the growth of European high-
tech entrepreneurial firms. Research Policy, 43(9), pp.1523-1543. 

Guzman, J. and S. Stern, (2019).  “The State of American Entrepreneurship: New Estimates of the 
Quality and Quantity Of Entrepreneurship for 32 US States, 1988-2014,” NBER Working paper 
22095. 

Hathaway, I. (2018). “High-growth firms and cities in the US: an Analysis of the Inc. 5000.” 
Brookings Institution report. 

Hofstede, G., 2001. Culture's consequences: Comparing values, behaviors, institutions and 
organizations across nations. Sage publications. 

Hunt, J., 2017. The impact of immigration on the educational attainment of natives. Journal of 
Human Resources, 52(4), pp.1060-1118. 

Hunt, J. and Gauthier-Loiselle, M., 2010. How much does immigration boost innovation?. 
American Economic Journal: Macroeconomics, 2(2), pp.31-56. 

Jaffe, A.B., Trajtenberg, M. and Henderson, R., 1993. Geographic localization of knowledge 
spillovers as evidenced by patent citations. the Quarterly journal of Economics, 108(3), pp.577-598. 

Jaeger, D.A., Ruist, J. and Stuhler, J., 2018. Shift-share instruments and the impact of immigration 
(No. w24285). National Bureau of Economic Research. 

Jensen, Richard, and Marie Thursby. 2001. "Proofs and Prototypes for Sale: The Licensing of 
University Inventions." American Economic Review, 91 (1): 240-259. 

Kerr, W.R., 2013. US high-skilled immigration, innovation, and entrepreneurship: Empirical 
approaches and evidence (No. w19377). National Bureau of Economic Research. 

Kerr, W.R. and Lincoln, W.F., 2010. The supply side of innovation: H-1B visa reforms and US 
ethnic invention. Journal of Labor Economics, 28(3), pp.473-508. 

King, G., and Nielsen, R. (2017). Why Propensity Scores Should Not Be Used for Matching. 
Harvard Working Paper. 

Klepper, S., 2009. Spinoffs: A review and synthesis. European Management Review, 6(3), pp.159-
171. 

Kogan L., D. Papanikolaou, A. Seru and N. Stoffman (2017). Technological Innovation, Resource 
Allocation and Growth. Quarterly Journal of Economics, 132(2), 665–712. 

LaLonde, R.J. and Topel, R.H., 1991. Labor market adjustments to increased immigration. In 
Immigration, trade, and the labor market (pp. 167-199). University of Chicago Press. 

Lerner, J., 2012. Boulevard of broken dreams: why public efforts to boost entrepreneurship and 
venture capital have failed--and what to do about it. Princeton University Press. 

Lerner, J. and Seru, A., (2017). The Use and Misuse of Patent Data: Issues for Corporate Finance 
and Beyond, NBER Working Paper No. 24053. 

Maloney, W.F. and Valencia Caicedo, F., 2016. The persistence of (subnational) fortune. The 
Economic Journal, 126(598), pp.2363-2401. 



26 
 

M. Marx and J. Singh, L. Fleming, “Regional Disadvantage? Employee Non-compete Agreements 
and Brain Drain.” Research Policy 44 (2015) 941-955. 

Marx, M., and L. Fleming, 2012. “Noncompetes: Barriers to Exit and Entry?” National Bureau of 
Economic Research Innovation Policy and the Economy, eds. Stern and Lerner, 12: 39-64. 
University of Chicago Press. 

Marx, M. and Hsu, D.H., 2019. The Entrepreneurial Commercialization of Science: Evidence 
From 'Twin' Discoveries. Boston University Questrom School of Business Research Paper. 

Moretti, E. (2012). The New Geography of Jobs. Houghton Mifflin Harcourt, N. Y., N.Y. 
Moretti, E., Steinwender, C., and Van Reenen, J. (2016). The Intellectual Spoils of War? Defense 

R&D, Productivity and International Technology Spillovers, Working Paper. 
Moretti, E. and D. J. Wilson (2014). State incentives for innovation, star scientists and jobs: 
Evidence from biotech. Journal of Urban Economics 79, 20-38. 
Moser, P., A. Voena, and F. Waldinger. 2014. "German Jewish Émigrés and US Invention." 

