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1 Introduction

Social outcomes are profoundly shaped by the extent to which groups are segregated from one

another (Cutler and Glaeser 1997; Chetty and Hendren 2018a, 2018b; Chetty et al. 2016). As

a result, large literatures have developed in economics, sociology, and related fields seeking to

measure the extent of segregation across space and time.

Most of this empirical work focuses on segregation in where people live. A leading measure

is the isolation index, which captures the share of individuals’ neighbors who come from their

own group.1 If we view the object of interest as the exposure of one group to another (Massey

and Denton 1988; Cutler et al. 1999; Echenique and Fryer 2007), residential measures have

obvious limitations. Individuals living in highly segregated neighborhoods may be exposed to

diverse others where they work, shop, and socialize, while those living in apparently mixed

neighborhoods may have little contact with their neighbors and commute to highly segregated

places. A corollary is that standard residential segregation measures are highly sensitive to the

way in which neighborhood boundaries are defined (Cowgill and Cowgill 1951; Massey and

Denton 1988).

In this paper we introduce a novel measure of segregation which addresses these limitations,

and estimate it using Global Positioning System (GPS) data. This experienced isolation has the

same form as the isolation index, but rather than assuming individuals are exposed uniformly to

those in their neighborhood of residence, it averages exposure over the places individuals actu-

ally visit over the course of their days. This measure does not depend on arbitrary neighborhood

boundaries, and it takes explicit account of the diversity experienced away from home. It can

capture individual-level heterogeneity within neighborhoods (Echenique and Fryer 2007), and

it can be disaggregated across times of day, locations, and activities, thus giving a richer picture

of the forces that increase or decrease segregation.

Our main data are GPS signals from a sample of US smartphone users covering approxi-

mately 5% of the US population in the first four months of 2017. The data are obtained from a

company that aggregates anonymous pings from a range of smartphone apps. We observe each

device’s home location as well as the location of every ping by the device recorded in the data.

We map these locations to a grid of geographic units approximately 500 feet square, known as

geohash7s. The sample of individuals is not random but is reasonably close to representative

1See, for example, Cutler and Glaeser (1997), Cutler et al. (1999), Gentzkow and Shapiro (2011), and Davis et al.
(2019).
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along a number of dimensions, and has sufficient coverage that we can correct for deviations

from representativeness using sample weights. We use the movement patterns we observe to

compute experienced racial isolation.

Because we do not observe an individual’s race directly, we define the two types whose

segregation we study to be individuals with homes in majority white geohash7s and individuals

with homes in majority non-white geohash7s. We refer to these two groups as WDs (White

home geohash7 Devices) and NWDs (Non-White home geohash7 Devices) for simplicity. The

median share white of majority white and non-white home geohash7s are 0.89 and 0.22, re-

spectively. We discuss below the implications of using these geographic definitions in place

of individual race, and we show robustness to an alternative strategy that imputes race at the

individual level.

We present four main results: First, peoples’ actual experiences as captured by our measure

are substantially less segregated than traditional residential isolation would suggest. The aver-

age experienced isolation across all Metropolitan Statistical Areas (MSAs) is 0.46, compared

to average residential isolation of 0.61.2 This implies that the share of WD’s exposures to other

WDs is 46 percentage points greater than the share of NWD’s exposures to WDs.

Second, experienced and residential isolation across MSAs are highly correlated. The over-

all correlation of the two measures among the 366 MSAs in our sample is 0.86. Among the

50 most populous MSAs, Milwaukee, WI; Detroit, MI; and Cleveland, OH rank in the top 5 in

both residential and experienced isolation. Portland, OR; Seattle, WA; and Raleigh, NC rank in

the bottom 5 for both measures.

Third, the variation in experienced relative to residential isolation is systematic. Experi-

enced isolation is relatively lower in MSAs with higher population density and public transit

use, consistent with the view that urban areas facilitate diverse interactions (Jacobs 1961). Ex-

periences are also less isolated in MSAs with higher income and education and lower unem-

ployment, possibly reflecting a role for social capital in reducing segregation (Putnam 2000).

Finally, relative experienced isolation is negatively correlated with Chetty et al.’s (2014) mea-

sure of income mobility, consistent with both diverse interactions increasing mobility and with

areas that facilitate opportunity also promoting diverse interactions.

Fourth, decompositions across time and space reveal the extent to which different activities

increase or decrease segregation. Experienced isolation is lowest during the day and highest in

2Residential isolation based on our geographic definition of WD and NWD is larger than the standard measure of
residential isolation based on individual race. We discuss the reasons for this difference below.
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the morning and evening. Experienced isolation in home neighborhoods is higher than residen-

tial measures would suggest, whereas experienced isolation outside of home neighborhoods is

much lower. Isolation is lowest at entertainment, retail, and eating establishments, while time

at locations like churches and schools is somewhat more isolated.

These findings have several broader implications. They suggest that standard measures

overstate the overall extent of segregation in the United States, and they highlight important

forces such as commercial activity that reduce it. They suggest that residential measures may

nevertheless be a good proxy when the main goal is to assess relative levels of segregation across

cities. Finally, they suggest a more nuanced view of where the negative effects of segregation

are likely to be largest. For example, local public goods such as schools or police services

that are explicitly tied to residential boundaries are more likely to be provided in segregated

environments. Any negative effects of segregation are likely higher for children and those who

do not work, and others whose exposure is more tied to their local neighborhoods. Policies

which affect the spatial distribution of commercial or leisure activities, or the transportation

cost of accessing these activities, may be as or more effective than policies explicitly targeting

housing.

We emphasize three main limitations of our analysis. First, we have no direct information

about the individuals whose devices we see in our data, and so we define individual types based

on the demographic composition of home geohash7s rather than based on individual race. This

means we are targeting a slightly different concept than much of the prior literature on segre-

gation. We discuss alternative approaches including imputing race at the individual level in the

Online Appendix. Second, our sample is not fully representative, and the geolocation informa-

tion we get about any given device is sparse. Third, while we can observe when devices occupy

the same geographic space, we can not directly observe actual interaction between individuals.

Under our construction, a restaurant-goer is just as exposed to the waiter or the cook in the

kitchen as she is to the person sitting across the table. White (1983) highlights this subtlety by

distinguishing geographic segregation (the concept we measure) and sociological segregation

(based on actual interactions). Sunstein (2002), among others, argues that geographic segrega-

tion is of interest on its own.3

This paper builds on a large literature on measuring urban segregation. Important early work

3Sunstein (2002) writes that integrated physical spaces increase “the set of chance encounters with diverse others”
and foster environments where “exposure is shared.” He argues that overhearing conversations while at a restau-
rant, a bus stop, or just walking down the street all contribute to individuals’ understanding of diverse others and
open up opportunities for interaction.
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on both the definition and measurement of segregation includes Duncan and Duncan (1955),

Taeuber and Taeuber (1965), White (1983), Massey and Denton (1988), and Massey and Denton

(1993). Cutler et al. (1999) provide a comprehensive analysis of segregation in US cities over

the century from 1890 to 1990. Card et al. (2008) study the dynamics of neighborhood tipping.4

Our work is also related to a growing literature using GPS or similar location data to study social

interactions.5

2 Data

2.1 Geography

We follow the literature in characterizing segregation at the level of MSAs and in using census

tracts to approximate neighborhoods within MSAs.6 The finest geographic unit in our analysis

is the geohash7, which as mentioned above is a unit of a grid roughly 500 feet square.7 We use

census blocks to impute geohash7 demographics. Appendix Figures A1, A2, and A3 illustrate

the relative sizes of geohash7s, census blocks, and census tracts, focusing on an urban census

tract and a rural census tract respectively in Birmingham, AL.

We obtain information about the location of establishments and features of interest from two

sources: InfoUSA and OpenStreetMaps (OSM). The 2015 InfoUSA US Businesses mailing list

contains the names, addresses, industries, and latitude / longitude for 15.6 million businesses

in the United States. We take from the full list all establishments that belong to the broad cat-

egories of “restaurants and bars,” “civil, social and religious organizations,” “accommodation,”

“sports and recreation,” “entertainment,” and “retail,”8 2,368,216 places all in all. We match

each establishment to the geohash7s that contain its latitude / longitude. From OSM, we extract

4Park and Kwan (2018) define a notion of “multi-contextual segregation” that is closely related to our work in
considering segregation over the varying geographic and temporal contexts of peoples’ daily lives.

5Glaeser et al. (2018) anticipate the value of such data. Blattman et al. (2018) track police patrols in Bogotà,
Colombia using GPS to estimate how increased state presence affects violent and property crime. Chen and
Rohla (2018) and Chen et al. (2019) use GPS data to measure the effects of political polarization on the length of
Thanksgiving dinners and to measure racial differences in waiting times at polling places respectively. Davis et
al. (2019) use data from Yelp to measure the segregation of restaurants in New York City, finding that restaurants
are less segregated than residential neighborhoods. Caetano and Maheshri (2019) use data provided by the app
Foursquare to quantify segregation by gender and by age in public places, and Phillips et al. (2019) use geotagged
tweets to build an index capturing the extent to which residents in each neighborhood of a city travel to all other
neighborhoods in equal proportions.

