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towards personal automobiles. Similar COVID-19 prevention behaviors in regions or countries 
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1. Introduction

In order to reduce the spread of COVID-19 many countries have implemented

significant restrictions on business operations and the mobility of consumers (Cheng 

et al., 2020).1 For example, stay-at-home orders and social distancing reduce travel 

and limit the ability of individuals to work and shop. The closure of restaurants, retail 

establishments, and non-essential businesses likewise limit movement and reduce 

economic output. There is significant interest in determining how these unprecedented 

restrictions have affected air quality, as the associated findings have important 

implications for public health and environmental policy. 

 For many years, researchers have sought to determine how both transportation 

and industrial activity affect air quality. This is particularly true in cities, where 

emissions from internal combustion engines constitute the primary source of air 

pollution (EU Science Hub, 2015). COVID-19 restrictions serve as a natural 

experiment allowing researchers to link changes in air pollution to reductions in 

automobile use, and formulate transportation and urban mobility policies to improve 

air quality (Baldasano, 2020). 

 Measurements of pollution reduction from restrictions are also important to the 

evaluation of mobility limits and other policies intended to stop the spread of COVID-

19. Several recent studies have shown that short-term exposure to high levels of air

pollution is associated with higher COVID-19 mortality (e.g., Persico and Johnson, 

2020; Isphording and Pestel, 2020). If restrictions are effective in reducing air 

pollution they have the potential to not only directly reduce the likelihood of 

infection, but indirectly reduce the severity of COVID-19 infections.2 

1 Cheng et al. (2020) provides a comprehensive review of the policies implemented in different 
countries to combat COVID-19.
2 Isphording and Pestel (2020) cites literature demonstrating that short-term pollution exposure 
increases the inflammatory response to viruses and lowers the body’s immune response.   
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 Finally, measurements of the reduction in air pollution from COVID-19 and 

associated mitigation strategies are important to the pursuit of the dual public health 

goals of reducing morbidity and mortality from both viruses and modifiable 

environmental factors. Between December 30, 2019 and July 8, 2020 there have been 

545,728 (recorded) COVID-19 deaths worldwide, with annual deaths on pace to be 

roughly double this number (JHU CSSE, 2020). In comparison, outdoor air pollution 

causes approximately 3.4 million death per year (Ritchie and Roser, 2019). Therefore, 

both COVID-19 and air pollution represent significant threats to global health, and it 

is important to monitor the effects of both simultaneously so that policies designed to 

mitigate one threat do not worsen the other. For example, there is concern that 

rollbacks of environmental regulations intended to lesser the economic effects of 

COVID-19 could lead to longer term worsening of deadly air pollution (Persico and 

Johnson, 2020; Gardiner, 2020). In addition, industrial production could intensify 

relative to pre-coronavirus as businesses seek to recover from COVID-19-related 

production shocks, and pollution-related corporate social responsibility initiatives 

might decrease (Gardiner, 2020). COVID-19 could also worsen pollution through 

changes in individual behaviors, and these new sources of pollution should be taken 

into account when formulating mitigation strategies (Brackett, 2020; Hinson, 2020).   

 Recent studies that investigate the effect of the coronavirus pandemic on air 

pollution generally find that the lockdowns imposed to combat the virus improved air 

quality. However, these studies do not explore the specific mechanisms responsible 

for the reduction in pollution3 and they do not consider how individual prevention 

behavior may affect levels of air pollution after the lockdowns are lifted. We seek to 

fill this gap in the literature by investigating the impact of COVID-19 in Taiwan, 

                                                        
3 An exception is Dang and Trinh (2020) which used Google Mobility Reports to show that mobility 
was lower in places where government policies were more stringent. 
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which did not impose any mobility restrictions on residents or mandate business 

closures. Using real-time data on air quality and transportation in the two largest cities 

in Taiwan, we find that reductions in the use of public transportation and increases in 

automobile use worsened air quality during the COVID-19 pandemic.  

                      

2. Literature Review 

There is a fast-growing literature on the impact of COVID-19 on air pollution 

across the world. Many studies analyze data from individual cities with air pollution 

monitoring stations (Xu et al., 2020; He, Pan and Tanaka, 2020; Baldasano, 2020; 

Almond, Du and Zhang, 2020; Collivignarelli et al., 2020; Brodeur, Cook and Wright, 

2020; Mahato, Pal and Ghosh, 2020; Zangari et al., 2020, Cole, Elliot and Liu, 2020), 

while others analyze satellite imagery over countries or broad regions of the globe 

(Wang and Su, 2020; Shi and Brasseur, 2020; Fan et al., 2020; Bauwens et al., 2020). 

Some studies focus on different measures of pollution, so it is useful to begin by 

highlighting a few basic facts about air pollution.  

