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1. Introduction 

Epidemiological models of the spread of infections have typically assumed homogeneous 

populations in a given context.2 While these models have provided valuable starting points for 

context-specific predictions, a richer modelling framework would allow for heterogeneity in the 

characteristics within the specific human populations exposed to infectious diseases. Much of 

that heterogeneity reflects inequalities in various dimensions. 

In the case of infections such as COVID-19, the reliance on non-pharmaceutical 

interventions points to the importance of understanding the role played by socio-economic 

inequalities, as sources of heterogeneity in initial conditions and behavior. A large body of social 

and economic thought then becomes relevant to control of the spread of infections. For example, 

it has been argued that there is an important complementarity between policies that aim to 

support consumption by poor people and health-care policies in an epidemic.3 The socio-

economic incidence of COVID-19 can also be viewed as an instance of the longstanding 

concerns about the socioeconomic inequalities of health more broadly, as relevant to social 

policy and assessing social progress. The context of an infectious disease raises a further 

question as to whether such inequalities persist, or fade, as the disease spreads over time. 

What evidence is there to help inform our understanding of these issues? Micro data on 

COVID-19 cases and/or deaths that include socio-economic characteristics at the unit-record 

level are rare.4 Instead, this paper explores the empirical relationships across the 3,000 counties 

of the US. We merge recorded counts of cases and deaths at county level with socio-economic 

characteristics—average incomes, race, income inequality and poverty—and data on other 

covariates as suggested by the epidemiological literature. We use these data to try to better 

understand the spread of this infectious disease and behavioral responses to it.5   

                                                 
2 For example, the word “poverty” does not appear in the classic epidemiological texts by Anderson and May (1991) 
and Gordis (2013). Nor does the word appear in the fully revised version of Gordis test, by Celentano and Szklo 
(2019). The need to incorporate human behavior into epidemiological models is discussed further in Ferguson 
(2007) and Fenichel et al. (2011). There has been greater awareness of socio-economic factors in the spread of 
infectious diseases with the recent emergence of the sub-field of social epidemiology (Honjo, 2004). Ellison (2020) 
shows how the standard Susceptible-Infectious-Recovered (SIR) model can incorporate socioeconomic factors.  
3 See, for example, Ravallion (2020) and references therein. 
4 See the discussion in Chen and Krieger (2020) with regard to this point in the US. 
5 We do not address the reverse effect—how COVID-19 might impact inequality going forward—although some of 
our results have bearing on this issue.  
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This is not the first paper to study the relationship between COVID-19 outbreaks and 

socioeconomic characteristics at the county level in the US; the antecedents we know of are 

Chen and Krieger (2020), Chin et al. (2020), Wu et al. (2020), Knittel and Ozaltun (2020) and 

McLaren (2020). These studies have been valuable, but a number of issues remain. The paper 

takes three main points of departure. 

The first difference with past work is that we ground our empirical analysis on a 

theoretical model of behavioral responses to an infectious disease through endogenous social 

distancing. The model shows that, once one considers the potential income-constrained 

behavioral responses, even the directions of the effects of key covariates become uncertain. With 

regard to incomes, we distinguish two, potentially opposing, effects. The first is a “protection 

effect,” whereby poverty curtails the ability to avoid infection through social distancing; for 

example, many low-paying jobs cannot be done from home. The second is an “adjustment-cost 

effect,” recognizing that people cannot quickly and fully adjust to a lower level of socio-

economic interactions when an epidemic hits. Furthermore, the marginal cost of adjustment may 

well depend on socio-economic characteristics such as age, race and income. The adjustment-

cost effect could work in the opposite direction to the protection effect, given that a more 

affluent area may have more social and economic interactions, including externally to that area. 

Rational but partial adjustment in response to the epidemic will attenuate the preferred level of 

social distancing in more affluent areas. Another potential ambiguity is in the (much discussed) 

effect of an elderly population, which enhances vulnerability to serious illness, once infected, but 

may well have the opposite effect on the probability of infection, via social distancing. Thus, the 

overall effect on fatalities is unclear. 

Second, to have a realistic hope of identifying the effect of incomes and other population 

characteristics, it is important to consider the multiple (correlated) covariates jointly, so as to 

better disentangle their individual effects. Socio-economic characteristics, such as poverty and 

race, are known to be correlated with each other as well as with epidemiological and biomedical 

factors, such as population density and health pre-conditions, thus confounding the claims one 

hears about the importance of those factors. Similarly, average incomes are likely to be 

negatively correlated with the incidence of poverty across areas, clouding inferences about 

whether the poverty effect is about average incomes or income inequality, with distinct 

implications for policy. Among the aforementioned studies, while Knittel and Ozaltun (2020) 
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and Wu et al. (2020) look at multiple covariates jointly, they only study death rates. We consider 

multiple socio-economic variables as covariates for social distancing, the spread of the infection 

and for the severity of illness, conditional on the number of infections, as indicated by fatalities.  

The third main difference to past work is that we propose an identification strategy in 

modelling fatalities conditional on (endogenous) infection rates. The dynamics of adjustments in 

behavior in response to the virus, and the lags in reporting, entail that deaths in any time period 

are unlikely to be directly proportional to infections in that period. In other words, the case 

fatality rate is likely to vary with the number of cases, which is endogenous. Our identification 

strategy is motivated by the idea of the epidemiological curve (often called the “epi curve”), 

whereby new infections increase over time up to some point and then decline as immunity builds 

up such that the number of susceptible people falls.6 Following epidemiological theory, the epi 

curve is treated as a key factor determining observed counts of COVID-19 cases at county level, 

but is taken to only matter to deaths via cases. Under this exclusion restriction, we can identify 

causal effects on the counts of deaths conditional on infections.7 We acknowledge and address a 

potential threat to this identification strategy associated with capacity constraints in the local 

health-care systems. 

The following section provides some relevant background from the literature, while 

Section 3 outlines our theoretical model, which points to ambiguities in how levels of incomes 

and relative inequality impact social distancing and the spread of infection. Sections 4 and 5 

describe our data and econometric methods respectively. The empirical models for social 

distancing, infections and deaths rely on the variables typically used in epidemiological models 

but augmented to include socio-economic characteristics relevant to inequality in various 

dimensions. On implementing the model empirically, Section 6 shows that, controlling for 

standard epidemiological covariates, US counties with higher median income tend to see more 

improvement in social distancing in response to the epidemic and a lower infection rate ceteris 

paribus. However, the latter effect is due to the (negative) correlation of median income with the 

poverty rate. Controlling for the median, a higher poverty rate—reflecting more unequal 

distributions of income from the perspective of the poor—is associated with a higher infection 

                                                 
6 See, for example, the expositions on the epi curve in Anderson and May (1991) and Gordis (2013).  
7 While Knittel and Ozaltun (2020) study deaths per capita of the population, they do not identify the death rate 
among those infected, which one can expect to be determined differently to the infection rate. 
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rate. Income inequality also matters to the infection rate. Racial composition—interpretable as 

the fractionalization aspect of inequality8—also matters, and this covariate seriously confounds 

inferences about the role of income inequality and poverty, as well as epidemiological 

inferences, notably about the role of population density. The socio-economic covariates also 

impact the observed fatalities conditional on infections, but their effects are noticeably weaker. 

Section 7 concludes.  

2. Foundations in the literature 

  A disease such as COVID-19 spreads when there is an effective contact between an 

infected individual and an uninfected susceptible person. The greater the number of additional 

people infected by each infected person, the faster the disease spreads. The progression of an 

outbreak over time is often modelled by the epi curve, and flattening the epi curve for COVID-

19—mainly by reducing the contact rate—has become an important policy goal in 2020 across 

the world. The policy instruments have included various social distancing measures 

(recommendations on inter-personal contacts, the use of face masks, restrictions on large 

events/meetings, school closures, and shelter-in-place orders), among other recommendations 

such as frequent hand-washing. However, while the decisions taken are influenced by public 

health communications and controls, compliance and behaviors regarding social distancing are 

also personal choices. This is especially so in the US where some political leaders have resisted 

the stricter policies found elsewhere, such as lockdowns; both policies and compliance have 

varied across the country (Brzezinski et al. 2020).   

Epidemiological models have long emphasized the role of local population density as a 

relevant factor driving the spread of a disease, as discussed by (inter alia) Anderson and May 

(1991) and Tarwater and Martin (2001).9 Population density raises the contact rate by increasing 

the interaction between infected and uninfected individuals. (The epidemiological research on 

the role of population density has been influential in social distancing policy responses, such as 

bans on mass gatherings.) It can be expected that the marginal effect of higher density will 

                                                 
8 Fractionalization refers to the population distribution across ethnic groups. For further discussion see Alesina et al. 
(2003).   
9 This also holds within confined spaces. See, for example, Lu et al.’s (2020) explanation of the spread of COVID-
19 through a restaurant’s air conditioning in China. Park et al. (2020) document a similar outbreak in a Korean call 
center. 
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decline as density rises, and reach zero at very high density, when it becomes physically hard to 

move. In Section 3 we will make the case for a new measure of density more appropriate to 

infectious diseases. 

The influence of specific health conditions has also been emphasized with regard to the 

severity of the disease once infected. With reference to COVID-19, a number of pre-existing 

health conditions appear to exacerbate its effects, including cardiovascular disease, respiratory 

disease, and hypertension (see the review in Ssentongo 2020). Age also seems to be strongly 

correlated: once infected, older people have been found to be more likely to have severe 

symptoms leading to hospitalization, and in many cases, death (CDC COVID-19 Response 

Team, 2020; Verity et al. 2020; Ioannidis et al. 2020). At the time of writing, the role of age in 

determining the effects of COVID-19 is not fully understood, and it may well be that age reflects 

the higher incidence of the aforementioned comorbidities among older people.10  

Stepping back, it is less clear how a high incidence of elderly people would impact 

infection rates, as this also depends on behavioral factors in specific contexts. While age may be 

considered a health-related factor with regard to the severity of illness once infected, it is also 

relevant as a behavioral covariate of the spread of infection. With higher retirement rates, the 

elderly will tend to face less economic pressure to be active outside the home, thus reducing their 

contact rates. Time-use surveys for the US indicate that elderly people have substantially lower 

contact rates in normal times (Cornwell 2011). We can think of this as a lower marginal cost of 

extra social distancing for the elderly during an epidemic. Against this, elderly people 

concentrated in residential care homes become more vulnerable, as seen in the US, as well as in 

other countries, during the new coronavirus pandemic. The key point is that, on a priori grounds, 

it is unclear whether elderly people will have a higher fatality rate from COVID-19, once one 

allows for the behavioral response through social distancing and (hence) infection rates. 

A number of researchers have also pointed to poverty and race as covariates of COVID-

19 incidence in the US (Chen and Krieger 2020; Chin et al., 2020; McLaren, 2020).11 Chen and 

Krieger (2020) estimate COVID-19 death rates (per capita) that are almost twice as high for 

poverty rates over 20% as for those under 5%. The gradient in death rates is even steeper (a 

                                                 
10 Early evidence has suggested that a weaker immune system among elderly adults may also contribute to higher 
mortality rates (Du et al. 2020, Zheng et al. 2020). 
11 On COVID-19 and racial inequalities in America also see the discussion in Yancy (2020). 
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factor of almost six) between the category with the highest percentage of the non-white 

population versus the lowest. More generally, large disparities in health outcomes along racial 

lines are well-documented; Black Americans have substantially lower life expectancy and higher 

infant mortality than other racial groups (National Center for Health Statistics 2016). Kirby and 

Kaneda (2010) note large racial and ethnic disparities in health insurance coverage that persist 

across the lifecycle. As is well known, poverty and race are correlated in America; for example, 

the official poverty rate in 2018 was 21% for Black Americans versus 12% overall (Semega et 

al. 2019). 

While poverty has not been a prominent causative factor in traditional epidemiological 

models, the literature in the social sciences has pointed to many ways in which poverty might be 

expected to result in greater vulnerability to the new coronavirus. It is well documented that 

many of the risk factors associated with the severity of COVID-19 are correlated with income. 

For example, poverty has been found to increase the odds of having diabetes and heart disease 

(Gaskin et al. 2014; O’Connor and Wellenius 2012). Health outcomes in the US are strongly 

correlated with income and education, with poorer people generally experiencing worse health 

(Braverman et al. 2010).12 In addition, poor (often underinsured) people may delay seeking 

medical help when it is costly or difficult to obtain (Jacob et al. 2015).  

