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1 Introduction

The SARS-CoV-2 epidemic has diffused at very different rates across countries and
cities.1 Plots of case statistics over time by location as in Figure 1 have become com-
mon with media and opinion leaders to compare the dynamics of the epidemic across
geographical units, often with the aim of evaluating the effects of different policy in-
terventions. But, how can we compare the United States to Ireland, or New York to
Miami given their differences in population size, density, and other geographic and
socio-economic characteristics? How do we export parameter estimates about the
epidemics obtained from the city of Vo’, a small town near Padua, in Italy, or from
the Diamond Princess cruiseship, to inform about the diffusion of the epidemics in
New York city?2

Figure 1: Covid-19 disease trends as reported by media outlets

Left panel: Number of new reported cases in selected countries. Right panel: Aver-
age daily change in total cases in selected cities. Sources: (Left) Financial Times web
site, their analysis of data from the European Centre for Disease Prevention and Con-
trol and the Covid Tracking Project. URL: https://ig.ft.com/coronavirus-chart/ (last re-
trieved: May 22, 2020); (Right) New York Times web site, their analysius of vari-
ous sources. URL: https://www.nytimes.com/interactive/2020/03/27/upshot/coronavirus-new-
york-comparison.html (last retrieved: May 22, 2020).

In this paper we propose a spatial model of epidemic diffusion, the Spatial-SIR
model, to study how the dynamics of an epidemic scales in various relevant geograph-
ical characteristics, like the number and distribution of outbreaks, population size,
density, and agents’ movements. We show how this analysis informs comparisons
across locations by imposing restrictions on the dynamics of an epidemic in terms

1See Fernandez-Villaverde and Jones (2020) and the dashboard produced by the authors, avail-
able at https://web.stanford.edu/ chadj/Covid/Dashboard.html; see also Desmet and Wacziarg
(2020).

2Lavezzo et al. (2020) and Mizumoto et al. (2020) provide a comprehensive review of the outbreak
dynamics and steady-state outcomes for the City of Vo’, and the Princess Cruise ship, respectively.
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of the geographical characteristics of each location where it diffuses. We also show
that these restrictions cannot be uncovered from the workhorse model or epidemic
diffusion, the SIR model.3 These restrictions are consequential for empirical analysis
using time-series infection dynamics data.

The spatial extension of the SIR model we study introduces important stylized
spatial dimensions of the diffusion process, allowing us to ask a set of interesting
questions that the basic SIR model cannot address and to identify some core deter-
minants of the dynamics of an epidemic which cannot appear in SIR.

We begin, in Section 2, by highlighting the relevant invariance properties of SIR
with respect to several geographic characteristics we focus on in this paper: the
number of outbreaks, population size, and density.

In Section 3 we introduce the Spatial-SIR model. In Spatial-SIR, individuals are
placed in a two-dimensional space and travel in this space at a given speed. When
infected, they can only infect their neighbors with a certain probability that we in-
terpret as the strength of the virus. Spatial-SIR determines the diffusion rate of
infection depending on epidemiological and geographic factor that are confounded
in one single parameter of the standard SIR instead. In Section 3.2 we show how
distinguishing these factors is crucial in Spatial-SIR because the local interactions
arising in the model give rise to matching frictions across agents and to what we
call “local herd immunities”, generated by the constrained movement of people in
space. In the SIR model, instead, susceptible individuals match with infected indi-
viduals randomly. Local herd immunities are responsible for breaking several of the
invariance relationships which hold in the SIR model (that we highlight in Section
2).

In Section 4 we calibrate the parameters of the Spatial-SIR model and use sim-
ulations to study the roles of the number and distribution of outbreaks, popula-
tion size, density, and agents’ movements on epidemic outcomes. We highlight the
quantitatively important effects of these geographic factors in determining infection
dynamics. These effects are missed in the standard SIR.

The infection diffusion rate of the SIR model also does not account for behavioral
responses of economic agents to the diffusion of the epidemics. In Section 5, we
incorporate behavioral responses into the model in a simple indirect way, to highlight
how their effects depend on geographic factors.

In Section 6 we focus on five implications for empirical analysis we learn from
our model and its simulations. In particular, we note that research exploiting geo-
graphic variation to study the effect of policy intervention, or to study how epidemic
outcomes depend on covariates using longitudinal data, can gain from imposing the
cross-location restrictions implied by the epidemiological models and at the same

3The SIR, developed by Kermack and McKendrick (1927), Kermack and McKendrick (1932), is
the conceptual abstract workhorse of epidemiological modeling.
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time must deal with time-varying heterogeneity across locations that is hard to con-
trol for without imposing specific structure.

1.1 Related Literature

In this section we reference, without any hope of being exhaustive, various con-
tributions in both the epidemiology and economics literature which are related to
this paper in that they account for spatial characteristics and for agents’ behavioral
responses in the SIR model.

With respect to the spatial dimensions, research in epidemiology has extended
SIR allowing for very detailed descriptions of the demographic characteristics of the
population of interest and of the social and geographical environment in which the
population lives. These models appear to fundamentally aim at forecasting with
accuracy and precision (as, say, meteorological models of weather dynamics) rather
than at identifying the stylized effects of geographical characteristics, the goal of this
paper; see e.g., Eubank et al. (2004) and the research at GLEAM project, mobs-lab,
and the Imperial’s college MRC Centre for Global Infectious Disease Analysis.4

Most of the recent wealth of contributions to the study of the SARS-CoV-2
epidemic in economics has basically restricted its epidemiology component the SIR
model and does not account for the geographic characteristics that we focus on in this
paper. Several exceptions, e.g., Antràs et al. (2020), Birge et al. (2020), Bognanni
et al. (2020), Cuñat and Zymek (2020), Fajgelbaum et al. (2020), Glaeser et al.
(2020), introduce interesting spatial dimensions to SIR, but all of these concern how
connections between different geographical units affect the spread of an epidemic.
In this paper instead, we focus on the comparative dynamics of the epidemic with
respect to different geographical characteristics of (closed) units.

The spatial dimensions we account for in the present paper introduce a form of
local interactions in the contact process between agents. Related extensions of SIR
along these lines include those that explicitly model the dynamics of an epidemic on
networks, as Azzimonti et al. (2020), Acemoglu et al. (2020a), Alfaro et al. (2020)
and those allowing for heterogeneity of the contact process between subpopulations,
as Ellison (2020).

