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1 Introduction

In most applications in which social networks are important for economic outcomes,
the social network itself is not observed. Social networks, for example, are considered
to be key factors in the determination of risky behavior of adolescents, in the de-
termination of politicians’ effectiveness in legislatures, in the determination of R&D
spillovers and in production networks, among other applications. In all these cases,
we typically do not observe the true social or productive connections. At best we
have proxies for these connections. Sometimes we observe whether the adolescents
belong to the same classroom or legislators belong to the same alumni network; in
other cases we observe trade or aggregate production data. The literature has there-
fore focused on studying the impact of these proxies for social connections, assuming
that they are good approximations for the real social connections. This suggests the
question: if we do not observe the real social connections, can we estimate them from
the social outcome that these social connections contribute to determine?

Only recently has the literature started to address these questions, studying con-
ditions under which the entire social network is identified and under which it can,
at least in theory, be recovered from panel data on social outcomes. In other words,
researchers seek conditions under which it is possible to predict social connections
just by observing the students’ risky behaviors, or the effectiveness of legislators,
or the productivity of firms over time. The conditions under which this is possible
naturally include the requirement that the time series of observed outcomes is suf-
ficiently long, and/or the network is sufficiently sparse. A degree of sparsity and/or
sufficiently long time series are necessary because, with the social outcomes of n
agents observed for T' periods, the number of possible network connections is on the
order of n? while observations are on the order of n x T with, typically, n » T[]

The key question in the literature however is really not whether a network is

identified under some conditions, but instead it is whether identification is possible

'For instance, in legislatures there are typically over n > 400 legislators. The number of ob-
servations is however in the single digits or at best low two digits, depending on how frequently
behavior is observed, since the same network of legislators cannot be observed for more than a few
legislatures.



for feasible and realistic data sets. While great advances have been made in the recent
literature, four limitations still characterize existing approachesE] First, existing
approaches appear to work well only for long panels on social observations with
relatively small networks. The literature has indeed highlighted sufficient conditions
for identification requiring the number of observed social outcomes T" to grow at the
same rate of the number of nodes n in the network. We however generally need a
technique that works for relatively short panel data-sets and large networks: most
networks are observed only for relatively short periods of time and few observations,
and they comprise many nodes. For example, the U.S. Congress comprises over 400
members; more than 15% of the its members, moreover, is not reelected after 2 years.
It is difficult to imagine panel data-sets with hundreds of observations all generated by
the same network: networks remain constant only for short periods of time. Second,
the literature has focused on environments in which realistic forms of common shocks
to the agents are ruled out. In many instances, however, we need to deal with
environments with heterogeneous common shocks targeting specific sub-networks.
In legislative environments, for example, it is natural to assume that Democrats
and Republicans are affected by different shocks. Third, existing approaches rely on
estimators for which no valid inference procedure is available.

In this paper, we propose a new approach to the estimation of networks using
observable social outcomes that contributes to addressing these limitations. In our
approach, we extend the Graphical Lasso model first proposed by Friedman et al.
(2008)) in order to incorporate the simultaneous equation framework typical of net-
work models. By inducing a structure on the precision of the matrix, our extension
leads to a new estimator, for which we prove identification, derive consistency, and
we characterize the asymptotic distribution.

We contribute to addressing the questions highlighted above as follows. First, we
show that we achieve consistency under the small T', rather than the requirement in
the literature that n/T" — 0. More importantly, while we characterize the asymp-
totic relation between the node degree and network sparsity when n/T" — c0; we can

show with simulations that this improvement allows us to obtain much more accurate

2A more exhaustive discussion of the related literature is presented in the next subsection.



estimates than with existing methods in samples with fewer than 100 observations.
Second, we allow for heterogeneous common shocks that, potentially, are different
across sub-networks. Finally, we derive a valid inference procedure by deriving the
asymptotic distribution for Graphical Lasso estimator under a simultaneous frame-
work, which allows us to obtain confidence intervals on each link of the estimated
network.

The cost for these extension is that, by embracing the Graphical Lasso framework,
we add more structure to the environment by assuming sub-Gaussian noise. While
our theoretical results rely on this structure, we however show in simulations that
our approach works well even in more general environments.

We showcase our new estimator using Monte Carlo simulations in finite sample
environments and, as a “real world” application, we apply our approach to the es-
timation of social links among U.S. representatives. The goal of the Monte Carlo
simulations is to assess the performance of our estimator in finite samples, evaluate
its robustness to the assumptions implicit in the Graphical Lasso and to compare its
performance to previous work. A natural benchmark for us is the penalized Gener-
alized Method of Moments (henceforth, penalized GMM) suggested in the seminal
work by |de Paula et al.| (2019) and also earlier work from |Caner et al.| (2018)). The
simulations show that our approach works well starting from 7" = 20 observations
and improves in accuracy as 7' increases even if n is big. Compared to de Paula
et al.| (2019)’s penalized GMM method, we observe a very significant improvement
in accuracy with our method under small 7" and big n, as measured by the True Pos-
itive Rate (TPR) and the False Positive Rate (FPR). Under small T, the penalized
GMM almost lost predictability when n < 200 while our method can still detect true
connections under a relative moderate trade-off between TPR and FPR .

We apply the techniques developed above to study production externalities among
lawmakers in the U.S. Congress. For each congress starting from the 93rd to the
112th, we measure the legislative effectiveness of each legislator in the House of Rep-
resentatives using the Legislative Effectiveness Score (LES) constructed by Volden
and Wiseman| (2018). This index collects information measuring a legislator’s ability

to move bills through the legislative process. Using the time series of the legislators’



effectiveness in each congress, we estimate production externalities in each congress
using exclusively data on the individual effectiveness. Heterogeneous party fixed
effects allow us to capture the evolving importance of parties in shaping patterns
of collaboration between congress members. Comparing the estimated social net-
works over time, we find two main results. First, we observe a significant decrease
in importance in production spillovers among individual lawmakers over time, both
between members of their own party, and across parties. Second, we show that this
decrease in importance is compensated by an increase in the party level common
shock over time. Combined, these two results suggest that the rise of partisanship
is not affecting only the ideological position of legislators when they vote, but more
generally how legislation is constructed in the U.S. Congress.

The organization of the remainder of the paper is as follows. We discuss related
literature in the next subsection. Section 2 outlines the theoretical model linking
social outcomes to social networks. In Section 3, we present our graphical Lasso
estimator and theoretically derive its main properties. In Section 4, we explore the
finite sample performance of the estimator. In Section 5 we apply our approach to
investigate productivity spillovers among U.S. lawmakers.Section 6 discusses method-

ological extensions and Section 7 concludes.

1.1 Related literature

There is a recent but already significant literature studying the conditions under
which social spillovers can be estimated using social outcomes despite being only
partially or completely unobserved. The case with partially observed social spillovers
has been studied by Souza| (2014), Blume et al.| (2015)) and Peng| (2019). Souza| (2014)
proposes a maximum likelihood estimator for environments in which the probability
that pairs of individuals form connections in the social network depend on exogenous
factors such as common gender. Blume et al.| (2015) considers the case in which two
individuals in the social network are known to not be directly connected. Peng (2019)
proposes a new method to identify leaders and followers in a known network.

The focus of our work is on the case when the social network is not observed at



all PThis case has been studied by |de Paula et al (2019) and [Rose (2018) [ [de Paulal
(2019) show that identification of the social network is obtained if the number

T of observed social outcomes generated by the network is of the same order of the

size n of the network, a requirement that would be too demanding in the environment
we are interested in (such as, for example, the social networks in the U.S. Congress).
Rose [2018] does not derive the statistical properties of the estimator. He presents
an application of the STIV estimator characterized by Gautier and Tsybakov (2014)
that is not designed for dealing with systems of simultanous equations. We show
that the estimator in our paper achieve consistency if s,d*log (n) /(nT) — 0, and
d*log (n) /T — 0 where s, denotes the size of non-sparse elements and d denotes
the maximum degree centrality in the network. Differently from standard penalized
estimators, the additional restiction on d is due to the simultanous nature of the
equation system. However, our results still allow n/T" — co which allow significantly
shorter panels to be estimated in finite sample. As we mentioned above, moreover,
the previous literature allow a common shocks that is the same across all individuals
at every period. We instead adopt a random effect approach, which allows us to
handle sub-network common shocks without row-sum normalization.

