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1 Introduction

Businesses are more likely to fail during economic downturns. Figure 1 depicts the annual evolution

of firm failures in the United States between 1978 and 2014, with raw and HP-filtered data presented

in panels (a) and (b), respectively. The spikes in business failures during the NBER recession dates,

shown in gray, are visible in both panels. For example, the failure rate of all U.S. firms increased from

an average of 8.3% in the 2003–2007 period to more than 9% during the Great Recession.1

One consequence of widespread firm failures is the potential disruption to the efficient operation

of supply chains. Supply chains generate productivity gains by enabling input customization, but also

add to an economy’s fragility: bankruptcies destroy the relationship-specific surplus between firms

and their suppliers and may spread in the economy as a firm’s failure spills over to its customers,

suppliers, and beyond. Such concerns were the motivation for the 2012 U.S. National Strategy for

Global Supply Chain Security, which was based on the premise that “[i]ntegrated supply chains are

fast and cost-efficient but also susceptible to shocks that can rapidly escalate from localized events

into broader disruptions” (The White House, 2012).

The current paper is a first attempt to develop a systematic framework for studying how

firm failures and the resulting supply chain disruptions impact the macroeconomy and amplify

recessionary shocks. Modeling the relationship-specific surplus that is at the heart of supply chains

requires a departure from competitive analysis. We achieve this by developing a tractable framework

in which firms and their suppliers bargain over their relationship-specific surplus. In this framework,

changes in productivity alter the distribution of this surplus throughout the economy, determine

which firms are at the margin of failure, and may trigger cascading failures impacting the entire

production network of the economy.2

We consider a static economy consisting of n intermediate sectors that produce with labor and

inputs from other sectors and whose products are then combined into a unique consumption good

by a final good sector. Each industry comprises two types of producers. The first is a competitive fringe

of firms that produce a “generic” variant of the good using a constant returns technology with inputs

sourced from other generic producers. This part of the economy thus defines a sectoral production

network and is similar to a standard input-output economy (e.g., Long and Plosser, 1983; Acemoglu

et al., 2012). The second group of firms, which we refer to as “customized” producers, have access to a

more productive technology, provided that they pay a fixed cost of operation and use inputs from

their designated customized suppliers.3 The relationship-specific productivity gains generated by

customized firms and their potential loss due to shocks or firm failures are our points of departure

from the previous literature.

While generic producers are price-takers and generic prices are determined competitively, the

1Appendix E provides information on data sources and additional results confirming the patterns shown here, including a
very similar cyclical behavior for exit rate of establishments (as opposed to firms) in the United States. Also see Chen (2010),
who documents similar patterns for movements in default rates and credit spreads over the business cycle.

2Unless otherwise noted, we use the term “production network” to refer to the network of firm-level input-output linkages
and “supply chain” to refer to a firm’s collection of direct and indirect suppliers and customers. We also use “failure” and “exit”
interchangeably.

3We simplify our model by taking the matches between firms and their suppliers as given and abstracting from the
formation of firm-specific relationships. See the discussion in Subsection 5.2.
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Figure 1. Annual Firm Exit Rate in the United States over the Business Cycle

Data source: Business Dynamics Statistic, United States Census Bureau.
Notes: The figure depicts the annual exit rate of firms in the U.S. between 1978 and 2014. Exit rate in year t is defined as the
number of firm failures in year t divided by the average number of surviving firms in years t− 1 and t. Panel (a) plots the raw
data, whereas panel (b) plots the detrended series using a Hodrick-Prescott filter with smoothing parameter 6.25. Year t is
shaded if there is an NBER recession at some point between the second quarter of year t− 1 and the first quarter of year t.

same is not true for customized producers. Instead, we assume that the relationship-specific surplus

generated by customization is shared between suppliers and customers via a bargaining protocol à la

Rubinstein (1982). These bargains determine customized firms’ equilibrium prices and markups. A

full equilibrium consists of profit-maximizing input and output decisions by all firms, market-clearing

generic prices, equilibrium bargained prices for customized products, and profit-maximizing exit

decisions for customized producers.

Negative shocks to this economy—in the form of lower productivity or higher fixed costs of

operation for some firms, sectors, or in the aggregate—alter the distribution of surplus throughout

the production network and can push customized firms into failure (because they cannot cover

their fixed costs).4 A customized firm can fail as a direct consequence of a negative shock to its

production technology. Or it can fail indirectly because either (i) some of its suppliers go out of

business, forcing it to switch to less productive generic suppliers; (ii) its customer suffers a negative

shock, fails, or simply reduces its demand, depriving the firm of the revenue necessary for covering

its fixed cost; or (iii) losses in other parts of the network forces the firm to reduce its markup and

profits. Any additional failure can reduce surviving firms’ profits and lead to a new round of failures,

generating a potentially powerful amplification mechanism. Figure 2 provides a stylized example of

these propagation mechanisms.

We analyze this economy first under the assumption that production technologies are Leontief

and then under more general production functions exhibiting complementarities between inputs.

After establishing equilibrium existence, we turn to comparative static results on how negative shocks

4Although we use the language of negative shocks, our analysis is in terms of (full information) comparative statics. We
clarify how these changes can be viewed as shocks from the viewpoint of earlier decisions in Subsection 5.2.
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Figure 2. Propagation of Shocks in a Stylized Economy

Notes: This figure illustrates the potential consequences of negative shocks in a stylized economy. Firm i may fail as a result
of negative productivity shocks to any of the other firms in the economy. A negative shock to its customer firm j may result
in i’s failure by reducing its revenue, while a negative shock to its supplier firm k may result in i’s failure by increasing its
marginal cost. Firm i may also fail following a negative shock to firm ` that reduces the total surplus in the economy and
hence i’s profits. Analogously, a negative shock to firm i may lead to the failures of firms j, k, and `.

impact firm-level prices, quantities, markups, firm failures, and aggregate variables such as GDP.

Before describing these results, it is useful to clarify the two main channels via which shocks affect

economic activity in our framework. More specifically, we note that the aggregate impact of, say,

a productivity shock that changes the vector of productivities from Ā to A can be decomposed as

follows:

∆GDP = ∆GDP|Ḡ∗
,Ā→A + ∆GDP|Ḡ∗→G∗,A , (1)

where Ḡ
∗ and G∗ denote, respectively, the equilibrium (firm-level) production networks before and

after the shock. The first term on the right-hand side of (1) represents the response of GDP to a

change in productivity holding the network fixed. This response includes any effects arising from the

propagation of the shock over input-output linkages working through changes in prices and quantities

(e.g., as in Long and Plosser (1983) and Acemoglu et al. (2012) in a competitive framework without

markups or in Jones (2013) and Baqaee and Farhi (2020b) in the presence of markups).5 Our main

focus, however, is on the second term on the right-hand side of (1). This term represents the impact

of changes in the economy’s production network and hence incorporates any effects working through

firm failures.

Our comparative static results come in two flavors. In our first set of results, we focus on the first

term on the right-hand side of equation (1) and characterize how shocks impact GDP via changes

in markups and prices when the firm-level production network is assumed to be exogenous. While

not the main focus of our analysis, these results are, to the best of our knowledge, novel, as they

characterize the impact of various shocks when markups throughout the production network adjust.

5This term already includes some of the new economic forces introduced in our model. While Baqaee and Farhi (2020b)
provide a decomposition of aggregate impact of shocks with changing markups, such a decomposition, by its nature, does
not endogenize the response of markups to productivity (or other) shocks and can only be computed with sufficiently
detailed data on markups both before and after the relevant shocks are realized. In contrast, our model incorporates
markups’ endogenous response to shocks.
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We establish that an increase in the productivity of a subset of customized firms increases GDP, but at

the same time raises markups. The increase in markups in response to positive productivity shocks is

a consequence of the non-competitive nature of the economy: pairwise bargaining between suppliers

and customers transforms some of the gains from higher productivity into higher markups throughout

the economy. The effect of productivity shocks on firm profits is more complex. We show that while

the firm experiencing the productivity increase and all its downstream customers enjoy greater profits,

the profits of its upstream suppliers may decrease. This is because of a “perverse quantity effect”—the

greater productivity of the focal firm implies that it demands less inputs from its suppliers, which

may reduce supplier profits. This non-monotone impact of productivity shocks on profits undergirds

richer responses once we endogenize the equilibrium production network.

In our second set of comparative static results, we turn to the endogenous response of the

production network to shocks. We first show that an increase in fixed costs always results in

more failures, reduces GDP, and pushes down the profits and markups of all surviving firms. The

equilibrium response of the production network, corresponding to the second term in equation

(1), amplifies the shock’s impact as initial failures translate into more widespread supply chain

disruptions. In particular, firm i’s failure reduces the profits of its (direct and indirect) suppliers and

customers as well as possibly other firms in the economy.

The implications of higher productivity in the presence of endogenous production networks are

more nuanced. While an increase in the productivity of firms with no active suppliers increases

profits and GDP and reduces failures, the same may not be true when firms experiencing the

productivity increase have customized suppliers. Because of the above-described perverse quantity

effect, productivity improvements may reduce demand for and profits of upstream firms and thus

trigger a series of failures, which may then undo the positive direct effects of the productivity increase.

In such a scenario, positive shocks may be recessionary.

Taken together, our paper provides a tractable model of the distribution of surplus (or “quasi-

rents”) in supply chains and shows how this distribution plays a central role in propagating shocks

over the production network, determines the extent and nature of firm failures, and mediates the

macroeconomic impact of shocks.6 Our analysis clarifies how supply chains generate a novel type of

fragility and why their equilibrium response amplifies economic downturns.

Related Literature: Our paper is most closely related to the growing literature that studies the role

of input-output networks as a mechanism for propagation and amplification of shocks.7 It is useful to

separate this literature into three branches. The first branch investigates propagation through sectoral

input-output networks. The main economic effects in this body of work are mediated by changes in

6The reference to “quasi-rents” is to emphasize that what matters for propagation in our model is the changes in gross
profits out of which firms have to cover their fixed costs of operation.

7This literature may in turn be placed in the larger body of works studying the microeconomic origins of macroeconomic
fluctuations, such as Gabaix (2011) and Carvalho and Gabaix (2013), who emphasize the role of firm size distribution
in translating micro shocks into macro fluctuations. There is also a growing empirical literature that documents the
propagation of shocks over production networks, including Acemoglu, Akcigit, and Kerr (2016) at the industry level and
Barrot and Sauvagnat (2016), Carvalho, Nirei, Saito, and Tahbaz-Salehi (2017), and Boehm, Flaaen, and Pandalai-Nayar
(2019) at the firm level. See Carvalho and Tahbaz-Salehi (2019) for a recent survey of the theoretical and empirical literature
on production networks.
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prices and quantities. For example, in the context of the competitive equilibrium studied in Long

and Plosser (1983) and Acemoglu et al. (2012), productivity shocks propagate due to changes in firms’

marginal costs and relative input prices.8 We depart from this literature in two significant ways. First,

our focus is explicitly on disruptions to supply chains and how destruction of valuable productive

relationships due to failures may have non-trivial aggregate implications. Second, our departure

from the “competitive framework”—and its variants with exogenously-specified wedges/markups—

implies that the nature of propagations in our model is different from the above-mentioned literature:

instead of changes in prices and quantities, shocks in our non-competitive (bargaining) framework

are propagated via changes in the distribution of firms’ surplus (or quasi-rents) that force some firms

into the failure region. An important consequence of these differences is that our model generates

rich propagation patterns resulting in upstream, downstream, and horizontal propagation of failures.

A second branch of this literature studies the endogenous formation of production networks,

either at the industry level (e.g., Carvalho and Voigtländer (2015) and Acemoglu and Azar (2020)) or

at the firm level (e.g., Oberfield (2018), Lim (2018), and Huneeus (2019)). These papers only focus on

adjustments on the intensive margin and abstract from firm failures and the macroeconomic effects

of supply chain disruptions—mechanisms that are the main focus of our study.

Our paper is most closely related to a third (and smaller) branch of this literature that studies

how extensive margin adjustments in production networks propagate shocks in the macroeconomy.

For example, Baqaee (2018) and Baqaee and Farhi (2020a) endogenize the number of firms in each

industry via a free-entry condition in a model of industry-level production networks and exogenous

markups. Taschereau-Dumouchel (2020) studies a model of firm failures in which operating decisions

of nearby firms are strategic complements. Finally, the recent independent work by Elliott, Golub, and

Leduc (2020) studies macroeconomic fragility in a reduced-form model of failure cascades. We depart

from these studies in two significant ways. First, we develop a framework with endogenous markups

and division of relationship-specific surplus. Second, we focus on how changes in the distribution

of quasi-rents and dissolution of firm-specific relationships in supply chains shape macroeconomic

outcomes.9

Last but not least, our paper is also related to the vast literature on firm entry and exit. On

the empirical side, papers such as Dunne, Roberts, and Samuelson (1988), Foster, Haltiwanger, and

Syverson (2008), and Tian (2018) study firm entry and exit over the business cycle. Most of the

theoretical papers in this area (such as Campbell (1998), Bilbiie, Ghironi, and Melitz (2012), Clementi

and Palazzo (2016), and Carvalho and Grassi (2019)) build on the seminal papers by Jovanovic (1982)

and Hopenhayn (1992). For the most part, these works do not consider the role of firm failures in

8The same mechanism is at work in papers such as Jones (2013), Liu (2019), Baqaee and Farhi (2020b), and Bigio and
La’O (2020), who study the propagation of shocks in the presence of exogenously-specified markups/wedges that do not
adjust in response to shocks. An exception is the recent work by Kikkawa, Magerman, and Dhyne (2020), where firms charge
customer-specific markups that depend on bilateral input shares.

9Also see Carvalho, Elliott, and Spray (2020), who study “bottleneck firms,” whose removal from the supply chain results
in a substantial decline in aggregate productivity. A related body of works studies how the propagation of shocks over
financial networks and the resulting failures of financial institutions can generate systemic risk (e.g., Allen and Gale (2000),
Elliott, Golub, and Jackson (2014), and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)). While this literature shares our focus
on the aggregate implications of firm failures, the nature of bankruptcies in these models is different: they are driven by
counterparty risk and are tightly linked to the specifics of inter-bank lending contracts. The implications of such failures for
GDP and macroeconomic efficiency have not been the focus of this literature either.
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destroying valuable inter-firm relationships and disrupting supply chains. One feature highlighted by

the empirical and theoretical works in this area is that exiting firms are generally less productive (as

they are being pushed out in response to small shocks). This is not necessarily the case in our model

(nor is it always the case in recessions, as documented by Foster, Grim, and Haltiwanger (2016)),

as highly productive firms can be forced out due to shifts in the distribution of surplus across the

economy or, in the extreme, because of a collapse in their supply chains. This difference is part of the

reason why firm failures in our framework can serve as a major driver of economic downturns.

Outline: The rest of the paper is organized as follows. We present the model in Section 2 and define

our solution concept in Section 3. Section 4 characterizes the equilibrium and presents our main

comparative static results under the assumption that all firms use Leontief production technologies.

We extend these results to a general class of production functions with complementarities across

inputs in Section 5. Section 6 concludes the paper. Appendix A presents a new fixed point theorem,

which we use for establishing the existence of equilibrium, and Appendix B contains the proofs of the

main results in the text. The remaining proofs, further results, and data sources and details for Figure

1 are provided in a series of online appendices.

2 Model

Consider an economy consisting of n+ 1 industries and lasting for three periods t = 0, 1, 2. Industries

labeled {1, 2, . . . , n} produce intermediate goods, while the industry labeled 0 produces a final product

that is sold to households.

Each intermediate industry I comprises two types of firms: (i) a competitive fringe that produces

a generic variant of industry I’s good and (ii) a finite collection of firms, each of which produces a

variant that is customized to the production technology of a specific firm. Thus, I = {ib}∪{ia1, . . . , iakI},
where ib stands for the representative firm that produces the generic variant (“generic producer” for

short) and {ia1, . . . , iakI} denote producers of customized variants (“customized producers”).10 While

customized producers have to pay a fixed cost at t = 0 to be able to operate, generic producers face

no such costs. All firms in an industry use the same constant returns production technology but may

have different productivities.

The industry labeled 0 consists of a collection of identical firms that face no fixed costs and can

transform the intermediate inputs from the generic and customized producers into a single final

product, which is then sold to the households. Throughout, we take this final good as the numeraire.

The representative household has utility function u(·) over the final good and inelastically supplies L

units of labor, which is the only factor of production.

The timing of the model is as follows. At t = 0, each customized producer decides whether to pay

a fixed cost of operation. At t = 1, customized producers that pay this fixed cost, alongside generic

producers and the final good producers in industry 0, enter into pairwise contracts that determine

10Throughout, we use uppercase letters to denote industries and lowercase letters to denote individual firms, with the
convention that firms indexed i, ia, and ib belong to industries indexed with the corresponding uppercase letter, I.

6



prices. Production and consumption take place at t = 2. In what follows, we describe each of the

model ingredients in further detail.

2.1 Generic Producers

A representative firm ib in each industry I produces the generic variant of industry I’s output using a

constant returns technology with labor and other generic goods as inputs. This technology, which we

refer to as the B-technology, is described by the cost function

cbi = CI

(
w,

pb1
Bi1

, . . . ,
pbn
Bin

)
, (2)

where pbj is the price of the generic variety of the product of industry J (produced by representative

firm jb), Bij denotes the input-augmenting productivity level, w denotes the wage, and the cost

function CI is homogenous of degree 1.

2.2 Customized Producers

Industry I additionally includes a finite collection of customized producers, {ia1, . . . , iakI}, each of which

can produce a distinct variant of the good by combining labor and the output of other customized

producers and/or generic producers. In what follows, we drop the superscript a for customized

producers whenever there is no risk of confusion.

Unlike the output of generic producers, which can be used as an input by any firm in the

economy, the variants produced by customized producers can only be used by specific firms as

intermediate inputs for production. We capture these firm-specific relationships by means of a

firm-level network of technological compatibilities, G, whose vertices correspond to the set of all

customized intermediate and final good producers in the economy, while a directed edge (j, i) is

present from vertex j to vertex i if the output of customized producer j can be used as an intermediate

input by firm i.11 G may represent pairwise relationship-specific investments made in earlier stages,

reputation, or trust between firms that enable customized relationships (see Subsection 5.2).

Assumption 1. The network of technological compatibilities, G, satisfies the following conditions:

(i) each firm in G has at most one customer;

(ii) each firm in G has at most one customized supplier in any given industry.

This assumption restricts each customized firm in G to have at most one customer, but a firm

may have multiple customized suppliers as long as they belong to different industries. We discuss the

role of Assumption 1 in our analysis below, but here note that it allows for significant levels of firm-

level heterogeneity in G: customized producers in one industry may be designated suppliers of firms

in different industries or belong to supply chains with very different structures. As we show in the

following sections, this heterogeneity translates into heterogenous prices, markups, and differential

11We do not include the generic producers as part of G. However, as we describe shortly, generic variants can be used as
an input by all customized, generic, and final good producers in the economy.
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responses to shocks. Finally, while (j, i) ∈ G means that the variant produced by j can be used as an

input by i, such a trade need not take place in equilibrium, as the customer firm i may opt for using

the generic variant jb instead, or either firm may exit.

Customized producers operate constant returns production technologies that transform labor and

generic and customized variants to output. In particular, the technology employed by a customized

producer i ∈ I, which we refer to as the A-technology, is described by the cost function

cai = CI

(
w,
{

min
{ paij
Aij

,
pbj
Bij

}}
(j,i)∈G

,
{ pbj
Bij

}
(j,i)6∈G

)
, (3)

where CI coincides with the production function of generic producers in (2), w is the market wage, paij
is the input price of the variant produced by a customized producer j, pbj is the price of the generic

variant produced by (generic) producer jb, and Aij and Bij are input-augmenting productivities of

the customized and generic inputs, respectively. According to (3), a customized producer i always

has the ability to use generic variants as intermediate inputs. In addition, if there exists a customized

producer j ∈ J such that (j, i) ∈ G, then i can also produce using j’s customized variant instead of the

generic input from jb. We assume:

Assumption 2. Aij ≥ Bij for all pairs (j, i) ∈ G.

The wedge between Aij and Bij captures the extent of input-specificity between customized firm

i and its customized supplier j.

In order to operate its technology, each customized firm i ∈ I has to pay a fixed cost zi ≥ 0 in units

of labor at t = 0, which is sunk before the start of the contracting stage at t = 1. Customized firms that

pay this cost can produce using the technology in (3) at t = 2, whereas firms that do not pay this fixed

cost exit or “fail”. We use G ⊆ G to denote the subnetwork induced by the set of active firms. Thus,

unlike the exogenously-specified network of technological compatibilities, G, the firm-level network

G, which we refer to as the economy’s production network, is determined in equilibrium. Finally, we

say that production network G is feasible if the aggregate fixed cost—measured in units of labor—for

the set of active firms in G does not exceed the aggregate supply of labor L.

2.3 Final Good Producers

Firms in industry 0 transform inputs from industries {1, . . . , n} into a final product using a constant

returns production technology. Firms in this industry are of two types as well: a competitive fringe of

generic producers and a collection of customized producers, with respective production technologies:

cb0 = C0(pb1, . . . , p
b
n)

ca0 = C0({min{pa0i, pbi}}(i,0)∈G , {pbi}(i,0) 6∈G).

As with other industries, the generic final good producer can only produce using generic inputs,

whereas the customized producers can also use the variant produced by their designated customized

suppliers. We assume that customized producers in industry 0 face no fixed cost of operation and have

no bargaining power vis-à-vis any of their customized suppliers.

8



2.4 Contracts and Terms of Trade

At t = 1, all active firms—namely, generic producers, final good producers, and customized producers

that have paid the fixed costs—can enter into pairwise contracts specifying the prices at which trades

take place at t = 2.

Since generic producers are competitive, they price at marginal cost regardless of whether

the (representative) generic producer ib supplies to customized, generic, or final good producers.

Therefore, pbi = cbi , where the marginal cost cbi is given by (2).

In contrast, the unit price at which a potential supplier-customer pair (j, i) ∈ G of customized

producers trade with one another is determined at t = 1 via pairwise bargaining à la Rubinstein (1982).

