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Abstract

We study the problem of learning about the effect of one market-level variable (e.g., price) on

another (e.g., quantity) in the presence of shocks to unobservables (e.g., preferences). We show

that economic intuitions about the plausible size of the shocks can be informative about the

parameter of interest. We illustrate with applications to the grain market and the labor market.

1 Introduction

Consider the problem of learning about the effect of one observed market-level variable pt (e.g.,

log price) on another observed market-level variable qt (e.g., log quantity demanded) from a finite

time series {(pt ,qt)}T
t=1 with at least T ≥ 2 periods. Economists often specify a linear model of the

form

qt = θ pt + εt (1)
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where θ is an unknown slope (e.g., the price elasticity of demand) and εt is an unobserved factor

(e.g., preferences). Models that can be cast into the form in equation (1) include Barro and Redlick’s

(2011, equation 1) model of the effect of fiscal policy on economic growth, Fiorito and Zanella’s

(2012, equation 3) model of the supply of labor, Roberts and Schlenker’s (2013a, equations 1 and

3) model of the supply and demand for food grains, and Autor et al.’s (2020, equation 2) model of

the demand for skill, among many others.

Absent further restrictions, the data are uninformative about the slope θ . Economists often

learn about θ by imposing restrictions on the evolution of εt , for example that it is unrelated to

an observable instrument (e.g., Fiorito and Zanella 2012; Roberts and Schlenker 2013a), or that it

is unrelated to pt after accounting for time trends (e.g., Autor et al. 2020). These restrictions are

typically motivated by economic intuitions about the determinants of εt .

In this paper we argue that economic intuitions about the size of fluctuations in εt can also be

informative about θ and can therefore complement other approaches to learning about θ . Suppose,

for example, that log prices pt for a good vary considerably from year to year but log quantities qt

do not. Because qt is stable, fluctuations in θ pt must be offset by fluctuations in εt . It follows that a

larger price elasticity of demand—a more negative θ—implies larger fluctuations in εt than does a

smaller price elasticity of demand. Large fluctuations in εt may be plausible if the good in question

is a particular brand of scarf, preferences for which may change radically from year to year due

to advertising campaigns, changes in fashion, etc. Large fluctuations in εt may be less plausible if

the good in question is a standard agricultural commodity, preferences for which are likely more

stable. In this latter case, economic intuitions about the size of fluctuations in εt may suggest a

smaller price elasticity of demand—a less negative value of θ .

Formally, we consider the implications of placing an upper bound B≥ 0 on a generalized power

mean, with power greater than one, of the vector (|∆ε2| , ..., |∆εT |) of absolute shocks to the unob-

served factor, where ∆εt = εt − εt−1 and ∆ is the first difference operator. We show that any feasi-

ble such bound B implies that θ lies in a closed, bounded interval. We provide a computationally

tractable characterization of the endpoints of the interval. We further show that some bounds B can

be inconsistent with the data, implying that, in some settings, we can place a lower bound on the

size of the true shocks even with no knowledge of θ . We show that our approach extends readily

to settings with a cross-sectional dimension (e.g., states or demographic groups), thus broadening

the set of possible economic applications.

We illustrate the value of incorporating economic intuitions about the plausible size of shocks
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with two applications. The first is to the price elasticity of demand for staple grains, using the

data and model from Roberts and Schlenker (2013a). The second is to the crowding out of male

employment by female employment, using the data and model from Fukui et al. (2020). In both of

these applications, the authors impose linear models and approach estimation and inference using

orthogonality restrictions with respect to excluded instruments. In both cases, we argue that, even

without such restrictions, economically motivated bounds on the size of unobserved shocks are

informative about the slope parameter θ . Reasonable bounds on the size of shocks imply bounds

on θ that are consistent with, and in some cases even tighter than, the authors’ own inferences.

We view the information about θ obtained by bounding the size of shocks as a complement to,

rather than a replacement for, the approaches used by the authors. We show how to visualize in a

single plot the bounds on θ implied by a range of bounds B on the size of shocks, so that researchers

can use our approach without taking a strong stand on the most appropriate bound.

We extend our approach in a few directions. We show how to obtain bounds on an average

slope in the case where the model takes the nonlinear form qt = q(pt)+ εt or the nonseparable

form qt = q̃(pt ,εt). We show how to construct bounds on θ based on restrictions on the size of the

component of the unobserved shock that is orthogonal to some observed covariates xt . We show

how to visualize the implications of sampling uncertainty in the variables pt and qt for the bounds

we compute. And we show in an appendix how to obtain bounds on a function γ (θ) of the slope

parameter θ .

The main contributions of this paper are to demonstrate that economic intuitions about the

plausible size of shocks to unobservables are available and useful in important applications, and

to propose a formal approach to exploiting these intuitions. We think that in cases such as the

applications we consider, authors may be leaving useful information on the table by failing to

exploit these intuitions.1

We expect that our approach will be most useful to researchers analyzing a time-series or panel

of well-measured aggregate or market-level variables. Researchers analyzing cross-sectional mi-

crodata, such as from a random sample survey of individuals, may find it difficult to motivate

restrictions on the size of unmeasured economic variables analogous to those we consider here.

Researchers analyzing poorly measured variables may be able to adopt our formal approach, but

may require a statistical, as well as economic, justification for restrictions on the size of shocks.

1For example, Roberts and Schlenker (2013a, p. 2277) write, “Price fluctuations are proportionately much larger
than quantity fluctuations.... This fact suggests that both demand and supply are inelastic.” Roberts and Schlenker
(2013a) do not formalize the logic behind this statement or develop its quantitative implications, as we do here.
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Our formal setup is closely related to a large literature, mainly in electrical engineering and op-

timal control, that considers bounds on the size of unobservable noise in a system (see, e.g., Walter

and Piet-Lahanier 1990; Milanese et al. 1996). The focus of much of this literature is on settings

in which, unlike ours, computation of exact parameter bounds is impossible, and approximations

are needed. In the paper, we highlight some specific connections between our characterizations and

those in this and other related work.

Within economics, proposals to impose restrictions on the variability of unobserved economic

variables go back at least to Marschak and Andrews (1944; see, e.g., equation 1.37),2 and are

related to (though distinct from) approaches based on bounded support of the outcome variable

(e.g., Manski 1990). More broadly, many canonical approaches to identification impose restrictions

on the distribution of unobserved variables (see, e.g., Matzkin 2007; Tamer 2010), such as the

assumption that the unobservables are uncorrelated with an observed instrument, have a correlation

with the observed instrument that can be bounded or otherwise restricted (e.g., Conley et al. 2012;

Nevo and Rosen 2012), or are independent of or uncorrelated with one another (e.g., Leamer 1981;

Feenstra 1994; Feenstra and Weinstein 2017; MacKay and Miller 2021).3 An appendix discusses

some connections between these types of approaches and ours.

Our approach is also related to recent proposals to learn about parameters of interest by re-

stricting the realization of unobservables rather than their distribution. In the structural vector

autoregression setting, Ben Zeev (2018) considers restrictions on the time-series properties of an

unobserved shock including the timing of its maximum value, Antolín-Díaz and Rubio-Ramírez

(2018) consider restrictions on the relative importance of a given shock in explaining the change in

a given observed variable during a given time period (or periods), and Ludvigson et al. (2020) con-

sider inequality constraints on the absolute magnitude of shocks during a given period (or periods),

as well as inequality constraints on the correlation between a shock and an observed variable. In the

demand estimation setting, Mullin and Snyder (forthcoming) obtain bounds on the price elasticity

of demand in a reference period under the assumption that demand is growing over time.4 Though

2Wald (1940, section 7) considers related restrictions on the distribution of measurement errors.
3See also Leontief (1929). Morgan (1990, Chapter 6) quotes a 1913 thesis by Lenoir which discusses how the

relative variability of demand and supply shocks influences the correct interpretation of data on market quantities and
prices. Leamer (1981) also imposes that the demand (supply) elasticity is negative (positive). A large literature (re-
viewed, for example, in Uhlig 2017) develops the implications of sign restrictions in a variety of settings, and a related
literature (e.g., Manski 1997) considers the implications of restrictions on functional form, including monotonicity.