We contribute to overcoming these limitations proposing an extension to the

Graphical Lasso model by incorporating the simultaneous equation framework. The

Graphical Lasso method was first proposed by Friedman et al. (2008)) to estimate

sparse graphs as a competing method to [Meinshausen and Biihlmann| (2006). It is
known for fast computational speed and good finite sample performance.

SIf the network is partially observed, potential missing links can be recovered using the method-
ology presented in |Chandrasekhar and Lewis| (2016). In these papers, stochastic block models are
adopted. The advantage of those methods is that they can be applied to very dense networks. The
ladvantage of our approach is that we do not need any notion on the underlying network structure.|
[In addition, our model can be augmented with partially observed network data. The known links|
are simply removed from the penalizating function and thus certaintly detected.

*Important recent work has also been done by [Bonaldi et al.| (2015) and [Manresa; (2013) for
models where the social network affects individual decisions only through exogenous characteristics
(exogenous social effect). We instead consider the case where own decisions are not only affected
by the characteristics of the social connections but also by their own behavior (endogenous social
effect) own behavior is affected. Such an extention boils down into a completely different model,
with a simultaneous equation structure. As a result, a novel estimator needs to be developed.




Fan| (2009), Xue et al.|(2012) and Xue and Zou| (2012)) propose various extensions and
derive statistical properties for Graphical Lasso type estimators. The simultaneous
equation framework that is at the core of our extension essentially induces a structure
on the precision matrix and leads to a novel estimator in our work. For this new
estimator, we prove identification, derive the consistency for this estimator, and we
characterize the asymptotic distribution.

Naturally, there is a cost for these additional properties of our estimator: we
need to impose significant more structure on the error structure in our model. With
Montecarlo simulations we illustrate the cost/benefits of our approach. We test the
robustness of our approach with simulations and compare it to the performance of
the penalized GMM estimator in de Paula et al.| (2019). For long panels (i.e. T = 500
and N = 10), the two methods perform similarly with penalized GMM estimator
doing better at true positive rate; but for 7' < 100 and N > 50, our estimator serves
as a better classifier comparing with penalized GMM estimator. We show that our
method performs well also if we deviate form the assumption of Gaussian errors.

A different approach to the estimation of unobserved networks is presented in
Battaglini et al.| (2019), who present a model of social network formation and struc-
turally estimate it by Bayesian methods. This approach requires shorter data-sets
for the estimation and it does not require strong sparsity assumptions, but relies
more on the underlying structural model of network formation.

The empirical exercise in our work should be distinguished from the literature
attempting to estimate the determinants of network formation using network obser-
vations such as (Graham| (2016|), Fowler and Christakis (2010)), Mele| (2017)), Badev,
(2017)), among others. In these works, it is assumed that at least a social network
is observed and that these observations can be interpreted as realizations from an
underlying probability distribution of social networks. In our problem, and the lit-
erature discussed above, we attempt to estimate the social connections using social

outcomes generated by them.



2 Model

In Section 2.1 we present a simple theory of the effectiveness of lawmakers in a
legislature in which the lawmakers’ productivities depend on their social connections.
The analysis will establish the following linear relationship between the levels of

effectiveness and their social connections:

5@ +52 gOZ] (1)

where F; is the effectiveness in congress of legislator i, go;; is the link between
legislator ¢ and legislator j, § represents the endogenous effect as in [Manski (1993),
and &; is an individual fixed effect. In Section 3 we study under what condition this
relationship can be used to estimate the (unobserved) social connections gg;; in the
U.S. Congress using only the (observed) levels of effectiveness F = (Ey, ..., E,).

While it is useful to ground our analysis in a specific application for which we
have a clear microfoundation, we should note that the tools developed here and in
Section 3 have wider applicability. First, the model can be used to study any other
settings in which the individual performances of a team of players may be affected
by positive productivity spillovers among the players. Secondly, the basic linear
relationship derived in the model that is at the core of our estimation technique,
can be derived in a variety of other contexts and with alternative microfoundations
(see Section 2.2 below). Finally, we observe that the linear relationship is often
directly assumed as a starting point of the empirical analysis of social networks
without any microfoundation (see for instance de Paula et al.| (2019)) [Rose (2018)),
and others).

2.1 A theory of legislative effectiveness

Consider a congress comprised of n legislators, where N = {1,....,n} is the set of
legislators. Each legislator has a pet legislative project that s/he cares to implement.
The goal of each legislator is to maximize their legislative effectiveness, measured by

the probability of implementing the project.



We assume that legislator i’s legislative effectiveness F; is a function of the leg-
islator ¢’s characteristics, the effort directly exerted by i and how socially connected
the legislator is. The idea is that legislators who are well connected are able to ben-
efit from their connections in pushing their pet legislative projects. We assume the

following “production function” for legislative effectiveness:
E; = ¢ (s:)" (li)lia + & (2)

where [; is legislator i’s effort, s; is the legislator’s “social connectedness” and &; is a
factor idiosyncratic to i that contributes to i’s efficacy independently from his/her
connections or effort. The Cobb-Douglas in describes the fact that legislator ¢’s
level of “social connectedness” s; and his/her effort /; are complementary inputs in

lawmaking. Social connectedness is defined as:

Si = Zje/\/ 9o.i; £ (3)

where the n x n matrix Go = (go5) measures of the social link between ¢ and j.

i,jeN
The idea behind is that the high]er is the effectiveness of the legislators socially
connected to 7, the higher is ¢’s effectiveness; because of this, the effect of j on
is weighted in by the degree of social connection of 7 to 7. We assume that i’s
characteristics as captured by &; are observed by the other lawmakers, but not by an
econometrician studying the game.

The cost of effort is assumed to be represented by a linear function L;(l;) = ¢,
where c is a cost parameter. A sufficient condition for E; € (0, 1) is that A+ ¢l < 1,
an assumption that we will maintain throughout the analysis. In the analysis below,
we also assume gg;; = 0.

The complication of analyzing the game presented above is that the choice of
effort [; of a player ¢ generates a complex cascade of externalities: effort affects i’s
effectiveness directly; but also the effectiveness of all players connected to ¢; and
of those connected to those connected to i, etc. The complication is not dissimilar

to the complication that arise in the analysis of a competitive equilibrium in an



exchange economy where a change in an agent’s demand has a direct obvious effect
on an agent’s utility and an indirect effect on equilibrium prices. The solution in
general equilibrium analysis is to assume that agents are “price takers:” agents solve
their optimization program taking prices as given. Prices, however, must clear the
market in equilibrium. Such analysis is motivated by the fact that, in many exchange
economies, each agent has only a marginal impact on equilibrium prices, thus allowing
us to ignore the indirect effects.

The same approach can be adopted in a network game with many players such
as ours. Following Battaglini et al. [forthcoming| and [2019], we define a Network
Competitive Equilibrium as an allocation in which: 1. lawmakers choose their own
optimal level of effort /; taking the other legislator’s effectiveness (E;) jen as given;
2. the expectations regarding the other player’s effectiveness must be correct in
equilibrium, satisfying —. The idea is that legislators are individually small, so
they are “price takers” with respect to the other legislators effectiveness: they se-
lect their individual efforts depending on how the expected equilibrium effectiveness
of their socially connected legislators; but they assume that their effort levels are
marginal and will not directly affect the levels of effectiveness of the other legisala-
tors. In equilibrium, however, the vector of effectivenesses must be consistent with
individual optimal behavior.

Given the other legislator’s effectiveness, the optimal level of effort I* by an indi-

vidual ¢ = 1, ..., n solves the problem:

max s ()Y — e 1Y 4
s {(0)" 0" 1) @)

Substituting the solution to this maximization in (4f), we obtain that the equilibrium
levels of legislative efficiency for a type ¢ = 1,...,T are given by , where 0 =

l—a
(1_70‘) @ . These equations can be expressed in matrix form as:

E=¢+0-Gy E (5)

where E is the vector of legislative effectiveness, and £ is the vector of legislators’

10



characteristics.

