
NBER WORKING PAPER SERIES

POLICY EVALUATION WITH MULTIPLE INSTRUMENTAL VARIABLES

Magne Mogstad
Alexander Torgovitsky
Christopher R. Walters

Working Paper 27546
http://www.nber.org/papers/w27546

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2020

We thank Vishal Kamat and Ed Vytlacil for helpful comments. The views expressed herein are 
those of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official 
NBER publications.

© 2020 by Magne Mogstad, Alexander Torgovitsky, and Christopher R. Walters. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided 
that full credit, including © notice, is given to the source.



Policy Evaluation with Multiple Instrumental Variables
Magne Mogstad, Alexander Torgovitsky, and Christopher R. Walters
NBER Working Paper No. 27546
July 2020
JEL No. C01,C1,C26,C31

ABSTRACT

Marginal treatment effect methods are widely used for causal inference and policy evaluation 
with instrumental variables. However, they fundamentally rely on the well-known monotonicity 
(threshold-crossing) condition on treatment choice behavior. Recent research has shown that this 
condition cannot hold with multiple instruments unless treatment choice is effectively 
homogeneous. Based on these findings, we develop a new marginal treatment effect framework 
under a weaker, partial monotonicity condition. The partial monotonicity condition is implied by 
standard choice theory and allows for rich heterogeneity even in the presence of multiple 
instruments. The new framework can be viewed as having multiple different choice models for 
the same observed treatment variable, all of which must be consistent with the data and with each 
other. Using this framework, we develop a methodology for partial identification of clearly 
stated, policy-relevant target parameters while allowing for a wide variety of nonparametric shape 
restrictions and parametric functional form assumptions. We show how the methodology can be 
used to combine multiple instruments together to yield more informative empirical conclusions 
than one would obtain by using each instrument separately. The methodology provides a 
blueprint for extracting and aggregating information about treatment effects from multiple 
controlled or natural experiments while still allowing for rich heterogeneity in both treatment 
effects and choice behavior.

Magne Mogstad
Department of Economics
University of Chicago
1126 East 59th Street
Chicago, IL 60637
and NBER
magne.mogstad@gmail.com

Alexander Torgovitsky
University of Chicago
1126 E. 59th Street
Chicago, IL, 60637
atorgovitsky@gmail.com

Christopher R. Walters
Department of Economics
University of California, Berkeley
530 Evans Hall #3880
Berkeley, CA 94720-3880
and NBER
crwalters@econ.berkeley.edu



1 Introduction

Heckman and Vytlacil (1999) introduced the marginal treatment effect (MTE) as a

unifying concept for program and policy evaluation.1 Since then, MTE methods have

become a fundamental tool for empirical work, and have been applied in a variety of

different settings including the returns to schooling (Moffitt, 2008; Carneiro, Heckman,

and Vytlacil, 2011; Carneiro, Lokshin, and Umapathi, 2016; Nybom, 2017) and its

impacts on wage inequality (Carneiro and Lee, 2009), discrimination (Arnold, Dobbie,

and Yang, 2018; Arnold, Dobbie, and Hull, 2020), the effects of foster care (Doyle Jr.,

2007), the impacts of welfare (Moffitt, 2019) and disability insurance (Maestas, Mullen,

and Strand, 2013; French and Song, 2014; Autor, Kostøl, Mogstad, and Setzler, 2019)

programs on labor supply, the performance of charter schools (Walters, 2018), health

care (Kowalski, 2018; Depalo, 2020), the effects of early childhood programs (Kline and

Walters, 2016; Cornelissen, Dustmann, Raute, and Schönberg, 2018; Felfe and Lalive,

2018), the efficacy of preventative health products (Mogstad, Santos, and Torgovitsky,

2017), the quantity–quality theory of fertility (Brinch, Mogstad, and Wiswall, 2017),

and the effects of incarceration (Bhuller, Dahl, Løken, and Mogstad, 2020), among

many others. Mogstad and Torgovitsky (2018) provide a recent review of the MTE

methodology and its connection to other instrumental variable (IV) approaches.

A key assumption underlying the MTE methodology is that shifts in the instru-

ment have a uniform effect on the treatment choices of all individuals. This is the

well-known “monotonicity” condition introduced by Imbens and Angrist (1994), which

Vytlacil (2002) showed is equivalent to the type of separable threshold-crossing selec-

tion equation that had been extensively used in prior econometric work (e.g. Heckman,

1974, 1976, 1979). Heckman and Vytlacil (2005) and Heckman, Urzua, and Vytlacil

(2006) observed that the content of the monotonicity condition makes it more appro-

priately described as a uniformity condition, since it restricts unobserved heterogeneity

in how treatment choice can respond to the instruments.

Building on their intuition, we showed elsewhere (Mogstad, Torgovitsky, and Wal-

ters, 2020) that the Imbens-Angrist monotonicity (IAM) condition cannot hold when

there are multiple distinct instruments unless there is no unobserved heterogeneity in

treatment choice behavior. Yet, as we also documented in that paper, empirical re-

searchers frequently combine multiple distinct instruments together using the two-stage

1 Heckman and Vytlacil (1999) initially referred to the MTE as the local instrumental variable (LIV)
before later drawing a distinction between the MTE, as an unobservable parameter, and the LIV as an
estimand that can potentially identify the MTE (Heckman and Vytlacil, 2001c,a). The ideas behind the
MTE also appear in earlier work by Björklund and Moffitt (1987), Heckman (1997), and Heckman and Smith
(1998).