 There are numerous potential measures of pollution, but some are considered to 

be more closely related to human health than others. In the U.S., for example, the 

Clean Air Act regulates six common air pollutants, including particulate matter (PM10 

and PM2.5), ground-level ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), 

nitrogen dioxide (NO2) and lead.4 The EU’s air quality standards impose limits on 

these same pollutants (European Commission 2020).5 While all of the six pollutants 

are harmful to humans and the environment, particle pollution and ground-level ozone 

are the most widespread (U.S. EPA, 2020). Worldwide, particulate matter is 

                                                        
4 PM10 and PM2.5 refer to atmospheric particles with a particle size of less than 10 and 2.5 ug, 
respectively. 
5 Ozone regulation in the EU is through a target rather than a limit, but the EU additionally limits 
benzene (European Commission, 2020). 
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responsible for more deaths than ozone (38.2/100K capita versus 6.2/100K capita in 

2017), and consequently, many studies focus on measures such as PM2.5 (Ritchie and 

Roser, 2019). 

All of the above mentioned pollutants except O3 and NO2 are “primary 

pollutants” because they are emitted directly into the atmosphere from their source. In 

contrast, NO2 is a “secondary pollutant” that is formed through the oxidation of NO 

by oxygen in the air. Likewise, O3 is produced through chemical reactions between 

nitrogen oxides (NOX) and volatile organic compounds (VOC) in sunlight and warm, 

stagnant air. While nitrogen oxides are a precursor to O3, they can also suppress O3 in 

colder weather (winter and nighttime) through NOX titration (Jhun et al., 2015). As a 

result, there is sometimes an inverse relationship between nitrogen oxides, such as 

NO2, and O3. There are many different sources of pollution, including industrial 

production, vehicle emissions, the burning of fuel, and natural sources such as 

volcanoes or wildfires. For example, among pollutants regulated under the Clean Air 

Act, vehicle emissions contribute significantly to higher levels of CO, NO2, PM10 and 

PM2.5 (Zhang and Batterman, 2013).6   

 Because the coronavirus was first detected in China, and resulted in a strict 

lockdown of Wuhan followed by mobility restrictions throughout the country, more 

studies focus on air pollution in China than other countries. Xu et al. (2020), Wang 

and Su (2020), Shi and Brasseur (2020), Cole, Elliott and Liu (2020), Fan et al. 

(2020), and Almond, Du and Zhang (2020) all found that lockdowns and strict 

restrictions on economic activities in the city of Wuhan and other regions of China 

significantly reduced the level of major air pollutants. For example, Shi and Brasseur 

(2020) calculated that surface PM2.5 and NO2 levels decreased by 35% and 60%, 

                                                        
6 Other pollutants from vehicles include CO2, VOCs and hydrocarbons (Zhang and Batterman 2013).   
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respectively, in northern China during the COVID-19 pandemic. Such a large short-

term drop in air pollution is unprecedented in China, with only the strict regulations 

put in place during the 2008 Beijing Olympics producing comparable reductions 

(American Geophysical Union, 2020). However, most of these studies also found that 

O3 increased by as much as a factor of 2 due to reductions in nitrogen oxides. Despite 

the offsetting effects of these pollutants, He, Pan and Tanaka (2020) estimated that the 

improvement in China’s air quality could lead to 24,000 – 36,000 fewer premature 

deaths per month. Chen et al. (2020) estimated a smaller total of 8,911 avoided NO2-

related deaths and 3,214 fewer deaths from PM2.5 during the 34-day quarantine period 

from February 10, 2020 – March 14, 2020.  

 Studies in Europe (Baldasano, 2020; Menut et al., 2020; Bauwens et al., 2020; 

Collivignarelli et al., 2020), South Korea (Bauwens et al., 2020) and India (Mahato, 

Pal and Ghosh, 2020), all of which implemented some form of economic and mobility 

restrictions, produced results that are generally consistent with those from China. For 

example, Menut et al. (2020) estimated reductions in NO2 pollution across locations 

in Western Europe of 30% - 50%, and reductions in particle concentrations (PM10 and 

PM2.5) of 5% – 15%. Mahato, Pal and Ghosh (2020) found a 53% drop in NO2 and 

reductions on 60% and 39% in PM10 and PM2.5, respectively, during the lockdown in 

Delhi, India. In addition, Mahato, Pal and Ghosh (2020) found concomitant increases 

in ground-level ozone in Delhi, as did Menut et al. (2020) in Western Europe. 