2.2 Alternative interpretations and microfoundations

The model presented above can be reinterpreted to describe other situations in which
E represents a vectors of individual levels of performances in a team of players and
G describes productive spillovers among the team members. The linear relationship
between F and Gy in , moreover, can be obtained from other microfoundations.
For example, Ballester et al.| (2006) consider a model in which a level of output y; is

generated by the production function:

1
2 E
Y; = OG5 + 50'“1'Z + ) 04 LiTj,

J#i
where x = (x4, ...,x,) is the vector of effort levels in the team. They show that the
unique Nash equilibrium of the game in which each player chooses effort simultane-
ously is given by the system x; = a; + 9 - Zje,/\/ (;—J'> - x; for each ¢, which is the
same as , where FE is replaced with x = (x4, ..., z,,) and the matrix 0Gy is replaced
by the n - n matrix X' with 4, j element equal to § - 0, ;/|0;;|. This model has been
used extensively to study peer effects in education and risky behavior, using evidence
on z and observable proxies for o; ; to estimate the magnitude of 6. The techniques
developed in Section 3 for (5)) can be used to estimate the entire X matrix using
only information on x. The difference with the model of Section 2.1 is that while
in Section 2.1 we relate a measure of performance (the levels of effectiveness) to the
social matrix 0Gy, in Ballester et al.| (2006 the authors relate the individual levels

of effort = to the social matrix X.

3 Estimation

Let t = 1,2,--- T denote the indeces for the congresses we observe. Assume that
&+ can be expressed as a linear function of a congressman ¢’s observed characteristics

X, individuals fixed effect a = (ay, -+ ,a,)" and unobserved characteristics €; =

11



(€1,...,€,)" in congress t:

E, = 0*Gy-E, + X;B+ a+ ¢

where F; is a n by 1 vector composed of the n legislators’ effectiveness at congress ¢.
Becasue the network is unobserved, ¢? and G are not separately identified (indeed,
any pair with the same (2 2, %G()) generates the same solution) As a result, we

can normalize ¢? = 1 and obtain the following data generating process:
Et:GO'Et—{-Xtﬁ‘}'Oé‘{‘Gt
To difference out the individual fixed effects, let AE;= E;,—E;_; and A¢; = ¢; — 6,1

AE, = Gy - AE, + AX,8 + A¢, (6)

3.1 Assumptions

The identification of Equation (6]) is well studied for the large T and fixed N case in
the literature. In those cases, no sparsity assumption is required as the number of
observations N x T is greater than the number of parameters N x (N —1). We consider
the situation when 7" « N and thus equation @ is not directly estimable due to
the coexistence of simultaneity and high-dimensionality. We impose the following

assumption to achieve identification.

Assumption 3.1 (Sparsity). Let S, = {(¢,7) : goi; # 0} and s,, = |S,|, which is the
number of non-zero entries in the adjacency matriz Gy. Define d as the mazximum

of degree centrality in the graph. Then,

spd* = op (nT/logn) and d=op <\/T/ log n) asn — o

5

Note that, because of this different approach, the commonly assumed row sum normalization in
the traditional SAR literature (see Lee| (2004))) identification of ©? is not needed here.

12



There are n(n — 1) off-diagonal entries in an adjacency matrix with n legislators.
Assumption specify a tradeoff between the global sparsity s, with the “individual
sparsity” d. First, the maxium number of connections for any legislator d must be of
order \/W , thus allows star-shaped network to be detected when n » T', i.e.
the number of legislators is greater than the time periods observed. Second, it re-
quires the product s,,d? must be of order nT'/logn. For example, if individual sparsity

1/3 then s,, can only grow at rate O,(n(T/log(n))?).

d is growing at rate (7'/log(n))
We requires the additional sparsity assumption on the maximum of degree centrality
compare with standard Graphical Lasso model. This is because our sparsity assump-
tion is not on the precision matrix (I, — Go)?/0?, but on the adjacency matrix Gy

directly.
Assumption 3.2 (SAR restrictions).

- There exists gmax < 1 such that |goi;| < Gmas for all i and j.

2

€

- The A¢; are i.i.d sub-Gaussian random variable with 0 mean and variance o

- The regressors Ax;; in AX,; are non-stochastic and uniformly bounded for all

n. lim, o AX]{AX;/n ezists and is nonsingular for all t.

Assumption is required to ensure the simultaneous framework is well defined.
The first and second parts ensure the matrix I,, — Gy is invertible. The assumption on
the error term currently excludes common shocks from our model and we will discuss
a relaxation in the next section. We also require the error term to be sub-Gaussian
so that concentration inequalities can be derived to bound the empirical process.
Sub-Gaussian processes are known to have “almost" bounded support due to the fast
decay of its tails. This assumption is usually required for high dimensional estimators
as in Belloni et al.| (2014). We provide simulation evidence on the sensitivity of our
estimator to this assumption. We assume the regressors are deterministic following
the convention in the SAR literature (see |Anselin (1988)), |Jin and Lee| (2016)). This
assumption simplifies the calculation of the variance-covariance matrix by assuming
away the randomness from the exogenous effects. We leave the random design case

as a topic for future research.
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Assumption 3.3 (Graphical Lasso restrictions). There is a constant L such that
0 <1/L < Mpin(Iy — Go) < Apaw (I — Go) < L.

where Apin and Apqe denotes the minimum and marmium eigen-value function
The minimum eigenvalue condition is required to prevent the spatial errors from
accumulating too fast. This is the same assumption as Assumption (A) in Lam and
Fan| (2009) and Jankvoa and van de Geer| (2019)).

3.2 Estimator

We assume G is symmetric when designing our estimator (e.g. the network is
undirected). However, this assumption is purely for notation convenience. ﬂ We

consider the following Graphical Lasso estimator for equation [6]

arg max (log ‘(1;_2@)2 —tr (s([;—f)?) - )\Gh) (7)

o,G
where S is the estimated variance-covariance matrix of Pax,AE; where Pax, is

the projection matrix onto the orthogonal space spanned by AX,. Equation [7]is a
combination of a loss function based on the maximum likelihood estimator for normal
distribution as well as a penalty function where X is the penalization parameter that
induces sparsity in the estimated network (i.e. the smaller the lambda the more
dense the network will be). As we are directly imposing sparsity restriction on the
adjacency matrix instead of precision matrix, differs from standard Graphical

Lasso estimator by imposing additional structures on the precision matrix.

Theorem 3.1. Under Assumptions|3.1], and[3.3, equation|7 is concave. Further

with A\ 2 d - /log(n)/T, we have

~ 2] 2 ]
|G—Go|% = Op <(sn +n)d og(n)) and  [52—c?? = Op ((sn +n)d® og(n)>

T n T

SIn the directed network case, the variance-covariance matrix is (I, — Go)(I, — Go)T .

14



where || - | ¢ is the Frobenius norm.

The identification result in Theorem coincides with finding a consistent es-
timator under the sparsity assumption, which is standard in the Lasso literature.
The convergence rate in our result also depends on the maximum of degree central-
ity. This is slower compared to the standard (s, + n)log(n)/T rate in Graphical
Lasso. This is again due to how we impose sparsity assumption in this simul-
taneous equation system. The results on Frobenius norm can also be stated as
|G = Go|2/n = O, ((sn +n)d?log(n)/(nT)) which provides an approximation for
the operator norm. Another practical issue is how to choose the tuning parame-
ter X\. A theoretical guidance can be obtained by simulating the distribution for
n| (S — o) (I, — Go)?*| with an prior on ¥y and Gy. In practice, we recommend
using cross-validation on the time dimension to choose A. Penalized estimators suf-
fer from shrinkage bias and thus have nonstandard distributions for inference. We
propose the following de-biased estimator for our Graphical Lasso estimator that can
achieve normality.

De-biased Glasso Estimator:

G=0G+ %(In - G)? (—In + %(zn — G)?) (8)

Theorem 3.2. Under Assumptions 1-3, and further assume sod* = op(v/T/logn v
T/(n(logn)?)) and d = op ((v'T/(nlogn))V*) , the de-sparse estimator

ﬁ(gij — 90ij) < N(0,6;5)

where d;; can be consistently estimated as §fj

The normality condition is achieved at a cost of stronger sparsity assumption.
Theorem allows us to construct unbiased estimator for the strength of links and

also to test g; ; = 0 point-wise.
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3.3 Common Shocks

The identification of @ crucially relies on the independence assumption on the error
term. However one of the biggest concerns in the network literature is the existence
of homophily. While it is temping to conclude there is a connection between two
legislators when we observe a strong correlation on their effectiveness, it could also be
the case the two legislators are from the same party and it is the party level common
shocks that is responsible for the observed correlation. In the linear-in-means model
proposed by |[Manski (1993), homophily is modeled as additively separable from the
individual idiosyncratic shocks . We adopt the same format and model the party

effects as follows:

Et = G() . Et + Xtﬁ + o+ ZR(SRt + ZD5Dt + €4,

where dr, and dp, are party random shocks that are the same for all party members
in a given year. Let R and D denote the set of Republicans and Democrats. Zp
and Zp are dummy variables representing the membership for each individual, i.e.
Zr=(1(1€R),---,1(ne R)). Difference out the individual fixed effects:

AEt = GO : AEt + AXtﬁ + ZRA(;Rt + ZDA(SDt + AEt. (9)

We consider a random effect approach to estimate @

Condition 3.1 (Correlated Effects). The random variable (Adg:, Adpy) is sub-Gaussian
and independent of Ae,, i.e.