Poorer people are also likely to have a harder time isolating as a means of protecting 

themselves from infection. We can think of this as an effect of low income on the marginal cost 

of extra social distancing, which almost invariably comes at a cost (pecuniary or otherwise). Poor 

families may have little or no buffer of food stocks or savings to fall back on, and depend on 

short-term, often casual, labor, such that lockdown is a costly proposition. Whether people are 

able to shelter-in-place is likely to depend on their employment type, job security and savings (to 

offset loss of income from not working). Papageorge et al. (2020) find that income is strongly 

associated with self-protective behavioral responses, with poorer individuals much less able to 

practice social distancing, and much less able to tele-work.  

                                                 
12 Health outcomes more generally seem to vary with income, with higher incomes being associated with better 
mental and physical health (Ettner 1996; Marmot 2002). Chetty et al. (2016) found that the average gap in life 
expectancy between the richest 1% and poorest 1% was 15 years for men and 10 years for women. 
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Nor do the assets and home environments of poorer people typically permit them to 

protect themselves well from the new coronavirus.13 For the US, the Census Bureau’s American 

Housing Survey (AHS) shows that poorer households have more persons per room, lower square 

footage per person, and are more likely to have inadequate plumbing and heating.14 Poorer 

people are also more reliant on public transport, which increases their vulnerability to infection. 

Poorer areas also tend to face tighter fiscal and administrative constraints on policy effectiveness. 

Poverty may also affect death rates, including through its relationship with pre-existing health 

conditions or access to health services.15  

These arguments suggest that we might expect to find a negative income effect on how 

quickly the virus spreads across communities. We can call this the “protection effect” since it 

mainly operates through the greater challenges facing poorer people in protecting themselves and 

their communities from the virus. This protection effect could matter to the number of cases, 

through a lower ability to social distance, as well as to the number of deaths, such as through a 

higher incidence of pre-existing health conditions and health-care access. The protection effect 

points to the possibility that poorer people face a sharper trade-off between their current 

economic welfare and their exposure to the virus, with implications for social protection policy.      

This is clearly not the whole story. The potential for an offsetting income effect arises 

when places with higher average incomes have a higher customary density of personal 

interactions both in production and consumption, including links to external sources of infection 

through travel (for work and leisure) and by attracting visitors. Similarly, poverty is often 

associated with greater social isolation.16 Richer people may well be better connected in both 

work and leisure activities. Interpersonal interactions help maintain and expand the networks that 

facilitate the creation and spending of wealth. For example, the 2018 Consumer Expenditure 

Survey shows that individuals in the top income quintile spend, on average, almost five times as 

much as people in the bottom quintile on food outside the home, and more than three times as 

much on entertainment.17 Social and economic interactions in various forms (including with 

                                                 
13 Here we focus on the US. There is evidence for other countries that poorer people have home environments that 
are less conducive to implementing prevailing recommendations for protection, including social distancing (Brown 
et al., 2020). Bargain and Aminjonov (2020) find that people in poorer regions responded less through their mobility 
for work and other activities. 
14 For data and further details, see the AHS Table Creator.  
15 Evidence for the US can be found in Ettner (1996). For a review of the evidence see Ravallion (2016, Chapter 7). 
16 Survey evidence on this point (for Canada) can be found in Stewart et al. (2009). 
17 For details, see the US Bureau of Labor Statistics site. 

https://www.census.gov/programs-surveys/ahs/data/interactive/ahstablecreator.html?s_areas=00000&s_year=2017&s_tablename=TABLE1&s_bygroup1=1&s_bygroup2=1&s_filtergroup1=1&s_filtergroup2=1
https://www.bls.gov/cex/2018/combined/decile.pdf
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other locations where the virus may be present) could well be more pervasive in richer places. 

Against this view, one can also point to the fact that many relatively low-skilled jobs are done 

under working conditions that would create high contact rates (as in the case of the meat-packing 

industry). Local policies will also matter, such as the extent of enforced closures to restaurants, 

retail shops and events. Incomes and other socioeconomic covariates may matter via the local 

political economy.  

These income effects are all present pre-COVID. They remain relevant to the extent that 

adjusting to a new, lower, level of such interactions in an epidemic is costly and hence partial. 

The adjustment may take time, creating interactions between socioeconomic covariates and the 

stage of the epidemic. 

In the next section, we formalize these ideas in the form of a simple model of behavioral 

responses to an epidemic, which highlights the potential ambiguities, before we turn to the data.      

3. A theoretical model of social distancing 

While governments and public agencies can provide guidance and rules that alter 

behavior during an epidemic, the degree of compliance is in no small measure a matter of 

constrained personal choice. In the absence of medical treatment, three main things can be 

expected to matter to one’s personal exposure to an infectious disease: (i) one’s degree of social 

distancing (𝑠𝑠, taken to be bounded above at 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚); (ii) one’s income (𝑦𝑦) as it determines one’s 

expenditure on protective assets and goods, and (iii) one’s personal characteristics, including 

location (𝑥𝑥).18 Define vulnerability to the virus as the probability of infection given 𝑠𝑠, 𝑦𝑦 and 𝑥𝑥:19 

 𝑝𝑝 = 𝑝𝑝(𝑠𝑠,𝑦𝑦, 𝑥𝑥)         (1) 

It is reasonable to assume that social distancing reduces the probability of infection but that it 

does so at a declining rate, i.e., that 𝑝𝑝(. ) is decreasing and convex in 𝑠𝑠 (𝑝𝑝𝑠𝑠 < 0,𝑝𝑝𝑠𝑠𝑠𝑠 > 0, where 

subscripts denote partial derivatives). For concreteness, one can think of the personal 

characteristic, 𝑥𝑥, as being above a certain age, say 65.  

We do not assume that 𝑝𝑝(𝑠𝑠,𝑦𝑦, 𝑥𝑥) is minimized. Rather, people trade-off the perceived 

benefit of social distancing against the cost, which includes costs in adjusting to the pandemic 

given pre-pandemic activities. In modelling this choice, we postulate that each person has a 

                                                 
18 It is convenient to treat 𝑠𝑠 and 𝑥𝑥 as scalars, but one can readily generalize the analysis to treat them as vectors. 
19 For some purposes of our analysis we will treat p and s as random variables, with expected values.  
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customary level of interactions with others, which entail an initial, pre-epidemic, level of social 

distancing 𝜙𝜙(𝑦𝑦, 𝑥𝑥). In the pandemic, the person re-optimizes by choosing a new level of social 

distancing, above the prior level 𝜙𝜙. How much higher this new level of social distancing is 

relative to 𝜙𝜙 determines the personal adjustment cost incurred in responding to the epidemic. 

However, as discussed in Section 2, the direction of the effect of either higher incomes or, say, 

being elderly on 𝜙𝜙 is ambiguous on a priori grounds.   

The cost of social distancing is 𝑐𝑐[𝑠𝑠,𝜙𝜙(𝑦𝑦, 𝑥𝑥),𝑦𝑦, 𝑥𝑥]. We interpret 𝑐𝑐[. ] as the sum of a 

current adjustment cost and the expected future cost of being infected:  

  𝑐𝑐[𝑠𝑠,𝜙𝜙(𝑦𝑦, 𝑥𝑥),𝑦𝑦, 𝑥𝑥] = 𝑎𝑎[𝑠𝑠 − 𝜙𝜙(𝑦𝑦, 𝑥𝑥),𝑦𝑦, 𝑥𝑥] + 𝑝𝑝(𝑠𝑠,𝑦𝑦, 𝑥𝑥)𝑙𝑙(𝑦𝑦, 𝑥𝑥)   (2) 

Here 𝑎𝑎(. ) is the current adjustment cost and 𝑙𝑙(𝑦𝑦, 𝑥𝑥) is the (pecuniary and non-pecuniary) loss 

from infection (with 𝑙𝑙(𝑦𝑦, 𝑥𝑥) = 0 if one does not get infected). Adjustment costs entail that 𝑎𝑎(. ) is 

continuously increasing in 𝑠𝑠 − 𝜙𝜙 with a rising adjustment cost as social distancing increases 

(𝑎𝑎𝑠𝑠𝑠𝑠 > 0). The nature and extent of these adjustment costs, and the losses from infection, will 

depend on many features of the markets and institutions in a given society. For example, if credit 

and risk markets work reasonably well then that would make adjustment easier. While we 

recognize that these contingent factors exist, we do not spell them out in detail here. 

Even if there is no benefit from social and economic interactions, this problem will have 

an interior solution for social distancing. This will entail weighing the current adjustment cost 

against the expected future loss from infection, i.e., choosing 𝑠𝑠 such that 𝑎𝑎𝑠𝑠(. ) + 𝑝𝑝𝑠𝑠(. )𝑙𝑙(. ) = 0.  

However, benefits from interactions are highly plausible, so we include this feature by letting the 

perceived personal benefit from social and economic interactions be 𝑏𝑏(𝑠𝑠,𝑦𝑦, 𝑥𝑥), which is assumed 

to be a strictly and continuously decreasing function of 𝑠𝑠 (which naturally reduces interactions). 

Starting from zero, a small amount of social distancing will not presumably come with 

much loss, as one gives up the least important interactions. However, as one gets closer to full 

lockdown, at 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, the loss will be large. So it is reasonable to assume that the net marginal 

benefit of social distancing (𝑏𝑏𝑠𝑠 − 𝑐𝑐𝑠𝑠) is strictly decreasing in the amount of social distancing 

(𝑏𝑏𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑠𝑠𝑠𝑠 < 0).  

We further assume that the net marginal benefit is increasing in income 𝑏𝑏𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑠𝑠𝑠𝑠 > 0. 

We do not consider it plausible that a higher income lowers the marginal benefit of social 

distancing (𝑏𝑏𝑠𝑠𝑠𝑠 < 0), but we can allow that possibility as long as it is not outweighed by the 



11 
 

tendency for poorer people to face higher marginal costs of social distancing (𝑐𝑐𝑠𝑠𝑠𝑠 < 0), as 

discussed in Section 2.  

We can now characterize the personally-preferred level of social distancing in response to 

the epidemic, which equates marginal benefit with marginal cost:20 

𝑏𝑏𝑠𝑠(𝑠𝑠, 𝑦𝑦, 𝑥𝑥) = 𝑐𝑐𝑠𝑠[𝑠𝑠,𝜙𝜙(𝑦𝑦, 𝑥𝑥),𝑦𝑦, 𝑥𝑥]       (3) 

Let the solution be 𝑠𝑠(𝑦𝑦, 𝑥𝑥). On implicitly differentiating (3) with respect to 𝑦𝑦, we have: 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑐𝑐𝑠𝑠𝑠𝑠−𝑏𝑏𝑠𝑠𝑠𝑠
𝑏𝑏𝑠𝑠𝑠𝑠−𝑐𝑐𝑠𝑠𝑠𝑠

+ 𝑐𝑐𝑠𝑠𝑠𝑠𝜙𝜙𝑦𝑦
𝑏𝑏𝑠𝑠𝑠𝑠−𝑐𝑐𝑠𝑠𝑠𝑠

        (4) 

The first term on the right-hand side is the protection effect stemming from how a lower income 

implies a higher net marginal cost of extra social distancing. The protection effect is positive 

under our assumptions. The second term on the RHS of (4) is what we term the adjustment-cost 

effect, the sign of which cannot be determined based on the assumptions so far. On noting that 

𝑐𝑐𝑠𝑠𝑠𝑠 = −𝑎𝑎𝑠𝑠𝑠𝑠 < 0 (twice differentiating Equation 2), we see that if richer people interact more—a 

lower customary level of social distancing (𝜙𝜙𝑦𝑦 < 0) —then the adjustment-cost effect will work 

in the opposite direction to the protection effect, and we cannot say a priori whether poorer 

people will be more, or less, vulnerable to the virus.  On the other hand, if 𝜙𝜙𝑦𝑦 > 0 then the two 

effects work in the same direction; higher incomes yield greater social distancing.  

Recall that income also appears directly in Equation (1) because of assets and goods that 

help protect from exposure to the virus. When social distancing is optimized (satisfying Equation 

3) we can write the probability of infection as: 

 𝑝𝑝 = 𝑝𝑝[𝑠𝑠(𝑦𝑦, 𝑥𝑥),𝑦𝑦, 𝑥𝑥] ≡ 𝑣𝑣(𝑦𝑦, 𝑥𝑥)      (5) 

It would be reasonable to assume that the function 𝑝𝑝 is decreasing in 𝑦𝑦 at given 𝑠𝑠. Then we see 

that if 𝜙𝜙𝑦𝑦 > 0, poorer people will be more exposed to the virus when one takes account of both 

the direct effect and the behavioral response through social distancing, i.e., 𝑣𝑣𝑦𝑦 < 0. Again, it 

should be emphasized that this is only one possibility consistent with our assumptions; if poorer 

people have higher customary levels of social distancing and the adjustment-cost effect is strong 

enough then we may find that it is the relatively well-off economically who are more exposed. 