4In our leading example of log-linear demand, this corresponds to the assumption that ∆εt > 0 for all t. Mullin and
Snyder (forthcoming) consider a variety of forms for demand in the reference period, including linear demand, demand
known up to a scalar parameter, and concave demand.
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related, none of these sets of restrictions coincides with those we consider here.

Also in the structural vector autoregression setting, Giacomini et al. (2021) study inferential

issues that arise in the presence of restrictions on the realizations of unobservables. Our approach

instead characterizes bounds on the parameter of interest that hold with certainty under a given

bound on the size of the shocks, so, in common with the closely related engineering literature that

we reference above, issues of probabilistic inference do not arise in our main setup. We discuss the

implications of sampling uncertainty in an extension.

The remainder of the paper is organized as follows. Section 2 presents our setup and results.

Section 3 presents our applications. Section 4 presents extensions. Section 5 concludes. Appen-

dices present proofs of results stated in the text and discuss additional extensions and connections.

2 Setup and Characterization of Sets of Interest

For any D−dimensional vector v and any k ≥ 1, write the generalized k−mean

Mk (v) =

(
1
D

D

∑
d=1

vk
d

)1/k

,

with M∞ (v) = maxd {vd} denoting the maximum value of the elements of v and M2 (v) denoting

their root mean squared value. Let |v|= (|v1| , ..., |vD|) denote the absolute value of the vector v.

Now for any k > 1, let M̂k (θ) = Mk (|∆ε (θ) |) denote the k−mean of the absolute value of the

vector ∆ε (θ) = (∆ε2 (θ) , ...,∆εT (θ)), where ∆εt (θ) = ∆qt−θ∆pt is the value of the shock to the

unobserved factor in period t implied by a given slope θ . Our main object of interest is the set of

slopes

Θ̂k (B) =
{

θ ∈ R : M̂k (θ)≤ B
}

(2)

that are compatible with a given bound B≥ 0 on the value of M̂k (θ).

In some applications, we may wish to impose direct restrictions on the possible values of the

slope θ , for example that θ ≤ 0 in the case of a demand function. To capture these direct restrictions

we will suppose that θ ∈ Θ ⊆ R, where, for example, Θ = R≤0 in the case where we impose that

θ ≤ 0, and Θ = R in the case where we impose no direct restrictions. A slope θ is compatible

with the restriction that M̂k (θ) ≤ B and with the direct restrictions if and only if it is contained in

Θ̂k (B)∩Θ.
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Given the model in equation (1), a bound B≥ 0 is compatible with the data, and with the direct

restrictions on θ , if and only if Θ̂k (B)∩Θ is nonempty. We let

B
(
k,Θ

)
=
{

B ∈ R≥0 : Θ̂k (B)∩Θ 6= /0
}

denote the set of bounds B that are compatible with the data and with the direct restrictions on θ .

We assume throughout that pt 6= pt+1 for at least one t < T . This condition holds in our appli-

cations. If it fails, any bound that is compatible with the data is uninformative.5

We begin with the case of k = ∞, in which we bound the maximum absolute value of the shock.

This case plays an important role in our applications, and yields a particularly simple form for the

sets of interest.

Proposition 1. Let

θ ∞ (B) = max
{t:∆pt 6=0}

{
∆qt

∆pt
− B
|∆pt |

}
θ ∞ (B) = min

{t:∆pt 6=0}

{
∆qt

∆pt
+

B
|∆pt |

}

and let B̃≥ 0 be the unique solution to θ ∞

(
B̃
)
= θ ∞

(
B̃
)
.

Then B (∞,R) = [B∞,∞) for B∞ = max
{

max{t:∆pt=0} {|∆qt |} , B̃
}

, and for any B ∈B (∞,R)

Θ̂∞ (B) =
[
θ ∞ (B) ,θ ∞ (B)

]
.

All proofs are given in Appendix A. The objects B∞, θ ∞ (B), and θ ∞ (B) defined in Proposition

1 can be readily calculated on datasets of reasonable size. In the extreme case where the bounds on

the shocks are achieved, the limit points θ ∞ (B) and θ ∞ (B) coincide, and Θ̂∞ (B) is a singleton.6

Remark. The objects characterized in Proposition 1 have antecedents in prior work. The interval

Θ̂∞ (B) solves a special case of Milanese and Belforte’s (1982) Problem B. The limit points θ ∞ (B)

and θ ∞ (B) of the interval appear in the analysis of the linear regression model with uniformly dis-

tributed errors (Robbins and Zhang 1986). Walter and Piet-Lahanier (1996) study the computation

of B∞ in a case with multiple unknown slope parameters.

5Specifically, if ∆p = 0, then M̂k (θ) = Mk (|∆q|) for all θ ∈ R, so Θ̂k (B) = R if Mk (|∆q|) ≤ B and Θ̂k (B) = /0
otherwise. Thus, in this case B (k,R) = [Mk (|∆q|) ,∞).

6More precisely, if M̂∞ (θ) = B at the true θ , and in particular there are s, t such that ∆ps,∆pt 6= 0, ∆εs =
Bsgn(−∆ps), and ∆εt = Bsgn(∆pt), then

∣∣Θ̂∞ (B)
∣∣= 1.
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We next consider the case of k ∈ (1,∞). Here we make use of the following properties of the

function M̂k (θ).

Lemma 1. For k ∈ (1,∞), the function M̂k (θ) is unbounded and strictly decreasing on
(
−∞, θ̆k

)
and unbounded and strictly increasing on

(
θ̆k,∞

)
for θ̆k = argminθ M̂k (θ) .

Lemma 1 implies that M̂k (θ) has a “bowl” shape, first decreasing to a unique global minimum

and then increasing. The following characterization of Θ̂k (B) is then immediate.

Proposition 2. For k ∈ (1,∞), the set B (k,R) is equal to [Bk,∞) for Bk = minθ M̂k(θ). Moreover,

for any B ∈B (k,R) we have that

Θ̂k (B) =
[
θ k(B),θ k (B)

]
where θ k(B),θ k (B) are the only solutions to M̂k(θ) = B, with θ̆k=θ k(Bk) = θ k (Bk).

Proposition 2 shows that B (k,R) is a left-bounded interval whose limit point Bk can be calcu-

lated by minimizing the function M̂k(θ). The limit point Bk has a direct economic interpretation as

the minimum size of shocks necessary to rationalize the data.

Proposition 2 further shows that Θ̂k (B) is a closed, bounded interval whose limit points can be

calculated by solving the nonlinear equation M̂k(θ) = B. By Lemma 1, on either side of θ̆k and for

B > Bk the equation is strictly monotone and has a unique solution, which simplifies computation.

If we are in the extreme case where the bounds are achieved, i.e. M̂k(θ) = B at the true θ , then

either θ k(B) = θ or θ k (B) = θ , or both if M̂k(θ) = Bk. The sets characterized in Propositions 1

and 2 are related by the fact that Θ̂∞ (B)⊆ Θ̂k (B) for any B≥ 0 and k ∈ (1,∞).

In the special case of k = 2, in which we bound the root mean squared shock, the equation

M̂2 (θ) = B is quadratic, and so the objects B2, θ 2 (B), θ 2 (B), and θ̆2 described in Proposition 2

are available in closed form. Towards a characterization, for any D−dimensional vector v ∈RD, let

∆v = (∆v2, ...,∆vD) ∈RD−1. For any v,w ∈RD, let ŝvw = M1 (∆v◦∆w), where ◦ is the elementwise

product. We then have the following.
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Corollary 1. For k = 2 we have that

θ 2 (B) =
ŝqp

ŝpp
−

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq−B2

)
θ 2 (B) =

ŝqp

ŝpp
+

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq−B2

)
B2 =

√
ŝqq−

(
ŝqp

ŝpp

)2

ŝpp

θ̆2 =
ŝqp

ŝpp
.