A(SRt ~ subQ 0 ’ O'%% ORD
A5Dt 0 ORD O'2D

Under @ and Assumption the variance-covariance matrix of AE; can be

written as
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Y =02 (I, — Go) >+ 0 (I, — Go) " ZaZ (I, — Go) " + 04 (I, — Go) ' 2,2/ (I, — Go) ™"
+opr Iy — Go) ' ZaZ! (I, — Go) ™ + opr (In — Go) " 2,2, (I, — Go) ™"

The inverse of this matrix can be calculated by the generalized Sherman—Morrison

formula given the following condition is satisfied:

2 2 2
o o o

(1 + —I;nR> (1 + —§HR> — %TLDTLR >0
o o o

€

4 Simulations

In this section, we present the finite sample performance of our estimator and com-
pare it with the penalized GMM estimator under different network size n and panel

lengths T'. We simulate the data as in equation @, e.g.,

AEt = (In — GQ)_l . (AXtﬂ + Aﬁt)

We use the same simulation set up as [de Paula et al] (2019)[] The parameters are
chosen as 8 = 0.4 ¢* = 0.7 and G is generated by the Erdés Rényi algorithm Erdos
and Rényi (1959). Each edge is included in the graph with probability p = 0.1
independent from every other edge. The variables AX; and Ae¢; are generated from
a standard normal distribution. To assess the performance of the estimated network
with the true network, we consider the estimator as a binary classifier (a connection

is detected or not) and compare two difference measures. The true positive rate

"We thank Aureo de Paula, Imran Rasul and Pedro Souza for generously allowing us to use their
original code to replicate their results in our simulations.
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Figure 1: Comparing ROC under large n and small T
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For each scenario, we plot the ROC curves under 200 simulations. The blue dash line represents
the ROC curves for penalized GMM method and red solid line represents ROC curves for Graphical

Lasso method.
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Figure 2: Comparing TPR and FPR under small n and large T
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For each scenario, we plot the TPR and FPR separately under 200 simulations. The blue dash
line represents the penalized GMM method and red solid line represents ROC curves for Graphical
Lasso method.

For a fixed threshold 7, the bigger the TPR, the better the classifier performs. The

false positive rate (FPR) is calculated as

iz Y9045 = 0) - 1(gij > 7)
Zi;&j 1(90,ij =0)

For a fixed threshold 7, the smaller the FPR, the better the classifier performs. The
Receiver operating characteristic (ROC) curve is a plot of (T PR(7), FPR(7)) with
7 varying from 0 to 0.

Figure [I| plots the ROC curves for both the Graphical Lasso and penalized GMM

method with the network size varying from n = 50 to n = 200 and time period

FPR(r) =
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Figure 3: Comparing ROC under Non-subGaussian error
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For each scenario, we plot the ROC curves under 200 simulations. The blue dash line represents
the ROC curves for penalized GMM method and red solid line represents ROC curves for Graphical
Lasso method.

varying from 7" = 20 to T" = 100. For each scenario, we plot the ROC curves under
200 simulations. The blue dashed line represents the ROC curves for the penalized
GMM method and red solid line represents the ROC curves for the Graphical Lasso



method. The accuracy for both classifiers improves as T' increases and n decreases.
The dominance of the solid red ROC curves versus the dashed blue ROC curves
in all scenario indicates that Graphical Lasso performs better at detecting the true
connections than the penalized GMM estimator. When n = 200, the TPR for the
penalized GMM method increases at the same speed as FPR, which suggests the lack
of predictability for the penalized GMM method at small T. The Graphical Lasso
method instead can still serve as a reasonably good classifier.

Figure 2 plots the TPR and FPR separately for Graphical Lasso and penalized
GMM method under small n but large T. The ROC curves for the two methods are
very similar in such scenarios (both converge to the top right corner as 7' becomes
large) so we present the TPR and FPR plots separately. The penalized GMM method
outperforms the Graphical Lasso method in TPR as T" becomes bigger. On the other
hand, Graphical Lasso method is doing better at controlling the FPR.

Figure |3 plots the ROC curves for both the Graphical Lasso and penalized
GMM method when the sub-Gaussian assumption is violated. We consider a two-
dimensional mixture model for the error term between standard Normal and Cauchy
distribution. The mixing weight varies between 1, 0.1 and 0.001. When the mixing
weight is 1, the error term is drawn from a Cauchy distribution. When the mixing
weight is 0.01, the error term is drawing from a Cauchy distribution with probability
0.01 and from a normal distribution with probability 0.99. This is similar for the case
when mixing weight equals 0.001. While both methods suffer from the violation of
the sub-Gaussian error, the Graphical Lasso method still outperforms the penalized
GMM method in all cases.
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5 Estimating production spillovers among U.S. law-

makers

An important literature in political science has highlighted an increase over time of
both partisanship and polarization in the U.S. Congress | This literature is based on
the study of roll call votes and has focused on the question of whether parties exert
pressure on congressional members in close votes (Snyder and Groseclose| (2000))); or
whether the increase in polarization determines changes in the congressional mem-
bers’ ideal points (McCarty et al.| (2001))). An issue that has not been adequately
studied, however, is whether the rise of partisanship is affecting how legislators col-
laborate in drafting legislation. There is a big difference between a legislature where
bills are dropped by the leadership on the legislators for approval on partisan lines;
and a system where legislation is build from the bottom up, as the result of ac-
tive collaboration between individual legislators, both within and across parties. To
study this question, we apply our technique to the estimation of social spillovers in
the “production function” for bills in the U.S. Congress.

We apply our method to study the latent connections among legislators by using
their Legislative Effectiveness Score (LES). This metric is based on the work of|[Volden
and Wiseman (2018)) and it is a summary metric of how successful a lawmaker is at
moving his/her legislative agenda in the legislative process. For our analysis, we use
the LES information for the U.S. House of Representative members in 20 Congresses
(from the 93rd to the 112th Congress, spanning the years 1973-2013). We have
reconstructed the LES at monthly level to allow us obtain enough variations from
the time dimension in each congress. Even though we only have T' = 24 for a two-
year congress, the analysis of the properties of our estimator in finite samples in
Section 4 shows that our estimator is suitable for this application when T is smallﬂ

We apply our method with and without correlated effects to estimate the latent

8See |[Rohde| (1991)), James M. Snyder and Groseclose| (2000), (Cox and Poole| (2002), McCarty
et al| (2001), among others for partisanship; and |McCarty et al. (2001)) and |Poole and Rosenthal
(2007) on polarization.

?Specifically, following [Volden and Wiseman| (2018)), for each congress member ¢ and month ¢
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network structure among legislators (equations (6) and (9))[] The estimated net-
work can be interpreted as describing the network of production spillovers among
lawmakers. We choose the tuning parameter A\ proportional to \/W which
guarantees the rate of convergence as shown in Theorem 3.1l While our methodol-
ogy produces estimates of the link strength between any pair of Congress members,
we present the detected network structures under different choice of X\. For the model
with correlated effects, we assume independence between Adg; and Adp; to simplify
the computational burden. This assumption does not affect our final results as one
of the two correlated shocks are always estimated equal to 0.