1



least squares estimator, presumably motivated by the efficiency and overidentification

that arises in the classical linear IV model under homogeneous treatment effects. These

estimators do not necessarily answer a well–posed counterfactual even when IAM is

satisfied. When it is not satisfied, as with multiple instruments, they can even apply

negative weights to some complier groups (Mogstad et al., 2020). MTE methods can

be used to conduct inference on specific parameters that answer clear counterfactuals,

but again, the MTE methodology is premised on IAM, which generically does not hold

with multiple instruments.

In this paper, we provide a solution to this problem by developing the MTE method-

ology under a strictly weaker, partial version of the IAM condition called partial mono-

tonicity (PM). The PM condition for multiple instruments is that IAM is satisfied for

each instrument separately, holding all of the other instruments fixed. The condition

is satisfied if each instrument by itself makes every individual weakly more likely to

choose treatment. While PM restricts the sign of the effects of each instrument on

treatment choices, it still allows for rich heterogeneity in the relative magnitudes of

these effects. This contrasts with IAM, which requires homogeneity in the relative

impact (Mogstad et al., 2020).

We show that PM with multiple instruments gives rise to multiple threshold-

crossing selection equations, one for each instrument. Each selection equation is sepa-

rable in a single scalar unobservable that is derived from the marginal potential choices

induced by a single instrument. This unobservable is independent of the instrument

from which it was derived after conditioning on all of the other instruments as control

variables. This sets up a complex and unique structure that can be viewed as having

multiple different models for the same observed treatment variable, all of which must

be consistent with the data and with each other if the model is correctly specified.

We exploit this structure by expanding the framework of Mogstad, Santos, and

Torgovitsky (2018). The flexibility of this framework allows us to incorporate multiple

different selection equations by including additional constraints that ensure they are all

consistent with one another. We call these constraints logical consistency, since they

enforce the requirement that the multiple models of treatment choice do not contradict

each other on the collection of unobserved instrument–invariant parameters for which

they all predict values. As we show through analytic examples and a numerical simu-

lation, the logical consistency condition allows information from different instruments

to be aggregated even while allowing for rich unobserved heterogeneity in both choices

and treatment effects. This provides a blueprint for thinking about how to combine

exogenous variation from multiple controlled or natural experiments.

Other authors have considered modified MTE frameworks for settings in which the
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IAM condition is unattractive. Carneiro, Hansen, and Heckman (2003), Heckman et al.

(2006), Heckman and Vytlacil (2007b) and Cunha, Heckman, and Navarro (2007) con-

sidered multivalued ordered treatments. Heckman et al. (2006), Heckman, Urzua, and

Vytlacil (2008), Kline and Walters (2016), Heckman and Pinto (2018), Lee and Salanié

(2018) and Mountjoy (2019) analyzed settings with a discrete, unordered treatment.

Lee and Salanié (2018) also considered a double hurdle model for a binary treatment,

which ends up being somewhat related to the multiple selection equations that arise un-

der PM. Gautier and Hoderlein (2015) and Gautier (2020) consider threshold-crossing

selection equations with a random coefficient structure.

The organization of the paper is as follows. In Section 2 we introduce the model,

discuss the differences between IAM and PM, and show how PM leads to multiple

selection equations. In Section 3, we develop the MTE methodology under PM with a

particular emphasis on the concept of logical consistency that arises as a consequence

of the multiple selection equations. In Section 4, we provide analytic and numerical

examples to provide further intuition as to how logical consistency works to aggregate

information across different instruments. Section 5 contains some brief concluding

remarks.

2 Model

2.1 Potential Outcomes and Treatments

For each individual we observe an outcome Y , their binary treatment status, D ∈ {0, 1},
an L–vector of instruments, Z with support Z ⊆ RL, and a vector of covariates, X.

To keep the notation more concise, we will suppress X throughout the paper, but all

assumptions and results can be understood to hold conditional–on–X.

For each d ∈ {0, 1} and z ∈ supp(Z) ≡ Z, let Y (d, z) denote an individual’s latent

potential outcome that they would have realized had their treatment and instrument

been externally set to d and z. Similarly, for each z ∈ Z, let D(z) denote their

latent potential treatment choice if the instrument were z. The observed and potential

outcomes and treatments are related through

Y =
∑

d∈{0,1}

∑
z∈Z

1[D = d, Z = z]Y (d, z) and D =
∑
z∈Z

1[Z = z]D(z), (1)

where 1[·] is the indicator function that is 1 if · is true and 0 otherwise.

We maintain the following standard conditions throughout the paper:

Assumptions E.
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E.1 Y (d, z) = Y (d, z′) ≡ Y (d) for all d ∈ {0, 1} and z, z′ ∈ Z.

E.2 E [Y (d)|Z, {D(z)}z∈Z ] = E [Y (d)|{D(z)}z∈Z ] and E[Y (d)2] <∞ for d ∈ {0, 1}.
E.3 {D(z)}z∈Z ⊥⊥Z, where ⊥⊥ denotes statistical independence.