Specifically, we assume that period t = 1 consists of infinitely many sub-periods and that at any given

sub-period, the supplier firm j is selected with an exogenously-specified probability δij to make a price

offer paij to its customer i, while the customer makes an offer to the supplier with the complementary

probability of 1 − δij . If one party accepts the other’s offer, the agreement paij is implemented and the

supplier commits to delivering as many units of its product as demanded by the customer at t = 2 at

the fixed unit price of paij . If an offer is rejected, a new proposer is selected at the next sub-period to

make a new offer according to the same protocol. The two parties discount future sub-periods at a

common rate η < 1, and we take η → 1. After rejecting an offer, each party also has the outside option

of walking away with no agreement, in which case the two parties cannot trade at t = 2.

A few remarks are in order. First, the recognition probability δij captures the relative bargaining

power of the customized supplier vis-à-vis its customer, and thus δij = 1 corresponds to the extreme

case in which firm j has all the bargaining power and makes take-it-or-leave-it offers to customer i.

This observation illustrates that the collection of {δij}’s plays a central role in determining firm-level

markups, the markups’ response to shocks, and hence the shocks’ pass-through. Second, due to the

nature of the production technology in (3), customer i always has access to an outside option of using

the generic variant jb as an input for production. As a result, any price offer paij that exceeds pbijAij/Bij
is rejected by customer i.12 In addition, the fact that both parties have the outside option of walking

away means that (i) they reach an agreement in equilibrium only if there are gains from trade; (ii) the

agreement price paij cannot fall below j’s marginal cost; and (iii) i’s marginal cost at the agreement

price paij does not exceed its output price (so that it does not make negative profits).

3 Equilibrium

In this section, we define our solution concept. Recall that customized firms pay the fixed costs of

operation at t = 0, pairwise prices are determined via a bargaining process at t = 1, and production

and consumption decisions take place at t = 2. We therefore proceed by defining and characterizing

the equilibrium recursively using backward induction.

We first focus on the economy at t = 2, when the set of active firms, the production network G,

and all (generic and customized) prices are already determined. We use pb = (pb1, . . . , p
b
n, w) and pa =

12We assume that for firm i to take this outside option, it must first reject j’s offer. This timing assumption is necessary
to guarantee uniqueness of the bargaining outcome. See Shaked (1987) and Osborne and Rubinstein (1990, p.55) for more
details.
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(paij)(j,i)∈G to denote the vectors of generic and customized prices in the economy, with the convention

that paij = ∅ if the pair (j, i) ∈ G has not reached an agreement.

Definition 1. Given a feasible production network of active firms G and the vector of prices (pa,pb), a

production equilibrium is a collection of input and output quantities and consumption such that

(i) all firms minimize production costs while meeting their output obligations to their customers;

(ii) the representative household maximizes her utility;

(iii) all markets clear.

The notion of production equilibrium takes the set of active firms and all prices as given: at

t = 2, all (generic and customized) producers are committed to delivering as many units of output

as demanded by their customers at prices agreed upon at t = 1. Thus, the only requirement the

production equilibrium imposes is that firms minimize costs while meeting their output obligations.

Market clearing then guarantees that firms’ and the representative household’s quantity decisions are

mutually consistent. We now proceed to the contracting stage at t = 1 when prices are determined.

Definition 2. Given a feasible production network G, a bargaining equilibrium is a collection of prices

(pa,pb) and quantities such that

(i) the quantities in any ensuing subgame correspond to a production equilibrium;

(ii) given (pa,pb), no generic producer ib can earn higher profits by offering a different price;

(iii) for each supplier-customer pair of firms (j, i) ∈ G, the bilaterally-agreed price paij is (part of) a

Subgame Perfect Nash Equilibrium of the pairwise bargaining game between i and j, taking all

other prices and household’s income as given.

The first condition in Definition 2 imposes that all firms minimize costs at t = 2 and all markets

clear. The other two conditions ensure that neither the generic nor the customized producers can earn

higher profits in the subsequent subgames by deviating from the prices prescribed by the equilibrium.

Condition (ii) is equivalent to generic prices being determined in the competitive equilibrium (but we

state it in the form of a “no deviation” requirement in analogy with the rest of the definition). Condition

(iii), on the other hand, requires, that each pair of customized firms plays subgame perfect strategies

in the bargaining game (and with a slight abuse of terminology, we refer to the agreed price as “part

of” SPNE). More specifically, this condition imposes that any unilateral deviation, either by making a

different offer, taking the outside option, or walking away, should not be profitable.13

Our final definition of this section endogenizes the production network at t = 0.14

13By taking the income level of the representative household as given, each firm ignores the potential impact of its
bargained price on aggregate demand working through changes in profits and household wealth. Since there is a finite
number of customized firms, this effect is in general nonzero, but to the extent that the number of firms is large, it would
be small. All our results continue to apply without any modification when firms recognize this effect, but the analysis in the
case of general production technologies in Subsection 5.1 becomes more cumbersome. Whether this effect is recognized or
not is immaterial for the definition of a full equilibrium, presented in Definition 3.

14With some abuse of notation, we use G∗ to denote both the production network and its vertex set.
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Definition 3. A full equilibrium consists of a production network G∗ ⊆ G and collections of prices

and quantities such that

(i) the quantities correspond to a production equilibrium in the corresponding subgames at t = 2;

(ii) the prices correspond to a bargaining equilibrium in the corresponding subgames at t = 1;

(iii) no customized firm has an incentive to change its exit decision at t = 0, i.e.,

πi(G
∗)− ziw ≥ 0 ∀i ∈ G∗

πi(G
∗ ∪ {i})− ziw < 0 ∀i 6∈ G∗,

where πi(G) is the profit of firm i (gross of fixed costs) when the network of active firms is G.

The full equilibrium endogenizes the (firm-level) production network by requiring that exit

decisions at time t = 0 be profit maximizing while anticipating the equilibrium play at t = 1 and t = 2.

In particular, each firm recognizes how its decision to remain active impacts prices and quantities in

the subsequent bargaining and production stages.

4 Equilibrium Analysis

In this section, we provide a detailed equilibrium characterization and provide comparative statics for

the micro and macroeconomic impacts of various shocks. In addition, we present a decomposition

of the response of GDP into a component due to changes in prices and quantities along a given

production network and a component capturing the endogenous adjustment of the production

network.

Throughout this section, we impose:

Assumption 3. All production technologies are Leontief, i.e., CI(w, p1, . . . , pn) = w +
∑n

j=1 pj .

This assumption, which implies that firms use inputs in fixed proportions, enables us

to characterize the equilibrium in closed-form and present the model’s underlying economic

mechanisms in the most transparent manner. We extend our results to a general class of production

functions in Section 5.

4.1 Production and Bargaining Equilibria

As our first result, we establish the existence and uniqueness of the production and bargaining

equilibria and characterize these equilibria in terms of model primitives and the production network

G. As already anticipated, a key object in our analysis is the collection of markups charged by

customized firms. It turns out to be more convenient to work with the customized firms’ “absolute

markups”, defined as the difference between their prices and marginal costs. We use µi to denote firm

i’s absolute markup, which for simplicity (and with a slight abuse of terminology), we refer to as its

markup.

Theorem 1. Suppose Assumptions 1–3 are satisfied. Then,
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(a) for any feasible production network G and collection of prices (pa,pb), the production equilibrium

exists and is unique;

(b) for any feasible production network G, the bargaining equilibrium exists and is unique (up to a

scaling) and all pairs of firms (j, i) ∈ G reach an agreement in equilibrium;

(c) for any feasible production network G, the equilibrium vector of generic prices pb = (pb1, . . . , p
b
n, w)

is the unique solution to the system of equations

pbi = w +

n∑
j=1

pbj/Bij (4)

and the vector of customized prices pa = (paij)(j,i)∈G is the unique solution to the system of equations

min{δijAijµi − (1− δij)µj , pbj(Aij/Bij)− paij} = 0 (5)

for all supplier-customer pairs (j, i) ∈ G.

Statements (a) and (b) of Theorem 1 establish the existence and uniqueness of production and

bargaining equilibria for arbitrary production networks (and for any distribution of bargaining powers

and productivity levels). Statement (b) additionally shows that any pair of active firms with the

opportunity to trade reach an agreement in equilibrium. This is a natural consequence of Assumption

2, which ensures that customized technologies are superior to generic technologies.15

The last part of Theorem 1 provides a system of equations that characterizes generic and

customized prices in terms of the production network of active firms G, productivity shocks, and the

customized firms’ bargaining powers. Equation (4) reiterates that generic prices pb are determined by

marginal costs and are independent of the set of active customized firms in G, their bargaining power,

and the customized productivities Aij . In contrast, customized prices, given as a solution to equation

(5), depend on the details of the bargaining process as well as generic and customized productivities.

Equation (5) has a simple interpretation. First, it guarantees that the agreement price paij between

a pair of active customized firms (j, i) ∈ G can never exceed pbjAij/Bij , since otherwise the customer

would prefer to exercise her outside option and use the generic variant of this input. Second, it implies

that when this outside option does not bind (i.e., when paij < pbjAij/Bij), the firms split the gross

surplus from their relationship-specific productivity, Aij , in proportion to their bargaining powers:

µj
µi

=

(
δij

1− δij

)
Aij , (6)

where recall that δij captures the bargaining power of the supplier j. Therefore, all else equal, a higher

δij increases j’s share of the pairwise productivity gross surplus—by raising the price of j’s price paij for

firm i.16 Finally, whether the outside option in (5) binds depends on not just the pairwise productivity

Aij , but also productivities in other parts of the economy.

15There may be instances of no agreement off the equilibrium path. This is because, under non-equilibrium price vectors,
productivity gains from customized production may be insufficient to make agreement worthwhile for both parties.

16The reason the ratio of markups in (6) only depends on the bargaining powers and the pairwise productivityAij (but not
the gap between the customized and generic productivities) is because of our bargaining protocol, which ensures that, in
contrast to the Nash solution to bargaining, outside options only matter when they are binding. See, for example, Osborne
and Rubinstein (1990, Section 3.12).
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Overall, equations (4) and (5) provide a relatively simple system of equations pinning down prices

and markups in terms of the production network and all productivities in the economy. Importantly,

they also extend Samuelson’s (1951) “non-substitution theorem” to our non-competitive environment

with firm-level bargaining: equilibrium prices (pa,pb) are independent of household preferences,

the production technology for the final good, and equilibrium quantities.17 This non-substitution

theorem, like its classical variant for competitive economies, enables us to investigate the impact of

shocks on equilibrium prices and markups without solving for quantities.

4.2 Full Equilibrium

We now turn to the economy’s full equilibrium, which endogenizes the production network. Recall

from Definition 3 that, in a full equilibrium, a customized firm i chooses to remain active if and only

if its profits exceed its fixed cost of operation. This requirement can be restated as a fixed point of the

mapping:

φ(G) = {i ∈ G : πi(G ∪ {i}) ≥ wzi}, (7)

which maps a collection of active firms G ⊆ G to the set of firms that would make non-negative net

profits if they paid the fixed cost. Thus, G∗ ⊆ G is part of a full equilibrium if and only if G∗ = φ(G∗).

We can therefore characterize the economy’s full equilibria by determining the set of fixed points of φ.

Theorem 2. Suppose Assumptions 1–3 are satisfied. Then,

(a) a full equilibrium exists;

(b) the set of full equilibria has a greatest element with respect to the set inclusion order;

(c) aggregate output in the greatest full equilibrium is higher than that of all other full equilibria.

While the full equilibrium is not necessarily unique, part (b) of the theorem shows that a greatest

full equilibrium always exists—meaning that the set of active firms in such an equilibrium is a superset

of the set of active firms in all other full equilibria. Put differently, there always exists a fixed point

G∗max = φ(G∗max) of the mapping φ in (7) such that G∗max ⊇ G∗ for all fixed points G∗ of φ. In the

remainder of the paper, we focus on the economy’s greatest full equilibrium, as all failures in this

equilibrium are “fundamental,” in the sense that they are not driven by any type of miscoordination

(for example in exit decisions). Furthermore, part (c) of Theorem 2 shows that the greatest full

equilibrium also generates the greatest aggregate output (GDP) among all equilibria.

Note that the economy has a greatest full equilibrium even though firms’ exit decisions are not

necessarily strategic complements: the exit of an active customized firm may weaken the incentives

of some or all other customized firms to exit. The absence of strategic complementarities in exit

decisions is due to a type of aggregate demand externality that arises in general equilibrium with

exits. The exit of a firm that makes negative profits increases household wealth and hence the

demand for other goods, which in turn can weaken the incentive of the remaining firms to exit by

increasing their profits.18 This means that Theorem 2 cannot be obtained from a direct application
17However, due to the presence of fixed costs, the equilibrium network of active firms G∗ itself depends on the demand

side of the economy. We discuss this relationship in the next subsection.
18Equivalently, this implies that mapping φ in equation (7) is not monotone, in the sense that G1 ⊆ G2 6⇒ φ(G1) ⊆ φ(G2).
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of Tasrki’s fixed point theorem (Topkis, 1998). Rather, we establish Theorem 2 using a new fixed

point theorem in Appendix A that only requires strategic complementarities in exit decisions among

profitable firms. This theorem may be of use in other settings with entry and exit and/or aggregate

demand externalities.19

We conclude this discussion by a simple but important observation on the structure of the

equilibrium production network. We say a customized or final good producer i is downstream to firm

j (and j is upstream to i) in the network of technological compatibilities G if j is a direct or indirect

supplier of i in G. We also say i and j have a horizontal relationship if they share a common (direct or

indirect) downstream customer but are neither upstream or downstream to one another.20 With this

terminology, an immediate consequence of Assumption 1 is that there will be upstream propagation

of failures: a negative shock that leads to i’s failure results in the failure of all of i’s direct and indirect

customized suppliers. Intuitively, a customized producer’s only source of revenue is payments from

its unique customer in G. As a result, the customer’s failure implies that i cannot meet its fixed cost of

operation either. With the same reasoning, all firms that are upstream to i fail as well.

4.3 Comparative Statics with Exogenous Production Networks

In this subsection, we present comparative statics holding the set of active firms (and hence, the

economy’s production network) fixed at some G ⊆ G. Since the bargaining equilibrium is unique,

the comparative statics in this subsection refer to changes in this unique equilibrium. We consider

comparative statics with an endogenous G∗ in the next subsection.

Our first result characterizes how markups, prices, and profits depend on bargaining powers.

Theorem 3. Consider a feasible production network of active firms G. For (j, i) ∈ G, an increase in δij

(a) increases the markups of j and all firms upstream to j and decreases the markups of all other firms;

(b) increases the profits of j and all firms upstream to j and decreases the profits of all other firms;

(c) increases the prices of j and all firms upstream and downstream to j and decreases the price of all

other firms.

This theorem gives a first glimpse of the complex interactions between supply chains and

equilibrium prices. Intuitively, an increase in the bargaining power of a firm vis-à-vis its customer

translates into (weakly) higher prices, profits, and markups not only for that firm, but for all its direct

and indirect customized suppliers as well. This result is a consequence of how gains from trade are

shared between parties in pairwise bargaining. As we discussed in the context of equations (5) and (6),

an increase in j’s bargaining power vis-à-vis its customer i allows j to charge a higher price, increasing

the share of the surplus that it captures. But since j’s input price is itself determined via pairwise

19A second potential source of strategic substitutability in firms’ exit decisions is competition for customers or suppliers.
For example, the exit of firm i can increase j’s profits if they compete for the same set of customers or suppliers. These
strategic substitutabilities are ruled out by Assumption 1, which ensures that customized firms only compete with the
competitive fringe of generic producers and enables us to apply our fixed point theorem in Appendix A.

20Since G contains no cycles (Assumption 1), the sets of firms that are upstream, downstream, and horizontal to any given
firm j are mutually exclusive.
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bargaining with its own (customized) suppliers, j’s higher surplus is partially shared with its suppliers

(via higher input prices for j). This increases the markups and profits of j’s suppliers. A similar logic

implies that a higher δij results in weakly higher markups, profits, and prices for all firms that are

upstream to j. However, the same increase in δij reduces the equilibrium markup and profit of firm i

and hence the markups and profits of all other firms that are either horizontal or downstream to j.

Finally, part (c) of Theorem 3 shows that downstream and horizontal prices move in opposite

directions in response to an increase in δij . This is because for the markups of all firms that are either

downstream or horizontal to j to decrease simultaneously, the former group needs to charge a higher

price while those in the latter group charge a lower price.

Our next result provides comparative statics with respect to the production network structure. To

express this result, let GDP(G) denote aggregate output under production network G. Similarly, let

µi(G) and πi(G) denote, respectively, firm i’s markup and profit (gross of fixed costs) under G.

Theorem 4. Let G and Ḡ denote two feasible production networks such that G⊆ Ḡ. Then,

(a) µi(G) ≤ µi(Ḡ) for all i ∈ G;

(b) if ∑
j∈ Ḡ\G

(πj(Ḡ)− wzj) ≥ 0, (8)

then GDP(G) ≤ GDP(Ḡ);

(c) if condition (8) is satisfied, then πi(G) ≤ πi(Ḡ) for all i ∈ G.

Statement (a) establishes that more exits lead to weakly lower markups throughout the economy.

This result is intuitive: since customized producers are more productive than their generic

counterparts (Assumption 2), the presence of an additional customized producer increases the

surplus it can split with its customer, which is then shared with other firms via pairwise bargaining.

The last two parts of the theorem establish that exit of profitable firms reduces aggregate output

and the profits of all remaining firms. Intuitively, with fewer customized firms, production relies more

on generic inputs and as a result, the (aggregate) production possibility frontier shifts in. The reason

we need to focus on exit of profitable firms—imposing inequality (8)—is that removing loss-making

firms would increase the income of the representative household and aggregate demand, creating

countervailing effects.21 This result will play an important role when we turn to the comparative statics

of the economy’s full equilibrium, as it ensures that exit decisions reinforce the effects of changes in

productivity and/or fixed costs that decrease firm profitability.

Our final result of this subsection establishes comparative static results with respect to productivity

shocks.

Theorem 5. Consider a feasible production network of active firms G. For (j, i)∈G, an increase in Aij

(a) increases all markups in the economy;

21Recall from footnote 19 that firms’ exit decisions may be strategic substitutes due to this aggregate demand externality.
However, statement (c) of the theorem establishes that exit decisions of profitable firms are always strategic complements.
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(b) increases aggregate output;

(c) increases the profits of i and j, and those of all firms that are either downstream or horizontal to j;

(d) furthermore, if δjr = 1 for all suppliers r of j, an increase in Aij decreases the profits of all firms that

are upstream to j.

An increase in the relationship-specific productivity of a pair of customized firms translates into

higher aggregate output, with the corresponding surplus shared with other firms in the economy

in the form of higher markups. The intuition for this result, which is a consequence of the non-

competitive nature of the economy, is familiar from our discussion of Theorem 4. More novel is the

non-monotonic impact on profits. While firms that are downstream to j increase their profits as a

result of the higher productivity, j’s suppliers may lose out because of a “perverse quantity effect”:

the increase in productivity means that i’s demand for j’s input declines, and though this can never

reduce j’s profitability, it can push down the profits of j’s direct and indirect suppliers. We will see in

the next subsection that this negative impact of higher productivity on supplier profits can translate

into non-monotonic effects on aggregate output when the production network is endogenous.

4.4 Comparative Statics with Endogenous Production Networks

We now turn to our main theoretical results, which characterize the macroeconomic impact of shocks

when production networks are endogenous. The next theorem characterizes the implications of

changes in fixed costs.

Theorem 6. In the greatest full equilibrium, an increase in fixed costs of operation

(a) shrinks the set of active firms;

(b) lowers aggregate output;

(c) reduces markups and profits of all surviving firms.

A higher fixed cost of operation for a firm, say firm i, makes it more likely to fail. More interestingly,

it makes all other firms in the economy more likely to exit as well. This is because of both partial

and general equilibrium effects. The partial equilibrium effect, which is the central mechanism of

our model, is due to the propagation of the shock over the production network: firm i’s exit makes its

(direct and indirect) customers and suppliers and firms that are horizontal to it less profitable, and

hence more likely to exit. In addition, as previously profitable firms fail, household wealth and thus

demand for all products is reduced. This aggregate demand externality further amplifies the impact

of the initial negative shock and may contribute to additional failures.

Changes in productivity have more complex implications than changes in fixed costs because of

the perverse quantity effect we saw in Theorem 5. To abstract from this effect, we first focus on a

network in which the customized firm experiencing higher productivity has no active suppliers.

Theorem 7. Let G∗ denote the economy’s greatest full equilibrium and let (j, i) ∈ G∗ be a supplier-

customer pair of active firms. If j does not have any active suppliers in G∗, then an increase in Aij
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(a) expands the set of active firms;

(b) increases all active firms’ profits;

(c) increases aggregate output.

This theorem shows that when a customized firm with no active suppliers enjoys a higher

productivity, profits of all firms increase, exit of other firms becomes less likely, and aggregate output

increases. Intuitively, we know from Theorem 5 that an increase in productivity of a customized firm,

say j, raises the profits of all firms except those that are upstream to it. When firm j has no suppliers,

all firms in the economy benefit from its higher productivity. Then the partial and general equilibrium

effects discussed above both contribute to raising the profits of all other firms, making their exit less

likely and increasing aggregate output. However, when firm j has suppliers, the perverse quantity

effect from part (d) of Theorem 5 reemerges and these results may no longer hold. This is illustrated

in the next example and analyzed more systematically in our final theorem in this subsection.

Example 1. Consider an economy consisting of five customized firms in five separate industries,

labeled {1, 2, 3, 4, 5}, and a single firm producing the consumption good. Figure 3 depicts the

underlying network of technological compatibilities, G. For simplicity, we assume that the supplier

firm has all the bargaining power in all pairwise relationships, firm 4 is the only firm with a non-zero

fixed cost (i.e., zi = 0 for all i 6= 4), and firms 2 and 5 are the only firms that use labor as an input.

Furthermore, we assume that productivities (B12, B13, B34, B45) and (A12, A13, A34, A45) are such that

G∗ = G, that is, all firms are active in the economy’s greatest equilibrium.