Estimates from U.S. data are more mixed than in other countries. Brodeur, Cook 

and Wright (2020) used difference-in-differences methods to determine that stay-at-

home orders reduced levels of PM2.5 by 25% and Bauwens et al. (2020) reported 

reductions of NO2 in the northeastern cities of New York, Philadelphia, and 

Washington D.C. of 21% - 28% based on satellite readings. Cicala et al. (2020) also 

predicted declines in primary air pollutants, but their estimates rely on simulations 
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that extrapolate pollution reductions from measured decreases in traffic and electricity 

consumption. In contrast, Bekbulat et al. (2020) did not find that PM2.5 and ozone 

concentrations in the U.S. generally fall outside the normal range of statistical 

variability. Zangari et al. (2020) likewise reported no significant differences in PM2.5 

and NO2 in New York City (NYC), when using a linear time series model to compare 

pollutant levels following the NYC shutdown to the same weeks in 2015 - 2019. One 

consideration in the interpretation of estimates by Bekbulat at al. (2020) is that they 

analyzed data from across the U.S., where restrictions and compliance with federal 

directives was very heterogeneous. 

Finally, Dang and Trinh (2020) compiled data from 178 different countries and 

confirmed the results from most individual country or city studies that lockdowns 

decreased air pollution. They also found that decreases in mobility following the 

lockdowns likely contributed to lower air pollution levels.  

  

3. Data 

We compiled data from several administrative sources in order to conduct our 

analysis. We collected data on confirmed cases of COVID-19 from the Taiwan Center 

of the Disease Control (CDC); several air quality measures from the Environmental 

Protection Agency (EPA); metro usage from the Taipei Rapid Transit Corporation; 

and car traffic data from the Ministry of Communication.    

3.1. COVID-19 case counts 

The first confirmed case of COVID-19 in Taiwan was identified in Taipei City on 

January 22, 2020. We compiled the number of the confirmed cases of COVID-19 

registered in both Taipei and New Taipei City during each day between January 22, 

2020 and March 31, 2020. Confirmed cases are those that have been validated by 

medical testing, whereas unconfirmed cases are suspected by physicians to be 
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COVID-19 based on patient-reported symptoms. We use the former because 

confirmed cases are listed on the CDC website and reported to the public during CDC 

press conferences. From these data we created two variables to measure COVID-19 

cases. The first is a binary indicator for the period when confirmed COVID-19 cases 

existed in Taiwan (=1 if January 22 - March 31 of 2020; =0 otherwise), while the 

second is a continuous measure of the cumulative number of the confirmed cases in 

each day of the sample period in each of the two cities. 

For the analysis of all outcome variables we defined treatment and control 

periods. The treatment period corresponds to January 22 - March 31 of 2020 and the 

control period includes these same dates in 2017, 2018 and 2019. 

3.2. Air quality measures 

We obtained measures of air quality from 19 air quality monitoring stations 

located across Taipei and New Taipei City. The stations monitor twelve different 

pollutants, including particle levels, carbon oxides, nitrogen oxides, sodium dioxide, 

ground-level ozone, and hydrocarbons. We analyzed the same pollutants regulated 

under the U.S. Clean Air Act, with the exception of lead, which is not monitored. 

These include PM10, PM2.5, NO2, SO2, CO, and O3. The level of each pollutant is 

calculated as the average concentration at the given station over a 24-hour period. We 

merged the COVID-19 variables into the air quality dataset using city and date. In 

total, the air quality data consist of 5,119 station-day observations across both the 

treatment and control periods, of which 1,330 occurred during the treatment period. 

3.3. Metro usage  

The Taipei metro system includes 119 stations that serve all sections of Taipei and 

New Taipei City. We excluded 11 stations from our analysis because they opened on 

January 31, 2020, in the beginning to our treatment period. For each of the remaining 

108 stations, we collected data on the number of people who departed from and exited 
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the station on every day during our treatment and control periods. In total, our sample 

of metro ridership contains 29,808 station-day observations, of which 7,452 occurred 

during the treatment period.   

From the same metro database we created several indicator variables to measure 

characteristics of the stations and their surroundings. These include variables that 

indicate whether the station is a terminal station, connected to other metro lines, on an 

airport route or at an airport, connected to a high speed rail station, and whether a 

school or a traditional night market is near the station.  

3.4. Car traffic  

There are 35 traffic monitoring stations along the main bridges that connect Taipei 

and New Taipei City. Since many people live in New Taipei City and work in Taipei, 

the monitors effectively capture commuting patterns by car. We collected information 

on the number of cars that pass each traffic monitor during every four hours of the 

treatment and control periods. In total, our sample contains 59,785 station-4-hour 

period observations, of which 15,368 are in the treatment period.   

3.5. Other variables  

We collected additional data on two district-level characteristics that may explain 

variation in the outcome variables: the geographic area of each district and monthly 

population.7 For inclusion in our car traffic analysis we also collected information on 

the daily gasoline price, and for the air pollution models we collected data on the 

amount of coal used in power generation in metric tons per day.8 Descriptive 

statistics for all explanatory variables are listed in Appendix Table A1.  