Figure /4] illustrates the estimated social networks without correlated effects (e.g.,
under equations @) for two congresses at the beginning of the sample period, the
93rd and the 97th, and two congresses at the end, the 109th and 112th.E All Re-
publicans are arranged at the right of the plot while Democrats are at left. The
connections between two Republicans are colored in red while the connections be-
tween two Democrats are colored in blue. The color between blue and red represents
a link between a Republican and a Democratic legislator. We plot all links with
A= SOW . This picture reveals a surprising feature: we observe a significant

we compute:

LES;; = «(BILL§ + AICS + ABCS + PASSS + LAWY)
+B(BILLS, + AICS + ABCS + PASS;, + LAWS)

where o = 1 and g = 5. Bills are classified as “significant bills” or as “commemorative bills:” the
sup-script S represents significant bill and sup-script C' represents commemorative bills. For for
I = C, S, the variable BILL!, represents the number of bills introduced by i at time t, AIC,
represents the number of bills introduced by i at time ¢ that received action in committee, ABC!,
represents the number of bills introduced by ¢ at time ¢ that received action beyond committee,
PASS!, represents the number of bills introduced by i at time ¢ that pass the Senate and LAWY,
is the the number of bills introduced by i at time ¢ that become law. [Volden and Wiseman| (2018)
compute the formula below normalizing the LES scores by the total number of bills passed in each
subcategory and in each time period. This transform the score into a percentage format which is
relative easy to interpret. However, normalization may distort the variance-covariance matrix of
the underlying metrics and thus we choose not to normalize.

10VWe take Ax; as a costant since no other time varying attributes are observed for the legislators
at monthly level.

A figure with all the congresses from the 93rd to the 112th is presented in the Appendix.
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reduction over time of the number of detected links between lawmakers, both within
parties and between parties. We further investigate this finding in Table 3] We
report in this table the detected number of links for all the 20 congresses and under
different A\ for the estimated link strength. Panel A show the baseline estimates
(equation @), whereas in panel B we show the estimates that control for party level
common shocks (equation ((9))). Each panel illustrates the estimated networks by
reporting the number of links distinguishing between the Republican party (column
R), the Democrat party (column D) and between parties (column RD). The majority
party for each congress is indicated in the second column. In panel B , we also report
the estimated level of common shocks by party when \ = 30\/W . The common
shocks estimated under the other two choice of A are similar.

Three features appear clear from these results. First, the links in the majority
party are more numerous than those in the minority party. This is to be expected
since the party in the majority has an institutional advantage in lawmaking. Part
of this advantage is naturally captured by the individual fixed effects and the party
common shock. However, the pattern remains unchnaged even in Panel b), where
the party common shock has been purged out. In Appendix Table B4 we show
the estimates of the average link strength[”?] The table shows that links between
members of the party in the majority are also stronger than between members of the
party in the minority. It is therefore important to note that the party advantage does
not only enter as a fixed effect, but it also significantly affects the marginal effect
of social connections, making complementarities in effectiveness more numerous and
significant.

The second, and perhaps the most surprising, observation is that the table con-
firms a significant reduction over time of the number of detected links between law-
makers, both within parties and between parties, irrespective of the threshold chosen.
Looking at panel A, with A = 10\/W , in the first 5 congresses in our sample,
we detect an average of over 228 links between lawmakers of different parties, over
100 links between lawmakers in the minority party, and over 700 between lawmakers

in the majority party (that was the Democratic party). In the last 5 congresses in

12We present the de-biased estimates from Equation
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our sample, on the contrary, the links between lawmakers of different parties are
on average only 52, the links between lawmakers in the minority are only 21, and
between lawmakers in the majority are 200. It is important to observe that this re-
duction in connections does not reflect an overall reduction in the legislative activity
in Congress. While the results in Table [3| show an important drop in the number of
detected connections from the 97th Congress onward, Appendix Figure [5| documents
that the average number of bills proposed in Congress over the period is stable/™|

The third observation emerges when we introduce in the estimation the party
level common shocks (panel B). On one hand, panel B confirms the decline in links
shown in panel A. Using the most selective tunning, A = 304/logn/T, we always
observe spillovers/links at the individual level (from a minimum of 8 to 36) in the
first 5 congresses in our sample; using the same criterion, in the last 5 congresses
in the sample, we observe less than 1 individually significant link in all congresses
except the 11th, where we observe a grand total of 6 links. Using the least selective
tunning, \ = 10\/W , we observe from 164 to 268 significantly positive links in
the first 5 congresses; we observe from a minimum of 40 to a maximum of 59 links in
the last 5 congresses. Most importantly, however, on the other hand the table shows
that the decrease in productivity links at the individual level is associated with an
increasing importance of the party common shock over time. As it can be seen from
the table, the common shock is not detected in the first 5 congresses; it is detected,
on the contrary, in all the last 5 congresses that we observe.

Combined, these observations suggest that, in the past 50 years, there has been
a significant change in the way the U.S. Congress operates, with an increase in
importance of the two leading parties, the Democratic and Republican parties; and

a reduction in importance of direct personal connections between lawmakers.

13Bills from house of representatives. The data is available at https://thelawmakers.org/
data-download
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5.1 Validation

We now turn to the comparison between the social matrix estimated here and other
directly observed adjacency matrices commonly used in the literature to study so-
cial connections in the U.S. Congress. Two main types of adjacency matrices have
been used in previous work as proxies of social connections: the cosponsorship ma-
trix, where two lawmakers are linked if they cosponsor each other’s bills (see [Fowler
(2006))); and the alumni connection matrix, where two lawmakers are linked if they
have attended the same educational institution within a given time window (see |Co-
hen and Malloy| (2014)), [Battaglini and Patacchini (2018)), Battaglini et al.| (2020))).
In Table[I} we compare our estimated network with the consponsorship network.
Following the seminal contribution by Fowler| (2006), a large literature in politi-
cal science has used the network of cosponsorships to measure social connections
in Congress (see e.g. [Kirkland| (2011) and Kirkland and Gross| (2014))). Cospon-
sorhip information is obtained using the Library of Congress data information sys-
tem, THOMAS (http://thomas.loc.gov). Following the existing literature, we
define two congress members as linked if they have cosponsored the same bills. No-
tice that our estimated network only uses legislators’ effectiveness, which does not
contain information on cosponsorships. We should however observe correlation be-
tween the two networks if cosponsorship activity is an important factor enhancing
legislators’ political agenda. For the comparison, we define different cosponsorship
networks where a link between two legislators is established if they have cosponsored
the same bills for more than Q(7) times where Q(7) is the 7’s quantile of number of
bills cosponsored between any pair of legislators in that given congress. We consider
(1)=0.1, 0.3 or 0.5 (where 0.1 is the 10th percentile, 0.3 the 30th percentile and
0.5 is the median of the distribution). The different thresholds produce networks
with different densities. Table [I| compares the coverage probability of each of those
cosponsorship networks when using the Lasso-detected network and for a random
network with the same density of the given cosponsorship network. The coverage
probability when using the Lasso-predicted network is computed as the total number

of Lasso-detected links which are also in the given cosponsorship network divided by
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the total number of links in the Lasso-predicted network. The normalized cover-
age probability reported in the columns denoted by Lasso-detected is the coverage
probability divided by the coverage probability in a random network with the same
density of the given cosponsorship network["] This ratio represents the power of
predicting the cosponsorship network using the estimated network. The table shows
values of the normalized coverage probability of our estimated network consistently
higher than one, thus dominating the random guess. This suggests the estimated
network contains information on cosponsorship activity in congress.

For the comparison with the alumni network, we construct alumni networks by
setting a link to 1 if two legislators attend the same educational institution within
a 4-year, 8-year or 10-year time window (and 0 otherwise). This social network is
obtained retriving information on high schools and higher education institutions at-
tended for both undergraduate and graduate degrees from the Biographical Directory
of the United States Congress (available online at http://bioguide.Congress.gov/
biosearch/biosearch.asp). Although those social connections are formed many
years before election to Congress, a recent literature documents that they are still
relevant in explaining legislators’ activities in Congress, such as roll call voting or
campaign contributions (Cohen and Malloy, 2014, Battaglini and Patacchini 2018).
Table[2] has a similar structure of Table[I] It compares the coverage probability of the
different alumni networks when using the Lasso-detected networks and for a random
network with the same density of the alumni network with the given graduation-time
window. Here too we find evidence that the Lasso-predicted network show a good
predictions of the alumni networks in congress 99, 104, 105 and 111. This is remark-
able not only because we are not using any information from the alumni networks in
our estimates, but also because the alumni networks are very sparse (random prob-
ability is at le-3 level) and only select around 50-100 links (as in Table 1). It is thus
very likely that none of the detected connection is in the alumni network (the expect

value is at le-1 level) even when our method is doing better than a random guess.

4The coverage probability in the case of the random network is computed as the total number of
links in the given cosponsorship network divided by (N2 — N). This represents the probability that
a random guess in the network coincides with a link in the cosponsorship network. This probability
is reported in columns denoted by Random Network.
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6 Extensions

We conclude our analysis by presenting here two methodological extension of the

approach developed in the previous sections.