In such an economy, the aggregate output and the profit of firm 4, gross of fixed costs, are given by

GDP =
(
A−1

12 +A−1
13 A

−1
34 A

−1
45

)−1
(L− z4) (9)

π4 = w
(
B−1

34 −A
−1
34

)
GDP /(A13B45),

where L denotes the aggregate supply of labor.

A few observations are immediate. First, as shown in Theorem 5, when the production network is

held fixed, aggregate output is increasing in all customized productivities. Second, π4 is decreasing in

A13, as predicted by Theorem 5(d): the aforementioned perverse quantity effect implies that higher

downstream productivity decreases firm 4’s profits because of the reduction in demand from firm 3.

Nonetheless, as long as the economy’s production network is held fixed, a higher A13 raises aggregate

output.

Next, consider the case in which we allow the equilibrium production network to respond to an

increase in productivity from A13 to Ā13. Since firm 4’s profit is decreasing in A13, this increase in

productivity may result in 4’s failure, which in turn makes firm 5 unable to produce as well. As a

consequence, aggregate output after the productivity increase is given by

GDP(Ā13) =
(
A−1

12 + Ā−1
13 B

−1
34 B

−1
45

)−1
L. (10)

Comparing equations (9) and (10) shows that, for small enough values of z4, and as long as

Ā13B34B45 < A13A34A45, the increase in productivity reduces aggregate output.
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Figure 3. An economy consisting of five customized producers in five different industries and one final good
producer. The figure depicts the firm-level network G of technological compatibilities. For simplicity, the figure
does not include generic producers.

Theorem 8. Let Ḡ∗ denote the greatest full equilibrium under productivity Āij for supplier-customer

pair of firms (j, i) and suppose there is a supplier-customer sequence of firms (k0, k1, . . . , ks, j) upstream

to j that only use a single input, with k1 6∈ Ḡ
∗ and δk2k1 = 1. Then, for any Aij < Āij such that

πk(Ḡ
∗
, Aij) ≥ wzk for all k ∈ Ḡ

∗, there exists θ < 1, such that if πk1(Ḡ
∗ ∪ {k1}, Āij) > θwzk1 , then

(a) Ḡ∗ ( G∗, where G∗ is the full equilibrium under Aij .

(b) Furthermore, there exist Ãk1k0 and z̃k such that if Ak1k0 > Ãk1k0 and zk0 < z̃k0 , then GDP(Ḡ
∗
, Āij) <

GDP(G∗, Aij).

The intuition for why productivity improvements may be recessionary comes from part (d) of

Theorem 5 and Example 1: higher productivity of firm j reduces the profitability of its suppliers via the

perverse quantity effect. In Theorem 5, this non-monotonic effect did not reverse the initial positive

impact of the initial productivity increase on aggregate output. In contrast, Theorem 8 establishes

that, because of the endogenous response of the production network, a higher Aij may push j’s

suppliers into failure, resulting in a supply chain disruption. This partial equilibrium propagation

is further magnified with the general equilibrium effects working through reduced household wealth

and aggregate demand for other products.

To be sure, we do not view the situation identified in Theorem 8 to be a major source of downturns

in practice. Nevertheless, together with Theorem 7, this result illustrates how the propagation

of (potentially small) shocks over an endogenous production network can lead to rich economic

dynamics. The former result explains how a negative shock can be amplified due to extensive

margin adjustments, whereas the latter illustrates how a positive shock can be recessionary under

some circumstances—in particular, when it leads to the failure of sufficiently productive upstream

suppliers. We next turn to a more systematic decomposition of the effects of shocks on aggregate

output between exogenous and endogenous supply chain components.
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4.5 Aggregate Implications

We end this section with a formal decomposition of the aggregate impact of shocks into two

components—one that holds the production network fixed and one that traces the consequence of

the endogenous response of the production network. For brevity, we present this decomposition for

a change in fixed costs of operation and provide the analogous result for changes in productivities in

Appendix D.

Theorem 9. Let z̄i ≥ zi for all i. The change in aggregate output in the economy’s greatest full

equilibrium in response to the decrease in fixed costs from z̄ to z is

∆GDP = ∆GDP
∣∣∣
Ḡ

∗ fixed
+ ∆GDP

∣∣∣
z fixed

, (11)

where Ḡ∗ and G∗ are the production networks in the greatest full equilibria under z̄ and z and

∆GDP|Ḡ∗fixed = GDP(Ḡ
∗
, z)−GDP(Ḡ

∗
, z̄) ≥ 0

∆GDP|z fixed = GDP(G∗, z)−GDP(Ḡ
∗
, z) ≥ 0.

This theorem establishes that the direct impact of the shock (the first term on the right-hand side

of (11)) is amplified by the endogenous adjustment of the production network due to firm failures (the

second term in (11), which has the same sign as the first term).22

The next example shows that long supply chains can be a source of fragility and illustrates how

this fragility can render the indirect effects working via the response of the equilibrium production

network much larger than a shock’s direct impact.

Example 2. Consider an economy consisting of n customized firms indexed {1, . . . , n} in n separate

industries and a single final good producer 0, with the network of technological compatibilities G
depicted in Figure 4. All firms use a single input for production. For simplicity, we assume that all

pairwise relationships are identical in terms of productivities and bargaining power, i.e., Ai,i+1 = A,

Bi,i+1 = B, and δi,i+1 = δ for all i, where A > B ≥ 1 and δ > 1/2. This latter assumption means that,

in any pairwise relationship, the supplier has a greater bargaining power than the customer. Finally,

suppose that firm 1 is the only customized firm with a non-zero fixed cost (i.e., zi = 0 for all i 6= 1).

This means that, in any equilibrium, either all n customized firms operate or they all fail.

Let z̃1 denote the threshold on firm 1’s fixed cost above which the firm fails. Since 1’s failure results

in the failure of all other customized producers, aggregate output in this economy is given by

GDP =

{
An−1(L− z1) if z1 ≤ z̃1

Bn−1L if z1 > z̃1.
(12)

Moreover, as long as outside options in pairwise bargains do not bind, the failure threshold on firm 1’s

fixed cost can be characterized as

z̃1 =
1− δ
2δ − 1

1 +

(
δ

1−δ

)n
− 1

(A/B)n−1 − 1

−1

L. (13)

22Because we are considering arbitrary (rather than infinitesimal) shocks, the order of the decomposition in Theorem 9
matters. The one we choose looks at the adjustment of GDP that would have happened holding the production network
constant at its value in the larger network and then considers the additional impact of having fewer active firms.
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Figure 4. Production Chain

Equations (12) and (13) have two important implications. On the one hand, equation (12) implies

that, when z1 ≤ z̃1, aggregate output is increasing in the number of firms, n, in the production

chain. This is because a longer chain shifts out the production possibility frontier. On the other hand,

equation (13) illustrates that, if (1−δ)A < δB, the threshold z̃1 decreases in n, making it more likely for

all firms to fail in a longer the chain. In other words, despite the increase in the economy’s productive

capacity, a longer production chain is more fragile in response to shocks. This disparity is driven by

the non-competitive nature of how surplus from this increased productivity is shared between various

firms: the greater surplus from the longer chain is shared among more firms, leading to a smaller

surplus for firm 1.

We can also use equations (12) and (13) to obtain a decomposition of the direct and indirect impact

of a shock on aggregate output similar to Theorem 9. For example, consider an increase in firm 1’s fixed

cost from z1 = z̃1 − ε/An−1 to z̄1 = z̃1 + ε/An−1 for some small ε > 0. Then, holding the production

network of the economy fixed, the shock has a direct impact on GDP of−2ε. However, this shock also

pushes firm 1, and hence the rest of the customized firms, into the failure region. From equation (12),

the indirect effect of the shock due to firm failures thus reduces aggregate output by An−1(L − z̃) −
Bn−1L− ε. This latter effect can be arbitrarily large relative to the direct effect when the supply chain

is long (n large) or when the shock that triggers the cascades of failures is small (ε small).

5 Extensions

In this section, we discuss two extensions. First, we relax the assumption of Leontief production

technologies and show that our results in Section 4 extend to a broad class of economies where inputs

are gross complements. Second, we briefly discuss how the framework can be extended to incorporate

entry and matching decisions.

5.1 General Production Technologies

We start by defining a few important concepts. We say that industry J ’s input is essential for the

production technology of industry I if (i) the marginal costCI is strictly positive whenever the price of
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input J is strictly positive and (ii) CI is strictly increasing in input J ’s price whenever all input prices

are non-zero. Similarly, we say J is an indirect essential input for the production technology of I, if

there exits a sequence of industries starting with J and terminating at I such that each input in the

sequence is essential for the production technology of the next. We can use parallel notions to define

labor as a direct or indirect essential input.

Let σkji denote the Morishima elasticity of substitution between distinct pair of inputs (including

labor) k and j in the production technology of any given firm i.23 We replace Assumption 3 with the

following restriction on firms’ production technologies.

Assumption 3′. The collection of cost functions (C1, . . . , Cn) satisfy the following:

(i) labor is a direct or indirect essential input for the technology of all industries;

(ii) σkji ≤ 1 for all firms i and all pairs of inputs k 6= j;

(iii) for all pairs of inputs k 6= j,

dσkji
d log pij

≥ −(1− σkji )2. (14)

The first condition imposed by Assumption 3′ rules out scenarios in which labor is an inessential

input for production of any given industry, thus ensuring that aggregate output is always finite. The

second condition significantly relaxes Assumption 3 by simply requiring that inputs from different

industries are gross complements in all production functions.24 Finally, the third condition imposes

a bound on how quickly these elasticities change in response to changes in input prices. Any CES

production technology, for which these elasticities remain constant, trivially satisfies inequality (14).

The next theorem establishes the existence and uniqueness of production equilibria as well as

existence of bargaining equilibria under Assumption 3′.

Theorem 10. Suppose Assumptions 1, 2, and 3′ are satisfied. For any feasible network of active firms G,

(a) a production equilibrium always exists and is unique;

(b) a bargaining equilibrium (pa,pb) always exists. Furthermore, in any bargaining equilibrium, all

pairs of firms (j, i) ∈ G reach an agreement;

(c) the vector of generic prices pb = (pb1, . . . , p
b
n, w) is unique (up to a scaling) and is the solution to the

system of equations

pbi = CI(w, p
b
1/Bi1, . . . , p

b
n/Bin); (15)

(d) the vector of customized prices pa = (paij)(j,i)∈G is the solution to the system of equations

paij = min{p̂ij , pbjAij/Bij}, (16)

23The Morishima elasticity of substitution between inputs k and j is defined as σkj
i = εkji −ε

jj
i , where εkji is firm i’s constant-

output elasticity of demand for input k with respect to changes in the price of input j.
24However, recall that (3) implies that the generic and customized variants produced by any given industry are always

perfect substitutes.
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where p̂ij is the unique solution to equation

fij(p̂ij) = δijπi
∂πj
∂paij

+ (1− δij)πj
∂πi
∂paij

= 0 (17)

where πi and πj denote the profits of firms i and j gross of fixed operating costs.

This theorem is a direct generalization of Theorem 1, with the only significant difference being

in the way markups and prices are determined: generic and customized prices are now given by the

system of equations (15)–(17). This disparity is a consequence of the fact that the nature of input

complementarities alters the strategic interactions in pairwise bargaining games. To see the intuition

for equation (17), recall that in their pairwise bargaining game, supplier j and customer i can make

offers with probabilities δij and 1− δij , respectively. As a result, when the outside options do not bind

(and taking all other prices as given), a pair of prices p′ij and p′′ij corresponds to a SPNE of the pairwise

bargaining game if and if they satisfy the following indifference conditions for j and i,

πj(p
′
ij) = ηδijπj(p

′′
ij) + η(1− δij)πj(p′ij)

πi(p
′′
ij) = ηδijπi(p

′′
ij) + η(1− δij)πi(p′ij),

respectively, where η is the firms’ common discount factor.25 This system of equations reduces to

(17) as η → 1 and the equilibrium offers satisfy limη→1 p
′
ij = limη→1 p

′′
ij = p̂ij , where p̂ij is the unique

solution to equation (17). This observation further illustrates that the non-linearity in equation (17) is

because the pairwise bargaining game between the two firms is a game of non-transferable utility: the

two parties bargain over fixed-price contracts, even though their pairwise surplus and their payoffs

are non-linear in the agreed price.26 In the special case where the customer’s production function is

Leontief, equation (17) reduces to equation (5) in Theorem 1.

We next show that all of our comparative static results from Theorems 2–8 generalize to economies

with complementarities between inputs provided that Assumption 3′ is satisfied. For tractability, we

also restrict attention to the special case in which δij = 1 for all (j, i) ∈ G—that is, all bargaining

power is vested in suppliers. The economics of these comparative statics is identical to those in the

economy with Leontief technologies, though the quantitative effects differ depending on the degree

of complementarity between various inputs.

Theorem 11. Suppose Assumptions 1, 2, and 3′ hold. Furthermore, suppose that δij = 1 for all (j, i) ∈ G.

Then, Theorems 2 and 4–8 apply.

5.2 Entry and Matching

Our analysis thus far focused on the implications of negative shocks—modeled via comparative

statics—on exits and aggregate output, taking network of technological compatibilities G between

25Note that we do not restrict the firms’ strategies to be stationary, as each firm’s offers and reactions to offers may depend
on the entire history of actions. Nonetheless, as in Rubinstein (1982), the unique SPNE of the pairwise bargaining game turns
out to be stationary.

26This non-linearity may also lead to a non-convex payoff set in the bargaining game, which may then result in multiple
SPNEs. However, even when the set of payoffs is non-convex, the curvature restrictions imposed in part (iii) of Assumption
3′ guarantee that the game between i and j has a unique SPNE and is given by the unique solution to equation (17).
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various customized firms as given. This raises two related questions: (i) where does G comes from and

how does it adjust in the face of shocks? And (ii) in what sense can increases in fixed costs or reductions

in productivity be viewed as “negative shocks” that hit the economy at business cycle frequencies?

While a systematic analysis of these questions is beyond the scope of this paper, in this subsection

we provide a brief outline of how the model can be generalized to speak to these issues.

Consider an extension of the model with two more time periods, t ∈ {−2,−1}. At t = −2, a large

set of potential entrants decide to enter as customized producers into any one of the sectors of the

economy by paying a fixed cost of χJ for sector J (there is no costly entry stage for generic producers,

since they always make zero profits in equilibrium). Upon entry at t = −1, customized producer

j in industry J decides whether to pay another fixed cost, denoted by γj , to match randomly with

potential suppliers and customers. This is meant to capture the costs involved in developing trust,

reputation, and the requisite knowledge for long-term customized relationships. The outcome of this

random matching process is the network of technological compatibilities G. When making their entry

and matching decisions at t = −2 and t = −1, respectively, firms face incomplete information about

the outcome of the matching process, productivities, and fixed costs of operation zj , all of which are

revealed at t = 0. Free entry thus requires that, for each industry J , the entry of one more firm would

lead to

E−2[max
{
E−1 max{πj(Ḡ∗)− wzj , 0} − γj , 0

}
]− χJ < 0,

while this expression is nonnegative for the firms that enter in equilibrium. The inner max operator

captures the fact that after the matching pattern, productivities, and fixed costs of operation are

revealed at t = 0, the firm would exit if it is more profitable to do so, in which case it has a zero

continuation profit (though it has already incurred the entry and matching fixed costs). The outer

max operator recognizes that after entry at t = −2, firms can still decide not to pay the fixed cost of

matching. Finally, the expectation operator Et incorporates the information available to firms at time

t about the outcome of the matching process, productivities, and fixed costs of operation. In general,

E−1 may be different from E−2, allowing for additional information to be revealed to firms between

the entry and matching stages.

This formalization is useful for clarifying a few points. First, recall that our comparative statics are

carried out under complete information at time t = 0, but they can be thought of as being due to

“realizations of negative shocks” from the viewpoint of t = −2 or −1. Second, firm exit at time t = 0

is qualitatively different from firm entry, which occurs at earlier points on the basis of expectations of

productivities, fixed costs, and matching patterns.

Third, this formalism enables us to discuss different types of shocks and responses thereto. The

first type of shock is the one we have discussed so far, taking place at t = 0. These should be thought

of as shocks that happen after medium-term entry and customization/matching decisions have been

made. At this point, there is no further adjustment in the economy’s production network except for

the exit decisions. In contrast, there can be other margins of adjustments in response to a time t = −1

negative shock, which may reveal that some firms will end up with a higher fixed costs than expected,

some suppliers have low productivity, or certain matches may not form. For example, if the fixed costs

of operation for a set of firms in an industry turn out to be high, so that they will not take part in
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matching or drop out with a high likelihood after matching, then other firms may make up this slack

by paying the cost for matching and forming new relationships. Conversely, new information that

arrives at this point may discourage the formation of customized relationships. This highlights that

negative shocks at t = −1 may generate dampening or amplifying responses through the matching

process. Finally, shocks that arrive at time t = −2 may increase or reduce entry. We think of these last

two types of responses as taking place in the medium run (say, within horizon of a few years), while

what we focused on in the rest of the paper corresponds to shorter-run responses (say, a horizon of

a few quarters). The full analysis of comparative statics in this extended model is an area for future

research.

6 Conclusions

Most modern economies rely on complex supply chains, where multiple layers of suppliers enter

into specific, customized relationships with one other. This type of customization often enables

greater efficiency in production, but may also create fragilities as relatively small shocks can result

in significant supply chain disruptions.

A key contribution of our paper is to develop a novel and tractable (non-competitive) model

of the distribution of relationship-specific surplus over supply chains. Our paper studies how this

distribution is shaped by the structure of the production network and differences in productivities,

and how it regulates and amplifies the response of the macroeconomy to recessionary shocks.

Our analysis shows that changes in productivity alter the distribution of surplus throughout the

production network and determine which firms are at the margin of failure. Via a number of general

comparative statics theorems, we demonstrate that a negative shock propagates in the production

network as a firm’s failure reduces the profits of its suppliers, customers, and possibly other firms

in the economy, bringing them to the brink of failure as well. At the root of these results is a new

fixed point theorem, which enables us to show that, although our economy does not feature strategic

complementarities, exit of a previously profitable firm tends to cascade into additional exits.

Lack of general strategic complementarities can also be seen from the fact that even positive

shocks may be recessionary. This is because of the non-monotonic impact of productivity increases,

which may reduce demand for upstream firms and force their exit. These exits, and the costs

associated with the disruption of productive supply chains, can outweigh the direct positive impact of

the initial shock.

Our general comparative statics are established under some key simplifying assumptions,

however. Most importantly, we assume that each customized firm can source each input from a

single customized supplier (though may have multiple suppliers if it uses multiple inputs) and each

customized firm can only have a single customized customer. We also abstract from relationship-

specific investments that increase the efficiency of customized relationships, the formation of

supplier-customer matches, and the substitution of new suppliers for those that fail. These constitute

important and challenging areas for future theoretical analysis.

An even more important direction for future research would be a systematic analysis of the

empirics of supply chains in economic fluctuations. A first step would be a detailed quantitative

24



evaluation of the amplification generated by supply chain disruptions. While recent work, including

Jacobson and von Schedvin (2015) and Carvalho et al. (2017), documents the propagation of shocks

over firm-level supply chains, there is still much that we do not know about the role of supply chains

in the macroeconomy. These include: how prices and quantities in supply chains vary over the

business cycle, how supply chains become disrupted and repaired following negative shocks, and

where the most major systemic supply chain fragilities lie. Such analyses could be relevant for policy

as well, since, as the recent global economic crisis triggered by the COVID-19 pandemic illustrates, the

collapse of national and global supply chains can be a critical threat to the economy.

Appendix

A A Set-Valued Fixed Point Theorem

This appendix states and proves a new fixed point theorem for set-valued mappings. We apply this

result in the subsequent proofs to establish the existence of the economy’s full equilibrium, show

that the set of full equilibria has a greatest element, and obtain comparative static results when the

economy’s production network is endogenous. This fixed point theorem may be of more general use

in economies with entry and exit and/or aggregate demand externalities.

Let S denote a finite set and φ : 2S → 2S denote a mapping from the subsets of S to itself.

Assumption A.1 (weak monotonicity). For any S1, S2 ⊆ S, if S1 ⊆ φ(S2), then S1 ⊆ φ(S1 ∪ S2).

Assumption A.2 (weak superadditivity). If S1 ⊆ φ(S1) and S2 ⊆ φ(S2), then S1 ∪ S2 ⊆ φ(S1 ∪ S2).

It is easy to verify that Assumptions A.1 and A.2 are weaker than monotonicity with respect to the

set inclusion order, which requires that φ(S1) ⊆ φ(S2) whenever S1 ⊆ S2. We have the following result:

Theorem A.1. Suppose mapping φ : 2S → 2S satisfies Assumptions A.1 and A.2. Then,

(a) φ has a fixed point, i.e., there exists S∗ ⊆ S such that S∗ = φ(S∗);

(b) φ has a greatest fixed point, i.e., there exists S̄∗ such that S̄∗ = φ(S̄∗) and S̄∗ ⊇ S∗ for all S∗ = φ(S∗);

(c) the greatest fixed point of φ is given by S̄∗ =
⋃
S∈XS, where X = {S ⊆ S : S ⊆ φ(S)}.

Statements (a) and (b) of Theorem A.1 extend Tarski’s fixed point theorem (which only applies

to monotone mappings over a complete lattice) to non-monotone maps that satisfy the weaker

requirements of Assumptions A.1 and A.2. Statement (c) then provides a characterization of φ’s

greatest fixed point in terms of set X = {S ⊆ S : S ⊆ φ(S)}, which will prove useful in our subsequent

results. In particular, it leads to the following corollary, which generalizes Theorem 3 of Milgrom and

Roberts (1994):

Corollary A.1. Suppose φ1, φ2 : 2S → 2S satisfy Assumptions A.1 and A.2. If φ1(S) ⊆ φ2(S) for all S ⊆ S,

then S̄∗1 ⊆ S̄∗2 , where S̄∗1 and S̄∗2 are the greatest fixed points of φ1 and φ2, respectively.
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Proof of Theorem A.1

Proof of part (a) Consider the sequence of sets Sk+1 = φ(Sk) with the initial condition S0 = ∅. If

Sk ⊆ Sk+1 for all k, then it is immediate that S∞ = limk→∞ φ
(k)(S0) = ∪k≥0Sk exists and is a fixed point

of φ. It is therefore sufficient to show that Sk ⊆ Sk+1 for all k. We prove this claim by induction. The

base of the induction holds trivially as S0 = ∅. As the induction hypothesis, suppose that Sk−1 ⊆ Sk =

φ(Sk−1). Given that Sk ⊆ φ(Sk−1), Assumption A.1 implies that Sk ⊆ φ(Sk ∪ Sk−1). But note that, by

the induction hypothesis, Sk ∪ Sk−1 = Sk, thus implying that Sk ⊆ φ(Sk) = Sk+1.

