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ABSTRACT

Using 40 countries’ subnational data, we estimate age-specific mortality-temperature relationships 
and extrapolate them to countries without data today and into a future with climate change. We 
uncover a U-shaped relationship where extreme cold and hot temperatures increase mortality 
rates, especially for the elderly. Critically, this relationship is flattened by both higher incomes and 
adaptation to local climate. Using a revealed preference approach to recover unobserved 
adaptation costs, we estimate that the mean global increase in mortality risk due to climate change, 
accounting for adaptation benefits and costs, is valued at roughly 3.2% of global GDP in 2100 
under a high emissions scenario. Notably, today’s cold locations are projected to benefit, while 
today’s poor and hot locations have large projected damages. Finally, our central estimates 
indicate that the release of an additional ton of CO2 today will cause mortality-related damages of 
$36.6 under a high emissions scenario, with an interquartile range accounting for both 
econometric and climate uncertainty of [-$7.8, $73.0]. These empirically grounded estimates 
exceed the previous literature’s estimates by an order of magnitude.
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1 Introduction

Understanding the likely global economic impacts of climate change is of tremendous practical value to

both policymakers and researchers. On the policy side, decisions are currently made with incomplete and

inconsistent information on the benefits of greenhouse gas emissions reductions. These inconsistencies are

reflected in global climate policy, which is at once both lenient and wildly inconsistent. To date, the economics

literature has struggled to mitigate this uncertainty, lacking empirically founded and globally comprehensive

estimates of the total burden imposed by climate change that account for the benefits and costs of adaptation.

This problem is made all the more difficult because emissions today influence the global climate for hundreds

of years. Thus, any reliable estimate of the damage from climate change must include projections of economic

impacts that are both long-run and at global scale.

Decades of study have accumulated numerous theoretical and empirical insights and important findings

regarding the economics of climate change, but a fundamental gulf persists between the two main types of

analyses. On the one hand, there are stylized models that are able to capture the multi-century and global

nature of climate change, such as “integrated assessment models” (IAMs) (e.g., Nordhaus, 1992; Tol, 1997;

Stern, 2006). Their appeal is that they provide an answer to the question of what the global costs of climate

change will be, but IAMs require many assumptions and this weakens the authority of their answers. On the

other hand, there has been an explosion of highly resolved empirical analyses whose credibility lies in their

use of real world data and careful econometric measurement (e.g., Schlenker and Roberts, 2009; Deschênes

and Greenstone, 2007). Yet these analyses tend to be limited in geographic extent and/or rely on short-run

changes in weather that are unlikely to fully account for adaptation to gradual climate change (Hsiang,

2016). At its core, this dichotomy persists because researchers have traded off being complete in scale and

scope with investing heavily in data collection and analysis.

This paper aims to resolve the tension between these approaches by providing empirically-derived esti-

mates of climate change’s impacts on global mortality risk. Importantly, these estimates are at the scale

of IAMs, yet grounded in detailed econometric analyses using high-resolution globally representative data,

and account for adaptation to gradual climate change. The analysis proceeds in three steps that lead to the

paper’s three main findings.

First, we estimate regressions to infer age-specific mortality-temperature relationships using the most

comprehensive dataset ever collected on annual, subnational mortality statistics from 40 countries that cover

38% of the global population. The benefits of adaptation to climate change and the benefits of projected

future income growth are estimated by allowing the mortality-temperature response function to vary with

long-run climate (e.g., Auffhammer, 2018) and income per capita (e.g., Fetzer, 2014). This modeling of

heterogeneity allows us to predict the structure of the mortality-temperature relationship across locations

where we lack mortality data, yielding estimates for the entire world.

These regressions uncover a plausibly causal U-shaped relationship where extremely cold and hot temper-

atures increase mortality rates, especially for those aged 65 and older. Moreover, this relationship is quite

heterogeneous across the planet: we find that both income and a warmer long-run climate substantially

moderate mortality sensitivity to temperature. When combining these results with current global data on

climate, income, and population, we estimate that the effect of an additional very hot day (35◦C / 95◦F)

on mortality in the >64 age group is ∼50% larger in regions of the world where mortality data are un-

available. This finding suggests that prior estimates may understate climate change impacts, because they

disproportionately rely on data from wealthy economies and temperate climates. However, the estimates of

heterogeneity rely on cross-sectional variation and therefore must be considered associational.
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Second, we combine the regression results with standard future predictions of climate, income, and

population to project future climate change-induced mortality risk in terms of both changes in fatality rates

and their monetized value. The paper’s mean estimate of the projected increase in the global mortality

rate due to climate change is 73 deaths per 100,000 at the end of the century under a high emissions

scenario (i.e., Representative Concentration Pathway (RCP) 8.5), with an interquartile range of [6, 101]

reflecting both econometric and climate uncertainty. This effect is similar in magnitude to the current global

mortality burden of all cancers or all infectious diseases. It is noteworthy that these impacts are predicted

to be unequally distributed across the globe: for example, mortality rates in Accra, Ghana are projected

to increase by 17% at the end of the century under a high emissions scenario due to an increase in very

hot days, while in Berlin, Germany, mortality rates are projected to decrease by 15% due to milder winters.

Perhaps most importantly, a failure to account for climate adaptation and the benefits of income growth

would lead to overstating the mortality effects of climate change by a factor of about 3.

Of course, adaptation is costly. While it is impossible to enumerate and observe all of the actions

individuals take to modify their mortality risk of climate change, we develop a stylized revealed preference

model to infer the sum of these costs. This approach is based on the assumption that individuals undertake

adaptation investments until the marginal benefits and costs of adaptation are equal. Because we can

empirically observe adaptation benefits by measuring reduced mortality sensitivities to temperature based

on a location’s climate, we can then infer their marginal costs. Like all revealed preference approaches,

this one requires a set of non-trivial assumptions, including that there are optimizing agents and that key

markets are frictionless.

We estimate that the full mortality risk of climate change, including both the benefits and inferred

costs of adaptation, is equal to roughly 3.2% of global GDP at the end of the century under a high emissions

scenario, with an interquartile range of [-5.4%, 9.1%]. Additionally, we find that poor countries are projected

to disproportionately experience these impacts through deaths, while wealthy countries experience impacts

largely through costly adaptation investments. This monetization of climate change’s full mortality risk is

accomplished by applying the value of a statistical life (VSL) to projected deaths and using the revealed

preference’s approach to infer adaptation costs.

Third, we use these estimates to compute the global marginal willingness-to-pay (MWTP) to avoid the

alteration of mortality risk associated with the temperature change from the release of an additional metric

ton of CO2. We call this the mortality “partial” social cost of carbon (SCC); a “full” SCC would encompass

impacts across all affected outcomes (and changes in mortality due to other features of climate change, like

storms). Our estimates imply that the mortality partial SCC is roughly $36.6 [-$7.8, $73.0] (in 2019 USD)

with a high emissions scenario (RCP8.5) under a 2% discount rate, using an age-varying VSL and assuming

agents are risk-neutral.1 For convenience, we refer to this as the “preferred” mortality partial SCC going

forward, but we also report estimates based on many alternative valuation assumptions.2

It is noteworthy that the mortality partial SCC is estimated with considerable uncertainty, stemming

from both climatological and econometric sources, and that its distribution is right skewed. We follow Nath

et al. (2022) and use this distribution to compute a certainty equivalent mortality partial SCC with standard

risk aversion parameters. This calculation results in a mortality partial SCC that is several times larger than

the estimate that assumes agents are risk neutral, which has been standard in prior policy applications of

1This value falls to $17.1 [-$24.7, $53.6] with a moderate emissions scenario (RCP4.5). The mortality partial SCC is lower
in this scenario because the relationship between mortality risk and temperature is convex, meaning that marginal damages are
greater under higher baseline emissions.

2We call this approach to constructing an empirically-based partial SCC the Data-driven Spatial Climate Impact Model
(DSCIM). DSCIM is also outlined in Rode et al. (2021), where it is used to estimate a partial SCC for energy consumption.
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the SCC (Greenstone, Kopits, and Wolverton, 2013).

Overall, this paper’s results suggest that the temperature related mortality risk from climate change is

substantially greater than previously understood. For example, the preferred mortality partial SCC is more

than an order of magnitude larger than the partial SCC for all health impacts embedded in the Framework

for Uncertainty, Negotiation, and Distribution (FUND) IAM. Further, under the high emissions scenario,

the estimated mortality partial SCC is ∼72% of the Biden Administration’s full interim SCC (Carleton and

Greenstone, forthcoming).

In generating these results, this paper overcomes multiple challenges that have plagued the previous

literature. The first challenge is that CO2 is a global pollutant, so it is necessary to account for the het-

erogeneous costs of climate change across the entire planet. The second challenge is that today, there is

substantial adaptation to climate, as people successfully live in both Lahore, Pakistan and Anchorage, AK,

and climate change will undoubtedly lead to new adaptations in the future. The extent to which invest-

ments in adaptation can limit the impacts of climate change is a critical component of damage estimates.

We address both of these challenges by combining extensive data with an econometric approach that models

heterogeneity in the mortality-temperature relationship, allowing us to predict mortality-temperature rela-

tionships at high resolution globally, today and into the future as climate and incomes evolve. Specifically,

we develop estimates of climate change impacts for 24,378 separate regions around the world that are about

the size of a U.S. county. In contrast, the previous literature has assumed the world is comprised of, at

maximum, 170 heterogenous regions (Burke, Hsiang, and Miguel, 2015), but typically far fewer (Nordhaus

and Yang, 1996; Tol, 1997), and has missed the striking heterogeneity we uncover.

A final challenge is that adaptation responses are costly, and these costs must be accounted for in a

full assessment of climate change impacts. While our revealed preference approach to inferring adaptation

costs relies on a strong set of simplifying assumptions, it can be directly estimated with available data.

Additionally, it represents an important advance on previous literature, which has ignored adaptation (e.g.,

Deschênes and Greenstone, 2007), quantified adaptation benefits without estimating costs (e.g., Heutel,

Miller, and Molitor, 2017), or tried to measure the costs of individual adaptive investments in selected

locations (e.g., Barreca et al., 2016), an approach that is poorly equipped to capture the wide range of

potential responses to warming.

The rest of this paper is organized as follows: Section 2 provides definitions and some basic intuition

for the economics of adaptation to climate change in the context of mortality. Section 3 details data used

throughout the analysis. Section 4 describes our empirical model and estimation results. Section 5 presents

projections of climate change impacts with and without the benefits of adaptation. Section 6 outlines a

revealed preference approach that allows us to infer adaptation costs and uses this framework to present

empirically-derived projections of the full mortality risk of climate change, accounting for the costs and

benefits of adaptation. Section 7 constructs a partial SCC, Section 8 discusses key limitations of the analysis,

and Section 9 concludes.

2 Conceptual framework

This section sets out a simple conceptual framework that guides the empirical model used to estimate

society’s willingness to pay (WTP) to avoid the mortality risks from climate change. In estimating these

mortality risks, it is critical to account for individuals’ compensatory responses, or adaptations, to climate

change, such as investments in air conditioning. These adaptations have both benefits that reduce the risks
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of extreme temperatures and costs in the form of foregone consumption. Thus, the full mortality risk of

climate change is the sum of changes in mortality rates after accounting for adaptation and the costs of those

adaptations. Here, we define some key objects that the paper will estimate, including the full mortality risk

due to climate change.

We define the climate as the joint probability distribution of possible weather conditions that can be

expected to occur over a specific interval of time. Following the notation of Hsiang (2016), let C be a vector

of parameters describing the entire joint probability distribution over all relevant climatic variables (e.g., the

mean and variance of daily average temperature).

We define weather realizations as a random vector c drawn from a distribution characterized by C.

Mortality risk is a function of both weather c and a composite good b = ξ(b1, ..., bK) comprising all choice

variables bk that could influence mortality risk, such as installation of air conditioning and time allocated

to indoor activities. The endogenous choices in b are the outcome of a stylized model in which individuals

maximize expected utility by trading off consumption of a numeraire good and b, subject to a budget

constraint with exogenous income Y , as outlined in greater detail in Section 6. Mortality risk is then

captured by the probability of death f = f(b, c).

Climate change will influence mortality risk through two pathways. First, a change in C will directly

alter realized weather draws, changing c. Second, a change in C can alter individuals’ beliefs about their

likely weather realizations, shifting how they act, and ultimately changing their endogenous choice variables

b. Endogenous adjustments to b therefore capture all long-run adaptation to the climate (e.g., Mendelsohn,

Nordhaus, and Shaw, 1994; Kelly, Kolstad, and Mitchell, 2005). Since the climate C determines both c and

b, the probability of death in an initial time period t0 is written as:

Pr(death | Yt0 ,Ct0) = f(b(Yt0 ,Ct0), c(Ct0)), (1)

where c(C) is a random vector c drawn from the distribution characterized by C and where b is influenced

by income Y through the budget constraint.

The mortality effects of climate change between periods t0 and t are then defined as:

mortality effects of climate change = f(b(Yt,Ct), c(Ct))− f(b(Yt,Ct0), c(Ct0)), (2)

which accounts for the adjustment of b in response to changes in both income and climate between the

periods t0 and t. Note that both terms in Equation 2 include income in the future period t in order to isolate

the role of climate change from changes in temperature-induced mortality that arise due to income growth.3

Many previous empirical studies assume that individuals do not make any adaptations or compensatory

responses to an altered climate, or to changes in income (e.g., Deschênes and Greenstone, 2007; Houser

et al., 2015). This leads to an incomplete measure of the mortality effects of climate change. To capture this

object, we define the mortality effects of climate change without income growth or climate adaptation as:4

mortality effects of climate change (without income growth or adaptation) =

f(b(Yt0 ,Ct0), c(Ct))− f(b(Yt0 ,Ct0), c(Ct0)), (2a)

3This accounts for the possibility that cooling technologies like air conditioning are normal goods and that demand for them
will increase as incomes rise, regardless of how climate change unfolds.