6.1 Endogenous and exogenous effects

A more general version of equation [6] includes spillovers from exogenous characteris-

tics:

AEt = G()l . AEt + GOQ : AXt + AXtﬁ + AQ (10)

The second term in ([10) correspond to what Manski (1993) defined as exogenous
effects, such as spillovers due to exogenous interventions. For example, consider A X,
as an indicator for the treatment status at time t. In this context, AX, represents
the direct treatment effect whereas Ggy - AX; represent the spillover effect of the
treatment, that is the effect due to the treatment status of own social connections.
The social network structure transmitting the treatment spillover effect Gy or its
magnitude may or may not be the same as the transmission structure and magnitude
of the endogenous spillover Gg;. Observe that in this context our model allows to
estimate endogenous and exogenous treatment spillovers without observing the social
network.

The estimation for equation [I0]can be considered as an extension of the procedure
presented in Theorem 3.2. First, we can apply the same Graphical Lasso estimator
to estimate Ggy;. Next, we can apply the standard Lasso estimator on the reduced
form equation (1, — Gl)AEt = Goo - AX; + AX B + Ae; to recover Gos.

6.2 Multidimensional common shocks

The composite structure of the error term in equation @D (i.e., individual fixed effects
plus common shocks) allows us to deal with issues related to endogenous network
formation. For example, there may be an unobserved characteristic either at the

individual or group level that may be responsible for the agglomeration of similar
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outcomes. Equation @ is based on two-dimensional error structure. We focus on
the two-dimenionsal case in order to be consistent with our empirical application (the
two-partisan structure of the U.S. Congress). A multi-dimensional error structure is
however straightforwad to include: our framework allows to include up to a finite
number of shocks affecting different individual at the same time. While we assume
that the structure of the shocks is known (i.e. we knwo who is Democrat and who is
Republican), this is not a necessary condition for identification of equation @ Along
the line of the latent Graphical Lasso proposed by |Chandrasekaran et al. (2012]), one
can separate common shocks from the estimation of GGo even when the structure
or dimension of the shocks is unknown. The derivation of the statistical properties
of the latent Graphical Lasso estimator when extended to the case of simultaneous

equations, however, is not trivial. We defer that as future research topic. E

7 Conclusion

In this paper, we propose a new approach to the estimation of networks using ob-
servable social outcomes and we apply it to the estimation of productivity spillovers
in the U.S. Congress.

Our approach is designed to address two key problems associated with social
networks among lawmakers, but also common with other social networks. First,
social networks are not generally directly observed, their estimation therefore should
be based on the effect that they induce on observable social outcomes. The cases in
which social networks remain stable over long periods of time, moreover, are rare,
thus their effects on observable outcomes are observed only for limited amounts
of time, thus making the evaluation of their contribution and more generally their
estimation challenging. Second, theoretical work on network formation and anecdotal

evidence suggests social networks in the U.S. Congress and in other social settings

15 A similar framework can be found in factor models (see, Bai and Li (2012), for a review) where
one does not need to assume the factor structure is known. In this setting, the variance-covariance
matrix may exhibit certain pattern that can be explained by “low dimension” factors (e.g. block
homogeneity: a small block that has similar within block correlation). The complication in our
setting is that there exists an unknown high dimesional structure of interactions.

29



are dense and prone to the formation of stars, i.e. nodes with a high density of
connections. Identification, therefore must be guaranteed in environments with these
challenging features.

Our work extends the Graphical Lasso model to incorporate the simultaneous
equation system arising from equilibrium conditions. Compared to alternative ap-
proaches in the literature, our analysis generates an estimator with two appealing
properties. First, it is constructed for “small” asymptotics, thus requiring short pan-
els of observations. Second, our estimator requires relatively unrestrictive sparsity
assumptions for identification. The “cost” for these appealing features is that for
our theoretical derivations, we add more structure to the environment, namely the
assumption of sub-Gaussian noise. We present a battery of Monte Carlo simulations
to show that our approach works well in small sample environments, both when the
sub-Gaussian assumption is satisfied and when it is not.

Our application of these techniques to the study of the U.S. Congress gives us new
insights about the nature and effect of social interactions among lawmakers and their
evolution over time. Many political scientists have highlighted an increase over time
of both partisanship and polarization in the U.S. Congress. This literature, based
on the study of roll call votes, has focused on the question of whether parties exert
pressure on Congress members in close votes; or whether the increase in polarization
determines changes in the Congress members’ ideal points. What has not been
studied yet in the literaure is whether the rise of partisanship affects how legislators
collaborate in drafting legislation. Our analysis suggests that, in the past 50 years,
there has been a significant change in the way the U.S. Congress operates, with a
reduction in importance of direct personal connections between lawmakers; and an
increase in importance of the two leading parties, the Democratic and Republican
parties. These results suggest that the rise of partisanship is not affecting only the
ideological position of legislators when they vote, but more generally how legislation

is constructed in the U.S. Congress.
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Figure 4: Estimated Network Plot

(a) 93rd Congress (b) 97th Congress

(c) 109th Congress (d) 112nd Congress

This figure plots the estimated networks with A = 304/logn/T. The red dots represent the Republic
party and blue dots represent the Democratic party. Red edges represent connections within the
Republican party, blue edges represent the connections within the Democratic party and purple
edges represent the connections between the two parties. The stronger the connections are the
thicker the line is depicted.
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Table 1: Comparison with Cosponsorship Network

cosponsor > Q(0.1) cosponsor > (0.3) cosponsor > Q(0.5)

A = 4/logn/T x A = 4/logn/T x A = 4/logn/T x

Cong 50 30 10 50 30 10 50 30 10
93 1.24 123 1.11 143 140 1.21 1.68 1.59 1.33
94 1.15 1.11 1.06 1.20 1.25 1.12 1.68 1.67 1.31
95 1.12° 1.12  1.08 1.46 145 1.32 1.82 1.82 1.58
96 1.07 1.05 1.05 1.26 1.13 1.14 1.62 139 133
97 0.80 0.78 0.88 0.74 0.70 0.81 0.82 0.70 0.89
98 1.04 1.03 0.98 1.26  1.21 1.08 1.45 157 132
99 1.11 1.11  0.99 147 137 1.14 1.82 154 1.35
100 0.86 096 0.98 0.33 0.70 0.98 0.23 0.66 1.13
101 1.12° 1.03 1.06 1.46 1.25 1.13 191 1.74 145
102 .11 1.12  1.02 148 1.31 1.20 207 184 150
103 N/A 1.10 1.06 N/A 145 1.12 N/A 180 1.37
104 1.12 1.08 1.06 1.32 1.26 1.20 1.71 156 1.48
105 1.14 1.08 1.08 1.46 131 1.15 2.18 1.58 1.22
106 N/A 038 0.77 N/A 0.00 0.70 N/A 0.00 0.72
107 1.12° 115 1.04 141 124 1.01 223 096 0.60
108 1.05 094 1.02 0.00 0.46 1.05 0.00 0.69 1.01
109 0.00 1.11 1.57 0.00 1.08 1.57 0.00 1.05 1.57
110 1.27 1,51 1.73 1.12 156 1.74 1.23 153 1.73
111 1.33 154 149 1.29 151 1.49 1.39 1.58 1.49
112 227 187 167 221 1.84 1.65 233 185 1.64

This table display the odds ratio between the event a cosponsorships connection is detected by
Graphical Lasso method and the event a cosponsorships connection is detected by a randomly
generated network with the same sparsity as the Graphical Lasso detected network. We define two
congress members as linked in a cosponsorship network if they have cosponsored the same bills
for more than Q(7) times where Q(7) is the 7’s quantile of number of bills cosponsored between
any pair of legislators in that given congress. The N/A in the table is due to the empty network
detected by Lasso method as shown in table
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Table 2: Comparison with Alumni Network