Observe that θ̆2 = θ 2 (B2) = θ 2 (B2) corresponds to the slope of the ordinary least squares regres-

sion of ∆qt on ∆pt with no intercept, i.e., the line through the origin with best least-squares fit to

the data {(∆pt ,∆qt)}T
t=2.

Remark. Our approach extends readily to the case where we observe a finite time series {(pit ,qit)}Ti
t=1

for each of a cross-section of units i ∈ {1, ...,N}, such as countries or states. Let ∆εi (θ) =

(∆εi2 (θ) , ...,∆εiTi (θ)), where ∆εit = ∆qit−θ∆pit , and define M̂ik (θ) = Mk (|∆εi (θ) |) correspond-

ingly. Suppose we are prepared to impose a bound Bi on the size of the shocks in each unit i. If

a different slope θi is thought to apply to each unit i, so that qit = θi pit + εit , then we can simply

repeat the exercise described above, defining one set Θ̂ik (Bi) =
{

θi ∈ R : M̂ik (θi)≤ Bi
}

for each

unit i. If a common slope θ is thought to apply to each unit i, so that qit = θ pit + εit , then we can

form the set ∩N
i=1Θ̂ik (Bi), which collects those slopes θ that are compatible with the bounds Bi on

the size of the shocks in each unit i. Note that this treatment allows for imposing the same bound

for all units (Bi = B for all i), different bounds for different units (Bi 6= B j for some i 6= j), or no

bound for some units (Bi = ∞ for some i).

Remark. Our approach also extends readily to the case where the researcher wishes to impose

different bounds on the size of shocks in different time periods. To see this, note that if we partition

the set {1, ...,T} of periods into cells i ∈ {1, ...,N}, each containing a contiguous set of periods

{t i, ..., t i}, then we can proceed as outlined in the preceding remark, with the cells i of the partition

now playing the role of the cross-sectional units.
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3 Applications

3.1 Price Elasticity of World Demand for Staple Food Grains

Roberts and Schlenker (2013a) estimate the price elasticity of world demand for staple food grains

using annual data from 1960 through 2007. We use their code and data (Roberts and Schlenker

2013b), supplemented with data from the World Bank (2019a; 2019b) on annual world population

and GDP. From these we construct a time series
{(

pD
t ,q

D
t
)}T

t=1, where pD
t is the log of the average

current-month futures price of grains delivered in year t, measured in 2010 US dollars per calorie,

and qD
t is the the log of the quantity of grains consumed in the world in year t, measured in calories

per capita.7 We also construct a measure yt of annual log world GDP per capita in 2010 US dollars.8

Roberts and Schlenker (2013a, equation 3) assume that the demand curve takes a log-linear

form consistent with equation (1). Roberts and Schlenker (2013a) adopt an instrumental variables

approach to estimating the price elasticity of demand θ D, using the contemporaneous yield shock

as an excluded instrument for price. Here we explore what we can learn about the price elasticity

of demand by imposing bounds on the size of shocks to demand.

It is reasonable for economists to have intuitions about the size of shocks to world demand

for staple grains. The major determinants of world demand for grain in the modern period are

population and income (Johnson 1999; Valin et al. 2014). We measure demand on a per capita

basis, leaving income as a major determinant. Engel’s law (Engel 1857, Houthakker 1957) holds

that the income elasticity of demand for food is less than one. Forecasts summarized in Valin

et al. (2014, Table 3) imply an income elasticity of world food crop demand ranging from 0.09

to 0.37.9 Taking the upper end of the range, the income-driven shock to log per-capita demand

in year t has absolute value |0.37∆yt |. The largest value of this shock over the sample period is

M∞ (|0.37∆y|)≈ 0.05. The root mean squared value is M2 (|0.37∆y|)≈ 0.02. Shocks substantially

larger than these may seem implausible.

Figure 1 illustrates why these intuitions are informative about the price elasticity of demand θ D.

The figure plots the value of the shock ∆εt
(
θ D) in each year t implied by two benchmark values

7We use the definitions of price and total calories from Roberts and Schlenker (2013a, Table 1, Column 2c), and
divide total calories by world population (World Bank 2019a) to obtain calories per capita.

8We deflate to 2010 US dollars using the consumer price index from Roberts and Schlenker (2013b).
9The models summarized in Valin et al. (2014, Table 3) imply that an increase from $6,700 to $16,000 in world

GDP over the period 2005-2050 will cause an increase in per capita food demand of between 8 and 38 percent. The
implied income elasticities therefore range from ln(1.08)/ ln(16000/6700) ≈ 0.088 to ln(1.38)/ ln(16000/6700) ≈
0.370.
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of θ D: the point estimate θ̂ D
RS = −0.066 given in Roberts and Schlenker (2013a, Table 1, Column

2c), and the value θ D =−1 implying unit price elasticity. The shocks ∆εt (−1) to per capita world

food grain demand implied by unit price elasticity are, to us, implausible, reaching values as high

as 0.55, more than 10 times the largest income-driven shock, and implying that, at constant prices,

the world changed its desired consumption of food grains by 55 percent on a per-capita basis in

a single year! By contrast, the shocks ∆εt (−0.066) implied by Roberts and Schlenker’s (2013a)

point estimate appear much more reasonable.

Following the logic of Section 2, we can directly characterize the implications for the price

elasticity θ D of a given bound BD on the size of the shocks. Figure 2 illustrates the construction

of the bounds on θ D implied by a bound of BD = 0.07 on the maximum shock. This value of BD

is chosen to be about 1.4 times larger than the largest income-driven shock, M∞ (|0.37∆y|)≈ 0.05.

The figure depicts a scatterplot of the first-differenced data
{(

∆pD
t ,∆qD

t
)}T

t=2. In first differences, a

demand function is a line through the origin with nonpositive slope θ D ∈Θ
D
=R≤0. The figure also

depicts a dotted interval with radius BD = 0.07 around each point. A demand function consistent

with a bound of BD = 0.07 on the maximum absolute value of the demand shock is one that passes

through all of the dotted intervals. The figure depicts a shaded region collecting all such demand

functions, i.e. those with slope θ D ∈ Θ̂∞ (0.07)∩Θ
D.

A bound of BD = 0.07 on the maximum absolute value of the demand shock is informative about

the price elasticity of demand θ D. Such a bound implies that θ D ∈ Θ̂∞ (0.07)∩Θ
D
= [−0.122,0].

This interval contains Roberts and Schlenker’s (2013a, Table 1, Column 2c) confidence interval of

[−0.107,−0.025] fairly tightly. Roberts and Schlenker (2013a) devote substantial attention to dis-

cussion of the exogeneity of their instrument and related sensitivity analysis. Our analysis suggests

that arguing for a reasonable bound on the size of demand shocks in the grain market provides

another way to defend Roberts and Schlenker’s (2013a) conclusions.

Not all readers may accept the same bound BD on the size of the shock. It is therefore appealing

to display the implications for the price elasticity θ D of many possible bounds BD. Figure 3 shows

that this can be done in a single plot. Panel A depicts the interval Θ̂∞

(
BD)∩Θ

D of elasticities

compatible with each bound BD ∈ [0,0.10] on the maximum absolute shock. Panel B depicts the

interval Θ̂2
(
BD)∩Θ

D of elasticities compatible with each bound BD ∈ [0,0.04] on the root mean

squared shock. In each case, we choose the range of bounds so that the largest bound is around

twice the size Mk (|0.37∆y|) of the income-driven shocks, thus allowing for non-income-driven

shocks to demand of about the same size as the income-driven shocks. For comparison, we also
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depict the point estimate and confidence interval from Roberts and Schlenker (2013a, Table 1, Col-

umn 2c). It is interesting that even the largest bounds BD that we depict are informative, implying

a price elasticity of demand smaller than 0.18 in absolute value.

Figure 3 also illustrates the interpretation of the set B
(

k,ΘD
)

, depicted as the solid portion of

the x-axes. The data imply that the maximum absolute demand shock is at least 0.038 (Panel A)

and the root mean squared demand shock is at least 0.017 (Panel B). These implications may be of

direct economic interest, and rely only on equation (1) and the sign restriction that θ D ≤ 0.