6We omit Micropolitan Statistical Areas.
7The geohash geocoding scheme divides the globe into grids of increasing fineness. Geohash1s divide the globe
into 32 cells of equal size. Geohash2s divide each of these cells into 32 smaller cells, and so on.

8See Appendix Section A1 for our manual classification of NAICS code into these categories.
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polygon data for outdoor spaces like parks, playgrounds, sports fields and gardens, and educa-

tional institutions like schools, kindergartens, universities and colleges (See Appendix Section

2.1 for details). We associate each OSM feature with all geohash7s that intersect the feature’s

polygon. Appendix Figure A4 depicts geohash7s associated with civil, social, and religious

organizations, education, outdoor spaces and restaurants and bars in downtown Birmingham,

AL.

Many geohash7s are labelled with multiple features. We assume pings in a device’s home

geohash7 (defined below) are at home regardless of what other features are present. We assign

all pings in non-home geohash7s that contain transportation features to transportation. All other

pings are allocated uniformly across features present in the geohash7.

2.2 GPS Device Movements

Our GPS data are provided by a company that collects anonymous location data from mobile

applications on users’ smartphones. The sample is an unbalanced panel of GPS “pings” from

more than 17 million devices spanning January to April 2017.9 Pings are logged whenever an

application on a device requests location information. In some cases this will be the result of

a device actively using an application, such as for navigation or weather information, while in

other cases applications may request the information even while running in the background.

Pings thus occur at irregular intervals. For each ping, we observe a timestamp, a device iden-

tifier, and the geohash7 in which the ping occurs. The data also contain the geohash7 of each

device’s home, inferred probabilistically from the device’s nighttime and early-morning pings.

2.3 Demographics

We impute geohash7 demographics from the 2010 census. We match each home geohash7 to

the census tract that contains its centroid. This yields a matching tract for 99.53 percent of

devices in our sample. We match each home geohash7 to all census blocks that overlap its area.

This yields a match to at least one census block with non-zero population for 98.12 percent of

devices. We assign demographics to each home geohash7 by taking an area-weighted average

of the demographics of the overlapping blocks.10 We define “white” population based on the

9We use “GPS” as a shorthand for a variety of means used by smartphones to determine their physical location.
These include cell phone towers, the identity of nearby WiFi networks as well as the US GPS and the Russian
GLONASS systems of satellites.

10We show robustness to alternative methods of demographic imputation in Appendix A2.2.
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census designation “White Alone (Non-Hispanic),” and we group all other census race groups

in the category “non-white.”

We use data on MSA characteristics from the 2010 American Community Survey (ACS)

and the 2010 decennial census. These variables include the MSA’s median age, education

level, unemployment rate, median income, population density, and share of residents using

public transit to get to work.11 We also use economic mobility measures from Chetty et al.

(2020) indicating the share of individuals born to parents at the 25th percentile of the income

distribution who make it to the top quintile for white and black populations. We compute MSA-

level mobility measures by averaging across counties weighting by white and black county

populations respectively.

2.4 Summary Statistics

We observe 17,730,615 devices with home locations identified in 7,292,623 distinct geohash7s.

We match these home geohash7s to 72,785 census tracts and 6,186,564 census blocks. This

matching procedure succeeds for 17,397,580 devices, the final sample used throughout the rest

of the paper.

To assess the representativeness of the sample, we compare the average census tract demo-

graphics of devices in our sample to averages in the US population. We find that our sample

is representative in terms of gender, age, and unemployment rate. We find that it slightly over-

samples more educated and wealthy areas, with average median income across census tracts

in our sample about a thousand dollars more than the U.S. mean, and census tract poverty rate

about a percentage point lower. We address this imbalance by weighting as shown in equation

4. Details of this comparison and summaries of the average activity levels of devices in our

sample are shown in Appendix Tables A2 and A3 respectively.

While our WD and NWD designations are not equivalent to individual race, they are highly

correlated with it. The median share white in a device’s home geohash7 is 0.22 for NWDs and

0.89 for WDs. We plot the histogram of this share for both groups in Appendix Figure A7.

11See Appendix Table A4 for a complete description and sources for census, ACS, and mobility variables.
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3 Measure

3.1 Definition

Consider a population of individuals indexed by i and a set of MSAs or other geographic areas

of interest indexed by a. We collect each individual who is a member of one of two groups

which we denoteW andNW . In our analysis below,W will be individuals from majority white

geohash7s (WDs) and NW will be individuals from majority non-white geohash7s (NWDs).

Each individual has a set of exposures to other individuals in area a. We let ei ∈ [0, 1] denote

the share of individual i’s exposures that are to members of group W .12

A general form of the isolation index for area a captures the difference between the average

value of ei among individuals in the two groups (cf. Gentzkow and Shapiro 2011):

Ia =
1

|Wa|
∑
i∈Wa

ei −
1

|NWa|
∑

i∈NWa

ei. (1)

HereWa andNWa are the sets of individuals making up the two groups in area a and |·| denotes

the size of these sets. This measure ranges from zero—no isolation, with average ei equal for

the two groups—to one—perfect isolation, with ei = 0 for all i ∈ NW and ei = 1 for all

i ∈ W .

The standard version of this measure is residential isolation, which is equivalent to equation

(1) under the assumption that each individual is exposed uniformly to others in her neigh-

borhood of residence (Massey and Denton 1988; Cowgill and Cowgill 1951; Jahn 1950). In

practice neighborhoods are typically defined to be census tracts. Letting c (i) denote i’s census

tract of residence, and letting rc denote the share of the residents of tract c who are in group W ,

residential isolation is given by:13

RIa =
1

|Wa|
∑
i∈Wa

rc(i) −
1

|NWa|
∑

i∈NWa

rc(i). (2)

12In our empirical analysis, we focus on the case where the groups W and NW partition the population, so that
1− ei is individual i’s exposure to members of group NW . Our measure is also well-defined in the case where
some individuals in the population are neither in W nor NW . In this case, isolation where ei is the share exposed
to W may be different from isolation had we defined ei as the share exposed to NW .

13This form of the isolation index is equivalent to Gentzkow and Shapiro (2011). Much of the literature using the
isolation index studies simply the exposures of a group, without taking their difference. (White 1986, Iceland
et al. 2002, Echenique and Fryer 2007). Massey and Denton (1988) provides a survey of other measures meant
to encapsulate various qualitative aspects of segregation, and motivates our decision to capture segregation by
measuring exposure.
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Because this measure does not rely on any information other than the racial composition of each

neighborhood, it can easily be computed using aggregate census data.

The new measure we introduce, experienced isolation, instead assumes that ei is given by

the composition of the individuals actually present in the locations that i visits over time. We

index time by t ∈ [0, 1] and consider a finite set of locations within area a indexed by l. We

think of a location l as a specific place such as a restaurant, workplace, or park that is much

smaller than a neighborhood. In our application, locations will be geohash7s. Letting l (i, t)

denote i’s location at time t, and letting s (l, t) denote the share of individuals in location l at

time t who are from group W , experienced isolation is defined to be:

EIa =
1

|Wa|
∑
i∈Wa

∫ 1

t=0

s (l (i, t) , t) dt− 1

|NWa|
∑

i∈NWa

∫ 1

t=0

s (l (i, t) , t) dt. (3)

3.2 Estimation

Estimating experienced isolation EIa would be straightforward if we observed continuous lo-

cation data for all individuals. While our GPS dataset is rich, it still falls well short of this ideal.

There are two key limitations: (1) we observe locations only when a device pings rather than

continuously; (2) we only observe a sample of individuals not the full population. We make

several simplifying assumptions in order to address these limitations.

To address (1), we first assume that the times when an individual i visits a location l are

not systematically selected to be times when s (l, t) is unusually high or low. That is, letting sl

denote the overall expectation of s (l, t) over t ∈ [0, 1], we have E [s (l, t) |l (i, t) = l] = sl for

all i. Provided this assumption holds, the expectation of the term
∫ 1

t=0
s (l (i, t) , t) dt is equal to

Si =
∑

l qilsl where qil is the expected share of i’s time that is spent in location l. We further

assume that the times at which we observe pings are a random sample from [0, 1] so we can

estimate qil and sl by the shares of i’s pings that occur in location l and the share of all pings in

location l that come from W ’s respectively.

Both of these are strong assumptions. The first would be violated, for example, if type W

individuals tend to visit a particular park or restaurant in the morning while type NW individu-

als tend to visit it in the evening. The second would be violated if our data oversample periods

in which the relative share of type W individuals is unusually high or low. In Appendix Section

A2.3 we present robustness to an alternative specification allowing non-random weighting of

pings across time.
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To address (2), we re-weight home locations in our sample to match the distribution of

population in the 2010 census. Because our data are relatively sparse at the geohash7 level, we

re-weight by census tract. We define the weight for individual i to be

λi =
Nc(i)

Ñc(i)

(4)

where Nc is the census population of tract c and Ñc is the number of devices in our sample with

home locations in tract c.