 

                                                        
7 There are 12 districts in Taipei and 29 districts in New Taipei City. 
8 Coal is the largest source of electricity generation in Taiwan (U.S. Energy Information 
Administration, 2020). 
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4. Econometric Analysis 

We use a generalization of the difference-in-differences model (DiD) to identify 

the causal effect of confirmed COVID-19 cases on air quality and metro departures 

using panel data (Wooldridge, 2010). Because both outcome variables are right-

skewed, we implemented the following log-linear specification:  

(1)  𝑙𝑙𝑙𝑙𝑙𝑙�𝑦𝑦1𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛼𝛼1 + 𝛾𝛾1 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽1
′𝑋𝑋1𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝑡𝑡𝑚𝑚 + 𝑡𝑡𝑦𝑦 + 𝜀𝜀1𝑖𝑖𝑖𝑖𝑖𝑖 , 

where 𝑦𝑦1𝑖𝑖𝑖𝑖𝑖𝑖 is the outcome variable for station 𝑖𝑖 in city 𝑗𝑗 during time 𝑡𝑡. Station is 

either air monitoring station or metro station, and time is day. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  is either our 

discrete or continuous measure of confirmed COVID-19 cases in city 𝑗𝑗 at time 𝑡𝑡. 

𝑋𝑋1𝑖𝑖𝑖𝑖𝑖𝑖  is a vector of the explanatory variables associated with the outcome variable, 

𝜐𝜐𝑖𝑖, 𝑡𝑡𝑚𝑚, and 𝑡𝑡𝑦𝑦 are fixed effects for city, month and year, and 𝜀𝜀1𝑖𝑖𝑖𝑖𝑖𝑖  is the random 

error term. 

 In the case of car traffic, all of the traffic monitoring stations are located on 

bridges that connect Taipei and New Taipei City, which means that there is no city-

level variation in the dependent variable. In addition, the outcome variable has some 

zero values, so we estimated the following linear model with time fixed effects: 

(2)    𝑦𝑦2𝑖𝑖𝑖𝑖 = 𝛼𝛼2 + 𝛾𝛾2 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽2
′𝑋𝑋2𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑚𝑚 + 𝑡𝑡𝑦𝑦 + 𝜀𝜀2𝑖𝑖𝑖𝑖 . 

In equation (2) the time index denotes the 4-hour period used to collect car traffic 

data.  

In equation (1), 100 times the parameter 𝛾𝛾1 is a semi-elasticity that measures the 

effect of COVID-19 on the outcome variable in percentage terms. The semi-elasticity 

is identified by comparing differences in the outcome variable between the two cities 

across the same month in the treatment and control periods. In equation (2), 𝛾𝛾2 

measures the association between COVID-19 and 100s of cars per 4 hours travelling 

between Taipei and New Taipei City. In this case, the parameter is identified by 

comparing car travel during the COVID-19 period to car travel in the pre-COVID-19 
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period during the same calendar month. We computed the standard errors in all 

models using the two-way-cluster-robust variance approach proposed by Cameron 

and Miller (2015) to cluster on both station and day. 

 

5. Results 

In Table 1 we compare the mean values of all of the outcome variables in the air 

quality, metro usage and car traffic models in the COVID-19 treatment period (2020) 

and pre-COVID-19 control period (2017-2019). The average level of car traffic was 

27% higher in the former than the latter. In addition, metro usage decreased 18% in 

2020 relative to the pre-COVID-19 period, suggesting a shift in transportation 

preferences from public transport to personal car transport during the COVID-19 

period. Despite the shift towards car travel, all six pollution measures decreased 

between 2% and 26% from 2017-2019 to 2020. These unadjusted means, however, 

could reflect long run decreases in air pollution over time (Cheng and Hsu, 2019).  

5.1. COVID-19 and air quality  

We present semi-elasticity estimates from the generalized DiD model of air 

quality in Table 2, and full estimation results for the SO2 equation in Appendix Table 

A2.9 The estimates in the left columns measure the change in air pollution during the 

COVID-19 period relative to the pre-COVID-19 period, while the estimates in the 

right columns measure the effect of an additional cumulative confirmed case of 

COVID-19 on air pollution. Consistent with the unadjusted means, CO and O3 both 

decreased as a result of COVID-19, but SO2, NO2, PM10 and PM2.5 all increased 

during the COVID-19 period. Furthermore, the 5% - 12% increase among the latter 

pollutants was larger in magnitude than the 3% increase in CO and O3. Estimates 

                                                        
9 Full estimation results for the other pollution measures are available upon request from the authors. 
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from the models using the number of the cumulative COVID-19 cases are consistent 

with the treatment effect models, although the impact of an additional case of 

COVID-19 is not statistically significant in the CO model. While O3 decreased by 1% 

with an additional COVID-19 case, SO2, NO2, PM10 and PM2.5 increased by 1.6%, 

1.1%, 3.4% and 3.5%, respectively. 