This application illustrates some aspects of our approach that are worth highlighting. One is

that intuitions about the plausible size of shocks can be informed by data other than the data being

analyzed. For example, estimates of the income elasticity of food demand can be informed by

comparisons across countries at a point in time.10 Another is that the choice of reasonable bounds

can be contextual (as well as subjective). For example, in earlier historical periods the income

elasticity of food demand was likely larger (see, e.g., Logan 2006), so a researcher studying data

from such a period might wish to consider larger bounds BD than we do here.

Appendix B includes several extensions of our analysis of the grain market. Appendix B.1

develops bounds on the price elasticity of supply θ S of staple grains based on bounds BS on the

size of shocks to supply, illustrated in Appendix Figure 1. Appendix B.2 characterizes bounds on

a function of the elasticities θ D and θ S, illustrated in Appendix Figure 2 with an application to

the “multiplier” parameter studied in Roberts and Schlenker (2013a). Lastly, Appendix Figure 3

illustrates the role of k by showing how Mk (|0.37∆y|), and the value of BD needed to obtain a given

bound on the price elasticity, vary with k.

3.2 Crowding Out of Male Employment by Female Employment

Fukui et al. (2020) estimate the crowding out θC of male employment by female employment using

data on US states for 1970 and 2016. We use the code and data underlying Fukui et al.’s (2020)

Table 3, provided to us by the authors. From these we obtain the cross-section {(∆ fi,∆mi)}N
i=1

consisting of the change ∆ fi in the female employment-to-population ratio and the change ∆mi in

the male employment-to-population ratio in each state i between 1970 and 2016.

10Muhammad et al. (2011) estimate a model of food demand using country-level data from 2005. Alexandratos
and Bruinsma (2012, pp. 56-57) use cross-country variation to determine the relationship between calorie demand and
per-capita expenditure in 2005/2007. Several of the models summarized in Valin et al. (2014, p. 56) use the studies
by Muhammad et al. (2011) and Alexandratos and Bruinsma (2012) as source information on the income elasticity of
demand for food.
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Fukui et al. (2020, equation 5) specify a homogenous linear relationship between ∆mi and ∆ fi

of the form ∆mi = θC∆ fi +∆εi.11 Fukui et al. (2020) adopt an instrumental variables approach to

estimating the crowding out parameter θC, using various shifters of female employment as excluded

instruments for ∆ fi. Here we explore what we can learn about the crowding out parameter by

imposing bounds on the size of shocks to male employment.

During the study period, female labor force participation expanded greatly. Across US states,

the median change ∆ fi in the female employment-to-population ratio was 0.27, and the largest

change was 0.44. The major cultural and technological forces that contributed to this trend have

been widely studied and documented (see, for example, the review in Greenwood et al. 2017). Al-

though prime-age male labor force participation declined over this period (e.g., Binder and Bound

2019), the forces affecting male participation were arguably less dramatic than those affecting fe-

male participation.12 Shocks to male employment on the same scale as those to female employment

may therefore seem implausible.

Imposing that the absolute shock to male employment-to-population is less than or equal to

some value B in all states means that θC ∈ ∩N
i=1Θ̂i (B), where the choice of k is now irrelevant

as we only observe a single difference (T = 2) in each state i.13 Imposing that crowding out is

nonpositive means that θC ∈ Θ = R≤0. Figure 4 depicts the interval ∩N
i=1Θ̂i (B)∩Θ for all B ∈

[0,0.23], or up to just over half of the largest change in ∆ fi across all states. The figure shows that

the bounds are informative. Suppose, for example, that we impose that no state’s male employment-

to-population would have changed by more than B = 0.14 in the absence of changes in female

employment-to-population. This bound is about half the median change in ∆ fi and a bit under

a third of the maximum change in ∆ fi. Then the depicted set is ∩N
i=1Θ̂i (0.14)∩Θ = [−0.33,0],

which is contained within the confidence interval of [−0.35,0.09] from Fukui et al.’s (2020, Table

3, Column 2) preferred specification, as is the set ∩N
i=1Θ̂i (0.14) = [−0.33,0.03]. With bounds

B < 0.13, the interval ∩N
i=1Θ̂i (B)∩Θ implies that there must be crowding out, i.e. that θC < 0. The

interval ∩N
i=1Θ̂i (B)∩Θ contains Fukui et al.’s (2020, Table 3, Column 2) preferred point estimate

θ̂C
FNS =−0.13 unless B is less than 0.09.14

11To cast this into the form in equation (1), suppose that male employment in each state obeys mit = θC
i fit +εit , with

θC
i = θC for all i.

12Juhn and Potter (2006, p. 32) write, “The biggest story in labor force participation rates in recent decades involves
the labor force attachment of women.”

13That is, for any feasible bound B, we have that Θ̂ik (B) = Θ̂i (B) for all k > 1.
14Fukui et al. (2021, Table 3, Column 2) report a revised point estimate of θ̂C

FNS =−0.18 with a confidence interval
of [−0.34,−0.02].
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It is also instructive to examine the shocks to male employment-to-population implied by a

given value of θC. Suppose, for example, that θC = −0.5, implying substantial crowding out.

Then to rationalize the data, six states (Iowa, Wisconsin, Alaska, Nebraska, South Dakota, and Min-

nesota) must have experienced positive shocks to male employment-to-population of between 10

and 20 percentage points, and one (North Dakota) must have experienced a positive shock of over

20 percentage points. Recall that these shocks represent the implied change in male employment-

to-population absent a change in female employment-to-population. Although there were some

important positive influences on male employment over this period (such as the fracking boom,

see, e.g., Bartik et al. 2019), such large, positive shocks to male employment across so many states

seem difficult to square with the prevailing economic understanding of influences on male labor

force participation over this period (e.g., Binder and Bound 2019).

Fukui et al. (2020, Section 4.3) devote significant attention to discussion and analysis of sources

of possible correlation between their instrument and unobserved shocks to male employment. Our

analysis shows that arguing that shocks to male employment were meaningfully smaller than shocks

to female employment over the study period, or that very negative values of θC imply implausibly

large shocks to male employment, provides another way to defend Fukui et al.’s (2020) conclusions.

4 Extensions

4.1 Nonlinear Model

In the applications of Section 3, the authors assume a linear relationship between the observed vari-

ables of interest, as in equation (1). In some settings we may be interested in nonlinear relationships

of the form

qt = q(pt)+ εt (3)

for q(·) an unknown function.

In this case a bound on the size of the shock can be used to derive a bound on the average slope

θs,t between any two periods s < t with ps 6= pt . In particular, we can write

qt−qs = θs,t (pt− ps)+ εt− εs
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where

θs,t =
q(pt)−q(ps)

pt− ps
.

If q(·) is everywhere differentiable, then by the mean value theorem θs,t = q′ (c) for some c strictly

between ps and pt .

If we are prepared to impose an upper bound of B on the size of the shock between periods s

and t, then we can obtain a bound on the average slope θs,t via the relation

{θs,t ∈ R : |εt− εs| ≤ B}=
[

qt−qs

pt− ps
− B
|pt− ps|

,
qt−qs

pt− ps
+

B
|pt− ps|

]
. (4)

The interval given in equation (4) has the same structure as the interval Θ̂k (B), for any k, in the

linear case with T = 2.

The interval in equation (4) is informative in our application to the price elasticity of world

demand for staple foods. Panel A of Figure 5 depicts the bounds on the average price elasticity

θ D
t−1,t if we assume that the shock in each year is no greater than BD = 0.07, as in Panel A of Figure

3. In 80 percent of years t the analysis implies that demand is price-inelastic on average between

years t−1 and t in the sense that θ D
t−1,t >−1. Appendix Figure 6 depicts analogous bounds for the

average crowding out parameter in the setting of Section 3.2.

Even more informative statements are possible if we are prepared to assume that q(·) is polyno-

mial of known degree. Panel B of Figure 5 shows that even allowing for a polynomial of degree 6,

a substantial generalization of linearity, in 89 percent of years we can conclude that θ D
t−1,t >−0.3.