Combining these assumptions, we form an estimator of Si as follows. First, we form a

leave-out estimate of sl:

ŝ−il =

∑
j∈P−i

l ∩W
λj∑

j∈P−i
l
λj

, (5)

where P−il is the set of pings associated with individuals other than i who visit location l and

we abuse notation by letting λj denote the weight of the individual associated with ping j. We

omit visits by i from this measure to avoid a severe small-sample bias that can arise when some

locations have a small number of observed visits (Cortese et al. 1976; Carrington and Troske

1997; Gentzkow et al. 2019). Second, we estimate Si by

Ŝi =
1

|Pi|
∑
j∈Pi

ŝ−il(j),

where Pi is the set of pings associated with i and l (j) is the location of ping j.

Finally, we estimate experienced isolation by

ÊIa =
1

|Wa|
∑
i∈W

λiŜi −
1

|NWa|
∑

i∈NW

λiŜi.

We estimate residential isolation as

R̂Ia =
1

|Wa|
∑
i∈Wa

λir̂c(i) −
1

|NWa|
∑

i∈NWa

λir̂c(i) (6)

where r̂c is the share of devices in our sample with home census tract c that are WDs. This

differs from the residential isolation measure typically reported in the literature because the

types we consider are WDs and NWDs rather than white and black individuals and because we

infer r̂c from our device data rather than census data.
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3.3 Discussion

Our measure of experienced isolation considers an individual to be exposed to another if they

are in the same location at the same time. This is what allows us to write equation 3 replacing

the ei of equation 1 with the average of s (l, t) across space and time. The set of people that

contribute to an individual’s exposure is, as discussed in the introduction, quite different from

the set of people with whom an individual actually interacts. To the extent that we view actual

interactions as the true object of interest, our measure can be seen as an approximation which

significantly improves on residential measures but may still over- or understate isolation to the

extent that interactions within different geohash7s are relatively more or less segregated.

In our empirical analysis, we define the types W and NW to be WDs and NWDs—devices

from majority white and non-white home geohash7s—rather than white and non-white individ-

uals. This is a departure from prior literature on residential segregation, where the assumption

of uniform exposure within neighborhoods makes it possible to compute segregation based on

individual race (using aggregate race shares measured in census data).

Therefore, the target of our estimation is subtly different than the standard target. To gain

some intuition for the difference, note that individual geohash7s are perfectly segregated be-

tween WDs and NWDs by construction, whereas they are less than perfectly segregated by

individual race. As noted in Section 2.4, the median WD lives in a home geohash7 which is 89

percent rather than 100 percent white, and the median NWD lives in a home geohash7 which

is 78 percent rather than 100 percent non-white. We show below that this leads residential iso-

lation between WDs and NWDs to be higher than between individual whites and non-whites.

While the true level of segregation under our definition may be different, we expect the qualita-

tive patterns we emphasize—e.g., the comparison of residential to experienced segregation—to

be robust across alternative definitions.

As support for this, we report in Appendix Section A3 results using an alternative strategy

where we impute race stochastically at the individual device level based on the composition

of a home geohash7. This has the advantage of bringing our target concept closer to that in

the prior literature. It has the disadvantage of introducing measurement error in the measure

of a device’s type that could create a downward bias in experienced segregation estimates.14

While this alternative does change the level of segregation as expected, we confirm that our

14The random imputation strategy is equivalent to assuming that movement patterns are independent of individual
race conditional on home geohash7. In simulations, we find that this tends to lead to a downward bias in estimates
of experienced segregation.
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main qualitative conclusions are indeed robust.

4 Main Results

Figure 1 shows estimated experienced and residential isolation for all MSAs in our sample.15

Two key facts are immediately apparent from these maps. First, experienced isolation is lower

than residential isolation in large sections of the country. Second, the two measures are cor-

related across space, with both tending to be higher in the South, the Rust Belt, and in major

cities, and tending to be lower in the upper Midwest and Northwest.

Figure 2 compares the two measures more directly, plotting experienced isolation against

residential isolation. Experienced isolation is lower than residential isolation where residential

isolation is high and higher than residential isolation where residential isolation is low. MSAs

in the former category, however, account for the vast majority of the country’s population, in-

cluding all 15 of the most populous MSAs, with 87.9 percent of people living in MSAs where

experienced isolation is less than residential isolation. The population-weighted average experi-

enced isolation across all MSAs is 0.46, compared to average residential isolation of 0.61. The

10th and 90th percentiles of experienced isolation are 0.37 and 0.53, compared to 0.34 and 0.78

for residential isolation. This figure also confirms that experienced and residential isolation are

highly correlated across MSAs, with a Pearson correlation coefficient of 0.864 and a Spearman

rank correlation coefficient of 0.84. Among the 20 most populous MSAs, the ratio of experi-

enced isolation to residential isolation is lowest ( ∼ 0.6) in San Francisco-Oakland-Fremont,

CA and Los Angeles, CA and highest ( ∼ 0.8) in Atlanta, GA, and Riverside, CA.

To describe the factors that correlate with lower experienced segregation, we regress ex-

perienced isolation on observed MSA characteristics controlling for fifteen equal-sized bins

of residential isolation. We focus on population-weighted univariate relationships, including a

single observed characteristic in each case.16 We emphasize that these are purely descriptive

correlations and need not imply anything about the causes or effects of segregation.

Figure 3 shows the results. Each panel plots residuals of experienced isolation against resid-

uals of a given MSA characteristic after partialing out the residential isolation controls. Expe-

rienced isolation is relatively lower in MSAs with higher population density and more public

15Appendix Figure A8 presents a map with the difference between experienced and residential isolation for each
MSA. Appendix Tables A5-A7 report both experienced and residential isolation for each MSA.

16Appendix Table A8 shows similar results in regressions that are unweighted but subset to the top 50, 100, and
200 most populous MSAs.
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transit use. This is consistent with the fact that in dense areas residents from different neighbor-

hoods are less separated by physical space, and may reflect the role of urban amenities such as

parks and public facilities in facilitating diverse interactions (Jacobs 1961). Experiences are also

relatively less isolated in MSAs with higher income, more education, and lower unemployment.

This could reflect a number of forces including the role of social capital in reducing segrega-

tion (Putnam 2000). Experienced isolation is relatively lower where populations are younger,

possibly reflecting the importance of schools and workplaces in reducing segregation. Finally,

relative experienced isolation is negatively correlated with Chetty et al.’s (2014) measures of in-

come mobility for both blacks and whites, consistent with both diverse interactions increasing

mobility and with areas that facilitate opportunity also promoting diverse interactions.

5 Decomposing Experienced Isolation

5.1 By Time

We first ask how experienced isolation varies over hours of the day. To do this, we restrict both

exposures and the set of devices to all those that occur in a specific hour according to the MSA’s

local time zone. Exposures are only estimated in geohash7s that are visited by devices that ping

within that hour. For example, experienced isolation for 10 a.m. restricts our sample to pings

that occur between 10 a.m. and 11 a.m. local time. After restricting the set of pings and devices,

the estimation of experienced isolation is identical to our baseline measure.

Figure 4 plots experienced isolation over the course of the day, scaled relative to the level

of residential isolation. The figure highlights the 10 most populous MSAs. The results are

intuitive: Experienced isolation is lowest in the middle of the day as people move around and

highest late at night as people withdraw into their homes. The ratio mostly differs in level

between MSAs and almost all MSAs share the same time profile.

5.2 By Location

We next decompose experienced isolation by location. Much like restricting to pings within

an hour, we restrict to pings that occur within a set of geohash7s of a particular type.17 These

results are shown in Figure 5. The leftmost point in the plot shows the average of our baseline

17If an individual never visits a geohash7 of the type in question they are dropped from the sample.
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measure of experienced isolation across MSAs, which includes all locations in our sample. The

error bars in the plot indicate ±1 standard deviation of the measure across MSAs.

The next two points in the figure show experienced isolation for locations within vs. outside

of home census tracts. The results show that experienced isolation within home tracts (0.63

on average across MSAs) is higher than overall experienced isolation (0.46 on average), and

actually higher than residential isolation (0.61 on average).18 As discussed above, this result

is not mechanical: experienced isolation within the home tract could differ from residential

isolation in either direction, both because within-tract exposure is not uniform and because it

includes visitors who live outside the home tract. In contrast, experienced isolation outside of

home tracts is much lower, with an average of 0.21 across MSAs. Thus, time spent away from

home is the key force reducing segregation relative to what the standard residential measure

would suggest.

Figure 5 summarizes the differences in experienced isolation for specific categories of fea-

tures.19 The baseline category contains all features, as well as time spent at home. Average

experienced isolation in outdoor spaces like parks, gardens, sports fields and playgrounds is

only 50.3 percent of mean baseline isolation, and commercial establishments like restaurants

and bars and retail stores have experienced isolation that is only 43.5 and 47.8 percent of base-

line isolation respectively. Isolation is among its lowest in places of entertainment like theaters

(24.3 percent of baseline) and accommodations like hotels (24.6 percent of baseline). Appendix

Table A9 shows summary statistics for experienced isolation across a wider set of feature types.