5.2. Car traffic and metro use under COVID-19 

The DiD estimates of the effect of COVID-19 on air pollution are more consistent 

with the shift in transportation patterns identified in Table 1 than the unadjusted 

differences in pollutants. In order to further explore changes in transportation as a 

mechanism for the increase in air pollution, we turn to the car traffic model (Table 3). 

The estimates in Panel A confirm that car traffic increased 34% in the COVID-19 

period relative to the same calendar month in the pre-COVID-19 period, after 

controlling for date variables, hour of travel, weekend day, and the price of gasoline 

(see Appendix Table A3 for all coefficient estimates). Likewise, an additional 

cumulative case of COVID-19 was associated with a 0.7% increase in car traffic, 

ceteris paribus.  

In Panel B we present estimates from a model estimated on just weekend (i.e. non-

working) days, while Panels C and D contain analogous estimates for week (i.e. 

working) days, divided into typical commuting and non-commuting hours. We specify 

commuting hours as 6 – 10AM in the morning and 6 – 10PM in the evening. 

Interestingly, there is no statistically significant increase in car traffic during 

weekends in the COVID-19 period (the point estimate is negative), but a large 

increase in car traffic during week days. In the treatment effect model the magnitude 

of the increase during commuting hours (70%) is only marginally larger than the rest 

of the day (65%). The models with a continuous measure of COVID-19 cases are 

precisely estimated in Panels C and D, and they suggest that an additional case of 
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COVID-19 is associated with a 0.7% - 0.8% increase in car traffic. While the 

difference between the effect of COVID-19 in commuting and non-commuting hours 

is less than anticipated, this may be due to policies by employers that rotate 

employees across different shifts to achieve physical distancing.    

In the case of metro departures and exits, we are able to estimate the generalized 

DiD model in equation (1). Panel A of Table 4 contains estimates for the full sample, 

while in Panels B and C we break the sample into week days and weekend days, 

respectively (Table A4 contains all coefficient estimates). Overall, metro use 

decreased 6.5% during the COVID-19 period, or 0.3% per additional confirmed case. 

While ridership was lower during both week days and weekends, the magnitude of the 

effect was larger for the latter. In particular, metro use was 13.8% lower on weekends 

due to COVID-19 and 3.6% lower during the work week. The analogous estimates for 

cumulative case counts are a 0.5% reduction in metro station departures and exits per 

case during weekends and a 0.2% decrease in departures and exits per case on week 

days.   

5.3. COVID-19 and air quality by day of the week 

Given that automobile use in the COVID-19 period only increased during week 

days, in order for car traffic to be one of the drivers of higher levels of NO2, PM10 and 

PM2.5, measures of these pollutants should also be higher during the work week.10 

We investigated this possibility by estimating our air pollution models separately on 

the samples of week days and weekends. The estimates in Table 5 for week days 

(Panel A) are all consistent in sign with those from the pooled sample in Table 2, but 

they are generally larger in magnitude. For example, COVID-19 leads to a 5% 

                                                        
10 Since vehicles also emit CO, the observed decrease in CO must be due to another reason. Likewise, 
vehicle emissions are no longer a major source of SO2 (Australia Department of Agriculture, Water and 
the Environment, 2020).  
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increase in NO2 in the pooled sample, but a 12% increase on week days. However, 

there is no statistically significant change in most of the pollutants during weekends, 

with the exception of SO2 and NO2 for which there is a statistically significant 

decrease. Levels of SO2 drop by 7% from COVID-19 during weekends, and NO2 

drops by 11%.         

5.4. Robustness checks 

One concern with our main analysis is that trends in air quality could be 

spuriously correlated with trends in the number of COVID-19 cases in our models. 

Although we included both month and year fixed effects to capture aggregate-level 

trends, we want to verify that the steady, long-term improvement in air quality is not 

spuriously correlated with the increase in cases of COVID-19, net of these controls. If 

such a correlation exists, it could increase the magnitude of the (negative) semi-

elasticities for CO and O3 or attenuate the (positive) semi-elasticity estimates for the 

other air quality measures. We investigated the potential for a spurious correlation by 

estimating our DiD models of air pollution using only the pre-COVID-19 period data 

from 2017-2019 by assigning the number of COVID-19 cases observed in 2020 to the 

same month and day in the 2017-2019 sample. The resulting semi-elasticity estimates, 

reported in Table 6, are statistically insignificant when using either measure of 

COVID-19, with the exception of the treatment effect in the NO2 model, which is 

statistically significant at the 10% level.      