4For parsimony, we use the term adaptation throughout the paper to refer to adaptation in response to changes in the
climate, as opposed to changes in adaptive behaviors or investments caused by changes in income or other variables.
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which shuts down the possibility that individuals will choose new values of b as their incomes and their beliefs

about C evolve. If the climate is changing such that the mortality risk from Ct is higher than Ct0 when

holding b fixed, then the endogenous adjustment of b will weakly reduce mortality rates. In practice, the

sign of the difference between Equations 2 and 2a will depend on the degree to which climate change reduces

deadly extremely cold days versus increases deadly extremely hot days, as well as the optimal adaptation

that agents undertake in response to these competing changes. Several analyses have estimated reduced-

form versions of both equations, finding that accounting for endogenous changes to technology, behavior,

and investment mitigates the direct effects of climate in a variety of contexts (e.g., Barreca et al., 2016).5

A second incomplete measure of the mortality effects of climate change is useful for quantifying the

relative importance of income growth and climate adaptation in determining climate change outcomes. This

measure captures the change in mortality rates that would be expected from climate change if incomes

change, but climate adaptation is shut down. We define the mortality effects of climate change without

climate adaptation as:

mortality effects of climate change(without adaptation) =

f(b(Yt,Ct0), c(Ct))− f(b(Yt,Ct0), c(Ct0)). (2b)

While the mortality effects of climate change defined in Equation 2 account for the benefits of adaptation,

they do not account for its costs. If adjustments to b were costless and provided protection against the climate,

then we would expect universal uptake of highly adapted values for b so that temperature would have no

effect on mortality. But we do not observe this to be true: for example, Heutel, Miller, and Molitor (2017)

find that the mortality effects of extremely hot days in warmer climates (e.g., Houston) are much smaller

than in more temperature climates (e.g., Seattle). We denote the costs of achieving adaptation level b as

A(b), measured in dollars of forgone consumption.

A full measure of the economic burden of climate change must account not only for the benefits generated

by compensatory responses to these changes, but also their cost. Thus, the full mortality risk of climate

change between t0 and t is defined as:

full mortality risk of climate change =

V SLt [f(b(Yt,Ct), c(Ct))− f(b(Yt,Ct0), c(Ct0))]︸ ︷︷ ︸
mortality effects of climate change

+A(b(Yt,Ct))−A(b(Yt,Ct0))︸ ︷︷ ︸
adaptation costs

, (3)

which is measured in dollars and where V SL is the value of a statistical life (Thaler and Rosen, 1976). It

is apparent that omitting the costs of adaptation would lead to an incomplete measure of the full mortality

risk of climate change.

This paper develops an empirical model to quantify Equation 3, or the full mortality risk of climate

change, at global scale. The first term (i.e., Equation 2) can be estimated directly and our empirical

approach to doing so, as well as the resulting climate change impact projections, are detailed in Sections 4

and 5, respectively. Throughout the analysis, we consider the effects of changes in daily average temperature,

such that the mortality effects of climate change include effects of temperature only (as opposed to other

climate variables, such as hurricanes).

The second term in Equation 3, or the change in adaptation costs between time periods, cannot be

5For additional examples, see Heutel, Miller, and Molitor (2017); Auffhammer (2018); Schlenker and Roberts (2009); Butler
and Huybers (2013); Hsiang and Narita (2012); Hsiang and Jina (2014); Barreca et al. (2015).
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observed directly. In principle, data on each adaptive action could be gathered and modeled (e.g., Deschênes

and Greenstone, 2011), but since there exists an enormous number of possible adaptive margins that together

make up the vector b, a complete enumerative approach is impractical. To make progress on quantifying

adaptation costs, we develop a stylized revealed preference approach that leverages observed differences in

climate sensitivity across locations to infer adaptation costs associated with the mortality risk from climate

change. This revealed preference approach, and the resulting estimates of the full mortality risk of climate

change (i.e., Equation 3), are reported in Section 6.

3 Data

To estimate the mortality risks of climate change at global scale, we assemble a novel dataset composed

of historical mortality records, historical climate data, and future projections of climate, population, and

income across the globe. Section 3.1 describes the data necessary to estimate f(b, c), the relationship between

mortality and temperature, accounting for endogenous adaptation. Section 3.2 outlines the data we use to

predict the mortality-temperature relationship across the entire planet today and project it into the future

as populations adapt to climate change. Appendix B provides a more extensive description of all datasets.

3.1 Data to estimate the mortality-temperature relationship

3.1.1 Mortality data

Our mortality data are collected independently from 40 countries.6 Combined, this dataset covers mortality

outcomes for 38% of the global population, representing a substantial increase in coverage relative to existing

literature; prior studies investigate an individual country (e.g., Burgess et al., 2017) or region (e.g., Deschenes,

2018), or combine small nonrandom samples from across multiple countries (e.g., Gasparrini et al., 2017).

Table 1 summarizes each dataset, while spatial coverage, resolution, and temporal coverage are shown in

Appendix Figure B.1. We harmonize all records into a single multi-country unbalanced panel dataset of age-

specific annual mortality rates, using three age categories: <5, 5-64, and >64, where the unit of observation

is the second administrative unit, or “ADM2” (e.g., a county in the U.S.) by year.

3.1.2 Historical climate data

The analysis is performed with two separate groups of historical data on precipitation and temperature. First,

we use the Global Meteorological Forcing Dataset (GMFD) (Sheffield, Goteti, and Wood, 2006), which relies

on a weather model in combination with observational data. Second, we repeat our analysis with climate

datasets that strictly interpolate observational data across space onto grids, combining temperature data

from the daily Berkeley Earth Surface Temperature dataset (BEST) (Rohde et al., 2013) with precipitation

data from the monthly University of Delaware dataset (UDEL) (Matsuura and Willmott, 2007). Table 1

summarizes these data; full data descriptions are provided in Appendix B.2. We link climate and mortality

data by aggregating gridded daily temperature data to the annual measures at the same administrative level

as the mortality records (i.e., ADM2).

6We additionally use data from India as cross-validation of our main results, as the India data do not have records of
age-specific mortality rates. The inclusion of India increases our data coverage to 55% of the global population.
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Table 1: Historical mortality & climate data

Mortality records
Average annual Average
mortality rate∗† covariate values∗□

Global GDP Avg. Annual
pop. per daily avg. days

Country N Spatial scale× Years Age categories All-age >64 yr. share⋄ capita⊗ temp.⊘ > 28◦C
Brazil 228,762 ADM2 1997-2010 <5, 5-64, >64 525 4,096 0.028 11,192 23.8 35.2

Chile 14,238 ADM2 1997-2010 <5, 5-64, >64 554 4,178 0.002 14,578 14.3 0

China 7,488 ADM2 1991-2010 <5, 5-64, >64 635 7,507 0.193 4,875 15.1 25.2

EU 13,013 NUTS2‡ 1990▷-2010 <5, 5-64, >64 1,014 5,243 0.063 22,941 11.2 1.6

France⊕ 3,744 ADM2 1998-2010 0-19, 20-64, >64 961 3,576 0.009 31,432 11.9 0.3

India∧ 12,505 ADM2 1957-2001 All-age 724 – 0.178 1,355 25.8 131.4

Japan 5,076 ADM1 1975-2010 <5, 5-64, >64 788 4,135 0.018 23,241 14.3 8.3

Mexico 146,835 ADM2 1990-2010 <5, 5-64,>64 561 4,241 0.017 16,518 19.1 24.6

USA 401,542 ADM2 1968-2010 <5, 5-64, >64 1,011 5,251 0.045 30,718 13 9.5

All Countries 833,203 – – – 780 4,736 0.554 20,590 15.5 32.6

Historical climate datasets
Dataset Citation Method Resolution Variable Source
GMFD, V1 Sheffield, Goteti, and Wood (2006) Reanalysis & 0.25◦ temp. & Princeton University

Interpolation precip.
BEST Rohde et al. (2013) Interpolation 1◦ temp. Berkeley Earth
UDEL Matsuura and Willmott (2007) Interpolation 0.5◦ precip. University of Delaware

∗In units of deaths per 100,000 population.
†To remove outliers, particularly in low-population regions, we winsorize the mortality rate at the 1% level at high end of the
distribution across administrative regions, separately for each country.
□ All covariate values shown are averages over the years in each country sample.
× ADM2 refers to the second administrative level (e.g., county), while ADM1 refers to the first administrative level (e.g., state).

NUTS2 refers to the Nomenclature of Territorial Units for Statistics 2nd (NUTS2) level, which is specific to the European Union (EU)
and falls between first and second administrative levels.
⋄ Global population share for each country in our sample is shown for the year 2010.
⊗ GDP per capita values shown are in constant 2005 dollars purchasing power parity (PPP).
⊘ Average daily temperature and annual average of the number of days above 28◦C are both population weighted, using population
values from 2010.
‡ EU data for 33 countries were obtained from a single source. Detailed description of the countries within this region is presented in
Appendix B.1.
▷ Most countries in the EU data have records beginning in the year 1990, but start dates vary for a small subset of countries. See
Appendix B.1 and Table B.1 for details.
⊕ We separate France from the rest of the EU, as higher resolution mortality data are publicly available for France.

∧ It is widely believed that data from India understate mortality rates due to incomplete registration of deaths.

3.1.3 Covariate data

The analysis allows for heterogeneity in the age-specific mortality-temperature relationship as a function of

two long-run covariates: a measure of climate (i.e., long-run average temperature) and income per capita.

We assemble time-invariant measures of both these variables at the first administrative unit, or “ADM1”

(e.g., a state in the U.S.) level using GMFD climate data and a combination of the Penn World Tables

(PWT), Gennaioli et al. (2014), and Eurostat (2013). These covariates are measured at the ADM1 scale (as

opposed to the ADM2 scale of the mortality records) due to limited availability of higher resolution income

data. The construction of the income variable requires downscaling; details are provided in Appendix B.3.

In a set of robustness checks, we analyze five additional sources of heterogeneity, each of which has been

suggested in the literature as an important driver of long-run wellbeing. These data include country-by-year

observations of institutional quality from the Center for Systemic Peace (2020) (Glaeser et al., 2004), access

to healthcare services (Bailey and Goodman-Bacon, 2015) and labor force informality (La Porta and Shleifer,

2014) from the World Bank (2020), educational attainment from the World Bank (2020) and Organization

of Economic Cooperaton and Development (2020), and within-country income inequality from the World

Inequality Lab (2020) (Alesina and Rodrik, 1994).
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3.2 Data for projecting the mortality-temperature relationship around the world

& into the future

3.2.1 Unit of analysis for projections

We partition the global land surface into a set of 24,378 regions and for each region we generate location-

specific projected damages of climate change. The finest level of disaggregation in previous estimates of

global climate change damages divides the world into 170 regions (Burke, Hsiang, and Miguel, 2015), but

most papers account for much less heterogeneity (Nordhaus and Yang, 1996; Tol, 1997). These regions

(hereafter, impact regions) are constructed such that they are either identical to, or are a union of, existing

administrative regions. They (i) respect national borders, (ii) are roughly equal in population across regions,

and (iii) display approximately homogenous within-region climatic conditions. Appendix C details the

algorithm used to create impact regions.

3.2.2 Climate projections

We use a set of 21 high-resolution, bias-corrected, global climate projections produced by NASA Earth

Exchange (NEX) (Thrasher et al., 2012) that provide daily temperature and precipitation through the

year 2100. We obtain climate projections based on two standardized emissions scenarios: Representative

Concentration Pathways 4.5 (RCP4.5, an emissions stabilization scenario) and 8.5 (RCP8.5, a scenario with

intensive growth in fossil fuel emissions) (Van Vuuren et al., 2011; Thomson et al., 2011)).

These 21 climate models systematically underestimate tail risks of future climate change (Tebaldi and

Knutti, 2007; Rasmussen, Meinshausen, and Kopp, 2016).7 To correct for this, we assign probabilistic weights

to climate projections and use 12 surrogate models that describe local climate outcomes in the tails of the

climate sensitivity distribution (Hsiang et al., 2017; Rasmussen, Meinshausen, and Kopp, 2016). Appendix

Figure B.2 shows the resulting weighted climate model distribution. The 21 models and 12 surrogate models

are treated identically in all calculations and are collectively described as the surrogate/model mixed ensemble

(SMME). Gridded output from these 33 projections are aggregated to impact regions.

Only 6 of the 21 models used to construct the SMME provide climate projections after 2100 for both

high and moderate emissions scenarios, and none simulate the impact of a marginal ton of CO2. Therefore,

in our estimates of the mortality partial SCC, we rely on the Finite Amplitude Impulse Response (FAIR)

simple climate model, which has been developed especially for this type of calculation (Millar et al., 2017).

Details on our implementation of FAIR are in Appendix G.

3.2.3 Socioeconomic projections

Projections of population and income are a critical ingredient in the analysis, and for these we rely on

the Shared Socioeconomic Pathways (SSPs), which describe a set of plausible scenarios of socioeconomic

development over the 21st century. We use SSP2, SSP3, and SSP4, which yield emissions in the absence of

mitigation policy that fall between RCP4.5 and RCP8.5 in integrated assessment modeling exercises (Riahi

et al., 2017). For population, we use the International Institute for Applied Systems Analysis (IIASA)

SSP population projections, which provide estimates of population by age cohort at country-level in five-

year increments (IIASA Energy Program, 2016). National population projections are allocated to impact

7The underestimation of tail risks in the 21-model ensemble arises because the ensemble was not designed to sample from
a full distribution, the models exhibit idiosyncratic biases, and the distribution has narrow tails. We correct for bias and
narrowness with respect to global mean surface temperature (GMST) projections, but our method does not correct for all
biases.
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regions based on current satellite-based within-country population distributions from Bright et al. (2012).

Projections of national income per capita are similarly derived from the SSP scenarios, using both the IIASA

projections and the Organization for Economic Co-operation and Development (OECD) Env-Growth model

(Dellink et al., 2015) projections. We allocate national income per capita to impact regions using current

nighttime light satellite imagery from the NOAA Defense Meteorological Satellite Program (DSMP).

Because SSP projections are not available after the year 2100, our calculation of the mortality partial

SCC relies on an extrapolation of the relationship between mortality-related climate change damages and

global temperature change to later years; see Section 7 for details.

3.2.4 Value of a statistical life

We use the value of a statistical life (VSL) to convert projected changes in mortality rates into dollars. Our

primary approach relies on the U.S. EPA’s VSL estimate of $10.95 million (2019 USD).8 We transform the

VSL into a value per life-year lost using a method described in Appendix H.1, which allows us to compute the

total value of expected life-years lost due to climate change, accounting for different mortality-temperature

relationships across age groups. We allow the VSL to vary with income, following the existing literature

(e.g., Viscusi, 2015) in using an income elasticity of unity to adjust the U.S. estimates of the VSL to different

income levels across the world and over time.9 When computing the mortality partial SCC in Section 7, we

provide multiple alternative valuation assumptions in addition to this benchmark case.

4 Empirical estimates of the mortality-temperature relationship,

accounting for income and climate heterogeneity

This section describes our empirical approach to estimate the heterogeneous impact of temperature on

mortality across the globe using historical data. This method allows us to capture differences in temperature

sensitivity across distinct populations, and thus to quantify the benefits of adaptation and income as observed

historically. Section 5 details how we combine this empirical information with standard projection data to

construct estimates of the mortality effects of climate change (i.e., Equation 2).