Proof of part (b) Define X = {S ⊆ S : S ⊆ φ(S)}. The fact that ∅ ∈ X implies that X is non-empty.

We can therefore define S0 =
⋃
S∈X S and consider the sequence Sk = φ(Sk−1). We claim that

Sk−1 ⊆ Sk (A.1)

for all k ≥ 1. If this claim is true, then it is immediate that S̄∗ defined as S̄∗ = limk→∞ φ
(k)(S0) =⋃

k≥0 Sk exists, is a fixed point of φ, and satisfies S̄∗ ⊇ S0, where recall that S0 =
⋃
S∈X S. But note

that X contains all fixed points of φ. As a result, any fixed point S∗ = φ(S∗) satisfies S∗ ⊆ S0 ⊆ S̄∗.

Consequently, S̄∗ is the greatest fixed point of φ, containing all other fixed points as subsets.

The proof is therefore complete once we establish (A.1) for all k ≥ 1. We do so by induction. Since

set X is finite, Assumption A.2 guarantees that

S0 =
⋃
S∈X

S ⊆ φ

( ⋃
S∈X

S

)
= φ(S0) = S1,

thus establishing the base of the induction. Now, as the induction hypothesis, suppose Sk−1 ⊆ Sk. On

the other hand, since Sk ⊆ φ(Sk−1), Assumption A.1 implies that Sk ⊆ φ(Sk ∪ Sk−1). Hence, by the

induction hypothesis, Sk ⊆ φ(Sk) = Sk+1. This establishes (A.1) and completes the proof.

Proof of part (c) Recall from the proof of part (b) that the greatest fixed point of φ is given by S̄∗ =⋃
k≥0 Sk, where Sk = φ(Sk−1) and S0 =

⋃
S∈X S. This immediately implies that S0 ⊆ S̄∗. At the same

time, since S̄∗ is a fixed point, it also must be the case that S̄∗ ∈ X , and hence, S̄∗ ⊆ S0. Therefore,

S̄∗ = S0 =
⋃
S∈X S.

Proof of Corollary A.1

Let X1 = {S ⊆ S : S ⊆ φ1(S)} and X2 = {S ⊆ S : S ⊆ φ2(S)}. The assumption that φ1(S) ⊆ φ2(S) for

all S ⊆ S implies that X1 ⊆ X2. By part (c) of Theorem A.1, the greatest fixed points of φ1 and φ2 are

given by S̄∗1 =
⋃
S∈X1

S and S̄∗2 =
⋃
S∈X2

S, respectively. Therefore, S̄∗1 ⊆ S̄∗2 .

B Proofs

This appendix provides the proofs of the main results stated in the text. We start with a straightforward

proposition, which shows that, regardless of the structure of the underlying network of technological

compatibilities G, any full equilibrium network G∗ consists of a collection of trees terminating at a root
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vertex in the final good industry. In the remainder of the proofs, we rely on this result and restrict our

attention to such simple structures. Note that we provide the proof of Theorem 2 after that of Theorem

4, since the former relies on a result established in the proof of the latter theorem.

Proof of Theorem 1

Proof of part (a) Since Assumption 3 implies Assumption 3′, this statement follows from Theorem

10(a).

Proof of part (c) Equation (4) follows from marginal cost pricing. More specifically, since generic

producers are competitive, it must be the case that pbi = cbi for all generic producers ib. On the other

hand, Assumption 3 implies that the marginal cost of generic producer ib is cbi = w +
∑n

j=1 p
b
j/Bij .

Putting the two together establishes (4).

Next, we show that customized prices in any bargaining equilibrium satisfy the system of equation

(5). By Theorem 10(c), the vector of customized prices satisfies (16) and (17). Rewriting the function

fij(pij) in equation (17), we have

fij(pij) = δijµiyi
∂(µjyj)

∂pij
+ (1− δij)µjyj

∂(µiyi)

∂pij
= 0,

where we are using the fact that πi = µiyi, in which µi and yi denote the markup and output of firm i.

Since i’s production function is Leontief (Assumption 3), yj = yi/Aij . As a result,

fij(pij) = δijµiy
2
i /Aij − (1− δij)µjy2

i /A
2
ij = 0,

where we are using the fact ∂µj/∂pij = 1 and ∂µi/∂pij = −1/Aij . This implies that, as long as the

outside option does not bind, δijµiAij = (1 − δij)µj . However, the agreement price between i and j

cannot exceed i’s outside option of using the generic input jb, i.e., paij ≤ pbjAij/Bij . Hence, pairwise

customized prices in any bargaining equilibrium satisfy (5) for all (j, i) ∈ G.

Proof of part (b) The existence of the bargaining equilibrium is a special case of Theorem 10(b). The

statement that all pairs (j, i) ∈ G reach an agreement in any bargaining equilibrium also follows from

Theorem 10(b). Furthermore, statement (c) of Theorem 10 establishes that the vector of generic prices

pb is unique (up to a scaling). Therefore, to establish the uniqueness of the bargaining equilibrium,

it is sufficient to prove that there exists a unique vector of customized prices pa that solves system of

equations (5).

We start by defining a few objects. Let ∆ denote a diagonal matrix indexed by the set of active

customized firms in G, with the corresponding diagonal entries given by the δij .27 Let A and A† denote

square matrices with rows and columns indexed by the set of active customized firms, with the (i, j)

elements given by Aij and 1/Aij , respectively, if (j, i) ∈ G and 0 otherwise. Finally, we define the

square matrix S with zero diagonal as Sjk = 1{(0,j)∈G}1{(0,k)∈G}, that is, Sjk = 1 if j and k have a

common customer in the final good industry.

27Recall that, by Assumption 1, each firm j faces a single customer. As a result, there is a one-to-one correspondence
between the set of customized firms in G and the directed edges.
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Having defined the above objects, now consider a pair of supplier-customer firms (j, i) ∈ G. By

equation (5), the agreement price, paij , between this pair of firms in any bargaining equilibrium satisfies

min{δijAijµi − (1− δij)µj , p̄ij − paij} = 0,

where p̄ij = pbjAij/Bij and µi and µj are the markups of i and j, respectively. Let k denote i’s customer

in G. We have, min{δijAij(paki− ci)− (1−δij)(paij− cj), p̄ij−paij} = 0, in which ci and cj denote marginal

costs of i and j, respectively. Consequently,

paij = min
{
δijp

a
ij + δijAijp

a
ki + (1− δij)cj − δijciAij , p̄ij

}
,

for all (j, i) ∈ G. Hence, pa = (paij)(j,i)∈G is a vector of customized prices in a bargaining equilibrium if

and only if it satisfies

pa = min{ϕ(pa), p̄}, (B.1)

where

ϕ(pa) = ∆pa + ∆A′pa + (I −∆)A†pa −∆(A′A† + S)pa + e, (B.2)

e is some vector that is independent of pa, and we are using the fact that ci = (A†pa)i + w. Therefore,

to establish that the bargaining equilibrium is unique, it is sufficient to prove that equation (B.1) has

a unique solution pa. We establish this claim using a series of lemmas stated and proved below.

Lemma B.1. Equation (B.1) has a unique solution pa if and only if the complementarity problem

qij ≥ 0 , ϕ̃ij(q) ≥ 0 , qijϕ̃ij(q) = 0 ∀ (j, i) ∈ G (B.3)

has a unique solution q, where ϕ̃(q) = q − p̄ + ϕ(p̄− q).

Proof. We prove this result by establishing a one-to-one correspondence between the solutions of

(B.1) and (B.3). Note that, by (B.1), p̄ − pa = max{p̄ − ϕ(pa), 0}. Let q = p̄ − pa. This implies that

q = max{p̄− ϕ(p̄− q), 0}. Hence, pa is a fixed point of (B.1) if and only if

q = max{q − ϕ̃(q), 0}. (B.4)

Therefore, it is sufficient to show that q satisfies (B.4) if and only if it is a solution to the

complementarity problem (B.3).

First, suppose q solves (B.4). It is trivial that q ≥ 0. Furthermore, the fact that q ≥ q − ϕ̃(q) implies

that ϕ̃(q) ≥ 0. Finally, note that if qij > 0 for some (j, i) ∈ G, then (B.4) implies that qij = qij − ϕ̃ij(q),

which guarantees that qijϕ̃ij(q) = 0. Therefore, q is a solution to (B.3).

To prove the converse implication, suppose q is a solution to (B.3). If qij = 0 for some (j, i) ∈ G,

then it is immediate that qij = max{qij − ϕ̃ij(q), 0}, where we are using the fact that any solution to

(B.3) satisfies ϕ̃ij(q) ≥ 0. On the other hand, if qij > 0, then (B.3) implies that ϕ̃ij(q) = 0, hence once

again guaranteeing that qij = max{qij − ϕ̃ij(q), 0}. Thus, q is also a solution to (B.4).

Lemma B.1 implies that the bargaining equilibrium is unique if there is a unique q that satisfies

(B.3). Our next lemma provides a sufficient condition for (B.3) to have a unique solution.
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Lemma B.2. Complementarity problem (B.3) has a unique solution q if

Ω = (I −∆)(I −A†)−∆A′ + ∆(A′A† + S), (B.5)

is a P-matrix.28

Proof. Recall that mapping ϕ(pa) is given by (B.2). Therefore, the mapping ϕ̃(q) = q − p̄ + ϕ(p̄− q) in

Lemma B.1 is given by

ϕ̃(q) = Ω q +ẽ

where Ω is given by (B.5) and ẽ is some vector that is independent of q. The linearity of ϕ̃(q) in q implies

that (B.3) is a linear complementarity problem (Berman, 1981). Thus, by Berman (1981, p. 251), it has

a unique solution if Ω is a P-matrix.

The juxtaposition of Lemmas B.1 and B.2 establishes that the economy has a unique bargaining

equilibrium as long as Ω in (B.5) is a P-matrix. The following lemma establishes this claim and hence

completes the proof.

Lemma B.3. Matrix Ω in (B.5) is a P-matrix.

Proof. Recall that the rows and columns of Ω are indexed by the pairs of active customized firms (j, i) ∈
G. For the purpose of this proof, we find it more convenient to index the rows and columns of Ω by

the index of the corresponding supplier firm j. Similarly, we use δj to denote δij . Note that we can do

so unambiguously, as each customized producer j has exactly one customer i in G.

To prove Ω is a P-matrix, suppose to the contrary that it is not. By Berman (1981, p. 251), there

exists a non-zero vector ξ such that ξj(Ωξ)j ≤ 0 for all j. In particular, for any (j, i) ∈ G,

ξj(Ωξ)j = ξj

ξj − (1− δj)
∑

r: (r,j)∈G

ξr
Ajr
− δjAijξi + δj

∑
k:

(k,i)∈G
k 6=j

Aij
Aik

ξk

 ≤ 0. (B.6)

Given firm j, consider the sequence of downstream customized firms (j, k1, k2, . . . , ks, 0) in G that

connect j to the corresponding firm in the final good producing industry and consider the following

change of variables:

ξ̂j = ξj

√
1/δj

√
1/δk1 − 1 . . .

√
1/δks − 1

Ak1jAk2k1 . . . Aksks−1

,

where note that k1 = i as j has a single customer. Rewriting (B.6) in terms of ξ̂ then implies that

ξ̂j

ξ̂j − ∑
r:(r,j)∈G

ξ̂r

√
δr(1− δj)− ξ̂i

√
δj(1− δi) +

∑
k:

(k,i)∈G
k 6=j

ξ̂k
√
δjδk

 ≤ 0

28A square matrix is a P-matrix if all its principal minors are strictly positive.
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for all j. Summing both sides of the above inequality therefore leads to∑
j:(j,i)∈G

ξ̂2
j − 2

∑
j:(j,i)∈G

ξ̂j ξ̂i

√
δj(1− δi) +

∑
j:(j,i)∈G

∑
k:

(k,i)∈G
k 6=j

ξ̂kξ̂j
√
δjδk ≤ 0,

which in turn implies that

∑
i:(i,0)∈G

δiξ̂
2
i +

∑
j:(j,i)∈G

ξ̂j√1− δj −
∑

r:(r,j)∈G

ξ̂r
√
δr

2

≤ 0,

where the first sum is over all firms i that sell to the firm in the final good producing industry 0. It

is immediate that both terms on the left-hand side of the above inequality are non-negative, which

implies that they both must be equal to zero. As a result, ξ̂i = 0 for all firms i that sell to the firm in the

final good producing industry and

ξ̂j
√

1− δj =
∑

r:(r,j)∈G∗

ξ̂r
√
δr (B.7)

for all firms j. In particular, (B.7) implies that ξ̂j = 0 for all firms j with no customized suppliers in G.

Now using (B.7) iteratively over the production network G implies that the only solution to the above

system of equations is that ξ̂j = 0 for all j ∈ G, thus contradicting the assumption that ξ is non-zero.

This establishes that Ω is a P-matrix.

Proof of Theorem 3

We start with a preliminary lemma, which establishes that all firm-level prices (and hence markups)

are continuous in bargaining powers and productivity shocks.

Lemma B.4. For any given production network of active firms G, the bargaining equilibrium (pa,pb) is

continuous in bargaining powers and productivity shocks.

Proof. Let δ = (δij)(j,i)∈G denote the vector of bargaining powers in the production network G and

define the correspondence Φ that maps the vector of bargaining powers δ to the set of all bargaining

equilibria consistent with δ, i.e.,

Φ(δ) = {(pa,pb) : (pa,pb) is a bargaining equilibrium given δ}.

Since the graph of this correspondence is closed, Φ is upper hemi-continuous. Furthermore, recall

from Theorem 1(b) that the bargaining equilibrium is always unique, implying that Φ is a single-valued

function. This coupled with upper hemi-continuity of Φ guarantees that the mapping from the vector

of bargaining powers to the bargaining equilibrium is continuous.

The proof of the continuity of the bargaining equilibrium in productivities is analogous.

With the above lemma in hand, we are now ready to present the proof of Theorem 3. For brevity,

we only present the proof for firms that are upstream to j. The result for downstream and horizontal

firms follows from a similar argument.
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Proof of part (a) Let δ = (δij)(j,i)∈G denote the vector of bargaining powers in the production

network G. Recall from equation (B.1) that, for any δ, the vector of equilibrium customized prices

pa is the unique solution to the system of equations pa = min{ϕ(pa, δ), p̄}. For any given δ, define the

partition S(δ) of the set of active firms in G such that the parties in a supplier-customer pair (j, i) ∈ G

belong to the same partition element if and only if the outside option in their pairwise bargaining

game is strictly loose in equilibrium, that is, paij = ϕij(p, δ) < p̄ij . Thus, the two firms belong to two

different partition elements if paij = p̄ij .

Fix a supplier-customer pair of firms (j, i) ∈ G and all bargaining powers δ−ij other than δij . Define

the sequence 0 = δ
(1)
ij < δ

(2)
ij < · · · < δ

(m)
ij = 1 and the resulting collection of non-overlapping intervals

Ik = (δ
(k)
ij , δ

(k+1)
ij ) such that

S(δij , δ−ij) = S(δ′ij , δ−ij) if δij , δ′ij ∈ Ik
S(δij , δ−ij) 6= S(δ′ij , δ−ij) if δij ∈ Ik, δ′ij ∈ I ′k and k 6= k′.

Thus, the partition S(δij , δ−ij)—and hence, the collection of pairwise bargaining problems in G for

which the outside option constraint binds—remains unchanged for all δij within the same interval Ik.

Since there are only finitely many such intervals, if all markups upstream to j are weakly increasing in

δij in the interval Ik for all 1 ≤ k < m, then Lemma B.4 guarantees that they are weakly increasing in

δij over the entire [0, 1] interval.

To establish that all markups upstream to j are weakly increasing within interval Ik for all 1 ≤ k <

m, fix an interval Ik = (δ
(k)
ij , δ

(k+1)
ij ) and let S(k) = S(δij , δ−ij) denote the corresponding partition of G

for all δij ∈ Ik. We consider two separate cases. First, suppose i and j belong to two separate partition

elements. By definition, paij = p̄ij . Therefore, it is immediate that changes in δij within the interval Ik
has no impact on any of the prices and markups in the economy, thus establishing the desired result

that all markups are weakly increasing in that interval. As the second case, suppose that i and j belong

to the same element S within the partition S(k). Once again, all prices outside of S remain unchanged.

On the other hand, for any pair of firms (l, r) ∈ G such that r, l ∈ S—including the pair (j, i)—equation

(6) implies that

δrlArlµr = (1− δrl)µl,

i.e., the markup charged by each firm is proportional to that charged by its customer. Therefore,

an increase in δij strictly increases the markup charged by j and all its upstream suppliers within

the partition element S. Taken together, the two cases establish that all markups upstream to j are

increasing in δij for all δij ∈ Ik, which in turn guarantees that all upstream markups are weakly

increasing in δij over the entire interval [0, 1].

Proof of part (b) As a first observation, note that, when all production technologies are Leontief, all

quantities are invariant to prices and hence bargaining powers. Therefore, monotonicity of markups

established in part (a) of the theorem guarantees that the profits of all firms upstream to j also increase

in δij over the entire interval [0, 1].
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Proof of part (c) By continuity of bargaining equilibrium established in Lemma B.4, it is sufficient

to show that all upstream prices are increasing in δij within a given interval Ik = (δ
(k)
ij , δ

(k+1)
ij ).29 Let

S(k) = S(δij , δ−ij) denote the corresponding partition of the set of active firms G for any δij ∈ Ik. We

consider two separate cases. First, if i and j belong to two distinct partition elements, then all prices

are invariant to the value of δij ∈ Ik, thus establishing the desired claim. Second, suppose i and j

belong to the same partition element S ∈ S(k). Once again, all prices upstream to j that are outside of

S remain invariant to the value of δij ∈ Ik. Therefore, the proof is complete once we show that the price

of all firms in S that are also upstream to j are increasing in δij for all δij ∈ Ik. We prove this claim by

induction. Consider the set of firms S0 ⊆ S that are upstream to j and have no customized supplier in

S. The marginal cost of any firm inS0 is invariant to δij , while at the same time, its markup is increasing

in δij as established in part (a). Therefore, it must be the case that its output price is increasing in δij .

Next define the set of upstream firms S1 ⊆ S such that they have at least one customized supplier in

S0 and no customized suppliers in S \ S0. The fact that the output price of firms in S0 are increasing

in δij implies that the marginal cost of firms in S1 are also increasing in δij . But recall that the markup

of any firm that are upstream to j (including those in S1) are increasing in δij . Therefore, it must be

the case that the output price of firms in S1 are increasing in δij . Iterating this argument over set S

establishes the desired claim and completes the proof.

Proof of Theorem 4

Proof of part (a) Consider two feasible production networks G, Ḡ ⊆ G such that G ⊆ Ḡ. Denote

the vectors of customized prices in the two economies as functions of pairwise bargaining powers by

pa(G, δ) and pa(Ḡ, δ̄) , respectively, where δ = (δij)(j,i)∈G and δ̄ = (δij)(j,i)∈Ḡ are the corresponding

vectors of bargaining powers. Since G⊆ Ḡ, we can define the boundary of G as

∂G = {(j, i) ∈ Ḡ : i ∈ G and j 6∈ G},

that is, the set of supplier-customer pairs in Ḡ such that the customer belongs to G but the supplier

does not. Accordingly, we can express the vector of bargaining powers in Ḡ as δ̄ = (δ, δ∂ , δe), where

δ∂ = (δij)(j,i)∈∂G is the vector of bargaining powers between pairs of firms on the boundary of G and

δe is the vector of bargaining powers between pairs of firms where both parties belong to Ḡ but not G.

The key observation is that

paij(G, δ) = paij(Ḡ, (δ, 1, δ
e)) for all (j, i) ∈ G, (B.8)

that is, pairwise equilibrium prices in G coincide with pairwise prices in Ḡ if all bargaining powers

between the pairs of firms on the boundary of G are set to 1. This is a consequence of the fact that, in

any pairwise bargaining, the customer firm is indifferent between the customized and generic variant

of a good if the corresponding customized supplier has all the bargaining power. Equation (B.8) thus

implies that

µi(G, δ) = µi(Ḡ, (δ, 1, δ
e)) for all i ∈ G.

29See the proof of part (a) of the theorem for the definition of these intervals.
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The above equality, in juxtaposition with the monotonicity of markups with respect to the bargaining

powers established in Theorem 3(a), then leads to

µi(G, δ) = µi(Ḡ, (δ, 1, δ
e)) ≤ µi(Ḡ, δ̄) for all i ∈ G,

where we are using the fact that all firms in G are either downstream or horizontal to ∂G.

Proof of part (b) The representative household’s budget constraints under the two production

networks are given by

y0(Ḡ) = wL+
∑
j∈Ḡ

(πj(Ḡ)− wzj) (B.9)

y0(G) = wL+
∑
j∈G

(πj(G)− wzj),

where y0 denotes the household’s demand for the final good and we are choosing the final good as the

numeraire. Therefore,

y0(Ḡ) ≥ y0(G) +
∑
j∈G

(
πj(Ḡ)− πj(G)

)
,

where the inequality follows from condition (8). Since all production functions are Leontief, firm-level

outputs are proportional to the household’s demand for the final good, i.e., yj = αjy0, where αj is a

constant that is independent of prices and quantities (though it may depend on the productivities).

Consequently,

y0(Ḡ) ≥ y0(G) +
∑
j∈G

(
αjµj(Ḡ)y0(Ḡ)− αjµj(G)y0(G)

)
.

By part (a) of Theorem 4, µj(Ḡ) ≥ µj(G) for all j ∈ G. Therefore,

(
y0(Ḡ)− y0(G)

)1−
∑
j∈G

αjµj(Ḡ)

 ≥ 0.

