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Technological innovation is a large driver of rising health spending, raising questions as

to whether our current payment systems deliver the right balance between incentives to

innovate and incentives to contain costs. While some argue that broad insurance coverage

and generous pricing policies are necessary to sustain valuable R&D investment, others

believe that these same policies generate perverse incentives to create expensive products

with little incremental clinical value.1 The policy relevance of this debate has grown as

politicians have increasingly called for the federal government to implement value-based

pricing that limits insurance coverage for high-cost, low-value treatments. Despite its

importance, there is limited empirical evidence on how the structure of insurance coverage

shapes incentives for upstream medical innovation.

In this paper, we study the impact of a major change in coverage policies for private

sector prescription drug plans on upstream pharmaceutical R&D. In the United States,

prescription drug plans are typically managed by intermediary firms, known as Pharmacy

Benefit Managers (PBMs). Traditionally, PBMs provide coverage for all FDA-approved

drugs, but assign them to different tiers of patient cost-sharing. Beginning in 2012, however,

PBMs began refusing to provide any coverage for some high price drugs (including many

newly approved drugs) when cheaper generic or branded substitutes already existed. Over

the next five years, 300 drugs were excluded by at least one of the three largest PBMs.

This practice of excluding coverage entirely, known as maintaining a “closed formulary,”

can substantially reduce the expected profitability of new drugs. For example, the high

blood pressure medication Edarbi received FDA approval in 2011 but was almost immediately

excluded by the two largest PBMs, CVS Caremark and Express Scripts. By September 2013,

Edarbi’s manufacturer, the Japanese firm Takeda, had decided to sell off its US distribution

rights, despite keeping these rights in Japan and in other countries.2

Understanding how the downstream policies of PBMs shape upstream pharmaceutical

innovation can inform our understanding of how to design insurance plans that balance

incentives for innovation and cost-containment. These lessons, gleaned from the policies of

private sector firms, provide insight into the possible effects of new policy proposals governing

1For example, Stanford (2020) and Zycher (2006) have argued that the innovation benefits of generous
drug payment policies are large, while Bagley et al. (2015) and Frank and Zeckhauser (2018) highlight the
risk that generous drug payments may yield excessive incremental innovation.

2In an analysis described in Section 4.2, we test whether this example generalizes. Our results show that
for each PBM that excludes coverage, a drug’s sales (as proxied by Medicare Part D claims) falls by 24%.
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how public insurers interact with drugmakers.3 The largest PBM, CVS Caremark, manages

benefits for 75 million Americans—more than the number of enrollees in either Medicare or

Medicaid.

We begin by showing that the risk of being excluded from a PBM’s formulary varies

systematically and predictably across drug classes: in particular, exclusions are more

common in drug classes with more pre-existing therapeutic options, and in classes with a

larger number of patients. In the case of Edarbi, CVS and Express Scripts both pointed to

a variety of other popular angiotensin II receptor blockers (ARBs) as viable alternatives,

even though they were not molecularly equivalent. Further, the cost savings associated

with excluding Edarbi were potentially very large because they could be realized over many

patients suffering from hypertension. Indeed, we show show that the greatest number of

exclusions were for drugs aimed at treating diabetes and cardiovascular diseases, both areas

responsible for a large share of insurance spending.

Next, we use this information to build a measure of each drug class’s ex-ante risk of facing

exclusions based on its market characteristics prior to the introduction of closed formularies.

We show that pharmaceutical R&D fell markedly in drug classes at high risk of exclusions,

relative to trends in low risk classes, following the introduction of closed formulary policies.

We document a 5% decline in the number of new clinical trials and announcements of early

stage development for a one standard deviation increase in ex-ante exclusion risk. These

declines impact drug candidates in all phases of development, but are largest among earlier

stage drugs.

We go on to explore the nature and value of this foregone innovation. We first document

a change in the composition of drugs under development: R&D declined the most in drug

markets with a high number of existing therapies, serving common diseases such as diabetes

and cardiovascular diseases. Second, we show that exclusions depressed R&D investments in

the least scientifically innovative drug classes: those where drug patents are based on older

and less “disruptive” underlying science (Funk and Owen-Smith 2017).

Taken together, our results suggest that closed formulary policies altered the demand

risks that drugmakers consider when making R&D investment decisions. Prior to this policy

3Congressional Budget Office (2007) predicts that the government will not be able to negotiate lower
prices with drug manufacturers unless it adopts a PBM-pioneered model of providing preferential access for
specific drugs on publicly-run formularies.
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change, pharmaceutical firms could expect that their drugs would be covered by insurers

if approved by the FDA. In this world, firms had strong incentives to develop incremental

drugs aimed at large disease markets because such drugs were the most likely to receive

FDA approval and generate a large base of revenues if approved. With the introduction

of closed formularies, these incremental drugs became precisely the ones at greatest risk of

being excluded from formularies. Our results show that pharmaceutical firms responded

to this change in incentives by shifting resources away from drug classes serving common

diseases with many incumbent therapies. Further, our results suggest that exclusion policies

shifted research investments away from areas with more “me-too” development activity and

lower scientific novelty.

An important caveat to note is that our econometric approach is based on a

difference-in-differences specification that identifies a relative decline in investment in drug

classes at high exclusion risk compared to lower risk classes. A natural, welfare-relevant

question is whether this constitutes a total decline in innovative activity or a reallocation

of R&D investment. While we cannot answer this question empirically (since it would rely

purely on time series identification), recent research suggests that even large

pharmaceutical firms may face financial frictions. In this case, a decline in R&D spending

in high exclusion risk classes may generate some degree of reallocation toward other drug

classes that face lower exclusion risk. In the absence of frictions, exclusion policies would

decrease total investment in new drug innovation.

Our paper contributes to a broad literature examining how market incentives shape the

rate and direction of innovative output.4 Prior empirical research has documented that

increased demand for drugs spurs new drug development: several studies have measured the

impact of public insurance expansions (Acemoglu et al. 2006; Blume-Kohout and Sood 2013;

Clemens 2013; Dranove et al. 2020; Finkelstein 2004; Krieger et al. 2017) and demographic

changes (Acemoglu and Linn 2004; Dubois et al. 2015). Other research has investigated

the role of patent protection, showing that stronger patent protection (Kyle and McGahan

2012) and longer periods of market exclusivity (Budish et al. 2015) increase innovation.

Both “push” and “pull” incentives have demonstrated effects on medical R&D, including

4Here we summarize some of the recent work in this area that focuses on healthcare innovation. Directed
technical change is also an active area of research in environmental economics, which studies how investment
in clean and dirty technologies responds to market incentive (e.g., Aghion et al. 2016; Acemoglu et al. 2012).
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tax credits (Yin 2008), and public procurement incentives (Clemens and Rogers 2020). Our

findings build on this earlier empirical work by focusing on a new angle: how changes in the

structure of insurance coverage affect the direction of innovative activity. Further, our paper

provides an empirical analysis of tradeoffs raised by a theoretical literature on insurance

design and innovation (Garber et al. 2006; Lakdawalla and Sood 2009).

The rest of the paper proceeds as follows. Section 1 introduces the institutional

context. Section 2 describes the negotiation between PBMs and drugmakers in more detail,

summarizing a theoretical model of how R&D investments may respond to the introduction

of formulary exclusions. Section 3 provides an overview of our key data sources covering

exclusions, drug development, and market characteristics. Section 4 describes which drug

classes contain formulary exclusions and reports evidence that exclusions suppress drug

demand. Section 5 presents our main findings on how formulary exclusions have reshaped

investments in drug development. Section 6 discusses the welfare implications, and

Section 7 concludes.

1 Institutional Background

In the United States, many parties are involved in the process of bringing a drug from

manufacturer to patient: wholesalers, pharmacies, pharmacy benefit managers (PBMs), and

insurers. Historically, PBMs were only responsible for processing patient claims at the

pharmacy: i.e., verifying the patient’s coverage, obtaining payment from the insurer, and

transmitting that payment to the pharmacy. However, over time and in concert with a wave

of mergers (Werble 2014), PBMs began playing a more active role in designing prescription

drug plans on behalf of insurers, determining which prescription drugs would be covered

under a plan’s formulary.

Figure 1 illustrates the flow of both goods and payments for prescription drugs. The

physical path of drugs is simple: they are bought by wholesalers who then deliver and sell

them to pharmacies, where they are distributed to patients. PBMs do not generally enter

the physical supply chain for drugs, but they play a major role in coordinating payments.

PBMs serve as an intermediary between the insurer and the pharmacy. The pharmacy is

paid by two parties: it receives a drug co-pay from the patient and a reimbursement from
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the PBM. Meanwhile, the PBM collects revenue in two ways. First, it is reimbursed for

the drug by the patient’s insurer, who is still the ultimate payee. Second, the PBM also

receives a rebate from the pharmaceutical firm: this is a payment that the pharmaceutical

firm negotiates in return for having their drug included (ideally in a preferred position) on

the PBM’s formulary. The PBM may pass on a portion of this rebate to the insurer.

By 2012, the PBM industry had consolidated to the point that the largest three companies

controlled 62% of the market, a share which has continued to grow (Lopez 2019). In this

paper, we track the exclusion policies of the three largest firms: CVS Caremark, Express

Scripts, and OptumRx. Given their ability to pool patient demand across plans administered

on behalf of multiple insurance companies, as well as their influence on formulary design,

PBMs have substantial negotiating power with drug manufacturers. PBMs may place drugs

into formulary tiers, setting higher cost sharing for less preferred drugs. Coverage for certain

drugs may require prior authorization from the patient’s insurance company. Further, PBMs

may use step-therapy restrictions, and only cover more expensive drugs after cheaper options

have been proven ineffective.

Beginning with CVS in 2012, major PBMs began implementing closed formularies.

Rather than providing coverage (potentially with some tiering or restrictions) for all drugs

as long as they are FDA-approved, PBMs began publishing lists of drugs that their

standard plans would not cover at all, directing potential users to lists of recommended

alternatives including similar branded or generic drugs. Some major PBMs also designated

closed formularies the default choice, implementing a system where PBM customers (i.e.,

insurers) would have to opt out if they wanted to avoid the standard closed formulary

(Reinke 2015). Industry experts describe PBM formulary exclusions as an “integral part of

contract negotiations” with drug manufacturers (Reinke 2015).

Patients enrolled in prescription drug plans with closed formularies typically receive an

annual mailing notifying them of exclusions for the upcoming year, and urging them to change

medications if they are currently taking a drug that is on this list. With few exceptions,

patients wishing to take an excluded drug would be responsible for paying the full cost at

the pharmacy.5

5While patients may be able to access drugs that are excluded by their PBM’s formulary, the exclusions
introduce new barriers. The patient’s insurer may entertain patient-specific appeals for coverage outside of
the PBM’s standard policies. The patient may choose to purchase the drug without insurance coverage,
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The PBM industry argues that formulary restrictions reduce insurers’ costs (Brennan

2017), but advocates counter that exclusions harm patients by decreasing access to

treatment. A 2017 survey conducted by the Doctor-Patients Rights Project reports that a

quarter of insured Americans were denied treatment for chronic illnesses; the most common

denial reason was the treatment’s formulary exclusion (The Doctor-Patient Rights Project

2017). Furthermore, while PBMs’ closed formularies policies implicitly rely on a

“one-size-fits-all” approach—choosing one preferred treatment over other similar

treatments—drugs that appear therapeutically equivalent may vary in efficacy and side

effects, and a drug that works well for one patient may not be the best drug for another

patient with the same disease (Celgene 2016). We provide more detail on exclusion

practices in Section 4.