American Economic Review, 104 (10): 3222-55. 
Parey, M., Ruhose, J., Netz, N., and F. Waldinger 2017. The selection of high-skilled emigrants. 

The Review of Economics and Statistics 99(5), pp. 776-792. 
Peri, G., Shih, K. and Sparber, C., 2015. STEM workers, H-1B visas, and productivity in US cities. 

Journal of Labor Economics, 33(S1), pp.S225-S255. 
Romer, P.M., 1990. Endogenous technological change. Journal of political Economy, 98(5, Part 2), 

pp.S71-S102. 
Rosenberg, N. and Nelson, R.R., 1994. American universities and technical advance in industry. 

Research policy, 23(3), pp.323-348. 
Rosenthal, S.S. and Strange, W.C., 2004. Evidence on the nature and sources of agglomeration 

economies. In Handbook of regional and urban economics (Vol. 4, pp. 2119-2171). Elsevier. 
Samila, S. and Sorenson, O., 2011. Venture capital, entrepreneurship, and economic growth. The 

Review of Economics and Statistics, 93(1), pp.338-349. 
Saxenian, A., 1996. Regional advantage. Harvard University Press. 
J. Singh and M. Marx. “Geographic Constraints on Knowledge Diffusion: Political Borders vs. 

Spatial Proximity.” Management Science 59(9):2056-2078 (2013). 
Stuart, T.E. and Ding, W.W., 2006. When do scientists become entrepreneurs? The social 

structural antecedents of commercial activity in the academic life sciences. American journal of 
sociology, 112(1), pp.97-144. 

Stuart, T., & Sorenson, O. (2003). The geography of opportunity: spatial heterogeneity in founding 
rates and the performance of biotechnology firms. Research policy, 32(2), 229-253. 

Toivanen, O., and Väänänen, L. (2016). Education and Invention. Review of Economics and 
Statistics, 98(2), 382 - 396. 

Waldinger, F. 2016. Bombs, Brains, and Science: The Role of Human and Physical Capital for the 
Production of Scientific Knowledge. The Review of Economics and Statistics 98(5), pp. 811-831. 

Wozniak, A. and Murray, T.J., 2012. Timing is everything: Short-run population impacts of 
immigration in US cities. Journal of Urban Economics, 72(1), pp.60-78. 

Zucker, L.G., Darby, M.R. and Brewer, M.B., 1994. Intellectual capital and the birth of US 
biotechnology enterprises (No. w4653). National Bureau of Economic Research. 
  



27 
 

Appendix A1: Matching between surnames in patent and Census data  

Matching surnames between Census and patent data required several steps. First, we cleaned the 
surnames in the inventor data and matched them with surnames in the census data. We converted all 
surnames to lower cases and deleted unnecessary punctuations and other noise in the surnames of the 
inventor data (e.g., ’ ”_ @ / & ; ? ` () # =, which were particularly important when they were the first or last 
character). We also removed suffixes and other extra words after commas (e.g., ‘Foster’, ‘Sr.’, ‘deceased’). 
This process enabled 43,592 additional matches for raw inventor surnames. Then, for surnames containing 
a dash or apostrophe, e.g., “O’Brien”, “Villa-Real”, we replaced the punctuation with choices of having a 
space or without a space, and collected matching candidates of each surname from the census data. If there 
existed both surname cases with a space and without a space, we set the algorithm to select the one with a 
higher frequency. There were a total of 396 surnames matched in this process (221 for surnames with a dash, 
175 for surnames with an apostrophe), for example: inventor surname “O’Brien” matched with census 
surname “Obrien”; inventor surname “Ben-Bassat” matched with census surname “Benbassat”. 