With respect to behavioral responses, the rational choice modeling of agents lim-
iting contacts to reduce the risk of being infected is relatively scarce in epidemiology:
see Verelst et al. (2016) and Funk et al. (2010) for a systematic surveys of behavioral
models in epidemiology and Fenichel (2013), Weitz et al. (2020) for prominent ex-
amples. Most importantly, the formal modeling of behavioral responses has not yet
broken into the large forecasting models which represent the core of the discipline as
e.g., Balcan et al. (2009), Balcan et al. (2010), Ferguson et al. (2020) and Chinazzi

4Available, respectively, at https://covid19.gleamproject.org, https://www.mobs-
lab.org/projects.html, and https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis
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et al. (2020). Not surprisingly, behavioral responses are instead central to epidemio-
logical models in economics. Early contributions in this respect include Goenka and
Liu (2012), Geoffard and Philipson (1996). Recent work includes Acemoglu et al.
(2020b), Aguirregabiria et al. (2020), Argente et al. (2020), Bethune and Korinek
(2020), Farboodi et al. (2020), Fernandez-Villaverde and Jones (2020), Greenwood
et al. (2019), Keppo et al. (2020), Toxvaerd (2020), as well as several of the papers
cited above regarding spatial extensions of SIR; see Bisin and Moro (2020b) for an
introduction to formal modeling of forward looking rational choice in SIR.

2 Invariances in the SIR Model

We first introduce the standard SIR model as a benchmark to evaluate the role of
adding spatial structure. The society is populated by N agents that are ex-ante
identical. Let S = {S, I,R} denote the individual state-space, indicating Suscep-
tibles, Infected, and Recovered. Let ht = [St, It, Rt] denote the distribution of the
population across the state-space at time t. The dynamics of ht is governed by the
following transitions: i) a Susceptible agent becomes infected upon contact with an
infected, with probability β ItN ; ii) an agent infected at t, can recover at any future
period with probability ρ; iii) a Recovered agent never leaves this state (this assumes
that Recoved agents are immune to infection).

The SIR can be solved analytically.5 The equations describing its dynamics in
discrete time are

∆It = βSt
It
N
− ρIt, ∆Rt = ρIt, St + It +Rt = N. (1)

The parameter β in Equation 1 is to be interpreted as the infection rate in the model.
It is related to R0 = β/ρ, which represents the number of agents a single infected
agent infects, on average, at an initial condition R0 = 0, I0 → 0. The infection rate
β can be decomposed in terms of the infection rate per-contact between a susceptible
and an infected, say π, and the number of contacts per unit of time, say c: β = πc
(in the continuous time limit).6

We highlight three invariance properties of the dynamics of the SIR model, whose
robustness to the introduction of a spatial structure we shall evaluate in the rest of
the paper.

5See e.g., Hethcote (2000) for the analytical solution; also Moll (2020), Neumeyer (2020).
6Distinguishing the role of the number of contacts from the role of the contagion rate is con-

ceptually important to avoid interpreting R0 and β as structural parameters of the model. In our
spatial SIR model, they are the product of virological, geographical and, in Section 5, behavioral
factors.
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Stationary state invariance to initial conditions. Given any initial conditions,
R0 = 0, I0 > 0, S0 = N − I0, the dynamical system converges to a unique stationary
state. In other words, the inital number of outbreaks of the infection, I0, has no
effect on the stationary state. This stationary state with Recovered 0 < R∗ < 1 is
characterized uniquely in terms of R0 = β/ρ, as the solution of the following fixed
point equation:

R∗ = − 1

R0
ln(1−R∗). (2)

Transitional dynamics invariance to population size (in the limit I0
N → 0).

The dynamics of 1
N (St, It, Rt) is invariant to population size, N , as R0 = 0 and the

fraction of the population infected at the initial condition converges to zero, I0N → 0.
The peak of infected cases is

I

N
= 1− 1

R0
(1 + logR0) . (3)

Transitional dynamics invariance to contacts and contagion keeping β
constant. The dynamics of 1

N (St, It, Rt) is invariant to changes in the number of
contacts c and probability of contagion, π that leave β = πc constant.

If the epidemics is governed by the SIR model all of these invariances provide
restrictions of the model which are testable with cross-city data (see Section 6).

3 The Spatial SIR model

We now add a spatial dimension to the SIR model. We also expand the state space
to better capture some relevant aspects of the SARS-CoV-2 epidemic.7 Specifically,
we split the I state into Asymptomatics and sYmptomatics, A and Y . We also
add explicitly the state D, for Dead, as distinct from Recovered, R. Hence, S =
{S,A, Y,R,D}. We maintain the notation hit ∈ S to denote the state of agent i at
time t; and ht = [St, At, Yt, Rt, Dt] to denote the distribution the N agents in the
population across the state-space.

3.1 The Model

Agents are located in space, e.g., a lattice, which we call "the City." Agents are
ex-ante identical in terms of demographic characteristics and symmetric in terms of
location in space. Two agents come into contact when they are at a geographical

7This expansion of the state space is inconsequential for the study of the effects of geographical
characteristics of cities but its adds realism, thereby helping the study of e.g., policy implications;
see Bisin and Moro (2020a) for an application.
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distance in space closer than p. Agents move randomly in space: Every day t = [0, T ],
agents travel distance µ toward a random direction of d ∼ U [0, 2π] radians.8

Spatial-SIR is represented by the following transitions: i) a Susceptible agent in
a location within distance p from the location of an Asymptomatic becomes infected
with probability π;9 ii) an Asymptomatic agent infected at t, at any future period,
can become sYmptomatic with probability ν, or can Recover with probability ρ; iii)
an agent who has become sYmptomatic at t, at any future period, can Recover with
probability ρ, or can Die with probability δ; iv) Dead and Recovered agents never
leave these states (this assumes Recoved agents are immune to infection).