Appendix Figure 4 depicts analogous bounds for the average price elasticity of supply θ S
t−1,t .

Remark. A bound on the size of the shock, coupled with a bound on the variation in the slope

of the function q(·), can be used to bound the mean θ = M1

(
~θ
)

of the average slopes ~θ =

(θ1,2, ...,θT−1,T ) between adjacent periods. Specifically, we can write that

∆qt = θ∆pt +
(
θt−1,t−θ

)
∆pt +∆εt .

By the Minkowski inequality we have that

Mk

(∣∣∣(~θ −θ

)
◦∆p+∆ε

∣∣∣)≤Mk

(∣∣∣(~θ −θ

)
◦∆p

∣∣∣)+Mk (|∆ε|) .

Therefore if we are prepared to impose a bound Mk (|∆ε|)≤ B on the size of the shocks and a bound

Mk

(∣∣∣(~θ −θ

)
◦∆p

∣∣∣) ≤ V on the scaled deviation of the average slopes from θ , then we can say
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that θ ∈ Θ̂k (B+V ).15

4.2 Nonseparable Model

A further relaxation of the model in equation (1) can be written as

qt = q̃(pt ,εt) (5)

where εt may now be non-scalar or even infinite-dimensional. The model in equation (5) can

accommodate any functional relationship between qt and pt , including relationships that depend

on the time period t.16

It is again possible to bound the average slope θ̃s,t between any two periods s < t with ps 6= pt ,

where now

qt−qs = θ̃s,t (pt− ps)+ ε̃t,t− ε̃t,s

with

θ̃s,t =
q̃(pt ,εs)− q̃(ps,εs)

pt− ps

and

ε̃t,t− ε̃t,s = q̃(pt ,εt)− q̃(pt ,εs) .

Here θ̃s,t describes the average slope of q̃(·,εs) between ps and pt , fixing the unobserved factor at

εs. The shock ε̃t,t − ε̃t,s describes the effect on qt of changing the unobserved factor from εs to εt ,

fixing the value of pt .

If we are prepared to impose an upper bound of B on the size of |ε̃t,t− ε̃t,s|, then the resulting

bounds on θ̃s,t follow an analogous structure to the set in equation (4).17 In the context of our ap-

plication to the price elasticity of world demand for staple food grains, this means that the intervals

depicted in Panel A of Figure 5 can be interpreted as showing the bounds on θ̃s,t implied by a bound

of BD = 0.07 on the change in quantity demanded at given prices pt between periods t− 1 and t.

An analogous interpretation holds for our application to the world supply of staple food grains in

15If q(·) is linear, as in equation (1), then V = 0.
16Fixing any such relationship qt = q̃t (pt ,ζt) for ζt an unobserved factor, let εt = (ζt , t) and define q̃(·, ·) so that

q̃(pt ,εt) = q̃t (pt ,ζt) for all ζt and t.
17Specifically, {

θ̃s,t ∈ R : |ε̃t,t − ε̃t,s| ≤ B
}

=
[

qt −qs

pt − ps
− B
|pt − ps|

,
qt −qs

pt − ps
+

B
|pt − ps|

]
.
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Panel A of Appendix Figure 4.

4.3 Orthogonalization with Respect to Covariates

Let {xt}T
t=1 be an observed sequence of values of a (possibly vector-valued) covariate. For any θ ,

let ∆ε⊥ (θ) be the component of ∆ε (θ) orthogonal to ∆x =
(

∆x
′
2, ...,∆x

′
T

)
.18 If we are prepared

to impose an upper bound of B⊥ ≥ 0 on the k−mean of |∆ε⊥ (θ)|, then we may form the set

{θ ∈ R : Mk (|∆ε⊥ (θ)|)≤ B⊥} of parameters θ that are consistent with this bound.

We may loosely think of B⊥ as a bound on the portion of the shocks that cannot be “explained”

(statistically) by the covariates. The economic interpretation of a bound B⊥ ≥ 0 on the size of the

orthogonalized shocks ∆ε⊥ (θ) is different from that of a bound B ≥ 0 on the size of the overall

shocks ∆ε (θ). Which type of bound will be of interest in a given application will therefore depend

on whether it is easier to form economic intuitions about the size of ∆ε⊥ (θ) or about the size of

∆ε (θ).

In their model of world food demand, Roberts and Schlenker (2013a, Table 1, Column 2c)

include as a control a restricted cubic spline. Panel A of Appendix Figure 5 depicts the implications

of imposing a bound B⊥ on the maximum absolute value of the component of the demand shock

that is orthogonal to the components of this spline. Panel B of Appendix Figure 5 depicts the

implications of imposing a bound B⊥ on the maximum absolute value of the component of the

supply shock that is orthogonal to the control variables included in Roberts and Schlenker’s (2013a,

Table 1, Column 2c) model of supply.

4.4 Sampled Data

We expect our approach to be most useful in the analysis of aggregate or market-level variables.

Sometimes such variables are subject to sampling variation. Since the bounds we construct are a

function of the measured variables, sampling variation in the measured variables leads to sampling

variation in the bounds. Appendix Figure 7 illustrates the role of sampling variation in the setting

of Fukui et al. (2020, Section 2), who derive the measured variables ∆ fi and ∆mi from survey

microdata. The figure depicts an estimate of the variation in the computed bounds on the crowding

out parameter θC induced by sampling variation in the measured variables ∆ fi and ∆mi. Because the

underlying survey data are fairly large, in this application we estimate that the influence of sampling

18That is, ∆ε⊥ (θ) = ∆ε (θ)−∆x(∆x′∆x)−1
∆x′∆ε (θ) .
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variation is modest compared to the information contained in the bounds. In other applications,

sampling variation may be larger relative to the information contained in the bounds, and in such

cases researchers may wish to adopt a different approach to learning about the parameter of interest

than the one we have developed here.

5 Conclusions

Unobserved shocks to economic variables have economic meaning, and economists will in some

situations have intuitions about their size. We formalize an approach to using these intuitions to

bound a slope parameter in a linear economic model that nests many models used in empirical

research. We illustrate the utility of the approach with applications to two important economic

markets, where we argue that the approach can usefully complement existing approaches to learn-

ing about the parameter of interest. We extend the approach to the case of nonlinear or nonseparable

models and show that it remains informative.
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Figure 1: Implied Shocks to World Demand for Food Grain Under Different Elasticities
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Notes: The plot depicts the shocks to demand for grain implied by different values of the price elasticity of
demand in the setting of Roberts and Schlenker (2013a) described in Section 3.1. Each series corresponds to
the shocks ∆εt

(
θ D
)

to demand implied by a given value of the price elasticity of demand θ D. We depict the
shocks implied by the point estimate of Roberts and Schlenker (2013a, Table 1, Column 2c), denoted θ̂ D

RS,
and the shocks implied by unit-elastic demand, θ D =−1.
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Figure 2: Constructing Bounds on an Elasticity from Bounds on Shocks
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Notes: The plot illustrates the construction of bounds on the price elasticity of demand from bounds on the
size of shocks to the demand for grain in the setting of Roberts and Schlenker (2013a) described in Section
3.1. The cross-hatches depict a scatterplot of the data

{(
∆pD

t ,∆qD
t
)}T

t=2. The dotted interval around each
cross-hatch has radius BD = 0.07. The shaded region depicts all demand functions consistent with an upper
bound of BD = 0.07 on the maximum absolute value of the demand shock. These are the downward-sloping
lines that pass through the origin and through all of the dotted intervals, i.e., the lines through the origin with
slope θ D ∈ Θ̂∞ (0.07)∩Θ

D for Θ
D
= R≤0.
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Figure 3: Implications of Bounds on Shocks to World Demand for Food Grain

Panel A: All Bounds BD ∈ [0,0.10] on the Maximum Shock (k = ∞)
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Panel B: All Bounds BD ∈ [0,0.04] on the Root Mean Squared Shock (k = 2)
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Notes: The plots illustrate implications of bounds on the size of shocks to the demand for grain in the setting
of Roberts and Schlenker (2013a) described in Section 3.1. Panel A depicts the interval Θ̂∞