Furthermore, if the adjustment-cost effect is sufficiently strong then there may be no income 

                                                 
20 When there are governmental rules for social distancing these will add to the adjustment cost, and the solution of 
the following equation for 𝑠𝑠 gives the optimal level of compliance with those rules. 
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effect on infection rates, or even a positive income effect, even though higher incomes facilitate 

better protection by other means at a given level of social distancing. 

A positive income effect on social distancing creates a link between the extent of absolute 

income poverty in a society and its overall infection rate. Since poorer people are not as able to 

finance social distancing (notably because of its high marginal cost to them), the greater the 

number of poor people in any distribution the higher the likely infection rate.  

We can go a step further and ask how greater relative inequality impacts the infection 

rate. Here the curvature of the relationship between social distancing and income becomes 

relevant. Suppose, for example, that the poor cannot afford to shelter-in-place, as they would not 

then have any income coming in, but the rich can readily do so without much loss, and that the 

infection rate depends on the aggregate number who shelter-in-place. Then a reduction in income 

inequality through mean-preserving transfers from the rich to the poor will increase social 

distancing and reduce the infection rate; the extra income for poor people will allow them to stay 

home more while the loss of income to the rich will have little effect on their behavior.  

To provide a more general formulation of this argument, take the expected value of the 

functions 𝑠𝑠(𝑦𝑦, 𝑥𝑥) and 𝑣𝑣(𝑦𝑦, 𝑥𝑥) across those in group i (county i in our empirical case), giving: 

𝑆𝑆𝑖𝑖 = 𝐸𝐸𝑖𝑖[𝑠𝑠(𝑦𝑦, 𝑥𝑥)] + 𝜐𝜐𝑖𝑖        (6)  

𝐶𝐶𝑖𝑖/𝑁𝑁𝑖𝑖 = 𝐸𝐸𝑖𝑖[𝑣𝑣(𝑦𝑦, 𝑥𝑥)] + 𝜀𝜀𝑖𝑖       (7) 

Here 𝑆𝑆𝑖𝑖 is the observed mean level of social distancing in group i, with population size 𝑁𝑁𝑖𝑖, 𝐶𝐶𝑖𝑖 is 

the number of cases observed, and the expectations are taken over all persons in group i, with 

zero-mean error terms 𝜐𝜐𝑖𝑖 and 𝜀𝜀𝑖𝑖. On applying Jensen’s inequality, 𝐸𝐸𝑖𝑖[𝑠𝑠(𝑦𝑦, 𝑥𝑥)] < (>) 𝑠𝑠(𝐸𝐸(𝑦𝑦), 𝑥𝑥) 

if the function 𝑠𝑠 is increasing concave (convex) in 𝑦𝑦. For example, if the marginal increments to 

social distancing from extra income are highest for the poorest and tend to fall as income rises 

then higher inequality—interpretable as a transfer of income from the poor to the rich—will 

reduce average social distancing. Similarly, 𝐸𝐸𝑖𝑖[𝑣𝑣(𝑦𝑦, 𝑥𝑥)] < (>) 𝑣𝑣(𝐸𝐸(𝑦𝑦), 𝑥𝑥) if 𝑣𝑣 is decreasing 

concave (convex) in 𝑦𝑦.  

To give a simple example with a closed-form solution, set 𝑏𝑏(. ) to a constant,21 and allow 

adjustment costs of the form: 𝑎𝑎(. ) = 1
2

(𝑠𝑠 − 𝜃𝜃𝜃𝜃)2, (𝜃𝜃 > 0). Also let 𝑝𝑝 = (1 − 𝑠𝑠)𝑓𝑓(𝑦𝑦) for some 

strictly decreasing function 𝑓𝑓(𝑦𝑦). (Both 𝑠𝑠 and 𝑓𝑓(𝑦𝑦) can be taken to be scaled in the (0, 1) 

                                                 
21 Recall that adjustment costs and the loss from infection entail that an equilibrium exists even without any benefit 
from interaction. 
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interval to assure that that is also true of 𝑝𝑝.) Here 𝑓𝑓(𝑦𝑦) captures how a higher income helps 

protect from the infection, such as by allowing a home environment (with lower density and 

better facilities) that promotes compliance with social distancing. The expected loss from 

infection is taken to be a constant and set to unity. Optimal social distancing is 𝑠𝑠 = 𝜃𝜃𝜃𝜃 + 𝑓𝑓(𝑦𝑦), 

which is increasing in y if 𝑓𝑓′(𝑦𝑦) > −𝜃𝜃, which we assume. Two cases illustrate the range of 

possibilities even in this simple example: 

Case 1: Suppose that the marginal reductions in the probability of infection at given 

social distancing rise as income rises (𝑓𝑓"(𝑦𝑦) < 0). Then mean social distancing falls with higher 

inequality (𝑠𝑠 is concave in 𝑦𝑦). The infection rate falls with higher income, but we cannot say how 

it is affected by inequality (allowing 𝑠𝑠 to vary optimally); a sufficient condition for inequality to 

increase the mean infection rate is that 𝑓𝑓(𝑦𝑦) > 1 − 𝑠𝑠.22  

Case 2: Instead, imaging that the marginal reductions in the probability of infection at 

given 𝑠𝑠 fall as income rises (𝑓𝑓"(𝑦𝑦) > 0). Now mean social distancing rises with higher 

inequality. The infection probability still falls with higher income, but the implication for the 

infection rate of higher inequality is ambiguous. If 𝑓𝑓(𝑦𝑦) < 1 − 𝑠𝑠 then the mean infection rate 

rises with inequality. 

Nor is this the only way that inequality can matter—including inequality in other 

dimensions besides incomes. For example, it may harder to achieve the cooperation required to 

put in place collectively-beneficial pandemic response policies in societies that are more unequal 

in terms of both power and income.23 Here we have only focused on the implications of income 

inequality for behavior with regard to social distancing.         

What about the effect of a higher 𝑥𝑥 on social distancing? Again, on implicitly 

differentiating (3), we have: 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑐𝑐𝑠𝑠𝑠𝑠−𝑏𝑏𝑠𝑠𝑠𝑠
𝑏𝑏𝑠𝑠𝑠𝑠−𝑐𝑐𝑠𝑠𝑠𝑠

+ 𝑐𝑐𝑠𝑠𝑠𝑠𝜙𝜙𝑥𝑥
𝑏𝑏𝑠𝑠𝑠𝑠−𝑐𝑐𝑠𝑠𝑠𝑠

        (8) 

The first term on the right-hand side of (8) is positive if being elderly lowers the net marginal 

cost of social distancing (𝑐𝑐𝑠𝑠𝑠𝑠 − 𝑏𝑏𝑠𝑠𝑠𝑠 < 0). If, in addition, the elderly have a higher customary 

level of social distancing (𝜙𝜙𝑥𝑥 > 0) then we will expect the elderly to be social distancing more 

                                                 
22 On letting the optimal 𝑠𝑠 vary with 𝑦𝑦, it is readily verified that 𝜕𝜕𝑝𝑝/𝜕𝜕𝜕𝜕 = (1 − 𝑠𝑠)𝑓𝑓′(𝑦𝑦) − [𝜃𝜃 + 𝑓𝑓′(𝑦𝑦)]𝑓𝑓(𝑦𝑦) and  
𝜕𝜕2𝑝𝑝/𝜕𝜕𝑦𝑦2 = [1 − 𝑠𝑠 − 𝑓𝑓(𝑦𝑦)]𝑓𝑓"(𝑦𝑦) − 2[𝜃𝜃 + 𝑓𝑓′(𝑦𝑦)] 𝑓𝑓′(𝑦𝑦). 
23 Similar arguments have been made about inequality and the provision of public goods. For a review of these 
arguments see Bardhan et al. (2000). 
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than others in response to the epidemic. On the other hand, the net effect of being elderly on 

social distancing is ambiguous if 𝜙𝜙𝑥𝑥 < 0, given the adjustment cost.  

 One can think of this model as characterizing an equilibrium that emerges from a 

dynamic process of adjustment reflecting serial correlation in infection rates. Consider Equation 

(7). In equilibrium, the count of cases (𝐶𝐶𝑖𝑖) is directly proportional to population (𝑁𝑁𝑖𝑖). We can 

embed this in a dynamic adjustment model as: 

        𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖𝑡𝑡−𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖[𝑣𝑣(𝑦𝑦, 𝑥𝑥)] = 𝛽𝛽(𝑙𝑙𝑙𝑙𝐶𝐶𝑖𝑖𝑖𝑖−1−𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖[𝑣𝑣(𝑦𝑦, 𝑥𝑥)]) +   𝛾𝛾𝑙𝑙𝑙𝑙𝑁𝑁𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 (1 > 𝛽𝛽 > 0,𝛽𝛽 + 𝛾𝛾=1) (9) 

Notice that the short-run elasticity of cases to population, 𝛾𝛾, is less than unity, even though the 

equilibrium level of cases is directly proportional to population. Given the dynamics, we should 

not expect a homogeneous relationship between counts of current infections and population size. 

 Even without lags, it can be conjectured that the initial socioeconomic effects evolve over 

time. (The vector 𝑥𝑥 can include the time passed since the first infection locally.) One possibility 

is that they fade with the spread of infections, along with the mixing of different groups. 

Alternatively, the learning process and the aforementioned economic constraints on social 

distancing may mean that those who can afford to do so will protect themselves over time, 

including by mixing less. By the former view, socioeconomic inequalities have a diminished 

effect as the infection spreads, while by the latter, initial socioeconomic inequalities persistent 

and may even have magnified effects over time. We test for the presence of this aspect of the 

dynamics by introducing interaction effects with the time since the first recorded case.    

We have seen that, once one allows for behavioral responses through social distancing, 

adjustment costs and dynamic effects, it is theoretically ambiguous whether the poor or elderly 

will be more vulnerable to infection, or whether more unequal income distributions will yield 

higher infection rates. Our empirical analysis will try to throw light on the matter.  

4. Data and descriptive statistics  

In measuring social distancing, we use data from Unacast’s Social Distancing 

Scoreboard, which assigns a grade to each county, comparing daily mobility during the COVID-

19 outbreak with a pre-COVID-19 baseline (beginning of March 2020), using mobile phone GPS 

data.24 This is a composite index of improvement in social distancing across three dimensions: 

                                                 
24 Further information can be found at Unacast’s website. 

https://www.unacast.com/covid19/social-distancing-scoreboard
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the change in average distance traveled, the change in non-essential travel, and the decrease in 

human encounters. We convert Unacast’s alphabetic grade to ordinal numeric variables, where a 

higher value indicates more social distancing relative to baseline values.  

We also draw on Google’s COVID-19 Community Mobility Report, which tracks 

changes in visits and time spent at various activities relative to a baseline (the median value for 

the corresponding day of the week between January 3 and February 6, 2020). The data are 

generated using location history for Google user accounts, and is reported for groceries and 

pharmacy, retail and recreation, transit stations, workplaces and residential locations.25    

For data on confirmed COVID-19 cases and deaths, we draw on the Centers for Disease 

Control and Protection (CDC).26 We use the most recent numbers available at the time of writing 

(June 18, 2020). Using the counts of both cases and deaths attributed to COVID-19 across 3,143 

US counties, we find large modal point masses around their lower bounds with a long right tail, 

and with variances much larger than their means. The mean count of cases per county is 688 

while the standard deviation is 3547; the median is 56 and the maximum is over 86,000 (in Cook 

County, IL).27 The overdispersion is also evident for deaths. The median death count is 1, but the 

mean is 37 (and the standard deviation is 256). Kings County in New York (Brooklyn) recorded 

7,000 deaths; the second highest is Queens, NY with 6,400 deaths.28  

The data on cases and deaths are reported, and there are undoubtedly reporting errors, 

with some cases unreported or miss-diagnosed. As a robustness check, we also use data on 

excess deaths (defined as the difference between observed number of deaths and expected deaths 

(based on historical trends) and COVID-19 testing. Testing data are at the state level from the 

COVID-19 Tracking Project; excess deaths are also at the state level and are estimated by the 

CDC. We use excess deaths from all causes excluding COVID-19, which is a potential indicator 

                                                 
25 More information can be found at Google’s mobility website. The data are expected to be representative of 
Google users, but only contain information for users who opt in to tracking their location history and who have 
regular connectivity to the Google network.  
26 The data are available through USA Facts. An alternative source is the New York Times data site for COVID-19 
(obtainable from the their Github repository). However, the NYT site records cases and deaths according to the 
county in which they occurred, while CDC does so according to the person’s place of residence. The latter is more 
in keeping with our interest in the socioeconomic covariates, which are characteristics of places of residence. We 
also perform robustness checks using data from the NYT and find our results to be similar, with the main difference 
being that the NYT data suggest a lower elasticity of cases to days since first infection than for the CDC data.  
27 Figure A1 in the Appendix provides the kernel density functions for cases. Los Angeles has 78,000 cases, 
followed by Queens County, NY, with 64,000. The five New York City boroughs have over 200,000 cases.  
28 As with cases, New York City in total recorded more than 22,000 deaths. Outside of New York, Cook County 
recorded 4,300 deaths and Los Angeles County recorded 3,000.   

https://www.google.com/covid19/mobility/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://github.com/nytimes/covid-19-data
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of the extent of misclassified COVID-19 deaths and deaths indirectly related to the virus (for 

example, deaths resulting from an overburdened health system).29 Of course, excess deaths do 

not stem solely from under-reporting of COVID-19 deaths, but also reflect fatalities due to other 

causes among those who do not seek treatment because of concern about catching the virus. 