Since Ḡ is feasible by assumption, (B.9) guarantees that

y0(Ḡ) >
∑
j∈Ḡ

πj(Ḡ) = y0(Ḡ)
∑
j∈Ḡ

αjµj(Ḡ) ≥ y0(Ḡ)
∑
j∈G

αjµj(Ḡ).

The juxtaposition of the last two inequalities therefore implies that y0(Ḡ) ≥ y0(G).

Proof of part (c) Since all production functions are Leontief, the gross profit of firm i is given by πi =

αiµiy0, where αi is a constant that is independent of prices and quantities. In part (a), we established

that µi(G) ≤ µi(Ḡ) for all i ∈ G, whereas in part (b), we established that y0(G) ≤ y0(Ḡ). Therefore, it

is immediate that πi(G) ≤ πi(Ḡ) for all i ∈ G.
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Proof of Theorem 2

Proof of parts (a) and (b) By Definition 3, G∗ ⊆ G corresponds to a full equilibrium if and only if it is

the fixed point of the mapping φ : 2G → 2G , defined as

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wzi}. (B.10)

If this mapping satisfies Assumptions A.1 and A.2, then Theorem A.1 guarantees that φ has a greatest

fixed point, thus establishing parts (a) and (b) of Theorem 2. Therefore, we first verify that φ satisfies

Assumptions A.1 and A.2 and then prove part (c) of Theorem 2.

Assumption A.1: To establish that φ satisfies Assumption A.1, take two production networks of active

firms G1,G2 ⊆ G and suppose that G1 ⊆ φ(G2). Hence,

πi({i} ∪G2) ≥ wzi for all i ∈ G1.

As in the proof of Theorem 4(b), the fact that all production technologies are Leontief implies that the

above inequality can be rewritten as

αiµi(G2 ∪ {i})y0(G2 ∪ {i}) ≥ wzi for all i ∈ G1, (B.11)

where µi is the markup of firm i and αi is a constant independent of prices and quantities that relates

i’s output to household’s demand for consumption good via yi = αiy0. Furthermore, when the set of

active firms is G2 ∪{i}, the household’s budget constraint implies that

y0(G2 ∪ {i}) = wL+ y0(G2 ∪ {i})
∑

j∈G2 ∪{i}

αjµj(G2 ∪ {i})−
∑

j∈G2 ∪{i}

wzj ,

where the first term on the right-hand side above is the household’s labor income and the other two

terms are the customized firms’ profits net of their fixed costs. Solving for y0(G2 ∪ {i}) from the above

equation and plugging it into (B.11) implies that whenever G1 ⊆ φ(G2), then30

zi ≤
αiµi(G2 ∪{i})

1−
∑

j∈G2
αjµj(G2 ∪{i})

L− ∑
j∈G2

zj

 for all i ∈ G1. (B.12)

Furthermore, Theorem 4(a) guarantees that µj(G1 ∪G2) ≥ µj(G2 ∪{i}) for any pair i and j such that

j ∈ G2 ∪{i} and all i ∈ G1. Consequently,

zi ≤
αiµi(G1 ∪G2)

1−
∑

j∈G2
αjµj(G1 ∪G2)

L− ∑
j∈G2

zj

 for all i ∈ G1. (B.13)

Next, consider the economy in which the set of active firms is instead G1 ∪G2. In this case, firm

i’s gross profit is given by πi(G1 ∪G2) = αiµi(G1 ∪G2)y0(G1 ∪G2). Therefore, solving for y0 from the

household’s budget constraint and plugging it back into the expression for πi(G1 ∪G2) leads to

πi(G1 ∪G2)− wzi =
wαiµi(G1 ∪G2)

1−
∑

j∈G1∪G2
αjµj(G1 ∪G2)

L− ∑
j∈G1∪G2

zj

− wzi
30Note that (B.12) holds for all i ∈ G1 irrespective of whether i ∈ G2 or not.
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for all i ∈ G1. Consequently, the upper bound on zi in (B.13) implies that

πi(G1 ∪G2)− wzi ≥ wαiµi(G1 ∪G2)

(
L−

∑
j∈G1∪G2

zj

1−
∑

j∈G1∪G2
αjµj(G1 ∪G2)

−
L−

∑
j∈G2

zj

1−
∑

j∈G2
αjµj(G1 ∪G2)

)
.

Simplifying the right-hand side of the above inequality, we obtain,

πi(G1 ∪G2)− wzi ≥
wαiµi(G1 ∪G2)

1−
∑

j∈G1∪G2
αjµj(G1 ∪G2)

Q

for all i ∈ G1, where

Q =

∑
j∈G1\G2

αjµj(G1 ∪G2)

1−
∑

j∈G2
αjµj(G1 ∪G2)

L− ∑
j∈G2

zj

− ∑
j∈G1\G2

zj .

On the other hand, summing both sides of inequality (B.13) over all i ∈ G1 \G2 guarantees thatQ ≥ 0.

Therefore, it is immediate that πi(G1 ∪G2) ≥ wzi for all i ∈ G1, and hence, G1 ⊆ φ(G1 ∪G2). This

establishes that mapping φ in (B.10) satisfies Assumption A.1.

Assumption A.2: We now establish that mapping φ in (B.10) also satisfies Assumption A.2. Let

G1,G2 ⊆ G denote a pair of feasible production networks such that Gk ⊆ φ(Gk) for k ∈ {1, 2}. The

assumption that Gk ⊆ φ(Gk) implies that πi(Gk) = αiµi(Gk)y0(Gk) ≥ wzi for all i ∈ Gk. Solving

for y0(Gk) from the household’s budget constraint, y0(Gk) = wL +
∑

j∈Gk
(αjµj(Gk)y0(Gk) − wzj),

therefore implies that

zi ≤
αiµi(Gk)

1−
∑

j∈Gk
αjµj(Gk)

L− ∑
j∈Gk

zj


for all i ∈ Gk. Furthermore, recall from Theorem 4(a) that µi(Gk) ≤ µi(G1 ∪G2) for all i ∈ Gk. Hence,

zi ≤
αiµi(G1 ∪G2)

1−
∑

j∈Gk
αjµj(G1 ∪G2)

L− ∑
j∈Gk

zj

 (B.14)

for all i ∈ Gk. Setting k = 1 and summing over all i ∈ G1 \G2 implies that ∑
j∈G1\G2

zj

1−
∑

j∈G1∩G2

αjµj(G1 ∪G2)

 ≤
L− ∑

j∈G1∩G2

zj

 ∑
j∈G1\G2

αjµj(G1 ∪G2)

. (B.15)

Similarly, setting k = 2 in (B.14) and summing over all i ∈ G2 \G1 implies that ∑
j∈G2\G1

zj

1−
∑

j∈G1∩G2

αjµj(G1 ∪G2)

 ≤
L− ∑

j∈G1∩G2

zj

 ∑
j∈G2\G1

αjµj(G1 ∪G2)

. (B.16)

Therefore, as long as G1 ⊆ φ(G1) and G2 ⊆ φ(G2), inequalities (B.15) and (B.16) are satisfied.
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Next, consider the profit πi(G1 ∪G2) of an arbitrary firm i ∈ G1 when the production network of

active firms is G1 ∪G2. Once again, solving for household demand from her budget constraint and

plugging it back to firm i’s profit function implies that

πi(G1 ∪G2)− wzi =
wαiµi(G1 ∪G2)

1−
∑

j∈G1∪G2
αjµj(G1 ∪G2)

L− ∑
j∈G1∪G2

zj

− wzi
≥ wαiµi(G1 ∪G2)

(
L−

∑
j∈G1∪G2

zj

1−
∑

j∈G1∪G2
αjµj(G1 ∪G2)

−
L−

∑
j∈G1

zj

1−
∑

j∈G1
αjµj(G1 ∪G2)

)

for all i ∈ G1, where the inequality is a consequence of (B.14). Simplifying the right-hand side of the

above inequality therefore implies that πi(G1 ∪G2)− wzi ≥ 0 for all i ∈ G1 as long as Q′ > 0, where

Q′ =

L− ∑
j∈G1

zj

 ∑
j∈G2\G1

αjµj(G1 ∪G2)

−
1−

∑
j∈G1

αjµj(G1 ∪G2)

 ∑
j∈G2\G1

zj

 .

By inequality (B.16), we have

Q′ ≥

 ∑
j∈G2\G1

zj

 L−
∑

j∈G1
zj

L−
∑

j∈G1∩G2
zj

1−
∑

j∈G1∩G2

αjµj(G1 ∪G2)

−
1−

∑
j∈G1

αjµj(G1 ∪G2)

 ,

and as a result

Q′ ≥

( ∑
j∈G2\G1

zj

L−
∑

j∈G1∩G2
zj

)L− ∑
j∈G1∩G2

zj

 ∑
j∈G1\G2

αjµj(G1 ∪G2)


−

1−
∑

j∈G1∩G2

αjµj(G1 ∪G2)

 ∑
j∈G1\G2

zj

 .
Now (B.15) guarantees that the right-hand side of the above inequality is non-negative. Therefore, we

just established that πi(G1 ∪ G2) − wzi ≥ 0 for all i ∈ G1. An identical argument establishes that

πi(G1 ∪G2)− wzi ≥ 0 for all i ∈ G2.

Taken together, we have, πi(G1∪G2)−wzi ≥ 0 for all i ∈ G1 ∪G2. Therefore G1 ∪G2 ⊆ φ(G1 ∪G2)

for any arbitrary pair of feasible production networks G1 and G2 such that G1 ⊆ φ(G1) and G2 ⊆
φ(G2), thus implying that Assumption A.2 is satisfied.

Having proven mapping φ in (B.10) satisfies Assumptions A.1 and A.2, Theorem A.1 establishes

parts (a) and (b) of Theorem 2.

Proof of part (c) Let G∗ denote the production network of active firms corresponding to an arbitrary

full equilibrium. The household’s budget constraint under G∗ is given by

y0(G∗) = wL+
∑
i∈G∗

(πi(G
∗)− wzi). (B.17)

36



Similarly, if G∗max denotes the greatest full equilibrium (so that G∗ ⊆ G∗max for any full equilibrium G∗),

we have

y0(G∗max) = wL+
∑

i∈G∗
max

(πi(G
∗
max)− wzi) (B.18)

≥ wL+
∑
i∈G∗

(πi(G
∗
max)− wzi)

where the inequality is a consequence of the fact that πi(G∗max) ≥ wzi for all i ∈ G∗max. Subtracting

equation (B.17) from both sides of the above inequality leads to

y0(G∗max)− y0(G∗) ≥
∑
i∈G∗

πi(G
∗
max)−

∑
i∈G∗

πi(G
∗).

Recall that, when all production technologies are Leontief, the output of any customized firm i satisfies

yi = αiy0, where y0 is the aggregate output and αi is a constant that depends neither on prices nor

quantities. Therefore,

y0(G∗max)− y0(G∗) ≥ y0(G∗max)
∑
i∈G∗

αiµi(G
∗
max)− y0(G∗)

∑
i∈G∗

αiµi(G
∗)

≥ (y0(G∗max)− y0(G∗))
∑
i∈G∗

αiµi(G
∗
max),

where µi denotes firm i’s markup and the second inequality is a consequence of Theorem 4(a) and the

fact that G∗ ⊆ G∗max. Consequently,(
y0(G∗max)− y0(G∗)

)(
1−

∑
i∈G∗

αiµi(G
∗
max)

)
≥ 0. (B.19)

To establish that y0(G∗max) ≥ y0(G∗), it is sufficient to show that the second term on the left-hand side

of the above inequality is strictly positive. To this end, note that (B.18) can be rewritten as

y0(G∗max) = wL+
∑

i∈G∗
max

αiµi(G
∗
max)y0(G∗max)−

∑
i∈G∗

max

wzi > y0(G∗max)
∑

i∈G∗
max

αiµi(G
∗
max), (B.20)

where the inequality follows from the fact that any full equilibrium is feasible and thusL >
∑

i∈G∗
max

zi.

Dividing both sides of (B.20) by y0(G∗max) and using the fact that G∗ ⊆ G∗max establishes that

1 >
∑

i∈G∗
max

αiµi(G
∗
max) ≥

∑
i∈G∗

αiµi(G
∗
max).

This in juxtaposition with (B.19) guarantees that y0(G∗max) ≥ y0(G∗).

Proof of Theorem 5

Proof of part (a) The proof follows steps similar to those in the proof of Theorem 3(a). Let A =

(Aij)(j,i)∈G denote the vector of all pairwise customized productivities. Define the partition S(A) of

the set of active firms G such that the parties in a supplier-customer pair (j, i) ∈ G belong to the same

partition element if and only if the outside option in their pairwise bargaining game is strictly loose
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in equilibrium, that is, paij < p̄ij . Thus, the two firms belong to two different partition elements if

paij = p̄ij .

Fix a supplier-customer pair of firms (j, i) ∈ G and all productivities A−ij other than Aij . Define

the sequence 0 = A
(1)
ij < A

(2)
ij < · · · < A

(m)
ij = ∞ and the resulting collection of non-overlapping

intervals Ik = (A
(k)
ij , A

(k+1)
ij ) such that

S(Aij , A−ij) = S(A′ij , A−ij) if Aij , A′ij ∈ Ik
S(Aij , A−ij) 6= S(A′ij , A−ij) if Aij ∈ Ik, A′ij ∈ I ′k and k 6= k′.

Thus, the partition S(Aij , A−ij)—and hence, the collection of pairwise bargaining problems in G for

which the outside option constraint binds—remains unchanged for all Aij within the same interval

Ik. Since there are only finitely many such intervals, if all markups in S are weakly increasing in Aij

in each interval Ik for 1 ≤ k < m, then Lemma B.4 guarantees that they are weakly increasing in Aij

over the entire [0, 1] interval as well. The fact that markups are monotonically increasing in Aij over

interval Ik then follows from equation (6) and steps similar to the proof of Theorem 3(a).

Proof of part (b) For a supplier-customer pair of active firms (j, i) ∈ G, let cagg(Aij) denote the

equilibrium cost of transforming labor into one unit of the consumption good as a function of

the productivity level Aij , holding the set of active firms G, the bargaining powers, and all other

productivities constant. Similarly, let y0(Aij) denote the equilibrium aggregate output as a function

of Aij . It is immediate that

y0(Aij) =
w

cagg(Aij)

(
L−

∑
k∈G

zk

)
,

where note that the wage w does not depend on the productivity Aij . Since all production functions

are Leontief, the marginal cost cagg(Aij) of producing one unit of consumption good is decreasing in

Aij . Therefore, aggregate output y0(Aij) is increasing in Aij .

Proof of part (c) For a supplier-customer pair of active firms (j, i) ∈ G, let πk(Aij) denote the gross

profit of firm k ∈ G as a function of the productivity level Aij , holding the production network, the

bargaining powers, and all other productivities constant. Since all production functions are Leontief,

πk(Aij) = αk(Aij)µk(Aij)y0(Aij),

where αk is a constant that only depends on productivities, µk is the markup of firm k, and y0 is the

aggregate output in the economy. The key observation is that, due to the assumption of Leontief

technologies, αk is independent of Aij as long as firm k is not upstream to j, that is,

πk(Aij) = αkµk(Aij)y0(Aij).

In parts (a) and (b), we established that µk(Aij) and y0(Aij) are both increasing in Aij . Therefore, as

long as k = j or k is either downstream or horizontal to j, then an increase in Aij increases the profits

of firm k.
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Proof of part (d) Consider a firm k ∈ G that is upstream to firm j. Since δrj = 1 for all firms r such

that (r, j) ∈ G, k’s markup µk is independent of the productivity Aij between the supplier-customer

pair (j, i) ∈ G. Therefore, k’s profit as a function of Aij is given by

πk(Aij) = µkαk(Aij)y0(Aij),

where y0 denotes the economy’s aggregate output and αk is independent of prices and quantities and

is equal to the reciprocal of the product of customized productivities along the production chain from

k to the final good industry. As a result, αk(Aij) = α̃k/Aij , where α̃k is a constant that is independent

of Aij . Consequently,

πk(Aij) = µkα̃kA
−1
ij y0(Aij).

Since all production technologies are Leontief and all firms use labor as an input for production,

y0(Aij) =
ζ1

A−1
ij + ζ2

for some ζ1, ζ2 > 0 that are independent of Aij . The juxtaposition of the above two equations then

guarantees that πk(Aij) is decreasing in Aij .

Proof of Theorem 6

Proof of part (a) Let z̄ and z denote two vectors of fixed costs such that zi ≤ z̄i for all firms i ∈ G.

Define the mappings φ, φ : 2G → 2G as

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wz̄i}

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wzi}.

It is immediate that the fixed points of φ and φ correspond to full equilibria of the economies with

fixed costs given by z̄ and z, respectively. Furthermore, recall from the proof of Theorem 2 that φ

and φ satisfy Assumptions A.1 and A.2. Therefore, by Theorem A.1, both mappings have a greatest

fixed point, which we denote by Ḡ
∗ and G∗, respectively. Thus, Ḡ∗ and G∗ are also the greatest full

equilibria of the economies with fixed costs z̄ and z, respectively.

On the other hand, the fact that zi ≤ z̄i for all i ∈ G implies that φ(G) ⊆ φ(G) for all G ⊆ G.

Therefore, Corollary A.1 guarantees that Ḡ∗ ⊆ G∗. This establishes that increasing the vector of fixed

costs shrinks the set of active firms in the economy’s greatest full equilibrium.

Proof of part (b) Let z̄ and z denote two vectors of fixed costs such that zi ≤ z̄i for all i ∈ G. Let Ḡ∗

and G∗ denote the corresponding greatest full equilibria in the economies with fixed costs z̄ and z,

respectively. In part (a), we already established that Ḡ∗ ⊆ G∗. Furthermore, the household’s budget

constraint in the two economies is given by

y0(z̄) = wL+
∑
k∈Ḡ∗

(
πk(Ḡ

∗)− wz̄k
)

y0(z) = wL+
∑
k∈G∗

(
πk(G

∗)− wzk
)
. (B.21)
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Therefore,

y0(z)− y0(z̄) =
∑
k∈G∗

(
πk(G

∗)− wzk
)
−
∑
k∈Ḡ∗

(
πk(Ḡ

∗
)− wz̄k

)
.

Since G∗ is a full equilibrium, all active firms in the economy make positive net profits, i.e., πk(G∗) ≥
wzk for all k ∈ G∗. Therefore,

y0(z)− y0(z̄) ≥
∑
k∈Ḡ∗

(
πk(G

∗)− wzk
)
−
∑
k∈Ḡ∗

(
πk(Ḡ

∗
)− wz̄k

)
≥
∑
k∈Ḡ∗

(
πk(G

∗)− πk(Ḡ
∗
)
)
,

where the first inequality is a consequence of the fact that Ḡ∗ ⊆ G∗ and the second inequality follows

from the assumption that zk ≤ z̄k. Since all production functions are Leontief, πk = αkµky0, where

αk > 0 is a constant that is independent of quantities and prices and µk is the markup of firm k.

Hence:

y0(z)− y0(z̄) ≥
∑
k∈Ḡ∗

αk

(
µk(G

∗)y0(z)− µk(Ḡ
∗
)y0(z̄)

)
≥ (y0(z)− y0(z̄))

∑
k∈Ḡ∗

αkµk(G
∗).

The second inequality follows from the fact that µk(Ḡ
∗
) ≤ µk(G

∗) for all k ∈ Ḡ
∗ whenever Ḡ∗ ⊆ G∗

(as established in Theorem 4(a)). Consequently,

(
y0(z)− y0(z̄)

)1−
∑
k∈Ḡ∗

αkµk(G
∗)

 ≥ 0. (B.22)

Therefore, as long as the second term on the left-hand side above is strictly positive, it is immediate

that y0(z) ≥ y0(z̄), which completes the proof. To establish this last claim, note that the household’s

budget constraint in (B.21) can be rewritten as

y0(z) = y0(z)
∑
k∈G∗

αkµk(G
∗) + w

L− ∑
k∈G∗

zk

 > y0(z)
∑
k∈Ḡ∗

αkµk(G
∗),

where the inequality follows from the fact that the production network corresponding to any full

equilibrium is feasible and that Ḡ
∗ ⊆ G∗. Consequently, 1 −

∑
k∈Ḡ∗ αkµk(G

∗) > 0, which in

juxtaposition with (B.22) guarantees that y0(z) ≥ y0(z̄).

Proof of part (c) Once again, let Ḡ∗ and G∗ denote the greatest full equilibria corresponding to fixed

cost vectors z̄ ≥ z, respectively. In part (a), we established that Ḡ∗ ⊆ G∗. By Theorem 4(a), µk(Ḡ
∗
) ≤

µk(G
∗) for all k ∈ Ḡ

∗. Thus, all firm-level markups decrease in fixed costs. This observation also

immediately implies that the same relationship also holds for firm-level profits. More specifically,

recall that πk = αkµky0 for any firm k, where αk only depends on productivities. Therefore, as fixed

costs increase from z to z̄, each firm k ∈ Ḡ
∗ produces a smaller quantity (as established in part (b)), at

a lower markup, while paying a weakly higher fixed cost. Thus, its net profit is decreasing in the vector

of fixed costs.
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Proof of Theorem 7

Proof of part (a) Fix a supplier-customer pair of customized firms (j, i) ∈ G and consider two

economies that are identical across all dimensions except for the productivity levels Āij and Aij ,

where Āij ≥ Aij . Denote the greatest full equilibria corresponding to the two economies by Ḡ
∗

and G∗, respectively. Equivalently, Ḡ∗ and G∗ are, respectively, the greatest fixed points of mappings

φ, φ : 2G → 2G defined as

φ(G) = {i ∈ G : πi({i} ∪G; Āij) ≥ wzi}

φ(G) = {i ∈ G : πi({i} ∪G;Aij) ≥ wzi}.

Finally, suppose that both i and j are active in G∗ (i.e., i, j ∈ G∗) but j has no active suppliers in G∗.