5.3 By Race

Finally, we can decompose the differences in exposure that underlie the isolation index between

WDs and NWDs. Experienced isolation is the difference between these groups in average

exposure E [s (l, t)]. We ask how the experienced exposure relative to residential exposure

differs by group. The results, which we present in Appendix Figures A10 and A11, show that the

difference between experienced and residential exposure is relatively small for WDs and much

larger for NWDs. It also shows that NWDs’ experienced exposure varies much more across

MSAs and across different feature types. This suggests that factors which reduce segregation

away from home may have a particularly large impact on the experiences of non-whites.

18Appendix Figure A9 depicts experienced isolation within and outside home tracts.
19Appendix Figure A12 depicts ping activity across features by WD/NWD designation.
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6 Robustness

The Online Appendix reports a number of additional specifications probing the robustness of

our main result. We provide detail on these specifications in Online Appendix A2 and show

the results in Online Appendix Table A10. They show that our main qualitative conclusions are

robust to: (i) excluding pings that are likely to occur while devices are commuting or traveling;

(ii) using alternative sources of demographic data; (iii) excluding devices with home locations

outside the MSA; (iv) dropping the top 5 percent of devices in terms of number of pings per

day; (v) excluding pings occurring between midnight and 6 a.m.; (vi) using only the first ping

emitted by a device in a given hour (so as to avoid over-weighting hours with frequent pings).

The final result in this table shows that we would over-estimate experienced segregation if we

used a naive estimator rather than the leave-out correction in equation (5).

7 Conclusion

The extent to which members of different groups are able to see, meet, and interact with one an-

other can profoundly shape economic and social outcomes. Standard isolation indices capture

such patterns under the assumption that people are uniformly exposed to others in their neigh-

borhoods of residence. Our measure of experienced isolation relaxes this assumption, making

it possible to leverage novel location data to describe the exposures people actually experience

as they move around over the course of their days.

We find that the isolation people actually experience is substantially lower than residential

measures would suggest. People spend substantial time away from their home neighborhoods,

and when they do they are much more likely to encounter diverse others than they would at

home. Commercial places like restaurants and retail shops are a particularly strong force pulling

against segregation, while local amenities such as churches and schools tend to remain more

segregated. One implication is that public goods that are tied to residential boundaries should

be a particular focus of efforts to combat segregation. They also suggest that the negative effects

of segregation are likely higher for those like children and the elderly whose exposure is more

tied to their local neighborhoods.

While experienced and residential segregation are highly correlated across cities, the gap

between them varies systematically, with relatively less experienced isolation in cities that are

denser, wealthier, and more educated, that have greater use of public transport, and where in-
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come mobility is higher. These correlations do not allow us to draw any direct conclusions

about either the causes or consequences of segregation, but they point toward factors that will

be especially fruitful for subsequent research to investigate.
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Figure 1: Experienced and Residential Isolation by MSA
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Figure 2: Experienced vs. Residential Isolation

Notes: Plot shows experienced and residential isolation for each MSA. The size of each point is propor-
tional to the MSA’s population. The labeled points designate the 15 most populous MSAs. We plot the
45 degree line and a local polynomial fit.
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Figure 3: Residual Experienced Isolation and MSA Characteristics

Notes: On the y-axis, we plot the residual from a population weighted regression of experienced isolation
on fifteen equal sized bins of residential isolation at the MSA level. The x-axis in each plot refers to the
specified MSA characteristic. Each point refers to an MSA and is shaded and sized relative to total
population. In the white box in the lower left corner, we show the coefficient and standard error from the
population weighted regression of experienced isolation on the residential isolation bin fixed effects and
the specified covariate. The blue line shows the population weighted linear fit. The share with bachelor’s
variable includes the percent of people in an MSA that have at least a bachelor’s degree. The black and
white income measures average Chetty et al.’s (2020) county estimates (pooled by race) of the share of
individuals born in the 25th percentile of the income distribution who make it to the top quintile. Public
transit use is the share of the working population that uses public transport to get to work.
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Figure 4: Experienced Isolation Relative to Baseline by Time of Day

Notes: We plot the ratio of experienced to residential isolation in each hour of the day, highlighting the
10 most populous MSAs. Note that isolation can only be calculated for the devices active in a given hour,
so the sample does change for each hour specification.
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Figure 5: Experienced Isolation Relative to Baseline by Location

Notes: We plot the population weighted mean experienced isolation in a particular feature and compare
with our baseline measure. Error bars show±the population weighted standard deviation of experienced
isolation across MSAs.
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Online Appendix:
Experienced Segregation

Susan Athey, Stanford University and NBER
Billy Ferguson, Stanford University

Matthew Gentzkow, Stanford University and NBER
Tobias Schmidt, QuantCo

A1 Defining Geographic Features

A1.1 InfoUSA

We use data from InfoUSA to define the following features: (i) civil, religious, and social or-

ganizations; (ii) retail; (iii) restaurants and bars; (iv) accommodation; (v) entertainment; (vi)

sports and recreation. We combine InfoUSA data with Open Street Maps data to define educa-

tion features, as detailed in Appendix A1.2 below.

For each feature, InfoUSA provides latitude, longitude, and an 8-digit NAICS industry

code. We focus on the top 334 NAICS codes in the data which together cover 95 percent of all

establishments and assign them manually to our aggregated categories. The mapping between

NAICS8 and categories is given in Table A1. We assign each feature to the geohash7 that

contains its latitude-longitude pair.

A1.2 OpenStreetMaps

We use data from Open Street Maps (OSM) to define outdoor spaces and to supplement In-

foUSA data in defining education features. OSM is an open source mapping project that defines

geographic features and associates them with metadata tags. Whereas InfoUSA provides point

locations for each feature, OSM defines two-dimensional polygons. These provide a more ac-

curate representation for features like parks that occupy a large amount of space. As noted in

the main text, we associate each OSM feature with all geohash7s that intersect its polygon.

We define features to be outdoor spaces if they are associated with the tags “leisure=park,”

“leisure=playground,” “leisure=pitch,” or “leisure=garden.” We define features to be education-

related if they are associated with the tags “amenity=school,” “amenity=kindergarten,”
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“amenity=university,” or “amenity=college.” We define geohash7s to contain education fea-

tures if they are associated with such a feature in either InfoUSA or OSM.

A1.3 Transportation Infrastructure

We define transportation features by combining polygon data on primary and secondary roads

from the US Census’ TIGER database (U.S. Census Bureau 2017) with airport polygon data

from OSM (polygons with the tag aeroway=aerodrome). We associate each such feature with

all geohash7s that intersect its polygon.

A2 Robustness

Table A10 probes the robustness of our experienced isolation estimates. The first row repeats

our baseline estimate. Each subsequent row reports a separate robustness check. For each, we

report the mean, median, 5th, and 95th percentiles of estimated experienced isolation by MSA,

as well as the correlation between that row’s estimates and the baseline.

A2.1 Excluding Transportation Infrastructure

The first two robustness checks show how the results change if we exclude pings that are likely

to come while people are in transit. People sharing the same space while commuting or traveling

(e.g., driving next to another car on a highway) may be relatively unlikely to have meaningful

interactions, and so it is interesting to know whether these observations play a large role in our

conclusions. Figure A13 shows the frequency of pings across geohash7s in Birmingham, AL,

confirming visually that a substantial amount of activity indeed occurs on roads.20

In row (2) of Table A10, we exclude all pings in geohashes we identify as containing roads

or airports. In row (3) we exclude all pings that are part of a sequence suggesting the device is

moving at more than 12 miles per hour.21 In both cases experienced isolation rises, consistent

with time in transit having lower than average isolation, but the difference is modest and the

correlation with the baseline estimates is high.

20Online Appendix Table A11 reports summary statistics for pings that maybe in transit.
21We take the sequence of timestamped latitudes and longitudes, compute the Haversine distance between succes-

sive pings in the sequence, and divide by the time difference to estimate device speed.
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A2.2 Imputing Geohash7 Demographics from Individual Data

Our baseline estimates impute geohash7 demographics from 2010 census data as described in

Section 2.3. A weakness of this approach is that census blocks (the smallest units at which

demographics are reported in the census) do not align exactly with geohash7s. An alternative

approach is to impute geohash7 demographics from individual-level data sources where we

observe individuals’ exact addresses.

Row (4) of Table A10 reports estimates based on demographics imputed from an

individual-level voter file provided by the company L2. These data provide home addresses

of registered voters. The data include self-reported race in eight states that collect this as part of

the registration process (Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina,

Tennessee and Texas), and imputed race based on a proprietary algorithm elsewhere. We use

the L2 category "European" as our measure of “white.” We successfully match at least one L2

individual in 5,767,098 of our 7,288,958 geohash7s. For the remaining geohash7s, we use our

baseline imputation.

Row (5) reports estimates based on demographics imputed from individual-level data from

the company Infutor. These data provide names, address, immigration status and demographics

of around 80% of the adult population in the US. Race is defined in accordance with census

categories and is imputed as described in Diamond et al. (2019). We exclude all individuals

over the age of 80 and determine the home-geohash7 of each individual based on the last address

they were registered at. We successfully match at least one Infutor individual in 5,079,532 of

our 7,288,958 geohash7s. For the remaining geohash7s, we use our baseline imputation.