 While the presence of COVID-19 is an exogenous event that we don’t expect to 

be simultaneously determined with air quality, there could be omitted variables that 

are correlated with the number of COVID-19 cases and the level of the air quality 

measures. For example, it is possible that unobserved differences in COVID-19 

prevention behaviors across communities may result in different levels of air 

pollution. Such unobservables would need to vary over both time and place to bias 
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our estimates since time-invariant factors across the two cities, and changes in 

aggregate trends over time that are common to both cities should be captured by city 

and time fixed effects. 

In order to investigate the potential for omitted variables to bias our estimates we 

implemented the sensitivity analysis proposed by Oster (2019). Based on the 

assumption that selection on unobservable factors is proportional to selection on 

observable covariates, Oster (2019) derives an estimator, δ, for the degree of selection 

of unobservables relative to observables necessary to drive the coefficient on the 

treatment variable to a statistical null. We report estimates of δ in Table 7, which 

range from 1.6 – 8.9 for the COVID-19 treatment effect and from 1.3 – 6.9 for the 

cumulative number of confirmed cases. Across all models, the average level of δ is 

3.6, suggesting a significant level of selection on unobservables would be needed to 

invalidate our results.      

 

6. Discussion and Conclusions  

We find that measures of four major pollutants (SO2, NO2, PM10 and PM2.5) 

increased and two major pollutants (CO and O3) decreased in the two largest cities in 

Taiwan as a result of the COVID-19 pandemic. The magnitude of the increase in 

pollution among the former measures was, on average, roughly three times larger than 

the decrease in pollution among the latter measures. Studies of the effect of COVID-

19 in China (Xu et al., 2020; Fan et al., 2020; Shi and Brasseur, 2020), Milan, Italy 

(Collivignarelli et al., 2020) and Delhi, India (Mahato, Pal and Ghosh, 2020) have 

also found increases in NO2 and other pollutants with concomitant reductions in O3 

(Xu et al., 2020; Fan et al., 2020; Shi and Brasseur, 2020). Ground-level ozone can be 

diminished by nitrogen oxides, so it is not uncommon to measure decreases in O3 

when levels of NO2 rise (Jhun et al., 2015; Shi and Brasseur, 2020). 
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 By examining data on transportation patterns, we find compelling evidence that a 

shift from metro use to car ridership contributed to higher levels of NO2, PM10 and 

PM2.5. Not only does car traffic increase with these pollution measures, but both the 

increase in traffic and levels of NO2, PM10 and PM2.5 only occurred during the work 

week. Because automobiles are no longer a significant source of sulfur oxides, the 

increase in SO2 due to COVID-19 must have a different mechanism. In addition, it is 

unclear why measures of CO decrease when car traffic increases. While the increase 

in CO is relatively small, and only precisely estimated in the treatment effect model, 

automobiles are a major source of CO pollution (Zhang and Batterman, 2013).11  

 Given that the level of automobile use and reduction in metro ridership increased 

with the cumulative number of COVID-19 cases, it is likely that the shift in mode of 

transport was a strategy used by individuals to reduce their chances of contracting 

COVID-19. Clearly, the likelihood of infection is far lower in a personal automobile 

than the confined space of a metro car. Furthermore, the decrease in both metro use 

and levels of SO2 and NO2 during weekends suggest that individuals were limiting 

their mobility on weekends to avoid contracting COVID-19. 

 Our findings have important implications for policy. Existing studies from China, 

Europe and elsewhere almost exclusively show that air pollution improved under 

government-mandated lockdowns. While Taiwan restricted international travel from 

countries with high rates of infection, the promotion of social distancing and 

mandatory use of masks were the only domestic policies imposed by the government 

to limit the spread of the virus. As a result, the mobility of citizens within Taiwan was 

relatively unaffected during the initial month of the coronavirus pandemic (Wang, Ng 

                                                        
11 One possibility is that there are other shifts in transportation patterns that we do not observe. For 
example, scooters and motorcycles emit more CO than cars (Platt et al., 2014; Carpenter, 2014). If 
scooters are complementary to public transportation, then reductions in metro and scooter use could 
have resulted and a shift in pollution that reduced CO. To the best of our knowledge, there are no 
sources of administrative traffic data on scooters in Taiwan. 
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and Brook, 2020). 

Without the stricter lockdowns imposed in other parts of the world, we find that 

pollution in Taiwan worsened due to COVID-19 prevention behaviors. In particular, 

the fear of contracting COVID-19 while using public transportation appears to have 

resulted in a significant increase in car traffic and associated air pollution. As other 

regions or countries emerge from lockdowns, they should expect individuals to 

exhibit similar preferences for personal automobile use, which could lead to 

congestion and higher levels of pollution. Initiatives to improve the safety of public 

transportation could help avoid the shift that we observe in Taiwan. Furthermore, 

research suggests that individuals de-prioritize environmental protection following 

periods of high unemployment (Kenny, 2019). Our findings suggests that scaling back 

air pollution regulations due to a perceived tradeoff between environmental protection 

and economic growth could compound the deterioration in air quality. 