The resulting dynamical system is difficult to characterize formally.10 We turn
then to simulations. We calibrate transitions away and between the infected states,
A, Y,D,R to various SARS-CoV-2 parameters from epidemiological studies, notably
e.g. Ferguson et al. (2020). We calibrate β (in its components π and c) and the
agents’ daily travel distance µ from estimates of initial (prior to policy interventions)
growth rates of the epidemics (in Lombardy, Italy) and data on average contacts in
Mossong et al. (2008).11

Figure 2 illustrates the dynamics of the epidemic in space at the calibrated pa-
rameters. The epidemic spreads exponentially from the location of the outbreak.12

3.2 Local Herd Immunity

To understand how Spatial-SIR differs from the standard SIR, we simulate the evo-
lution over time of the growth rates of the infection and the number of active cases
(that is, infected agents, I/N) for SIR and Spatial SIR. We argue that the funda-
mental differences can be rationalized in terms of the effects of local interactions
which give rise to matching frictions (implicitly defined by geography and people’s
movements), in turn inducing a form of local herd immunity which characterizes
Spatial-SIR. More specifically, in Figure 3 we compare simulations for three different
models:

i. (continuous line) a Spatial SIR (simplified to three states, (S, Y , and R) for
8When they get close to the boundary, the direction is randomly drawn but constrained to point

opposite to the boundary.
9Susceptible agents are not infected upon contact with a sYmptomatic agent; this is to capture

the fact that sYmptomatic agents are either isolated at home or in the hospital
10In the Appendix A we show that it can be written as a Markov chain on configurations in space,

along the lines of interacting particle system models (Liggett, 2012; Kindermann and Snell, 1980).
Some properties are obtained by analogy to the physics of percolation on lattices; see Grassberger
(1983), Tomé and Ziff (2010). For local interaction models in economics see Blume et al. (2011),
Glaeser and Scheinkman (2001), Conley and Topa (2007), Özgür et al. (2019).

11See Appendix B for the details on the calibration.
12All our simulations, for all parameter values and initial conditions, converge to a unique distri-

bution over the state space [S,A, Y,R,D].
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Figure 2: Geographic progression of infections and recoveries
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Figure 3: Comparison between SIR and spatial models

comparison), with the same parameters we calibrated for our baseline model;

ii. (dashed line) a Spatial SIR as in (i), but with agents placed in a random
position every day in the city.

iii. (dotted line) a SIR model, with β equal to our calibrated value of the contagion
rate multiplied by the average number of daily contacts implied our calibrated
city’s population density and contagion radius; we set ρ = 0.05, as in our
baseline model.

The spatial models (i-ii) all display initially lower growth rates than the SIR
model (iii). This is because the agent’s movement in space generates “local herd
immunities,” slowing down the diffusion of infection in the early stages and accel-
erating it afterwards (as aggregate herd immunity is delayed). Formally, in SIR,
random matching implies that the probability that any Susceptible agent is infected
at time t is β ItN .13 In Spatial-SIR this probability is a random variable, say βλt( ItN ),
and its expectation across all agents βE

[
λt(

It
N )
]
encodes the effects of local herd

immunity over time, as E
[
λt(

It
N )
]
is initially smaller and then larger than It/N .

The effect of local herd immunity is much stronger in model (i) (continuous line)
13We keep exploiting the continuous time approximation, for ease of exposition. In discrete time

(and hence in the simulations), the probability that a susceptible agent is infected per unit of time,
after c contacts, is 1− (1− π I

N
)c.
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than (ii) (dashed line). In fact, in model (ii) agents are set to a random position
every day, mimicking “random matching” as in the SIR model (iii) and therefore
minimizing the formation of local herd immunities.

The role of local herd immunity appears very evident when comparing the effects
of a lockdown policy (the typical Non-Pharmaceutical Intervention adopted in the
SARS-CoC-2 epidemic) in SIR and in Spatial-SIR. Figure 4 reports the dynamics
of active cases under lockdowns restricting the movements of 30% and 50% of the
population. The lockdowns are imposed when the fraction of active cases reach 10%
of the population and it is lifted when the fraction of active cases reaches 5%. The
left panel reports results from Spatial-SIR, the right panel from SIR.

Figure 4: Comparison of models with 30% and 50% lockdown policies

Left Panel: Spatial-SIR model, Right panel: SIR model. The lockdown is imposed when the
fraction of active cases reaches 10% of the population, and lifted when the fraction returns to 5%

Lockdowns have a smooth effect on the dynamics of active cases in SIR (right
panel), reducing the peak from 70% to 50% (for the 50% lockdown). Lifting the
lockdown has minimal effects in SIR because, when active cases reach 5%, herd im-
munity is relatively far advanced. In Spatial-SIR, on the other hand, the lockdown
sets local herd immunity immediately in action (especially so the 50% lockdown),
dramatically reducing new cases (left panel). Cases however start surging as soon
ad the lockdown is lifted, giving rise to the various waves/cycles (especially so for
the 50% lockdown represented by the orange line).

The results we reported on the role of local herd immunity in the determination of
the dynamics of an epidemic indicate that the “reduced form” nature of SIR models
is missing a potentially important role of matching frictions and, more generally,
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of local dynamics. Similar condiderations can be obtained looking at R0, which
is a random variable in Spatial-SIR, as the number of contacts of an individual is
random.

Replicating simulations of our baseline Spatial SIR, we estimate it as the average
number of people infected by the individuals who contracted the infection during the
first 5 days. We find that this estimate of R0 is within the range used to calibrate
transition rates in many studies (between 2.5 and 3.5), but is highly volatile. In 20
random replications of the model, the average R0 is 2.66, with a standard deviation
of 0.48. However, in Spatial-SIR this volatility does not translate into similarly
different aggregate outcomes as predicted by standard SIR. The total fraction of cases
in steady state averages to 0.97 in the 20 replications, with a standard deviation of
0.001. This suggest that, in our model, R0 loses its role as the fundamental driving
parameter of the epidemics, since outcomes are also highly sensitive to individual
characteristics of initial cluster of infection. While the infection rate in the very first
days of the infection is uniquely determined by the structural parameters R0 and ρ,
which are (relatively) independent of the spatial structure of the model, the dynamics
of the infection rests on the spatial local interaction structure. In other words, the
growth rate of the infection might decline early on in the epidemic following a form
of local herd immunity. Indeed, this is what we observe in the data and we set
parameters to match.

4 Spatial SIR: Oubreaks, Size, Density, and Movements

In this section we simulate Spatial-SIR to highlight the role of geographical charac-
teristics in the determination of the matching frictions and local herd immunity we
have identified in the previous section. We will study the role of outbreaks, pop-
ulation size, density, and agents’ movement. More precisely, outbreaks are defined
as the number of infected agents at the initial condition, I0. In Spatial-SIR, the
specification of this initial condition includes the distribution of outbreaks over the
City. Population size is N . The density of a City is d = area/N . In Spatial-SIR,
density is related to the number of contacts c by c = dΨ, where Ψ is the contagion
area of any (susceptible) individual.14 Finally, agents’ movement is µ, the average
distance travelled each day in Spatial-SIR. We denote g = [I0, N, d, µ] the vector of
the geographical characteristics we study in Spatial-SIR.