Assumption E.1 is the traditional exclusion restriction that the instruments have no

direct causal effect on outcomes. Given this assumption, we can write the first part of

(1) more simply as

Y = DY (1) + (1−D)Y (0). (2)

Assumptions E.2 and E.3 are exogeneity conditions on the instruments. These are

usually stated together as one stronger condition: (Y (0), Y (1), {D(z)}z∈Z ⊥⊥Z, see e.g.

Imbens and Angrist (1994, Condition 1) or Vytlacil (2002, L-1(i)). We have weakened

full independence to mean independence because our methodological framework will

focus on quantities that can be expressed as a mean effect of D on Y . This is common

in the MTE literature, see e.g. Heckman and Vytlacil (2007b) or Mogstad et al. (2018).

The moment condition in Assumption E.2 merely serves to ensure the existence of the

relevant conditional means.

2.2 The Imbens-Angrist Monotonicity Condition

Imbens and Angrist (1994, “IA”) introduced the following assumption about the po-

tential treatment states. They described it as “monotonicity.”

Assumption IAM. (IA Monotonicity) For all z, z′ ∈ Z either D(z) ≥ D(z′)

almost surely, or else D(z) ≤ D(z′) almost surely.

Assumption IAM requires a shift from one instrument value z to another value z′ to

either act as an incentive to take treatment for all individuals, or as a disincentive for

all individuals. It does not allow some individuals to respond positively and others

negatively. There is no presumption in Assumption IAM that Z is a scalar as opposed

to a vector, or indeed, some more exotic random object. The possibility that Z is a

vector was explicitly entertained by Imbens and Angrist (1994, pg. 470).

Vytlacil (2002) showed that Assumptions E.2, E.3 and IAM together were equiva-

lent to assuming that D(z) obeys a threshold-crossing model

D(z) = 1[V ≤ η(z)], (3)

for some unknown function η and some continuously distributed unobservable V such

that E[Y (d)|Z, V ] = E[Y (d)|V ] and V ⊥⊥Z. Intuitively, the potential choices {D(z)}z∈Z
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can be viewed as discretizations of some underlying latent proneness to take treatment,

V . Individuals with smaller values of V are more likely to take treatment, while those

with larger values of V are less likely. As Vytlacil (2002) discusses, this one-dimensional

ordering by V is a different—but equivalent—way of viewing Assumption IAM. The

primary benefit is in providing a tidy, unidimensional measure of unobserved hetero-

geneity.

It is important to emphasize, however, that the interpretation of V is inextricable

from the definition of the instrument, Z. Indeed, Vytlacil’s (2002) equivalence argu-

ment constructs V directly from the potential choices, {D(z)}z∈Z . Different instru-

ments thus yield different unobservables, V . Intuitively, an individual who responds to

one instrument may not respond to another. If so, their V for one instrument would

be different than their V for another instrument. This distinction becomes especially

salient when the instrument vector Z is comprised of multiple different economic vari-

ables.

Selection equations like (3) have long been used in econometrics, typically with

additional parametric assumptions on η and/or the distribution of V (e.g. Heckman,

1974, 1976; Heckman, Tobias, and Vytlacil, 2001). Vytlacil’s (2002) result shows that

these traditional econometric models can be viewed as parameterized special cases of

the potential outcomes model with Assumptions E and IAM. This observation forms

the cornerstone of the MTE literature. It implies that the potential outcomes model

under Assumptions E and IAM—the standard model of many authors since Imbens

and Angrist (1994)—can be simply viewed as a nonparametric descendent of a lineage

of fully parametric selection models. Choosing to analyze or implement these models

nonparametrically or parametrically is a research decision that comes with an attendant

trade-off between the strength of the assumptions and the strength of the conclusions.

These two poles and a broad range of research decisions in between can be unified

using the MTE (Mogstad and Torgovitsky, 2018).

2.3 Implications of IAM with Multiple Instruments

In Mogstad et al. (2020), we showed that Assumption IAM/(3) is an extremely strong

condition if Z is a vector comprising multiple distinct economic variables. It effectively

rules out any heterogeneity in treatment choice behavior. Our results amplify the obser-

vation by Heckman and Vytlacil (2005, pp. 715-716) that Assumption IAM requires

uniformity across individuals, not monotonicity in the instrument. The assumption

that all individuals respond in a uniform direction can be a reasonable assumption if

the instrument is something like a price. However, it is a strong assumption if the
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instrument consists of multiple types of incentives or disincentives.

For example, suppose that D(z) ∈ {0, 1} is the decision to attend college, and that

z = (z1, z2), where z1 ∈ {0, 1} is a tuition subsidy and z2 ∈ {0, 1} is proximity to

college. These two instruments have been widely used in the empirical literature (e.g.

Kane and Rouse, 1993; Card, 1995). If Assumption IAM is satisfied, then it is not

possible that some individuals respond to tuition subsidies but not to distance, while

other individuals respond to distance but not to tuition subsidies. If this were the case,

then we would have

P[1 = D(1, 0) > D(0, 1) = 0︸ ︷︷ ︸
respond to tuition, not distance

] > 0 and P[1 = D(0, 1) > D(1, 0) = 0︸ ︷︷ ︸
respond to distance, not tuition

] > 0, (4)

which contradicts Assumption IAM, since it implies both

P[D(0, 1) ≥ D(1, 0)] < 1 and P[D(1, 0) ≥ D(0, 1)] < 1.