 In addition to having a direct negative impact on human health, higher levels of 

air pollution also increase COVID-19 mortality (Persico and Johnson, 2020; 

Isphording and Pestel, 2020). Our results imply that loosening mobility restrictions in 

countries with high COVID-19 infection rates, such as the U.S., could make it more 

difficult to reduce deaths from COVID-19 (all else equal) if individuals practice 

similar prevention behaviors to those we identify in Taiwan.  

 This study has several limitations that should be noted. Although we conducted 

several robustness checks that are consistent with a lack of endogeneity bias in our 

estimates, it is possible that there are omitted factors that are correlated with the 

number of COVID-19 cases and air pollution levels that could affect our results. In 

addition, we do not measure pollution from all sources, so we cannot identify 

mechanisms that could be responsible for increases in air pollution other than a shift 

from metro to automobile use. Finally, our results may not generalize to other regions 
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or countries if COVID-19 prevention behaviors in Taiwan differ from those exhibited 

elsewhere. 

 Despite these limitations, we believe this study makes an important contribution 

to the literature, as the first to find higher levels of several major air pollutants due to 

COVID-19. Moreover, our results may help policy makers in countries emerging from 

lockdowns to avoid spikes in air pollution by identifying a shift in preferred modes of 

transport with important implications for pollution levels, congestion and energy use.        
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Table 1. Sample statistics for COVID-19 cases, air quality measures, and transportation variables. 
  (1) (2) (3)  

 2017-2020 2020 2017-2019 (2) – (3) 
Mean Variable Definition Mean S.D. Mean S.D. Mean S.D. 

COVID Cumulative number of confirmed COVID-19 cases. 7.82 26.03 31.29 44.67 0 0 - 
CO Concentration of carbon monoxide (ppb). 0.54 0.33 0.52 0.30 0.55 0.33 -5% 
O3 Concentration of ozone (ppb). 34.07 11.17 33.58 10.42 34.24 11.42 -2% 
SO2 Concentration of sulphur dioxide (ppb). 2.14 1.07 1.77 0.83 2.26 1.11 -22% 
NO2 Concentration of nitrogen dioxide (ppb). 17.97 10.77 16.53 10.02 18.47 10.98 -11% 
PM10 Concentration of particulate matter < 10 (ug/m3). 36.51 18.74 29.09 13.55 39.06 19.58 -26% 
PM2.5 Concentration of particulate matter < 2.5 (ug/m3). 17.74 9.28 16.13 8.05 18.30 9.61 -12% 
Metro use No. of daily departures & exits per metro station (10,000s). 1.83  1.80  1.58  1.43  1.92  1.91  -18% 
Car traffic No. of cars per 4-hours per station (100s). 4.70  18.59  5.60  20.98  4.39  17.68  27% 
Notes: All measures are collected during each day of the sample period defined as January 22 - March 31 in each year. Car traffic is collected during 

every 4-hour period during the day.  
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Table 2. Semi-elasticity estimates of the impact of COVID-19 on air quality. 
  COVID-19 period (0/1) Cumulative number of COVID-19 cases  
Dependent var.   Semi-elas. S.E. Adjusted R2   Semi-elas. S.E. Adjusted R2 

CO -0.028  * 0.015  0.34  -0.003   0.014  0.34  
O3 -0.031  * 0.018  0.16  -0.010  ** 0.004  0.16  
SO2 0.080  * 0.041  0.13  0.016  * 0.009  0.13  
NO2 0.050  ** 0.020  0.34  0.011  * 0.006  0.34  
PM10 0.119  ** 0.058  0.15  0.034  ** 0.016  0.15  
PM2.5 0.099  ** 0.047  0.07  0.035  ** 0.015  0.08  
Notes: The full list of variables in each regression is reported in Appendix Table A2. The number of observations 

(N·T) is 5,119. Standard errors are clustered by day and air quality monitoring station. ***,**, * indicate 

significance at the 1%, 5% and 10% level, respectively.
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Table 3. Estimates of the impact of COVID-19 on car traffic. 
  Panel A: Full sample (N·T = 59,785) Panel B: Weekend days (N·T = 21,291) 
Variable Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 

COVID-19 period 2.255  * 1.275       -0.041   0.542     
Effect in % 34.13%   

   -1.05%      
COVID-19 cases    0.045  * 0.024     -0.024   0.018  

Effect in %    0.68%   
   -0.63%   

Adjusted R2 0.01  0.01  0.01  0.01  

  

Panel C: Week days 
 6-10 AM & 6-10 PM 

(N·T = 12,808) 

Panel D: Week days 
 10 PM - 6 AM & 10 AM - 6 PM 

(N·T = 25,686) 