4.1 Empirical model

We estimate the mortality-temperature relationship using a pooled sample of age-specific mortality rates

across 40 countries. The effect of temperature on mortality rates is identified using year-to-year variation

in the distribution of daily weather following, for example, Deschênes and Greenstone (2011). Additionally,

we allow the effect of temperature to vary with average temperature (i.e., long-run climate) and average per

capita incomes.10

8This VSL is from the 2012 U.S. EPA Regulatory Impact Analysis (RIA) for the Clean Power Plan Final Rule, which
provides a 2020 income-adjusted VSL in 2011 USD, which we convert to 2019 USD. This VSL is also consistent with income-
and inflation-adjusted versions of the VSL used in the U.S. EPA RIAs for the National Ambient Air Quality Standards (NAAQS)
for Particulate Matter (2012) and the Repeal of the Clean Power Plan (2019), among many other RIAs.

9The EPA considers a range of income elasticity values for the VSL, from 0.1 to 1.7 (U.S. Environmental Protection Agency,
2016b), although their central recommendations are 0.7 and 1.1 (U.S. Environmental Protection Agency, 2016a). A review by
Viscusi (2015) estimates an income-elasticity of the VSL of 1.1.

10These two factors have been the focus of studies modeling heterogeneity across the broader climate-economy literature.
For examples, see Mendelsohn, Nordhaus, and Shaw (1994); Kahn (2005); Auffhammer and Aroonruengsawat (2011); Hsiang,
Meng, and Cane (2011); Graff Zivin and Neidell (2014); Moore and Lobell (2014); Davis and Gertler (2015); Heutel, Miller,
and Molitor (2017); Isen, Rossin-Slater, and Walker (2017).
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The two factors defining this interaction model reflect the economics governing adaptation. First, a

higher long-run average temperature incentivizes investment in heat-related adaptive behaviors (e.g., air

conditioning), as the return to any given adaption is higher the more frequently the population experiences

days with life-threatening temperatures. Second, higher incomes relax agents’ budget constraints and hence

facilitate adaptive behavior. In other words, people live successfully in both Anchorage, AK and Houston,

TX due to compensatory responses to their climate, and the wealthy purchase more safety. To capture these

effects, we interact a nonlinear temperature response function with location-specific measures of climate and

per capita income.

Specifically, we estimate the following model:

Mait =ga(Tit , TMEANs, log(GDPpc)s) + qca(Rit) + αai + δact + εait, (4)

where a indicates age category with a ∈ {< 5, 5-64, > 64}, i denotes the second administrative level (ADM2,

e.g., county),11 s refers to the first administrative level (ADM1, e.g., state or province), c denotes country,

and t indicates years. Thus, Mait is the age-specific all-cause mortality rate in ADM2 unit i in year t. αai

is a vector of fixed effects for age × ADM2, and δact is a vector of fixed effects that allow for shocks to

mortality that vary at the age× country × year level.

Before describing the functional form for ga(·), we note that the temperature data are provided at the

grid-cell-by-day level. As detailed in Appendix B.2.4, we align gridded daily temperatures with annual

administrative mortality records using a method that allows for the recovery of a nonlinear relationship

between mortality and temperature that occurs at the grid cell level, even though Equation 4 is estimated

at a higher level of aggregation (Hsiang, 2016). The nonlinear transformations of daily temperature are

captured by the annual, ADM2-level vector Tit.

In our main specification, Tit is represented by fourth order polynomials of daily average temperatures,

summed across the year. This model strikes a balance between providing sufficient flexibility to capture

important nonlinearities, parsimony, and limiting demands on the data. In a set of robustness checks we

explore the sensitivity of the results to alternative functional forms for temperature, such as binned daily

average temperatures, restricted cubic splines, and a 2-part linear spline. Analogous to temperature, we

summarize daily grid-level precipitation in the annual ADM2-level vector Rit. We construct Rit as a second-

order polynomial of daily precipitation, summed across the year, and estimate an age- and country-specific

linear function of this vector, represented by qac(·).
The impact of weather realizations Tit on mortality is identified from the plausibly random year-to-year

variation in temperature within a geographic unit. Specifically, the age × ADM2 fixed effects αai ensure

that we isolate within-location year-to-year variation in temperature and rainfall exposure, which is as good

as randomly assigned. The age × country × year fixed effects δact account for any time-varying trends or

shocks to age-specific mortality rates which are unrelated to the climate, although we also explore robustness

to alternative sets of fixed effects.

The mortality-temperature response function ga(·) depends on TMEAN , the sample-period average

annual temperature, and the logarithm of GDPpc, the sample-period average of annual GDP per capita.

The model does not include uninteracted terms for TMEAN and GDPpc because they are collinear with αai,

which shuts down the possibility of the climate influencing the mortality rate equally on all days, regardless

of daily temperature. We impose this assumption because we define climate adaptation to be actions or

11This is usually the case. However, as shown in Table 1, the EU data is reported at Nomenclature of Territorial Units for
Statistics 2nd (NUTS2) level, and Japan reports mortality at the first administrative level.
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investments that reduce the risk from temperatures that threaten human well-being, as is common in the

literature (e.g., Hsiang, 2016). Our analysis therefore allows the benefits (and, as discussed later, the costs)

of adaptation to influence the shape of the mortality-temperature relationship, but not its level.

In practice, we interact TMEAN and log(GDPpc) with each of the elements of the temperature vector

Tit, which, as we noted, is a fourth order polynomial in our preferred specification. We estimate Equation

4 without any regression weights since we are explicitly modeling heterogeneity in treatment effects rather

than integrating over it, and because we find that population weights generally lead to less precise estimates,

as is common with data that represent group-level averages (Solon, Haider, and Wooldridge, 2015). More

details on the implementation of this regression are in Appendix D.1.

A central challenge in understanding the extent of adaptation is that there exists no experimental or

quasi-experimental variation in climate as opposed to weather. Put simply, meaningful variation in climate

within a location is not available in recorded history. So, while plausibly random year-to-year fluctuations

in temperature within locations are used to identify the effect of weather events in Equation 4, we must use

cross-sectional variation in climate, as well as in income, between locations to estimate heterogeneity in the

mortality-temperature relationship. We therefore interpret our heterogeneity results as associational.

Nevertheless, we believe this model’s estimates are informative about the impact of climate change on

mortality for several reasons, including: adding alternative sources of heterogeneity in mortality sensitivity

to temperature has little effect on the estimated response functions; the model performs well out-of-sample

on a variety of cross-validation tests; and estimated response functions are robust to a host of alternative

specifications. These tests are discussed in detail in Sections 4.3 and 5.2.

4.2 Empirical results

Before presenting results from the estimation of Equation 4, we first show results using a model without

interactions, yielding average effects of temperature on mortality across individuals within each age group.

This model is detailed in Appendix D.2, but uses the same set of fixed effects and controls as Equation

4. Appendix Figure D.3 displays the resulting average mortality-temperature responses for each age group.

Consistent with prior literature (e.g., Deschênes and Moretti, 2009; Heutel, Miller, and Molitor, 2017), we

uncover substantial heterogeneity across age groups within our multi-country sample. On average, we find

that people over the age of 64 experience approximately 4.7 extra deaths per 100,000 for a day at 35◦C

(95◦F) compared to a day at 20◦C (68◦F), a substantially larger effect than that for younger cohorts, which

exhibit little response. This age group is also more severely affected by cold days; estimates suggest that

people over the age of 64 experience 3.4 deaths per 100,000 for a day at −5◦C (23◦F) compared to a day at

20◦C, while there is a small and statistically insignificant mortality response to these cold days for other age

categories. Overall, these results demonstrate that the elderly are disproportionately harmed by additional

hot days and disproportionately benefit from reductions in cold days.

Tabular results for the estimation of Equation 4, which models heterogeneity in the mortality-temperature

response across our sample, are reported in Appendix Table D.1 for each age group. As these terms are

difficult to interpret, we present the results visually by dividing the sample into nine subsamples, based on

terciles of climate and income. We then plot predicted response functions at the mean value of climate and

income within each of these nine subsamples, using the coefficients from estimation of Equation 4. The result

is a set of predicted mortality-temperature response functions that vary across the joint distribution of income

and average temperature within the sample data. The resulting response functions are shown in Figure 1 for

the >64 age category (other age groups are shown in Appendix D.1), where average incomes are increasing
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across subsamples vertically and average temperatures are increasing across subsamples horizontally.
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Figure 1: Heterogeneity in the mortality-temperature relationship (age >64 mortality rate).
Each panel represents a predicted mortality-temperature response function for the >64 age group for a subset of the income-
average temperature covariate space within the data sample. Response functions in the lower left apply to the low-income, cold
regions of the sample, while those in the upper right apply to the high-income, hot regions of the sample. Regression estimates
are from a fourth-order polynomial in daily average temperature and are estimated using GMFD weather data with a sample
that was winsorized at the 1% level on the top end of the distribution only. All response functions are estimated jointly in a
stacked regression model that is fully saturated with age-specific fixed effects, and where each temperature variable is interacted
with each covariate. Values in the top left-hand corner of each panel show the percentage of the global population that reside
within each in-sample tercile of average income and average temperature in 2010 (top row) and as projected in 2100 (bottom
row, SSP3). Other age groups are shown in Appendix Figures D.1 and D.2.

The Figure 1 results are broadly consistent with the economic prediction that people adapt to their

climate and that income is protective. For example, within each income tercile in Figure 1, the effect of

hot days (e.g., days >35◦C) on mortality rates declines as one moves from left (cold climates) to right (hot

climates). Presumably, this reflects individuals’ and societies’ compensatory adaptations in response to their

climate (e.g., greater penetration of air conditioning in hot climates than in cold ones). With respect to

income, Figure 1 reveals that moving from the bottom (low income) to top (high income) within a climate

tercile causes a substantial flattening of the response function, especially at high temperatures. Two statistics

help to summarize the findings in Figure 1. First, moving from the coldest to the hottest tercile saves on

average 7.9 (p-value=0.06) deaths per 100,000 at 35◦C. Second, moving from the poorest to the richest tercile

saves approximately 5.0 (p-value=0.1) deaths per 100,000 at 35◦C for the > 64 age category.12

12These values are calculated by predicting the mortality-temperature relationship at the mean value of climate and income
within each tercile of the estimating sample, using coefficients from the estimation of Equation 4. For example, we evaluate
ĝa(·) at the average climate and income observed in the poorest 1

3
of administrative units (poorest tercile) or the hottest 1

3
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As shown in Appendix D.1, qualitatively similar results are recovered for other age groups. This is

consistent with conventional wisdom that protection from extreme temperatures is a normal good, although

the effect of income on the mortality-temperature relationship would not be judged statistically significant

by conventional criteria for the >64 age category (see Appendix Table D.1).

4.3 Sensitivity analyses

In Appendix D, we present additional empirical results and a variety of sensitivity analyses that probe the

robustness of the results presented in the previous subsection. For example, Appendix Table D.2 reports on

the robustness of the estimated mortality-temperature relationship to alternative specifications, including

different spatial and temporal controls. Appendix Figure D.4 shows that mortality-temperature responses are

similar across alternative functional form assumptions for temperature, as well as across alternative climate

datasets. Appendices D.4 and D.5 show that predicted mortality-temperature relationships are qualitatively

unchanged when we use alternative characterizations of the climate or if we omit precipitation controls,

respectively. Finally, Appendix D.6 shows that adding other candidate determinants of heterogeneity in

the mortality-temperature relationship to Equation 4, such as institutional quality, doctors per capita, and

educational attainment, generates very similar predicted response functions, supporting our assumption that

climate and income are key determinants of the shape of the response function.

5 Projections of climate change impacts on future mortality rates

This section begins by providing practical expressions for the three measures of the mortality effects of

climate change defined in Section 2. Section 5.2 then details the methods employed to extrapolate mortality-

temperature relationships to the parts of the world where historical mortality data are unavailable and

to future time periods. Finally, Section 5.3 reports on the projected mortality effects of climate change,

accounting for climate model and econometric uncertainty. The paper’s ultimate aim is to develop an

estimate of the full mortality risk of climate change (i.e., the sum of the increase in deaths and adaptation

costs shown in Equation 3), but adaptation costs are not observed directly. In Section 6, we use a stylized

revealed preference approach to infer adaptation costs, which allows for a complete measure.

5.1 Practical expressions for three measures of the mortality effects of climate

change

Here we translate the three measures of the mortality effects of climate change defined in Section 2 (i.e.,

Equations 2, 2a, and 2b) into expressions that can be directly computed from the empirical results shown

in Section 4. The empirical estimation of each of these measures is reported below in units of deaths per

100,000, although it is straightforward to monetize these measures using estimates of the value of a statistical

life (VSL), and we do so in the next section. Here and throughout this subsection, subscripts for impact

regions and age groups are omitted for clarity, although all measures of the mortality effects of climate change

are computed separately for each age group, impact region, and year.

of administrative units (hottest tercile). We then difference the mortality response to 35◦C between two terciles (e.g., coldest
minus hottest). P -values are computed using a standard t-test on the linear combination of coefficients.
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First, the mortality effects of climate change, as defined in Equation 2, is empirically computed as:

mortality effects of climate change =

ĝ(Tt, TMEANt, log(GDPpc)t)− ĝ(Tt0 , TMEANt0 , log(GDPpc)t), (2’)

where ĝ(·) represents the fitted values from estimation of Equation 4. This expression accounts for endogenous

responses to both the changing climate and evolving incomes. Note that in Equation 2’, the second term

represents a counterfactual predicted mortality rate that would be realized under current temperatures, but

in a population that benefits from rising incomes. This counterfactual is used to isolate the role of climate

change from the benefits of income growth in determining mortality’s sensitivity to temperature.

Second, the mortality effects of climate change without income growth or adaptation, defined in Equation

2a, is a benchmark expression often employed in previous work that assumes that mortality sensitivity to

temperature does not change in response to future incomes or temperatures. It is empirically estimated as:

mortality effects of climate change (without income growth or adaptation) =

ĝ(Tt, TMEANt0 , log(GDPpc)t0)− ĝ(Tt0 , TMEANt0 , log(GDPpc)t0) (2a’)

Finally, the mortality effects of climate change without adaptation, defined in Equation 2b’, captures the

change in mortality rates that would be expected if populations became richer, but they did not respond

optimally to warming. It is calculated as:

mortality effects of climate change (without adaptation) =

ĝ(Tt, TMEANt0 , log(GDPpc)t)− ĝ(Tt0 , TMEANt0 , log(GDPpc)t) (2b’)

When computing Equations 2’, 2a’, and 2b’, we define the baseline period t0 to be the years 2001-2010,

so we are measuring the impact of climate change since this period.13 These three measures are all reported

below using the estimates of ĝ(·) shown in Section 4 in combination with projections of income and climate

from datasets described in Section 3.