A natural question is why PBM formulary exclusions became common after 2012. A

complete investigation is beyond the scope of this paper, but there is evidence that existing

policies such as prior authorization requirements and the use of “step therapies” were not

effective at limiting the use of certain expensive medications. For example, Miller and

Wehrwein (2015) suggest that exclusions may have arisen in response to the growing use of

“co-pay cards,” which are discounts offered by pharmaceutical companies to subsidize

patients’ drug costs. Because the insurer still has to pay its share of the drug price, co-pay

cards diminished PBMs’ ability to steer patients to cheaper drugs. In contrast, exclusions

provide PBMs with a stronger tool for utilization management that cannot be directly

countered by co-pay cards and other consumer discounts.

2 Formulary Exclusions and Upstream Innovation

In this paper, we analyze the effect of PBM formulary exclusions on investments in drug

development. While closed formularies have direct effects on demand for excluded drugs,

they are also likely to affect the pricing of other drugs that face exclusion risk but were not

ultimately excluded. Steve Miller, the chief medical officer of Express Scripts, described the

process of negotiating with pharmaceutical manufacturers as follows:

paying the full price out-of-pocket. Finally, some patients may be able to choose between insurance plans
serviced by different PBMs, and so could switch to an alternative plan that has not excluded the drug.
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“We are going to be pitting you all against each other. Who is going to give us

the best price? If you give us the best price, we will move the market share to

you. We will move it effectively. We’ll exclude the other products” (Miller and

Wehrwein 2015).6

Consistent with the market dynamics described by Garthwaite and Morton (2017), the

exclusion threat increases the PBM’s ability to shift consumers across rival products,

strengthening their bargaining position. In its marketing analysis, CVS explicitly argues

that “[f]ormulary is foundational to cost control” and suggests that the introduction of

formulary exclusions in 2012 led to lower price growth for pharmaceuticals.7

In Appendix A, we provide a simple model that formalizes how drug exclusion policies

impact drug firms’ R&D decisions. In this model, a potential pharmaceutical entrant faces

a choice: invest in developing a drug for a “new” drug class—that is, one in which no prior

treatments exist—or invest in developing a drug for an “old” class, in which there is an

incumbent therapy available. In the absence of exclusions, PBMs are required to provide

coverage for all approved drugs: if successful, a pharmaceutical entrant would become a

monopolist in the new drug class and a duopolist in the old drug class. We model closed

formularies as permitting exclusions when a similar substitute is available. In the old drug

class, the two firms bid on rebate payments to the PBM in order to win exclusive formulary

coverage. Exclusions therefore reduce drug revenues in the old drug class, where entrants face

exclusion risk and will pay high rebates to the PBM if they succeed in obtaining formulary

coverage. These reduced revenues lower the returns to investing R&D dollars into the old

drug class, without changing the returns to investing in the new class. Our model predicts

that we should see a relative drop in new drug candidates entering markets in which existing

therapies are already available.

The welfare implications of this change in drug development incentives are theoretically

ambiguous. First, losses to pharmaceutical firms can be cast as gains to the PBMs, in the

form of higher rebates. If PBMs pass some of these cost savings onto consumers, then

exclusion policies create a tradeoff between incentives for future innovation and

6In line with this description, observers note that within a therapeutic class, PBMs are increasingly
selecting a single brand for coverage (Cournoyer and Blandford 2016).

7Source: CVSHealth Payor Solutions Insights website: https://payorsolutions.cvshealth.com/

insights/consumer-transparency. Accessed June 15, 2020.
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affordability of current prescription drug coverage. Second, an overall decrease in drug

development can be welfare enhancing if business stealing effects dominate the benefits of

expanding treatment options (Mankiw and Whinston 1986). This is a possibility in our

setting, especially if foregone drug candidates would have otherwise been entrants into

already crowded therapeutic areas.

Finally, another welfare-relevant consideration is how R&D investment is allocated within

pharmaceutical firms. In our model, the potential entrant chooses between investing in

the old versus the new class. This is likely to be the case when firms face financial or

organizational frictions that limit their ability to invest in all net present value (NPV)

positive projects. Under this assumption, the introduction of closed formularies generates a

reallocation of R&D dollars away from older drug classes toward newer classes. An alternative

model, however, would have firms investing in all drug candidates with a positive NPV. In

this case, the introduction of closed formularies would instead lead to an aggregate decline

in R&D investments, since exclusions decrease the NPV of investments in older classes but

have no effect in newer classes. Our empirical strategy allows us to identify only the relative

change in development across drug classes, making it difficult to distinguish between these

possibilities. Section 6 discusses the welfare implications and limitations of our analysis in

more depth.

3 Data

Our analysis focuses on tracking changes in drug development activity over time and

across drug classes. We have assembled four primary data sources: (1) PBM formulary

exclusion lists, (2) time-varying characteristics of drug markets, (3) prescription drug sales

volume, and (4) new drug development activity. The data we draw from each of these sources

is summarized briefly below.

1. Formulary Exclusions: We hand-collected data on formulary exclusions published

by CVS Caremark, Express Scripts, and OptumRX through 2017. Together, these

firms account for approximately 70% of the PBM market.8 Our data cover “standard”

8When it first closed its formulary in 2012, CVS had a 20% share of the PBM market (Lopez 2018).
Express Scripts followed suit in 2014, when its market share was 33.8% (Health Strategies Group 2015).
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formulary exclusions: these exclusions apply to most health plans administered by a

particular PBM. Insurers may elect to provide more expansive coverage by opting out

of the standard formulary, but we do not have information on exclusions within these

custom plans.9 We match the excluded drugs to their 4-digit Anatomical Therapeutic

Chemical (ATC4) drug class using the First Data Bank data (described below). These

exclusions form the basis of our analysis.

2. First Data Bank: In order to better understand the characteristics of drugs and drug

classes that experience exclusions, we collect data on drug markets and drug pricing

from First Data Bank (FDB). FDB is a commercial dataset primarily marketed to

healthcare organizations that manage formularies. It contains information on a drug’s

ATC4 classification, pricing, and the existence of generic substitutes. We use this

information to construct additional data on drug markets at the ATC4 level: the

number of approved branded and generic drugs in an ATC4 class and measures of

the price of already approved branded and generic drugs.10 We use these variables to

predict which drug classes face exclusion risk and as control variables to account for

time-varying market attributes in certain specifications.

3. Medicare Part D Data: To establish that formulary placement affects drug

demand, we document the impact of exclusions on a drug’s insurance claim volume in

Section 4.2. Because sales volume is not measured by FDB, we turn to publicly

available data on annual Medicare Part D claims volume by drug.11 Most Medicare

Part D plan sponsors contract with PBMs for rebate negotiation and benefit

Finally, OptumRx began publishing formulary exclusions in 2016, when its market share was 22% (Fein
2017).

9Custom plans are less common because they are likely to be substantially more expensive. For example,
on its payer-facing website, CVS encourages insurers to choose its standard (closed) formulary, for an
estimated 29% savings in per member per month drug costs (Brennan 2017).

10We use unit price provided by the manufacturer to FDB. Specifically, wholesale acquisition unit
cost (manufacturer’s published catalog or list price to wholesalers) was used, where available. If this
was unavailable, suggested wholesale unit price (manufacturer’s suggested price from wholesalers to their
customers) was used. If this was unavailable, then direct unit price (manufacturer’s published catalogue or
list price to non-wholesalers) was used. Unit refers to the NCPDP billing unit of the product, where a unit
is defined as a gram, each, or milliliter.

11This data is published annually by the Center for Medicare and Medicaid Studies. We accessed it online at
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

Information-on-Prescription-Drugs/Historical_Data, in November 2019.
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management (Government Accountability Office 2019), and many Part D plans

feature closed formularies (Hoadley et al. 2011), making Medicare Part D a suitable

context to study the impact of exclusions. This data is available from 2012-2017 and

reports the annual number of claims for all drugs with at least 11 claims.

4. Cortellis Investigational Drugs: Our main analysis studies the impact of formulary

exclusions on drug development. We obtain data on pipeline drugs, including both

small molecule and biologic drugs, from Clarivate Analytics’ Cortellis Investigational

Drugs database (Cortellis). Cortellis tracks drug candidates using data it compiles

from public records: company documents, press releases, financial filings, clinical trial

registries, and FDA submissions. Drug candidates typically enter the Cortellis database

when they enter preclinical development; this is often when a drug candidate will

appear in patents or in other documents describing a firm’s research pipeline. Similarly,

because all firms are required to apply for and receive FDA approval to begin human

clinical trials, Cortellis has near complete coverage of drug candidates that advance

into human testing.

Using Cortellis, we track each drug’s US-based development across five stages:

pre-clinical development, phase 1 trials, phase 2 trials, phase 3 trials, and launch.

Our primary outcome is the total number of drug candidates within a class that

entered any stage of development each year. 12 Table 1 Panel A reports the summary

statistics of development activity across different stages.

Throughout most of the paper, our unit of analysis is a narrowly defined drug class,

following the Anatomical Therapeutic Chemical (ATC) classification system. ATC codes

are used to organize medicinal compounds; we use an ATC4 (four-digit) level classification,

which identifies chemical subgroups that share common therapeutic and pharmacological

properties.

Appendix Table A.1 lists several examples of ATC4 designations. For example, diabetes

drugs fall into 3 distinct ATC4 categories depending on whether the drug is an insulin or

12In cases where we observe a drug in development at a later stage without a recorded date for prior
development stages, we fill in the earlier stage date to equal the subsequent recorded stage. Because the
FDA requires each new drug to move through each phase before receiving approval, seeing a drug at a later
stage in development is strong evidence that it previously moved through the earlier stages. We never fill
drug development “forward,” because many drug candidates fail to progress at each stage.
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insulin analogue (ATC4 A10A), a non-insulin blood glucose lowering drug (A10B), or other

diabetes drug (A10X). Cardiovascular drugs span 28 distinct ATC4 categories. Narrowing in

on the subgroup of cardiovascular drugs that are beta blocking agents, Appendix Table A.1

reports 6 distinct ATC4 classes for beta blockers, distinguishing whether the beta blocker is

present in isolation or in combination with various other drug types.

We interpret an ATC4 drug class as a “market,” where drugs within the class will typically

be partial substitutes for one another. We drop ATC4 categories that are not categorized as

drugs in FDB, such as medical supplies. We also restrict to ATC4 categories that contain

at least one branded drug on the market as of 2011. Finally, we drop ATC4 categories with

missing data on prices or the availability of generic and branded drugs as measured in FDB

and ATC4s with missing data on prescription volume as measured in the 2011 Medicare

Expenditure Panel Survey, as we need to be able to predict exclusion risk as a function

of these market attributes for our main specification. After making these restrictions, our

primary sample has 127 ATC4 classes. Table 1 Panel B shows the summary statistics of

various market characteristics for our sample ATC4s, separately based on whether or not

they experienced exclusions in 2012 or 2013.