The Appendix (Table A2) lists cases, excess death estimates, and testing statistics by 

state. As expected, New York has the highest number of cases both in total (174,523) and per 

100,000 (893). Nearby states, New Jersey, Rhode Island, Massachusetts and Connecticut, have 

substantially fewer cases per 100,000 (between 1,200 and 1,900), though still much higher than 

states in the South, Mid-West, and West (Washington, which had the earliest outbreak, has 380 

cases per 100,000). Deaths follow a similar pattern, with relatively high deaths per 100,000 for 

states in the North-East of the country. Excess death counts suggest that significant 

undercounting may have occurred in some states with lower recorded deaths and cases, such as 

Pennsylvania, Michigan, Illinois, and Texas. The number of tests done within states also varies 

widely, with New York and California completing more than 3 million tests as of June 18, 

though their testing rates (per 1,000 residents) are much more in line with many other states. 

We do not attempt to isolate the causal effect of social distancing on the infection rate, 

and we are skeptical about the prospects of finding a valid exclusion restriction for identifying 

the causal effect. Nonetheless, it is of interest to see what the bivariate relationship looks like 

between social distancing and infection rates: Figure 1 shows the counts of COVID-19 cases 

(panel a) plotted against the social distancing indicator and the corresponding graph of the 

proportion of counties with high infection rates (panel b), for various definitions of “high.”30 We 

see a strong negative relationship, which is consistent with the prevailing view (and the 

assumption of our model) that social distancing reduces infection rates for COVID-19. Going 

from the least improvement in social distancing to the most is associated with a reduction in the 

mean proportion of counties with over 400 cases per 100,000 from about 40% to 10%. 

                                                 
29 More information on the calculation of excess deaths can be found on the CDC’s website. 
30 In all cases, the linear regression has a slope significantly different from zero. For panel (a) the OLS slope 
coefficient is -0.60 (with a standard error of 0.01). For panel (b), the coefficients are (in %) -6.18 (0.35), -5.83 
(0.40), -4.73 (0.39), -3.53 (0.37) for cut-offs of 100, 200, 300 and 400 respectively.  

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
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Table 1 provides summary statistics. Data on county population, population density, 

demographics and poverty rates are from the US Census Bureau.31 Median income and the 

poverty rate are estimated from survey data but complemented by small-area estimation 

methods.32 Overall, the poverty rate is 15%, ranging from 2.6% (Douglas County, CO) to 54% 

(Oglala Lakota County, SD). Gini indices are also estimated by small-area methods rather than 

data, and varies widely across counties, from the lowest value of 0.25 in (aptly named?) Loving 

County, Texas, to a high of 0.66 in East Carroll Parish, Louisiana.33 The share of Black 

Americans refers to the proportion of the population that identifies as Black only, while share 

“Hispanic” also includes those who identify as Hispanic in addition to one or more other races.34 

Health indicators come from the Centers for Disease Control and Prevention (CDC). The 

prevalence of diabetes and obesity is the crude rate among adults aged 18 years and older for 

each respective condition. For the incidence of asthma, high blood pressure, and COPD, we use 

state-level data from the U.S. Chronic Disease Indicators; all variables are the incidence among 

those 18 years and older. (Note that these state-level variables will therefore drop out of any 

estimation with state fixed effects). High blood pressure is measured for those with diabetes; that 

is, the proportion of diabetics with high blood pressure. On average, the prevalence of diabetes is 

10%, asthma is 9%, and COPD is 7%. For those with diabetes, 72% have high blood pressure. 

The Appendix provides robustness checks for an extended set of controls. Since public 

responses to COVID-19 may well be heavily influenced by state-level policies, we include the 

political party of the Governor in our robustness tests.35 We also consider the role of weather, 

and in particular, the role of temperature, in both influencing social distancing (cooler weather 

suggests people may stay inside more often) and cases.36  

                                                 
31 Specifically, population and demographics are obtained from the US Census Bureau. County population density is 
from this (public) GitHub page. Poverty estimates are from the Census Bureau’s Small Area Income and Poverty 
Estimates (SAIPE) Program using the official national poverty line. 
32 These are model-based extrapolations. Further details can be found at the US Census Bureau site on small-area 
estimation methods. 
33 Loving County is also the second least populous county, with a 2017 population of only 169. The second lowest is 
Skagway Municipality in Alaska. NYC has a Gini index of 0.60, fifth highest. This range is similar to countries of 
the world, for which the range is from 0.24 in Slovenia to 0.63 in South Africa (as reported in the World Bank). 
34 The ACS does not include an Hispanic only category. The share of non-white is equal to the proportion of the 
population who does not identify as white only. 
35 Recent literature has suggested that places that have tended to vote Republican are less likely to adopt social 
distancing recommendations (Allcott et al. 2020). 
36 There is some evidence to suggest that the virus does not transmit as well in warm weather; for example Xu et al. 
(2020) and Sajadi et al. (2020). 

https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://github.com/camillol/cs424p3/blob/master/data/Population-Density%20By%20County.csv
https://www.census.gov/srd/csrm/SmallArea.html
https://data.worldbank.org/indicator/SI.POV.GINI?most_recent_value_desc=false
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5. Econometric models  

We first discuss some key aspects of the specification of our models, before we turn to 

the empirical implementation.  

Model specifications: We postulate a two-equation model for infections and deaths. The 

first equation is for the cumulative counts of cases (C𝑖𝑖 ≥ 0 for county 𝑖𝑖 = 1, . .𝑛𝑛): 

 C𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙T𝑖𝑖 + 𝛼𝛼2𝐗𝐗𝑖𝑖 + 𝛼𝛼3𝑙𝑙𝑙𝑙N𝑖𝑖 + 𝜀𝜀𝑖𝑖)  (𝑖𝑖 = 1, . . ,𝑛𝑛)  (10) 

Here T𝑖𝑖 is the number of days since the first case, the vector 𝐗𝐗𝑖𝑖 comprises the covariates of 

COVID-19 infection, 𝑁𝑁𝑖𝑖 is the population of county i, and the 𝛼𝛼’s are parameters to be estimated. 

The days since the first infection enter as a log transformation to reflect the typical nonlinearity 

in the spread of infectious diseases, with a turning point emerging in new cases at some point 

(giving the epi curve).37 Notice that we allow the population effect on the counts of cases to be 

non-homogeneous (of degree zero), to allow for lags in adjustment (as discussed in Section 3).  

As noted in Section 4, the cases data are highly non-normally distributed, also exhibiting 

substantial overdispersion, such that the variance is substantially higher than the mean. Given 

these properties of the cases data we estimate the parameters of (10) as a negative binomial (NB) 

model using maximum likelihood.  

The equation for recorded counts of deaths conditional on cases is as follows:  

D𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽1𝐇𝐇𝑖𝑖 + 𝛽𝛽2𝐗𝐗𝑖𝑖 + 𝛽𝛽3𝑙𝑙𝑙𝑙C𝑖𝑖 + 𝜇𝜇𝑖𝑖)  (𝑖𝑖 = 1, . . ,𝑛𝑛)   (11) 

Where 𝛽𝛽’s are parameters to be estimated and 𝜇𝜇𝑖𝑖 is another (zero mean) error term. Here the 

vector 𝐇𝐇𝑖𝑖 includes the health risk factors—the pre-existing conditions that have been identified 

as relevant to the severity of the disease once infected. Here too we allow for possible non-

homogeneity, in this case meaning that the count of deaths need not be directly proportional to 

infections. The death count exhibits a similar degree of non-normality and overdispersion to the 

counts of cases (or their logs), so we also estimate (11) as a NB. 

Of course, 𝑙𝑙𝑙𝑙C𝑖𝑖 is endogenous in equation (11); for example, the latent characteristics of 

counties that tend to increase infection rates may make it more likely that the cases are severe or 

                                                 
37 Note that the count of cases in our model is cumulative, so the function flattens out over time, with the decline in 
new cases. We also did a nested test comparing the log function with a quadratic in days; the coefficient on log days 
remained significant while those on the quadratic in days were not. 
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that health care is worse. We deal with this problem by adding a control function to (11), using 

the residuals from (10), and bootstrapping the standard errors. The days passed since the first 

case are assumed to alter cases (in keeping with the epi curve) but only matter to deaths via 

cases. The main threat to this identifying assumption appears to be the possibility that the strain 

on health facilities increases with days since the onset of the infection, leading to higher death 

rates. To help address this concern we include controls for county health-care capacity in the 

model of deaths. 

We estimate regressions for social distancing (S𝑖𝑖 for county 𝑖𝑖 = 1, . .𝑛𝑛), analogous to our 

model for cases. Here we postulate a latent continuous variable as a function of the same 

covariates as for cases: 

 S𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑙𝑙𝑙𝑙T𝑖𝑖 + 𝛾𝛾2𝐗𝐗𝑖𝑖 + 𝛾𝛾3𝑙𝑙𝑙𝑙N𝑖𝑖 + 𝜐𝜐𝑖𝑖 (𝑖𝑖 = 1, . . ,𝑛𝑛)   (12) 

From the Unacast data, we do not observe S𝑖𝑖 but rather an ordinal signal—the index grades, 

which range from A+ to F. Given the nature of the data, we estimate this equation as an ordered 

logit model. 

 Explanatory variables and functional forms: While population density has long been 

seen as a key predictor of contacts and (hence) the spread of infections, we suggest that the more 

relevant variable is population squared per unit area.38 To see why, note that in a county of 

population size N𝑖𝑖, the potential number of distinct contacts is N𝑖𝑖(N𝑖𝑖 − 1)/2 ≅ N𝑖𝑖
2/2 for large 

N𝑖𝑖. (Note that this is a measure of potential interactions, not actual interactions, which is 

endogenous.) We call N𝑖𝑖
2 per unit land area the “potential interaction density” (PID) or “density” 

for short. Note that the log transformation entails that the regression coefficient on PID is the 

same as that on population density; what changes is the coefficient on (log) population. We 

postulate that the (per capita) contact rate at the county-level is an increasing function of density, 

but the slope of this function declines as density increases (as discussed in Section 2). We 

represent this by a log transformation of the county’s PID (for which the elasticity is positive but 

less than unity). We also allow for the possibility that density matters to the death rate. As 

discussed in Sections 2 and 3, there is evidence to suggest that the share of the elderly can also 

be expected to influence infection rates, and in a potentially offsetting way to how this variable 

                                                 
38 Note that here we are referring to the average density of a county. High local density (such as in one’s residential 
building) is another matter. 
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impacts the severity of the illness once the virus takes hold; as such, the population share of 

elderly is also included in the vector 𝐗𝐗𝑖𝑖.  