We study both properties of the dynamics at the stationary state (the fraction
of Recovered and Dead) as well as properties of the transitional dynamics (the time
it takes to for an outbreak to reach the peak of active cases, a measure of the speed
of the epidemic, and the height of the the peak of active cases, a measure of the
intensity of the epidemic).

14Parameter Ψ will be maintained constant in the whole paper.
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We will show that the simulated dynamics of Spatial-SIR do not satisfy some of
the invariance properties of the SIR dynamics we have delineated in Section 2. Fun-
damentally, the correction of the SIR dynamics due to local herd immunity is a func-
tion of geographic characteristics g. We write this correction then as E

[
λt(

It
N ; g)

]
,

This analysis of the effects of various geographical on the spread of the epidemics
has some clearcut implications regarding how to interpret the scale of the model in
simulations. Most importantly, Spatial-SIR is not dimensionless. City size, density,
the number and distribution of outbreaks, and movements in the city are variables
that empirical cross-city studies of epidemic dynamics should account for.

4.1 Outbreaks

The dynamics of the epidemic is invariant to the initial condition: scaling in size
obtains if we scale initial conditions; that is, in a x−times larger city with a x−times
population size (to maintain constant density) and x−times as many initial out-
breaks. This is the case in SIR as well as in Spatial SIR. In Spatial SIR, however,
this is the case only if outbreaks are appropiately homogeneously distributed across
space. This point is illustrated in Figure 5 where we compare the progression of
the contagion at days 10, 20, 30, 40, 50, and 70, between the baseline city and a
city with four times the population and the area (so that density is constant), and
with four initial clusters of the same size as in the baseline located in symmetric
locations. Each panel reports on the right the geographical location of infections
in the bigger city, on the bottom left the geographical location of infections in the
baseline (smaller) city, and on the top left the contagion rates.

The progression of the infection is almost entirely symmetric, barring minor
effects due to the randomness of people’s locations and movement. The top-right
chart in each panel shows that both the fraction of active and total cases is nearly
identical between the two Cities.

To better understand the role of the distribution of outbreaks in Spatial SIR,
in Figure 6 we illustrate the progression of the contagion on days 0, 10, and 25
comparing the baseline City (top 3 panels) with one single initial cluster of infected
and an identical City in which however the initial cluster of infected is split and
the infected agents are randomly located (bottom 3 panels). While in the baseline
model, contagion is relatively concentrated by day 25, contagion is widely spread by
the same date if the initial contagions are randomly located.

12



Figure 5: Rescaling a City

From the top-left panel proceeding right and down: day 10, 20, 30, 50, 70. Yellow dots are the the active
cases, green dots are the recovered cases (susceptibles are omitted). Area of small (large) city: 1 (4). Initially
infected at t = 0: 30 (120).
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Figure 6: Progression of contagion: one inital cluster (top 3 panels) vs
random initial contagion (bottom 3 panels)

Figure 7 summarizes the infection dynamics in these two simulations: the pro-
gression of active cases, I/N = (A + Y )/N , is faster when the initial cluster is
randomly located, reaching a higher peak of active cases (51% rather than 27%)
earlier (on day 30 rather than on day 65). However, the fraction of Recovered and
Dead at the stationary state, (R∗ +D∗)/N , is the same (97%)).
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Figure 7: One initial clusters vs. random initial locations

4.2 Population size

In this section we study the effects of changing population size N and city area
proportionally so as to keep the City density constant, while fixing the size of the
initial outbreak of the infection, I0. We have shown in Section 2 that in the SIR
model these changes have no effect on the stationary state nor on the transitional
dynamics, in the limit as I0/N is converging to zero.

We compare these effects betweeen the SIR and Spatial-SIR in Figure 8 where
we report infections as percent of the population; we illustrate for both models three
Cities: the baseline, a City of size 1/4th of the baseline and one 4 times the baseline.
Changing population size does not change the stationary state fraction of infected:
in both models (R∗ + D∗)/N is approximately equal 97 percent of the population.
This is consistent with the stationary state invariance property of SIR.

However, the transitional dynamics of the epidemic are not invariant to city size
in Spatial-SIR (left panel): the curve displaying the fraction of active cases, I/N , is
flatter in larger cities. This differentiates the dynamics between Spatial-SIR and SIR.
In fact, the transitional dynamics of SIR are not invariant to population size (only
in the limit for I0/N → 0 they are). But their dependence on size is minimal: (it
can be shown formally that) increasing x-times population size increases the peak by
−1/R lnx percenteage points. With our parameters - the difference is hardly visible
(right panel). In Spatial-SIR instead, the same difference in population size reduce
the peak in more than half (from .52 to .2 active cases) (left panel). Furthermore,
the time to get to the peak is longer in larger cities. But while it goees from 18 to
26 days in SIR, it goes from 28 to 111 in Spatial SIR.
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Figure 8: City size comparisons in Spatial SIR and standard SIR

Left panel: Spatial SIR model, Right panel: Standard SIR model. Colored lines: percent ever
infected; black lines: current active cases.

4.3 City Density

In this section we study the role of City density on the dynamics of the epidemic.
We show that City density in the Spatial SIR model plays a distinct role from the
inverse of the probability of infection, breaking the invariance we have highlighted
in Section 2 for the SIR model. This is very clearly shown in Figure 9 where the
baseline calibrated Spatial SIR is compared with an environment with 6 times the
probability of infection and 1/6th the density: the effect on the infection dynamics
is different both qualitatively and quantitatively.
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Figure 9: Changing density and contagion rate keeping the probability of
infection constant

In fact, in Spatial-SIR, changing City density while keeping the contagion rate
and the population size constant has important effects on both the stationary state
and the transitional dynamics of the epidemic, as illustrated in Figure 10.