4 Formulary Exclusions

4.1 Descriptive statistics

Figure 2 illustrates the rise of drug exclusions over time and across PBMs. CVS is the

first major PBM to implement a closed formulary, starting with the exclusion of 38 drugs

in 2012. CVS advertises on its payer-facing website, “[W]e were the first pharmacy benefit

manager...to remove certain high-cost drugs from our Standard Formulary and give

preference to lower-cost, clinically appropriate alternatives leading to cost savings for

clients.”13 Over the next six years, CVS oversaw a a sustained expansion of exclusions,

with more drugs being added to its exclusion lists each year. Express Scripts introduced its

exclusion list in 2014, followed by OptumRx in 2016. By 2017, a total of 300 drugs were

ever excluded by at least one of the three major PBMs. 75% of these excluded drugs had

13https://payorsolutions.cvshealth.com/programs-and-services/cost-management/formulary-management
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no molecularly equivalent generic substitute on the market. Figure 3 plots exclusions by

disease category at the drug level. Each bubble represents a disease category in a year, and

the size of the bubble reflects the number of drugs excluded by at least one PBM in that

category. From the outset, diabetes drugs have consistently been the most frequently

excluded. Other diseases with high numbers of exclusions include cardiovascular,

endocrine, and respiratory diseases.

The introduction of exclusion policies represented a major shift in market facing drug

manufacturers, with the scope and frequency of exclusions expanding steadily over time. For

instance, PBMs began to contravene a prior “gentlemen’s agreement” to keep cancer drugs

off exclusion lists (The Doctor-Patient Rights Project 2017). Starting in 2016, CVS and

Express Scripts excluded fluorouracil creams (which treat skin cancer and pre-cancer skin

conditions). In 2017, CVS expanded its exclusion list to oncology drugs, excluding drugs

such as Gleevec and Tasigna (which treat chronic myelogenous leukemia) and Nilandron and

Xtandi (which treat prostate cancer).14

In the remainder of this section, we analyze the effect of exclusions on drug sales and

describe how exclusion risk differs across markets, as defined by drug therapeutic classes.

4.2 The impact of exclusions on drug sales

A PBM’s formulary choice has a substantial impact on patients’ drug utilization. A

large body of work has documented that patient demand for drugs is elastic to the

out-of-pocket price, suggesting that eliminating insurance coverage for excluded drugs will

suppress demand.15 Recent evidence from plans that switch to the restrictive CVS

formulary find evidence of therapy discontinuation for patients on excluded drugs

(Shirneshan et al. 2016). While CVS was the first PBM to implement a closed formulary

in 2012, an older literature examined individual insurance plan’s formulary choices. These

earlier formulary coverage decisions affect many fewer patients than the national PBM

14Coverage of cancer drugs was mandated for privately administered Medicare Part D plans, but was not
mandated for private plans in general. When CVS began excluding cancer drugs in 2017, the PBM stipulated
that this restriction would only affect new patients (The Doctor-Patient Rights Project 2017).

15For example, the following papers find evidence of negative price elasticities for drugs, as a function of
insurance cost-sharing: Abaluck et al. (2018), Einav et al. (2017), Choudhry et al. (2011), Thiebaud et al.
(2008), Tamblyn et al. (2001).
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formularies we study here, but are likely to have similar effects on the drug choices of

enrolled patients. This research has found that closed formularies induce patients to switch

away from excluded drugs (Motheral and Henderson 1999; Huskamp et al. 2003) and

reduced healthcare spending (Chambers et al. 2016). Further, doctors who treat many

patients insured with restrictive formularies are less likely to prescribe excluded drugs even

to patients with open formulary insurance plans (Wang and Pauly 2005).

To test whether these patterns hold in our setting, we investigate the link between PBM

formulary exclusions and drug sales, using data on prescription drug claims from Medicare

Part D from 2012-2017. We estimate the impact of exclusions on claims for drugs that were

already on the market and had Part D claims, using a model that includes drug fixed effects

and controls for year and time-varying market characteristics. Because Medicare Part D

regulation over this period disallowed formulary exclusions from six protected drug classes,

this analysis studies the 161 excluded drugs that are not in a protected class.16

The distribution of Part D claims per drug is highly right-skewed. Appendix Table A.2

reports that the mean number of annual Part D claims per drug is 158,298 for non-excluded

drugs, while the median is 4,357. Drugs that eventually receive an exclusion have an even

higher mean (454,433), consistent with the evidence from our FDB analysis that exclusions

typically target high-volume drugs. Due to the high variance of prescription volume, our

primary outcome in the regression analysis is the natural log of the drug’s claim count.

Regression results reported in Table 2 find that each additional excluding PBM

decreases a drug’s prescription volume by 24% (e−0.274 − 1). This coefficient is identified

from within-drug changes in formulary exclusion status, since the estimating equation

includes drug-specific fixed effects to control for the drug’s baseline popularity, and as well

as drug age × calendar year fixed effects to capture lifecycle patterns. Additional controls

for time-varying demand for the drug class, captured with ATC4 X calendar year fixed

effects, do not attenuate the estimate; these results are reported in Column 2. As an

alternative outcome, we consider the impact of exclusions on the excluded drug’s market

share (i.e., share of total Medicare Part D claims) within the ATC4 class. We find very

16The protected classes are antidepressants, antipsychotics, anticonvulsants, antineoplastic agents,
antiretroviral agents, and immunosupressants. Of the 181 excluded drugs prescribed in Part D, only 20
fall into these classes.
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similar results: each additional excluding PBM reduces a drug’s market share by 20%

percent.

This analysis of exclusion impact will tend to overstate the magnitude of these effects on

excluded drugs if patients substitute from excluded drugs to non-excluded drugs within the

same ATC4 category. These spillovers will inflate prescription volume in the “control group”

of non-excluded drugs, increasing the difference between excluded and non-excluded drugs.

We take these results as informative of the direction of exclusion impact, but measuring

the full set of cross-drug substitution elasticities (which are likely to be very heterogeneous

across drug classes) is beyond the scope of this project. Another limitation of this analysis

is that it cannot measure prescription drug sales that are not claimed in Medicare Part

D; if formulary exclusions leads patients to pay fully out-of-pocket for the drugs without

requesting insurance coverage, we will not have a record of it in our data.

In Appendix Table A.3, we investigate whether the immediate exclusion of newly released

drugs depresses drug diffusion, relative to the diffusion of other drugs in the same ATC4 class.

These estimates suggest that formulary exclusion depresses prescription volume of new drugs

by 68% (e−1.147 − 1), although the estimates are noisier because they focus on a small set of

13 drugs that face immediate exclusion by at least one PBM within 1 year of FDA approval.

4.3 Predictors of formulary exclusion risk

Twelve percent of ATC4 drug classes experienced exclusions in 2012 and 2013, the first

two years of the closed formulary policy. Having provided evidence that exclusions harm

revenues, we next examine the factors that predict exclusion risk. Prior descriptions of

PBMs’ exclusion strategy have, for example, argued that exclusions target drugs that have

escalated price increases, limited clinical evidence, or target an overly broad patient

population (Cournoyer and Blandford 2016).

To examine which characteristics predict exclusions at the drug-market level, we regress

an indicator for whether a drug class experiences exclusions in 2012 or 2013 on various ATC4

level market characteristics. Using data from FDB described in Section 3, we construct the

following measures of potential predictors of exclusion risk for 127 ACT4 classes: measures

of the availability of therapeutic alternatives such as the number of existing branded drugs

approved within an ATC4, the number of existing generics within the same class, or the
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number of finer-grained ATC7 subclasses (which indicate specific chemical substances). We

also measure the expected size of the patient population by using information on total

prescription volume across all drugs in a given ATC4 class; this information is calculated

from the 2011 Medicare Expenditure Panel Survey. Finally, we collect data on the price of

already approved branded and generic drugs, keeping in mind that price data do not reflect

the rebates that manufactures often pay to PBMs. All of these market characteristics are

from 2011, before the introduction of first exclusions in 2012.

Figure 4 plots the coefficients of bivariate linear regressions of exclusion on each drug

class characteristic; these regressions estimate how standardized market characteristics

predict the probability of having at least one exclusion in the ATC4 class in 2012 or 2013.

We find that drug classes with higher prescription volume and more existing treatment

options (measured as the number of distinct drugs on the market) are more likely to

experience exclusions. These patterns are consistent with the contemporaneous analysis of

industry experts. Mason Tenaglia, vice president of IMS Health described formulary

exclusions as targeting “me-too drugs” with multiple therapeutic substitutes (Reinke

2015). In an interview, the chief medical officer of Express Scripts echoed this strategy of

targeting me-too drugs, and further described a focus on excluding drugs with a larger

number of prescribed patients: “[T]here’s no reason to go after trivial drugs that aren’t

going to drive savings” (Miller and Wehrwein 2015). We find no statistically significant

relationship between drug prices in the class and exclusion risk, but because our data does

not measure prices net of rebates, these correlations are difficult to interpret.

Having shown that these market characteristics have predictive power, we use them to

construct an index of an ATC4 drug class’s likelihood of facing exclusions. To do so, we fit a

logistic regression to predict whether a drug class experience exclusions in 2012 or 2013 as a

function of all of the ATC4 market characteristics (measured as of 2011). For this regression,

the unit of observation is a single ATC4 drug class c. We then use the regression’s fitted

values to construct the predicted exclusion risk of each ATC4: Pr(Excluded)c. Appendix

Table A.4 shows the results of this exercise and Appendix Figure A.1 plots the resulting

distribution of predicted exclusions.

The goal of our analysis is to understand how exclusion risk affects upstream R&D

decisions. Our theory predicts that changes to upstream investments are shaped by the
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expected net present value (NPV) of projects in a drug class: exclusions can decrease NPV

either because firms anticipate that the new drug may be excluded, or because firms

anticipate that they will have to pay high rebates in order to avoid exclusions. Our primary

analysis defines treatment exposure as predicted exclusion risk in order to consider the

impact of exclusions not only on drug classes with realized exclusions but also on classes

with similar market characteristics where high rebates may be paid to avoid exclusions.

We test whether our measure of exclusion risk has empirical validity by asking whether

predicted exclusion risk fit from 2012 and 2013 exclusion lists correlates with subsequent

exclusions in 2014-2017. Table 3 shows that our measure of exclusion risk has out-of-sample

prediction power. In Column 1, we show that a 1 standard deviation increase in exclusion risk

(estimated based on 2012 and 2013 exclusions) correlates with a 17 percent point increase in

the likelihood that an ATC4 class experiences exclusions in later periods. In Column 2, we

repeat this exercise restricting to the subset of ATC4s that do not experience any exclusions

during the first wave of exclusions in 2012 and 2013. This set includes drug classes that are

actually at a very low risk of experiencing exclusions (in which case we would not expect them

to see future exclusions) as well as those that were at high risk, but which were able to avoid

early exclusions perhaps by offering higher rebates. Among this set of drug classes with no

early exclusions, our measure of predicted exclusion risk is still significantly correlated with

future exclusions. This result suggests that exclusions followed a consistent and predictable

pattern over our study period, and that market characteristics can form valid out-of-sample

predictions of at-risk drug classes.