Given that we are interested in estimating the protection and adjustment-costs effects on 

social distancing and infections, we additionally include the log of the median income of the 

county in 𝐗𝐗𝑖𝑖. Since this is a key functional-form assumption for the interpretation of our results, 

we also did an encompassing (nested) test in which the median entered the NB model for cases 

in both log and linear form, the latter implying that cases are an exponential function of the 

median, i.e., that the infection rate is concave (convex) in the median whenever the infection rate 

is increasing (decreasing) in the median. With our full set of controls, the coefficient on the 

linear median had a very high standard error (z-score=0.63) while the coefficient on the log 

median had a z-score of 1.57 (significant at the 11% level). This suggests that the log 

transformation is to be preferred to a linear specification.39  

Also motivated by our arguments in Sections 2 and 3, we allow the poverty rate of a 

county to matter to both the spread of the virus and its severity, after controlling for density and 

the share of the population 65 years and older. Note that the poverty rate is highly correlated with 

median household income (r=-0.89); the regression coefficient of the log poverty rate on log 

median is -1.45 (standard error=0.01). When we control for median income, the poverty rate 

behaves more like a measure of relative distribution; the partial correlation between the two 

variables (controlling for log median) is 0.43. So, the poverty rate and the Gini index can be 

treated as measures of aspects of inequality. They are not the same thing of course, and one 

cannot predict one of them very well from the other.40 As a result, the Gini index may still have 

some extra explanatory power.  

Given existing evidence on race and COVID-19 (Section 2), we include the population 

share of Black Americans in 𝐗𝐗𝑖𝑖. Two possible function forms were considered, namely the log of 

the population share and the log of the fractionalization index.41 In nested tests the former 

functional form clearly dominated. The population share of Black Americans may well be 

proxying for other unobserved factors; for example, Black Americans are more often in essential 

                                                 
39 We found that an improvement in fit if one replaced the log median with a quadratic function of the (linear) 
median. The quadratic function was concave (positive coefficient on the median and negative on the median 
squared). The gain in fit was very small, however, so the more parsimonious log specification was preferred. 
40 Regressing the log of the Gini index on the log of the median and the log of the headcount index, the R2 is 0.31. 
41 For two ethnic groups, the fractionalization index is 2𝑠𝑠1(1 − 𝑠𝑠1) where 𝑠𝑠1 is the population share of group 1. 



21 
 

services with greater exposure to the virus, such as health care, food preparation, and certain 

services.42 Race is also highly correlated with our density variable (r=0.41), median income (-

0.17), the share of the population 65 years and older (-0.30) and poverty (0.36). (Table A1 in the 

Appendix gives the correlation matrix). As a robustness check, in the Appendix we also consider 

the share of the Hispanic population in a county, along with the more general share of those who 

are non-white.  

As noted in Section 2, the literature has also pointed to some comorbidities that influence 

vulnerability to the virus and so should be included in 𝐇𝐇𝑖𝑖. We include measures of diabetes, 

asthma, hypertension and lung disease (specifically, the incidence of COPD). We also include a 

measure of health-care capacity; namely, the number of intensive care unit (ICU) beds per 1,000 

residents and the number of hospitals per 100,000 residents. Here our expectation is that counties 

with greater health-care capacity will both detect more cases in their populations and attract 

cases for treatment from other counties.  

6. Estimation results 

In each case, we start with a specification of Equations (10)-(12) in which only some 

basic epidemiological and, in the case of deaths, health (capacity and comorbidity) variables 

appear as covariates. We then progressively add the socioeconomic characteristics up to the most 

complete model. To account for any unobservable factors at the state-level that may affect cases 

and deaths, such as health systems and policies, we also estimate a specification that includes 

state fixed effects.  

Social distancing: We start first with the estimates from equation (12) for changes in 

social distancing in response to the epidemic in Table 2. Higher PID is associated with weaker 

improvements in social distancing, but larger populations generally do not matter independently 

of density. An exception is when we include state fixed effects, indicating that within states one 

tends to see less improvement in social distancing in the more populous counties. There is 

generally no effect of the time period since the first infection on the improvement in social 

                                                 
42 Recent data from the Current Population Survey show that a majority of nursing and home health aides identify as 
Black/African American or Hispanic/Latino, as do a majority of those working in food preparation and most 
personal care and service occupations; see https://www.bls.gov/cps/cpsaat11.htm 

https://www.bls.gov/cps/cpsaat11.htm
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distancing, although a weakly significant positive effect does emerge when we introduce state 

effects (Column 7).  

We find a positive median-income effect on social distancing. This effect has an elasticity 

less than unity, implying that social distancing is an increasing and concave function of the 

median.43 Thus, median-income inequality between counties reduces aggregate social distancing. 

However, the poverty rate has a positive effect, controlling for the median (and other covariates), 

suggesting that more unequal counties are seeing more social distancing at a given median 

income. We find no significant effect of the Gini index in any of our specifications.   

We also see a strong positive effect of a higher share of elderly people on social 

distancing, consistent with the expectation discussed in Sections 2 and 3 that elderly people are 

better able to isolate at home—many of them may well be retired. We find a significant negative 

effect of a higher share of Black Americans on social distancing, although this is not robust to 

introducing state fixed effects. 

Table A3 in the Appendix provides equivalent regressions using the Google COVID-19 

Mobility data as outcome variables. We find similar results to those in Table 2; namely, that the 

socioeconomic variables related to income are all negatively associated with travelling to retail 

and recreation areas, transit station and workplaces, and positively associated with more time in 

residential spots. Interestingly, we find that while a higher share of the Black American 

population is correlated with less retail and recreation travel, it is positively associated with more 

time at workplaces, suggesting that the burden of essential work falls on Black Americans.   

The Appendix (Table A4) also provides regressions with a fuller set of controls, 

including the share of Hispanic population, share of non-white population, temperature by 

month, COVID-19 tests per capita, and whether the state Governor is from the Republican Party. 

These do not change the main results.  

Cases: The results for Equation (10) are found in Table 3.44 We see strong positive 

effects of county density, population, and the days since first case. The infection rate is higher in 

                                                 
43 Notice that the regression coefficient on the (log) median rises substantially when one adds the (log) poverty rate. 
However, when one calculates the total effect of the median in a regression with log median and log poverty rate 
allowing the latter to vary with the median consistently with the data one gets 0.54—very close to the coefficient on 
the median when the poverty rate is excluded. (The log poverty rate has an average elasticity with respect to the 
median of -1.45, with a standard error of 0.01.) 
44 The corresponding results using the cases data from the New York Times are reported in the Appendix, Table A5. 
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denser counties, as predicted by the standard epi-models (Section 2).45 The per capita infection 

rate tends to be lower in more populous counties (noting that the elasticity with respect to 

population size is less than unity). Note that the coefficient on (log) population controlling for 

(log) population density is closer to, but still less than, unity. Cumulative infections rise with 

days since the first with an elasticity of a little below unity. A higher proportion of the county 

population 65 years and older is associated with fewer cases, suggesting that younger people are 

spreading the virus more.  

We find a significantly negative effect of median income when we do not control for the 

poverty rate (Columns 2-4, Table 3). The negative elasticity implies that it is a (decreasing) 

convex function, such that the inequality in median incomes among counties is increasing the 

overall infection rate. Adding median income alone does not have much effect on the 

epidemiological covariates for density, population and the epi curve. We also find that counties 

with higher income inequality (as measured by the Gini index) have higher infection rates 

(Column 4).  

However, the effect of higher median income switches sign when we include the county 

poverty rate, and the coefficient on the Gini index drops substantially (Column 5). It is clear that 

the negative median-income effect in Columns 2 and 3 is picking up the effect of poverty 

(recalling that the two variables are negatively correlated). As noted, when one controls for the 

median, the poverty rate will reflect income inequality, suggesting again that more unequal 

counties see higher infection rates. However, neither the positive effects of median income nor 

the poverty rate are significantly different from zero when we add state effects, indicating that 

these effects are largely driven by inter-state differences.  

The appearance of a positive median-income effect on infections when we control for the 

poverty rate is consistent with the idea of an adjustment-cost effect whereby people in richer 

places have norms of interaction that cannot be costlessly adjusted downward during the 

epidemic. By this interpretation, we see two opposing effects, namely the protection effect 

(captured in our empirical analysis by the poverty rate) and an adjustment effect (picked up by 

median income once one controls for the poverty rate), although, on balance, the median-income 

effect is negative (as we see in Columns 2 and 3 of Table 3). 

                                                 
45 Recall that this is the log of PID, given by (log) population squared per unit area; the coefficient for log 
population controlling for log population density is the sum of those on log PID and log population. 



24 
 

On the surface, this interpretation does not appear to fit well with our results in Table 2 

on social distancing. There we see a greater social distancing response in counties with higher 

median income, also with an indication that this is also true in more unequal counties (as 

indicated by the significantly positive coefficient on the poverty rate).  However, it should be 

recalled that the social distancing score is for the improvements relative to a baseline. Richer 

counties can improve their performance at social distancing in response to the epidemic, though 

the attained level of social distancing can still end up lower than elsewhere, given the adjustment 

costs. Thus, our results can be interpreted in a way that is consistent with the existence of both 

the adjustment-cost effect and the protection effect.     

We find a strong positive effect of a higher population share of Black Americans, which 

is robust to including state fixed effects. It is also robust to dropping all other socioeconomic 

covariates; if simply add the share of Black Americans to the basic specification in Column (1) 

the elasticity is very similar (0.38, with a standard error of 0.02, as compared to 0.36 in Column 

(6)). A one standard deviation difference between counties in the log of the population share of 

Black Americans would yield on average about a 40% difference in the count of infections 

(𝑑𝑑𝑑𝑑𝑑𝑑C = 0.41). The elasticity for the share of Hispanic people is only slightly lower at 0.30 when 

added to Column (6), with a standard error of 0.02 (Appendix, Table A4). 

Once we control for the population share of Black Americans, the effects of the poverty 

rate and the Gini index drop substantially and are no longer significantly different from zero 

(comparing Columns (5) and (6) in Table 3).46 The poverty and inequality variables are clearly 

picking up the difference in racial composition.  

It is also notable from Table 3 how much the introduction of the share of Black 

Americans reduces the coefficient on the classic epidemiological factor, population density 

(comparing Columns 5 and 6). The fact that Black Americans tend to live in more dense counties 

and are also more exposed to the virus (presumably given their work) accounts for a large share 

of the presumed effect of density on the infection rate in models that ignore race.  

The parameter estimates in Table 3 are averages. As the infection spreads, the effects 

may well change, to the extent that different socioeconomic groups mix. To test for this, Table 4 

interacts the socioeconomic characteristics from Table 3 with the number of days since the first 

                                                 
46 This is an effect of the Black American share, not the Hispanic share alone; if we only control for the latter then 
the inequality and poverty measures remain significant. 
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confirmed case of COVID-19.47 We find little sign that the socioeconomic effects fade over 

time, the one exception being for the share of the population over 65. Comparing Columns (6) in 

Table 3 with Column (5) in Table 4, we see that the elasticity w.r.t. this variable starts off at 

about twice its average level, but then fades over time, though remaining negative though the 

entire range of the data. The effect of a higher share of Black Americans starts off negative but 

becomes positive within one week, and increases as more days pass since the first infection. The 

median and the poverty rate show a similar pattern.  

Deaths: Table 5 gives the estimates of Equation (11), for COVID-19 deaths. (Table A7 in 

the Appendix gives the reduced-form estimates.) As expected, deaths rise with the number of 

cases. The elasticity is significantly greater than unity, implying that the ratio of fatalities to 

cases tends to rise with the number of cases. This is a strong (and statistically significant) pattern 

in our results. This could reflect a strain on local health care staff and infrastructure at high case 

loads. It could also reflect lags in reporting.48 Comparing counties, and not allowing for state 

effects, the crude death rate (deaths per case) tends to be higher in denser counties. Death rates 

tend to rise with higher density though the elasticity is small, around 0.03.  

Interestingly, pre-existing health conditions and health care capacity have rather weak 

effects. (Note that those variables in the 𝐇𝐇𝑖𝑖 vector that are at state level drop out when we allow 

for state effects.) The health conditions in particular have effects that are close to zero, with only 

a higher proportion of asthmatics and those with COPD having a weakly significant effect on 

deaths though with a small elasticity of 0.05.  Of course, this doesn’t preclude an individual-level 

effect, as documented in the medical and epidemiological literature; here we are looking at 

averages. These comorbidity effects are weaker when we extend the range of socio-economic 

covariates.  

Higher median incomes are associated with lower death rates, but this is not robust to 

including other socio-economic covariates. The share of elderly knocks out the income effect on 

fatalities. As expected, we tend to see higher death rates in counties with a higher population 

share over 65 years of age, with an elasticity around unity, and this is a robust feature of the data 

across different specifications for the regressors. The income-related variables play a more minor 

                                                 
47  Table A6 in the Appendix reports analogous results using the cases data from the New York Times. 
48 For example, suppose that extra deaths are only recognized as being due to COVID-19 once a critical minimum 
number of cases is identified. Then the ratio of recorded deaths to cases rises with the number of cases. 
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role, and are insignificant and close to zero when we add the race and state fixed effects. A 

higher poverty rate is associated with a higher death rate, though the effect is not statistically 

significant when we include our full set of covariates and state effects.   