To explore in detail the relationship between density and transitional dynamics
of the epidemic, in the right panel of Figure 10 we see that indeed (R∗ + D∗)/N is
increasing in density. Most importantly, the peak of active cases I

N is very sentitive to
density: halving density with respect to the baseline has the effect of dramatically
flattening the peak of the infection (more than a half, after more than twice as
many days from the outbreak). Density is a crucial determinant of the dynamics of
the epidemic because, together with the contagion rates, it determines the average
number of infections occurring on a given date. Increasing density while keeping
the contagion radius the same increases the number of contacts that each infected
individual has on a given day.
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Figure 10: The effect of varying city density with constant population

The final simulation we report in Figure 11 compares the baseline City with one of
the same size and the same population, but with heterogeneous density: specifically,
the City perifery has lower density than the center, and the initial cluster of infection
is in the center (the left panel reports the initial condition, each black dot represent
a susceptible individual, and the yellow dots nearest to the center represent the first
cluster of infections).15 While the stationary states of these Cities differ minimally,
the City with heterogeneous density has a smaller peak substantially earlier than the
baseline (right panel: compare the dashed with the continuous lines, reproducing the
outcome of our baseline model). In other words, heterogeneous density induces a
much faster growing epidemic early on which then slows down, reaching herd im-
munity earlier (at about 50% infected rather than 70%). This example illustrates
a more general mechanism operating when agents are heterogeneous (for example,
in age, socio-economic and professional characteristics, preferences for social inter-
actions): those more susceptible to the spread of the infection (in this simulation,
those living in denser regions) achieve herd immunity earlier.16

15All parameters of the model are as in the baseline reported in the previous figures, but the
initial location of the individuals is now set at a distance from the center drawn randomly from a
Normal distribution ∼ N(0, 1).

16See Gomes et al. (2020) and Britton et al. (2020) for related theoretical analyses.
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Figure 11: Epidemics dynamics in a city with heterogeneous density

4.4 Movements in the City

In Spatial-SIR several new parameters could contribute to explaining the cross-City
heterogeneity in the dynamics of the epidemic. In this section we study variation in
the random movement across space. The parameter controlling these movements is
the distance traveled every day by each agent, µ.17 Changing this parameter affects
the average number of contacts in the City. As we argued, the average number of
contacts in the City has an effect that is similar to City density. To provide an
intuition of the dependence of the epidemic on the movement speed of agents in the
City, Figure 12 reports an extreme case: the progression of contagion over space and
the speed and intensity of the spread when agents do not move.

The infection spreads slowly. As contagion expands, clusters of susceptible (non-
infected) people are clearly visible in the rightmost panel as large white spots within
the green cloud. This is less likely to occur when people move, which is why the
speed of movement affects also the steady state as illustrated in Figure 13.

17Given our calibration of the spatial structure of the City with respect to the contagion speed
(namely, the contagion radius), if all people were placed on an equally spaced grid, contagion would
not occur. All infections in the baseline model occur initially because random placement generates
clusters of people closer to one another than the infection radious. Contagion expands over time
because people randomly move daily around the City.
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Figure 12: Progression of contagion when agents do not move: days 50,
150, 300

With constant density and people randomly moving around the city, the average
number of contacts is constant, but local herd immunity plays a fundamental role
and the dynamic of the infection changes with speed. With faster speed, infected
people are more likely to find uninfected locations, making less likely for people in
these locations to stay immune until the steady state.

Figure 13: Movement speed

The speed of people’s movement around the City and the number of initial clus-
ters have a very similar effect on outcomes, because if people move very fast, at the
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Figure 14: Reduction in contacts according to the behavioral response

beginning of the infection they generate new clusters quickly.

5 Behavioral Spatial SIR

As we discussed in the Related Literature section, most epidemiological models em-
ployed in forecasting do not formally account for behavioral responses to the epi-
demic; see e.g., Ferguson et al. (2020) for SARS-CoV-2. In this case, as in our
analysis in the previous sections, the number of daily contacts in the population, c,
is a constant.

In this section, we model agents responding to the dynamics of the epidemic,
by choosing to limit their social interactions, their contacts. Following Keppo et al.
(2020), we introduce a reduced form behavioral response, represented by a function
0 ≤ α(It) ≤ 1, which acts as a proportional reduction of the agent’s contacts as a
function of the number of infected in the population:18

c = α(It)dΨ, α(It) =

 1 if It ≤ I(
I
It

)1−φ
if It > I

. (4)

18In Spatial-SIR with state space (S,A, Y,R,D), the behavioral response will depend on A.
Since the fraction of asymptomatics is not observable, behavioral response could only depend on
the number of symptomatics, as a proxy; with Rational Expectations, however, the agents know
(rationally infer) the equilibrium map from Y to A, say A(Y ), possibly with noise; see Bisin and
Moro (2020a).
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We calibrate the dynamics of the epidemics allowing for behavioral response, as
in (4), in both SIR and Spatial SIR.19 In the calibration, the percent reduction in
the number of contacts according to the behavioral response function is reported
in Figure 14. As the infection spreads, the number of contacts decreases. As herd
immunity begins and the number of infected declines, contacts increase towards the
initial (pre-infection) state.

In Figure 15 we simulate the effects of behavioral responses on the dynamics.
In both SIR and Spatial SIR, not surprisingly, the qualitative effects of behavioral
response is to reduce the spread of infection, lowering the peak of infected, but then
slowing down the operation of herd immunity. As the number of contacts goes back
to normal, the behavioral response has no effects in stationary state. While we do
not report simulations to this effect, we notice here the important fact that the
behavioral response, when derived from the agents’ choice depends on geographical
characteristcs g as long and these affect contacts.We write the behavioral response
then as α(It; g).

Figure 15: Comparison of SIR with Behavioral model

Figure 15 highlights also the differential effects of behavioral responses on SIR and
Spatial SIR. The behavioral response is not only much stronger in Spatial-SIR, but
qualitatively different when comparing both infection growth rates and the fraction
of active cases. The peak of active cases in Spatial SIR is a third, with respect to
SIR, but the decline of the infection after the peak is slower. This is the result of
the composition of the behavioral response, α(It; g), and the spatial correction on
SIR, E

[
λt(

It
N ; g)

]
− It

N . The first acts on the number of contacts, while the second

19Details about the calibration are reported in Appendix B. We calibrated the SIR model as in
the simulations in Section 3.2 for this comparison.
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acts on the distribution of infected between the contacts.

6 Implications for Empirical Analysis

We summarize five implications of our analysis to guide empirical research using
panel data about the diffusion of an epidemic. We discuss both structural estimates
of a formal epidemic model, and estimates of the causal effects of a policy (typi-
cally, a Non-Pharmaceutical Intervention (NPI), e.g., a lockdown), which in many
applications adopt a Difference in Difference (DiD) design.

Consider panel data on the dynamics of an infection over time t across different
geographic units (Cities) i. The econometrician observes the geographic character-
istics gi = [I0, Ni, di, µi] of each City i for several times t, as well as data on the
dynamics of the infection, Ii,t, Ri,t (hence Si,t).20 We make several points which we
are expanding in research we are currently pursuing.