Alternatively, suppose that we start with a threshold-crossing model such as

D(z) = 1[B0 +B1z1 + z2 ≥ 0], (5)

where B0 and B1 are both unobservable random variables with (B0, B1)⊥⊥Z. If we

view the index in (5) as the net indirect utility from attending college, then B1 can be

interpreted as the marginal rate of substitution between tuition and proximity. This

model cannot generally be re-written in the form of (3) with a single unobservable V

unless Var(B1) = 0. That is, unless the marginal rate of substitution is homogeneous

across individuals.

Proceeding anyway with the assumption that there is no heterogeneity in selection

seems unpalatable. Unobserved heterogeneity is routinely found to be important in

empirical work (Heckman, 2001), and it is an emphasis of the modern literature on

causal inference (Imbens, 2014). Indeed, the very motivation for Assumption IAM was

to make sense of linear IV estimators in the presence of unobserved treatment effect

heterogeneity (Imbens and Angrist, 1994). Allowing for unrestricted heterogeneity in

outcomes but assuming away all heterogeneity in treatment choice behavior would be an

even more extreme form of what Heckman and Vytlacil (2005) called the “fundamental

asymmetry” in IV models that maintain Assumption IAM.
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2.4 Partial Monotonicity

To allow for heterogeneity in treatment choices, we replace Assumption IAM with a

weaker assumption called partial monotonicity (Mogstad et al., 2020).2 To state the

condition, we divide vectors z ∈ Z ⊆ RL into their `th component, z`, and all other

(L − 1) components, z−`. We write z = (z`, z−`) to emphasize the separation of the

`th component.

Assumption PM. (Partial Monotonicity) Take any ` = 1, . . . , L, and let (z`, z−`)

and (z′`, z−`) be any two points in Z. Then either D(z`, z−`) ≥ D(z′`, z−`) almost surely,

or else D(z`, z−`) ≤ D(z′`, z−`) almost surely.

It is immediate that Assumption IAM implies Assumption PM, and that the two

assumptions are equivalent when there is only a single instrument (L = 1). When

L > 1, Assumption PM is strictly weaker than Assumption IAM; see Mogstad et al.

(2020) for more detail. A simple sufficient condition for Assumption PM is that D(z) is

an increasing function of z with respect to the usual vector partial order on Z (Mogstad

et al., 2020). Such a condition still allows for unobserved heterogeneity in the responses

to these incentives, unlike Assumption IAM.

For example, with the two binary college attendance instruments, Assumption PM

is satisfied if all individuals are more likely to attend college when it is closer and/or

subsidized. That is, if

D(1, z2) ≥ D(0, z2) for z2 = 0, 1 and D(z1, 1) ≥ D(z1, 0) for z1 = 0, 1.

This does not involve a comparison between D(0, 1) and D(1, 0), and thus allows for

(4), so that some individuals may respond to distance but not to subsidies, and vice-

versa. In terms of the random coefficient threshold-crossing model (5), Assumption PM

allows for Var(B1) > 0, as long as B1 is non-negative (or non-positive) with probability

1. Using the net utility interpretation of this equation, Assumption PM allows for

unobserved heterogeneity in the magnitude of the marginal rate of substitution, just

not in the sign.

2 Mountjoy (2019) used a similar assumption in a setting with multiple unordered treatments.
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2.5 Selection Equations under PM

Assumption PM can be used to derive selection equations similar to (3). Consider first

the marginal potential treatments, defined for each ` as

D`(z`) ≡
∑

z−`∈Z−`

1[Z−` = z−`]D(z`, z−`) ≡ D(z`, Z−`), (6)

where Z` denotes the support of Z` ∈ R, and Z−` denotes the support of Z−` ∈ RL−1.

For example, if there are two binary instruments, so that Z = {0, 1}2, then there are

two sets of marginal potential treatments, and (6) can be written for ` = 1, 2 as

D1(z1) = Z2D(z1, 1) + (1− Z2)D(z1, 0)

and D2(z2) = Z1D(1, z2) + (1− Z1)D(0, z2). (7)

That is, D1(z1) is the treatment choice an individual would have made had Z1 been set

to z1 while Z2 remained at its observed realization, whereas D2(z2) is the treatment

choice they would have made if Z2 were set to z2 with Z1 unchanged.

Conditional on Z−`, each marginal potential treatment is equal to a single joint

potential treatment:

P[D`(z`) = D(z`, z−`)|Z−` = z−`] = 1. (8)

As a consequence, Assumption PM implies that each collection of marginal potential

treatments {D`(z`)}z`∈Z`
satisfies Assumption IAM conditional on any realization of

Z−`, since

P[D`(z`) ≥ D`(z
′
`)|Z−` = z−`] = P[D(z`, z−`) ≥ D(z′`, z−`)|Z−` = z−`] ∈ {0, 1} (9)

for any z`, z
′
` ∈ Z` and any z−` ∈ Z−`. With two binary instruments, this means that

either

P[D1(1) ≥ D1(0)|Z2 = z2] = 1 or P[D1(0) ≥ D1(1)|Z2 = z2] = 1

for both z2 ∈ {0, 1}, as well as the analogous condition with the roles of the two

instruments flipped.