We first show that the set of active firms in the economy’s greatest full equilibrium grows as we

increase the productivity from Aij to Āij , that is, G∗ ⊆ Ḡ
∗. To establish this, let k denote an arbitrary

firm in G∗. By assumption, k is either downstream, horizontal, or equal to j. Therefore, by Theorem

5(c), as long as the production network is held constant, k’s profit is increasing in Aij . In particular,

πk(G
∗; Āij) ≥ πk(G

∗;Aij). At the same time, the assumption that k ∈ G∗ implies that k makes non-

negative net profits in G∗, i.e., πk(G∗;Aij) ≥ wzk. Consequently, πk(G∗; Āij) ≥ wzk, and as a result,

k ∈ φ(G∗) for all k ∈ G∗. We therefore just established that

G∗ ⊆ φ(G∗). (B.23)

On the other hand, by part (c) of Theorem A.1, the greatest fixed point of φ is given by

Ḡ
∗

=
⋃

G∈X
G, (B.24)

where X = {G ⊆ G : G ⊆ φ̄(G)}. By (B.23), G∗ ∈ X . Therefore, (B.24) implies that G∗ ⊆ Ḡ
∗.

Proof of part (b) We next show that an increase in productivity from Aij to Āij increases the profits

of all already active firms under Aij . More specifically, we show that

πk(Ḡ
∗
; Āij) ≥ πk(G∗;Aij) for all k ∈ G∗. (B.25)

To this end, recall that G∗ ⊆ Ḡ
∗. Furthermore, the fact that Ḡ∗ is a full equilibrium implies that all

firms in Ḡ
∗ make positive net profits. Thus,

∑
k∈Ḡ∗\G∗(πk(Ḡ

∗
; Āij)−wzk) ≥ 0. Therefore, by Theorem

4(c), πk(Ḡ
∗
; Āij) ≥ πk(G

∗; Āij) for all k ∈ G∗. On the other hand, by assumption, k ∈ G∗ is either

downstream, horizontal, or equal to j. Therefore, by Theorem 5(c), πk(G∗; Āij) ≥ πk(G
∗;Aij) for all

k ∈ G∗. Hence,

πk(Ḡ
∗
; Āij) ≥ πk(G∗; Āij) ≥ πk(G∗;Aij),

for all k ∈ G∗, thus establishing (B.25).
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Proof of part (c) Let y0(Aij) and y0(Āij) denote aggregate output under the two productivity levels.

From the household’s budget constraint, we have

y0(Āij) = wL+
∑
k∈Ḡ∗

(
πk(Ḡ

∗
; Āij)− wzk

)
y0(Aij) = wL+

∑
k∈G∗

(
πk(G

∗;Aij)− wzk
)
.

Therefore,

y0(Āij)− y0(Aij) =
∑
k∈Ḡ∗

(
πk(Ḡ

∗
; Āij)− wzk

)
−
∑
k∈G∗

(
πk(G

∗;Aij)− wzk
)

≥
∑
k∈G∗

(
πk(Ḡ

∗
; Āij)− wzk

)
−
∑
k∈G∗

(
πk(G

∗;Aij)− wzk
)

=
∑
k∈G∗

(
πk(Ḡ

∗
; Āij)− πk(G∗;Aij)

)
,

where the inequality follows from the fact that Ḡ∗ is a full equilibrium, and as a result, all firms k ∈
Ḡ
∗\G∗make non-negative net profits, i.e., πk(Ḡ

∗
; Āij) ≥ wzk for all k ∈ Ḡ

∗\G∗. Now (B.25) guarantees

that the right-hand side of the above inequality is non-negative.

Proof of Theorem 9

The decomposition in (11) follows immediately from the definitions of ∆ GDP|z fixed and

∆ GDP|Ḡ∗fixed. It is therefore sufficient to show that both of these terms are non-negative. The fact that

∆ GDP|Ḡ∗fixed ≥ 0 is an immediate consequence of the observation that, holding all else (including the

set of active firms) constant, a decrease in fixed costs can only increase aggregate output. To show that

∆ GDP|z fixed ≥ 0, first note that Theorem 6(a) guarantees that the Ḡ
∗ ⊆ G∗. Furthermore, since G∗ is

part of an equilibrium, all active firms j ∈ G∗ make non-negative net profits under z. Hence,∑
j∈:G∗\Ḡ∗

(πj(G
∗)− wzj) ≥ 0.

Consequently, statement (b) of Theorem 4 implies that GDP(G∗, z) ≥ GDP(Ḡ
∗
, z).
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C Online Appendix: Pairwise Bargaining

In this appendix, we characterize the outcome of bargaining between a supplier-customer pair of

active firms (j, i) ∈ G, taking all other prices and the representative household’s income as given. This

characterization serves as the basis of the proofs of Theorems 1 and 10. Throughout, we suppress

the dependence of variables on all other (customized and generic) prices (pa−ij ,p
b) for notational

simplicity.

Let πi(paij) and πj(paij) denote, respectively, the customer’s and supplier’s profits (gross of fixed costs

of operation) as functions of paij , holding all other prices (pa−ij ,p
b) fixed. We also use cj to denote the

supplier’s marginal cost. Note that cj does not depend on paij . It is immediate that there are positive

gains from trade between i and j if and only if

πi(cj) ≥ 0. (C.1)

If inequality (C.1) is violated, the bargaining game results in no agreement. In the proof of Theorem

10, we show that the above inequality holds for any pair of active firms in any bargaining equilibrium.

For the purposes of this appendix, however, we simply impose inequality (C.1) for the pair (j, i) ∈ G,

thus ensuring agreement in equilibrium.

To characterize the agreement price, we start with the following simple lemma:

Lemma C.1. πi(paij) is strictly decreasing in paij and πj(paij) is strictly increasing in paij .

Proof. The monotonicity of πi is an immediate consequence of the fact that i’s marginal cost is

strictly increasing in any input price. The monotonicity of j’s profit in its output price follows from

Assumption 3′, which guarantees that all inputs in i’s production function are gross complements.

Lemma C.2. If inequality (C.1) is satisfied, then equation fij(pij) = 0 has at least one solution in the

interval [cj , p
†
ij ], where fij is given by equation (17) and p†ij is the unique price at which πi(p

†
ij) = 0.

Proof. As a first observation, note that monotonicity of πi established in Lemma C.1 guarantees that

there exists a unique p†ij such that πi(p
†
ij) = 0. The same lemma also implies that, whenever inequality

(C.1) is satisfied, then p†ij ≥ cj . Therefore, [cj , p
†
ij ] is a non-empty interval.

Next, note that fij(cj) = δijπi(cj)
dπj

dpij
(cj) ≥ 0, where the inequality follows from inequality (C.1) and

monotonicity of πj established in Lemma C.1. Similarly, fij(p
†
ij) = (1 − δ)πj(p†ij)

dπi

dpij
(p†ij) ≤ 0, where

the inequality follows from the monotonicity of πi established in Lemma C.1. The two inequalities

together imply that fij(cj) ≥ 0 ≥ fij(p
†
ij). Therefore, equation fij(pij) = 0 has at least one solution in

[cj , p
†
ij ].

Lemma C.3. If inequality (C.1) is satisfied, then equation fij(pij) = 0 has a unique solution in [cj , p
†
ij ],

where fij is given by equation (17).

Proof. The result is immediate if cj = p†ij . Therefore, in the rest of the proof we assume that the interval

[cj , p
†
ij ] is not a singleton. We start with the observation that fij(pij) = 0 for some pij ∈ (cj , p

†
ij ] if and

only if gij(pij) = 1− 1/δij , where

gij(pij) =

(
πi

dπj
dpij

)/(
πj

dπi
dpij

)
.
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Since gij(cj) = −∞ and gij(p
†
ij) = 0, it is sufficient to show that gij(pij) is strictly increasing over the

interval (cj , p
†
ij ]. Differentiating gij with respect to pij implies that

g′ij(pij) =

(
πj

dπi
dpij

)−2
(
πiπj

d2πj
dp2

ij

dπi
dpij

− πiπj
d2πi
dp2

ij

dπj
dpij

− πi
dπi
dpij

(
dπj
dpij

)2

+ πj
dπj
dpij

(
dπi
dpij

)2
)

≥ πi
(
πj

dπi
dpij

)−2
(
πj

d2πj
dp2

ij

dπi
dpij

− πj
d2πi
dp2

ij

dπj
dpij

− dπi
dpij

(
dπj
dpij

)2
)
,

where the inequality follows from the fact that πj is non-negative and increasing in pij for all pij ≥ cj .

Note that πi = (pri− ci)yi and πj = (pij − cj)xij , where pri is the output price of firm i, yi is the quantity

demanded from firm i by its customer, and xij is the quantity demanded by i from j. Therefore, by

Shephard’s lemma,

g′ij(pij) ≥ πiy3
i

(
dci
dpij

)(
πj

dπi
dpij

)−2

hij(pij),

where

hij(pij) = (pij − cj)2

2

(
d2ci
dp2

ij

)2

−
(

dci
dpij

)(
d3ci
dp3

ij

)+ (pij − cj)
(

dci
dpij

)(
d2ci
dp2

ij

)
+

(
dci
dpij

)2

(C.2)

Note that πi ≥ 0 for all pij ∈ [cj , p
†
ij ]. Therefore, if hij(pij) ≥ 0 for all pij ∈ [cj , p

†
ij ], it is then immediate

that gij(pij) is increasing in pij and hence fij(pij) = 0 has a unique solution in [cj , p
†
ij ]. It is therefore

sufficient to show that hij(pij) ≥ 0. We consider two separate cases.

First, suppose the first term on the right-hand side of (C.2) is non-negative. In such a case,

hij(pij) ≥ 0 because the sum of the other two terms on the right-hand side of (C.2) is also non-negative:

(pij − cj)
(

dci
dpij

)(
d2ci
dp2

ij

)
+

(
dci
dpij

)2

=
1

yi

dci
dpij

dπj
dpij

≥ 0,

where the inequality follows from the monotonicity of πj established in Lemma C.1.

Next, suppose the first term on the right-hand side of (C.2) is strictly negative. Note that, in such

a case, the right-hand side of (C.2) is concave in cj and is strictly positive when cj = pij . Therefore,

hij(pij) is guaranteed to be non-negative for all pij ≥ cj if the right-hand side of (C.2) is non-negative

when cj = 0. Hence, the proof is complete if ĥij(pij) ≥ 0, where

ĥij(pij) = p2
ij

2

(
d2ci
dp2

ij

)2

−
(

dci
dpij

)(
d3ci
dp3

ij

)+ pij

(
d2ci
dp2

ij

)(
dci
dpij

)
+

(
dci
dpij

)2

. (C.3)

Let σkji denote the Morishima elasticity of substitution between inputs j and k in firm i’s production

technology, defined in footnote 23. Since firm i’s cost function is homogenous of degree 1, one can

show that

d2ci
dp2

ij

/ dci
dpij

= − 1

pijci

∑
k 6=j

σkji pik
dci
dpik

, (C.4)
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where the sum is over all inputs k 6= j (including labor input) of firm i and we are using the fact that

σkji = pij

(
d2ci

dpijdpik

/ dci
dpik

− d2ci
dp2

ij

/ dci
dpij

)
.

Differentiating equation (C.4) with respect to pij and rearranging terms implies that

p2
ij

(
2

d2ci
dp2

ij

− dci
dpij

d3ci
dp3

ij

)/( dci
dpij

)2

=
pij
ci

∑
k 6=j

pik
dci
dpik

dσkji
dpij

+
1

ci

∑
k 6=j

(σkji )2pik
dci
dpik

−
(

1

ci
+
pij
c2
i

dci
dpij

)∑
k 6=j

σkji pik
dci
dpik

.

(C.5)

Plugging (C.4) and (C.5) into the expression for ĥij(pij) in equation (C.3) implies that

ĥ(pij) =

(
dci
dpij

)2
[∑
k 6=j

(1− σkji )2 d log ci
d log pik

+
d log ci
d log pij

∑
k 6=j

(1− σkji )
d log ci
d log pik

+

(
d log ci
d log pij

)2

+
∑
k 6=j

d log ci
d log pik

dσkji
d log pij

]
.

(C.6)

The fact that i’s marginal cost is increasing in all input prices, alongside the assumption that σjk ≤ 1,

guarantees that the second and third terms on the right-hand side of (C.6) are non-negative, while

inequality (14) guarantees that the sum of the first and the last term is also non-negative. Together,

these observations imply that ĥij(pij) ≥ 0 for all pij , which completes the proof.

Using the previous lemmas, our next result characterizes the outcome of pairwise bargaining

between i and j as η → 1, taking all other prices and the household’s income as given.

Proposition C.1. Suppose inequality (C.1) is satisfied. Then, i and j reach an agreement in the pairwise

bargaining game. Furthermore, as η → 1, the agreement price converges to

paij = min{p̂ij , p̄ij}, (C.7)

where p̂ij is the unique solution to fij(p̂ij) = 0 in the interval [cj , p
†
ij ] and p̄ij = pbjAij/Bij .

Proof. The assumption that inequality (C.1) is satisfied guarantees that there are positive gains from

trade. Therefore, the two firms reach an agreement in the SPNE of the pairwise bargaining game.

Next, we characterize the agreement price. Following standard arguments (say, as in Osborne and

Rubinstein (1990)), any SPNE of the pairwise bargaining game has a stationary structure, with firms

i and j respectively offering p′ij and p′′ij in any subgame that they have the opportunity to propose a

price. Furthermore, the equilibrium price pair (p′ij , p
′′
ij) satisfies the following indifference conditions:

πj(p
′
ij) = ηδijπj(p

′′
ij) + η(1− δij)πj(p′ij)

πi(p
′′
ij) = max{ηδijπi(p′′ij) + η(1− δij)πi(p′ij), πi(p̄ij)},

(C.8)

where recall that firm i always has the outside option of using the generic variant of the input produced

by firm j and obtain a profit of πi(p̄ij).
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To determine the agreement price as η → 1, note that the first indifference condition in (C.8)

guarantees that limη→1 p
′
ij − p′′ij = 0. Therefore, it is sufficient to determine p′′ij as η → 1. Furthermore,

since πi is monotone (Lemma C.1), the second indifference condition in (C.8) guarantees that the

agreement price can never exceed p̄ij . Therefore, in what follows, we determine the agreement price

while ignoring the customer’s outside option and then impose the condition that the agreement price

cannot exceed p̄ij . Solving for p′ij from the two indifference conditions in (C.8) and equating the

solutions implies that

π−1
j

(
ηδij

1− η(1− δij)
πj(p

′′
ij)

)
= π−1

i

(
1− ηδij
η(1− δij)

πi(p
′′
ij)

)
,

where recall from Lemma C.1 that πi and πj are strictly monotone in pij and are hence invertible. It is

then easy to verify that dividing both sides of the above equation by 1− η and taking the limit as η → 1

reduces the above equation to equation (17). Therefore, as long as the customer’s outside option does

not bind, the price in the subgame perfect Nash equilibrium of the bargaining game between i and j

is given by the solution to the equation fij(pij) = 0, where fij is defined in (17). Crucially, Lemma C.3

guarantees that this equation has a unique solution p̂ij in the interval [cj , p
†
ij ]. Imposing the condition

that the agreement price cannot exceed the p̄ij then establishes (C.7).

D Online Appendix: Omitted Proofs

Proof of Theorem 8

Denote the greatest full equilibria corresponding to productivity levels Āij and Aij by Ḡ
∗ and G∗,

respectively. By definition, Ḡ∗ and G∗ are the greatest fixed points of mappings

φ(G) = {i ∈ G : πi({i} ∪G; Āij) ≥ wzi}

φ(G) = {i ∈ G : πi({i} ∪G;Aij) ≥ wzi},

respectively. Also define θ̃ = πk1(Ḡ
∗ ∪{k1}, Āij)/wzk1 and ε = Aij/Āij . By assumption, θ̃ < 1 and ε < 1.

We start by stating and proving a series of lemmas.

Lemma D.1. For all s ≥ 1,

φ(s−1)(Ḡ
∗
) ⊆ φ(s)(Ḡ

∗
). (D.1)

Proof. We prove the lemma using an inductive argument. To establish the induction base, note

that, by assumption, πk(Ḡ
∗
, Aij) ≥ wzk for all k ∈ Ḡ

∗. Therefore, Ḡ
∗ ⊆ φ(Ḡ

∗
). Next, as the

induction hypothesis, suppose (D.1) holds for some s. Since φ(s)(Ḡ
∗
) ⊆ φ(s)(Ḡ

∗
) and the mapping φ

satisfies Assumption A.1 (established as part of proof of Theorem 2), we have φ(s)(Ḡ
∗
) ⊆ φ(φ(s)(Ḡ

∗
) ∪

φ(s−1)(Ḡ
∗
)) = φs+1(Ḡ

∗
), thus completing the inductive argument.

Lemma D.2. For any ε < 1, there exists ϑ(ε) < 1 such that if θ̃ > ϑ(ε), then φ(Ḡ
∗
) = Ḡ

∗ ∪ {k1}.

Proof. By Theorem 5(c), πk(Ḡ
∗ ∪ {k}, Aij) ≤ πk(Ḡ

∗ ∪ {k}, Āij) for any firm k that is either downstream

or horizontal to i. Therefore, if k ∈ φ(Ḡ
∗
)\Ḡ∗, then k has to be upstream to j. But since the sequence of
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firms (k1, . . . , ks, j) each have a single supplier, the only firm upstream to j that can make non-negative

profits is k1, therefore establishing that φ(Ḡ
∗
) ⊆ Ḡ

∗ ∪ {k1}.
Next, note that since k1 is upstream to j, Theorem 5(d) implies that πk1(Ḡ

∗ ∪ {k1}, Aij) is strictly

decreasing in Aij . Since πk1(Ḡ
∗ ∪ {k1}, Āij) = θ̃wzk1 , for any ε < 1, there exists a ϑ(ε) close enough to

1 such that πk1(Ḡ
∗ ∪ {k1}, Aij) ≥ wzk1 if θ̃ > ϑ(ε). Consequently, k1 ∈ φ(Ḡ

∗
). Therefore, by equation

(D.1), Ḡ∗ ∪ {k1} ⊆ φ(G∗).

Lemma D.3. Suppose θ̃ > ϑ(ε), where ϑ(ε) is defined in Lemma D.2. Then, there exist z̃k0 such that if

zk0 < z̃k0 , then y0(Ḡ
∗ ∪ {k0, k1}, Aij) ≤ y0(φ(2)(Ḡ

∗
), Aij).

Proof. The lemma immediately follows if Ḡ∗ ∪ {k0, k1} = φ(2)(Ḡ
∗
). We therefore assume that Ḡ∗ ∪

{k0, k1} 6= φ(2)(Ḡ
∗
). In the previous lemma, we already established that, if θ̃ > ϑ(ε), then φ(Ḡ

∗
) =

Ḡ
∗ ∪ {k1}. Since k0 is the only potential customized supplier of k1, for small enough value of zk0 ,

k0 ∈ φ(2)(Ḡ
∗
). This, coupled with (D.1) implies that Ḡ∗ ∪ {k0, k1} ( φ(2)(Ḡ

∗
).

Consider an arbitrary k ∈ φ(2)(Ḡ
∗
) \ Ḡ∗ ∪ {k0, k1}. Since φ(2)(Ḡ

∗
) ⊆ φ(3)(Ḡ

∗
)—guaranteed by

Lemma D.2—πk(φ
(2)(Ḡ

∗
), Aij) ≥ wzk. Hence,∑
k∈φ(2)(Ḡ

∗
)\Ḡ∗∪{k0,k1}

(
πk(φ

(2)(Ḡ
∗
), Aij)− wzk

)
≥ 0.

Therefore, Theorem 4(b) guarantees that y0(Ḡ
∗ ∪ {k0, k1}, Aij) ≤ y0(φ(2)(Ḡ

∗
), Aij).

Lemma D.4. There exist constants ϑ2 < 1, Ãk1k0 , and z̃k0 such that if θ̃ ∈ (ϑ2, 1), Ak1k0 > Ãk1k0 , and

zk0 < z̃k0 , then y0(Ḡ
∗
, Āij) ≤ y0(Ḡ

∗ ∪ {k0, k1}, Aij).

Proof. We start with the observation that since all production functions are Leontief and δk2k1 = 1,

πk1(Ḡ
∗ ∪ {k1}, Āij) = ck1(B

−1
k2k1
−A−1

k2k1
)
y0(Ḡ

∗ ∪ {k1}, Āij)
AdĀijAu

,

where ck1 is the marginal cost of firm k1 and Au and Ad are positive constants that only depend on the

productivities of active customized firms that are upstream and downstream to the pair (j, i) in Ḡ
∗,

respectively, as well as generic productivities. Next, note that aggregate output is given by

y0(Ḡ
∗ ∪ {k1}, Āij) =

L− zk1 −
∑

k∈Ḡ∗ zk

Ã−1 + (AdĀijAuAk2k1w/ck1)
−1
, (D.2)

where Ã is a positive constant that only depends on productivities of active customized firms that are

either downstream or horizontal to j and the generic productivities. Solving for zk1 from the above

equations and using the definition of θ̃ imply that

zk1
L−

∑
k∈Ḡ∗ zk

=
ck1(B

−1
k2k1
−A−1

k2k1
)

ck1(B
−1
k2k1
− (1− θ̃)A−1

k1k2
) + θ̃wAdĀijAuÃ−1

. (D.3)

On the other hand, using expressions similar to equation (D.2) for y0(Ḡ
∗
, Āij) and y0(Ḡ

∗ ∪
{k0, k1}, Aij) implies that

y0(Ḡ
∗ ∪ {k0, k1}, Aij)
y0(Ḡ

∗
, Āij)

=

(
L− zk1 − zk0 −

∑
k∈Ḡ∗ zk

L−
∑

k∈Ḡ∗ zk

)(
Ã−1 + (AdĀijA

uBk2k1w/ck1)
−1

Ã−1 + (AdAijA
uAk2k1Ak1k0w/ck0)

−1

)
.
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As a result,

lim
Ak1k0→∞

lim
zk0→0

y0(Ḡ
∗ ∪ {k0, k1}, Aij)
y0(Ḡ

∗
, Āij)

=

(
1− zk1

L−
∑

k∈Ḡ∗ zk

)(
1 +

ck1B
−1
k2k1

wAdĀijAuÃ−1

)
.

The proof is complete once we show that there exists ϑ2 < 1 such that if θ̃ ∈ (ϑ2, 1), the right-hand

side of the above equation is greater than or equal to 1. Equivalently, it is sufficient to show that for θ̃

sufficiently close to 1,

zk1
L−

∑
k∈Ḡ∗ zk

≤
ck1B

−1
k2k1

ck1B
−1
k2k1

+ wÃ−1AdĀijAu
.