1. Cross-City restrictions in the standard SIR. To highlight how model re-
strictions could be exploited for empirical analysis, consider first estimating a SIR
model without behavioral effects, as in standard epidemiological studies (see Fergu-
son et al. (2020) for example). Consider the following specification:

ln Ii,t+1 − ln Ii,t = βi,tSi,t
Ii,t
Ni
− ρ (5)

with βi,t = πci, ci = diΨ (6)

Equation (6) imposes important (falsifiable) cross-City restrictions; e.g., the growth
rate of the fraction of infected in a City, other things equal, is proportional to the
density of the City. This can be tested.

2. Cross-City restrictions in Spatial-SIR. Accounting for a spatial structure
on the SIR model introduces matching frictions through local social interaction, as
we have shown in Section 4. The specification of the dynamics of the infection in
(5) takes the form

ln Ii,t+1 − ln Ii,t = βi,tSi,tE

[
λt

(
Ii,t
Ni

; gi

)]
− ρ. (7)

The main driver of the differential effects in Spatial-SIR is local herd immunity. Ge-
ographic characteristics gi mediate the relationship between parameters and model
outcomes without a parametric expression for function λ, making it it difficult to sep-
arately identify the effects of geography from infection strength. However, one can

20Possibly, in fact, distinguishing Ai,t and Yi,t as well as Ri,t and Di,t.
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use the full structure of the model to match data with model predictions using simu-
lation methods. Alternatively, one could use simulations to estimate E

[
λt
(
Ii,t
Ni

; gi
)]

which can be used as a correction to the dynamics of the SIR model (which is much
faster to simulate), to estimate (6-7).

3. Identifying behavioral responses Accounting for agents’ choices, the number
of contacts is endogenous and (6) takes the form

βi,t = πci, ci = α(It; gi)diΨ (8)

This amplifies the issues we highlighted so far, requiring a new identification strat-
egy. The standard SIR parameters predict the infection dynamics precisely. For
example, there is a one-to-one correspondence between initial infection growth rates
and the peak. Deviations from such dynamics can non-parametrically identify π
from α(It; gi). Parametric identifcation can be achieved by assuming a functional
form for α(It; gi) along the lines of (4) from Keppo et al. (2020) In Spatial-SIR the
full specification is (7-8). Identification in this case can rely on simulation methods
as suggested at the end of empirical implication 2.21

When the data is treated by policy, special care must be used because α(It; gi) is
also not invariant to policy by a Lucas critique argument, even in the absence of geo-
graphical factors.22 Policy and agent behavior have separate effect on the dynamics
of the epidemic both because behavioral responses have time-varying effects, as we
uncovered, and because their effects interact with the effects of geography (a point
generally disregarded in the few studies that try to account for behavioral responses).
However, to identify behavioral responses one could focus on pre-treatment data. Ev-
idence of agents’ movements, using “Big-Data” from Google, Safegraph, and Cuebig
could also provide useful empirical strategies for identifying behavioral responses
from infection dynamics by exploiting restrictions imposed by Spatial-SIR.

4. Identifying the time-varying effect of geography in DiD studies of NPIs
Reduced-form methods can also be exploited to separately identify the effects of
policies and agents’ behavioral responses. Consider a treatment, like e.g., an NPI,
introduced at different times in different cities23. Let Treati,t take value 1 if city i is
treated at time t. Consider the following 2-way fixed-effects DiD specification:

ln Ii,t+1 − ln Ii,t = ν + ηi + γt + δTreati,t + λXi,t (9)
21Fernandez-Villaverde and Jones (2020) adopt simulation methods to estimate parameters sep-

arately for each location without imposing geographic restrictions
22See Bisin and Moro (2020a) for more detailed considerations on this issue.
23See e.g., Allcott et al. (2020), Chernozhukov et al. (2020) Courtemanche et al. (2020), Fang et

al. (2020), Hsiang et al. (2020) Maloney and Taskin (2020), Mangrum and Niekamp (2020), Pepe
et al. (2020)
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where ν, ηi, γt are time and location effects and Xi,t are additional controls. Our
analysis of Spatial-SIR implies that the vector of geographic factors gi affects out-
comes differently over time, therefore the inclusion of location and time fixed effects
may not fully account for the bias arising from the time-varying heterogeneity intro-
duced by λ(·) and α(·) defined in empirical implications (2) and (3). The inclusion of
geographic factors such as density as controls, even interacted with time, may not be
sufficient both because their effect are non linear, and because it is often hard to pin
down the beginning of the infection in all localities.24 Furthermore, the direct effects
of treatment themselves depend on the geographic characteristics: a lockdown, for
instance, acts as a reduction of density (see the discussion of Figure 4) and it affects
local herd immunity differently depending on initial density and other geographical
characteristics.

A similar specification is used in the literature to study the effects of the treat-
ment to the growth rate in number of contacts ln ci,t+1 − ln ci,t rather than on the
growth rate of cases ln Ii,t+1 − ln Ii,t.25 But if ci depends on I, then the effect of gi
is not captured by the city and time fixed effects ηi, γt.

5. Geographic units of analysis and their characteristics. It is important to
choose geographic units of analysis so that density and other geographic character-
istics gi are relatively homogeneous. For this reason, empirical analyses with data
across countries involve additional concerns with respect to data across cities.

In Section 4 we found that, besides population size and density, the distribution
of outbreaks and the speed of movement of the agents have systematic effects on
the dynamics of an epidemic. Proxies like the airport activity for the number of
outbreaks, the distribution of socio-economic characteristics for the distribution of
outbreaks, the use of public transportation for the movement of agents, could be
fruitfully used in both reduced-form and structural estimates.

We also note that in structural estimates, heterogeneous density and various
distribution of outbreaks can be easily included in the estimation of a Spatial SIR
(but not in an estimation of the SIR).

7 Conclusions

Our analysis of the effects of several stylized spatial factors on the dynamics of an epi-
demics has identified the fundamental role of local interaction and matching frictions
as a determinant of these dynamics. This has important implications for empirical

24See Goodman-Bacon and Marcus (2020) for a comprehensive analysis of potential threats to
the validity of DiD design in the analysis of non-pharmaceutical interventions to fight the spread
of COVID-19.