Notice that Assumption E.3 does not imply that {D`(z`)}z`∈Z`
⊥⊥Z. That is, the

marginal potential treatments are not independent of the instrument. This is because

D`(z`) directly depends on Z−`, which is itself a subvector of Z; see (6) and the special
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case (7). However, Assumption E.3 does imply the weaker condition

{D`(z`)}z`∈Z`
⊥⊥Z`|Z−` for every ` = 1, . . . , L, (10)

so that each set of marginal potential treatments is independent of the single instrument

from which it was derived, conditional on the other instruments.

Combining (9) with (10) means that Vytlacil’s (2002) equivalence result can still be

applied to construct L different threshold-crossing equations of the form (3). Specifi-

cally, the result implies that for each ` = 1, . . . , L,

D`(z`) = 1 [V` ≤ η`(z`, Z−`)] , (11)

for some unknown function η` and some continuously distributed unobservable V` such

that V`⊥⊥Z`|Z−` and

E[Y (d)|Z, V`] = E[Y (d)|Z−`, V`] for d = 0, 1. (12)

This is the same as (3), but now there is one selection equation for each component Z` of

the L–dimensional vector of instruments, Z, and each selection equation is conditional

on a set of “controls” consisting of all other instruments, Z−`.

As in the usual analysis under Assumption IAM, we will normalize (8) so that

the distribution of the unobservable is uniform. This follows because the distribution

function of V` conditional on Z−`—call it F`—is strictly increasing on its support, so

that (11) can be written as

D`(z`) = 1 [F`(V`|Z−`) ≤ F`(η(z`, Z−`)|Z−`)] = 1[U` ≤ p(z`, Z−`)], (13)

where U` ≡ F`(V`|Z−`) is uniformly distributed over [0, 1] for each `, conditional on

any value of Z−`. The second equality here follows because

p(z`, Z−`) = P[D`(z`) = 1|Z` = z`, Z−`]

= P[V` ≤ η`(z`, Z−`)|Z−`] = F (η(z`, Z−`)|Z−`),

as a consequence of V` being independent of Z`, conditional on Z−`.

As in the standard threshold-crossing model, (3), U` can be interpreted as a latent

proneness to take the treatment, with smaller values corresponding to higher proneness.

However, now there is a different U` for each instrument, so that this proneness is

measured against the incentive (or disincentive) created by the `th instrument. This

9
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(a) Support of (U1, U2) given Z = (0, 1).
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p(0, 1)
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Unconditional support
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(b) Unconditional support of (U1, U2).

Figure 1: The joint support of (U1, U2) when L = 2 and Z = {0, 1}2. While both U1 and U2

have uniform marginal distributions over [0, 1] by construction, their joint support will be a proper
subset of the unit square conditional on Z. If Z has finite support, as in this example, then the
unconditional support of U will also be a proper subset of the unit square.

reflects the point raised earlier that the interpretation of the latent variable V` (or

U`) is derived from the instrument, and so cannot be interpreted in isolation from the

instrument. It is therefore possible for individuals to have a high value of U1 and a low

value of U2 or vice versa, since these variables measure proneness to take treatment

along different preference dimensions.

However, these possibilities have limits. This is because each selection model pro-

vides a different representation of the same observed treatment status through (13). As

a consequence, the components of (U1, . . . , UL) must be statistically dependent, even

though each of its marginal distributions are uniform. That is, its distribution—which

is a copula given the normalizations—cannot be the product copula. Not only that,

but (U1, . . . , UL) will also generally be dependent with the entire vector Z, since each

U` is only independent of Z` given Z−`, but is not generally independent of Z−`, as

observed in (6) and (7).

To visualize these properties, return to the case with two binary instruments and

consider the joint distribution of (U1, U2) conditional on Z = (z1, z2). In order for (13)

to hold for both ` = 1 and ` = 2, one must have that

P
[
1 [U1 ≤ p(z1, z2)] = 1 [U2 ≤ p(z1, z2)]

∣∣∣Z = (z1, z2)
]

= 1,

for any realization of (z1, z2). That is, either U1 and U2 are both smaller than p(z1, z2),

or else U1 and U2 are both larger than p(z1, z2). This region of support is depicted
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in Figure 1a. Taking the union of this set across all four values of (z1, z2) gives the

unconditional support of (U1, U2), which is depicted in Figure 1b. Two subsets of the

unit square necessarily have zero mass: It is not possible to have either U1 ≤ p(0, 0)

and U2 ≥ p(1, 1) together, nor U1 ≥ p(1, 1) and U2 ≤ p(0, 0). The reason is that under

(13), either pair of realizations would entail always choosing both D = 1 and D = 0

for any realization of Z.

Instead of deriving (13) from Assumption PM, one can also derive it directly from

a nonseparable threshold-crossing equation with multiple unobservables. For example,

suppose that L = 2 with potential outcomes determined by the random coefficients

specification of indirect utility in (5). From (5), the two pre-normalized selection

equations (11) can be derived as

D1(z1) = 1
[ ≡V1︷ ︸︸ ︷
−(B0 + Z2)

B1
≤
≡ η1(z)︷︸︸︷
z1

]
and D2(z2) = 1

[ ≡V2︷ ︸︸ ︷
−(B0 +B1Z1) ≤

≡ η2(z)︷︸︸︷
z2

]
.

Notice in particular that even though (B0, B1) is independent of (Z1, Z2), this will

not be the case for (V1, V2). Instead, V1 is dependent with Z2, and in general only

independent with Z1 after conditioning on Z2. Similarly, V2 is dependent with Z1

with independence between V2 and Z2 only guaranteed after conditioning on Z1. In

addition, V1 and V2 are clearly dependent, since they are both functions of B0 and B1.