COVID-19 period 4.966 ** 2.232    4.167 * 2.345    
Effect in % 70.48%      65.23%      

COVID-19 cases    0.055 * 0.031    0.043  * 0.022  
Effect in %    0.78%      0.68%   

Adjusted R2 0.01  0.01  0.01  0.01  
Notes: The dependent variable is the number of cars in 100s during a 4-hour period. The percentage magnitude of 

the COVID-19 effect is evaluated at the sample mean of the dependent variable during the COVID-19 period. The 

full list of variables in each regression is reported in Appendix Table A3. Standard errors are clustered by day and 

traffic monitoring station. ***,**, * indicate significance at the 1%, 5% and 10% level, respectively. 
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Table 4. Semi-elasticity estimates of the impact of COVID-19 on metro departures and 
exits. 

  Panel A: Full Sample (N·T = 29,808) 

Variable Semi-elas. S.E. Semi-elas. S.E. 

COVID-19 period -0.065  ** 0.027     
COVID-19 cases    -0.003  *** 0.001  
Adjusted R2 0.36 0.36 

  Panel B: Week days (N·T = 19,116) 

COVID-19 period -0.036 * 0.022    
COVID-19 cases    -0.002 *** 0.0001 
Adjusted R2 0.34 0.34 

  Panel C: Weekend days (N·T = 10,692) 

COVID-19 period -0.138 *** 0.024    
COVID-19 cases    -0.005 *** 0.0001 
Adjusted R2 0.33 0.33 
Notes: The dependent variable is the log of daily departures and exits from each metro station in 

10,000s. The full list of variables in each regression is reported in Appendix Table A4. Standard 

errors are clustered by day and metro station. ***,**, * indicate significance at the 1%, 5% and 

10% level, respectively. 
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Table 5. Semi-elasticity estimates of the impact of COVID-19 on air quality by day of the week. 
  COVID-19 period (0/1) Cumulative no. of COVID-19 cases  

 Panel A: Week days (N·T = 3,305) 

Dependent var.     Semi-elas. S.E. Adjusted R2  Semi-elas. S.E. Adjusted R2 

CO -0.023  * 0.012  0.37  -0.002   0.015  0.04  
O3 -0.004  * 0.002  0.18  -0.008  * 0.004  0.18  
SO2 0.156  ** 0.062  0.12  0.017  *** 0.004  0.12  
NO2 0.116  ** 0.049  0.34  0.012  ** 0.006  0.34  
PM10 0.135  * 0.080  0.14  0.036  ** 0.017  0.14  
PM2.5 0.123  ** 0.053  0.06  0.038  * 0.020  0.07  

  Panel B: Weekend days (N·T = 1,814) 

CO 0.143   0.097  0.30  -0.033   0.044  0.30  
O3 0.113   0.068  0.16  0.028   0.022  0.16  
SO2 -0.069  * 0.039  0.15  0.002   0.003  0.15  
NO2 -0.109  * 0.053  0.35  -0.015  * 0.008  0.35  
PM10 0.062   0.197  0.19  0.002   0.008  0.19  
PM2.5 0.010    0.198  0.14  -0.009    0.008  0.14  
Notes: The full list of variables in each equation is provided in Appendix Table A2. Standard errors are 

clustered by day and air quality monitoring station. ***,**, * indicate significance at the 1%, 5% and 

10% level, respectively. 
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Table 6. Falsification test of the effect of COVID-19 on air pollution measures using on the pre-
COVID-19 sample (2017-2019). 

  COVID-19 period (0/1) Cumulative no. of COVID-19 cases 
Dependent var.  Semi-elas. S.E. Adjusted R2   Semi-elas. S.E. Adjusted R2 

CO 0.013   0.025  0.34  -0.002   0.002  0.35  
O3 -0.050   0.044  0.16  0.002   0.002  0.17  
SO2 -0.035   0.045  0.11  0.000   0.001  0.11  
NO2 0.039  * 0.020  0.35  -0.002   0.005  0.35  
PM10 -0.130   0.083  0.12  0.002   0.002  0.12  
PM2.5 -0.083    0.086  0.08  0.001    0.002  0.08  
Notes: The number of observations (N·T) is 3,789. Standard errors are clustered by day and air quality 

monitoring station. ***,**, * indicate significance at the 1%, 5% and 10% level, respectively.  
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Table 7. Estimate of ratio of selection on unobservables relative to selection on observables (δ) 
needed to generate null effect of COVID-19 on air quality.  

Dependent var. COVID-19 period (0/1) Cumulative no. of COVID-19 cases 

CO 8.93  6.29  
O3 1.93  1.85  
SO2 4.83  5.94  
NO2 3.98  2.94  
PM10 1.60  1.30  
PM2.5 1.72  1.68  
Notes: All models include city, month and year fixed effects, and other explanatory variables.  
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