Combining Tables 3 and 5, we see opposing effects of a higher share of the elderly. As 

expected, death rates are higher for the elderly; the elasticity of deaths (controlling for the other 

variables, including cases) to the population share of the elderly is close to unity. However, as 

we have seen, this reverses when we turn to the infection rate.  On its own, the finding that the 

medical and epidemiological effects go in opposite directions is possibly not too surprising (as 

discussed in Section 2). On balance, with the full set of controls, we find a small but statistically 

insignificant effect of a higher proportion of the elderly on death rates in the reduced-form model 

(substituting Equation (10) into (11), as found in the Appendix, Table A5). So, the positive effect 

on deaths conditional on infections is counter-balanced by the effect on the infection rate. 

Testing and excess deaths: Given that testing and excess deaths data are at the state-

level, there is little we can say about heterogeneity in testing capacity within states. The 

Appendix (top row of Figure A2) provides scatter plots between testing rates and poverty or 

income across states, suggesting that wealthier states tend to have slightly higher testing rates, 

though the t-statistic for the fitted lines are statistically insignificant. When we add a control for 

testing at state level (Appendix Table A4) our main results turn out to be robust, while the 

incidence of testing comes in with a strong positive effect, as expected.  

In the Appendix we also compare how the estimated parameters on the state fixed effects 

(Column 7, Table 3) vary with testing rates (bottom row of Figure A2 in the Appendix). We find 

no obvious relationship (the test statistic for the fitted line is statistically insignificant). Nor do 

we find that the state fixed effects in the regressions in Table 5 reflect excess deaths.   

7. Conclusions 

There are theoretical ambiguities in the influence of socioeconomic covariates on the 

spread of infections, given the induced behavioral responses, also allowing for costs of adjusting 

behavior to the threat of infections and the potential lags and nonlinearities. In the absence of 

effective pharmaceutical interventions, personal social-distancing choices are a plausible channel 

linking socioeconomic factors to the spread of infections. Our analysis of the bivariate 

relationship in the data is consistent with the view that social distancing lowers the COVID-19 
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infection rate in the US. However, the marginal cost of greater social distancing is likely to be 

higher for poorer families, who cannot easily maintain their consumption in isolation; this is 

what we dub the protection effect. Against this, the pre-epidemic levels of social and economic 

interactions are likely to be higher for wealthier people and there are costs of adjustment to a 

lower level during the epidemic—the adjustment effect. Similarly, there are a priori reasons why 

a more elderly population can yield lower infection rates but higher death rates conditional on 

infections, and our results support the view that both these opposing, and (it turns out) roughly 

equal, channels of impact are present in the US data.  

We see signs of both the protection and adjustment effects in the relationship between 

COVID-19 outcomes across US counties and incomes. Without controlling for the incidence of 

poverty, a higher median income tends be associated with greater improvements in social 

distancing and lower infection rates. However, this is due to the fact that countries with a higher 

median income tend to have a lower poverty rate; controlling for poverty a higher median tends 

to come with higher infection rates and death rates, while a higher poverty rate does the same, 

reflecting the positive impact on infection rates of a less pro-poor distribution at a given median. 

The median-income effect on social distancing and infection rates is interpreted as indicative of 

the adjustment cost effect, while the positive effect is interpreted as reflecting the protection 

effect.  The overall negative effect of higher median income, allowing the poverty rate to vary, 

suggests that the protection effect outweighs the adjustment-cost effect. The (independent) data 

on the social distancing response to the epidemic also support our argument that the protection 

effect dominates, with richer counties, and also more unequal counties, seeing stronger social 

distancing responses. Once one controls for the median, the poverty rate is reflecting relative 

inequality. Counties with higher overall income inequality tend to have higher infection rates, 

which is in part due to the fact that higher inequality comes with higher poverty rates. Similarly, 

higher inequality between counties increases the overall (national) infection rate.  

We also find a strong effect of race, separately to poverty and inequality: a higher 

population share of Black Americans is associated with higher infection rates at county level. 

The effects of income inequality and poverty within counties largely vanish when one controls 

for the Black American population share, indicating that the directly relevant factor is race not 

income inequality or poverty per se. Also, without controlling for the racial composition of 

counties one substantially over-estimates the viral impact of higher population density. 
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Our interpretation is that poorer people are less able to protect themselves, which leads 

them to different choices—in essence, a steeper trade-off between their health and their 

economic welfare in the context of the threats posed by COVID-19. This points to a potential 

role for anti-poverty policy as a complement to health policy in combating this infectious 

disease. However, the infections are clearly spread through the distribution of income. Alongside 

the poverty effect, our results are consistent with the view that richer people tend to interact more 

(in both their income-earning and consumption choices). They reduce these interactions in the 

epidemic (relative to the pre-epidemic levels) but the costs of adjustment still leave richer 

counties with higher infection rates once one controls for the poverty rate and/or the share of 

Black Americans.   

These socioeconomic effects on the spread of the virus do not fade over time since the 

first infection; rather, the effects tend to become even stronger. Thus, there is little to suggest that 

the mixture of different socioeconomic groups dulls the impacts of the underlying inequalities. 

What we see in the data is more consistent with a model of stronger socioeconomic segmentation 

as the virus spreads, probably reflecting a learning process in combination with the differences in 

economic constraints on social distancing. An exception to this pattern is found in how infection 

rates vary with an elderly population, which tends to matter less over time, probably reflecting 

younger families adopting greater social distancing (which comes more naturally for many of the 

elderly).   

Controlling for the socio-economic characteristics that we have studied, we still find 

signs of the effects that have been more prominent in the epidemiological and medical 

literatures, though those effects become weaker. Population density remains a significant 

predictor of infection rates, but the coefficient is greatly attenuated once we control for socio-

economic characteristics, especially racial composition. The partial correlations with the 

incidence of pre-existing health conditions are generally weak when one controls for 

socioeconomic covariates.  
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Table 1: Summary statistics for key variables 
 
  N Mean Std Dev. Min Max 
Cases 3,143 688.41 3547.20 0.00 86179.00 
Cases, log 3,143 4.12 2.15 0.00 11.36 
Deaths 3,143 37.19 256.17 0.00 6965.00 
Deaths, log 3,143 1.34 1.62 0.00 8.85 
Days 3,143 72.53 22.94 0.00 143.00 
Days, log 3,143 4.10 0.97 0.00 4.97 
Population 3,142 104127.10 333486.30 88.00 10100000.00 
Population, log 3,142 10.27 1.49 4.48 16.13 
Population density  3,143 670.97 4465.49 0.11 179922.30 
Potential interaction density, log 3,142 15.00 3.14 3.67 26.40 
Population share 65+ 3,142 19.27 4.71 4.83 57.59 
Population share 65+, log 3,142 2.93 0.25 1.57 4.05 
Median income 3,141 52794.41 13880.12 25385.00 140382.00 
Median income, log 3,141 10.84 0.24 10.14 11.85 
Poverty rate  3,141 15.16 6.13 2.60 54.00 
Poverty rate, log 3,141 2.64 0.40 0.96 3.99 
Gini index  3,128 44.55 3.65 25.67 66.47 
Gini index, log 3,128 -0.81 0.08 -1.36 -0.41 
Share of Black Americans 3,142 9.34 14.47 0.00 86.07 
Share of Black Americans, log 3,142 1.61 1.14 0.00 4.47 
Hospitals per 100,000 3,142 0.61 0.94 0.00 10.56 
Hospitals per 100,000 (IHS) 3,142 0.47 0.50 0.00 3.05 
ICU beds per 1,000 3,142 0.13 0.54 0.00 27.45 
ICU beds per 1,000 (HIS) 3,142 0.12 0.19 0.00 4.01 
Percent with diabetes 3,142 10.38 3.80 1.50 33.00 
Percent with asthma 3,141 9.16 1.20 7.30 13.20 
Percent diabetics with high BP 3,141 72.08 3.97 65.00 79.50 
Percent with COPD  3,141 7.13 2.20 3.60 15.00 
Share Hispanic 3,142 9.65 13.84 0.61 96.36 
Share non-white 3,142 15.53 16.38 0.96 96.16 
Republican 3,143 0.73 0.44 0.00 1.00 
Temperature March 3,135 48.71 11.62 -4.20 76.40 
Temperature April 3,135 52.22 9.35 12.00 80.20 
Temperature May 3,135 61.64 7.47 28.70 83.00 

Notes: Data at county-level. COVID-19 cases and deaths come from the CDC; total counts as of 18th June 2020. 
Days are the number of days since the first case confirmed. Log cases, deaths, and days are equal to the variable + 1 
logged. Demographic variables are drawn primarily from the US Census and the CDC. Share of Black American 
refers to the share of the county population that identify as Black or African American only. Share of Hispanic refers 
to the share of the population that identify as Hispanic or Hispanic and another race. Share of non-white is 1 minus 
the share of the population that identifies as white only.  Potential interaction density is equal to population density 
(persons per square kilometer) multiplied by population. The poverty rate for the US is based on the US poverty 
line. Number of hospitals and ICU beds are from Johns Hopkins University. Prevalence of diabetes is at county 
level; asthma, high blood pressure, and COPD is at state level. Temperature is monthly average from the NOOA. 
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Table 2: Regressions for social distancing in response to the COVID-19 epidemic  

  (1) (2) (3) (4) (5) (6) (7) 
Density -1.09*** -1.09*** -1.12*** -1.12*** -1.10*** -1.02*** -1.10*** 

 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.08) 
Population -0.04 -0.08 0.02 0.01 -0.08 -0.23** -0.80*** 

 (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.16) 
Days since first case 0.02 0.02 0.05 0.04 0.03 0.06 0.12* 

 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 

Median household 
income 

 0.45** 0.56*** 0.70*** 3.50*** 3.95*** 2.65*** 

 (0.18) (0.19) (0.22) (0.50) (0.51) (0.57) 
Share 65 and older   1.15*** 1.15*** 1.69*** 1.57*** 0.53** 

   (0.18) (0.19) (0.21) (0.21) (0.24) 
Gini index    0.69 -0.56 -0.07 0.46 

    (0.58) (0.62) (0.62) (0.69) 
Poverty rate     1.81*** 2.34*** 2.25*** 

     (0.29) (0.31) (0.34) 

Share of Black 
Americans 

     -0.24*** 0.03 

     (0.04) (0.06) 
State fixed effects No No No No No No Yes 
N 3054 3054 3054 3042 3042 3042 3042 

Note: Data are at the county level. The dependent variable is the social distancing grade for the county from 
Unacast’s Social Distancing Scoreboard. Grades are as of May 28 2020. Ordinal logistic regression used for 
estimation. All covariates are logged. Variable descriptions can be found in Table 1 notes. Standard errors in 
parentheses. * prob<0.10 ** prob<0.05 *** prob<0.01. N=3054. 
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Table 3: Regressions for reported COVID-19 cases  
 

  (1) (2) (3) (4) (5) (6) (7) 
Density 0.19*** 0.20*** 0.20*** 0.19*** 0.19*** 0.03 0.01 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 
Population 0.64*** 0.68*** 0.62*** 0.61*** 0.58*** 0.82*** 0.87*** 

 (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.05) 
Days since first case 0.95*** 0.92*** 0.88*** 0.88*** 0.88*** 0.81*** 0.73*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Median household 
income 

 -0.57*** -0.67*** -0.37*** 0.77*** 0.45** 0.17 

 (0.08) (0.08) (0.09) (0.21) (0.20) (0.21) 
Share 65 and older   -1.52*** -1.59*** -1.37*** -1.22*** -1.35*** 

   (0.08) (0.08) (0.09) (0.09) (0.09) 
Gini index    1.64*** 0.95*** 0.20 0.14 

    (0.27) (0.29) (0.28) (0.27) 
Poverty rate     0.76*** 0.12 0.19 

     (0.13) (0.13) (0.13) 

Share of Black 
Americans 

     0.36*** 0.40*** 

     (0.02) (0.02) 
Constant -8.84*** -3.13*** 3.16*** 1.80* -13.51*** -9.81*** -6.33** 

 (0.22) (0.84) (0.89) (0.94) (2.71) (2.61) (2.70) 
Shape parameter 0.08*** 0.07*** -0.02 -0.03 -0.04 -0.12*** -0.32*** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
State fixed effects No No No No No No Yes 
N 3142 3141 3141 3128 3128 3128 3128 