5 The Impact of Exclusion Risk on Subsequent Drug

Development

In our model, we predict that exclusion risk decreases the NPV of projects in more

affected drug classes, and therefore dampens upstream investments in these areas. This

logic is echoed by pharmaceutical executives: AstroZeneca leaders, for example, describe

meeting “payer criteria required for global reimbursement” as a crucial input into their

decisions about R&D investment (Morgan et al. 2018). In this section, we use our measure
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of drug-class exclusion risk to study how upstream firms’ investment strategies respond to

exclusion risk.

5.1 Empirical strategy

Our main specification compares drug development behavior across ATC4 drug classes

that vary in their ex-ante risk of exclusion, before and after the rise of closed formulary

policies:

Developmentct = β1Pr(Excluded)c × I(Yeart ≥ 2012) + Xctγ + δc + δt + εct (1)

In Equation (1), Developmentct refers to various measures of the number of new drug

candidates in drug class c at year t. We define a drug class’s extent of treatment using

Pr(Excluded)c, described above in Section 4.3. In Section 5.3, we show that our results are

robust to an alternative definition of treatment that uses data on realized exclusions, rather

than exclusion risk. The regressions control for drug class fixed effects (δc), year fixed

effects (δt), and time-varying drug market controls (Xct).

To interpret our primary coefficient of interest, β1, as the causal impact of drug exclusions

on development activity, we must assume that development activity in ATC4s with different

predicted degrees of exclusion risk would have followed parallel trends in the absence of

formulary exclusions. We use event study graphs over a 5 year pre-period to assess the

plausibility of this assumption. These graphs are based on a modified version of Equation

(1), which replaces the single indicator variable for being in the post period (I(Yeart ≥ 2012))

with a vector of indicator variables for each year before and after the introduction of PBM

exclusion lists in 2012.

5.2 Main results

We begin by studying how trends in drug development activity vary across ATC4

classes as a function of formulary exclusion risk. Figure 5 shows the

difference-in-differences results in an event study framework. There appears to be little

difference in drug development across excluded and non-excluded ATC4s prior to 2011,

suggesting that the parallel trends assumption is supported in the pre-period. Development
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activity across excluded and non-excluded drug classes begins to diverge in 2012, and these

differences grow until 2017, the last full year of our sample.

Table 4 presents our main regression results. The outcome is the total number of drug

candidates within a class that entered any stage of development each year. In Column 1,

we estimate that a one standard deviation increase in the risk that the class has formulary

exclusions leads to 3.6 fewer advanced drug candidates each year, from a mean of 30.6

advancing candidates.17 In Column 2, we include controls for a variety of time-varying

market conditions at the ATC4 class level: the number of approved drugs in that class,

the number of approved generic drugs, the mean price of branded drugs minus the mean

price of generic drugs, and the number of ATC7 subclasses (which indicate specific chemical

substances) with approved drugs. Adding these controls lowers our estimate slightly from

3.6 to 3.3 fewer drug candidates per 1 standard deviation increase in class exclusion risk. We

find similar results after log-transforming the outcome, suggesting that development activity

declines by 5-6% in excluded classes for every 1 standard deviation increase in class exclusion

risk, as reported in columns 3 and 4.

Table 5 decomposes the total effect by drug development stage. In Table 5, we find the

largest percent declines for earlier stage drugs. Exponentiating the reported coefficients, we

estimate a 7% decline in new pre-clinical candidates for every 1 standard deviation increase

in the probability that the class has exclusions, as compared to a decline in advancing

candidates of 5% in Phase 1, 5% in Phase 2, and 4% in Phase 3. We find consistent results

when measuring the outcome in levels (rather than logs), and report these results in Appendix

Table A.5 and Appendix Figure A.2. The patterns in the event study difference-in-differences

plots are very similar across development stages.

We interpret these findings in the context of the drug development process, where Phase

1 trials generally assess safety, Phase 2 trials provide preliminary evidence of efficacy, and

Phase 3 trials are the large-scale expensive trials that firms rely upon to generate data for

FDA approval. Of these investment stages, Phase 3 trials are the most costly, with average

costs estimated over $250 million per drug in 2013 dollars (DiMasi et al. 2016). Given that

the marginal cost of continuing to develop a candidate drug remains high through the end of

17As reported in Appendix Figure A.1, the standard deviation of the probability the class faces exclusions
is 0.15. Using the coefficient reported in Table 4, we calculate −24.03 ∗ 0.15 = −3.6.
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phase 3 trial stage, it is sensible that firms would be more likely to drop drug candidates even

at this relatively late stage. Further, a drug is more likely to be excluded from formularies if

it offers few benefits relative to existing treatments. Phase 2 trials provide the first evidence

of clinical efficacy. If a drug shows only marginal promise, then a firm concerned about the

possibility of exclusions may choose to end its development efforts rather than committing

to very expensive Phase 3 trials.

In contrast, we find no effect for new drug launches; at the point when a drug has

completed Phase 3 trials, the bulk of R&D expenses are already sunk. As a result, concerns

about coverage would be less likely to impact a firm’s launch decisions. Over time, we would

expect that launches would also fall in affected drug classes as the pipeline narrows, but,

given the long time lags in bringing a drug through each development stage, this effect would

not be immediate.

5.3 Robustness checks

In this section, we show that our results are robust to alternative choices for defining

exclusion risk, linking drug candidates to drug classes, and calculating standard errors.

First, we show that our results are consistent when we apply an alternative definition of

a drug class’s exclusion risk. In our primary analysis, we use 2011 ATC4 market level

characteristics to predict exclusion risk. An alternative approach would be to look at

realized exclusions and ask whether drug classes that actually experienced exclusions saw

reductions in development. Appendix Figure A.3 and Appendix Table A.6 presents results

using a binary definition of treatment (whether or not an ATC4 class actually experienced

an exclusion in 2012 or 2013) and show a similar pattern of results as our main analysis.

Second, we show that our results are robust to the method we use to match drug

candidates to drug classes. In our primary analysis, we match drug candidates to ATC4

drug classes using a direct linkage when Cortellis provides it (in 43% of cases); in cases

where direct linking is not possible, we rely on indirect linking based on using a drug

candidate’s area of therapeutic application (ICD9) combined with an ICD9-ATC4

crosswalk. Appendix B provides further details on how we linked the drug candidates from

Cortellis to ATC4 classes. Appendix Tables A.7 and Appendix Figure A.4 show that our
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results are similar when either using only direct linkages (Panel A) or only indirect linkages

(Panel B).

Finally, conventional inference can over-reject when the number of treated clusters is

small, so we also implement a correction using the wild cluster bootstrap (Cameron et al.

2008; Djogbenou et al. 2019). In Appendix Table A.8, we report 95% confidence intervals

calculated with the wild cluster bootstrap for our main regression results; our findings

remain statistically significant. In this table, we also present robustness to using the

inverse hyperbolic sine function rather than log transformation to better account for ATC4

categories with no development in some years. Results are very close to the log

transformed outcomes reported in the main text, and remain statistically significant.

5.4 Classifying foregone innovation across drug classes

In this section, we describe the drug classes and types of projects that experienced the

greatest declines in R&D as a result of formulary exclusions. To assess the decline in drug

development for each ATC4 drug class, we compare the number of candidates we predict

would have been developed in the absence of exclusions to the number we predict in the

presence of exclusions. This analysis examines how exclusions impact the allocation of

R&D resources across drug classes that vary in their size, competitiveness, or level of

scientific novelty. We focus on allocation across drug classes because our theoretical

framework, formalized in Appendix A, predicts that exclusions will affect the relative

investments in drug development across classes.18

Our analysis is based on the specification reported in Table 4 Column 4; this is our

preferred specification because it controls for a battery of time-varying drug class

observables and generates the most conservative point estimate. To measure predicted new

drug candidates in the presence of exclusions, we calculate the fitted value prediction of

drug development activity for every year of the post-period. To recover the predicted new

drug candidates absent exclusions, we repeat this exercise after setting the treatment

variable Pr(Excluded)c × I(Yeart ≥ 2012) equal to zero for all observations. We use these

18The impact of exclusion policies within a drug class are less obvious; while it is possible that exclusions
may change the characteristics of promoted molecules within a drug class, these effects may be smaller and
more difficult to measure. Because ATC4 drug classes already represent relatively narrow categories, there
is limited scope to change the scientific novelty of investment within the class, for example.
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predictions as the basis for calculating the percent decline in development activity

attributable to exclusion risk. We then compare the predicted decline in development

activity across several ATC4 drug class characteristics, measured before the introduction of

the formulary exclusions.

Availability of existing therapies & market size

For our first counterfactual comparison, we divide drug classes into terciles based on the

number of existing therapies, as measured by the number of distinct drugs available within

that class as of 2011. Figure 6 Panel A compares predicted drug development activity to the

counterfactual development levels predicted to have occurred absent exclusions. Consistent

with our model, we see the largest declines in drug classes with more existing therapies:

among drug classes in the top tercile of available therapies, exclusions depress development

by nearly 8%. By contrast, exclusions depress development by less than 2% for drug classes

in the bottom tercile of pre-existing therapies. This result indicates that formulary exclusions

lead firms to reduce their investments in drugs that are more likely to be incremental entrants

to more crowded therapeutic areas.

In Figure 6 Panel B, we perform the same analysis splitting drug classes by market size, as

measured by the volume of prescriptions filled in 2011 (estimated from the MEPS data). We

find that formulary exclusions disproportionately impact drug development in therapeutic

classes with many patients. For drug classes in the top tercile of prescription volume, drug

development is predicted to decline by more than 10% after the introduction of formulary

exclusions.

Disease category

Next, Figure 7 explores the extent of foregone innovation across therapeutic areas. To

do so, we map ATC4 drug classes into disease categories and calculate the percentage

change in drug development from the counterfactual predicted absent exclusions. Our

results indicate that closed formulary policies generated substantial declines in

development across a range of disease classes, led by diabetes, where we predict more than

a 20% decline in the number of new drug candidates. The next set of affected disease

categories, predicted to lose 8-10% of new drug candidates, includes cardiovascular,
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respiratory, autonomic & central nervous system, and pain/inflammation related

conditions. Meanwhile, we find little evidence of significant declines in development

activity for many acute diseases, such as infections, viruses, and cancers.

This set of evidence is consistent with the hypothesis that closed formulary policies reduce

firms’ incentives to develop additional treatments in large markets, where new drugs may

face a high likelihood of exclusion. This creates a tension: while foregone innovations are

likely to be incremental in the sense that the most impacted drug classes already have many

existing treatment options, they are also likely to have benefited more patients because the

most impacted drug classes also had the largest base of prescribed patients.