4 years 8 years 10 years

A = /logn/T x A = 4/logn/T x A = 4/logn/T x

Cong 50 30 10 50 30 10 50 30 10

93 0.00 0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.49
94 0.00 0.00 0.58 0.00 0.00 0.69 0.00 0.00 0.59
95 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.20
96 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.36
97 0.00 0.00 0.45 0.00 0.00 0.57 0.00 0.00 0.71
98 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.75
99 0.00 0.00 1.99 0.00 0.00 1.15 0.00 0.00 1.49
100 0.00 0.00 1.06 0.00 0.00 0.63 0.00 0.00 0.55
101 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
102 0.00 0.00 0.76 0.00 0.00 0.93 0.00 0.00 0.79
103 N/A 0.00 0.00 N/A 0.00 0.67 N/A 0.00 0.57
104 0.00 0.00 3.59 0.00 0.00 2.11 0.00 0.00 1.84
105 0.00 0.00 1.25 0.00 0.00 0.77 0.00 0.00 0.67
106 N/A 0.00 0.00 N/A 0.00 0.00 N/A 0.00 0.00
107 0.00 0.00 241 0.00 0.00 1.42 0.00 0.00 1.17
108 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99
109 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111 0.00 0.00 2.53 0.00 0.00 2.39 0.00 0.00 2.03
112 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This table display the odds ratio between the event a cosponsorships connection is detected by
Graphical Lasso method and the event an alumni connection is detected by a randomly generated
network with the same sparsity as the Graphical Lasso detected network. We define two congress
members as alumni if they overlapped in a 4-year, 8-year and 10-year window when attending
colleges. The N/A in the table is due to the empty network detected by Lasso method as shown in
table Bl
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Table 3: Link Distribution

Panel A Panel B
A 50+/log n/T 30+/log n/T 104/logn/T 504/logn/T  304/logn/T 104/logn/T Common Shock
Cong Maj D R DR D R DR D R DR| D RDR D R DR D R DR D R
93 D 108 2 24 202 6 62 858 30 268| 54 0 3 148 4 43 520 14 168 0.00  0.00
94 D 000 13 162 0 26 962 22 224| 30 0 5 50 0 11 588 10 135  0.00  0.00
95 D 132 0 24 234 0 47 806 8 164| 54 0 8 128 0 21 582 6 124 0.00  0.00
9% D 38 40 8 88 76 55 588 260 220 | 20 2 1 32 42 7 682 306 294  0.00  0.00
97 D 24 16 36 40 64 65 316 220 262 | 10 4 13 26 36 49 226 230 252 0.00  0.00
98 D 2 0 4 38 8 436 14 95 2 0 4 34 0 6 1390 72 315  0.00  0.00
99 D 12 0 2 28 2 7 366 10 60 10 0 2 34 9 404 12 69 0.00  0.00
100 D 0 6 6 4 10 9 262 36 88 0 6 6 18 10 10 320 38 104 0.04  0.00
101 D 4 0 2 20 0 4 284 16 70 8 0 3 16 4 510 22 124 0.01  0.00
102 D 0 2 3 8 5 360 26 108 0 0 2 10 7 178 14 65 0.02  0.00
103 D 0 0 0 14 4 230 20 63 0 0 1 20 6 430 40 115 0.01  0.00
104 R 0 12 5 4 24 8 20 398 85 0 8 5 2 14 8 18 266 60 0.00  0.01
105 R 2 0 4 4 249 16 272 71 2 0 2 4 10 9 54 536 143 0.00  0.04
106 R 0 0 0 0 6 0 6 250 60 0 0 0 0 2 0 8 322 83 0.00  0.05
107 R 0 0 2 0 10 3 14 146 34 0 0 2 2 26 5 34 330 92 0.00  0.03
108 R 0 0 1 0 6 3 16 184 40 0 0 0 0 2 18 296 70 0.00  0.06
109 R 0 0 1 0 10 3 10 164 41 0 2 0 0 3 18 306 93 0.00  0.09
110 D 0 0 1 12 6 244 48 58 0 0 0 2 3 124 40 45 0.08  0.00
11 D 2 0 3 14 4 278 22 59 0 0 1 14 7 294 38 63 0.39 0.0
112 R 0 4 0 0 18 5 10 132 42 0 2 0 0 16 5 44 354 136 0.00  0.03

This table presents the detected network structures under different choice of tunning parameters. Panel A shows the baseline estimates (equations, whereas in panel B we
show the estimates that control for party level common shocks (equations E Each panel illustrates the estimated networks by reporting the number of links distinguishing
between the Republican party ( column R), the Democrat party (column D) and between parties (column RD). The majority party for each congress is indicated in the
second column.
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A Proofs

Lemma A.1. Let A be a symmetric, positive semi-definite matriz. Then

Proof. Denote A = LAL’ as the eigenvalue decomposition, where A = diag(A1, Ao, -+, A\p)
and \; > 0. Thus,

LA+ ATQA Y = (LQL) (LA 2+ A '@A ) (I/®L)
1 1
Z(I”®A2 +ARQA) = Z<L®L) (LN +ARAN) - (I'®L)

Since
(LA 2+ AT @A) =diag(A}/2, (A2 + AT ) LG AT T
AT+ AT THA3/2, (A2 +H A0 D)7
A2+ XA O+ A AL /2)
and

1
Z([n ® A2 +A ® A) = dzag()\%/Q, ()\% + )‘1)\2)/4? T ()\37, + )‘lAn)/Zla
()\% + )\2)‘1)/47 )‘3/27 Ty (AZ + AQ}‘”)/ZI’
(AT + Ada)/4, (A3 + A ha) /4, -+ A2 /2)
Notice that (AZ+X;A;)/4— (A7 24X A7) ™0 = (WA AT =2) /(A2 +A1A %) =

0, thus %(]n QAN +ARAN) — (I, A2+ A1 ® A1) ~! is postive semi-definite. As

a results, the lemma holds.
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Lemma A.2. The following minimization problem is convex.

U =GPl <5U;—2G)2> IVt (11)

o2

arg min — log
G0

Proof. First, define

I, — G)?
q(0*, G) = —108;‘% o?

+ tr (SM)
= nlog(c?) + %tr (S(I, — G)?) — 2log|(I, — G)|

Taking the derivative and Hessian:

0q(o,G) 2

G —;S([n - G)+2(I, - G)*

0q(o,G) _n itr (S(I, — G)?)

and

2(L@5) + 20~ G @ (-G vee (2(5029))

o4

- ! r(S(I—G)2
vec (2 <S(IZ4 G))) _<%> 4ot (S(IUG G)?)

The first order equation implies 0? = Ltr (S(I, — G)?). As T — o, S — o*(I, —
G) 72, together with Lemma , the determinant of H,, can be bounded as

H, =

det(H,) > det (In® %) . l_(g) . tr(S(IZG— G)z)] 0

Lemma A.3. Assume Y s sub-Gaussian, S is the sample variance-covariance ma-

triz and g is the population variance-covariance matrix. For non-random matrices

A, B € R™" it holds that |A;|s < M and ||B;|o < M for allie1,--- ,p. Then for
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all t > 0, with probability at least 1 — e™™ 4t holds that

2log(2n?) N log(2n?)
T T

|A(S — 20)Blloo/(2M?K?) < t + /2t +

This is Lemma 14.13 in Biithlmann and van de Geer| (2011]). The proof is omitted.

Lemma A.4. Define Zg(Ac?) as

Ea(Ac?) = q(of + Ao, Gy) — q(og, Go)

! iz) tr (S([n — G0)2)

= nlog(af + Ao®) —nlog(og) + (m "3

when \g = v/logn/T and d = op (T/(v/nlogn)), there exist constant ¢, = —1/G1 +
202/69 and cy > 0 such that

Ec(Ac?) = ney(Ac®)? — can(1 + d)Ag | Ad?|
Proof. First, notice that
tr (S(I, — Go)*) = nog + tr (S — o) (I, — Go)?)