Note: Data for US counties. Negative binomial used for estimation. All covariates are logged. The dependent 
variable is cases. Variable descriptions can be found in Table 1 notes. Standard errors in parentheses. * prob<0.10 
** prob<0.05 *** prob<0.01.  
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Table 4: Incorporating interaction effects with time since the first infection  
 

  (1) (2) (3) (4) (5) (6) 
Density 0.20*** 0.20*** 0.19*** 0.19*** 0.03 0.00 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 
Population 0.69*** 0.62*** 0.60*** 0.58*** 0.81*** 0.87*** 

 (0.04) (0.04) (0.04) (0.05) (0.04) (0.05) 
Days since first case 1.65 0.49 0.65 -11.39** -11.77** -9.27* 

 (2.18) (2.22) (2.31) (5.50) (5.32) (5.06) 
Median household income -0.27 -0.78 -0.81 -3.39* -3.66** -3.04* 

 (0.88) (0.86) (0.96) (1.87) (1.80) (1.72) 
Median income # days  -0.07 0.03 0.10 0.96** 0.94** 0.74* 

 (0.20) (0.20) (0.22) (0.43) (0.41) (0.39) 
Share 65 and older  -1.65*** -1.55*** -2.38*** -2.62*** -2.79*** 

  (0.59) (0.59) (0.73) (0.73) (0.69) 
Share 65 and older # days   0.03 -0.01 0.23 0.32* 0.33** 

  (0.14) (0.14) (0.17) (0.17) (0.16) 
Gini index   -2.70 -0.99 0.54 0.13 

   (1.90) (1.97) (1.90) (1.79) 
Gini index # days    1.01** 0.45 -0.10 -0.01 

   (0.44) (0.46) (0.44) (0.42) 
Poverty rate     -1.89* -2.05** -1.46 

    (1.02) (0.99) (0.96) 
Poverty rate # days     0.61*** 0.50** 0.38* 

    (0.24) (0.23) (0.22) 
Share of Black Americans     -0.32 0.02 

     (0.27) (0.24) 
Share of Black Americans # days      0.16** 0.09 

     (0.06) (0.06) 
Constant -6.33 4.83 2.91 39.83* 45.25* 37.25* 

 (9.55) (9.72) (10.14) (23.99) (23.22) (22.03) 
Shape parameter  0.07*** -0.02 -0.03 -0.04* -0.13*** -0.33*** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
State fixed effects No No No No No Yes 
N 3141 3141 3141 3128 3128 3128 

Note: Data for US counties. Negative binomial used for estimation. All covariates are logged. The dependent 
variable is cases. Variable descriptions can be found in Table 1 notes. The symbol # represents an interaction term. 
Standard errors in parentheses. * prob<0.10 ** prob<0.05 *** prob<0.01.  
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Table 5: Regressions for COVID-19 deaths conditional on reported infections  
 

  (1) (2) (3) (4) (5) (6) (7) 
Cases 1.12*** 1.11*** 1.15*** 1.15*** 1.15*** 1.13*** 1.09*** 

 (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) 
Density 0.01 0.02 0.04** 0.03** 0.03* 0.03** 0.02 

 (0.02) (0.02) (0.02) (0.01) (0.02) (0.01) (0.02) 
Hospitals per 100,000 -0.04 -0.05 -0.03 -0.04 -0.04 -0.03 -0.06 

 (0.08) (0.07) (0.08) (0.07) (0.09) (0.10) (0.07) 
ICU beds per 1,000 -0.06 -0.13 -0.14 -0.15 -0.14 -0.15 -0.08 

 (0.13) (0.14) (0.10) (0.13) (0.11) (0.11) (0.10) 

Proportion with 
diabetes 

0.01 0.00 0.01 0.01 0.01 0.00 0.00 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Proportion diabetic 
with high BP  

-0.00 -0.00 -0.01 -0.01 -0.01 -0.01**  
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  

Proportion with asthma 0.06*** 0.07*** 0.03 0.03 0.03* 0.05**  
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)  
Proportion with COPD 0.02 0.02 0.03** 0.03* 0.03** 0.04**  
 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)  
Median household 
income 

 -0.22* -0.04 0.04 0.27 0.20 0.23 

 (0.12) (0.12) (0.14) (0.26) (0.26) (0.20) 
Share 65 and older   1.05*** 1.04*** 1.08*** 1.09*** 1.06*** 

   (0.10) (0.10) (0.11) (0.13) (0.12) 
Gini index    0.42 0.25 0.10 0.39 

    (0.35) (0.42) (0.37) (0.36) 
Poverty rate     0.16 0.08 0.07 

     (0.16) (0.16) (0.15) 

Share of Black 
Americans 

     0.06** 0.05* 

     (0.03) (0.03) 
Residual -0.00** -0.00 -0.00*** -0.00*** -0.00** -0.00*** -0.00* 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Constant -4.70*** -2.30 -7.19*** -7.63*** -10.83*** -9.78*** -10.05*** 

 (0.72) (1.44) (1.47) (1.75) (3.54) (3.51) (2.71) 
Shape parameter -0.39*** -0.40*** -0.47*** -0.47*** -0.47*** -0.48*** -0.80*** 

 (0.04) (0.03) (0.04) (0.03) (0.04) (0.04) (0.05) 
State fixed effects No No No No No No Yes 
N 3141 3141 3141 3128 3128 3128 3128 

Note: All covariates excluding the health variables are logged. Hospitals and ICU beds are transformed using an 
inverse hyperbolic sine function. A negative binomial (NB) model is used for estimation. Variable descriptions can 
be found in Table 1 notes. Bootstrapped standard errors in parentheses. * prob<0.10 ** prob<0.05 *** prob<0.01.  
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Figure 1: COVID-19 cases across counties plotted against performance in social distancing 
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Note: The figures provide nonparametric regression functions, giving the conditional mean at each point, based on a 
locally smothered scatter plot. Each point on the x-axis corresponds to Unacast’s social distancing grade, ranging 
from F (x = 1) to A (x = 12). 
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APPENDIX  
 
 
Table A1: Correlation coefficients between socio-economic variables  
 

  Density Median income 
Share 65  
and older Poverty rate 

     
Median income 0.376***    
Share 65 and older -0.416*** -0.276***   
Poverty rate -0.176*** -0.888*** 0.027  
Share Black American 0.414*** -0.167*** -0.296*** 0.356*** 

Note: Data are at the county level. The table shows the correlation coefficients and p-values for the socio-economic 
variables included in our model. Variable descriptions can be found in Table 1 notes. * prob<0.10 ** prob<0.05 *** 
prob<0.01. 
 
Table A2: COVID-19 cases, deaths and testing by US States  
 

  
Total 
cases 

Cases per 
100,000 

Total 
deaths 

Deaths per 
100,000 

Excess 
deaths Total tests 

Tests per 
100,000 

Alabama 28206 577.06 810 16.57 389 322534 6598.66 
Alaska 793 107.53 10 1.36 56 81185 11009.06 
Arizona 43731 609.78 1287 17.95 1016 379732 5294.91 
Arkansas 13493 447.70 208 6.90 241 228434 7579.54 
California 167135 422.52 5359 13.55 2487 3074530 7772.40 
Colorado 29886 524.72 1638 28.76 626 262216 4603.86 
Connecticut 45170 1264.32 4226 118.29 397 372585 10428.77 
Delaware 10485 1084.09 431 44.56 158 88684 9169.42 
District of  
Columbia 9903 1409.77 527 75.02 285 72199 10278.10 
Florida 85808 402.87 3060 14.37 1191 1512769 7102.43 
Georgia 56893 540.84 2564 24.37 996 663204 6304.54 
Hawaii 750 52.80 17 1.20 54 64374 4532.09 
Idaho 3744 213.43 90 5.13 127 68012 3877.08 
Illinois 135220 1061.29 6556 51.46 2868 1284693 10083.08 
Indiana 42480 634.80 2491 37.22 614 384722 5749.09 
Iowa 24951 790.55 680 21.55 141 240931 7633.71 
Kansas 11886 408.24 252 8.66 124 142124 4881.46 
Kentucky 13391 299.68 540 12.08 252 306380 6856.59 
Louisiana 48176 1033.83 2950 63.31 942 545221 11700.08 
Maine 2876 214.88 102 7.62 114 74060 5533.46 
Maryland 63839 1056.46 2990 49.48 1298 447608 7407.40 
Massachusetts 106114 1537.41 7759 112.41 1144 741260 10739.55 
Michigan 66825 668.52 6062 60.64 2920 850186 8505.33 
Minnesota 31617 563.46 1343 23.93 247 460879 8213.59 
Mississippi 20641 691.14 938 31.41 758 238715 7993.06 
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Missouri 15657 255.56 933 15.23 523 297342 4853.41 
Montana 655 61.66 20 1.88 130 66870 6294.80 
ND 3193 420.09 75 9.87 97 90654 11926.95 
Nebraska 17376 900.65 244 12.65 82 144813 7506.11 
Nevada 12164 400.87 475 15.65 114 230796 7606.01 
New Hampshire 5449 401.71 331 24.40 222 101984 7518.41 
New Jersey 167424 1879.37 12800 143.68 4289 1171734 13152.96 
New Mexico 10153 484.53 456 21.76 137 275897 13166.62 
New York 174523 893.06 9094 46.54 3034 3179660 16270.73 
North Carolina 48426 466.37 1209 11.64 269 693678 6680.50 
Ohio 43122 368.90 2633 22.52 860 600024 5133.04 
Oklahoma 9354 237.23 366 9.28 168 269553 6836.10 
Oregon 6373 152.07 187 4.46 309 189136 4513.22 
Pennsylvania 84780 661.98 6417 50.11 5092 624068 4872.84 
Rhode Island 14524 1373.67 797 75.38 126 211593 20012.29 
South Carolina 21548 423.83 621 12.21 781 280523 5517.62 
South Dakota 6109 692.45 78 8.84 72 70353 7974.41 
Tennessee 32604 481.59 504 7.44 413 652394 9636.53 
Texas 102677 357.74 2137 7.45 2735 1407741 4904.71 
Utah 16015 506.63 143 4.52 201 282685 8942.60 
Vermont 1130 180.43 56 8.94 301 54745 8741.03 
Virginia 56180 659.57 1585 18.61 903 502327 5897.46 
Washington 28663 380.37 1246 16.53 78 470043 6237.64 
West Virginia 2418 133.90 88 4.87 253 144429 7997.92 
Wisconsin 24043 413.57 719 12.37 530 457963 7877.49 
Wyoming 1144 198.01 18 3.12 111 36154 6257.87 
Total 70677.92 739.44 3272.07 43.50 1184.08 1071765.00 8788.26 

 Note: Data on cases and deaths come from the CDC. Cases and deaths are as of 18th of June 2020 and are at the 
county level. Excess deaths are at the state level and exclude Covid-19 cases. Estimates are from the CDC and are 
the upper bound of the 95% confidence interval from 23rd of May 2020. Total tests are from the COVID-19 
Tracking Project and are at the state level. Testing data is up to 18th of June 2020.   
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Table A3: Social distancing regression results using Google Mobility data 
 

  
Retail, grocery 
 and recreation Transit stations Workplaces Residential 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Density -0.94*** -1.36*** -3.88*** -5.86*** -1.54*** -1.59*** 0.80*** 0.81*** 

 (0.34) (0.43) (0.76) (1.01) (0.11) (0.15) (0.07) (0.08) 
Population 0.34 1.98** 1.04 5.97*** 0.92*** 1.29*** -0.49*** -0.63*** 

 (0.70) (0.86) (1.51) (1.99) (0.23) (0.30) (0.15) (0.17) 

Days since first 
case 

0.78 0.08 10.60*** 10.49*** -0.01 0.15 -0.83 0.26 
(2.52) (2.39) (2.02) (1.97) (0.21) (0.20) (0.73) (0.65) 

Median h’hold 
income 

-30.24*** -18.31*** -56.48*** -41.15*** -21.85*** -19.17*** 12.81*** 10.80*** 
(3.33) (3.48) (7.02) (8.03) (1.14) (1.21) (0.66) (0.65) 

Share 65 and 
older 

9.16*** 16.61*** 4.73 15.02*** 6.16*** 7.95*** -2.31*** -4.02*** 
(1.46) (1.57) (3.29) (3.92) (0.49) (0.53) (0.29) (0.30) 

Gini index -35.59*** -39.97*** -59.60*** -57.49*** -11.33*** -12.35*** 7.07*** 8.46*** 

 (5.33) (5.19) (11.54) (11.90) (1.62) (1.59) (1.12) (1.03) 
Poverty rate -12.83*** -5.94*** -23.15*** -14.58*** -6.98*** -5.27*** 2.80*** 2.01*** 