(
BD
)
∩Θ

D

implied by bounds BD ∈ [0,0.10] on the maximum shock, where Θ
D
= R≤0. The dashed vertical line is at

twice the maximum absolute income-driven shock M∞ (|0.37∆y|). Panel B depicts the interval Θ̂2
(
BD
)
∩Θ

D

implied by bounds BD ∈ [0,0.04] on the root mean squared shock. The dashed vertical line is at twice the
root mean squared income-driven shock M2 (|0.37∆y|). In each plot, the horizontal line depicts the point
estimate θ̂ D

RS of the price elasticity of demand in Roberts and Schlenker (2013a, Table 1, Column 2c), and the
shaded region depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to
the bounds BD ∈B

(
k,Θ

D
)

that are compatible with the data.
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Figure 4: Implications of Bounds on Shocks to Male Employment

All Bounds B ∈ [0,0.23] on the Shock
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Notes: The plot illustrates implications of bounds on the size of shocks to male employment in the setting of
Fukui et al. (2020) described in Section 3.2. The plot depicts the interval ∩N

i=1Θ̂i (B)∩Θ implied by bounds
B ∈ [0,0.23] on the shock where Θ = R≤0. The dashed vertical line is at half the maximum absolute change
in female employment-to-population maxi |∆ fi|. The horizontal line depicts the point estimate θ̂C

FNS of the
crowding out of male employment by female employment in Fukui et al. (2020, Table 3, Column 2), and the
shaded region depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to
the bounds B ∈B

(
k,Θ

)
that are compatible with the data.
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Figure 5: Relaxing Linearity of the Demand Function

Panel A: Bound BD = 0.07, Downward-Sloping Demand
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Panel B: Bound BD = 0.07, Polynomial Demand
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Notes: Each plot depicts bounds on the average price elasticity of demand θ D
t−1,t between each pair of adjacent years

based on the assumption that the absolute shock to world demand for staple food grains is no greater than BD = 0.07.
In Panel A, the depicted bounds are formed by intersecting the set in equation (4) with the sign restriction that the
average price elasticity is nonpositive. Each line segment represents the interval of possible average price elasticities,
with an arrow indicating that the interval contains price elasticities less than−1. In Panel B, we further impose that the
function q(·) is a polynomial of known degree whose derivative is nonpositive everywhere on the closed interval from
the lowest to the highest observed price. Each line segment represents the interval of possible average price elasticities
under the given polynomial degree (from one to six).
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A Proofs of Results Stated in the Text

Proof of Proposition 1

We have that

M̂∞ (θ) = max
t∈{2,...,T}

(|∆qt−θ∆pt |) .

Therefore M̂∞ (θ)≤ B if and only if

−B≤ ∆qt−θ∆pt ≤ B

for all t ≥ 2. For a given t ≥ 2, if ∆pt = 0 this condition is equivalent to

∆qt ∈ [−B,B] ,

whereas if ∆pt 6= 0 it is equivalent to

θ ∈
[

∆qt

∆pt
− B
|∆pt |

,
∆qt

∆pt
+

B
|∆pt |

]
.

Therefore if B < |∆qt | for some t ≥ 2 with ∆pt = 0 then Θ̂∞ (B) = /0. So take B≥max{t:∆pt=0} |∆qt |.
Let θ ∞ (B) and θ ∞ (B) be as defined in the statement of the proposition. If θ ∞ (B) > θ ∞ (B) then

Θ̂∞ (B) = /0; otherwise Θ̂∞ (B) =
[
θ ∞ (B) ,θ ∞ (B)

]
. Notice that θ ∞ (B) is continuous and strictly

decreasing in B with limB→∞ θ ∞ (B) =−∞ and that θ ∞ (B) is continuous and strictly increasing in

B with limB→∞ θ ∞ (B) = ∞. Notice further that

θ ∞ (0) = max
{t:∆pt 6=0}

{
∆qt

∆pt

}
≥ min
{t:∆pt 6=0}

{
∆qt

∆pt

}
= θ ∞ (0) .

Therefore there is a unique solution B̃ ≥ 0 to θ ∞

(
B̃
)
= θ ∞

(
B̃
)
. The proposition then follows

immediately.
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Proof of Lemma 1

We proceed by establishing several elementary properties of the function M̂k (θ):

M̂k (θ) =

(
1

T −1

T

∑
t=2
|∆qt−θ∆pt |k

)1/k

for k ∈ (1,∞).

Property (i). M̂k (θ) is continuous in θ for all θ ∈ R.

This property follows because M̂k (θ) is a composite of continuous elementary operations.

Property (ii). limθ→−∞ M̂k (θ) = limθ→∞ M̂k (θ) = ∞.

Observe that for t ′ such that ∆pt ′ 6= 0,

lim
θ→−∞

|∆qt ′−θ∆pt ′|k = lim
θ→∞

|∆qt ′−θ∆pt ′|k = ∞

whereas for t ′′ such that ∆pt ′′ = 0,

lim
θ→−∞

|∆qt ′′−θ∆pt ′′|k = lim
θ→∞

|∆qt ′′−θ∆pt ′′|k = |∆qt ′′|k .

The property then follows immediately because limx→∞ x1/k = ∞ for k > 0, and by assumption

∆pt 6= 0 for some t ∈ {2, ...,T}.
Property (iii).

(
M̂k (θ)

)k is strictly convex in θ on R.

We have that (
M̂k (θ)

)k
=

(
1

T −1

T

∑
t=2
|∆qt−θ∆pt |k

)
.

If ∆pt = 0 then the function |∆qt−θ∆pt |k is trivially weakly convex in θ . Therefore it suffices

to show that if ∆pt 6= 0 then the function |∆qt−θ∆pt |k is strictly convex in θ . But this follows

from the strict convexity of |x|k in x on R for k > 1, because if f (x) is strictly convex in x then

so is f (ax+b) for a 6= 0.

Property (iv). There is θ̆k ∈ R such that θ̆k = argminθ M̂k (θ) .

Pick some c′> M̂k (0). By Properties (i) and (ii), there are at least two solutions to c′= M̂k (θ).

By Property (iii), there are at most two solutions to (c′)k =
(
M̂k (θ)

)k. Hence there are exactly

two solutions to c′ = M̂k (θ); denote these θ (c′) ,θ (c′), with θ (c′) < θ (c′). Because the

interval
[
θ (c′) ,θ (c′)

]
is compact, by Properties (i) and (iii),

(
M̂k (θ)

)k has a minimum on
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[
θ (c′) ,θ (c′)

]
at some unique θ̆k on the interior of

[
θ (c′) ,θ (c′)

]
. But also by Property (iii),(

M̂k (θ)
)k

>
(
M̂k
(
θ̆k
))k

for any θ /∈
[
θ (c′) ,θ (c′)

]
, establishing that θ̆k = argminθ

(
M̂k (θ)

)k

and hence θ̆k = argminθ

(
M̂k (θ)

)
.

Property (v). M̂k (θ
′)> M̂k (θ

′′) for any θ ′ < θ ′′ < θ̆k and M̂k (θ
′)< M̂k (θ

′′) for any θ̆k < θ ′ < θ ′′.

This is an immediate consequence of Property (iii), applying the strict monotonicity of xk on

R≥0 for k ∈ (1,∞).

Proof of Proposition 2

This follows immediately from Lemma 1.

Proof of Corollary 1

We have that

M̂2 (θ) =

(
1

T −1

T

∑
t=2

(∆qt−θ∆pt)
2

)1/2

.

By Lemma 1, M̂2 (θ) has a unique global minimizer θ̆2. Because M̂2 (θ) is nonnegative and is

differentiable in θ when M̂2 (θ)> 0, either M̂2
(
θ̆2
)
= 0 or M̂2

(
θ̆2
)
> 0 and d

dθ
M̂2 (θ) |θ=θ̆2

= 0. In

either case we have that

ŝqp− θ̆2ŝpp = 0.

Because ŝpp 6= 0 we can also say that

θ̆2 =
ŝqp

ŝpp
.