If Var(B1) = 0, so that B1 = b1 is constant, then we can write

D1(z1) = 1 [−B0 ≤ b1z1 + Z2] and D2(z2) = 1 [−B0 ≤ b1Z1 + z2] ,

so that both equations could be rationalized by a single threshold-crossing equation

with a single unobservable,

D(z1, z2) = 1
[ ≡V︷︸︸︷
−B0 ≤

≡η(z1,z2)︷ ︸︸ ︷
b1z1 + z2

]
.

That is, (5) could be written in form (3), and Assumption IAM would be satisfied.

Without the assumption that Var(B1) = 0—that is, homogeneity in the marginal rate

of substitution—such a reformulation is not generally possible.

3 Methodology

In this section, we develop the MTE methodology under Assumption PM. We begin

in Section 3.1 by defining different instrument–specific MTEs as the fundamental unit
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of analysis in the model. In Section 3.2, we describe the class of target parameters

that we focus on. In Section 3.3, we review the identification analysis developed by

(Mogstad et al., 2018, “MST” hereafter), which showed how to flexibly move between

point and partial identification under Assumption IAM. In Section 3.4, we then adapt

this methodology to Assumption PM by using the concept of “logical consistency,”

which links together the various instrument–specific MTEs into a greater whole. In

Section 3.5 we discuss some implications for testing whether Assumptions IAM and

PM hold.

3.1 Marginal Treatment Response Functions

For each instrument, Z`, and its unobservable, U`, we define the marginal treatment

response (MTR) function

m`(d|u`, z−`) ≡ E [Y (d)|U` = u`, Z−` = z−`] for d = 0, 1. (14)

The MTR function describes variation in potential outcomes as a function of the

propensity to take treatment along the `th margin, U`, again conditioning on all other

instruments, Z−` = z−`. Each MTR function, m`, generates a marginal treatment

effect (MTE) function (Heckman and Vytlacil, 1999, 2001c, 2005, 2007a,b) formed as

m`(1|u`, z−`) −m`(0|u`, z−`). We let m ≡ (m1, . . . ,mL), and assume that m belongs

to a known parameter space M ⊆ M1 × · · · × ML that encodes prior information

(assumptions) that the researcher wants to impose about the MTR pairs.3

Each MTR and its corresponding MTE is defined in terms of a different margin of

selection, U`, which is itself defined by the `th instrument component. Since the MTRs

are instrument-specific, they are not directly comparable. However, a key point for our

discussion ahead is that each MTR still describes the entire population, just organized

along a different dimension of choice behavior. Thus, while the MTRs for different `

will typically be different, they cannot be arbitrarily different.

For example, consider again the case with two binary instruments. Figure 2a plots

m1(1|·, z2) assuming (for simplicity) that this function does not vary with z2, and so

can be represented by a single solid line. It also plots m2(1|·, z1) for both z1 = 0 and

z1 = 1. While m1 is not directly comparable to m2, both functions are a conditional

mean for the same random variable, Y (1). To be logically consistent then, it should

3 We assume throughout that each M` is contained in a vector space.
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Two MTRs that are logically consistent

m1(1|u1, 0) = m1(1|u1, 1)

m2(1|u2, 0)

m2(1|u2, 1)

(a) Both m1 and m2 imply the same value
of E[Y (1)]. These MTR pairs are logically
consistent.

0 0.2 0.4 0.6 0.8 1

u1 and u2

M
T
R

Two MTRs that are logically inconsistent

m1(1|u1, 0) = m1(1|u1, 1)

m2(1|u2, 0)

m2(1|u2, 1)

(b) The value of E[Y (1)] implied by m1

is different (smaller) from that implied by
m2. These MTR pairs are logically incon-
sistent.

Figure 2: MTRs along different margins of selection (different U`) are not directly comparable.
Nevertheless, they are not completely unrelated, since both MTRs provide a description of the entire
population.

be the case that

E [m1(1|U1, Z2)] = E[Y (1)] = E [m2(1|U2, Z1)] , (15)

so that both m1 and m2 generate the same mean for Y (1). In Figure 2a this is the

case, since the integrals of both dotted curves are the same as the integral of the solid

line.

In contrast, the m2 function in Figure 2b is not logically consistent with m1. The

areas under m2(1|·, 0) and m2(1|·, 1) are clearly greater than the area under m1(1|·, 0) =

m1(1|·, 1). It cannot be the case that both m1 and m2 are describing the conditional

mean of Y (1), since these two MTRs would imply different values of E[Y (1)] through

(15). In the following, we will develop a method that requires logical consistency, so

that pairs like those in Figure 2b are excluded from consideration. As we show later,

excluding such pairs allows information gained about one instrument’s MTR be used

to restrict the MTR of another instrument.
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3.2 The Target Parameter

We assume that the researcher has a well-posed empirical or policy question that can

be informed by a specific target parameter, β?. We require the target parameter to be

a linear function of the L MTR pairs, having the form

β?(m) =
L∑
`=1

β?` (m`) ≡
L∑
`=1

∑
d∈{0,1}

E

[∫ 1

0
m`(d|u`, Z−`)ω?` (d|u`, Z`, Z−`) du`

]
, (16)

where ω?` are weighting functions specified by the researcher. The weighting functions

are assumed to be known given knowledge of the joint distribution of (Y,D,Z). Heck-

man and Vytlacil (2005, 2007b), MST, and Mogstad and Torgovitsky (2018) provided

catalogues of weighting functions for common target parameters. When L = 1, (16)

reduces to the form used for the target parameter by MST.