Scientific novelty

Finally, we examine the relative effect that formulary exclusions had on R&D investment

across areas with differing measures of scientific novelty. To assess scientific novelty, we match

drug candidates within an ATC4 class to the scientific articles cited by their underlying

patents, making use of patent-to-science linkages created by Marx and Fuegi (2020). We

then create two measures of the scientific novelty of research in a drug class (averaged

over 2007-2011). First, we calculate how often patents in a drug class cited recent science,

defined as articles under 5 years old as of 2011. In Panel A of Figure 8, we find that

exclusions generate twice as large a decline in R&D in drug classes that were rarely citing

recent science in the policy pre-period, compared to those that were (8% vs. 4% predicted

declines, respectively).

Second, we measure how “disruptive” research in a drug class is likely to be. To do

this, for each of the scientific article cited by the underlying patents of the drugs, we follow

Funk and Owen-Smith (2017) and measure how many of a focal article’s forward citations

also cite the focal article’s backward citations. This “disruptiveness” index, ranging from -1

(consolidating) to 1 (destabilizing), captures the idea that a research article that represents

a paradigm shift will generate forward citations that will not cite the breakthrough article’s

backward citations. In contrast, a review article that consolidates a knowledge domain will

receive forward citations that will also cite the same citations as the review article. In

Figure 8 Panel B, we report predicted changes in drug development as a function of how
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disruptive the patents underlying the drugs were in this class over the pre-period (proxied by

the average disruptiveness index of the cited science). Formulary exclusions spurred larger

reductions in development in drug classes citing the least disruptive research.

Together, these results suggest that exclusions encouraged a relative shift in R&D dollars

toward investment in drug classes engaging with more recent, novel science.

6 Discussion

So far, we have shown that closed formulary policies lead pharmaceutical firms to invest

less in R&D for areas more likely to face exclusions. This response results in a shift in

development across drug classes: away from large markets (in terms of available therapies and

prescription volume) and common disease classes treating chronic conditions such as heart

diseases and diabetes. Moreover, our evidence also indicates that R&D effort shifts away

from drug classes with older and less disruptive underlying science. Overall, these results

suggest that exclusions direct upstream research away from more incremental treatments.

As discussed in Section 2, the welfare implications of this behavior are theoretically

ambiguous. There are two key considerations. First, exclusions reduced development of

drugs for crowded markets; what is the value of this sort of forgone incremental innovation?

Second, when investment declines in high-exclusion risk classes relative to other classes, does

this contribute to an aggregate decline in pharmaceutical R&D, or is some of the investment

redirected to innovation in other drug classes within the sector?

Regarding the first question, assessing the value of late entrants to a drug class is difficult

because even incremental drugs can reduce side effects, improve compliance by being easier to

take, or generate price competition and improve access (Regnier 2013; Hult 2014). Further,

even if the new drugs never make it to market, incremental drug candidates may generate

scientific spillovers, leading to further innovation over a longer time horizon.

Second, our empirical approach cannot test for aggregate changes in development activity,

which would be identified solely by time-series trends. By estimating equation (1), we isolate

the relative change in development activity in drug categories with exclusions, compared to

the changes in non-excluded categories. These differences could come from a combination of
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absolute declines in R&D for excluded classes or it could come from a shift in development

from classes with high- to low-exclusion risk.

Absent financial frictions, we would expect that the introduction of closed formularies

would decrease the expected value of investments in drug classes at high risk of facing

exclusions, but should have little to no impact on the net present value for drugs in classes

at low risk of facing exclusions. In such a world, we would interpret our results as leading

to an absolute decline in drug R&D. However, a large finance literature has shown, both

theoretically and empirically, that even publicly traded firms often behave as though they

face financial frictions (Myers and Majluf 1984; Froot et al. 1993; Brown et al. 2009). This

is especially true in pharmaceuticals and other R&D intensive sectors where intellectual

property is more difficult to collateralize or value (Fernandez et al. 2012; Kerr and Nanda

2015; Krieger et al. 2019). For example, it is common for firms to set their R&D budgets

by allocating a percentage of revenues from the previous year.

In the event that exclusion policies generate some degree of reallocation away from

older drug areas toward newer ones, a welfare analysis would need to take into account the

relative value of research in these areas. In our case, this would require weighing the value

of additional incremental innovations aimed at larger markets against the value of

earlier-in-class innovations for less common conditions.19

7 Conclusion

Amid rising public pressure, government and private payers are looking for ways to

contain drug prices, while maintaining incentives for innovation. In this paper, we study how

the design of downstream insurance policies—namely, those related to drug coverage—impact

upstream investments in pharmaceutical R&D.

We find that drug classes facing a one standard deviation greater risk of experiencing

exclusions see a 5% decline in drug development activity following the introduction of

closed formulary policies. These declines in development activity occur at each stage of the

19Moreover, if exclusion policies have positive spillovers on development in non-excluded categories (e.g.,
due to within-firm investment reallocation), our estimates will tend to overstate the magnitude of the total
decline in R&D investment in excluded categories. By contrast, if exclusion policies have negative spillovers
on non-excluded categories (e.g., due to a fall in revenue reducing available development dollar), our estimates
will tend to understate the magnitude of the investment decline in excluded categories.
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development process, from pre-clinical through Phase 3 trials. In aggregate, our results

suggest that PBMs wielded the threat of formulary exclusion in a way that shifted the

relative allocation of R&D effort away from incremental treatments for common conditions

such as heart diseases and diabetes, as well as away from drug classes with many existing

therapies on the market and older, less novel underlying science.

Taken together, our results provide strong evidence that insurance design influences

pharmaceutical R&D. Leaving aside the specifics of which drug classes faced greater

exclusion risk in our setting, an overarching point that our paper makes is that

pharmaceutical firms anticipate downstream payment policies and shift their upstream

R&D efforts accordingly. Viewed from a public policy perspective, this finding opens the

door for insurance design to be included as a part of the broader toolkit that policymakers

use to encourage and direct investments in innovation. In particular, public policy related

to innovation has almost exclusively focused on ways that the public sector can directly

influence the returns to R&D, such as through patents, tax credits, research funding, or

other direct subsidies. Our results suggest that, in addition, managers and policymakers

can use targeted coverage limitations—for example, those generated by value-based

pricing—to shift R&D efforts away from drugs with limited incremental clinical value.

The limitations of our analysis suggest several important directions for future work. First,

our identification strategy allows us to document a relative decline in R&D in high exclusion

risk categories; more research is needed in order to assess the extent to which policies that

limit the profitability of a specific class of drugs generate aggregate declines in R&D or

induce reallocations toward other areas. Second, it remains a challenge to place an accurate

value on the innovation that is forgone as a result of the exclusion practices we study. While

we focus on the availability of existing treatments, prescription volume, and measures of

scientific novelty, these are not complete descriptions of the clinical and scientific importance

of potentially foregone drugs. Third, because we cannot directly observe drug price rebates,

we cannot directly quantify the reductions in revenue precipitated by formulary exclusion

policies. Finally, as formulary exclusion policies continue to expand—toward smaller drug

markets and those in which there are fewer therapeutic substitutes—additional research will

be needed to see if our findings extrapolate to those settings.
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Figure 1: Pharmaceutical Payment and Supply Chain Example

Notes: Illustration of the flow funds and prescription drugs for a prescription drug purchase covered by
a Medicare Part D Insurance plan. Other private insurance plans using PBMs have similar flow of funds.
Figure credit to Government Accountability Office (2019).
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Figure 2: Number of Excluded Drugs by PBMs
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Notes: This figure plots the number of drugs excluded by each of the three Pharmacy Benefit Managers.
CVS was the first to begin excluding drugs in 2012, followed by Express Scripts in 2014 and OptumRx in
2016.
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Figure 3: Number of Excluded Drugs by Disease Categories

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2011 2012 2013 2014 2015 2016 2017 2018

Notes: Each bubble represents a disease category in a year, and the size of the bubble reflects the number
of drugs that were excluded by CVS, Express Scripts, or OptumRx in that disease category. There were a
total of 300 drugs that were ever excluded from 2012-2017 by at least one of the three PBMs. Of these 300
excluded drugs, we were able to match 260 of them to the First Data Bank data, from which we obtained
the ATC4 data. We manually matched each ATC4 to a disease category; this disease taxonomy was adapted
from the disease categories provided by the PBMs in their exclusion lists.
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Figure 4: Predictors of Exclusion Risk
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Notes: We used the 2011 market characteristics of the ATC4 class to predict exclusion risk. The plotted
coefficients were generated by conducting bivariate linear regressions of whether an ATC4 class had at least
one drug excluded in 2012 or 2013 on each characteristic of the ATC4 class. Independent variables were
standardized (divided by their standard deviation). All of the coefficients, except the price variable, were
significant at the 5% level. Since not every ATC4 class had data on all of the characteristics, sample size
differed across the regressions: 197 ATC4 classes when predicting exclusion risk using the number of brand
NDCs, generic NDCs, or ATC7s, 134 when using brand price premium, and 165 when using total prescription
volume. Data on prices, the number of brand and generic NDCs, and the number of ATC7s are from FDB;
data on total prescription volume are from the 2011 Medical Expenditure Panel Survey.

36



Figure 5: Impact of Predicted Exclusion Risk on New Drug Development:
Event Study
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Notes: Figure displays coefficient estimates and 90% confidence intervals from a modified version of
Equation (1). The outcome variable is the annual count of new development activity (across all stages). To
generate the event study graph, we replace the single post-period indicator variable (I(Year ≥ 2012)) with
a vector of indicator variables for each year before and after the introduction of PBM exclusion lists in
2012. We plot the coefficients on the interaction of these year indicators and a continuous measure of
predicted exclusion risk. (Exclusion risk is predicted using 2011 market characteristics, prior to the
introduction of PBM formulary exclusions. Details on the prediction of exclusion risk can be found in
Appendix Table A.4.) The regression controls for ATC4 fixed effects and year fixed effects. The sample
includes 1,397 ATC4-year observations.
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Figure 6: Counterfactual Development Activity by Pre-Period
Availability of Existing Therapies & Market Size

A. Reduction in development B. Reduction in development
by number of drugs in class by number of prescriptions in class
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Notes: This figure displays the percent decrease in annual development attributable to exclusions.

Predictions are based on our estimation of equation (1); we match the specification reported in Table 4

column 4. The figure shows the percent difference between predictions at the ATC4 × year with and

without exclusions, averaged over the post-period (2012-2017). In Panel A, we group ATC4 drug classes by

terciles of the number of existing drugs in the class (in 2011); data on existing drugs is from First Data

Bank. In Panel B, we group ATC4 drug classes by the number of prescriptions written in the class (in

2011); data on prescriptions is from the 2011 Medical Expenditure Panel Survey. Drug classes are weighted

by the number of drugs with advancing development over the pre-period.
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Figure 7: Counterfactual Development Activity by Pre-Period Disease
Category
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Notes: This figure plots the predicted percent decline in drug development activity attributable to

formulary exclusions, by disease class. Predictions are based on our estimation of equation (1); we match

the specification reported in Table 4 column 4. We manually matched each ATC4 to a disease category;

this disease taxonomy was adapted from the disease categories provided by the PBMs in their exclusion

lists.