Replacing for the right-hand side of the above inequality from equation (D.3) immediately implies that

the inequality is satisfied for θ̃ close enough to 1.

Proof of part (a) By Lemma D.2, there exists ϑ(ε) < 1 such that if θ̃ > ϑ(ε), then Ḡ
∗ ( φ(Ḡ

∗
). Thus,

for any Aij < Āij such that πk(Ḡ
∗
, Aij) ≥ wzk for all k ∈ Ḡ

∗, there exists θ < 1, such that if πk1(Ḡ
∗ ∪

{k1}, Āij) > θwzk1 , then Ḡ
∗ ( φ(Ḡ

∗
). Furthermore, by equation (D.1), φ(Ḡ

∗
) ⊆ φ(2)(Ḡ

∗
), which implies

that φ(Ḡ
∗
) ∈ X , where X = {G ⊆ G : G ⊆ φ(G)}. Therefore, φ(Ḡ

∗
) ⊆

⋃
G∈XG = G∗, where the

equality follows from part (c) of Theorem A.1. Thus, it must be the case that Ḡ∗ ( G∗.

Proof of part (b) Let ϑ3 = max{ϑ1(ε), ϑ2} < 1, where ϑ1(ε) and ϑ2 are defined in Lemmas D.3 and D.4,

respectively. The juxtaposition of Lemmas D.3 and D.4 implies that there exist Ãk1k0 and z̃k0 such that

as long θ̃ ∈ (ϑ3, 1), Ak1k0 > Ãk1k0 , and zk0 < z̃k0 , then

y0(Ḡ
∗
, Āij) ≤ y0(Ḡ

∗ ∪ {k0, k1}, Aij) ≤ y0(φ(2)(Ḡ
∗
), Aij). (D.4)

On the other hand, by (D.1), φ(2)(Ḡ
∗
) ∈ X = {G ⊆ G : G ⊆ φ(G)}. Thus, by part (c) of Theorem A.1,

φ(2)(Ḡ
∗
) ⊆ G∗. Furthermore, since G∗ is a fixed point of φ, all firms k ∈ G∗ make non-negative profits

under productivity Aij , and in particular,
∑

k∈G∗\φ(2)(Ḡ
∗
)(πk(G

∗, Aij)− wzk) ≥ 0. Therefore, part (b) of

Theorem 4 implies that

y0(φ(2)(Ḡ
∗
), Aij) ≤ y0(G∗, Aij).

The juxtaposition of the above inequality with (D.4) implies that y0(Ḡ
∗
, Āij) ≤ y0(G∗, Aij).

Aggregate Impact of Productivity Shocks

Our next result is a counterpart to Theorem 9 and provides a decomposition of the aggregate impact

of a productivity shock.

Theorem D.1. Consider a reduction in increase from Aij to Āij for a supplier-customer pair of firms

(j, i) and let Ḡ∗ and G∗ denote the production networks in the greatest full equilibria under Āij andAij ,

respectively. If G∗ ⊆ Ḡ
∗, then the change in aggregate output is given by

∆ GDP = ∆ GDP
∣∣∣
G∗ fixed

+ ∆ GDP
∣∣∣
Āij fixed

, (D.5)
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where

∆ GDP|G∗fixed = GDP(Āij ,G
∗)−GDP(Aij ,G

∗) ≥ 0

∆ GDP|Āij fixed = GDP(Āij , Ḡ
∗
)−GDP(Āij ,G

∗) ≥ 0.

Proof. The decomposition in (D.5) follows immediately from the definitions of ∆ GDP|Āij fixed and

∆ GDP |G∗fixed. It is therefore sufficient to show that both of these terms are non-negative. The fact that

∆ GDP|G∗fixed ≥ 0 follows from Theorem 5(b): holding the set of active firms constant, an increase in

productivity fromAij to Āij increases aggregate output. To show that ∆ GDP|Āij fixed ≥ 0, note that, by

assumption, G∗ ⊆ Ḡ
∗. Furthermore, since Ḡ

∗ is part of an equilibrium, all active firms j ∈ Ḡ
∗ make

non-negative net profits when the productivity is Āij . Therefore,∑
j∈ Ḡ

∗\G∗

(πj(Āij , Ḡ
∗
)− wzj) ≥ 0.

Consequently, by Theorem 4(b), GDP(Āij ,G
∗) ≤ GDP(Āij , Ḡ

∗
), thus implying that ∆ GDP|Āij fixed is

non-negative.

In the above theorem, the assumption that G∗ ⊆ Ḡ
∗ guarantees that a positive productivity shock

results in fewer failures. However, recall from Theorem 8 that, depending on the production network,

positive productivity shocks may also increase failures. In such a case, the second term on the right-

hand side of (D.5) may no longer be unambiguously positive.

Proof of Theorem 10(a)

We first show that, given a non-negative level of aggregate demand y0, there always exists a unique set

of generic and customized quantities that clear all commodity markets.

First, we show that all customized quantities are proportional to y0. This follows immediately from

Assumption 1 (which guarantees that any feasible production network G ⊆ G has no cycles) and

the assumption that all production technologies have constant returns. Therefore, the output of any

customized firm ia is given by yai = αiy0, for some constant αi that depends on G, the vector of prices

(pa,pb), and customized productivities, but is independent of all quantities.

Next, consider generic quantities. Since customized quantities are proportional to y0, each

customized producer’s demand from a generic producer jb is also proportional to y0. Therefore,

market clearing for generic good jb is given by

ybj = βjy0 +

n∑
i=1

xbij ,

where xbij is the quantity demanded by generic producer ib from jb, βjy0 is equal to the total demand for

jb’s output from all customized firms in the economy, and βj is a constant that only depends on prices

and productivities. Multiplying both sides of the above equation by pbj/y0 and using the Shephard’s

lemma implies that

τj = βjp
b
j +

n∑
i=1

θijτi, (D.6)
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where τj = pbjy
b
j/y0, θij = (pbj/p

b
i)(dc

b
i/dp

b
j), and cbi denotes the marginal cost of generic producer ib. It is

immediate that matrix Θ = [θij ] is element-wise non-negative. Furthermore, Euler’s Theorem implies

that the row sums of Θ satisfy

n∑
j=1

θij =
1

pbi

n∑
j=1

pbj
dcbi
dpbj
≤ cbi
pbi

= 1,

where the last equality follows from marginal cost pricing of generic producers. Crucially, the

assumption that labor is a direct or indirect essential input for production of all goods guarantees

that, for any given i, either (i) the inequality above holds strictly or (ii) there is a directed path from

some j to i such that the inequality holds strictly for j. This therefore guarantees that the spectral

radius of Θ is strictly less than 1, and hence I −Θ is an M-matrix. Consequently, there exists a unique

non-negative vector τ that satisfies system of equations (D.6). Therefore, all generic quantities are also

proportional to y0, and in particular, ybj = τjy0/p
b
j .

So far, we showed that given aggregate demand y0, there always exists a unique collection of

quantities that satisfy market clearing for all (generic and customized) goods in the economy. The

proof is therefore complete once we show that there exists a unique y0 that satisfies labor market

clearing. An argument similar to the one in the previous two paragraphs implies that the labor

demand by all (generic and customized) firms in the economy is necessarily proportional to y0. In

particular, there exist constants α̂i and τ̂i independent of all quantities such that lai = α̂iy0 and lbi = τ̂iy0.

Therefore, labor market clearing implies that∑
ia∈G

α̂iy0 +
∑
ib

τ̂iy0 = L−
∑
ia∈G

zia .

Since production network G is feasible by assumption, there exists a unique and non-negative y0 that

satisfies labor market clearing.

Proof of Theorem 10(b)–(d)

We prove the remaining parts of Theorem 10 by showing that, in any bargaining equilibrium, the

vector of equilibrium prices (pa,pb) has to satisfy the system of equations described by equations (15)–

(17), that such a system of equations always has a solution, and that there exists a unique vector pb that

solves equation (15). Since the vector of generic prices pb is determined independently of customized

prices, we first focus on characterizing these prices and establish their existence and uniqueness. We

then turn to the vector of customized prices pa.

Generic prices: Since generic producers are competitive, the price charged by any generic producer

always coincides with its marginal cost, irrespective of whether it supplies to customized, generic, or

final good producers. Thus, the vector of generic prices pb = (pb1, . . . , p
b
n, w) is part of a bargaining

equilibrium if and only if it satisfies the system of equations

pbi = ci(p
b), (D.7)
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where the function ci(p
b) is the marginal cost of generic producer ib as a function of the all generic

prices.31 This establishes equation (15).

We next show that this system of equations always has a strictly positive solution. Since all

production functions are homogenous of degree 1, we can renormalize the vector of generic prices

such that it falls within the unit simplex ∆n, i.e., w +
∑n

i=1 p
b
i = 1. Let χ : ∆n → ∆n denote the

mapping

χi(p
b) =

ci(p
b)

w +
∑n

j=1 cj(p
b)
.

Brouwer’s fixed point theorem guarantees that χ has at least one fixed point inside the unit simplex

∆n. Thus, there exists a vector of generic prices pb that solves the system of equations (15).

To show that any solution pb to the system of equations (D.7) is strictly positive, suppose to the

contrary that there exists pb = c(pb) such that pbi = 0 for some generic producer ib. This implies that

(i) labor is not an essential input for the production technology of ib and (ii) pbj = 0 for all generic

producers jb that are essential for the production technology of ib. This in turn implies that labor

cannot be an essential input for the production technology of all producers jb that are essential for

the production technology of ib. Iterating this argument over the network thus implies that labor is

neither directly nor indirectly an essential input for production technology of ib, which contradicts

Assumption 3′. Thus, any solution pb to the system of equations (D.7) must be element-wise strictly

positive.

Finally, we establish that, in any bargaining equilibrium, the vector of generic prices is unique

(up to a scaling). Suppose to the contrary that there are two distinct vectors of generic prices pb =

(pb1, . . . , p
b
n, w) and p̃b = (p̃b1, . . . , p̃

b
n, w) that satisfy system of equations (D.7), where note that we are

normalizing the price vectors such that the wage w is the same. As we already established, pbi , p̃
b
i > 0

for all ib. Let α = mini p
b
i/p̃

b
i . We consider two separate cases depending on whether α ≤ 1 or α > 1.

First, suppose α ≤ 1. By definition, it must be the case that αp̃bj ≤ pbj for all jb and that that there exists

ib such that αp̃bi = pbi . Hence,

0 = ci(p
b
1, . . . , p

b
n, w)− pbi ≥ ci(αp̃b1, . . . , αp̃bn, w)− pbi = ci(αp̃

b
1, . . . , αp̃

b
n, w)− αp̃bi , (D.8)

where the inequality is a consequence of the monotonicity of ci and the fact that αp̃bj ≤ pbj for all jb.

Since α ∈ (0, 1] and ci is concave, the above inequality implies that

0 ≥ ci(αp̃b1, . . . , αp̃bn, w)− αp̃bi ≥ αci(p̃b1, . . . , p̃bn, w) + (1− α)ci(0, . . . , 0, w)− αp̃bi
= (1− α)ci(0, . . . , 0, w) ≥ 0,

(D.9)

where the equality is the consequence of the assumption that p̃b satisfies (D.7). This implies that

all inequalities in (D.8) and (D.9) have to hold as equalities. In particular, ci(0, . . . , 0, w) = 0 and

ci(p
b
1, . . . , p

b
n, w) = ci(αp̃

b
1, . . . , αp̃

b
n, w). The first equality implies that labor is not an essential input

for generic producer ib, whereas the second equality implies that αp̃bj = pbj for all jb that are essential

31In particular, ci(pb) = CI(w, pb1/Bi1, . . . , p
b
n/Bin), where for notational simplicity, we have suppressed the productivity

shocks.
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inputs for ib.32 But now we can iterate the above argument for all jb that are essential for ib, which in

turn implies that labor is not an essential input for any industry, thus contradicting Assumption 3′.

Next, we consider the case that α > 1, which implies that pbi ≥ p̃bi for all ib. Let β = mini p̃
b
i/p

b
i . It

is immediate that β < 1. Now, repeating the same exact steps as above while swapping p̃b and pb and

replacing α by β results in a contradiction with Assumption 3′.

Taken together, the above paragraphs establish that the vector of generic prices in any bargaining

equilibrium exists, is unique, and is characterized by the unique solution to the system of equations

(15).

Customized prices: We now turn to customized prices. In what follows, we rely on a series of lemmas

stated and proved in Online Appendix C, which characterizes the solution of pairwise bargaining

between customized firms.

Let G denote a feasible production network of active firms. For any supplier-customer pair of

active customized firms (j, i) ∈ G, let p̄ij = pbjAij/Bij denote the price that makes the customer firm

i indifferent between the generic and customized variants of the good produced by industry J . Also,

define the collection of prices (pij)(j,i)∈G recursively over the network G such that all customized firms

make zero profits (gross of fixed costs of operation).33 Finally, let P =
∏

(j,i)∈G[pij , pij ] and define the

mapping ψ : P → P as

ψij(p
a) =


cj if πi(cj) < 0

p̂ij if πi(cj) ≥ 0 , fij(min{p̄ij , p†ij}) < 0

min{p̄ij , p†ij} if πi(cj) ≥ 0 , fij(min{p̄ij , p†ij}) ≥ 0

, (D.10)

where cj is the marginal production cost of firm j, fij is the function defined in (17), p†ij is the price at

which firm i makes zero profits (i.e., πi(p
†
ij) = 0), and p̂ij is the solution of equation fij(pij) = 0 in the

interval [cj , p
†
ij ].

34 In Lemma C.2, we establish that there is indeed a unique p†ij such that πi(p
†
ij) = 0 and

that the interval [cj , p
†
ij ] is non-empty, whereas Lemma C.3 establishes the uniqueness of p̂ij ∈ [cj , p

†
ij ]

that solves fij(p̂ij) = 0.

We make two observations about the mapping defined in (D.10). First we establish that

ψij(p
a) ≥ cj(pa−ij) (D.11)

for any price vector pa ∈ P and any (j, i) ∈ G. To establish this claim, we consider three separate

cases. First, supposes that πi(cj) < 0, in which case (D.10) implies (D.11). As the second case,

suppose that πi(cj) ≥ 0 and fij(min{p̄ij , p†ij}) < 0. Hence, ψij(pa) = p̂ij , which, by Lemma

C.2, satisfies p̂ij ∈ [cj , p
†
ij ], thus once again guaranteeing (D.11). Finally, suppose πi(cj) ≥ 0 and

fij(min{p̄ij , p†ij}) ≥ 0. The monotonicity of πi (established in Lemma C.1) coupled with the fact that

32In particular, note that pb and p̃b are strictly positive. Therefore, if the inequalityαp̃bj ≤ pbj holds strictly for some essential
input jb, then, by definition, it must be the case that ci(pb1, . . . , p

b
n, w) > ci(αp̃

b
1, . . . , αp̃

b
n, w), which contradicts the fact that

(D.8) has to hold as an equality.
33In other words, vectors (p̄ij)(j,i)∈G and (pij)(j,i)∈G are the prices that would have prevailed had the suppliers and

customers had all the bargaining power in all pairwise relationships, respectively.
34Note that p†ij , p̂ij , and cj all depend on the vector p = (pa,pb). We suppress this dependence for notational simplicity.

55



πi(cj) ≥ 0 = πi(p
†
ij) guarantees that cj ≤ p†ij . On the other hand, note that j’s marginal cost can never

exceed pbj ≤ pbjAij/Bij = p̄ij , thus ensuring that cj ≤ p̄ij . Hence, cj ≤ min{p̄ij , p†ij} = ψij(p
a).

As our second observation, we note that the mapping ψ in (D.10) is continuous in pa and maps

the convex and compact set P to itself. Therefore, by the Brouwer’s fixed point theorem, there exists a

vector pa ∈ P such that pa = ψ(pa). In the remainder of the proof, we show that given any fixed point

pa of ψ, the tuple (pa,pb) corresponds to a bargaining equilibrium of production network G, where pb

is the unique vector of generic prices that solves the system of equations (15). In particular, we show

that, under (pa,pb), no customized producer has an incentive to unilaterally deviate, either by making

a different offer, taking the outside option, or terminating an agreement.

Consider a fixed point pa = ψ(pa). By inequality (D.11), paij = ψij(p
a) ≥ cj . Thus, under the

candidate price vector pa, all customized firms make non-negative profits. This implies that no active

firm j has an incentive to terminate its relationship with its downstream customer i. Similarly, the fact

that pa is a fixed point of (D.10) guarantees that no customer firm i has an incentive to replace any

of its customized suppliers with the corresponding generic variant. Therefore, it is sufficient to show

that, given the price vector pa, neither the customer nor the supplier has an incentive to enter into a

bargaining process. But this is an immediate consequence of Proposition C.1. In particular, recall that

inequality (D.11) implies that any fixed point of ψ satisfies paij = ψij(p
a) ≥ cj(pa−ij) for any pair of firms

(j, i), which in turn guarantees that inequality (C.1) is satisfied. This implies that the price in any fixed

point of ψ satisfies

paij =

{
p̂ij if fij(min{p̄ij , p†ij}) < 0

min{p̄ij , p†ij} if fij(min{p̄ij , p†ij}) ≥ 0
. (D.12)

Note that the above equation can be further simplified. In particular, the juxtaposition fij(p
†
ij) < 0

(established in the proof of Lemma C.2) with the fact that fij crosses zero only once in the interval

[cj , p
†
ij ] (established in Lemma C.3) guarantees that (D.12) is equivalent to paij = min{p̂ij , p̄ij}. But this

is identical to equation (C.7), which characterizes the outcome of pairwise bargaining between i and j.

Therefore, under any fixed point of ψ, the price paij coincides with the outcome of pairwise bargaining,

implying that any fixed point of ψ is a vector of customized prices in a bargaining equilibrium.

Proof of Theorem 11

We first state two simple lemmas, which are invoked repeatedly throughout. We then present a

sequence of results, which together establish Theorem 11. Since the statements of the results and

their proofs are very similar to our main results for Leontief production technologies, we only present

the counterparts to Theorems 2, 4, and 6. Throughout, we assume that Assumptions 1, 2, and 3′ are

satisfied and that, in all pairwise interactions, the supplier has all the bargaining power, i.e., δij = 1 for

all supplier-customer pairs (j, i).

Lemma D.5. For any feasible production network G, there is a unique pricing equilibrium (pa,pb).

Furthermore, cai = pbi for all i and paij = pbjAij/Bij for any supplier-customer pair (j, i) ∈ G.

Lemma D.6. Let G ⊆ Ḡ denote two feasible production networks and let ηi = πi/y0 denote the (gross)

profit share of firm i as a fraction of real value added. Then,
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(a) cai (G) = cai (Ḡ) for all i ∈ G.

(b) paij(G) = paij(Ḡ) for all (j, i) ∈ G;

(c) ηi(G) = ηi(Ḡ) for all i ∈ G.

Proof. Statements (a) and (b) of the lemma are immediate consequences of Lemma D.5 and the fact

that generic prices pb are determined independently of the set of active customized firms. Statement

(c) then follows from the previous parts and the assumption that all production technologies exhibit

constant returns.

Theorem D.2 (Counterpart to Theorem 4). Let G, Ḡ ⊆ G denote two feasible production networks such

that G⊆ Ḡ. Then,

(a) µi(G) = µi(Ḡ) for all i ∈ G;

(b) if condition (8) is satisfied, then y0(G)) ≤ y0(Ḡ);

(c) if condition (8) is satisfied, then πi(G) ≤ πi(Ḡ) for all i ∈ G.

Proof. Statement (a) is an immediate consequence of Lemma D.5. To prove statement (b), note that

the representative household’s budget constraint implies that

y0(Ḡ) = wL+
∑
j∈Ḡ

(πj(Ḡ)− wzj)

y0(G) = wL+
∑
j∈G

(πj(G)− wzj).

Therefore,

y0(Ḡ)− y0(G) =
∑
j∈G

(πj(Ḡ)− πj(G)) +
∑

j∈Ḡ\G

(πj(Ḡ)− wzj) ≥
∑
j∈G

(
ηj(Ḡ)y0(Ḡ)− ηj(G)y0(G)

)
,

where the inequality follows from condition (8). On the other hand, Lemma D.6 guarantees that

ηi(Ḡ) = ηi(G) for all i ∈ G. As a result,

(
y0(Ḡ)− y0(G)

)1−
∑
j∈G

ηj(G)

 ≥ 0.

Since customized firms’ profit shares always add up to a number strictly less than 1, the above

inequality guarantees that y0(Ḡ) ≥ y0(G). Finally, to establish statement (c), note that

πi(G) = ηi(G)y0(G) ≤ ηi(Ḡ)y0(Ḡ) = πi(Ḡ)

for all i ∈ G, where once again we are using ηi(G) = ηi(Ḡ) as established in Lemma D.6.

Theorem D.3 (Counterpart to Theorem 2). For any network G of technological compatibilities,

(a) a full equilibrium exists;
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(b) the set of full equilibria has a greatest element with respect to the set inclusion order;

(c) aggregate output in the greatest full equilibrium is higher than that of all other full equilibria.

Proof. As in the proof of Theorem 2, it is sufficient to establish that mapping φ : 2G → 2G , defined as

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wzi} (D.13)

satisfies Assumptions A.1 and A.2. Theorem A.1 then implies all three statements of Theorem D.3.

To establish that φ satisfies Assumption A.1, take two production networks G1 and G2 and suppose

that G1 ⊆ φ(G2). Hence, πi(G2 ∪ {i}) ≥ wzi for all i ∈ G1. Therefore,

ηi(G2 ∪ {i})y0(G2 ∪ {i}) ≥ wzi for all i ∈ G1.

Furthermore, the household’s budget constraint implies that

y0(G2 ∪ {i}) = wL+ y0(G2 ∪ {i})
∑

j∈G2∪{i}

ηj(G2 ∪ {i})−
∑

j∈G2∪{i}

wzj .

The juxtaposition of the last two equations leads to

zi ≤
ηi(G2 ∪ {i})

1−
∑

j∈G2
ηj(G2 ∪ {i})

L− ∑
j∈G2

zj

 for all i ∈ G1.