 (2.11) (2.15) (4.61) (5.16) (0.72) (0.73) (0.42) (0.40) 

Share of Black 
Americans 

-1.42*** -1.03** 0.97 1.04 0.61*** 0.28** 0.19*** -0.20** 
(0.35) (0.44) (0.80) (1.04) (0.11) (0.14) (0.07) (0.08) 

Constant 323.89*** 143.49*** 620.46*** 382.57*** 215.26*** 173.41*** -132.14*** -105.10*** 

 (43.71) (45.91) (93.92) (108.53) (14.79) (15.54) (8.63) (8.67) 
State fixed 
effects No Yes No Yes No Yes No Yes 
R2 0.299 0.439 0.387 0.481 0.596 0.657 0.717 0.806 
N 1689 1689 982 982 2725 2725 1372 1372 

Notes: Data for US counties. The dependent variable comes from Google’s COVID-19 Mobility Reports and is of 
18th of June 2020. Given that the data are changes from the baseline, a larger negative number indicates more social 
distancing. 
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Table A4: Additional regressions for social distancing and reported COVID-19 cases  
 

  Social Distance Grade COVID-19 Cases 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Density -1.10*** -0.92*** -1.02*** -0.92*** 0.12*** 0.08*** 0.02 0.04* 0.10*** 

 (0.06) (0.06) (0.05) (0.06) (0.02) (0.02) (0.02) (0.02) (0.02) 

Population -0.09 -0.42*** -0.39*** -0.66*** 0.64*** 0.73*** 0.84*** 0.82*** 0.71*** 

 (0.11) (0.11) (0.10) (0.11) (0.04) (0.05) (0.04) (0.04) (0.05) 

Days since first case 0.07 0.06 0.10* 0.09 0.82*** 0.82*** 0.82*** 0.81*** 0.83*** 

 (0.06) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.04) (0.04) 
Median household 
income 4.27*** 3.55*** 3.04*** 4.04*** -0.01 0.23 0.21 0.42** 0.38* 

 (0.52) (0.51) (0.51) (0.52) (0.20) (0.21) (0.20) (0.20) (0.20) 

Share 65 and older 1.42*** 1.61*** 1.11*** 1.43*** -0.86*** -1.12*** -1.26*** -1.22*** -1.10*** 

 (0.21) (0.21) (0.21) (0.21) (0.09) (0.09) (0.08) (0.08) (0.08) 

Poverty rate 2.46*** 2.05*** 2.02*** 3.06*** -0.02 -0.04 0.03 0.14 0.23** 

 (0.30) (0.30) (0.30) (0.31) (0.11) (0.12) (0.12) (0.12) (0.12) 
Share of Black 
Americans -0.23*** -0.53*** -0.30*** 0.13*** 0.37*** 0.23*** 0.36*** 0.36*** 0.45*** 

 (0.04) (0.08) (0.04) (0.05) (0.02) (0.03) (0.02) (0.02) (0.02) 

Share Hispanic  -0.17***    0.30***     

 (0.04)    (0.02)     
Share non-white  0.40***    0.21***    

  (0.09)    (0.04)    
Republican governor   -1.09***     -0.04  

   (0.10)     (0.04)  
Temperature March    -0.10***     -0.05*** 

    (0.02)     (0.01) 

Temperature April    0.08**     0.02 

    (0.03)     (0.01) 

Temperature May    -0.06***     0.04*** 

    (0.02)     (0.01) 

Total tests per 100,000       0.39***   

       (0.06)   
Constant     -4.37* -7.58*** -10.61*** -9.78*** -10.60*** 

     (2.46) (2.54) (2.49) (2.54) (2.50) 

Shape parameter     -0.20*** -0.13*** -0.13*** -0.12*** -0.15*** 

     (0.02) (0.02) (0.02) (0.02) (0.02) 

N 3054 3054 3054 3048 3141 3141 3141 3141 3135 
Notes: Data for US counties. Ordered logistic for social distancing; negative binomial used for cases. Republican governor is an indicator equal to 
one if the state has a Republican governor. Temperature is the average temperature for the month listed and is drawn from the National Oceanic 
and Atmospheric Administration (NOOA). All covariates excluding the republican governor indicator and the temperature variables are logged. 
See main text and Tables for further details.  
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Table A5: Regressions for reported COVID-19 cases using the New York Times data 

  (1) (2) (3) (4) (5) (6) (7) 
Density 0.17*** 0.17*** 0.18*** 0.16*** 0.17*** 0.01 -0.02 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 
Population 0.67*** 0.71*** 0.64*** 0.63*** 0.60*** 0.85*** 0.90*** 

 (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.05) 

Days since first 
case 

1.23*** 1.19*** 1.15*** 1.15*** 1.15*** 1.06*** 0.97*** 
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 

Median h’hold 
income 

 -0.52*** -0.63*** -0.35*** 0.73*** 0.37* 0.18 

 (0.08) (0.08) (0.10) (0.21) (0.21) (0.21) 

Share 65 and 
older 

  -1.51*** -1.57*** -1.36*** -1.22*** -1.36*** 

  (0.08) (0.08) (0.09) (0.09) (0.09) 
Gini index    1.51*** 0.85*** 0.07 0.06 

    (0.27) (0.29) (0.28) (0.27) 
Poverty rate     0.73*** 0.07 0.17 

     (0.13) (0.13) (0.13) 

Share of Black 
Americans 

     0.36*** 0.40*** 

     (0.02) (0.03) 
Constant -9.98*** -4.70*** 1.67* 0.42 -14.27*** -10.03*** -7.44*** 

 (0.26) (0.86) (0.92) (0.96) (2.73) (2.65) (2.74) 
Shape parameter 0.08*** 0.07*** -0.02 -0.03 -0.03 -0.11*** -0.31*** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
State fixed effects No No No No No No Yes 
N 3142 3141 3141 3128 3128 3128 3128 

Note: Data for US counties. Negative binomial used for estimation. All covariates are logged. The dependent 
variable is cases as reported by the New York Times as of 18 June 2020, available through their GitHub repository. 
Variable descriptions can be found in Table 1 notes. Standard errors in parentheses. * p<0.10 ** p<0.05 *** p<0.01.  
 

  

https://github.com/nytimes/covid-19-data
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Table A6: Interaction effects with time since the first infection using cases data from the 
New York Times  

  (1) (2) (3) (4) (5) (6) 
Density 0.17*** 0.17*** 0.16*** 0.17*** 0.01 -0.02 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 
Population 0.71*** 0.64*** 0.62*** 0.59*** 0.82*** 0.87*** 

 (0.04) (0.04) (0.04) (0.05) (0.04) (0.05) 
Days since first case 0.79 0.02 -0.12 -18.15*** -13.64** -12.60** 

 (2.55) (2.68) (2.57) (5.56) (5.60) (5.21) 
Median household income -0.68 -1.38 -2.04** -6.39*** -4.54** -4.57*** 

 (1.05) (1.04) (1.03) (1.81) (1.88) (1.75) 
Median income # days  0.04 0.17 0.38 1.62*** 1.10*** 1.06*** 

 (0.24) (0.24) (0.23) (0.41) (0.43) (0.40) 
Share 65 and older  -0.55 -0.41 -1.75** -2.56*** -2.72*** 

  (0.77) (0.72) (0.86) (0.85) (0.80) 
Share 65 and older # days   -0.22 -0.27 0.09 0.30 0.30 

  (0.18) (0.17) (0.20) (0.19) (0.18) 
Gini index   -8.89*** -4.26* -0.45 -2.18 

   (1.94) (2.36) (2.30) (2.14) 
Gini index # days    2.37*** 1.16** 0.10 0.50 

   (0.44) (0.54) (0.53) (0.49) 
Poverty rate     -3.55*** -2.78** -2.20** 

    (1.13) (1.14) (1.08) 
Poverty rate # days     0.98*** 0.65** 0.53** 

    (0.26) (0.26) (0.25) 
Share of Black Americans     -1.04*** -0.91*** 

     (0.29) (0.27) 
Share of Black Americans # days      0.32*** 0.30*** 

     (0.06) (0.06) 
Constant -2.93 6.80 6.46 70.92*** 55.38** 53.62** 

 (11.32) (11.90) (11.45) (24.44) (24.64) (22.91) 
Shape parameter  0.07*** -0.02 -0.03 -0.05* -0.13*** -0.33*** 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 
State fixed effects No No No No No Yes 
N 3141 3141 3141 3128 3128 3128 

Note: Data for US counties. Negative binomial used for estimation. All covariates are logged. The dependent 
variable is cases as reported by the New York Times as of 18 June 2020, available through their GitHub repository. 
Variable descriptions can be found in Table 1 notes. The symbol # represents an interaction term. Standard errors in 
parentheses. * p<0.10 ** p<0.05 *** p<0.01.  
 

 

  

https://github.com/nytimes/covid-19-data
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Table A7: Reduced form regressions for COVID-19 deaths  
 

  (1) (2) (3) (4) (5) (6) (7) 
Density 0.36*** 0.42*** 0.43*** 0.40*** 0.41*** 0.23*** 0.14*** 

 (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 
Population 0.39*** 0.36*** 0.34*** 0.33*** 0.29*** 0.59*** 0.73*** 

 (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.08) 
Days 3.26*** 3.31*** 3.29*** 3.12*** 3.08*** 2.50*** 2.27*** 

 (0.26) (0.26) (0.26) (0.26) (0.26) (0.25) (0.24) 
Hospitals per 100,000 0.16* 0.12 0.11 0.03 0.05 0.08 -0.06 

 (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) 
ICU beds per 1,000 -0.43*** -0.70*** -0.70*** -0.74*** -0.68*** -0.67*** -0.51*** 

 (0.16) (0.17) (0.17) (0.17) (0.16) (0.16) (0.15) 

Proportion with 
diabetes 

0.07*** 0.04*** 0.04*** 0.04*** 0.03*** 0.01 0.00 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Proportion diabetic 
with high BP  

-0.00 -0.01 -0.01 -0.02 -0.01 -0.07***  
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)  

Proportion with asthma -0.01 0.00 0.01 0.03 0.04 0.15***  
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)  
Proportion with COPD -0.02 -0.04 -0.05 -0.04 -0.04 0.01  
 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)  
Median household 
income 

 -0.97*** -1.00*** -0.56*** 0.91*** 0.18 0.10 

 (0.16) (0.16) (0.18) (0.35) (0.34) (0.33) 
Share 65 and older   -0.23 -0.31** -0.02 0.11 0.01 

   (0.15) (0.15) (0.16) (0.15) (0.15) 
Gini index    2.47*** 1.45*** 0.15 0.48 

    (0.44) (0.48) (0.48) (0.46) 
Poverty rate     0.99*** 0.24 0.33* 

     (0.20) (0.20) (0.20) 

Share of Black 
Americans 

     0.47*** 0.39*** 

     (0.04) (0.04) 
Constant -22.47*** -11.88*** -10.79*** -11.83*** -31.79*** -19.39*** -20.68*** 

 (1.20) (2.09) (2.21) (2.23) (4.62) (4.58) (4.29) 
Shape parameter 0.59*** 0.57*** 0.57*** 0.56*** 0.54*** 0.46*** 0.18*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) 
N 3141 3141 3141 3128 3128 3128 3128 

Note: All covariates excluding the health variables are logged. Hospitals and ICU beds are transformed using an 
inverse hyperbolic sine function. A negative binomial (NB) model is used for estimation. Variable descriptions can 
be found in Table 1 notes. Standard errors in parentheses. * p<0.10 ** p<0.05 *** p<0.01.  
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Figure A1: Density functions for COVID-19 cases across US counties  
 

  

  
Note: Data on cases and deaths is from the CDC. Cases and deaths are cumulative until 18th of June 2020. Given 
that some counties have zero cases and deaths, the log variables in the second row have been calculated by adding 
one and then applying a log transformation.  
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Figure A2: COVID-19 testing and excess deaths across states 
 

  

  
Note: Data is at the state level. Testing totals are from the COVID-19 Tracking Project and are cumulative until the 
18th of June 2020. Fitted state fixed effects are estimated for the regression model with cases as the dependent 
variable with the full set of socio-economic variables and state fixed effects (with no constant terms), as in Column 
6 in Table 2. The t-statistics for the fitted lines are 0.5 for the poverty rate (log), 1.11 for median income (log), 0.25 
for state fixed effects on COVID-19 tests, and 1.83 for state fixed effects on excess deaths (+1, log).  
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