Since |(I, — Go)il2 < /1 +d, from Lemma , with probability approach to 1,
there exist ¢y > 0, such that

logn
T

ltr (S — o) (In — Go)?) | < n|(S — o) (In — Go)?|ee < con(1 +d)

When d = op ( T/(nlog n)), [tr (S — 20)(I, — Go)?) | = op(n). By Taylor expan-
sion and mean value theorem, for some 7 between o? and o3 + Ac?,

_ n n
Zg(AO'Q) = J—gAUZ - 5'_11

(Ac?)? + (‘%Aﬂ - %<A02>2) - (nag +tr (5 = %o) (I = Go)*))

0o 01
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and for constant ¢; = —1/67 + 203 /59,

logn
T

Ea(Ac?) = ne (Ac?)? — eon(1 + d) |Ac?|

Lemma A.5. Define Z,(A) as
1
Z(A) = q(0,Go + A) — q(0?,Gy) = 5t (S(I, = Go + A)* = S(I, — Go)?)
- 2(10g |(In — Go + A)| - log |(In - GO)D

For all |A|r < 1/(2L), there exists constant c3 > 0 and ¢, = 1/2(L+1/(2L))?+1/L?,
such that

Zo(A8) > ca Alf = es(1+ d)do - Al — %!Aojl AL
Proof. The first component is
tr (S(I, — Go + A)? = S(I,, — Gg)?) = 2tr(AS(I, — Go)) + vec(A) - (I, ® S) - vec(A)
A second order Taylor expansion with remainder in integral form yields

log |(In, — Go + A)| = log |(I,, — Go)| = tr(A(l, — Go) ™)
+ vec(A) - Jl(l —v)(I, — Go + vA) ' ® (I, — Gy + vA) ' dv - vec(A)

0

Thus

Z,(A) = 2r (A (w"—;GO) — (I, - G0)1>> (12)

g

+vec(A) - (In ® %) ~vee(A) (13)

+ vec(A) - (2 f;(l —v)(I, — Go + vA) ' ® (I, — Gy + UA>_1dU> -vec(A)
(14)
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First consider equation

vec(A) - (In ® %) -vec(A) = vec(A) - (1, ® (I, — Go)?) - vec(A) (15)
S =3

o2

+vec(AY - (zn ® ) - vec(A) (16)

On the event {|S — X, < A}, equation [16]is in a smaller order than other term. As
Apin (I, ® (I, — Go)™2) = A2 (I, — Gy) = 1/L?, thus equation [13|is greater than

max

|A|%/L%. Next consider equation [14} for all [A|r < 1/(2L), a standard argument
as in Theorem 1 in |Lam and Fan| (2009) or Lemma 2 in [Jankvoa and van de Geer
(2019) yield

Amin (ZL (1= 0)(In = Go + vA) " ® (I = Go + "A)_ldv) I+ 1}(2L))2

Finally, consider equation |12

(3 (25 ) - (s (3 2) )

- %Qtr(A(S ~%0) (L~ Go)  (17)

N (i _ iz) 2r(AS - (I, — Gy))  (18)

2
o? o}
From Lemma [A 3] for a constant ¢z > 0

2

(A5 — 20) - (T — GOl < 25 (5~ 5o) - (7~ Gol, [ < es(1 + Ao

o?
Given EQ(In—G0> = O'g(]n—Go)_l, thus HEO . ([n - G())HOO < O'(Z)Amar((ln—Go)_l) =
o2/L. Thus equation [12]is boudned by

2 2
s+ o Al + —7|A0?] - Al
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As a result, define ¢, = 1/2(L + 1/(2L))* + 1/L?
- 2
Zo(8) > e Al = es(L+ d)do - [Alr = 57 |A0%] - Al

A.1 Proof of Theorem [3.1]

Proof. From Lemma define G and 62 as the solution to the minimization prob-
lem in equation [L1} Then with the definition of Z¢(Ac?) and Z,(A) in Lemma

and [A.5] we have
4(6°,G) + NG|y < a(05, Go) + A|Gol

Thus,
Zs2(A) + g, (A?) + N|Gl1 < +M|Gol

Therefore,

nei(Ac?)? + ca| A% + NGl < ean(1 + d)do |Ac?| + es(1 + d)Ao - |Als

2 2
+ 62L|A0 |- AL + X Gol
First notice that
2 180 Al < SMA0%? + LA < S0 a0 4 —L a2
g . S g S o
52 LS 52 a2l TS 54 22 TF

Since ¢; = —1/61 4+ 202/6% and ¢y = 1/2(L +1/(2L))? + 1/L* > 1/(a*L?) for o* < 1
, for all Ac? < min{(1 — a)o?, (1 — a?)/(1 + a?)o2}, we have

2

>0and54=c4—m>0

1 =0C — =
&4

by triangular inequality and take A > 2¢3(1 + d) Ao

27161(A0'2)2 + 254||A||§7 + /\HGSCHI < 2C2n(1 + d))\o |AO’2‘ + 3/\HA5‘H1
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Add and subtract both side with A\|Ag]|; and

2181 (Ac?)? + 26, | Al + MA]L < 4A/5,|AllF + 2e2n(1 + d) Ao }AaQ\
Sp\? 4c2n(1 + d)* N

— + AR+ C1

<4

which implies

A2 4Zn(1 4 d)PA
e (Ac?)? + G| A% + AL < 455 danld + Ny
4

C1

+ né (Ao?)?

Thus |Ac?| = Op(+/(so +n)/n - d\), |Alr = Op(x/(s0 +n) - dX\o) and |A]; =

OP((SO + nd) : )\0)

A.2 Proof of Theorem 3.2
The KKT condition on equation |11} gives

S ‘A g
27—
5 0

(I, - G)™! - ?Un -G)+

% _ %tr (S(In . 6)2) —0

where Z;; = sign(Gy;). Since Xo(I — Go)?/02 = I,
A by S A A
-1 -1 0
(In = G)" = (In — Go) +U—g(1n—Go)—§(In—G)+§

which implies
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By the symmetric of (I, — Go) ™", we have (I, — G)™* — (I, — Go) ™ = (I,, — Go)
(I, — G)™' - (G — Gy). Equation can be written as

. 1 A X S
(G —Gy) = —§(In—G)([n—G0) (a_g 02) (I, — Go)
A A L1 A o S .
- Z(In — G, — Go)Z — §(In — G)(L, — Go) (U—g - g) (Go —G)
Thus we can define the debias estimator as
~ a1 A S A
= —(I, -G (-1, + = (I, — G)?
G G+2(n G)( n+&2(n G))
A decomposition of G — Gy yields
~ 1 X S o S
(G =Go) = —5(Ln — Go)? (U—g - g) (In — Go) + (G Go)(1n — Go) (U_o ;) (In — Go)
R
A N | X S
= 0= 6)(6 = Go) 2= (1= )1 = G (53 - 51 ) (G0 )
“Rf2 - Eé >

From Lemma [A.4] and theorem [3.1]

Y S x S S 8
ool <22 +|5-5) < v radm
o5 0 o5 o5l o 0%,
Further define | - |,1 as the operator norm from l,, — I, which is the maximum [;

norm of a row. Since |G — Gollopr < /72| G — Gollr and |1, — Golop < (1 + d)

1. 4
HRIHOO < iHG - GOHOpl H GOH = Op((So + n)d4/\(2))

0

opl ~ ;

H Y S
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A A ~ A~ A
| Rolloe < S (1 — Go)(G = Go) Z| o + <[ (G — Go)*Z]
4 4
A A . . Ao~ .
< ZH[" — Glop1|G = Gollopr [ Z ] + ZHG — Gol21l1Z
= Op(v/n(so + n)d> 3 + n(so + n)d> \3)

1 2, S )
Rl <5 |- G (5~ 5) (Go- &

0

1 . SRS .
sy lG-a -6 (B-5) -6
o S

6—2

0 0

o S

o 2

1
< 5l — Go)l?

opl

|Go — G

opl
0

N 1
”GO - G“Opl + EH(In - GO)“Opl

o0

— Opl(s0 + m)d + V(s + )X

7

Thus when taking \g = +/logn/T and sod* = op(v/T/logn v T/(n(logn)?)) and
d = op (VT /(nlogn))'*)

(G —Gy) = —%(I — Gp)? (f—g — %) (I — Go) + op(1/VT)
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B Additional Results

Table B4: Average Link Strength (x0.01)

Congress Majority R D between

93 D 2.89 2.44 2.40
94 D 3.75 4.36 3.99
95 D 0.90 1.08 0.86
96 D 1.12 1.39 0.98
97 D 0.73 1.76 0.88
98 D 1.17 2.20 1.34
99 D 0.51 1.19 0.67
100 D 1.32 2.37 1.61
101 D 1.21 147 1.09
102 D 091 2.37 1.40
103 D 1.23 1.42 0.90
104 R 297 1.25 1.82
105 R 299 1.15 1.54
106 R 3.36  1.27 2.13
107 R 2.82 0.82 1.45
108 R 3.50 1.26 1.93
109 R 4.08 1.87 2.76
110 D 2.02 6.00 3.19
111 D 1.79 6.81 2.96
112 R 1.69 0.73 1.13
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Figure 5: Bills in the U.S. Congress
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This figure plots the average number of bills proposed in the House of Representatives, Congress
97th-112nd. Source: https://thelawmakers.org/data-download
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