5.2 Methods for projecting the mortality effects of climate change

5.2.1 Spatial extrapolation

The fact that carbon emissions are a global pollutant requires that estimates of climate damages used to

inform an SCC must be global in scope. A key challenge for generating such globally-comprehensive estimates

in the case of mortality is the absence of data throughout many parts of the world. Often, registration of

births and deaths does not occur systematically. Although we have, to the best of our knowledge, compiled

the most comprehensive mortality data file ever collected, the 40 covered countries only account for 38%

of the global population (55% if India is included, although it only contains all-age mortality rates). This

leaves more than 4.2 billion people unrepresented in the sample of available data, which is especially troubling

because these populations have incomes and live in climates that may differ from the parts of the world where

data are available.

To achieve the global coverage essential to understanding the costs of climate change, we use the results

13While anthropogenic warming has been detected in the climate record far earlier than 2001-2010, we estimate impacts of
climate change only since this period.
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from the estimation of Equation 4 on the observed 38% global sample to estimate the sensitivity of mortality

to temperature everywhere, including the unobserved 62% of the world’s population. Specifically, the results

from this model enable us to use two observable characteristics – average temperature and income – to

predict the mortality-temperature response function for each of our 24,378 impact regions.

To see how this is done, we note that the projected response function for any impact region r requires

three ingredients. The first are the estimated coefficients ĝa(·) from Equation 4. The second are estimates of

GDP per capita at the impact region level. And third is the long-run average annual temperature for each

impact region.

Using these data, we then predict the shape of the response function for each age group a, impact region

r, and year t, up to a constant: ĝart = ĝa(Trt, TMEANrt, log(GDPpc)rt). The various fixed effects in

Equation 4 are unknown and omitted, since they were nuisance parameters in the original regression.

This results in a unique, spatially heterogeneous, and globally comprehensive set of predicted response

functions for each location on Earth.

The accuracy of the predicted response functions will depend, in part, on the ability of estimated Equation

4 to capture responses in regions where mortality data are unavailable. An imperfect but helpful exercise

when considering whether our model is representative is to evaluate the extent of common overlap between

the two samples. Figure 2A shows this overlap in 2015, where the grey squares reflect the joint distribution

of GDP and climate in the full global partition of 24,378 impact regions and the overlaid squares represent

the distribution only for the impact regions in the sample used to estimate Equation 4. It is evident that

temperatures in the global sample are generally well-covered by our data, although we lack coverage for the

poorer end of the global income distribution due to the absence of mortality data in poorer countries.

To assess the performance of our model in predicting mortality-temperature relationships out-of-sample,

Appendices D.7 and D.8 report on multiple custom cross-validation exercises designed to mimic the paper’s

spatial extrapolation. The model in Equation 4 performs well in all out-of-sample tests, both when compared

to measures of in-sample model fit and when compared to the out-of-sample performance of models that

omit all or some of the interaction effects, as is done in much of the prior literature (e.g., Hsiang et al.,

2017; Deschênes and Greenstone, 2011). However, this model generates conservative predictions of mortality

impacts of climate change in India, a hot and poor region of the globe that is not used in estimation due to

its lack of age-specific mortality rates.

5.2.2 Temporal extrapolation

As detailed in Equation 2’, we allow each impact region’s mortality-temperature response function to evolve

over time, reflecting projected changes in climate and income that come from a set of internationally stan-

dardized and widely used scenarios. Specifically, we model the evolution of response functions in region r

and year t based on these projections and the estimation results from fitting Equation 4.

Some details about these projections are worth noting. First, a 13-year moving average of income per

capita in region r is calculated using national forecasts from the Shared Socioeconomics Pathways (SSP),

combined with a within-country allocation of income based on present-day nighttime lights (see Appendix

B.3.2), to generate a new value of log(GDPpc)rt.

The length of this time window is chosen based on a goodness-of-fit test across alternative window lengths

(see Appendix E.1). Second, a 30-year moving average of temperatures for region r is updated in each year

t to generate a new level of TMEANrt. The response curves ĝart = ĝa(Trt, TMEANrt, log(GDPpc)rt) are

calculated for each impact region for each age group in each year with these updated values of TMEANrt
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Figure 2: Joint coverage of income and long-run average temperature for estimating and full
samples. Panels show the joint distribution of income and long-run average annual temperature in the estimating sample
as compared to the global sample of impact regions. Panel A shows in grey-black the global sample for impact regions in
2015. Panel B shows in grey-black the global sample for impact regions in 2100 under a high-emissions scenario (RCP8.5) using
climate model CCSM4 and a median growth scenario (SSP3). In both panels, the estimating sample indicates coverage for
impact regions within the estimating sample using 2015 values of income and long-run average annual temperature.

and log(GDPpc)rt.

Third, Figure 2B shows that over the coming decades, temperatures and incomes are predicted to rise

beyond the support of the global cross-section in our historical data. Thus, we impose two constraints

on our projections, guided by economic theory and by the physiological literature, to ensure that future

response functions are consistent with the fundamental characteristics of mortality-temperature responses in

the historical record. The first assumption ensures that the response function is weakly monotonic around

an empirically estimated, location-specific, optimal mortality temperature, called the minimum mortality

temperature (MMT). The second assumption is that rising income cannot make individuals worse off, in the

sense of increasing the temperature sensitivity of mortality. These assumptions and their implementation

are detailed in Appendix E.2.

With these two constraints, we project annual impacts of climate change separately for each impact

region and age group from 2001 to 2100.14 Specifically, we apply projected changes in the climate to each

region’s response function, which is evolving as climate and income evolve. The nonlinear transformations

of daily average temperature that are used in the function ga(·) are computed under both the RCP4.5 and

RCP8.5 emissions scenarios for all 33 climate projections in the SMME (as described in Section 3.2). This

distribution of climate models captures uncertainties in the climate system through 2100.

To assess the performance of our model in predicting mortality-temperature relationships in new time

periods, Appendix D.7 reports on a cross-validation exercise that subsamples data based on time, showing

that overall performance is high when compared to a benchmark model. However, we do find that Equation

4 occasionally over-estimates or under-estimates future mortality sensitivity to hot days in some age groups

14When computing the mortality partial SCC, we include mortality effects of climate change after 2100. See Section 7.2 for
details on our approach to extrapolating beyond years for which standard climate and socioeconomic projections are available.
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and for some income levels (see Appendix Figure D.10). To address this concern, Appendix F.4 explores the

sensitivity of our main climate change projections to alternative assumptions about the rates of adaptation.

5.2.3 Uncertainty

An important feature of the analysis is to characterize the uncertainty inherent in these projections of the

mortality effects of climate change.15 As discussed above, we construct estimates of the mortality effects of

climate change for each of 33 distinct climate projections in the SMME that together capture the uncertainty

in the climate system.16 Additionally, uncertainty in the estimates of ĝa(·) is an important second source of

uncertainty in our projected impacts that is independent of physical uncertainty.

In order to account for both of these sources of uncertainty, we execute a Monte Carlo simulation. First,

for each age category, we randomly draw a set of parameters corresponding to the terms composing ĝa(·) from
an empirical multivariate normal distribution characterized by the covariance between all of the parameters

from the estimation of Equation 4.17 Second, using these parameters in combination with location- and time-

specific values of income and average climate provided by a given SSP scenario and RCP-specific climate

projection from each of the 33 climate projections in the SMME, we construct a predicted response function

for each of our 24,378 impact regions. Third, with these response functions in hand, we use daily weather

realizations from the corresponding simulation to calculate the mortality effects of climate change (i.e.,

Equations 2’, 2a’, and 2b’ above) for each impact region for each year between 2001 and 2100. Finally, this

process is repeated until approximately 1,000 projection estimates are complete for each impact region, age

group, and RCP-SSP combination.

The resulting calculation is computationally intensive, requiring ∼94,000 hours of CPU time across all

scenarios. When reporting projected impacts in any given year, we show summary statistics (e.g., mean,

median) for reasons of parsimony, although this entire distribution is available. In Section 7, we value

the uncertainty characterized by this distribution following Nath et al. (2022) in undertaking “certainty

equivalence” calculations with standard risk aversion parameters.

5.3 Results: the mortality effects of climate change

5.3.1 Spatial extrapolation of temperature sensitivity

Figure 3A reports predicted mortality-temperature response functions for the >64 age category for the

impact regions that fall within the countries in our mortality dataset (labeled “in-sample”).18 These predicted

responses are plotted for each impact region using 2015 values of income and climate. Despite a shared overall

shape, this figure reveals substantial heterogeneity across regions in this temperature response. Geographic

heterogeneity within the sample is shown for hot days in the map in panel B, where shading indicates the

marginal effect of a day at 35◦C, relative to a day at a location-specific minimum mortality temperature.

15See Burke et al. (2015) for a discussion of combining physical and econometric uncertainty in studies of climate change
impacts.

16Note that while the SMME fully represents the tails of the climate sensitivity distribution as defined by a probabilistic
simple climate model (see Appendix B.2.3), there remain important sources of climate uncertainty that are not captured in our
projections, due to the limitations of both the simple climate model and the GCMs. These include some climate feedbacks that
may amplify the increase of global mean surface temperature, as well as some factors affecting local climate that are poorly
simulated by GCMs.

17Note that coefficients for all age groups are estimated jointly in Equation 4, such that across-age-group covariances are
accounted for in this multivariate distribution.

18Appendix Figure D.5 shows analogous results for other age groups.
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Figure 3: Using income and climate to predict current response functions globally (age >64
mortality rate). In panels A and C, grey lines are predicted response functions for impact regions, each representing a
population of 276,000 on average. Solid black lines are the unweighted average of the grey lines, where the opacity indicates the
density of realized temperatures (Hsiang, 2013). Panels B and D show each impact region’s mortality sensitivity to a day at
35◦C, relative to a location-specific minimum mortality temperature. The top row shows all impact regions in the estimating
sample and the bottom row shows extrapolation to all impact regions globally. Predictions shown are for 2015 using the SSP3
socioeconomic scenario and climate model CCSM4 under the RCP8.5 emissions scenario. Appendix Figure D.5 shows analogous
results for other age groups.

Just as in Figure 1, the predicted mortality response to very hot days is greatest in places with cool climates

and in those with low incomes.

Panels C and D of Figure 3 show analogous plots, again using 2015 data on location-specific average

income and climate, but here filling in the estimated mortality response to a hot day in locations without

mortality data (labeled “global”). The predicted responses imply that a 35◦C day increases the global

average mortality rate for the oldest age category by 10.1 deaths per 100,000 relative to a location-specific

minimum mortality temperature, although there is substantial heterogeneity across the planet. The effect

in locations without mortality data is 11.7 deaths per 100,000, versus 7.8 within the sample of countries for

which mortality data are available, largely driven by the fact that the sample with mortality data represents

wealthier locations where temperature responses are more muted.
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5.3.2 Projection of the mortality effects of climate change

The previous subsection demonstrated that the model of heterogeneity outlined in Equation 4 allows us to

extrapolate mortality-temperature relationships to regions of the world without mortality data today. This

subsection uses those results, in combination with downscaled projections of income and climate, to estimate

the mortality effects of climate change at global scale and over time, following the methods in Section 5.2.

Here, we show results relying on income and population projections from the socioeconomic scenario SSP3

because its historic global growth rates in GDP per capita and population match observed global growth

rates over the 2000-2018 period much more closely than other SSPs (see Appendix Table B.3). Appendix F

shows results using SSP2 and SSP4, and the paper’s approach can be applied to any available socioeconomic

scenario.

Figure 4 shows the spatial distribution of the mortality effects of climate change (Equation 2’) in 2100

under the emissions scenario RCP8.5. Other measures of climate change impacts (Equations 2a’, 2b’, and 3’)

are mapped in Appendix Figure F.1. To construct these estimates, we calculate Equation 2’ for each impact

region in 2100, separately for each age group. The map displays the spatial distribution of the mean estimate

across our ensemble of Monte Carlo simulations, accounting for both climate and statistical uncertainty and

pooling across all age groups.19 The density plots for select cities show the full distribution of impacts across

all Monte Carlo simulations, with the white line equal to the mean estimate displayed on the map.

Figure 4 makes clear that the mortality effects of climate change are distributed unevenly around the

world, even when accounting for the benefits of income growth and adaptation. Despite the gains from

adaptation shown in Appendix Figure E.2, there are large increases in mortality rates in the global south.

For example, in Accra, Ghana, climate change is predicted to lead to approximately 100 more days above

32◦C (∼90◦F) per year and cause 140 additional deaths per 100,000 annually under RCP8.5 in 2100. This

is a large impact, roughly equal to a 17% increase in Accra’s current overall mortality rate. If adaptation to

climate and benefits of income growth were ignored (as in Equation 2a’), climate change would be predicted

to cause 260 additional deaths per 100,000 in Accra in this scenario. In contrast, there are gains in many

impact regions in the global north, including in Berlin, Germany, where climate change is predicted to save

approximately 150 lives per 100,000 annually when climate adaptation and benefits of income growth are

accounted for. These avoided deaths occur because of a substantial reduction in the number of deadly cold

days, and amount to a 15% decline in Berlin’s current mortality rate.

Figure 5 plots predictions of the global average mortality effects of climate change following Equations

2’, 2a’, and 2b’ under emissions scenario RCP8.5. These three measures of mortality effects are calculated

for each of the 24,378 impact regions and then aggregated to the global level. In panel A, each line shows a

mean estimate for the corresponding measure and year. Averages are taken across the full set of Monte Carlo

simulation results from all 33 climate models, and all draws from the empirical distribution of estimated

regression parameters, as described above. In panel B, the 25th-75th and 10th-90th percentile ranges of

the Monte Carlo simulation distribution are shown for the mortality effects of climate change (Equation

2’); the green line represents the same average value in both panels. Boxplots to the right summarize the

distribution of mortality effects for both RCP8.5 and the moderate emissions scenario RCP4.5; Appendix

Figure F.7 replicates the entire figure for RCP4.5.

Figure 5A illustrates that the global mortality effects of climate change would be 221 deaths per 100,000

19When calculating mean values across estimates generated for each of the 33 climate models that form our ensemble, we
use model-specific weights. These weights are constructed as described in Appendix B.2.3 in order to accurately reflect the full
probability distribution of temperature responses to changes in greenhouse gas concentrations.
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Figure 5: Time series of projected mortality effects of climate change. All lines show projected
mortality effects of climate change across all age categories and are represented by a mean estimate across a set of Monte
Carlo simulations accounting for both climate model and statistical uncertainty. In panel A, each line represents one of three
measures of the mortality effects of climate change. Dashed (Equation 2a’): mortality effects of climate change without income
growth or adaptation. Dashed-dotted: (Equation 2b’): mortality effects of climate change without adaptation. Solid (Equation
2’): mortality effects of climate change. Panel B shows the 10th-90th percentile range of the Monte Carlo simulations for the
mortality effects of climate change (equivalent to the solid line in panel A), as well as the mean and interquartile range. The
boxplots show the distribution of mortality effects of climate change in 2100 under both RCPs. All line estimates shown refer
to the RCP8.5 emissions scenario and all line and boxplot estimates refer to the SSP3 socioeconomic scenario. Appendix Figure
F.7 shows the equivalent for SSP3 and RCP4.5.

by 2100, on average across simulation runs, if the beneficial impacts of adaptation and income were shut

down. This is a large estimate; it is roughly equivalent in magnitude to all global deaths from cardiovascular

disease today (WHO, 2018).