It then follows that

B2 = M̂2
(
θ̆2
)
= M̂2

(
ŝqp

ŝpp

)

=

√
ŝqq−

(
ŝqp

ŝpp

)2

ŝpp.

Observe that, by the Cauchy-Schwarz inequality, this expression is real-valued.

Next, by Proposition 2, the bounds θ 2(B),θ 2 (B) solve M̂2 (θ) = B which is equivalent to the

quadratic equation (
ŝqq−B2)−2θ ŝqp +θ

2ŝpp = 0.
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The roots of this quadratic equation are given by

ŝqp

ŝpp
±

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq−B2

)
.

Observe that these roots are real-valued whenever B≥ B2, thus completing the proof.

B Extensions of Analysis of World Market for Staple Food Grains

B.1 Price Elasticity of World Supply of Staple Food Grains

Here we explore the information about the price elasticity of supply θ S ∈ Θ
S
= R≥0 that can be

obtained from imposing a bound BS on the size of shocks to supply. From the data described in

Section 3.1 we construct the time series
{(

pS
t ,q

S
t
)}T

t=1, where pS
t is the log of the average one-year-

ahead futures price of grains delivered in year t, measured in 2010 US dollars per calorie, and qS
t is

the log of the quantity of grains produced in the world in year t, measured in calories per capita. We

also obtain from Roberts and Schlenker (2013b) a measure of the shock ∆gt to agricultural yields

in year t.19

A major source of shocks to the world supply of grain is variation in agricultural yields due to

the weather (Roberts and Schlenker 2013a). The maximum absolute value of the yield shock over

the sample period is 0.057, and the root mean squared value of the yield shock is 0.024. Allowing

for shocks that do not act through yield (e.g., changes in growing area), we consider bounds BS on

supply shocks in [0,0.20] for k = ∞ and in [0,0.08] for k = 2.

Appendix Figure 1 depicts the implications of the contemplated bounds for the price elasticity

of supply θ S. The structure parallels that of Figure 3. The contemplated bounds are again infor-

mative. All of the contemplated bounds imply that supply is price-inelastic, θ S < 1. Roberts and

Schlenker (2013a, Table 1, Column 2c) estimate that the price elasticity of supply is θ̂ S
RS = 0.097

with a confidence interval of [0.060,0.134], also depicted in the plot. A bound of BS = 0.12 on the

maximum shock—more than twice the maximum yield shock—implies a price elasticity of at most

0.130. The same bound on the price elasticity arises from a bound of BS = 0.043 on the root mean

squared shock, or more than 1.7 times the root mean squared yield shock.

19We use the definition of the yield shock underlying Roberts and Schlenker’s (2013a) Table 1, Column 2c.
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B.2 Bounds on a Function of Elasticities

Roberts and Schlenker (2013a) devote attention to the “multiplier”
(∣∣θ D

∣∣+θ S)−1, which governs

the effect on equilibrium prices of an exogenous change in quantity. Roberts and Schlenker (2013a)

conclude that the estimated multiplier is economically substantial. We can determine the implica-

tions of bounds BD, BS for any known function γ
(
θ D,θ S), such as γ

(
θ D,θ S)= (∣∣θ D

∣∣+θ S)−1,20

by forming the set

Γ̂k

(
BD,BS

)
=
{

γ

(
θ

D,θ S
)

: θ
D ∈ Θ̂k

(
BD)∩Θ

D
,θ S ∈ Θ̂k

(
BS
)
∩Θ

S
}
.

Appendix Figure 2 shows that the bounds we contemplate are informative in that they imply a large

multiplier. Roberts and Schlenker (2013a, Table 1, Column 2c) estimate that the multiplier has

a value of 6.31 with a confidence interval of [4.6,9.1]. A bound of BD = 0.07 on the maximum

demand shock coupled with a bound of BS = 0.12 on the maximum supply shock implies a lower

bound on the multiplier of 3.97.

20Another prominent example is the function γ
(
θ D,θ S

)
= θ S

(∣∣θ D
∣∣+θ S

)−1
, which determines how the incidence

of a tax is shared between consumers and producers (see, e.g., Weyl and Fabinger 2013).
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Appendix Figure 1: Implications of Bounds on Shocks to World Supply of Food Grain

Panel A: All Bounds BS ∈ [0,0.20] on the Maximum Shock (k = ∞)
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Panel B: All Bounds BS ∈ [0,0.08] on the Root Mean Squared Shock (k = 2)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Notes: The plots illustrate implications of bounds on the size of shocks to the supply of grain in the applica-
tion of Roberts and Schlenker (2013a) described in Appendix B.1. Panel A depicts the interval Θ̂∞

(
BS
)
∩Θ

S

implied by bounds BS ∈ [0,0.20] on the maximum shock, where Θ
S
= R≥0. The dashed vertical line is at

three times the maximum absolute yield shock M∞ (|∆g|). Panel B depicts the interval Θ̂2
(
BS
)
∩Θ

S im-
plied by bounds BD ∈ [0,0.08] on the root mean squared shock. The dashed vertical line is at three times
the root mean squared yield shock M2 (|∆g|). In each plot, the horizontal line depicts the estimate θ̂ S

RS of
the price elasticity of supply in Roberts and Schlenker (2013a, Table 1, Column 2c), and the shaded region
depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to the bounds
BD ∈B

(
k,Θ

S
)

that are compatible with the data.
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Appendix Figure 2: Implications of Bounds on Shocks for the Multiplier Parameter

Panel A: Bounds on the Maximum Shock (k = ∞)

Panel B: Bounds on the Root Mean Squared Shock (k = 2)

Notes: The plots illustrate implications of bounds on the size of shocks to the supply and demand of grain
in the application of Roberts and Schlenker (2013a). Panel A considers bounds BD ∈ [0.035,0.10], BS ∈
[0.095,0.20] on the maximum value of the shock (k = ∞). Panel B considers bounds BD ∈ [0.015,0.04],
BS ∈ [0.040,0.08] on the root mean squared shock (k = 2). In each plot, the black surface depicts the lowest
value of the multiplier γ

(
θ D,θ S

)
=
(∣∣θ D

∣∣+θ S
)−1 that is compatible with elasticities θ D ∈ Θ̂k

(
BD
)
∩Θ

D,

θ S ∈ Θ̂k
(
BS
)
∩Θ

S, i.e. the smallest element of the set Γ̂k
(
BD,BS

)
. The gray horizontal plane depicts the

point estimate γ̂RS of the multiplier in Roberts and Schlenker (2013a, Table 1, Column 2c).
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Appendix Figure 3: Bounds on Shocks to Demand and Supply of Grain, Varying k

Panel A: Demand for Grain
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Notes: The plots illustrate the bound B on the k−mean of the shock that implies a given bound on the slope
θ in the application of Roberts and Schlenker (2013a). The solid line in Panel A depicts the bound BD on
the k−mean of the absolute value of the demand shock that implies the same lower bound on the demand
elasticity θ D as a bound BD of 0.07 on the maximum absolute value of the shock. The dashed line in Panel
A depicts the k−mean Mk (|0.37∆y|) of the absolute value of the income shock. The solid line in Panel B
depicts the bound BS on the k−mean of the absolute value of the supply shock that implies the same upper
bound on the supply elasticity θ S as a bound BS of 0.12 on the maximum absolute value of the shock. The
dashed line in Panel B depicts the k−mean Mk (|∆g|) of the absolute value of the yield shock. In both panels,
values are plotted for k ∈ (1,200] and k = ∞.
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Appendix Figure 4: Relaxing Linearity of the Supply Function

Panel A: Bound BS = 0.12, Upward-Sloping Supply
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Panel B: Bound BS = 0.12, Polynomial Supply
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Notes: Each plot depicts bounds on the average price elasticity of supply θ S
t−1,t between each pair of adjacent years

based on the assumption that the absolute shock to world supply of staple food grains is no greater than BS = 0.12. In
Panel A, the depicted bounds are formed by intersecting the set in equation (4) with the sign restriction that the average
price elasticity is nonnegative. Each line segment represents the interval of possible average price elasticities, with an
arrow indicating that the interval contains price elasticities greater than one. In Panel B, we further impose that the
function q(·) is a polynomial of known degree whose derivative is nonnegative everywhere on the closed interval from
the lowest to the highest observed price. Each line segment represents the interval of possible average price elasticities
under the given polynomial degree (from one to six), with an arrow indicating that the interval contains price elasticities
greater than one.
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Appendix Figure 5: Implications of Bounds on Orthogonalized Shocks to World Demand and Supply for
Food Grain