When L > 1, there might be several ways to express the same target parameter.

For example, if β? is the population average treatment effect (ATE), E[Y (1)− Y (0)],

then one could take ω?` (1|u`, z) = 1 and ω?` (0|u`, z) = −1 for any `, while setting all

other weight functions to 0. This is another manifestation of the logical consistency

issue illustrated in Figure 2. When using multiple instruments, we will impose logical

consistency, so that the implied value of the ATE is the same for any `. Thus, as a

practical matter, any choice of ` will yield the same inference on an instrument-invariant

parameter such as the ATE, the average effect of the treatment on the treated (ATT),

or the average effect of the treatment on the untreated (ATU).

Other interesting target parameters might be instrument-specific. For example, the

class of policy-relevant treatment effects (PRTEs) introduced by Heckman and Vytlacil

(2001a, 2005) includes parameters that measure the impact of changing the incentive

associated with a given instrument. A special case of a PRTE is an extrapolated local

average treatment effect (LATE), such as

LATE1(+δ%) ≡ E

[
Y (1)− Y (0)

∣∣∣ p(0, Z2) < U1 ≤
(

1 +
δ

100

)
× p(1, Z2)

]
, (17)

which is the LATE that would result if the Z1 instrument were changed sufficiently

to cause a δ% increase in participation under Z1 = 1. This target parameter can be

used to gauge the sensitivity of point identified IV estimates to the definition of the

complier group. See Heckman and Vytlacil (2005), Carneiro, Heckman, and Vytlacil

(2010), and MST for further discussion and additional examples of PRTEs.

When the definition of the target parameter depends on the instrument, as in (17),

the weights will also need to depend on the instrument, and the logical consistency
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issue will not immediately arise. Nevertheless, there will still be a benefit to requiring

instrument-invariant parameters to be logically consistent across different MTRs. As

we demonstrate ahead, this requirement will allow information to flow between different

instruments, so that their exogenous variation can be aggregated. The surprising

implication is that even if the target parameter is instrument-specific, inference on

that target parameter can still benefit from combining multiple instruments.

3.3 Using Each Instrument Separately

In this section, we briefly review the MST methodology for inference on β? under

Assumption IAM. In the multiple instrument setting, this can be equivalently viewed

as using one instrument at a time, conditioning on the rest as covariates. In the next

section, we then augment the methodology to combine multiple instruments together

using the concept of logical consistency.

Suppose that (Y (0), Y (1), D) were generated by (13) for any `, with MTR function

m`. Then Proposition 1 of MST shows that for any (measurable) known or identified

function s,

E[s(D,Z)Y ] =
∑

d∈{0,1}

E

[∫ 1

0
m`(d|u`, Z−`)ωs(d|u`, Z) du`

]
(18)

where ωs(0|u, Z) ≡ s(0, Z)1[u > p(Z)] and ωs(1|u, Z) ≡ s(1, Z)1[u ≤ p(Z)].

MST refer to a choice of s as an IV–like specification, and show that by choosing s

appropriately, one can reproduce any linear IV estimand on the left-hand side of (18).

Given a collection S of IV–like specifications, we say that an MTR m` is consistent

with the observed data under S if it satisfies (18) for every s ∈ S. We denote the set

of such pairs by

Mobs
` ≡ {m` : m` satisfies (18) for each s ∈ S} .

The identified set for the `th MTR pair is defined as

Mid
` ≡M` ∩Mobs

` .

That is, Mid
` is the collection of MTR pairs for the `th instrument that satisfy the

researcher’s prior assumptions (m` ∈ M`) and are consistent with the observed data

for the choice of IV–like estimands in S (m` ∈ Mobs
` ). The identified set for the `th
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component of the target parameter in (16) is the projection of Mid
` under β?` , or

Bid
` ≡

{
β?` (m`) : m` ∈Mid

`

}
.

If M` is a convex set, then Bid
` is an interval, [β?` , β

?
` ], with endpoints given by

β?` ≡ inf
m`∈Mid

`

β?` (m`) and β?` ≡ sup
m`∈Mid

`

β?` (m`),

see Proposition 2 in MST.

To compute the endpoints of this interval, MST assume that M` has a linear–in–

parameters form, so that each m` ∈M` can be written as

m`(d|u`, z−`) =

K∑̀
k=1

θ`kb`k(d|u`, z−`) for some θ` ≡ (θ`1, . . . , θ`K`
) ∈ Θ` ⊆ RK` , (19)

where b`k are known basis functions. If Θ` can be specified as a set of linear equalities

and inequalities, then this assumption makes β?` (and β?` ) the optimal value of a finite–

dimensional linear program with θ` as the variables of optimization:

β?` = min
θ`∈Θ`

K∑̀
k=1

θ`kΓ
?
`k s.t.