However, our estimates suggest that future income growth and adaptation to climate will substantially

reduce these impacts. Higher incomes lower the predicted mortality effects of climate change to an average

of 104 deaths per 100,000 in 2100, although this estimate exhibits substantial uncertainty (see Appendix

Table D.1 and Appendix Figure F.3). Climate adaptation reduces this further to 73 deaths per 100,000

(solid line). Although much lower than the projection assuming no adaptation or income growth, these

estimates remain economically meaningful—they are about six times larger than the current fatality rate

from automobile accidents in the United States (12 per 100,000) and amount to 60% of the 2020 reported

United States fatality rate from COVID-19 (116 per 100,000).

The large predicted benefits of income growth and climate adaptation are driven by substantial changes

in the mortality-temperature relationship over the 21st century. For example, for the >64 age group, the

average global increase in the mortality rate on a 35◦C day (relative to a day at location-specific minimum

mortality temperatures) declines by roughly 75% between 2015 and 2100, going from 10.1 per 100,000 to just

2.4 per 100,000 in 2100 (see Appendix Figure E.2) under socioeconomic scenario SSP3. Increasing incomes

account for 77% of the decline, with adaptation to climate explaining the remainder; income gains account

for 89% and 82% of the decline for the <5 and 5-64 categories, respectively.

The values in panel A of Figure 5 are mean values aggregated across all Monte Carlo simulation runs, but

the full distribution of the estimated mortality effects of climate change is right-skewed (panel B of Figure 5).

Indeed, there is meaningful mass in the “right” tail. As evidence of this, the median value of the mortality

effects of climate change under RCP8.5 at end of century is 42 deaths per 100,000, as compared to the mean

value of 73, and the 10th to 90th percentile range is [-22, 197].

Figure 5B and Appendix Figure F.5 can be used to develop estimates of the expected benefits of emissions
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mitigation. The mean estimate of the mortality effects of climate change falls from 73 deaths per 100,000

under RCP8.5 to 11 deaths per 100,000 under the emissions stabilization scenario of RCP4.5. For RCP4.5,

the median end-of-century estimate is 4, and the 10th to 90th percentile range is [-36, 62].

As a point of comparison to the limited literature estimating the global mortality consequences of climate

change, we contrast these results to the FUND model, which is unique among the IAMs for calculating sepa-

rate mortality impacts as a component of its SCC calculation. It is difficult to make a direct comparison due

to differences in socioeconomic and emissions scenarios, different treatments of adaptation, and the inclusion

of diarrhea and vector-borne diseases in FUND. Further, the FUND model was calibrated decades ago based

on limited mortality data from just 20 cities largely in wealthy and temperate locations. Nevertheless, the

closest analog is to compare our mean estimate of the global mortality effects of climate change, a change of

73 deaths per 100,000 by 2100 under RCP8.5, to FUND’s reference scenario change of 0.33 deaths per 100,000

in the same year (Anthoff and Tol, 2014).20 It is apparent that this paper’s use of modern econometric tools

and large-scale datasets leads to much larger estimates of climate change’s impact on human mortality.

Before proceeding, we note that in some instances it is necessary to extrapolate response functions to

temperatures outside of those historically observed, based on the fourth order polynomial in daily temper-

ature estimated in Equation 4. To explore the possibility that out-of-sample behavior is disproportionately

influencing our results, Appendix F.3 reports on two sensitivity tests that impose additional restrictions

on the mortality-temperature relationship for out-of-sample temperatures. These restrictions are: (i) that

the mortality-temperature response function is flat for all temperatures outside the observed range; and (ii)

that the mortality-temperature response function increases linearly for all temperature outside the observed

range. These additional restrictions have negligible impacts on our estimated mortality effects of climate

change, suggesting out-of-sample behavior is not driving the results.

6 The full mortality risk of climate change

The last section found meaningful estimated benefits from climate-induced adaptation. This section develops

a revealed preference approach to estimate the costs of these adaptations. Specifically, we use observed

differences in the sensitivity of mortality to temperature to infer measures of location-specific adaptation

costs. We assume that differential mortality sensitivities to temperature are due to differential uptake of

costly adaptive technologies, behaviors, or other investments. Indeed, if these investments were costless, we

would expect universal uptake, such that mortality rates would exhibit little to no response to temperature

across the globe. The approach therefore assumes that differences in the mortality sensitivity to temperature

between locations can be the basis for inferring adaptation costs. This revealed preference approach relies

on a strong set of simplifying assumptions, but it can be directly estimated with available data, even though

the many dimensions of adaptation and their costs are generally unobservable.

After outlining our approach for recovering adaptation costs, this section presents projections of the

full mortality risk of climate change into the future, accounting for the benefits and costs of adaptation

following Equation 3. We additionally demonstrate how the impacts of climate change on mortality and on

mortality-related adaptation costs are projected to occur unequally across the globe.

20This value was calculated by running the MimiFUND model (v3.12.1) and extracting global additional deaths from all
modeled causes. Additional deaths are calculated as the difference between the reference scenario in MimiFUND and a baseline
in which both temperature and CO2 are held constant at their 2005 levels. See Appendix Table B.4 for details on the differences
between our approach, that of FUND, and that of other empirical estimates of the impacts of climate change on mortality.
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6.1 Revealed preference approach to infer adaptation costs

This subsection sketches an outline of the revealed preference approach to recovering adaptation costs.21

Appendix A provides a more detailed description.

Consider a single representative agent who derives utility in each time period t from consumption of a

numeraire good xt. This agent faces mortality risk ft = f(bt, ct), which depends both on the weather and on

adaptive behaviors and investments captured by the composite good bt. As discussed in Section 2, changes

in the climate Ct influence mortality risk through altering weather realizations ct and through changing

beliefs about the weather, hence changing adaptive behaviors bt.
22

In bringing this framework to our empirical analysis, we allow for 24,378 representative agents, one

for each of the impact regions that together span the globe. Each region’s representative agent chooses

consumption of the numeraire xt and of the composite good bt in each period to maximize utility given

her expectations of the weather, subject to an exogenous budget constraint and conditional on the climate.

We let f̃(bt,Ct) = Ect
[f(bt, c(Ct)) | Ct] represent the expected probability of death. This agent therefore

solves:

max
bt,xt

u(xt)
[
1− f̃(bt,Ct)

]
s.t. Yt ≥ xt +A(bt), (5)

where A(bt) represents expenditures for all adaptive investments, and Y is income that is assumed to be

exogenous. Under these assumptions, the first order conditions of Equation 5 define optimal adaptation as

a function of income and the climate: b∗(Yt,Ct), which we sometimes denote below as b∗t for simplicity.

We use this framework to derive an empirically tractable expression for the full mortality risk of cli-

mate change, following Equation 3. To do so, we rearrange the agent’s first order conditions and use the

conventional definition of the VSL to show that marginal adaptation costs equal the value of marginal

adaptation benefits, when evaluated at the optimal level of adaptation b∗ and consumption x∗:
∂A(b∗

t )
∂b =

−V SLt
∂f̃(b∗

t ,Ct)
∂b . That is, representative agents invest in adaption up until the point where the marginal

mortality benefits of further adaptation equal their marginal costs. This simple manipulation of the first

order condition enables us to use marginal adaptation benefits, which we obtain from Section 4’s empirical

estimates of how warming in the long-run climate lowers mortality’s sensitivity to temperature, to infer

estimates of marginal adaptation costs.

The total adaptation costs incurred as the climate changes gradually from t0 to t are recovered by

integrating Equation 5’s first order conditions over time:

A(b∗(Yt,Ct))−A(b∗(Yt,Ct0))︸ ︷︷ ︸
total adaptation costs

=

∫ t

t0

∂A(b∗s)

∂b

∂b∗s
∂C︸ ︷︷ ︸

marginal
adaptation costs

dCs

ds
ds =

∫ t

t0

−V SLs
∂f̃(b∗s,Cs)

∂b

∂b∗s
∂C︸ ︷︷ ︸

marginal adaptation
benefits

dCs

ds
ds. (6)

Equation 6 states that total adaptation costs incurred as the climate changes from t0 to t equal the integral

of marginal adaptation costs in each period (first equality), and that the agent’s first order condition implies

that these marginal adaptation costs can be inferred from using the VSL to monetize observable marginal

adaptation benefits (second equality). Therefore, estimates of marginal adaptation benefits can be used to

21This approach is related to Schlenker, Roberts, and Lobell (2013), who show that estimates of differences in the sensitivity
of maize yields to temperature across locations can be used to infer the costs of adapting to warming.

22Recall that we define the the climate Ct as the joint probability distribution over a vector of weather conditions that can
be expected to occur in period t. The random vector of weather realizations drawn from this distribution is denoted as c(Ct).
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infer total changes in adaptation costs under climate change, even though adaptive investments and their

costs are not directly observable.

To empirically estimate totally adaptation costs following Equation 6, we calculate the following approx-

imation:

A(b∗(Yt,Ct))−A(b∗(Yt,Ct0)) ≈ −
t∑

τ=t0+1

V SLτ

(
∂E[ĝ]

∂TMEAN

∣∣∣∣
Cτ ,Yt

)
︸ ︷︷ ︸

γ̂1E[T ]τ

(TMEANτ − TMEANτ−1) , (7)

which follows from taking the partial derivative of the estimating equation (Equation 4) with respect to

climate to recover the marginal benefits of adaptation, and implementing a discrete-time approximation for

the continuous integral. The under-braced object, γ̂1E[T ]τ , is the product of the expectation of temperature

and the coefficient associated with the interaction between temperature and climate from fitting Equation 4:

it is the estimated benefits of marginal adaptation.23 This object is then multiplied by the change in average

temperature between each period.24 Finally, we treat the VSL as a function of income, which evolves as

incomes increase over time. Thus, Equation 7 represents the sum from t0 to t of the monetary value of the

marginal mortality-related benefits of adaptation in each period, which is equivalent to the sum of marginal

mortality-related adaptation costs in each period.

Some intuition may be helpful here. This approach to recovering adaptation costs requires two pieces:

(i) estimates of adaptation’s marginal benefits (i.e., γ̂E[T ]); and (ii) the assumption that individuals make

all adaptation investments where the benefits exceed the costs and none of the investments where the costs

exceed the benefits. The examples of Seattle, WA and Houston, TX, which have similar incomes but distinct

climates, are instructive. Houston has adapted to its hotter climate; we estimate that the impact of a 30◦C

day on the annual >64 year old mortality rate (relative to a day at 20◦C) is ∼15 times larger in Seattle than

it is in Houston. Our approach assumes that the costs required to achieve Houston-like protection from hot

days must exceed the benefits that Seattle would receive from adopting similar practices. This assumption

seems plausible: Houston has an average of 26.3 days ≥30◦C annually, compared to 0.02 such days in Seattle,

and its air conditioning penetration rate is 100%, while Seattle’s is just 27% (Barreca et al., 2016). Put

plainly, it appears that the high costs of installing air conditioning exceed its benefits in Seattle, but not in

Houston, where it saves lives on many more days per year.

Of course, the climatic difference between Seattle and Houston is non-marginal. In the limit, the benefits

of adaptation in response to a marginal climate difference exactly equal their costs. We can therefore

compute the total adaptation costs associated with a non-marginal change in climate by summing the

empirical estimates of the marginal mortality benefits of adaptation over all of the marginal climate changes

that together equal the non-marginal change. In practice, these adaptation cost estimates are calculated

annually for each impact region and age group and for each of the 33 climate models.

The estimates of adaptation costs enable us to develop a complete measure of the full mortality risk

of climate change that captures both the benefits and costs of adaptation (i.e., Equation 3). Its empirical

23The functional form we use to estimate mortality as a function of temperature, climate, and income is g(·) =

(γ0 + γ1TMEANt + γ2 log(GDPpc)t)Tt. Thus, the partial derivative
∂E[ĝ]

∂TMEAN
equals γ̂1E[T ]τ .

24We assume that individuals use the recent past to form expectations about current temperatures, so this expectation is
computed over the prior 15 years with weights that decline in time following a Bartlett kernel, as in Appendix E.1.
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implementation is:

full mortality risk of climate change =

V SLt[ ĝ(Tt, TMEANt, log(GDPpc)t)− ĝ(Tt0 , TMEANt0 , log(GDPpc)t)]︸ ︷︷ ︸
mortality effects of climate change (USD)

+

[
̂A(TMEANt, GDPpct)−A(TMEANt0 , GDPpct)

]
.︸ ︷︷ ︸

estimated adaptation costs

(3’)

Equation 3’ is expressed in dollars, using the VSL to monetize changes in the mortality rate. In some

calculations below, we instead present the full mortality risk of climate change in human lives by dividing

Equation 3’ by the VSL, which is natural since estimated adaptation costs are based on lives that could

be saved via adaptation, but are not. In these calculations, the adaptation costs are effectively in units of

“death equivalents”, or the number of avoided deaths equal in value to the adaptation costs incurred.

A few details of this approach are worth underscoring. First, while Equation 6 is derived from the equiv-

alence of adaptation’s marginal benefits and marginal costs, total adaptation benefits and costs associated

with a non-marginal change in the climate are not equal. This is because as the climate gradually warms, an

impact region’s marginal adaptation investment in period t is infra-marginal in period t+ 1, such that each

period’s total investments can have positive surplus due to investments made in prior periods (see Appendix

A.3 for details).

Second, while we integrate over changes in climate in Equation 6, we hold income fixed at its endpoint

value. This is because the goal is to develop an estimate of the additional adaptation expenditures incurred

due to the changing climate only. In contrast, changes in expenditures due to rising income will alter

mortality risk under climate change, but are not a consequence of the changing climate; therefore they are

not included in the calculation of the full mortality risk of climate change.