39



Figure 8: Counterfactual Development Activity by Pre-Period Measures
of Scientific Novelty

A. % Citing Recent Science B. Average “Disruptiveness” Index
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Notes: This figure displays the percent decrease in annual development attributable to exclusions. Drug

classes are divided into terciles according to attributes of patents associated with drug development activity

over the pre-period, averaged from 2007-2011. Panel A groups drug classes by the share of pre-period patents

in a drug class citing recent science as of 2011 (recent is therefore defined as publications between 2006 and

2011). Panel B groups drug classes by the average “disruptiveness” index of patents in the drug class over

the pre-period, which is a measure that captures how disruptive the scientific articles associated with the

patent are; the index ranges from -1 (least disruptive) to 1 (most disruptive) and was originally developed

by Funk and Owen-Smith (2017).
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Table 1: Summary Statistics

(A) New Drug Development

Mean Std. Dev. Median
All 30.61 42.06 13.05
Preclincal 17.39 26.13 6.64
Phase 1 6.54 8.84 3.07
Phase 2 4.57 6.04 2.17
Phase 3 2.11 3.04 1.04
Launch 1.02 1.63 0.31

(B) ATC4 Characteristics

ATC4s with ATC4s without
ATC4 market characteristics in 2011 early exclusions early exclusions
Mean N of generic NDCs 767.9 310.3
Mean N of brand NDCs 268 106.8
Mean N of ATC7s within ATC4 14.60 8.518
Mean brand price - mean generic price 5.822 55.98
Mean total prescription volume (millions) 70.46 17.63
Number of ATC4s 15 112

Notes: Panel A summarizes the annual drug development activity from 2007-2011 in the
Cortellis data. The sample includes 1,397 ATC4-year observations. The panel reports the
annual number of drug candidates within an ATC4 class that entered different development
stages. Panel B summarizes ATC4 market characteristics in 2011. Column 1 reports results
for ATC4 classes with at least one excluded drug in 2012-2013; Column 2 reports results for
ATC4s with no exclusions in 2012-2013. Data on pricing and the number of available drugs
are from First Data Bank; data on on total prescription volume are from the 2011 Medical
Expenditure Panel Survey.
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Table 2: Impact of Exclusions on Prescription Volume

(1) (2) (3) (4)
Log(Claims) Log(Claims) Log(Mkt. Share) Log(Mkt. Share)

Number of Excluding PBMs -0.274*** -0.319*** -0.220*** -0.319***
(0.0638) (0.0733) (0.0809) (0.0733)

Observations 4,626 4,391 4,626 4,391
Drug FE YES YES YES YES
Cohort X Year FE YES YES YES YES
Market Controls NO YES NO YES

Notes: This table estimates the impact of PBM formulary exclusion on the volume of
Medicare Part D insurance claims; each column reports a different regression specification.
The unit of observation is a drug × year. The outcome variable in columns (1) and (2) is the
natural log of the total number of annual claims; the outcome in columns (3) and (4) is the
annual market share of the index drug relative to all other drugs in the ATC4 class. The key
independent variable of interest is the number of formularies excluding the drug that year.
All regressions include drug fixed effects and drug age X calendar year fixed effects. (Drug
age is measured as number of years elapsed since market entry.) Specifications (2) and (4)
include additional controls for ATC4 class × calendar year fixed effects to account for trends
in demand for different drug classes. Data on prescription volume is from Medicare Part D
2012-2017 public use files. We analyze exclusions on 161 excluded drugs that are prescribed
to Medicare Part D enrollees and are not in a protected class. Standard errors are clustered
at the drug level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Early Exclusion Risk and Later Exclusions

(1) (2)
Late Exclusion Late Exclusion

Pr(Exclusion) 0.167*** 0.150**
(0.0413) (0.0624)

Observations 127 112
Sample All ATC4s ATC4s without early exclusions

Notes: Using a linear probability model, we regressed whether ATC4 classes that were
highly predicted to be excluded by 2013 were more likely to be actually excluded later
after 2013. Early exclusion risk is a continuous measure defined using the same specification
underlying Table 4; we used 2011 market characteristics of the ATC4 class to predict whether
the ATC4 class was at risk of exclusion by 2013. We then standardized this early exclusion
risk variable. The outcome variable, late exclusion, is a binary variable that indicates whether
the ATC4 was on any of the PBM’s exclusion list at least once in 2014-2017. Column 1
includes all ATC4s, while Column 2 drops ATC4s that were actually excluded by 2013.
Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Impact of Predicted Exclusion Risk on New Drug Development

(1) (2) (3) (4)
New Development New Development Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -24.03*** -21.98*** -0.382*** -0.333***
(5.894) (6.571) (0.108) (0.115)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls YES YES

Notes: This table reports results from estimation of equation (1); each column reports a
different regression specification. The unit of observation is an ATC4 drug class × year.
The outcome variable “New Development” is the annual count of new development activity
(across all stages). The treatment variable is a continuous measure of predicted exclusion
risk. (Exclusion risk is predicted using 2011 market characteristics, prior to the introduction
of PBM formulary exclusions. Details on the prediction of exclusion risk can be found
in Appendix Table A.4.) The “Post” period comprises years 2012 and later, after the
introduction of PBM formulary exclusions. All specifications include year fixed effects and
ATC4 fixed effects. Columns 2 and 4 include time-varying controls for each of the drug class
characteristics listed in Table 1. Standard errors are clustered at the ATC4 level. Statistical
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Impact of Predicted Exclusion Risk on New Drug Development By Stages

(1) (2) (3) (4) (5) (6)
Log(1+All) Log(1+Preclincal) Log(1+P1) Log(1+P2) Log(1+P3) Log(1+Launch)

Post X Pr(Exclusion) -0.333*** -0.449*** -0.331*** -0.310*** -0.259** 0.113
(0.115) (0.101) (0.103) (0.106) (0.101) (0.138)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls YES YES YES YES YES YES
N of Drug Candidates Mean 30.61 17.39 6.54 4.57 2.11 1.02

Notes: See notes to Table 4. Each column reports a regression with a different outcome variable. Column 1 replicates the result
reported in Table 4 column 4 on total development activity. The additional columns decompose this affect to explore how drug
development changes at each phase, moving from the earliest observed preclinical activity in column 2 through the each phase of
clinical trials and eventual launch on the market. Standard errors are clustered at the ATC4 level. Statistical significance is indicated
as: *** p<0.01, ** p<0.05, * p<0.1.
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Figure A.1: Distribution of Predicted Exclusion Risk
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Notes: This histogram plots the distribution of predicted exclusion risk of the 127 ATC4s in our main
analyses. Summary statistics are also provided. See notes to Appendix Table A.4 for details on how the
exclusion risk was calculated.
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Figure A.2: Impact of Predicted Exclusion Risk on New Drug
Development: Event Study By Stages

A. Pre-clinical B. Phase 1

-3
0

-2
0

-1
0

0
10

Es
tim

at
ed

 Im
pa

ct

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

-1
0

-5
0

5
10

15
Es

tim
at

ed
 Im

pa
ct

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

C. Phase 2 D. Phase 3

-1
0

-5
0

5
Es

tim
at

ed
 Im

pa
ct

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

-4
-2

0
2

4
Es

tim
at

ed
 Im

pa
ct

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

Notes: See notes to Figure 5. Each panel displays results from estimating the same equation with a
distinct outcome variable. The outcome variables correspond to the number of drug candidates tested at the
indicated phase within the ATC4 category and year. The sample includes 1,397 ATC4-year observations.
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Figure A.3: Impact of Exclusions on New Drug Development: Event Study
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Notes: These results parallel the specification underlying Figure 5, but with a new definition of exclusion
exposure. Instead of defining exclusion risk as a continuous measure predicted using the 2011 market
characteristics, the exclusion risk here is a binary variable that equals one if any drug in the ATC4 class was
on a PBM exclusion list in 2012 or 2013. The sample includes 1,397 ATC4-year observations.
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Figure A.4: Impact of Predicted Exclusion Risk on New Drug
Development: Event Study, Alternative ATC4 Linking

(A) Directly Linked Approach Only
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Notes: These results parallel the specification underlying Figure 5, but with alternative methods for linking
drug candidates to ATC4 classes. In these figures, we have replaced our baseline outcome measure of
development activity with two alternative outcomes that take different approaches to matching. In Panel A,
we only count track development activity among the subset of drug candidates for which Cortellis directly
reports the drug class. In Panel B, we impute ATC4s from ICD9 codes for all drug candidates, rather than
relying on Cortellis’ reporting of drug class. Appendix B provides more details on how the drug candidates
are linked to ATC4s.
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Table A.1: Examples of ATC4 Codes Defining Drug Markets

A10 Diabetes drugs
A10A Insulins and analogues
A10B Blood glucose lowering drugs, excluding insulins
A10X Other drugs used in diabetes

C07 Beta blocking drugs
C07A Beta blocking agents
C07B Beta blocking agents and thiazides
C07C Beta blocking agents and other diuretics
C07D Beta blocking agents, thiazides and other diuretics
C07E Beta blocking agents and vasodilators
C07F Beta blocking agents, other combinations

Notes: This table provides examples of ATC4 classes for illustrative purposes. Our
sample includes 127 distinct ATC4 classes. A complete listing of the ATC4 class definitions
that guided this analysis can be found in WHO Collaborating Centre for Drug Statistics
Methodology (2010).
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Table A.2: Summary Statistics, Part D Claims per Drug

Mean Std. Dev. Median No. of obs.
Claims for non-excluded drugs (all ages) 158,298 842,241 4,357 3,923
Claims for excluded drugs (all ages) 454,433 1,193,389 45,374 867
Market share, non-excluded drugs (all ages) 0.187 0.305 0.027 3,923
Market share, excluded drugs (all ages) 0.113 0.211 0.028 867
Claims for new drugs, not excluded on entry 125,826 395,623 7,123 1,811
Claims for new drugs, excluded on entry 193,731 452,800 27,799 59
Market share of new drug, not excluded on entry 0.147 0.264 0.027 1,811
Market share of new drug, excluded on entry 0.063 0.183 0.004 59

Notes: This table reports summary statistics from the Medicare Part D public use file.
Data tracks annual claims per drug in 2012-2017; the unit of observation is the drug-year
pair. Market share is calculated as the fraction of prescription drug claims in the ATC4 class
that are for the index drug. The first four rows report results for all drugs, comparing those
that were ever excluded to those that were never excluded durign the sample period. The
last four rows report results for the subset of “new drugs,” defined as drugs that enter the
market in 2007 or later, and so are ten years old or younger for the duration of the sample.
These final rows compare new drugs that were excluded within a year of entry to those that
were not excluded in the first year.
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Table A.3: Impact of Immediate Exclusion on Prescriptions of New Drugs

(1) (2) (3) (4)
Log(No. of Claims) Log(No. of Claims) Log(Market Share) Log(Market Share)

Excluded at Entry -1.147** -1.193** -1.094** -1.099*
(0.573) (0.591) (0.546) (0.564)

Observations 1,846 383 1,846 383
ATC4 FE YES YES YES YES
Cohort X Year FE YES YES YES YES
Limited sample NO YES NO YES