Panel A: All Bounds BD
⊥ ∈ [0,0.10] on the Maximum Orthogonalized Demand Shock (k = ∞)
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Panel B: All Bounds BS
⊥ ∈ [0,0.20] on the Maximum Orthogonalized Supply Shock (k = ∞)
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Notes: The plot illustrates implications of bounds on the size of orthogonalized shocks to the demand and
supply for grain in the setting of Roberts and Schlenker (2013a), following the approach described in Section
4.3. The upper plot depicts the interval

{
θ ∈Θ

D : M∞

(∣∣∆εD
⊥ (θ)

∣∣)≤ BD
⊥

}
implied by bounds BD

⊥ ∈ [0,0.10]

on the maximum absolute orthogonalized shock to demand, where Θ
D
= R≤0. The lower plot depicts the

interval
{

θ ∈Θ
S : M∞

(∣∣∆εS
⊥ (θ)

∣∣)≤ BS
⊥

}
implied by bounds BD

⊥ ∈ [0,0.20] on the maximum absolute or-

thogonalized shock to supply, where Θ
S
= R≥0. In each plot, we orthogonalize with respect to the first

difference of the covariates xt specified in Roberts and Schlenker (2013a, Table 1, Column 2c). In the upper
plot, xt consists of the components of a five-knot restricted cubic spline. In the lower plot, xt additionally
includes the yield shock gt . In each plot, the horizontal line depicts the point estimate θ̂ D

RS or θ̂ S
RS of the price

elasticity of demand or supply, respectively, in Roberts and Schlenker (2013a, Table 1, Column 2c), and the
shaded region depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to
the bounds BD

⊥ or BS
⊥ that are compatible with the data.
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C Extensions of Analysis of Crowding Out of Male Employ-

ment by Female Employment

Appendix Figure 6: Relaxing Linearity of the Crowding Out Function

Bound B = 0.14 , Downward-Sloping Crowding Out Function
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Notes: Each plot depicts bounds on the average crowding out parameter θi,s,t for each state i between years
s = 1970 and t = 2016 based on the assumption that the absolute shock to male employment was no greater
than B= 0.14. The depicted bounds are formed by intersecting the set in equation (4) with the sign restriction
that the average crowding out is nonpositive. Each line segment represents the interval of possible average
crowding out parameters, with an arrow indicating that the interval contains a value less than −1. States are
placed in descending order of the leftmost limit point of the interval.
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Appendix Figure 7: Implications of Bounds on Shocks to Male Employment, Accounting for Sampled Data

All Bounds B ∈ [0,0.23] on the Shock
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Notes: The plot illustrates the implications of sampling uncertainty for the bounds on the size of shocks to
male employment in the setting of Fukui et al. (2020) described in Section 3.2. Following Figure 4, the
solid lines depict the interval ∩N

i=1Θ̂i (B)∩Θ implied by bounds B ∈ [0,0.23] on the shock where Θ = R≤0.
The dotted lines around the bounds depict, respectively, the 2.5th and 97.5th percentiles of the upper and
lower bounds in the sampling distribution of the variables ∆ fi and ∆mi. We obtain these percentiles from
a nonparametric bootstrap with 1000 replicates. In each replicate, we draw individuals with replacement
from the survey microdata from which ∆ fi and ∆mi are calculated, and recompute the variables on the
resampled data. The dashed vertical line is at half the maximum absolute change in female employment
maxi |∆ fi|. The horizontal line depicts the point estimate θ̂C

FNS of the crowding out of male employment by
female employment in Fukui et al. (2020, Table 3, Column 2), and the shaded region depicts the associated
95% confidence interval. The solid portion of the x-axis corresponds to the bounds B ∈B

(
k,Θ

)
that are

compatible with the data in the full sample. We depict the interval ∩N
i=1Θ̂i (B)∩Θ only for B ∈ ∩N

i=1Θ̂i (B)∩
Θ. We compute percentiles only among those bootstrap replicates in which the respective bound is well-
defined.
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D Connections to Other Approaches

D.1 Orthogonality Restrictions

Let zt be some observed variable transformed so that M1 (∆z) = 0 and M2 (∆z) = 1.21 Consider a

restriction of the form

|M1 (∆ε (θ)◦∆z)| ≤C (6)

where C ≥ 0 is a scalar. An orthogonality restriction is such a restriction that takes C = 0.22

Restrictions of the form in (6) are related to those we consider in the sense that, from the

Cauchy-Schwarz inequality and the fact that ∆z is standardized,

(M1 (∆ε (θ)◦∆z))2 ≤ (M2 (∆ε (θ)))2 .

Hence M2 (∆ε (θ)) = M̂2 (θ)≤ B implies that |M1 (∆ε (θ)◦∆z)| ≤ B.

As a further connection, observe that, by the same argument as in the proof of Corollary 1,

θ̆2 = argminθ M̂2 (θ) solves
1

T −1

T

∑
t=2

∆εt (θ)∆pt = 0. (7)

For ∆pt standardized, equation (7) is equivalent to an orthogonality restriction with ∆zt = ∆pt .

D.2 Cross-Equation Restrictions

Let ∆εD
t
(
θ D) = ∆qD

t − θ D∆pD
t and ∆εS

t
(
θ S) = ∆qS

t − θ S∆pS
t , and assume in the spirit of static

competitive equilibrium that ∆qD
t = ∆qS

t = ∆qt and ∆pD
t = ∆pS

t = ∆pt .23 Then

{
θ

D,θ S : Mk
(∣∣∆ε

D (
θ

D)∣∣)≤ BD,Mk

(∣∣∣∆ε
S
(

θ
S
)∣∣∣)≤ BS

}
= Θ̂k

(
BD)× Θ̂k

(
BS
)
.

Intuitively, because any pair
(
θ D,θ S) ∈ Θ̂k

(
BD)× Θ̂k

(
BS) is consistent with the data, and by

assumption the data are consistent with equilibrium, any such pair must also be consistent with

21Beginning with a variable z̃t we can take zt = M2 (∆z̃−M1 (∆z̃)JT−1,1)
−1 (z̃t − (t−1)M1 (∆z̃)), for JT−1,1 the

(T −1)−dimensional vector of ones.
22When C = 0, the inequality in (6) implies that θ = M1 (∆q◦∆z)/M1 (∆p◦∆z) when this ratio—the linear

instrumental-variables estimator—is well-defined.
23In the world market for staple food grains, the quantity demanded and quantity supplied need not be equal at a

given point in time (and likewise for the demand price and the supply price) because grain can be stored and planting
decisions are made in advance of consumption (Roberts and Schlenker 2013a).
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equilibrium. In this sense, given a bound BD on the size of the shocks ∆εD (θ D), there is no further

information about θ D to be obtained by placing a bound BS on the size of the shocks ∆εS (θ S), and

vice versa.

The situation is different if we are prepared to restrict the relationship between the shocks

∆εD
t
(
θ D) and the shocks ∆εS

t
(
θ S). For illustration, suppose that M1 (∆q) = M1 (∆p) = 0 and take

the restriction that ∣∣∣M1

(
∆ε

D (
θ

D)◦∆ε
S
(

θ
S
))∣∣∣≤ R. (8)

If R = 0 then (
θ

D− θ̆2
)(

θ
S− θ̆2

)
=

( ŝqp√
ŝppŝqq

)2

−1

 ŝqq

ŝpp

which is analogous to Leamer (1981, equation 6). If θ S ≥ 0 and θ D ≤ 0, then, again following

Leamer (1981), if θ̆2 < 0, then θ D ≤ θ̆2, and if θ̆2 > 0, then θ S ≥ θ̆2.
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