Third, this revealed preference approach is purposefully parsimonious so that it can be tightly linked to

available data, but such simplification requires several important assumptions. We assume that adaptation

costs are a function of technology and do not depend on the climate, so that, for example, individuals in

Seattle can purchase the same air conditioners as individuals in Houston can. We additionally assume that

all individual and societal decisions about adaptation can be captured by the optimizing behavior of a single

representative agent in each of the 24,378 regions into which we divide the globe. Further, we assume that

f̃(·) is continuous and differentiable, that markets clear for all technologies and investments represented by

the composite good b, as well as for the numeraire good x, and that all choices b and x can be treated as

continuous. We also assume that neither adaptation investments nor the climate directly enter the utility

function, because the paper’s focus is limited to the mortality risks of climate change.25

Perhaps most importantly, the problem in Equation 5 is static. That is, we assume that there is a

competitive and frictionless rental market for all capital goods (e.g., air conditioners), so that fixed costs

of capital can be ignored, and that all rental decisions are contained in b. While this assumption rules out

complementarities between adaptation decisions made by the representative agent in different time periods

by assuming that such complementarities can be accommodated by sellers of adaptation services, accounting

25In an alternative specification detailed in Appendix A.5, we allow agents to derive utility both from x and from the choice
variables in b; for example, air conditioning may increase utility directly, in addition to lowering mortality risk. Under this
alternative framework, the costs of adapting to climate change that we can empirically recover, A(b), are net of any changes
in direct utility benefits or costs. Similarly, a model that assumes that climate enters utility directly would also lead to any
adaptation costs associated with the direct effects of climate change being “netted out” in estimated adaptation costs.
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for dynamic decision-making would necessitate an ambitious extension of the current paper and we leave

this to future research.26

6.2 Projections of the full mortality risk of climate change, accounting for adap-

tation benefits and costs

Table 2 summarizes the results for the mortality effects of climate change and the full mortality risk of climate

change, which accounts for adaptation benefits and costs, at the end of the century. The columns follow

Equations 2’-3’. Specifically, column 1 reports the mortality effects of climate change without income growth

or adaptation (Equation 2a’). Columns 2 and 3 show the change in the mortality effects of climate change

due to the benefits of income growth and climate adaptation, respectively (differences between Equations 2’,

2a’, and 2b’); both tend to reduce mortality effects, so the entries are negative. Column 4 presents estimates

of the mortality effects of climate change (Equation 2’), and is equal to the sum of columns 1 through 3.

Column 5 shows adaptation costs in units of “death equivalents”, following the calculation in Equation 7.

Finally, columns 6a and 6b show the full mortality risk of climate change (Equation 3’), measured in deaths

per 100,000 and monetized as a proportion of total global GDP in 2100, respectively.

6.2.1 Global estimates of the full mortality risk of climate change

Panel A of Table 2 shows mean estimates for the globe, averaging over a set of Monte Carlo simulations

accounting for both climate and econometric uncertainty. The interquartile ranges across simulation runs are

in brackets. Column 6a shows that, on average across the globe, the estimated full mortality risk of climate

change (i.e., Equation 3’) is projected to equal ∼85 deaths per 100,000 under RCP8.5 by 2100 (Appendix

Figure F.2 shows annual results over the century and Appendix Table F.2 shows results for RCP4.5). Of

this full mortality risk, climate adaptation costs are estimated at ∼12 death equivalents per 100,000 (column

5), while increases in mortality rates account for the remaining 73 deaths per 100,000 (column 4). It is

noteworthy that the estimated global average benefits of adaptation (column 3; 31 deaths per 100,000)

exceed the costs of these adjustments, revealing an adaptation surplus of 19 deaths per 100,000.

Column 6b of Table 2 reports that the monetized full mortality risk of climate change at the end of the

century is substantial. For example, under RCP8.5, it amounts to 3.2% of global GDP in 2100, with an

interquartile range of [-5.4%, 9.1%]. Under RCP4.5 (shown in Appendix Table F.2), this value falls to 0.6% [-

3.9%, 4.6%] of global GDP, revealing the significant benefits of policies to reduce emissions. The uncertainty

around these estimates is also meaningful. As shown in Appendix Table F.1, climate and econometric

uncertainty contribute roughly equally to the overall variance in the full mortality risk of climate change

when it is measured in death equivalents (column 6a). However, econometric uncertainty becomes the

predominant source of uncertainty when deaths are converted to dollars, reflecting that these two sources of

uncertainty differentially impact low- and high-income populations (whose deaths are valued differently based

on heterogeneous VSLs). Section 7 shows that accounting for this uncertainty with standard assumptions

about the degree of individuals’ risk aversion substantially increases the estimated welfare loss from climate

change.

26For example, the central contribution of Lemoine (2018) is to incorporate complementarity in adaptation actions across
periods in a standard climate change impact model. This paper analyzes only a two-period complementarity, yet estimation
in our context would require accurate weather forecast data for all locations and years in our estimating sample, a binding
constraint in many countries. It is also worth noting that the quantitative impacts of adding dynamic decision-making in
Lemoine (2018) were minor, changing the end-of-century estimated losses to U.S. agriculture due to climate change from 47%
under a static model to 50% under a dynamic model (see Table 2).
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Table 2: Global and regional estimates of the full mortality risk of climate change in 2100 (high emissions scenario, RCP8.5)

No income growth Benefits of Benefits of Mortality effects Costs of climate Full mortality risk
or adaptation income growth climate adaptation of climate change adaptation of climate change

Eq. 2a’ Eq. 2b’ - Eq. 2a’ Eq. 2’ - Eq. 2b’ Eq. 2’ Eq. 7 Eq. 3’
deaths/100k deaths/100k deaths/100k deaths/100k deaths/100k deaths/100k % of GDP

(1) (2) (3) (4) (5) (6a) (6b)

Panel A: Global estimates
Mean impacts 220.6 -116.5 -31.0 73.1 11.7 84.8 3.2
Full uncertainty IQR [76.4, 258.8] [-149.4, -39.2] [-60.1, 3.8] [5.6, 101.4] [0.2, 19.4] [17.4, 116.4] [-5.4, 9.1]

Panel B: Regional estimates
China 112.0 -81.8 -28.8 1.4 17.7 19.1 1.9
USA 14.8 -13.2 -1.8 -0.2 10.2 10.1 1.0
India 334.4 -248.2 -25.6 60.6 2.1 62.7 6.0
Pakistan 589.1 -161.7 -105.0 322.4 53.6 376.0 27.5
Bangladesh 382.5 -89.3 -79.3 213.8 34.7 248.5 18.5
Europe -14.3 -6.2 -74.8 -95.5 90.8 -4.7 0.1
Sub-Saharan Africa 232.5 -77.4 -34.5 121.3 10.5 131.8 8.4

Table shows projections of the mortality effects of climate change and the full mortality risk of climate change across all age categories. Mean estimates are averages across a set of Monte Carlo
simulations accounting for both climate model and statistical uncertainty. In panel A, brackets indicate the interquartile range (IQR). Columns 1-4 are computed using the three measures of the
mortality effects of climate change detailed in Section 5, all in units of deaths per 100,000. Column 1 (Equation 2a’): mortality effects of climate change without benefits of income or adaptation to
climate change. Column 2 (Equation 2b’ - Equation 2a’): benefits of income growth. Column 3 (Equation 2’ - Equation 2b’): benefits of adaptation to climate change. Column 4 (Equation 2’, equal
to the sum of columns 1-3): mortality effects of climate change. Column 5 shows the mortality-related costs of adaptation inferred using a revealed preference approach (Equation 7 divided by the
VSL), measured in “death equivalents”. Columns 6a-6b show the full mortality risk of climate change (Equation 3’), measured in deaths per 100,000 (column 6a) and represented as % of 2100 GDP
(column 6b) using an age-adjusted value of the U.S. EPA VSL with an income elasticity of one applied to all impact regions. Column 6a is equivalent to the sum of columns 4 and 5. The signs in
columns 6a and 6b can differ because of different relative weights placed on heterogeneous mortality risks across regions and age groups. All estimates shown rely on the RCP8.5 emissions scenario
and the SSP3 socioeconomic scenario. Table F.2 shows equivalent results for SSP3 and RCP4.5 and details the regional definitions for Europe and sub-Saharan Africa.
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These results suggest that the mortality-related damages from climate change are much greater than had

previously been understood. For instance, the full mortality risk of climate change amounts to ∼49-135% of

the damages reported for all sectors of the economy in FUND, PAGE, and DICE at the end of the century.

Under RCP4.5, the full mortality risk of climate change amounts to 32-61% of the damages from DICE and

PAGE, while damages from FUND are negative at RCP4.5 levels of warming.27

The results in this and the previous section have relied on a single benchmark emissions and socioeconomic

scenario (RCP8.5, SSP3). Appendix F reports on the sensitivity of these results to alternative choices

about the economic and population scenario, the emissions scenario, and assumptions regarding the rate of

adaptation. These exercises underscore that the projected impacts of climate change over the remainder of the

21st century depend on difficult-to-predict factors such as policy, technology, and demographics. However, in

all SSP scenarios, and an alternative projection in which the rate of adaptation is deterministically slowed,

the average estimate of the full mortality risk due to climate change is positive (under both RCPs) and

steadily increasing (under RCP8.5) throughout the 21st century.

6.2.2 Unequal distribution of the full mortality risk of climate change

Panel B of Table 2 displays mean estimates of the end-of-century mortality effects of climate change and the

full mortality risk of climate change for key select countries and regions of the world. These results indicate

that the full mortality risk of climate change varies substantially across the globe. Notably, monetized

estimates in column 6b are very high in some regions, such as Pakistan and Bangladesh, where impacts

amount to 27.5% and 18.5% of GDP, respectively.28 Panel B also shows that the share of the full mortality

risk that is due to actual deaths (first term in Equation 3’, column 4) versus compensatory investments

(second term in Equation 3’, column 5) differs across regions. Some locations suffer large increases in

mortality rates, such as India, where 97% of the full mortality risk of climate change is attributable to rising

death rates. Other regions avoid excess mortality through expensive adaptation. For example, the U.S. is

projected to benefit from a small decline in the mortality rate of -0.2 deaths per 100,000 at end of century,

but is also projected to incur adaptation costs amounting to 10 death equivalents per 100,000.

To visualize these distributional consequences, Figure 6 plots the mortality effects of climate change in

2100 (dark bars), as well as estimated adaptation costs (light bars), against deciles of present-day income

(panel A) and present-day average temperature (panel B). These results reveal that the magnitude and

composition of the full mortality risk of climate change are strongly correlated with current incomes and

climate. Panel A shows that the share of the full mortality risk of climate change that is due to adaptation

costs is higher at higher incomes, indicating that wealthier locations are projected to pay for future adaptive

investments, while such costs are predicted to be much smaller in poor parts of the globe. In contrast,

mortality rates are projected to increase much more dramatically in today’s poor countries, indicating that

climate impacts in these places will largely take the form of people living shorter lives. Further, the full

27To conduct this comparison, we use the damage functions reported for each IAM in the Interagency Working Group on
Social Cost of Carbon (2010), which are indexed against warming relative to the pre-industrial climate. We evaluate each
damage function at the mean end-of-century warming (4◦C for RCP8.5 and 1.8◦C for RCP4.5) across the SMME climate
model ensemble used in our analysis, after adjusting warming to align pre-industrial temperature anomalies from the IAMs
with the anomalies relative to 2001-2010 from our analysis (Lenssen et al., 2019). We note that these leading IAMs use different
socioeconomic scenarios and climate models than those used throughout this paper.

28Note that Table 2 indicates that for Europe, the full mortality risk of climate change as measured in deaths per 100,000
(column 6a) is negative, while it is positive when measured in % of GDP (column 6b). This is because throughout much of
Europe, climate change leads to lives being saved due to fewer extremely cold days, particularly for the >64 age group. Under
the valuation approach shown in Table 2, an age-adjusted VSL is used, which lowers the relative weight placed on these lives
saved in the older age group, as compared to increased mortality risk due to hot days in other age groups.
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Figure 6: Climate change impacts and adaptation costs are correlated with present-day income
and climate. Figure shows mortality impacts of climate change in 2100 (RCP8.5, SSP3) against deciles of 2015 per
capita income (A) and average annual temperature (B). Dark bars indicate mean estimates of the mortality effects of climate
change (following Equation 2’), while light shading indicates mean estimates of changes in adaptation costs, measured in
death equivalents (Equation 7 divided by the VSL). For all bars shown, means are taken across impact regions falling into the
corresponding decile of income or climate and across Monte Carlo simulations that account both for econometric and climate
model uncertainty. Black outlined circles indicate the mean estimate of the full mortality risk of climate change (following
Equation 3’), which is the sum of deaths and adaptation costs, and black vertical lines indicate the interquartile range of the
distribution across impact regions within each decile. The income and average temperature deciles are calculated across 24,378
global impact regions and are population weighted using 2015 population values.

mortality risk of climate change (shown in black and white circles) is still borne disproportionately by regions

that are poor today. Finally, there is substantial variance across impact regions within each income decile,

as shown by the interquartile range indicated by the vertical blank line, underscoring the importance of

geographic resolution in projecting climate impacts.

A similar figure in panel B demonstrates that the hottest locations today suffer the largest projected

increases in death rates, while the coldest are estimated to pay the highest adaptation costs. It is also

evident that the full mortality risk of climate change is highest in today’s hottest regions.

7 The mortality partial social cost of carbon

This section uses the estimates of the full mortality risk of climate change to monetize the mortality-related

social cost generated by emitting a marginal ton of CO2. This calculation represents the component of the

total SCC that is mediated through excess mortality, but it leaves out adverse impacts in other sectors of

the economy, such as reduced labor or agricultural productivity. Hence, it is a mortality partial SCC.
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7.1 Definition: the mortality partial social cost of carbon

The mortality partial social cost of carbon at time t is defined as the marginal social cost from the change

in mortality risk imposed by the emission of a marginal ton of CO2 in time period t. For a discount rate δ,

the mortality partial SCC is:

mortality partial SCCt (dollars) =

∫ ∞

t

e−δ(s−t) dDs(Cs)

dC

∂Cs

∂Et
ds, (8)

where Ds(Cs) represents a “damage function” describing the full mortality risk of climate change (inclusive

of both adaptation benefits and costs) in time period s, as a function of the global climate C (Nordhaus,

1992; Hsiang et al., 2017), and where Et represents total global greenhouse gas emissions in period t. Ds(·)
varies over time, s, because the mortality sensitivity of temperature and total monetized impacts of climate

change evolve over time due to changes in per capita income, the climate, and the underlying population.

Thus, the damages from a marginal change in emissions will vary depending on the year in which they are

evaluated. In practice, we approximate Equation 8 by combining empirically grounded estimated damage

functions Ds(·) with climate model simulations of the impact of a small change in emissions on the global

climate, i.e., ∂Cs

∂Et
.

Expressing the mortality partial SCC using a damage function has three key practical advantages. First,

the damage function represents a parsimonious, reduced-form description of the otherwise complex depen-

dence of global mortality damages on the global climate. Second, as we demonstrate below, it is possible to

empirically estimate damage functions from the climate change projections described in Section 6. Finally,

because they are fully differentiable, empirical damage functions can be used to compute marginal damages

caused by an emissions pulse released in year t by differentiation. The construction of these damage functions,

as well as the implementation of the mortality partial SCC, are detailed in the following subsections.