The results show that these alternative approaches lead to even lower estimates of experi-

enced isolation, strengthening our main conclusion. The correlation with our baseline estimates

remains high in both cases.

A2.3 Alternative Temporal Weighting

As discussed in Section 3.2, our baseline estimates rely on an assumption of uniform sampling.

One way this may be violated is if some devices emit large numbers of pings at specific times

when relevant apps are used heavily. In row (6) of Table A10, we partially address this possi-

bility by only using the first ping emitted by a device in a given hour in a particular geohash7.

This effectively gives equal weight to each device-geohash7-hour tuple in the data. We find

experienced isolation is even lower in this specification, suggesting that non-random weighting

27



may if anything lead us to understate the gap between residential and experienced isolation.

A2.4 Other Robustness Checks

The final rows of Table A10 consider other variations in the baseline sample. Row (7) drops

pings from the sample devices whose home location is not in the same MSA as the ping, to give

a sense of how out-of-town visitors influence the estimates. Row (8) drops the top 5 percent

of devices in terms of number of pings per day, to address the possibility that such heavy users

might have undue influence on the results. Row (9) excludes pings during late night hours from

midnight to 6 a.m., to assess how much our results are influenced by the way we treat sleep

time. None of these make a large difference to the estimates.

Finally, row (10) shows how the results are impacted by the leave-out correction in equa-

tion (5). If we instead use the naive estimator that includes a device’s own observations in the

estimation of sl, we would over-estimate segregation. This is consistent with prior literature

showing that this small-sample bias leads segregation to be overstated.

A3 Alternative Definitions of Types

Our baseline results measure segregation between WDs (devices from majority-white home

geohash7s) and NWDs (devices from majority-non-white home geohash7s). In Table A12, we

present results for racial segregation under alternative definitions of types.

In row (2), we change the definition of WD and NWD to depend on whether a home

geohash7 is above or below the overall US share white (63 percent). Results are similar to our

baseline estimates.

In the following rows, we shift focus to segregation between white and black home lo-

cations rather than white and non-white home locations. Row (3) defines the two types to

be devices from home geohash7s with at least 50 percent white and at least 50 percent black

respectively. Row (4) uses cutoffs of at least 70 percent white and at least 70 percent black

respectively. Row (5) uses cutoffs of at least 90 percent white and at least 90 percent black

respectively. Note that unlike in our baseline specification, some devices here fall into nei-

ther category and so are omitted from the analysis. Results are again similar to baseline, with

somewhat lower estimates of both experienced and residential isolation when we use the more

extreme cutoffs.
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In rows (6)-(7), we present an approach to measuring experienced isolation by individual

race. The differences between this and our baseline approach based on home geography are

discussed in Section 3.3. We probabilistically impute individual race at the device level using

the race shares in their home geohash7s (as measured by our baseline imputed demographics)

as probabilities.22 This probabilistic imputation would correctly estimate segregation by indi-

vidual race under the assumption that expected movement patterns are the same for devices of

different races that come from the same geohash7. When this assumption is violated, we expect

the systematic measurement error in imputed race to bias our experienced isolation measure

downward.

Row (6) shows results where we probabilistically impute white and non-white race. Row

(7) shows results where we probabilistically impute white and black race (allowing for an omit-

ted category of devices that are neither black nor white). Consistent with expectations, estimates

of both experienced and residential isolation fall significantly in these specifications. However,

we find that experienced isolation is substantially lower than residential isolation and that the

two are highly correlated across MSAs continue to hold.

22The direct imputation of race assigns to each device the home geohash7 share white and share nonwhite (or
black) as constructed in Section 2.3. When we observe a device’s ping in a geohash7, that device contributes
the imputed share white to the exposure of that geohash7 instead of contributing a wholly white or nonwhite
visit. Furthermore, when we construct the average exposure amongst white and nonwhite (or black) devices, we
cannot simply take the average over devices of each type since each device is probabilistically assigned to both
groups. Therefore, the average exposure of each group is calculated as a weighted average with the imputed
home geohash7 demographic shares as the weights.

29



Census Tract 014302

Census Tract 002700

Birmingham−Hoover MSA

0 5 10 15 20 25 mi

Online Appendix Figure A1: Birmingham-Hoover MSA and Census Tracts 002700 & 014302

Notes: We depict the relative size of urban and rural tracts within the Birmingham-Hoover MSA, which
is the final aggregate unit of analysis.
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Online Appendix Figure A2: Relative Geographies in an Urban Center

Notes: This figure illustrates the relative size of census tracts / blocks and geohash7s in an urban area.
The larger black outline depicts census tract 002700 in urban Birmingham, AL. The black grid consists
of three geohash7s that overlap census block 3092.

31



Census Block 1160

Census Tract 014302

0 1 2 3 km

Online Appendix Figure A3: Relative Geographies in a Rural Setting

Notes: This figure illustrates the relative size of census tracts, blocks, and geohash7s in a rural area. The
larger black outline depicts census tract 014302 in rural Birmingham, AL. The black grid consists of 367
geohash7s that overlap the census block 1160.
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Outdoor spaces (parks, etc.) Restaurants & bars

Online Appendix Figure A4: Features in Downtown Birmingham, AL

Notes: Figure highlights geohash7s that contain (i) civil, social, and religious institutions, (ii) educational
instutitions, (iii) outdoor spaces, and (iv) restaurants and bars respectively, in downtown Birmingham,
AL. A single geohash7 can contain multiple features.
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Online Appendix Figure A5: Number of Active Devices by Hour

Notes: We plot the number of active devices in millions by hour. A device is considered active if we ever
observe at least one ping within the given hour.
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Online Appendix Figure A6: Matching Home Geohash7 to Blocks

Notes: Geohash7 djfq8cs in Jefferson county, AL is the rectangle outlined in red. Census blocks are
the polygons outlined in blue. There are five census blocks overlapping the geohash7 which we color in
relation to their share white. The grey census block is uninhabited.
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Online Appendix Figure A7: Home Geohash7 Percent White Histogram by Majority Race

Notes: Figure plots the number of WD and NWD home geohash7s by the share white of the home
geohash7. The mean and median by majority race of the home geohash7 are represented by solid and
dashed red lines respectively. The mean and median share white of NWD home geohash7s are both 0.22
and of WD home geohash7s are 0.85 and 0.89 respectively.
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Online Appendix Figure A8: Difference Between Experienced and Residential isolation by
MSA

Notes: We color each MSA relative to the difference of experienced minus residential isolation.
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Online Appendix Figure A9: Experienced vs Residential Isolation Relative to Devices’ Homes

Notes: We plot three specifications of experienced isolation against residential isolation with each point
representing an MSA. The within and outside home tract specifications only include exposures in geo-
hash7s within or outside individuals’ home census tract. The size of each point is proportional to the
MSA’s population. We plot the 45 degree line and fit local polynomials to the data.

38



0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5
Exposure ratio

D
en

si
ty

NWDs WDs

Online Appendix Figure A10: Experienced / Residential Exposure for WDs and NWDs

Notes: We plot the distribution of exposure ratios for all WDs and NWDs in our sample. The exposure
ratio is Ŝi/r̂c(i), the exposure to WDs under the experienced measure over the exposure to WDs for the
residential measure. There is much more variation in exposures for NWDs than WDs, suggesting that
the primary mechanism for the greater integration we measure relative to residential isolation is driven
by NWD exposures.
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Online Appendix Figure A11: Exposure to WDs in Different Features, Decomposition by
Race

Notes: The vertical lines show mean exposures in our baseline specification. The population weighted
mean across MSAs of exposure for WDs and NWDs is represented by open and filled points respectively.
The distance between any pair of points represents the isolation index in that feature. If the points overlap,
isolation is zero. If the WD and NWD populations were contributing equally to their change in exposure,
the points would meet at the dotted line splitting the difference between the baseline estimates.
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Online Appendix Figure A12: Average Share of Pings in Features by Device Group

Notes: We plot the average share of pings in each feature for WDs and NWDs by hour. The solid and
dashes lines depict the average for NWDs and WDs respectively. For several features there are inter-
esting differences between groups: NWDs spend more time at civil, religious and social organizations,
restaurants and bars, retail establishments and outdoor spaces but less time on roads and at airports. We
note that time spent in one’s home geohash7, however, is similar for both groups.