We tokenized the remaining surnames, i.e., split surnames with multiple words by spaces, and matched 
them with census surnames that contained all the tokens. To be conservative, we set the algorithm to collect 
surname candidates from the census data for only those surnames that contained all tokens as well as 
surnames with a string length shorter than the length of original inventor surname. After collecting matching 
candidates, we compared the text to the original inventor surname and selected the one with the highest 
similarity. For the similarity measurement, we used both Jaro Winkler and Damerau/Levenshtein similarity 
measurements. The value of a Damerau/Levenshtein similarity of 0.75 was used as a threshold to be 
considered as a matching candidate. Conditional on satisfying this threshold, the algorithm compared the 
census surname candidates using the Jaro Winkler similarity. If multiple candidates have the same Jaro 
Winkler similarity value, the algorithm compared Damerau/Levenshtein similarity values. If multiple 
candidates with the same similarity value still existed, our algorithm was set to choose one with a higher 
frequency in the census data. There were a total of 724 surnames matched in this procedure, for example, 
the surname “de la Merced” matches with census surname “Delamerced” (Jaro Winkler similarity: 0.96 / 
Damerau/Levenshtein: 0.83), and inventor surname “van de Vaart” matches with census surname “Vande 
vaart” (Jaro Winkler similarity: 0.96 / Damerau/Levenshtein: 0.92). In this case, there was also another 
census surname candidate “Vandervaart”, but it was not selected as it has a lower Jaro Winkler similarity 
value compared to “Vande vaart”. Inventor surname ‘van der Loo’ matched with census surname 
‘Vanderloo’ (Jaro Winkler similarity: 0.96 / Damerau/Levenshtein: 0.81). There was another census surname 
candidate ‘Vander loo’, but it was not selected as it had a lower Jaro Winkler similarity than ‘Vanderloo’. 
The ‘Vanderloof’, ‘Vanderlool’, ‘Vanderloon’, ‘Vanderloop’, ‘Vanderloot’ surnames were not considered as 
candidates as their Damerau/Levenshtein similarity values failed to exceed the threshold of 0.75. 

Finally, we matched multi-word census surnames to inventor surnames that failed to match in the prior 
procedures. After splitting the surnames by spaces, we set the algorithm to find inventor surname candidates 
that contained every tokenized word of the census surname. Then, applying the same similarity indexes and 
processes described above, the algorithm found a final match between a census surname and an inventor 
surname. There were a total of 716 inventor surnames matched through this step, including, for example, 
“Von Doenhoff” matched with inventor surname “Vondoenhoff” (Jaro Winkler similarity: 0.98 / Damerau 
levenshtein: 0.92), and census surname “Mc Ellistrem” matched with inventor surname “Mcellistrem” (Jaro 
Winkler similarity: 0.98 / Damerau levenshtein: 0.92). As a result of the entire matching processes described 
above, a total of 275,849 out of 374,988 unique surnames of inventors (73.6%) found a match in the census 
surname. Compared to the matching without these whole processes, which found 230,421 census surname 
matches out of 374,988 unique inventor surname raw strings (61.4%), our algorithm added 12.2% of 
matches. In our data sample specifically, out of 769,625 unique inventors that applied for at least one patent 
in US, 701,215 inventors (91.1%) matched their surname to the 1940 Census data.  
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Table A1 – Impact of incoming inventors on local high growth startup foundation in California and 

Massachusetts 
 

 High-growth startups founded  
  a b c d 
 OLS IV IV IV 
Incoming Inventorst-1 0.493*** 0.569*** 0.569*** 0.325** 

  (0.045) (0.059) (0.059) (0.136) 
N 1,929 1,929 1,929 1,929 
First Stage F  117.3 115.6 16.24 
Year FE Yes Yes No No 
State FE Yes Yes No No 
State-Year FE No No Yes Yes 
County FE No No No Yes 
R2 0.677    
Notes: This table presents OLS regression of log(number of high growth startup foundation 
+ 1), where high growth startups are defined following Guzman and Stern (2020) as newly 
registered companies that complete either an IPO or successful acquisition within 6 years. 
Incoming inventors as well as the instrument are log-transformed. Specifications (b)-(d) 
show results of our IV regression as described above, where incoming inventors are 
instrumented with 𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑜𝑜𝑜𝑜𝑜𝑜 in the first stage. First stage F is the Kleibergen-Paap Wald 
F statistic of the first stage regression. Model e excludes all counties of California and 
Massachusetts. Standard errors clustered at the county level appear in parentheses. ***, ** 
and * indicate a significance level of 1%, 5%, and 10%, respectively. 

 


	Introduction
	Data description
	Historic Census data
	Inventor data
	Entrepreneurship data
	Methodology and instrument construction
	First stage plausibility check - individual inventor level regressions

	The impact of incoming inventors on regional entrepreneurship
	Robustness checks
	Alternative instrument constructions
	Alternative dependent variables

	Spillover vs. displacement effects
	Discussion
	References
	Appendix A1: Matching between surnames in patent and Census data