25Specifically, Allcott et al. (2020), Maloney and Taskin (2020)
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studies on the diffusion of an epidemic, providing a framework for disentangling the
effects of local interactions/matching frictions, behavioral responses of risk averse
agents, and policy interventions.
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A Appendix: Theoretical Structure of SIR and Spatial-
SIR

In this appendix we construct the theoretical structure of SIR and Spatial-SIR as
Markov chains processes.

A.1 SIR

The society is populated by N individuals. Agents are ex-ante identical in terms
of demographic characteristics. Let S denote the individual state-space. In the
SIR model, the state-space is S = {S, I,R}, indicating Susceptibles, Infected, and
Recovered. Let hit ∈ S denote the state of agent i at time t. Let ht = 1

N [St, It, Rt] ∈
∆S denote the distribution of the population across the state-space.26 The SIR
model is represented by a Markov Chain:

prob(hit+1 = h′ | hit = h) = Th h′(ht)

where Th h′(ht) is the generic element of a S×S double-stochastic (transition) matrix
T (ht). The dependence of the transition matrix on ht, the distribution of the pop-
ulation across the state-space (the aggregate state of the economy), is a mean-field
property justified in this class of models by random matching in the population.

More specifically, the matrix Th h′(ht) is determined by the following transitions:
S −→ I. A Susceptible agent becomes infected upon contact with an Infected,

with probability πI.
A −→ R. An agent Infected at t, at any future period, can Recover with proba-

bility ρ.
R Recovered is absorbing state of the dynamic process (agents entering this state

never leave). This assumes Recoved agents are immune to infection.

The resulting dynamical system for the distribution of the population across the
state-space, ht, is the following,

ht+1 = T (ht)ht.

The dynamical system can be solved for in closed form, see e.g., Moll (2020),
Neumeyer (2020).

A.2 Spatial-SIR

We now add a spatial dimension to the SIR model. We also expand the state
space to better caputure several relevant aspects of the SARS-CoV-2 infection.

26Abusing notation, we let we let the capital letters indicating a state also denote the fraction of
the population in that state; and we let S denote both the set and its numerability.
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Specifically, we split the I state into Asymptomatics and sYmptomatics, A and
Y . We also add explicitly the state D, for Dead. Hence, S = {S,A, Y,R,D}.
We maintain the notation hit ∈ S to denote the state of agent i at time t; and
ht = 1

N [St, At, Yt, Rt, Dt] ∈ ∆S to denote the distribution the N agents in the pop-
ulation across the state-space.

Agents are located in space, e.g., a lattice, which we call "the City." Agents are
ex-ante identical in terms of demographic characteristics and symmetric in terms of
location in space. A (Markov) transition process between states governs the dynam-
ics of the system from the initial condition, at day t = 0. The spatial dimension
maps the stochastic process into a local interaction model, a model in which agents’
contacts are not the results of random matching but rather of local matching, with
agents close in space (geographical distance as a metaphor for social distance). Let
Ht denote the configuration of agent at time t, a vector

[
h1t , h

2
t , . . . , h

I
t

]
; the set of

all configuration is denoted H. The local interaction model is characterized by

prob(hit+1 = h′ | hit = h) = Th h′(Ht).

More specifically, the matrix Th h′(Ht) is determined by the following transitions:
S −→A. Susceptible agents become infected upon contact with an Asymptomatic,

with probability π.27 A contact is defined to occur when agents are at a geographical
distance in space ≤ p.

A −→ Y, R. An Asymptomatic agent infected at t, at any future period, can
become sYmptomatic with probability ν, or can Recover with probability ρ.

Y −→ R, D. An agent who has become sYmptomatic at t, at any future period,
can Recover with probability ρ, or can Die with probability δ.

D, R. Dead and Recovered are absorbing states of the dynamic process. As we
noted, this assumes Recoved agents are immune to infection.

Abusing notation, a transition matrix T (Ht) in the space of possible configura-
tions H can be constructed from Th h′(Ht).28 The resulting dynamical system for
configurations Ht is

Ht+1 = T (Ht)Ht.

But Spatial-SIR accounts for agents possibly coming into contact after moving
randomly in space.29 Let the operator Pt, mapping Ht ∈ H into Pt ◦ Ht ∈ H,
represent a configuration after a random permutation of the position of the agents,

27Susceptible agents are not infected upon contact with a sYmptomatic agent; this is to capture
the fact that sYmptomatic agents are either isolated at home or in the hospital. They movements
in the City are vacuous.

28This is an ugly looking operation, but formally straighforward, as purely arithemetical.
29This is different from most mathematical literature on local interactions; see e.g., Kindermann

and Snell (1980) and Liggett (2012).
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indexed by i. Before transitioning from the state at t to the state at t+1 the agents’
locations are permutated randomly. The local interaction model is characterized by

prob(hit+1 = h′ | hit = h) = Th h′(Pt ◦Ht).

The resulting dynamical system for configurations Ht is:30

Pt ◦Ht+1 = T (Pt ◦Ht)Pt ◦Ht. (10)

The dynamical system is difficult to formally characterize, besides (possibly) an
ergodicity result, with respect to initial conditions specifying, at day t = 0, a random
allocation of agents on evenly spaced locations in the City, all of them Susceptible,
excepts for A0 > 0 agents who are exogenously infected Asymptomatics. All our
simulations, for all parameter values and initial conditions, converge to a unique
ergodic distribution over the state space ht = 1

N [St, At, Yt, Rt, Dt] ∈ ∆S .

B Appendix: Calibration

We calibrate the parameters of Spatial-SIR to the dynamics of the SARS-CoV-2
epidemic.31 The parameters we choose in the calibration of the aggregate model are
summarily reported in Table 1. We discuss in turn the parameters governing the
transitions away and between the infected states, A, Y,D,R, and then the infection
and contact rates governing how Susceptibles are infected. Finally, we set initial
conditions.

Geography We place people in initially random location in a square or area equal to
1. At all t > 0, individuals are relocated at distance µ from their location at t − 1,
in a direction drawn randomly from a uniform distribution on [0, 2π]

30This representation is complicated in that the state space H is very large, and the permutation
does not help. A simpler representation of prob(hi

t+1 = h′ | hi
t = h) can be obtained as follows. Let

It map locations l ∈ L into agents i ∈ I. Assume at time t = 0 the map I0 is an identity map so
that the index i coincides with l. (This assumes, just for simplicity, that the numerability of agents
is the same as that of locations.) Let It+1 = P ◦ It, t ≥ 0. Fix an agent i and let l be the unique
solution to It(l) = i. (As we constructed it, It+1 is a byjection.) Let NBHDt(i) = {i ∈ I | i =
It(l
′), l − d ≤ l′ ≤ l + d}. Then

prob(hi
t+1 = h′ | hi

t = h) = Th h′([hi′
t ]i′∈NBHD(i)).