41



Online Appendix Figure A13: Activity in Birmingham, AL

Notes: We depict the level of activity in pings across geohash7s in Birmingham, AL. The number of
pings increases as the color moves from blue to yellow. Activity seems to be concentrated on roads and
in the central area of the city.
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Online Appendix Table A1: InfoUSA NAICS8 Categories and Combined Feature Category

Combined category NAICS8 Category # of items Share of all items in infoUSA dataset

Retail Supermarkets/Other Grocery (Exc Convenience) Strs 90850 0.58 %
Retail Pharmacies & Drug Stores 73215 0.47 %
Retail Convenience Stores 72947 0.47 %
Retail Used Merchandise Stores 62472 0.4 %
Retail All Other General Merchandise Stores 59747 0.38 %
Retail Gift, Novelty & Souvenir Stores 54629 0.35 %
Retail Women’s Clothing Stores 40032 0.26 %
Retail Beer, Wine & Liquor Stores 39694 0.25 %
Retail Other Clothing Stores 33709 0.22 %
Retail Retail Bakeries 29162 0.19 %
Retail Hobby, Toy & Game Stores 26008 0.17 %
Retail Department Stores (Except Discount Dept Stores) 24993 0.16 %
Retail Optical Goods Stores 22419 0.14 %
Retail Hardware Stores 22188 0.14 %
Retail All Other Specialty Food Stores 21094 0.13 %
Retail Food (Health) Supplement Stores 20193 0.13 %
Retail All Other Health & Personal Care Stores 17774 0.11 %
Retail Book Stores 15910 0.1 %
Retail Clothing Accessories Stores 15578 0.1 %
Retail Office Supplies & Stationery Stores 12213 0.08 %
Retail Paint & Wallpaper Stores 10619 0.07 %
Retail Children’s & Infants’ Clothing Stores 9963 0.06 %
Retail Electronic Shopping 9871 0.06 %
Retail Men’s Clothing Stores 9420 0.06 %
Retail Meat Markets 9398 0.06 %
Restaurants bars Full-Service Restaurants 607719 3.89 %
Restaurants bars Snack & Nonalcoholic Beverage Bars 66575 0.43 %
Restaurants bars Limited-Service Restaurants 16778 0.11 %
Civil social religious organizations Religious Organizations 386741 2.47 %
Civil social religious organizations Civil & Social Organizations 64645 0.41 %
Education Elementary & Secondary Schools 174380 1.12 %
Education Colleges, Universities & Professional Schools 27442 0.18 %
Education Libraries & Archives 26059 0.17 %
Education Museums 19108 0.12 %
Accommodation Hotels (Except Casino Hotels) & Motels 70789 0.45 %
Accommodation All Other Traveler Accommodation 12420 0.08 %
Accommodation Bed-&-Breakfast Inns 10338 0.07 %
Sports recreation Fitness & Recreational Sports Centers 65877 0.42 %
Entertainment Motion Picture Theaters (Except Drive-Ins) 8763 0.06 %
Entertainment Theater Companies & Dinner Theaters 6484 0.04 %

43



Online Appendix Table A2: Home Census Tract Summary Statistics for Devices in the Sam-
ple.

US mean Sample mean

Female 0.508 0.509
Bachelor’s Degree 0.114 0.121
Median Age 37.385 37.431
Median Income (in 1000s of USD) 28.618 29.727
Population in Poverty 0.133 0.124
Unemployment Rate 0.039 0.038

Notes: We aggregate the demographics for the home census tracts in which we observe devices. Data are
collected from the 2010 census. Columns show US averages as well as mean for the unweighted device
sample. Including sample weights as described in Section 2.4 allows us to exactly recover US averages
with the device sample.

44



Online Appendix Table A3: Summary Statistics for Measures of Activity of Devices in Sam-
ple.

Median Mean

Number of days active 51.00 56.92
Number of hours / active day 7.10 9.45
Number of geohash7s visited / active day 9.68 22.95
Number of pings / active day 33.88 86.84
Percent of pings at home (narrowly defined) 36.79 42.15
Number of geohash7s visited overall 195.00 720.85

Notes: All statistics are weighted using the sample weights described in Section 2.4. An active day is a
day on which we see at least one ping for the device.
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Online Appendix Table A4: Summary of Variables and Sources

Variable Description Source

Median Age Median Age 2010 ACS variable B01002 001
Median Income Median Income In The Past 12 Months (In 2010

Inflation-Adjusted Dollars)
2010 ACS variable B06011 001

Population in Poverty Count Of Individuals With Income Below Poverty Level For
The Past 12 Months

2010 ACS variable B17001 002

Unemployment Count Unemployment Count Sum of 2010 ACS variables
B17005 006, B17005 011,
B17005 017 and B17005 022

Black Alone Single Race Non-Hispanic Black Population Count 2010 Decennial Census variable
P009006

Black Alone or in Combination Single Or Multiracial Non-Hispanic Black Population Count Sum of 2010 Decennial Census
variables P009013, P009018,
P009019, P009020, P009021,
P009029, P009030, P009031,
P009032, P009039, P009040,
P009041, P009042, P009043,
P009044, P009050, P009051,
P009052, P009053, P009054,
P009055, P009060, P009061,
P009062, P009063, P009066,
P009067, P009068, P009069,
P009071 and P009073

Total Population Total Population 2010 Decennial Census variable
P009001

White Alone Single Race Non-Hispanic White Population Count 2010 Decennial Census variable
P009005

Population Density Population per square mile 2010 Decennial Census variables
P009001 and SUBHD0303

Public Transit Use Share of working population using public transprotation to get
to work

2010 ACS variable B08101

Share with Bachelors’s Share of population with at least a Bachelor’s degree 2010 ACS variables B06009 005
and B06009 006

Black Income Mobility share of black individuals born in the 25th percentile of the
income distribution who make it to the top quintile

Average Chetty et al.’s (2018)
pooled by race county estimate
kfr top20 black pooled p25

White Income Mobility share of white individuals born in the 25th percentile of the
income distribution who make it to the top quintile

Average Chetty et al.’s (2018)
pooled by race county estimate
kfr top20 white pooled p25
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Online Appendix Table A5: Experienced and Residential Isolation by MSA

MSA Exp Res MSA Exp Res

Abilene, TX 0.30 0.46 Lansing, MI 0.42 0.48
Akron, OH 0.46 0.61 Laredo, TX 0.22 0.05
Albany, GA 0.47 0.54 Las Cruces, NM 0.39 0.35
Albany, NY 0.48 0.68 Las Vegas, NV 0.46 0.62
Albuquerque, NM 0.43 0.51 Lawrence, KS 0.31 0.10
Alexandria, LA 0.44 0.58 Lawton, OK 0.32 0.24
Allentown, PA 0.48 0.68 Lebanon, PA 0.41 0.44
Altoona, PA -0.00 0.00 Lewiston, ID 0.54 0.41
Amarillo, TX 0.48 0.73 Lewiston, ME 0.50 0.23
Ames, IA 0.35 0.10 Lexington, KY 0.36 0.41
Anchorage, AK 0.40 0.44 Lima, OH 0.44 0.46
Anderson, IN 0.41 0.41 Lincoln, NE 0.30 0.27
Anderson, SC 0.37 0.36 Little Rock, AR 0.49 0.65
Ann Arbor, MI 0.43 0.47 Logan, UT 0.34 0.08
Anniston, AL 0.43 0.45 Longview, TX 0.38 0.41
Appleton, WI 0.42 0.21 Longview, WA 0.24 0.03
Asheville, NC 0.36 0.21 Los Angeles, CA 0.48 0.77
Athens, GA 0.41 0.39 Louisville, KY 0.45 0.63
Atlanta, GA 0.51 0.63 Lubbock, TX 0.39 0.49
Atlantic City, NJ 0.45 0.58 Lynchburg, VA 0.39 0.43
Auburn, AL 0.36 0.32 Macon, GA 0.47 0.58
Augusta, GA 0.44 0.46 Madera, CA 0.59 0.61
Austin, TX 0.44 0.60 Madison, WI 0.40 0.40
Bakersfield, CA 0.55 0.68 Manchester, NH 0.36 0.18
Baltimore, MD 0.52 0.71 Manhattan, KS 0.42 0.42
Bangor, ME 0.53 0.63 Mankato, MN 0.09 0.02
Barnstable Town, MA 0.30 0.13 Mansfield, OH 0.21 0.36
Baton Rouge, LA 0.47 0.58 McAllen, TX 0.43 0.11
Battle Creek, MI 0.43 0.48 Medford, OR 0.33 0.06
Bay City, MI 0.04 0.03 Memphis, TN 0.52 0.66
Beaumont, TX 0.50 0.72 Merced, CA 0.38 0.34
Bellingham, WA 0.38 0.23 Miami, FL 0.49 0.71
Bend, OR 0.21 0.01 Michigan City, IN 0.43 0.51
Billings, MT 0.40 0.20 Midland, TX 0.38 0.48
Binghamton, NY 0.22 0.12 Milwaukee, WI 0.60 0.88
Birmingham, AL 0.57 0.71 Minneapolis, MN 0.41 0.58
Bismarck, ND 0.28 0.03 Missoula, MT 0.18 0.05
Blacksburg, VA 0.13 0.02 Mobile, AL 0.49 0.64
Bloomington, IL 0.34 0.13 Modesto, CA 0.44 0.47
Bloomington, IN 0.32 0.10 Monroe, LA 0.51 0.63
Boise City, ID 0.34 0.22 Monroe, MI 0.32 0.23
Boston, MA 0.45 0.68 Montgomery, AL 0.48 0.62
Boulder, CO 0.39 0.29 Morgantown, WV 0.01 0.05
Bowling Green, KY 0.32 0.37 Morristown, TN 0.27 0.07
Bremerton, WA 0.37 0.05 Mount Vernon, WA 0.36 0.21
Bridgeport, CT 0.47 0.76 Muncie, IN 0.41 0.82
Brownsville, TX 0.42 0.29 Muskegon, MI 0.51 0.75
Brunswick, GA 0.40 0.53 Myrtle Beach, SC 0.33 0.24
Buffalo, NY 0.52 0.78 Napa, CA 0.35 0.39
Burlington, NC 0.45 0.53 Naples, FL 0.48 0.55
Burlington, VT 0.16 0.01 Nashville, TN 0.45 0.63
Canton, OH 0.38 0.48 New Haven, CT 0.48 0.72
Cape Coral, FL 0.45 0.52 New Orleans, LA 0.45 0.65
Cape Girardeau, MO 0.48 0.42 New York, NY 0.51 0.80
Carson City, NV 0.45 0.44 Niles, MI 0.55 0.73
Casper, WY 0.09 0.01 North Port, FL 0.42 0.52
Cedar Rapids, IA 0.27 0.13 Norwich, CT 0.38 0.49
Champaign, IL 0.33 0.52 Ocala, FL 0.39 0.39
Charleston, SC 0.36 0.44 Ocean City, NJ 0.33 0.34
Charleston, WV 0.33 0.38 Odessa, TX 0.39 0.44
Charlotte, NC 0.47 0.62 Ogden, UT 0.38 0.50