Notes: This table investigates the impact of immediate exclusion by one or more PBM on
claims for a new prescription drug. Each column reports results from a separate regression.
The regressions include ATC4 fixed effects, and drug age X calendar year fixed effects.
Identifying variation comes from the debut of multiple drugs within an ATC4 drug class,
some of which are immediately excluded and others are not. Immediate exclusion is defined as
exclusion in the calendar year immediately following market entry. The sample is restricted
to drugs that enter the market in 2007 or later, and so are ten years old or younger for
the duration of the sample. In columns 2 and 4, the sample is further restricted to only
ATC4 categories that have at least one immediately excluded drug. See notes to Appendix
Table A.2 for more details on the data. Standard errors are clustered at the drug level.
Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.4: Predicting Exclusion Risk

(1)
Exclusion

Log(1 + N of generic NDCs) -0.674**
(0.317)

Log(1 + N of brand NDCs) 0.656
(0.511)

Log(1 + N of ATC7s) 1.069
(0.665)

Mean brand price - mean generic price -0.00862
(0.00761)

Total prescription volume 1.70e-08**
(8.16e-09)

Observations 128
Pseudo R2 0.243

Notes: We used the above 2011 market characteristics of the ATC4 class to predict exclusion
risk. Using a Logit model, we regressed whether an AT4 class had at least one drug excluded
in 2012 or 2013 on all of the characteristics of the ATC4 class reported above. We then used
the regression’s fitted values to construct predicted exclusion risk of each ATC4. Data on
prices, the number of brand and generic NDCs, and the number of ATC7s are from FDB;
data on total prescription volume are from the 2011 Medical Expenditure Panel Survey.
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Table A.5: Impact of Predicted Exclusion Risk on New Drug Development
By Stages, Non-Logged

(1) (2) (3) (4) (5) (6)
All Preclincal Phase 1 Phase 2 Phase 3 Launch

Post X Pr(Exclusion) -21.98*** -11.05*** -6.010*** -3.830*** -1.098** 0.220
(6.571) (3.403) (2.077) (1.349) (0.422) (0.496)

Observations 1,397 1,397 1,397 1,397 1,397 1,397
Year FE YES YES YES YES YES YES
ATC FE YES YES YES YES YES YES
Market Controls YES YES YES YES YES YES
N of Drug Candidates Mean 30.61 17.39 6.54 4.57 2.11 1.02

Notes: This table parallels the results reported in Table 5 but using non-logged outcomes.
Each column explore how drug development changes at each stage, moving from the earliest
observed preclinical activity in column 2 through the different stages of clinical trials.
Standard errors are clustered at the ATC4 level. Statistical significance is indicated as:
*** p<0.01, ** p<0.05, * p<0.1.
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Table A.6: Impact of Exclusions on New Drug Development

(1) (2) (3) (4)
New Development New Development Log(1+New Dev.) Log(1+New Dev.)

Post X Excluded Class -5.824** -4.534** -0.161* -0.137
(2.568) (2.290) (0.0838) (0.0891)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls YES YES

Notes: This table reports results from estimating a modified version of equation (1).
Instead of defining exclusion risk as a continuous measure predicted using the 2011 market
characteristics, the exclusion risk here is a binary variable that equals one if any drug in
the ATC4 class was on a PBM exclusion list in 2012 or 2013. For further details on the
regression specifications, see notes to Table 4. Standard errors are clustered at the ATC4
level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: Impact of Predicted Exclusion Risk on New Drug Development:
Alternative ATC4 Linking

(A) Directly Linked Approach Only
(1) (2) (3) (4)

New Dev. New Dev. Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -20.98*** -18.59*** -0.370*** -0.269*
(6.048) (6.745) (0.132) (0.146)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls YES YES

(B) Indirect Linking Approach Only
(1) (2) (3) (4)

New Dev. New Dev. Log(1+New Dev.) Log(1+New Dev.)

Post X Pr(Exclusion) -4.301*** -4.454*** -0.229*** -0.246***
(1.329) (1.473) (0.0836) (0.0877)

Observations 1,397 1,397 1,397 1,397
Year FE YES YES YES YES
ATC FE YES YES YES YES
Market Controls YES YES

Notes: These results parallel the specification underlying Table 4, but with alternative
methods for linking drug candidates to ATC4 classes. We have replaced our baseline outcome
measure of development activity with two alternative outcomes that take different approaches
to matching. In Panel A, we only count track development activity among the subset of drug
candidates for which Cortellis directly reports the drug class. In Panel B, we impute ATC4s
from ICD9 codes for all drug candidates, rather than relying on Cortellis’ reporting of drug
class. Appendix B provides more details on how the drug candidates are linked to ATC4s.
Standard errors are clustered at the ATC4 level. Statistical significance is indicated as: ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.8: Impact of Predicted Exclusion Risk on New Drug Development:
Wild Cluster Bootstrap

(1) (2) (3)
New Development Log(1+New Dev.) IHS New Dev

Post X Pr(Exclusion) -21.98*** -0.333*** -0.316**
[-37.97, -8.378] [-.5357, -.03624] [-.5549, .01335]

Observations 1,397 1,397 1,397
Year FE YES YES YES
ATC FE YES YES YES
Market Controls YES YES YES

Notes: Columns 1 and 2 of this table repeat the specifications reported in Table 4 columns
2 and 4, but now using wild cluster bootstrap to calculate the 95% confidence interval
(rather than using conventional inference). Clustering is performed at the ATC4 level.
Column 3 reports results with the outcome variable defined as the inverse hyperbolic sine
transformation of development activity; this transformation can be interpreted similarly to
the log transformation, but better accounts for ATC4-year categories with no development
activity. Column 3 also uses wild cluster bootstrap for inference. Statistical significance is
indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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A Theoretical Model

We focus on a potential pharmaceutical entrant that makes R&D decisions on the basis of

expected profitability. This firm can make investments in one of two drug classes: class o is “old”

in the sense that there is already an approved treatment in that class; class n is “new” in the

sense that there are no existing treatments. For tractability, we assume that there is exactly one

incumbent drug in the old class. The pharmaceutical firm pays a fixed cost of drug development, K,

that is the same for both classes. If the firm invests in class o, it produces an FDA approved drug

with probability φo; for class n this probability is given by φn. If successful, the entrant competes as

a monopolist in the new drug class and as a Bertrand duopolist in the old drug class. For simplicity,

we follow Dixit (1979) and adopt a linear demand system with horizontally differentiated products.

We assume there is a single PBM that facilitates access to FDA approved drugs by administering

an insurance plan formulary. Patients pay a coinsurance fraction λ ∈ (0, 1) for drugs included in

the PBM’s formulary but must bear the full cost of drugs that are not.

We begin in Section A.1 by characterizing pharmaceutical profits in both the old and new drug

classes when formulary exclusions are prohibited. Next, in Section A.2, we introduce formulary

exclusions as a policy change in which PBMs begin granting exclusive contracts to pharmaceutical

firms in exchange for a fixed fraction (1−α) ∈ (0, 1) of sales revenue from the included drug. When

there are two drugs on the market, we show that ex post profits are lower for drugmakers when

their drug is excluded from the PBM’s formulary; because of this, they are willing to offer higher

rebates ex ante in order to win the exclusive contract. Finally, after characterizing downstream

profits associated with approved drugs, both with and without exclusions, we analyze how the

exclusion policy impact firms’ upstream investment decisions, and provide an informal discussion

of welfare implications.

A.1 Downstream profits without exclusions

In our baseline case, we do not allow for exclusions; PBMs facilitate access to all FDA approved

drugs. If the entrant drug is approved, it competes as either a monopolist in class n or as a

differentiated Bertrand duopolist in class o. In both cases, its drug is included on the PBM’s

formulary. Because formulary inclusion is guaranteed, the PBM cannot extract rebate payments in

the absence of a credible exclusion threat, in the context of our simple model.20

20In reality, PBMs could negotiate rebates in exchange for placement on a preferred formulary tier, even
in the absence of exclusions. For simplicity, we do not include these other tools in our model. Crucially,
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We denote the entrant’s downstream profits as Πe,n in the new class and as Πopen
e,o in the old

class. The subscript e indicates the entrant; the subscript o or n indicates the old or new class,

respectively; the superscript open describes the open formulary policy state where no drugs are

excluded.

In drug class n, the entrant faces a standard monopoly pricing problem:

max
pe,n

(pe,n −m) (A−Bλpe,n)

Here, A is a parameter describing the level of demand in this drug class and B is a parameter

describing consumer’s elasticity with respect to price. Marginal costs of production are denoted as

m. Demand also depends on λp because we assume consumers are partially insured. The relevant

price consumers face is λp ≤ p, even though the drugmaker receives p. Solving this problem yields

equilibrium prices pe,n, quantities qe,n, and profit Πe,n.

Meanwhile, in class o, the entrant e would be two competing with the incumbent i. We assume

that the demand system is symmetric and the drugs are horizontally differentiated but of equivalent

quality, so that b > d.

qopene,o = a− bλpopene,o + dλpopeni,o

qopeni,o = a− bλpopeni,o + dλpopene,o

Here, the parameters a and b denote potentially different levels and elasticities of demand, relative

to class n. The entrant and incumbent symmetrically choose price to maximize profits:

max
popene,o

(popene,o −m)
(
a− bλpopene,o + dλpopeni,o

)
max
popeni,o

(popeni,o −m)
(
a− bλpopeni,o + dλpopene,o

)
We take the first order conditions and solve for the optimal duopoly pricing.

exclusions are the strongest tool available to PBMs for restricting drug access, and are thus a significant
departure from the earlier forms of control over formulary structure.

59



Proposition A.1 The incumbent and entrant face symmetric demand and will choose identical

prices and then produce identical quantities. Production will occur as long as 2b− d > 0.

popene,o = popeni,o , qopene,o = qopeni,o , Πopen
e,o = Πopen

i,o

This proposition is proved by deriving equilibrium price, quantity, and profit. These expressions

are given below:

popene,o = popeni,o =
a

λ(2b− d)
+

bm

(2b− d)

qopene,o = qopeni,o =
ab

(2b− d)
− λb(b− d)m

(2b− d)

Πopen
e,o = Πopen

i,o =
b (a− λ(b− d)m)2

λ(2b− d)2

A.2 Downstream profits with exclusions

We now consider the case in which PBMs are able to exclude approved drugs when there is

a viable alternative. In our model, this means that there can be no exclusions in class n, so that

prices, quantities, and profits are unaffected.

In class o, however, drugs can be excluded. Excluded drugs can still be marketed, but would not

be covered by insurance, meaning that consumers face the full price p rather than the subsidized

λp. The firm again enters differentiated Bertrand competition, but with another firm whose drug

is covered. For the purposes of this exposition, we assume that the entrant is excluded and the

incumbent is covered. The demand functions will then become:

qexcludede,o = a− bpexcludede,o + dλpincludedi,o

qincludedi,o = a− bλpincludedi,o + dpexcludede,o

Each firm will choose prices to maximize profits. Here, we assume that the term (1− α) is the

pre-negotiated rebate that the incumbent pays in order to be included in a PBM’s formulary. We

will endogenize α in the following section. If the entrant is excluded, then it no longer pays the
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(1− α) revenue share to the PBM.

max
pexcludede,o

(pexcludede,o −m)
(
a− bpexcludede,o + dλpincludedi,o

)
max

pincluded
i,o

(αpincludedi,o −m)
(
a− bλpincludedi,o + dpexcludede,o

)
Taking first order conditions, we can solve for the optimal price, quantity and profits for entrant

and incumbent.