7.2 Constructing damage functions for mortality risk from climate change

There are two key components of a damage function for mortality risk. First, the change in global mean

surface temperature, ∆GMSTrmt indicates the overall magnitude of warming for each emissions scenario r,

climate model m, and year t.29 Second, total monetized losses due to changes in mortality risk, inclusive

of adaptation benefits and costs, Dirmt, captures total mortality damages for a given level of warming. We

compute this value by summing projected estimates of the monetized full mortality risk of climate change

across all 24,378 global impact regions, separately for each draw i of the uncertain parameters recovered from

estimation of the mortality-temperature relationship in Equation 4, emissions scenario r, climate model

m, and year t. Therefore, for a given value of ∆GMSTrmt, there is variation in damages Dirmt due to

econometric uncertainty captured by simulation runs i and differential spatial distribution of warming across

climate model m.

There are some important methodological differences in how we estimate the relationship between dam-

ages Dirmt and warming ∆GMSTrmt for years before versus after 2100, due to differences in the source of

climate projections pre- and post-2100 and the absence of readily available socioeconomic projections after

2100 (see Section 3 and Appendix B.2 for details). This subsection details these differences and also explains

29Our estimates of the full mortality risk of climate change are calculated relative to a baseline of 2001-2010. Therefore, we
define changes in global mean surface temperature (∆GMST ) as relative to this same period. Note that the ∆GMSTrmt will
vary across climate models, due to the complex interaction of many physical elements in each model, including the equilibrium
climate sensitivity, a number that describes how much warming is associated with a specified change in greenhouse gas emissions.
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the approach to account for damage function uncertainty.

7.2.1 Computing damage functions through 2100.

For each year t from 2020 to 2097, we estimate a set of quadratic damage functions that relate the global

full mortality risk of climate change (Dirmt) to the magnitude of global warming (∆GMSTrmt):

Dirmt = α+ ψ1,t∆GMSTrmt + ψ2,t∆GMST 2
rmt + εirmt. (9)

Specifically, we construct the damage function separately for each year t by combining all 9,750 Monte Carlo

simulation runs within a 5-year window centered on t and estimate the regression in Equation 9.30 This

approach allows the recovered damage function Dt(∆GMST ) to evolve flexibly over the century. We note

that pre-2100 damage functions are indistinguishable if we use a third-, fourth- or fifth-order polynomial,

and Appendix H.4 shows that the mortality partial SCC is similar when a cubic functional form is used.

Figure 7A illustrates the procedure for the end-of-century damage function. Each data point plots a

value of Dirmt from an individual Monte Carlo simulation (vertical axis) against the corresponding value of

∆GMSTrmt (horizontal axis), where scatter points for years t=2095 through t=2100 are shown. Individual

points represent simulation runs from both the high emissions scenario (r=RCP8.5) and from the low emis-

sions scenario (r=RCP4.5). The estimated end-of-century damage function predicts total (undiscounted)

mortality damages of $7.8 trillion USD when evaluated at median warming under RCP8.5 (+3.7◦C relative

to 2001-2010). For RCP4.5, median warming is 1.6◦C, with corresponding predicted damages of $1.2 trillion

USD. Analogous curves are constructed for all years, starting in 2020.

7.2.2 Computing post-2100 damage functions.

Even with standard discount rates, a meaningful fraction of the present discounted value of damages from

the release of CO2 today will occur after 2100 (Kopp and Mignone, 2012), so it is important to develop

post-2100 damage functions. To do so, we develop a method to extrapolate changes in the damage function

beyond 2100 using the observed evolution of damages near the end of the 21st century. The motivating

principle of the extrapolation approach is that these observed changes in the shape of the damage function

near the end of the century provide plausible estimates of future damage function evolution after 2100. To

execute this extrapolation, we pool values Dirmt from 2085-2100 and estimate a quadratic model similar to

Equation 9, but interacting each term linearly with year t.31 This allows estimation of a damage surface as

a parametric function of year, which can then be used to predict extrapolated damage functions for all years

after 2100 (see Appendix G for details).

Panel B of Figure 7 illustrates damage functions every 10 years prior to 2100, as well as extrapolated

damage functions for the years 2150, 2200, 2250, and 2300. In dollar terms, these extrapolated damages

continue to rise post-2100, suggesting larger damages for a given level of warming. This finding comes directly

from the estimation of Equation 9 that found that, in the latter half of the 21st century, mortality damages

are larger when they occur later, holding constant the degree of warming. This finding that mortality

damages rise over time reflects several countervailing forces. On the one hand, damages are larger in later

years because there are larger and older populations32 with higher VSLs due to rising incomes. On the other

30Because the projections in Section 6 end in 2100, 2097 is the last year for which a centered 5-year window of estimated
damages can be constructed, and therefore is the last year for which we estimate Equation 9.

31We use 2085-2100 because the time evolution of damages becomes roughly linear conditional on ∆GMST by this period.
32In SSP3, the share of the global population in the >64 age category rises from 8.2% in 2015 to 16.2% in 2100.
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Figure 7: Empirically-derived mortality-only damage functions. Both panels show damage functions
relating empirically-derived total global mortality damages to anomalies in global mean surface temperature (∆GMST) under
socioeconomic scenario SSP3. In panel A, each point indicates the full mortality risk of climate change in a single year (ranging
from 2095 to 2100) for a single simulation of a single climate model, accounting for both costs and benefits of adaptation. The
solid black line is the quadratic damage function estimated through these points. The distribution of temperature anomalies at
end of century (2095-2100) under two emissions scenarios across our 33 climate models is in the bottom panel. In panel B, the
end-of-century damage function is repeated. Damage functions are shown for every 10 years pre-2100, each of which is estimated
analogously to the end-of-century damage function and is shown covering the support of ∆GMST values observed in the SMME
climate models for the associated year. Our projection results compute the full mortality risk of climate change only through
2100, due to limited availability of climate and socioeconomic projections for years beyond that date. To capture impacts after
2100, we extrapolate observed changes in damages over the 21st century to generate time-varying damage functions through
2300. The resulting damage functions are shown for every 50 years post-2100, each of which is extrapolated. The distribution
of temperature anomalies around 2200 (2181-2200) under two emissions scenarios using the FAIR simple climate model is in
the bottom panel. To value lives lost or saved, in both panels we use the age-varying U.S. EPA VSL and an income elasticity
of one applied to all impact regions.

hand, damages are smaller in later years because populations are better adapted due to higher incomes and

a slower rate of warming, enabling gradual adaptation. The results suggest the former dominates by end of

century, causing damages to trend upwards by 2100.

7.2.3 Accounting for uncertainty in damage function estimation.

As discussed, there is substantial uncertainty in the projected full mortality risk of climate change due to

econometric uncertainty and climate uncertainty. The approach described above details the estimation of a

damage function using the conditional expectation function through the full distribution of simulation results.

We additionally estimate a set of quantile regressions to capture the full distribution of simulated mortality

impacts.33 Just as above for the mean damage function, extrapolation past the year 2100 is accomplished

using a linear time interaction, estimated separately for each quantile. In the sections below, these quantiles

characterize uncertainty in the mortality partial SCC estimates. Thus, central estimates of the mortality

partial SCC use the mean regression from Equation 9, while ranges incorporating damage uncertainty use

the full set of time-varying quantile regressions.

33We estimate a damage function for every 5th percentile from the 5th to 95th.
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7.3 Computing marginal damages from a marginal carbon dioxide emissions

pulse

We empirically approximate the mortality partial SCC from Equation 8 for emissions that occur in the year

2020 as:

mortality partial SCC2020 ≈
2300∑

t=2020

e−δ(t−2020) ∂D̂t(∆GMST )

∂∆GMST

d∆GMSTt
dCO22020

, (10)

where ∆GMST approximates the multi-dimensional climate vectorC, and changes in CO2 represent changes

in global emissions E.34 Additionally, we assume that discounted damages from an emissions pulse in year

2020 become negligible after 2300, and we approximate the integral in Equation 8 with a discrete sum using

increments of one year. The values ∂D̂t(∆GMST )
∂∆GMST are the marginal global damages in each year t that occur as

a result of this small change in all future global temperatures; they are computed using the damage functions

described in the last subsection. The term d∆GMSTt

dCO22020
is the increase in ∆GMST that occurs in each year t

along a baseline climate trajectory as a result of a marginal unit of emissions in 2020, which we approximate

with small pulse of CO2 emissions.

Because it is computationally infeasible to compute this value and account for uncertainty about the

physical magnitude and timing of warming for all 33 climate models in the SMME, we use an alternative,

global climate model to estimate d∆GMSTt

dCO22020
. In particular, we use the Finite Amplitude Impulse Response

(FAIR) simple climate model to calculate ∆GMSTt trajectories for emissions scenarios RCP4.5 and RCP8.5,

both with and without an exogenous “pulse” of 1 gigaton C (equivalent to 3.66Gt CO2) in the year 2020,

the smallest emission quantity for which a warming signal can be separated from noise within the FAIR

climate model. In FAIR, this emissions pulse perturbs the trajectory of atmospheric CO2 concentrations

and ∆GMST for 2020-2300, with dynamics that are influenced by the baseline RCP scenario.

We then predict damages D̂t(∆GMSTt) for ∆GMST values from the “RCP + pulse” simulation and

difference them from predicted damages for ∆GMST values from the baseline “RCP only” simulation for

each emissions scenario. The resulting damages due to the pulse are converted into USD per one metric

ton CO2. There is naturally uncertainty in these ∆GMST trajectories, and our approach accounts for

uncertainty associated with four key parameters of the FAIR model. This approach, detailed in Appendix

G, ensures that the distribution of warming responses we use to generate partial SCC values matches the

corresponding distributions from the IPCC Assessment Report 5 (AR5).

Figure 8 graphically depicts the difference between the “RCP + pulse” and baseline RCP trajectories

for four key outcomes. The pulse in emissions is shown in panel A. Its influence on CO2 concentrations is

reported in panel B; the immediate decline followed by a century-long increase is largely due to dynamics

involving the ocean’s initial storage and subsequent release of emissions. Panel C displays the resulting change

in temperature, which makes clear that a pulse today will influence temperatures even three centuries later.

The solid lines are median estimates, while the shaded area in panels B-C depicts the inter-quartile range of

each year’s outcome, reflecting uncertainty about the climate system (see Appendix G for details).

Panel D plots the discounted (2% discount rate) stream of damages due to this marginal pulse of emis-

sions. The temporal pattern of the present value of mortality damages reflects several factors, including

the nonlinearity of the damage function (e.g., Figure 7), the discount rate, and the dynamic temperature

response to emissions (panel C). The peak present value of annual damages from a ton of CO2 emissions

34We use CO2 to represent changes in all global greenhouse gas (GHG) emissions as it is the most abundant GHG and the
warming potential of all other GHGs are generally reported in terms of their CO2 equivalence.
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Figure 8: Change in emissions, concentrations, temperature, and damages due to a marginal
emissions pulse in 2020. Panel A shows a 1GtC emissions pulse (equivalent to 3.66Gt CO2) in 2020 for emissions
scenario RCP8.5. Panel B displays the effect of this pulse on atmospheric CO2 concentrations, relative to the baseline. In panel
C, the impact of the pulse of CO2 on temperature is shown where the levels are anomalies in global mean surface temperature
(GMST) in Celsius. In panels B-C, shaded areas indicate the inter-quartile range due to climate sensitivity uncertainty, while
solid lines are median estimates. Panel D shows the change in discounted mortality-related damages over time due to a 1 Gt
pulse of CO2 in 2020 under socioeconomic scenario SSP3, as estimated by our empirically-derived damage functions, using a
2% annual discount rate and the age-varying U.S. EPA VSL with an income elasticity of one applied to all impact regions. The
shaded area indicates the inter-quartile range due to climate sensitivity and damage function uncertainty, while the solid line
is the median estimate.

are $0.16 in year 2104; by year 2277, annual damages are always less than $0.02. It is noteworthy that

about two-thirds of the present value of damages occur after the year 2100. The shaded area represents the

inter-quartile range of each year’s outcome, reflecting uncertainty in the climate system and in the damage

function. RCP4.5 results are shown in Appendix Figure G.5 and additional details are in Appendix G.

7.4 Estimates of the mortality partial social cost of carbon

Table 3 reports mortality partial SCC estimates. The columns apply four different annual discount rates –

two used in prior estimates of the SCC (3% and 5%) (Interagency Working Group on Social Cost of Carbon,

2010), and two lower rates that align more closely with recent global capital markets (1.5% and 2%) (Board

of Governors of the US Federal Reserve System, 2020). Both panels use the U.S. EPA’s VSL of $10.95 million

(2019 USD), transformed into value per life-year lost and adjusted for cross sectional variation in incomes

among contemporaries and for global income growth (see Appendix H.1 for details). We emphasize this age-

varying VSL approach because standard economic reasoning implies that valuation of life lost should vary

by age (Jones and Klenow, 2016; Murphy and Topel, 2006), but Appendix H presents results under a wide

range of additional valuation scenarios, including an age-invariant VSL, an age-adjustment that uses age-

specific values per life-year from Murphy and Topel (2006), an alternative VSL of $2.39 million (2019 USD)

from Ashenfelter and Greenstone (2004),35 and an approach where the VSL is adjusted only based on global

average income such that the lives of contemporaries are valued equally, regardless of their relative incomes.

The central estimates in Table 3 utilize the median values of FAIR’s four key parameter distributions (see

Appendix G) and the mean global damage function. Interquartile ranges (IQRs) are reported, reflecting

uncertainty in climate sensitivity and in the damage function. All values represent the global sum of each

impact region’s MWTP today to avoid the release of an additional metric ton of CO2 in 2020.