Notes: We report baseline estimates of experienced and residential isolation for each Metropolitan Sta-
tistical Area in alphabetical order here and in Tables A6 and A7.
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Online Appendix Table A6: Experienced and Residential Isolation by MSA: Continued

MSA Exp Res MSA Exp Res

Charlottesville, VA 0.30 0.23 Oklahoma City, OK 0.44 0.62
Chattanooga, TN 0.46 0.67 Olympia, WA 0.40 0.13
Cheyenne, WY 0.30 0.10 Omaha, NE 0.49 0.68
Chicago, IL 0.52 0.73 Orlando, FL 0.46 0.55
Chico, CA 0.39 0.28 Oshkosh, WI 0.37 0.05
Cincinnati, OH 0.47 0.67 Owensboro, KY 0.34 0.10
Clarksville, TN 0.39 0.38 Oxnard, CA 0.55 0.72
Cleveland, OH 0.56 0.78 Palm Bay, FL 0.36 0.33
Cleveland, TN 0.22 0.07 Palm Coast, FL 0.31 0.02
Coeur d’Alene, ID 0.58 0.25 Panama City, FL 0.35 0.42
College Station, TX 0.41 0.53 Parkersburg, WV 0.19 0.01
Colorado Springs, CO 0.45 0.53 Pascagoula, MS 0.49 0.51
Columbia, MO 0.30 0.10 Pensacola, FL 0.39 0.48
Columbia, SC 0.45 0.52 Peoria, IL 0.46 0.69
Columbus, GA 0.48 0.65 Philadelphia, PA 0.53 0.74
Columbus, IN 0.37 0.05 Phoenix, AZ 0.52 0.70
Columbus, OH 0.50 0.66 Pine Bluff, AR 0.55 0.70
Corpus Christi, TX 0.42 0.55 Pittsburgh, PA 0.43 0.64
Corvallis, OR 0.22 0.15 Pittsfield, MA 0.28 0.07
Crestview, FL 0.32 0.10 Pocatello, ID 0.37 0.39
Cumberland, MD 0.25 0.09 Port St. Lucie, FL 0.41 0.39
Dallas, TX 0.48 0.64 Portland, ME 0.23 0.12
Dalton, GA 0.40 0.39 Portland, OR 0.34 0.30
Danville, IL 0.41 0.40 Poughkeepsie, NY 0.44 0.58
Danville, VA 0.45 0.41 Prescott, AZ 0.30 0.06
Davenport, IA 0.36 0.36 Providence, RI 0.49 0.70
Dayton, OH 0.56 0.82 Provo, UT 0.29 0.16
Decatur, AL 0.40 0.48 Pueblo, CO 0.43 0.49
Decatur, IL 0.44 0.52 Punta Gorda, FL 0.27 0.07
Deltona, FL 0.38 0.40 Racine, WI 0.47 0.50
Denver, CO 0.48 0.71 Raleigh, NC 0.41 0.44
Des Moines, IA 0.37 0.54 Rapid City, SD 0.28 0.18
Detroit, MI 0.59 0.82 Reading, PA 0.59 0.87
Dothan, AL 0.38 0.36 Redding, CA 0.21 0.04
Dover, DE 0.39 0.25 Reno, NV 0.40 0.53
Dubuque, IA 0.19 0.03 Richmond, VA 0.46 0.58
Duluth, MN 0.39 0.30 Riverside, CA 0.48 0.57
Durham, NC 0.43 0.51 Roanoke, VA 0.46 0.66
Eau Claire, WI 0.36 0.03 Rochester, MN 0.36 0.15
El Centro, CA 0.48 0.37 Rochester, NY 0.57 0.83
El Paso, TX 0.34 0.39 Rockford, IL 0.46 0.53
Elizabethtown, KY 0.38 0.27 Rocky Mount, NC 0.43 0.29
Elkhart, IN 0.46 0.43 Rome, GA 0.39 0.35
Elmira, NY 0.14 0.70 Sacramento, CA 0.53 0.68
Erie, PA 0.35 0.65 Saginaw, MI 0.52 0.76
Eugene, OR 0.20 0.04 Salem, OR 0.44 0.41
Evansville, IN 0.39 0.41 Salinas, CA 0.53 0.74
Fairbanks, AK 0.29 0.23 Salisbury, MD 0.37 0.44
Fargo, ND 0.27 0.10 Salt Lake City, UT 0.43 0.54
Farmington, NM 0.44 0.46 San Angelo, TX 0.37 0.49
Fayetteville, AR 0.44 0.45 San Antonio, TX 0.49 0.65
Fayetteville, NC 0.40 0.40 San Diego, CA 0.47 0.67
Flagstaff, AZ 0.47 0.62 San Francisco, CA 0.42 0.70
Flint, MI 0.57 0.74 San Jose, CA 0.42 0.57
Florence, AL 0.30 0.23 San Luis Obispo, CA 0.28 0.39
Florence, SC 0.38 0.30 Sandusky, OH 0.38 0.18
Fond du Lac, WI 0.16 0.04 Santa Barbara, CA 0.43 0.54
Fort Collins, CO 0.36 0.29 Santa Cruz, CA 0.57 0.74
Fort Smith, AR 0.40 0.50 Santa Fe, NM 0.44 0.59
Fort Wayne, IN 0.53 0.76 Santa Rosa, CA 0.37 0.47
Fresno, CA 0.47 0.62 Savannah, GA 0.43 0.51

Notes: We report baseline estimates of experienced and residential isolation for each Metropolitan Sta-
tistical Area in alphabetical order here and in Tables A5 and A7.
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Online Appendix Table A7: Experienced and Residential Isolation by MSA: Continued