On the other hand, Lemma D.6 guarantees that ηj(G2 ∪ {i}) = ηj(G1 ∪G2) for any pair i and j such

that j ∈ G2 ∪{i} and all i ∈ G1. Therefore,

zi ≤
ηi(G1 ∪G2)

1−
∑

j∈G2
ηj(G1 ∪G2)

L− ∑
j∈G2

zj

 for all i ∈ G1. (D.14)

Next, consider the economy in which the set of active firms is instead G1 ∪G2. In this case, firm

i’s gross profit is given by πi(G1 ∪G2) = ηi(G1 ∪G2)y0(G1 ∪G2). Therefore, solving for y0 from the

household’s budget constraint in this economy and plugging it back into the expression for πi(G1∪G2)

leads to

πi(G1 ∪G2)− wzi =
wηi(G1 ∪G2)

1−
∑

j∈G1∪G2
ηj(G1 ∪G2)

L− ∑
j∈G1∪G2

zj

− wzi
for all i ∈ G1. Consequently, the upper bound on zi in (D.14) implies that

πi(G1 ∪G2)− wzi ≥ wηi(G1 ∪G2)

(
L−

∑
j∈G1∪G2

zj

1−
∑

j∈G1∪G2
ηj(G1 ∪G2)

−
L−

∑
j∈G2

zj

1−
∑

j∈G2
ηj(G1 ∪G2)

)
.

Simplifying the right-hand side of the above inequality, we obtain,

πi(G1 ∪G2)− wzi ≥
wηi(G1 ∪G2)

1−
∑

j∈G1∪G2
ηj(G1 ∪G2)

∑j∈G1\G2
ηj(G1 ∪G2)

1−
∑

j∈G2
ηj(G1 ∪G2)

L− ∑
j∈G2

zj

− ∑
j∈G1\G2

zj


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for all i ∈ G1. On the other hand, summing both sides of inequality (D.14) over all i ∈ G1 \ G2

guarantees that the right-hand side of the above inequality is non-negative. Therefore, πi(G1 ∪G2) ≥
wzi for all i ∈ G1, and hence, G1 ⊆ φ(G1 ∪G2). Thus, mapping φ in (D.13) satisfies Assumption A.1.

Next, we establish that mapping φ also satisfies Assumption A.2. To this end, let G1,G2 ⊆ G denote

a pair of feasible production networks such that Gk ⊆ φ(Gk) for k ∈ {1, 2}. By definition, Gk ⊆ φ(Gk)

implies that πi(Gk) = ηi(Gk)y0(Gk) ≥ wzi for all i ∈ Gk. Solving for y0(Gk) from the household’s

budget constraint

y0(Gk) = wL+
∑
j∈Gk

(
ηj(Gk)y0(Gk)− wzj

)
therefore implies that

zi ≤
ηi(Gk)

1−
∑

j∈Gk
ηj(Gk)

L− ∑
j∈Gk

zj


for all i ∈ Gk. Furthermore, recall from Lemma D.6 that ηi(Gk) = ηi(G1 ∪G2) for all i ∈ Gk. Hence,

zi ≤
ηi(G1 ∪G2)

1−
∑

j∈Gk
ηj(G1 ∪G2)

L− ∑
j∈Gk

zj

 (D.15)

for all i ∈ Gk. Setting k = 1 and summing over all i ∈ G1 \G2 implies that ∑
j∈G1\G2

zj

1−
∑

j∈G1∩G2

ηj(G1 ∪G2)

 ≤
L− ∑

j∈G1∩G2

zj

 ∑
j∈G1\G2

ηj(G1 ∪G2)

. (D.16)

Similarly, setting k = 2 in (D.15) and summing over all i ∈ G2 \G1 implies that ∑
j∈G2\G1

zj

1−
∑

j∈G1∩G2

ηj(G1 ∪G2)

 ≤
L− ∑

j∈G1∩G2

zj

 ∑
j∈G2\G1

ηj(G1 ∪G2)

. (D.17)

Next, consider the profit πi(G1 ∪G2) of an arbitrary firm i ∈ G1 when the production network of active

firms is G1 ∪G2. Once again, solving for household demand from her budget constraint and plugging

it back to firm i’s profit function implies that

πi(G1 ∪G2)− wzi =
wηi(G1 ∪G2)

1−
∑

j∈G1∪G2
ηj(G1 ∪G2)

L− ∑
j∈G1∪G2

zj

− wzi
≥ wηi(G1 ∪G2)

(
L−

∑
j∈G1∪G2

zj

1−
∑

j∈G1∪G2
ηj(G1 ∪G2)

−
L−

∑
j∈G1

zj

1−
∑

j∈G1
ηj(G1 ∪G2)

)

for all i ∈ G1, where the inequality is a consequence of (D.15). Simplifying the right-hand side of the

above inequality therefore implies that πi(G1 ∪G2)− wzi ≥ 0 for all i ∈ G1 as long as Q′ > 0, where

Q′ =

L− ∑
j∈G1

zj

 ∑
j∈G2\G1

ηj(G1 ∪G2)

−
1−

∑
j∈G1

ηj(G1 ∪G2)

 ∑
j∈G2\G1

zj

 .
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By inequality (D.17), we have

Q′ ≥

 ∑
j∈G2\G1

zj

 L−
∑

j∈G1
zj

L−
∑

j∈G1∩G2
zj

1−
∑

j∈G1∩G2

ηj(G1 ∪G2)

−
1−

∑
j∈G1

ηj(G1 ∪G2)

 ,

and as a result

Q′ ≥

( ∑
j∈G2\G1

zj

L−
∑

j∈G1∩G2
zj

)(L−∑
j∈G1∩G2

zj

)( ∑
j∈G1\G2

ηj(G1 ∪G2)

)
−
(

1−
∑

j∈G1∩G2

ηj(G1 ∪G2)

)( ∑
j∈G1\G2

zj

) .
Now (D.16) guarantees that the right-hand side of the above inequality is non-negative. Therefore,

we just established that πi(G1 ∪G2) − wzi ≥ 0 for all i ∈ G1. An identical argument establishes that

πi(G1 ∪G2)− wzi ≥ 0 for all i ∈ G2.

Consequently, we just established that πi(G1 ∪G2) − wzi ≥ 0 for all i ∈ G1 ∪G2, or equivalently,

G1 ∪G2 ⊆ φ(G1 ∪G2) for any arbitrary pair of feasible production networks G1 and G2 such that

G1 ⊆ φ(G1) and G2 ⊆ φ(G2). This implies that Assumption A.2 is satisfied.

Theorem D.4 (Counterpart to Theorem 6). In the economy’s greatest full equilibrium, an increase in

firm-level fixed costs

(a) shrinks the set of active firms;

(b) lowers aggregate output;

(c) reduces profits of all surviving firms.

Proof. To establish part (a), let z̄ and z denote two vectors of fixed costs such that zi ≤ z̄i for all firms

i ∈ G. Define the mappings φ, φ : 2G → 2G as

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wz̄i}

φ(G) = {i ∈ G : πi({i} ∪G) ≥ wzi}.

It is immediate that the fixed points of φ and φ correspond to full equilibria of the economies with

fixed costs given by z̄ and z, respectively. Furthermore, recall from the proof of Theorem D.3 that φ

and φ satisfy Assumptions A.1 and A.2. Therefore, by Theorem A.1, both mappings have a greatest

fixed point, which we denote by Ḡ
∗ and G∗, respectively. Thus, Ḡ∗ and G∗ are also the greatest full

equilibria of the economies with fixed costs z̄ and z, respectively. On the other hand, the fact that

zi ≤ z̄i for all i ∈ G implies that φ(G) ⊆ φ(G) for all G ⊆ G. Therefore, Corollary A.1 guarantees that

Ḡ
∗ ⊆ G∗. This establishes that increasing the vector of fixed costs shrinks the set of active firms in the

economy’s greatest full equilibrium.

To establish part (b), once again let Ḡ∗ and G∗ denote the corresponding greatest full equilibria

in the economies with fixed costs z̄ and z, respectively. The household’s budget constraint in the two

economies is given by

y0(z̄) = wL+
∑
k∈Ḡ∗

(
πk(Ḡ

∗)− wz̄k
)

y0(z) = wL+
∑
k∈G∗

(
πk(G

∗)− wzk
)
.

60



Since G∗ is a full equilibrium, all active firms in the economy make positive net profits, i.e., πk(G∗) ≥
wzk for all k ∈ G∗. Therefore,

y0(z)− y0(z̄) ≥
∑
k∈Ḡ∗

(
πk(G

∗)− wzk
)
−
∑
k∈Ḡ∗

(
πk(Ḡ

∗
)− wz̄k

)
≥
∑
k∈Ḡ∗

(
πk(G

∗)− πk(Ḡ
∗
)
)
,

where the first inequality is a consequence of the fact that Ḡ∗ ⊆ G∗ and the second inequality follows

from the assumption that zk ≤ z̄k. Denoting firm k’s profit share by ηk, we have

y0(z)− y0(z̄) ≥
∑
k∈Ḡ∗

(
ηk(G

∗)y0(z)− ηk(Ḡ
∗
)y0(z̄)

)
≥ (y0(z)− y0(z̄))

∑
k∈Ḡ∗

ηk(G
∗),

where the second inequality follows from Lemma D.6 and the fact that Ḡ
∗ ⊆ G∗. Since∑

k∈Ḡ∗ ηk(G
∗) < 1, the above inequality therefore implies that y0(z) > y0(z̄).

Finally, to establish part (c) of the theorem, note that the gross profit of firm k ∈ Ḡ
∗ under the two

fixed costs is given by

πk(z)− wzk = ηk(G
∗)y0(z)− wzk

πk(z̄)− wz̄k = ηk(Ḡ
∗
)y0(z̄)− wz̄k.

Therefore,

(πk(z)− wzk)− (πk(z̄)− wz̄k) = ηk(Ḡ
∗
)(y0(z)− y0(z̄)) + w(z̄k − zk),

where we are once again using Lemma D.6 and the fact that Ḡ
∗ ⊆ G∗. Part (b) of the theorem

guarantees that y0(z) > y0(z̄) and by assumption, z̄k ≥ zk. Therefore, the right-hand side of the above

equation is always positive.

E Online Appendix: Data Appendix

In this appendix, we provide details on the data used in constructing Figure 1 as well as additional

empirical exercises that confirm the pattern documented by that figure. Our data are drawn from the

Business Dynamics Statistics (BDS) dataset from the Census Bureau (2016 release). This database is

based on administrative records of U.S. firms covering the period from 1977 to 2014. BDS reports data

both for firms and establishments. We use BDS reports on aggregate data by year as well as more

detailed data by year, sector, and age.35

When working with aggregate data, we measure the exit rate in year t as the count of firms or

establishments that have ceased operations between years t − 1 and t divided by the average of the

total number of firms or establishments in years t− 1 and t.

When working with the detailed data, we compute firm exit rate as follows, with the establishment

exit rate defined analogously. For firms aged 0–5 years, the exit rate in sector s at age a in year t is the

ratio of the number of firms that exit within sector s and age group a between years t− 1 and t divided

35Firms and establishments are classified into nine sectors: agricultural services, forestry, and fishing; manufacturing;
construction; mining; transportation and public utility; wholesale trade; retail trade; finance, insurance, and real state; and
services.

61



1980 1985 1990 1995 2000 2005 2010 2015
8

10

12

14

(a) raw data

1980 1985 1990 1995 2000 2005 2010 2015
−2

−1

0

1

2

(b) HP-filtered data

Figure E.1. Annual Establishment Exit Rate in the United States over the Business Cycle

Source: Business Dynamics Statistic, United States Census Bureau.
Notes: The figure depicts the annual exit rate of establishments in the U.S. between 1978 and 2014. Exit rate in year t is
defined as the number of establishment failures in year t divided by the average number of surviving establishments in years
t − 1 and t. Panel (a) plots the raw data, whereas panel (b) plots the detrended series using a Hodrick-Prescott filter with
smoothing parameter 6.25. Year t is shaded if there is an NBER recession at some point between the second quarter of year
t− 1 and the first quarter of year t.

by the average of the total number of firms within sector s and age group a in period t and the total

number of firms within sector s and age group a − 1 in period t − 1. The BDS database groups firms

aged 6 or more into five age categories: 6–10, 11–15, 16–20, 21–25, and 26 or more. We compute exit

rates for these groups as total number of exits divided by the number of firms in this age range.36

Figure 1 plots both the raw firm exit rate and its cyclical component after removing a trend using

the Hodrick-Prescott (HP) filter with a smoothing parameter of 6.25, as is standard in the literature

for annual data (Ravn and Uhlig, 2002). Recession dates are from the NBER monthly business cycle

indicator.37 In particular, year t is coded as a recession year if any month between April of year t − 1

and March of year t has a recession according to the NBER. Figure E.1 depicts the corresponding plot

for establishments.

Table E.1 confirms the patterns documented in Figures 1 and E.1 using the following simple

regression on sector-age group data:

Exit Ratesat = α+ βRecessiont + δs × γa + εsat, (E.1)

where Exit Ratesat is the exit rate among firms or establishments in sector s of age a at time t (either

in the raw data or after removing the HP trend), δs designates a full set of sector fixed effects, and γa

stands for a full set of age fixed effects. The standard errors are clustered at the sector× age level.

36The BDS also reports an age category defined as “left censored”, consisting of firms or establishments with unknown age
because they were founded before 1977. We compute the exit rate for this group using an analogous strategy.

37The NBER defines a recession as a significant decline in economic activity spread across the economy, lasting more than
a few months, normally visible in real GDP, real income, employment, industrial production, and wholesale-retail sales. See
https://www.nber.org/cycles.html.
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Table E.1. Firm and Establishment Exit Rate During Recessions

Dependent variable: firm exit rate firm exit rate est. exit rate est. exit rate
(1) (2) (3) (4)

Panel A: Raw Data

Recessiont 0.478∗∗∗ 1.085∗∗∗

(0.094) (0.139)

Recessiont−1 0.211∗∗∗ 0.783∗∗∗

(0.066) (0.111)

Observations 2,619 2,619 2,619 2,619

Mean of dep. var. 10.533 10.533 13.895 13.895

Sector× Age fixed effects X X X X

Lin. and quad. common trends X X X X

Panel B: HP-Filtered Data

Recessiont 0.263∗∗∗ 0.633∗∗∗

(0.048) (0.065)

Recessiont−1 0.214∗∗∗ 0.544∗∗∗

(0.040) (0.059)

Observations 2,619 2,619 2,619 2,619

Sector× Age fixed effects X X X X

Notes: Unit of analysis is sector × age × year. Exit rate in year t is defined as the number of failures in year t divided by the
average number of surviving producers (firms or establishments) in years t − 1 and t. Recessiont is a dummy variable that
is equal to one if there is a recession in year t. Standard errors are clustered at the sector × age level. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

Panel A of Table E.1 reports results using the raw exit rate, while Panel B uses the HP-filtered exit

rates. Regressions in Panel A additionally include quadratic time trends. The first two columns in both

panels are for firms and the next two panels are for establishments, while even-numbered columns

look at the lag of the recession indicator. The results confirm the patterns shown in Figures 1 and

E.1: there is a strong statistical association between recessions and exits. The implied quantitative

magnitudes are large as well. For example, in column 1, our estimate implies that firm exits increased

by 0.48 percentage points, starting from the base of 10.53%. The quantitative magnitudes are

somewhat larger for establishments, corresponding to a 1.09 percentage point increase on the base

of 13.90%.

Table E.2 confirms these findings when observations are weighted by the average number of

establishments in the relevant sector and age group. The results are very similar.

Table E.3 reports very similar results when we use a measure of recession defined as the number

of months in the recession in a given year. The coefficient estimates are not directly comparable to

the previous two tables, since now we are focusing on the “intensive margin” of the recession within a

given year. Nonetheless, the correlation between recession and exit rates continues to be positive and

statistically significant. The implied quantitative results are also comparable: there are, on average, 6.1
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Table E.2. Firm and Establishment Exit Rate During Recessions: Weighted Regressions

Dependent variable: firm exit rate firm exit rate est. exit rate est. exit rate
(1) (2) (3) (4)

Panel A: Raw Data

Recessiont 0.343∗∗∗ 0.728∗∗∗

(0.103) (0.153)

Recessiont−1 0.076 0.394∗∗∗

(0.089) (0.146)

Observations 2,619 2,619 2,619 2,619

Mean of dep. var. 10.533 10.533 13.895 13.895

Weighted mean of dep. var. 10.112 10.112 12.934 12.934

Sector× Age fixed effects X X X X

Lin. and quad. common trends X X X X

Panel B: HP-Filtered Data

Recessiont 0.164∗∗∗ 0.430∗∗∗

(0.050) (0.074)

Recessiont−1 0.142∗∗∗ 0.352∗∗∗

(0.037) (0.061)

Observations 2,619 2,619 2,619 2,619

Sector× Age fixed effects X X X X

Notes: Unit of analysis is sector × age × year. Exit rate in year t is defined as the number of failures in year t divided by the
average number of surviving producers (firms or establishments) in years t− 1 and t. Recessiont is a dummy variable that is
equal to one if there is a recession in year t. The table report results of a weighted regression, where the weight is the average
number of establishments or firms by sector and age group. Standard errors are clustered at the sector× age level. ∗, ∗∗, and
∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

recession months among years with recession periods and the coefficient estimates are about 1/6th

of those in Table E.1.

We finally note that the cyclicality of exit and entry rates is also studied by Tian (2018), who

concludes that “the (counter-) cyclicality in firm death is ambiguous and sensitive to the choice of

cyclical indicator.” This claim is based on the finding that exit rates are uncorrelated with (the cyclical

component of) GDP and negatively correlated with GDP growth (see Table 1 in her paper). In the

appendix (Table B-10), Tian (2018) also reports the correlation between the exit rates and several

other measures to capture economic activity. Consistent with our findings, she shows that there

is a positive and significant correlation between exit rates and recessions defined as the number of

recession months reported by the NBER in the sample year (thus, the definition we use in Table E.3).38

38There are some minor differences between our results and Tian’s (2018). First, we use a newer release of the data (version
2016) and a slightly longer period of analysis (1977 to 2014 compared to 1979 to 2013). Second, we define a recession at year t
based on the number of months with a recession between April of year t− 1 and March of year t, whereas Tian (2018) defines
a recession based on the number of months with a recession between March of year t − 1 and February of year t. Third,
the denominators in the definition of the exit rate in the two studies are slightly different: in our case, the denominator
is the average number of firms or establishments in years t and t − 1, whereas Tian (2018) uses the number of firms or
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Table E.3. Firm and Establishment Exit Rate During Recessions: Intensive Margin of Recession

Dependent variable: firm exit rate firm exit rate est. exit rate est. exit rate
(1) (2) (3) (4)

Panel A: Raw Data

Number of months in recessiont 0.054∗∗∗ 0.134∗∗∗

(0.012) (0.017)

Number of months in recessiont−1 0.016 0.031∗∗

(0.010) (0.014)

Observations 2,619 2,619 2,619 2,619

Mean of dep. var. 10.533 10.533 13.895 13.895

Sector× Age fixed effects X X X X

Lin. and quad. common trends X X X X

Panel B: HP-Filtered Data

Number of months in recessiont 0.032∗∗∗ 0.094∗∗∗

(0.007) (0.009)

Number of months in recessiont−1 0.021∗∗∗ 0.026∗∗∗

(0.008) (0.009)

Observations 2,619 2,619 2,619 2,619

Sector× Age fixed effects X X X X

Notes: Unit of analysis is sector × age × year. Exit rate in year t is defined as the number of failures in year t divided by the
average number of surviving producers (firms or establishments) in years t − 1 and t. Recessiont is a dummy variable that
is equal to one if there is a recession in year t. The independent variable is the the number of months in recessions in the
sample year (or its lag). Standard errors are clustered at the sector × age level. ∗, ∗∗, and ∗∗∗ denote significance at the 10%,
5%, and 1% levels, respectively.

In Table E.4, we show that, if instead of GDP, the focus is on significant declines in GDP, there is

again a strong countercyclical relationship between GDP and exits. In Panel A, we define a significant

decline in GDP as a year in which any quarter of the year experienced a more than two standard

deviation decline in detrended log real GDP. Panel B provides analogous results, with the recession

variable now defined on GDP growth being two standard deviations below its mean. Finally, Panel C

shows a strong negative association between exit rates and GDP growth. Taken together, our findings

indicate that a robustly positive relationship between recessionary periods and exit rates, i.e., exits are

robustly countercyclical.

establishments in year t− 1 as the denominator. These differences, however, have minimal effects on the results.
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Table E.4. Firm and Establishment Exit Rate During Recessions: Intensive Margin of Recession

Dependent variable: firm exit rate establishment exit rate

raw data HP-filtered raw data HP-filtered
(1) (2) (3) (4)

Panel A: Recession dummy is equal to one if GDP is below two standard deviations

Recession (based on GDP) 0.531∗∗∗ 0.474∗∗∗ 0.438∗∗∗ 0.296∗∗∗

(0.114) (0.084) (0.158) (0.105)

Observations 2,619 2,619 2,619 2,619

Sector× Age fixed effects X X X X

Lin. & quad. common trends X X

Panel B: Recession dummy is equal to one if GDP growth is below two standard deviations

Recession (based on GDP growth) 1.156∗∗∗ 0.554∗∗∗ 1.270∗∗∗ 0.736∗∗∗

(0.158) (0.078) (0.213) (0.113)

Observations 2,619 2,619 2,619 2,619

Sector× Age fixed effects X X X X

Lin. & quad. common trends X X

Panel C: GDP growth

GDP growth −14.523∗∗∗ −9.217∗∗∗ −22.021∗∗∗ −16.481∗∗∗

(2.704) (1.654) (3.449) (1.849)

Observations 2,619 2,619 2,619 2,619

Sector× Age FE X X X X

Lin. & quad. common trends X X

Notes: Unit of analysis is sector × age × year. The independent variable is defined in the header of each panel. GDP is the
cyclical component of GDP. Standard errors are clustered at the sector × age level. ∗, ∗∗, and ∗∗∗ denote significance at the
10%, 5%, and 1% levels, respectively.
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