Proposition A.2 When λ ≤ α, we have the following expressions for prices and quantities.

pexcludede,o ≤ αpincludedi,o , qexcludede,o ≤ qincludedi,o

The condition λ ≤ α means that the share of revenue retained by the pharmaceutical company

after rebates is greater than the drug coinsurance rate paid by insured consumers.21 Under this

assumption, the included drug is able to charge a higher price to insurers and still sell more

quantities because formulary placement leads consumers to face a lower out-of-pocket price. The

more generous the insurance coverage, the larger the price wedge between the included and excluded

drug. If marginal costs of production are zero, then the two drugs will sell equal quantities: the

excluded drug’s lower prices will be exactly the amount needed to offset the insurance coverage. If

marginal costs are positive, then the excluded drug will sell at a lower quantity than the included

drug. Finally, the expressions above assumed the entrant is excluded, but flipping the identity of

the excluded drug will simply swap the comparative statics: the excluded drug will have a lower

revenue per unit and lower quantity sold in equilibrium.

To prove these propositions, we solve for the equilibrium price and quantities, taking the rebate

level (1−α) required for formulary inclusion as given. We then solve for the optimal rebate bidding

21Empirical estimates suggest this sufficient condition holds in practice. The Kaiser Family Foundation
reports average insurance subsidy rates (1 − λ) for prescription drugs ranging between 62% and 83%,
depending on the drug tier, for employer sponsored insurance plans in 2017 (Claxton et al. 2017). These
estimates imply coinsurance rates λ in the range of [0.17, 0.38]. In comparison, Kakani et al. (2020) estimate
rebates of 48% in 2017, suggesting the share of retained revenue α as 0.52.
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strategy in the second stage. Prices are as follows:

pexcludede,o =
a

(2b− d)
+
b(2αb+ λd)m

α(4b2 − d2)

pincludedi,o =
a

λ(2b− d)
+
b(2λb+ αd)m

αλ(4b2 − d2)

Recall that the included drug does not receive the full price pincludedi,o in additional revenue for

each unit sold, because it owes a cut (1 − α) of its revenue to the PBM. As a result, the effective

revenue per unit sold is αpincludedi,o for the included drug. As a result, we compare αpincludedi,o to

pexcludede,o to calculate the difference in revenue per unit across the included and excluded drug.

αpincludedi,o − pexcludede,o =
(α− λ)a

λ(2b− d)
+

(α+ λ)(α− λ)bdm

αλ(4b2 − d2)

As long as λ ≤ α and 2b− d > 0, it will hold that:

αpincludedi,o ≥ pexcludede,o

We can calculate equilibrium quantities as follows:

qexcludede,o =
ab

(2b− d)
−
b
(
2αb2 − λbd− αd2

)
m

α(4b2 − d2)

qincludedi,o =
ab

(2b− d)
−
b
(
2λb2 − αbd− λd2

)
m

α(4b2 − d2)

From these quantity expressions, we calculate:

qincludedi,o − qexcludede,o =
(α− λ)b(b+ d)m

α(2b+ d)
.

Maintaining the assumption that λ ≤ α, it follows that:

qincludedi,o ≥ qexcludede,o .
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A.3 Profits and bidding on rebates

From the PBM’s perspective, exclusions allow it to extract positive rebates 1−α by leveraging

the exclusion threat. From the drug company’s perspective, exclusions reduce the profitability of

entry into the old class; we discuss these profitability comparisons in this section. A corollary of

Proposition A.2 is that profits will be higher when a drug is included rather than excluded from

an PBM’s formulary, as long as the final rebate level is not too high. Because of this, drugmakers

would be willing to provide an ex ante payment in order to avoid exclusion ex post. We model this

process as a second price auction in which pharmaceutical firms bid for the exclusive right to be

included in a PBM’s formulary by offering rebates of the form αpq. The drug offering the highest

rebate offer will be included on the formulary; in cases with tied bids, one drug will be selected at

random for inclusion. The following pins down rebates in equilibrium:

Proposition A.3 In the old drug class, firms will be bid a rebate level 1− α = 1− λ, so that:

Πexcluded
e,o = Πincluded

i,o and Πexcluded
e,o > Πopen

e,o (2)

At the time a drug is approved, each pharmaceutical firm would be willing to set the rebate up to

the level that would equalize profits when included on formulary to the profits when excluded. As

shown in Appendix A, excluded profits equal included profits when the rebate share (1−α) equals

the insurance coverage share (1 − λ). Assuming that the entrant and incumbent have symmetric

demand and marginal costs, the incumbent’s bid is the same as the entrant’s and we assume that

the PBM uses a coin toss to break the tie. Because the firm’s bid leaves it indifferent between

being included and being excluded, the firm receives its outside option profits in either case, and

the PBM retains the extra rebate payment.22

To compare profit of the entrant to the old drug class, see the expressions below:

Πexcluded
e,o = (pexcludedi,o −m)qexcludede,o

Πincluded
i,o =

(
pexcludedi,o +

(α− λ)a

λ(2b− d)
+

(α2 − λ2)bdm
αλ(4b2 − d2)

−m
)(

qexcludede,o +
(α− λ)b(b+ d)m

α(2b+ d)

)

22For simplicity, we do not model demand for PBM services. In practice, some of the PBM’s rebate may
be passed on to consumers or retained as PBM profit.
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As shown above, as long as α > λ, the included drug makes higher profits. Further, profits

for the included drug are increasing in α, and the difference in profitability between the included

and excluded drug is also increasing in α. Profits for the included drug are equal to profits for the

excluded drug when λ = α, since at this point the marginal revenue per unit sold is the same for

included and excluded drugs, as is the quantity sold. The drug company would be willing to bid a

maximum rebate level of up to 1− α = 1− λ for inclusion on the formulary.

Now, we can compare price, quantity, and profitability of the entrant under the open formulary

regime compared to the closed formulary regime. The entrant’s price net of the PBM rebate under

the open formulary is higher than the price of the excluded drug in the closed formulary.

popene,o − pexcludede,o =
(1− λ)a

λ(2b− d)
+

(α− λ)bdm

α(4b2 − d2)

Under the sufficient condition that λ ≤ α, it will hold that the the entrant’s drug price is strictly

higher under the open formulary than if it were excluded from coverage.

αpopene,o > pexcludede,o

Further, the entrant’s quantity sold is also strictly larger under the open formulary than when

it is excluded.

qopene,o − qexcludede,o =
(1− λ)b(b− d)m

(2b+ d)
+

(α− λ)b2dm

α(4b2 − d2)

As long as λ ≤ α and b > d, it will also hold that:

qopene,o > qexcludede,o

Because the entrant’s price and quantity are both strictly larger under the open formulary than

when the entrant is excluded, it follows that entrant’s strictly profits are higher under the open

formulary:

Πopen
e,o > Πexcluded

e,o .

A.4 Upstream investment decisions

A firm will choose whether to invest in the old or new drug class by comparing expected profits

and success rates of drugs in each class. When there are no exclusions, a potential entrant’s expected
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returns at the time of its R&D decision are given by:

E[Πe] =

φ
nΠopen

e,o if develop for class o

φoΠe,n − if develop for class n

The firm therefore chooses to develop for the old class as long as

Πopen
e,o >

φn
φo

Πe,n. (3)

In general, the old drug class will be more attractive when the likelihood of successful

development is higher, when there is a large base of potential consumer demand (e.g., if it is a

common condition), or if the firm’s drug is more differentiated from that of the incumbent’s.

However, when there is a threat of exclusion, the entrant anticipates needing to bid for access to

the PBM’s formulary in the event it creates an FDA approved drug for the old class. The firm

has a probably φo of developing a successful drug in the old class, in which case it will enter its

maximum rebate bid to be included in the formulary and win half the time. However, any ex post

returns to being included in the formulary are bid away, so that the entrant expects to receive

only its outside option: revenues in the case when its drug is excluded.

Meanwhile, profits from developing an entrant for the new drug class do not depend on whether

the formulary is open or closed, because we assume that drugs can only be excluded when there is

a viable alternative. The potential entrant’s new criterion for developing in class o when exclusions

are permitted is given by:

Πexcluded
e,o >

φn
φo

Πe,n. (4)

The criterion differs from the no-exclusion condition given in Equation (3) only in the lefthand

side, which had a Πexcluded
e,o instead of Πopen

e,o . As shown above profits are higher when there is an

open formulary so that Πopen
e,o > Πexcluded

e,o . The model therefore predicts that the introduction of

an exclusion policy leads firms to develop relatively fewer drugs for the older class.
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B Linking Drug Candidates to ATC4 Classes

We matched the pipeline drug candidates in Cortellis to ATC4 codes in two ways: directly via

EphMRA codes and indirectly via ICD9 codes if the EphMRA codes were missing.

Direct method: matching via EphMRA codes. Cortellis links drug candidates to chemical

drug classes (specifically the EphMRA code, which is a close derivative of the ATC classification).

Using a manually created crosswalk of EphMRA codes to ATC4 codes, we used the EphMRA codes

of the drug candidates to link the drugs to ATC4 classes. A drug can be linked to many ATC4

classes, and we assigned equal weights of 1 to all ATC4 classes that directly matched to a given

drug through their EphMRA codes.

Indirect method: matching via ICD9 codes. An alternative way to link the drug candidates to

ATC4 classes is through the drugs’ areas of therapeutic use (ICD9) provided by Cortellis. Using the

drug to ICD9 crosswalk from Cortellis, we linked to a crosswalk of ICD9 to ATC4 codes created by

Filzmoser et al. (2009), in which the authors assigned a probabilistic match score of ICD9-ATC4

pairs.23 Since this results in a drug being matched (indirectly via ICD9) to many ATC4s, we

assigned the likelihood of an ATC4 matching to a drug based on the probabilistic match scores

from Filzmoser et al. (2009), such that the assigned weights sum to 1 for each drug.

For our main analyses, we matched the drug candidates to ATC4 codes using the direct method

via EphMRA codes and used the indirect method via ICD9 codes for drugs with missing EphMRA

codes. As shown in Appendix Table A.7, our results are similar regardless of the linking method

used.

23Filzmoser et al. (2009) merged a dataset of prescriptions (with ATC4 codes) and a dataset of hospital
admissions (with ICD9 codes) at the patient-level. Since the ATC4 code of a patient’s drug matches to many
diagnosis codes of the patient, the authors use a frequency-based measure to calculate a probabilistic match
score of an ICD9-ATC4 pair. They conduct this match specific to gender/age group of the patients. For our
analysis, we take the average match probability across the gender/age groups for a given ICD9-ATC4 pair.
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