MSA Exp Res MSA Exp Res

Gadsden, AL 0.44 0.54 Scranton, PA 0.40 0.35
Gainesville, FL 0.39 0.51 Seattle, WA 0.39 0.49
Gainesville, GA 0.47 0.62 Sebastian, FL 0.40 0.33
Glens Falls, NY 0.18 0.02 Sheboygan, WI 0.21 0.10
Goldsboro, NC 0.41 0.39 Sherman, TX 0.42 0.33
Grand Forks, ND 0.27 0.06 Shreveport, LA 0.46 0.63
Grand Junction, CO 0.33 0.10 Sioux City, IA 0.45 0.56
Grand Rapids, MI 0.44 0.58 Sioux Falls, SD 0.28 0.12
Great Falls, MT 0.32 0.03 South Bend, IN 0.47 0.65
Greeley, CO 0.45 0.52 Spartanburg, SC 0.40 0.47
Green Bay, WI 0.39 0.38 Spokane, WA 0.22 0.04
Greensboro, NC 0.47 0.58 Springfield, IL 0.41 0.58
Greenville, NC 0.42 0.30 Springfield, MA 0.54 0.72
Greenville, SC 0.38 0.38 Springfield, MO 0.12 0.01
Gulfport, MS 0.41 0.40 Springfield, OH 0.44 0.69
Hagerstown, MD 0.30 0.57 St. Cloud, MN 0.29 0.05
Hanford, CA 0.44 0.48 St. George, UT 0.27 0.05
Harrisburg, PA 0.51 0.67 St. Joseph, MO 0.23 0.07
Harrisonburg, VA 0.42 0.24 St. Louis, MO 0.57 0.76
Hartford, CT 0.51 0.74 State College, PA 0.30 0.21
Hattiesburg, MS 0.40 0.40 Steubenville, OH 0.42 0.20
Hickory, NC 0.32 0.23 Stockton, CA 0.45 0.49
Hinesville, GA 0.44 0.36 Sumter, SC 0.41 0.36
Holland, MI 0.43 0.32 Syracuse, NY 0.53 0.75
Honolulu, HI 0.38 0.66 Tallahassee, FL 0.39 0.48
Hot Springs, AR 0.29 0.24 Tampa, FL 0.46 0.61
Houma, LA 0.36 0.23 Terre Haute, IN 0.16 0.06
Houston, TX 0.48 0.66 Texarkana, TX 0.37 0.41
Huntington, WV 0.25 0.22 Toledo, OH 0.47 0.67
Huntsville, AL 0.47 0.59 Topeka, KS 0.44 0.49
Idaho Falls, ID 0.23 0.07 Trenton, NJ 0.49 0.63
Indianapolis, IN 0.50 0.65 Tucson, AZ 0.49 0.70
Iowa City, IA 0.38 0.15 Tulsa, OK 0.45 0.56
Ithaca, NY 0.32 0.23 Tuscaloosa, AL 0.46 0.49
Jackson, MI 0.38 0.60 Tyler, TX 0.43 0.58
Jackson, MS 0.51 0.61 Utica, NY 0.40 0.67
Jackson, TN 0.43 0.58 Valdosta, GA 0.42 0.47
Jacksonville, FL 0.46 0.54 Vallejo, CA 0.46 0.55
Jacksonville, NC 0.34 0.35 Victoria, TX 0.35 0.43
Janesville, WI 0.43 0.43 Vineland, NJ 0.46 0.53
Jefferson City, MO 0.32 0.20 Virginia Beach, VA 0.42 0.55
Johnson City, TN 0.25 0.10 Visalia, CA 0.40 0.34
Johnstown, PA 0.38 0.17 Waco, TX 0.45 0.60
Jonesboro, AR 0.39 0.17 Warner Robins, GA 0.40 0.31
Joplin, MO 0.28 0.17 Washington, DC 0.47 0.68
Kalamazoo, MI 0.44 0.49 Waterloo, IA 0.43 0.61
Kankakee, IL 0.46 0.68 Wausau, WI 0.23 0.03
Kansas City, MO 0.51 0.73 Wenatchee, WA 0.34 0.16
Kennewick, WA 0.47 0.57 Wheeling, WV 0.24 0.13
Killeen, TX 0.50 0.58 Wichita Falls, TX 0.38 0.43
Kingsport, TN 0.29 0.06 Wichita, KS 0.42 0.57
Kingston, NY 0.33 0.35 Williamsport, PA 0.30 0.20
Knoxville, TN 0.42 0.61 Wilmington, NC 0.35 0.34
Kokomo, IN 0.27 0.42 Winchester, VA 0.40 0.27
La Crosse, WI 0.41 0.06 Winston, NC 0.48 0.60
Lafayette, IN 0.33 0.37 Worcester, MA 0.39 0.50
Lafayette, LA 0.39 0.41 Yakima, WA 0.52 0.63
Lake Charles, LA 0.46 0.71 York, PA 0.50 0.71
Lake Havasu City, AZ 0.37 0.22 Youngstown, OH 0.48 0.68
Lakeland, FL 0.43 0.37 Yuba City, CA 0.40 0.28
Lancaster, PA 0.47 0.71 Yuma, AZ 0.49 0.48

Notes: We report baseline estimates of experienced and residential isolation for each Metropolitan Sta-
tistical Area in alphabetical order here and in Tables A5 and A6.
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Online Appendix Table A8: Regression Coefficients across Samples

Baseline Top 50 Top 100 Top 200

Share with Bachelor’s -0.2491 (0.0428) -0.426 (0.1221) -0.3269 (0.0812) -0.1403 (0.0647)
Median income (thousands) -0.0017 (0.0005) -0.0032 (0.0014) -0.0025 (0.0008) -0.0007 (0.0008)
Unemployment rate 1.7255 (0.2842) 1.0394 (0.918) 1.8567 (0.4544) 1.5621 (0.4083)
White mobility measure -0.2302 (0.0449) -0.4903 (0.1105) -0.2561 (0.0938) -0.0848 (0.087)
Black mobility measure -0.146 (0.105) -1.3877 (0.3774) -0.5263 (0.2158) 0.0567 (0.1525)
log(Population density) -0.0015 (0.0007) -0.0044 (0.0026) -0.0003 (0.0011) -0.0013 (0.0009)
Public transit use -0.012 (0.0026) -0.0273 (0.0073) -0.0122 (0.0052) 0.0015 (0.0041)
Median age -0.1236 (0.0295) -0.3949 (0.0881) -0.3376 (0.0888) -0.245 (0.104)

Notes: We report the coefficient and standard error from our baseline population weighted regression of
experienced isolation on fifteen residential isolation bin fixed effects and the specified covariate. We also
consider the same regression unweighted and estimated on subsamples of the top 50, 100, and 200 most
populous MSAs.
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Online Appendix Table A9: Experienced isolation by Feature Type

q5 Mean Median q95 Correl.
with
base-
line

N

Baseline 0.323 0.459 0.477 0.557 1.000 366

Features

Accommodation 0.007 0.113 0.115 0.205 0.674 366
Civil, Religious And Social
Organizations

0.044 0.251 0.269 0.400 0.888 366

Education 0.037 0.235 0.253 0.352 0.859 366
Entertainment 0.000 0.112 0.117 0.199 0.635 362
Outdoor Spaces (Parks, Etc.) 0.050 0.231 0.259 0.356 0.858 366
Restaurants And Bars 0.021 0.200 0.210 0.334 0.831 366
Retail 0.025 0.220 0.233 0.356 0.863 366
Roads And Airports 0.023 0.155 0.157 0.264 0.813 366
Sports And Recreation 0.008 0.164 0.172 0.267 0.761 365
No Features 0.342 0.498 0.526 0.593 0.944 366

Homes

No Features, Not At Home
(Broadly Defined)

0.065 0.261 0.278 0.392 0.887 366

At Home (Narrowly Defined) 0.509 0.672 0.703 0.744 0.939 366
No Homes (Narrowly Defined) 0.117 0.285 0.297 0.393 0.947 366
Outside Home Tract 0.029 0.208 0.216 0.327 0.886 366
Within Home Tract 0.450 0.630 0.662 0.713 0.961 366

Notes: We report summary statistics for different specifications of our measure weighted by MSA pop-
ulation. We consider measure experienced isolation restricted to various features and degrees of home
proximity.
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Online Appendix Table A10: Robustness

Experienced Isolation

q5 Mean Median q95 Correl.
with
base-
line

N

1 Baseline 0.323 0.459 0.477 0.557 1.000 366

Robustness checks

2 No Roads Or Airports 0.339 0.489 0.509 0.586 0.991 366
3 Only Pings < 12mph 0.363 0.507 0.524 0.599 0.996 366
4 All (L2 Imputation) 0.244 0.390 0.409 0.481 0.908 366
5 All (Infutor imputation) 0.251 0.421 0.437 0.530 0.910 366
6 All (Day-Hour Weighting) 0.260 0.409 0.427 0.512 0.984 366
7 Without Out-Of-Towners 0.341 0.476 0.491 0.577 0.990 366
8 Without Top 5% Active Users In

Terms Of Pings Per Day
0.333 0.476 0.495 0.572 0.992 366

9 Exclude Night Hours 0.305 0.441 0.459 0.542 0.999 366
10 All (Without Leave-One-Out

Exposures)
0.384 0.499 0.506 0.596 0.937 366

Notes: We report summary statistics for different specifications of our measure. We consider excluding
transportation features like roads, airports, or devices moving fast enough to be considered in transit. We
also consider different subsamples of users, weighting schemes, and demographic data sources.
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Online Appendix Table A11: Sample Statistics Restricting Exposure During Transportation

Devices Geohash7s Pings

Baseline 17,397,580 98,853,493 101,989,194,959
No roads or airports 17,328,912 91,277,728 76,324,902,186
Only pings < 12mph 17,381,896 79,837,642 68,019,968,506
Only pings < 8mph 17,381,803 75,775,799 65,123,085,955
Only pings < 4mph 17,381,553 69,193,133 60,991,437,300
Only pings < 4mph & no roads or airports 17,307,535 62,639,284 53,991,029,734

Notes: We remove pings emitted at speeds exceeding different thresholds or on transport infrastructure
and report counts of devices, geohash7s, and pings on these subsamples.
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Online Appendix Table A12: Summary Statistics for Alternative Measures of Isolation

Exp. mean Res. mean Correl.
with res.

Correl.
with base-
line

1 Baseline 0.459 0.605 0.864 1.000

Home geohash7 race

2 White-nonwhite (63/37) 0.456 0.598 0.860 0.988
3 White-Black (50/50) 0.470 0.655 0.867 0.703
4 White-Black (70/70) 0.474 0.658 0.857 0.612
5 White-Black (90/90) 0.387 0.450 0.875 0.436

Direct race imputation

6 White-nonwhite (direct) 0.185 0.311 0.930 0.838
7 White-Black (direct) 0.215 0.311 0.985 0.762

Notes: We report mean experienced and residential isolation along with their correlation under the alter-
native measures. We also report the correlation of the alternative measures with baseline. All estimates
are weighted by MSA population. The specification White/Black (XX/YY) indicates that isolation is
estimated between devices from white and black home geohash7s that are considered white if the share
white is above XX and considered black if the share black is above YY. Direct means that individuals
are assigned the indicated device groups probabalistically.
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