35See Appendix Table H.1 for a comparison of these VSL values with values from the OECD, which are higher than Ashenfelter
and Greenstone (2004), but lower than the U.S. EPA’s VSL.
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Table 3: Estimates of the mortality partial social cost of carbon (SCC)

Annual discount rate
δ = 1.5% δ = 2% δ = 3% δ = 5%

(1) (2) (3) (4)

Panel A: Mortality partial SCC

Moderate emissions scenario (RCP4.5) 28.5 17.1 7.9 2.9
Full uncertainty IQR [-35.6, 88.5] [-24.7, 53.6] [-15.2, 26.3] [-8.5, 11.5]

High emissions scenario (RCP8.5) 66.4 36.6 14.2 3.7
Full uncertainty IQR [-2.8, 126.5] [-7.8, 73.0] [-11.4, 32.9] [-8.9, 13.0]

Panel B: Alternative approaches to calculating the mortality partial SCC

Excluding adaptation costs (RCP8.5)
Central estimate 66.9 37.7 15.1 4.1
Full uncertainty IQR [-3.1, 114.6] [-6.7, 66.4] [-9.6, 29.8] [-8.2, 11.5]

Accounting for risk aversion (RCP8.5)
Central estimate (risk neutral) 88.4 47.7 17.2 3.7
Certainty equivalent (risk averse) 375.3 192.4 59.2 8.6

In all panels, an income elasticity of one is used to scale the U.S. EPA VSL value (alternative values using the VSL
estimate from Ashenfelter and Greenstone (2004) are shown in Appendix H). All regions thus have heterogeneous val-
uation, based on local income. All estimates also use an age adjustment that values deaths by the expected number
of life-years lost, using an equal value per life-year (see Appendix H.1 for details and Appendix H.2 for alternative
calculations that allow the value of a life-year to vary with age, based on Murphy and Topel (2006)). All SCC values
are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from
projected results under the socioeconomic scenario SSP3 (alternative values using other SSP scenarios are shown in Ap-
pendix H). Panel A shows estimates of the mortality partial SCC that include both the benefits and costs of adaptation,
as inferred using the revealed preference framework outlined in Section 6.1. Panel B shows estimates derived from two
alternative approaches to calculating the mortality partial SCC. The first two rows include the benefits of adaptation
but exclude estimated adaptation costs. The second two rows follow Nath et al. (2022), who use standard calibrations
of risk aversion to construct certainty equivalent mortality partial SCCs using the damage functions estimated in this
paper. In all panels, central estimates rely on the median values of the four key input parameters into the climate
model FAIR and a conditional mean estimate of the damage function. The uncertainty ranges are interquartile ranges
[IQRs] including both climate sensitivity uncertainty and damage function uncertainty (see main text and Appendix G
for details).

Panel A reports estimates of the mortality partial SCC, including both the benefits and costs of adap-

tation. Our preferred estimates use a discount rate of δ = 2% (column 2), which we highlight because it

conservatively reflects changes in global capital markets over the last several decades (Carleton and Green-

stone, forthcoming).36 Under this approach, the mortality partial SCC is $17.1 for the moderate emissions

scenario and $36.6 for the high emissions scenario. The associated IQRs are [-$24.7, $53.6] and [-$7.8, $73.0],

respectively, highlighting the uncertainty in the SCC. The discount rate’s key role in determining the mortal-

ity partial SCC is evident when comparing estimates across columns. When following the U.S. Government’s

preference for an age-invariant VSL and using δ = 2%, the mortality partial SCC is $14.9 [-$21.2, $63.5]

for the moderate emissions scenario and $65.1 [-$3.0, $139.0] for the high emissions scenario (see Appendix

Table H.2).37

36While the Interagency Working Group on Social Cost of Greenhouse Gases (2016) recommends a discount rate of 3% based
on the real 10-year Treasury rate calculated in 2003, this estimate is now dated. For example, the average 10-year Treasury
Inflation-Indexed Security from 2003 to present is just 1.01% (Board of Governors of the US Federal Reserve System, 2020;
Carleton and Greenstone, forthcoming).

37As detailed in Appendix H.2, age-adjusting the valuation of mortality rates, which down-weights the valuation of the oldest
age group, has an ambiguous influence on the SCC, as this group is more vulnerable both to heat and to cold.
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Some features of these results are worth underscoring. First, mortality partial SCC estimates for RCP4.5

are systematically lower than RCP8.5 primarily because the damage function is convex, so marginal damages

increase in the high emissions scenario. Second, Appendix H decomposes the uncertainty in the partial SCC

into a component driven by climate uncertainty and a component driven by uncertainty in the damage

function. While damage function uncertainty tends to dominate under the moderate emissions scenario,

climate uncertainty is dominant under the high emissions scenario for some valuation approaches. Third,

Appendix H also presents results for a variety of sensitivity analyses. For example, Appendix Table H.5

reveals that endogenizing impacts of climate change on income growth based on prior literature (Burke,

Hsiang, and Miguel, 2015), as opposed to relying on an exogenous socioeconomic trajectory as in Table 3,

has only a small effect on our mortality partial SCC results. Similarly, Appendix Table H.6 demonstrates

that replacing the extrapolation of damage functions to years beyond 2100 with a damage function frozen at

its 2100 shape for all years 2101-2300 lowers our central estimate of the mortality partial SCC by 21%. This

indicates that damage function extrapolation has a relatively modest impact on our partial SCC estimates,

due in part to the important role of discounting. Further, Appendix Tables H.2-H.7 report estimates based

on multiple alternative valuation approaches and socioeconomic scenarios. Naturally, the resulting SCC

estimates vary under different valuation assumptions and baseline socioeconomic trajectories, and we point

readers to these specifications for a more comprehensive set of results.

Panel B reports two sets of estimates that rely on alternative approaches to calculating the mortality

partial SCC. The first two rows show mortality partial SCCs that include the benefits of adaptation but

exclude estimated adaptation costs. With δ = 2%, we estimate that the mortality partial SCC amounts to

$37.7 [-$6.7, $66.4] when using this approach in the high emissions scenario.38

The third and fourth rows in panel B address the large uncertainty in the mortality partial SCC by using

standard calibrations of risk aversion to estimate certainty equivalent mortality partial SCCs. This exercise

is important because the distribution of partial SCCs is right skewed with a long right tail, largely due to the

convexity of the damage function (e.g., see Figure 7) and the skewness of the climate sensitivity distribution

(see Appendix Figure G.2). For example, the 95th and 99th percentiles of the mortality partial SCC shown

in panel B of Table 3 for RCP8.5 with δ = 2% are $290.3 and $704.1, respectively. While a full treatment of

risk is beyond the scope of this paper, here we follow Nath et al. (2022) in estimating a certainty equivalent

mortality partial SCC. Importantly, multiple aspects of the Nath et al. (2022) partial SCC calculation differ

from this paper’s, making the resulting SCCs not directly comparable to those in panel A.39 Consequently,

the third row reports the risk-neutral partial SCC estimate from Nath et al. (2022), which is the Nath et al.

(2022) equivalent of the values in panel A, while the last row reports the certainty equivalent value.40 The

key finding of this exercise is that valuing uncertainty greatly increases the estimated mortality partial SCC.

Using the preferred 2% discount rate with the RCP8.5 emissions scenario, the certainty equivalent value is

38This small increase in the partial SCC when compared to panel A arises from adaptation savings in temperate regions
of the world that spend less protecting themselves against cold day mortality risk under a warmer climate. On net, under
our preferred valuation approach, these savings outweigh the positive adaptation costs experienced in other regions because
temperate regions have relatively high VSLs, and we estimate low future adaptation costs in hot locations that are already
well-adapted today. This leads to a small decline in the mortality partial SCC when adaptation costs are included. However,
the finding that aggregate global adaptation costs are generally negative when measured in dollars depends on how mortality
risk is monetized into dollars because we estimate highly heterogeneous adaptation costs across age groups and regions (see
Figure 6). For example, global monetized adaptation costs are generally positive when an age-invariant VSL is used.

39For example, when compared to this paper’s analysis, Nath et al. (2022) use a more restrictive approach to extrapolating
damage functions beyond 2100, estimate damage functions without a constant term, and rely on a smaller set of climate
sensitivity parameters, among other differences.

40The certainty equivalent estimates rely on a constant relative risk aversion (CRRA) utility function with a coefficient of
relative risk aversion, η, equal to 2. We refer readers to Nath et al. (2022) for details on the calculation.
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approximately 4 times larger than the directly comparable risk-neutral estimate. These findings empirically

corroborate earlier theoretical work highlighting the importance of valuing uncertainty in SCC calculations

(e.g., Traeger, 2014).

8 Limitations

As the paper has detailed, the mortality risk changes from climate change and the mortality partial SCC

have many ingredients. We have tried to probe the robustness of the results to each of them, but there are

three issues that merit special attention when interpreting the results, because they are outside the scope of

the analysis.

8.0.1 Migration Responses.

The estimates in the paper do not reflect the possibility of migration responses to climate change. If

migration were costless, it seems likely that the full mortality risk and mortality partial SCC would be

smaller, as people from regions with high damages (e.g., sub-Saharan Africa) may move to regions with low

or even negative damages (e.g., Scandinavia, Canada, and Russia). However, both distant and recent history

in the U.S. and around the globe underscores that borders are meaningful and that there are substantial

costs to migration which seem likely to limit the scale of feasible migrations. Indeed, existing empirical

evidence of climate-induced migration, based on observable changes in climate to date, is mixed (Carleton

and Hsiang, 2016).

8.0.2 Humidity.

Our estimates do not directly incorporate the role of humidity in historical mortality-temperature relation-

ships nor in projections of future impacts. There is growing evidence that humidity influences human health

through making it more difficult for the human body to cool itself during hot conditions (e.g., Sherwood

and Huber, 2010; Barreca, 2012). While temperature and humidity are highly correlated over time, they are

differentially correlated across space, implying that our measures of heterogeneous mortality-temperature

relationships may be influenced by the role of humidity. However, the absence of high-resolution historical

humidity data and the highly uncertain projections of humidity under climate change (Sherwood and Fu,

2014) make it infeasible to include this heterogeneity in this paper’s analysis. Emerging work on this topic

(Yuan, Stein, and Kopp, 2020) is likely to provide opportunities to explore humidity in future research.

8.0.3 Technological Change.

The paper’s projections incorporate advancements in technology that enhance adaptive ability, even though

we have not explicitly modeled technological change. In particular, we allow the mortality-temperature

response functions to evolve in accordance with rising incomes and temperatures and do not restrict them

to stay within the bounds of the current observed distribution of temperature responses. So although our

estimates reflect technical advancement as it historically relates to incomes and climate, they do not reflect

the seemingly high probability of climate-biased technical change that lowers the relative costs of goods which

reduce the health risks of high temperatures. Therefore, the paper’s results may overstate the mortality risk

of climate change.
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9 Conclusion

This paper has outlined a new method that allows for empirical estimation of the global damages of climate

change, accounting for the costs and benefits of adaptation, for a single sector of the economy using micro

data. We have implemented this approach in the context of mortality risks associated with temperature

change. Specifically, this paper develops a framework for estimating the annual total impact of climate

change on mortality risk, both globally and for 24,378 regions that comprise the planet. It then uses these

estimates to compute a mortality “partial” SCC, defined as the global marginal willingness-to-pay to avoid

the changes in mortality risk caused by the release of an additional metric ton of CO2.

There are three noteworthy methodological innovations and key findings. First, we leverage highly

resolved data covering roughly half of the world’s population to estimate flexible empirical models relating

mortality rates to temperature. These regressions uncover a plausibly causal U-shaped relationship where

extreme cold and hot temperatures increase mortality rates, especially for those aged 65 and older. Moreover,

this relationship is quite heterogeneous across the planet as both income and long-run climate substantially

moderate mortality sensitivity to temperature. Further when combined with current global data on climate,

income, and population, the results imply that the effect of a hot day (35◦C / 95◦F) on mortality in the >64

age group is ∼50% larger in regions of the world without available mortality data. This suggests that prior

estimates based on data from wealthy economies and temperature climates are likely to understate the true

global impacts of climate change on human mortality.

Second, we use these regression results along with future projections of climate, income, and population

to estimate future climate change-induced mortality risk both in terms of fatality rates and its monetized

value. We find that, under a high emissions scenario, the projected impact of climate change on mortality

will be comparable globally to leading causes of death today, such as cancer and infectious disease (Figure

9). We also estimate large benefits from mitigation, as the end of century estimate of the mortality risk

of climate change falls from 73 deaths per 100,000 under the high emissions growth RCP8.5 scenario to 11

per 100,000 under the more moderate RCP4.5 scenario. Importantly, these projected impacts include the

benefits of adaptation to gradual climate change; estimates that do not account for adaptation overstate the

mortality impacts of climate change in 2100 by a factor of about 3. Additionally, we outline and implement a

revealed preference method to infer the costs of these adaptation investments, which amount to, on average,

12 death equivalents per 100,000 by 2100 in the RCP8.5 scenario.

The estimated mortality effects of climate change are distributed unevenly across the world. For example,

by 2100 and under a high emissions scenario, we project that climate change will cause approximately 160

additional deaths per 100,000 annually in Accra, Ghana, but will also save approximately 150 lives per

100,000 in Berlin, Germany. Notably, the degree to which the full mortality risk of climate change is realized

through actual deaths, as opposed to costly adaptation, varies widely across space and time. For example,

Figure 9 shows that today’s poor locations tend to bear a larger share of the projected burden in the form

of direct mortality impacts, while today’s rich face large increases in projected adaptation costs.

Third, we use these projections to develop the first empirically grounded estimates of the mortality partial

SCC. Using a 2% discount rate and age-varying VSL, the 2020 mortality partial SCC is roughly $36.6 (in

2019 USD) with a high emissions scenario and $17.1 with a moderate one. There is substantial uncertainty

around these estimates, arising both from climate sensitivity and damage function uncertainty. For example,

the interquartile ranges of the mortality partial SCC are [-$7.8, $73.0] and [-$24.7, $53.6], under high and

moderate emissions scenarios, respectively. We find that valuing this uncertainty using standard calibrations

of risk aversion increases the mortality partial SCC by ∼4 times.
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Figure 9: The mortality effects of climate change in 2100 are comparable to contemporary
leading causes of death. Impacts of climate change are calculated for the year 2100 for socioeconomic scenario SSP3
and include changes in death rates (solid shading) and changes in adaptation costs, measured in death equivalents (light
shading). Global averages for RCP 8.5 and RCP 4.5 are shown in the far left, demonstrating the gains from mitigation. Income
and average climate groups under RCP8.5 are separated by tercile of the 2015 global distribution across all 24,378 impact
regions. Bars on the far right indicate average mortality rates globally in 2018, with values from WHO (2018). Appendix
Figure F.8 replicates this figure for RCP4.5.

Overall, the paper’s findings suggest that previous research has significantly understated climate change

damages due to mortality. For instance, we estimate that the full mortality risk of climate change in 2100

amounts to 49% to 135% of total damages across all sectors of the economy according to leading IAMs.

Moreover, the mortality partial SCC reported here, under comparable valuation assumptions, is more than

10 times larger than the total health impacts embedded in the FUND IAM (Diaz, 2014).41

We believe that this paper has highlighted a key role for systematic empirical analysis in providing a

clearer picture of the magnitude of the impacts of climate change and how, why, and where they are likely

to emerge in the future. It is no longer necessary to rely so heavily on assumptions when estimating the

economic costs of climate change. Looking ahead, the paper’s general approach can be applied to other

aspects of the global economy besides mortality risk, and doing so is a promising area for future research.

41Diaz (2014) computes comparable partial SCC values for FUND (δ = 3%, “business as usual” emissions) and reports values
for three comparable health impacts (diarrhea, vector borne diseases, and cardiopulmonary) that total less than $2 (2019 USD).
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