31We acknowledge the substantial uncertainty in the literature with respect to even the main
epidemiological parameters pertaining to this epidemic. As we noted in the Introduction, this is
less damaging when aiming at understanding mechanisms and orders-of-magnitude rather than at
precise forecasts.
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Initial conditions At time t = 0 we set 30 individuals in Asymptomatic state; all
others are Susceptibles. In all specification where we do not test for the effect of
cluster location, the asymptomatics at t = 0 are those initially located in a position
closest to location [x = 0.25, y = 0.25].

Transitions away and between the infected states, A, Y,D,R. The probability any
agents transitions away from being Asymptomatic, state A, is ρ + ν in our model.
We assumed agents are infective only in state A (we assumed that all sYmptomatic
agents reduce to zero social contacts). The average time an agents stays in state A
is then Tinf = 1

ρ+ν . We set ρ+ν to match a theoretical moment which holds exactly
at the initial condition in the basic SIR model. Recall R0 denotes the number of
agents a single infected agent at t = 0 infects, on average. Let g0 denote the growth
rate of the number of infected agents at t = 0. Then, in SIR,

(R0 − 1)

Tinf
= g0. (11)

For the current SARS-CoV-2 epidemics, R0 is reasonably estimated between 2.5 and
3.5.32 The daily rate of growth of the infection g is estimated = .35 by Kaplan et
al. (2020).33 This implies, from Equation (11), that Tinf is between 4 and 7 days
(respectively forR0 between 2.5 and 3.5). Ferguson et al. (2020) use 6.5 days. We set
ρ+ ν = .14, so that Tinf = 1

ρ+ν = 7.34 Furthermore, the average time from infection
to death or recovery is reasonably estimated to be 20 days; see e.g., Ferguson et al.
(2020). Therefore we set ρ = .05 so that 1ρ = 20. This implies ν = .09.

The case fatality rate, the probabilty of death if infected, is estimated between
.005 and .01; see e.g., Ferguson et al. (2020). Since agents remain sYmptomatic in
the model, before Recovering, on average 1

ν = 11 days, we set the probability of
Death for a sYmptomatic, δ, to be 0.001.35

Infection and contact rates. We calibrate the infection rate π, the contagion radius
p, and the mean distance µ to match i) the daily growth rates of the dynamics of

32More preciseely, Wang et al. (2020) estimates R0 = 3.1 for Wuhan, China; Remuzzi and
Remuzzi (2020) estimate it between 2.76 and 3.25 for Italy; Zhang et al. (2020) has 2.5 from the
Princess Cruise ship; Fauci et al. (2020) estimates R0 = 2.2 in the U.S.; the European Centre
for Disease Prevention and Control, at https://www.ecdc.europa.eu/en/geographical-distribution-
2019-ncov-cases, estimates R0 between 2 and 3 and the last Imperial College report, Ferguson et
al. (2020) uses 3.5. Note that the range of Recovered agents in stationary state is R∗ implied by
R0 between 2.5 and 3.5, is between .89 and .97; from equation 2.

33Alvarez et al. (2020) have .2; Ferguson et al. (2020) have .15.
34We thank Gianluca Violante for suggesting this calibration strategy.
35We also set, for simplicity in the simulations, that fatalities cannot occur to an agent less than

3 days before she becomes sYmptomatic and that every infected individual recovers with certainty
after 100 days.
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Table 1: Parameter values in the calibration

Parameter Notation Value

number or people N 26,600
initially infected A0 30
prob. of recovery ρ 0.05
prob. of becoming symptomatic υ 0.09
prob. of dying δ 0.00013
contagion probability π 0.038
mean distance traveled µ 0.034
contagion radius p 0.013

infections, gt, observed in the first 30 days of epidemics; and ii) the average number
of contacts observed in demographic surveys. For gt, we use data for Lombardy,
Italy; see Figure B.16.36 For contacts, data in Mossong et al. (2008) suggests an
average of 12.5 contacts every day.

Figure B.16: Growth rate of infections

36Since the number of infections is not observed, we match the growth rates of infection in the
model with the growth rate of deaths in the data. This is justified when, as we assumed, the case
fatality rate is a constant and Death follows infection after a constant lag on average.
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Behavioral models. In the simulation of the model (4) we set φ = 0.88 as estimated
by Keppo et al. (2020) using Swine flu data, and assume people start responding
to the spread of the contagion very soon by setting I = 0.01. In simulations of the
standard SIR model with behavioral responses, we use the same parameters.

C Appendix: Additional Figures

In Figures C.17 (resp. C.18) we report, for both SIR and Spatial-SIR, on the dy-
namics of the epidemic under a lockdown policy which restricts movements of 30%
(resp. 50%) of the population when active cases reach 10% and lifts the restriction
when active cases reach 5%.

Figure C.17: Comparison of models with 30% lockdown
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Figure C.18: Comparison of models with 50% lockdown

In Figure C.19 we report the results of simulations varying the number of initial
clusters from 0 to 20, in our otherwise baseline city, while keeping the number of
initially infected agents constant. We observe that, with our calibrated parameters,
the effect of increasing the number of initial clusters converges quite fast: when
there are five or more initial clusters, increasing the number of initial clusters while
keeping the number of initially infected the same, has no effect on the dynamics of
the epidemics.

Figure C.19: The effect of the number of clusters

In Figure C.20 we report the results of simulations varying the size of the City,
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in our otherwise baseline City, while keeping the size of the initial outbreak of the
infection and City density constant. We observe that, with our calibrated parame-
ters, the effect of increasing City size: the peak of active cases declines with size in a
convex manner (less so the larger the city); the number of days it takes to reach the
peak and the number of days to the stationary state (the end of the epidemic) both
increases with size and do so with a slight concavity (less so the larger the city).

Figure C.20: City size comparisons

In Figure C.21 we report the results of simulations varying City density, in our
otherwise baseline City. We observe that, with our calibrated parameters: i) (R∗ +
D∗)/N is increasing and concave in density; and the peak of (A + Y )/N is also
increasing and concave in density. In the right panel of Figure C.21 we see that the
days it takes to reach the peak and the stationary state are decreasing and convex
in density.
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Figure C.21: The effect of varying city density with constant population
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