K∑̀
k=1

θ`kΓ
s
`k = E[s(D,Z)Y ] for all s ∈ S, (20)

where

Γ?`k ≡
∑

d∈{0,1}

E

[∫ 1

0
b`k(d|u`, Z−`)ω?` (d|u`, Z`, Z−`) du`

]
,

and Γs`k ≡
∑

d∈{0,1}

E

[∫ 1

0
b`k(d|u`, Z−`)ωs` (d|u`, Z`, Z−`) du`

]
,

are both identified quantities that can be directly estimated from the observed data.

MST, Mogstad and Torgovitsky (2018), and Shea and Torgovitsky (2019) discuss dif-

ferent ways of specifying Θ` to incorporate nonparametric or parametric specifications,

with or without additional shape constraints.

3.4 Combining Instruments through Logical Consistency

Condition (18) can be applied for each ` to restrict each of the L MTR functions

in isolation. We connect them by requiring logical consistency in the unobservable

quantities they imply. For example, in Figure 2 we noted that every m` implies a value
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for E[Y (1)] given by

E[Y (1)] = E

[∫ 1

0
m`(1|u`, Z−`) du

]
. (21)

We will restrict attention to choices of m for which the right-hand side of (21) is

invariant to ` = 1, . . . , L.4 This restricts our attention to MTRs like those in Figure

2a, while ruling out inconsistent pairs like those in Figure 2b. The result will be tighter

inference on each β?` , as well as on the overall target parameter, β?.

We formalize the property of logical consistency in a similar fashion to the data

consistency condition, (18). A straightforward modification of Proposition 1 in MST

shows that if (Y (0), Y (1), D) were generated by (13) with MTR function m`, then

E[s(D,Z)Y (d)] = E

[∫ 1

0
m`(d|u`, Z−`)ω̄s(u`, Z)du`

]
where ω̄s(u, Z) ≡ ωs(0|u, Z) + ωs(1|u, Z). (22)

This equation is like (18) with the important difference that it is in terms of the latent

potential outcomes, Y (d). In contrast to (18), where the left-hand side quantity was a

direct function of the observed data, in (22) the left-hand side is in general not point

identified. Nevertheless, the left-hand side of (22) does not vary with `, so the right-

hand side should not either. Thus, we say that a collection of MTRs m ≡ (m1, . . . ,mL)

is logically consistent under S if

E[s(D,Z)Y (d)] implied by m`︷ ︸︸ ︷
E

[∫
m`(d|u`, Z−`)ω̄s(u`, Z) du`

]
=

E[s(D,Z)Y (d)] implied by m`′︷ ︸︸ ︷
E

[∫
m`′(d|u`′ , Z−`′)ω̄s(u`′ , Z) du`′

]
for d = 0, 1, all s ∈ S, and all `, `′ ∈ {1, . . . , L}. (23)

Given a set of IV–like specifications, S, the set of logically consistent MTRs is

Mlc ≡ {m ≡ (m1, . . . ,mL) : m satisfies (23)} .
4 This is similar in spirit to the concept of a “coherent model” (e.g. Heckman, 1978; Tamer, 2003; Lewbel,

2007; Chesher and Rosen, 2012). However, it is different because (21) is an unobservable quantity—not a
feature of the observed data—and so one could proceed without requiring (21) to be invariant to ` as in the
previous section. Note that Maddala (1983, Section 7.5) uses the phrase “logical consistency” to describe
a coherency condition in a simultaneous binary response model, so our use of this phrase differs from his.
Torgovitsky (2019, Section S6.2) showed how logical consistency arises in an overlapping dynamic potential
outcomes model of state dependence.
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Figure 3: The data consistency condition (18) constrains each m` to be consistent with the
observed data is isolation. Logical consistency (23) ties the m` together across ` = 1, . . . , L. This
allows the information contained in different instruments to flow in the direction of the arrows, and
therefore be combined across models that use different instruments.

To combine multiple instruments together, we focus on the identified set

Mid ≡M∩Mobs ∩Mlc,

where Mobs ≡Mobs
1 × · · · ×Mobs

L . The identified set for the target parameter is then

the projection of Mid under β?, or

Bid ≡
{
β?(m) : m ∈Mid

}
.

Figure 3 illustrates how the logical consistency condition allows information to flow

between different MTR functions. Intuitively, (18) places restrictions on m` for each `

by requiring it to match the observed data, whereas the logical consistency condition

propagates these restrictions from m` to m`′ . The result is a sort of equilibrium in

which none of the MTR functions contradict each other on their implications for the

instrument-invariant quantities E[s(D,Z)Y (d)] equated in (23). Limiting attention to

the smaller set of MTRs that are consistent with this equilibrium mechanically shrinks

the identified set for the target parameter as well.

The logical consistency condition is a collection of linear equality constraints, so

adding it does not fundamentally alter the conclusions or procedure in MST. In par-

ticular, ifM is a convex set, then a minor change to Proposition 2 of MST shows that

Bid is an interval, [β?, β?], with endpoints given by

β? ≡ inf
m∈Mid

β?(m) and β? ≡ sup
m∈Mid

β?(m),
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If the linear–in–parameters representation (19) is maintained for all ` = 1, . . . , L with

θ ≡ (θ1, . . . , θL) ∈ Θ, then β? can be found by modifying (20) to incorporate all MTRs

as well as the logical consistency constraint:

β?` = min
θ∈Θ

L∑
`=1

K∑̀
k=1

θ`kΓ
?
`k

s.t.

K∑̀
k=1

θ`kΓ
s
`k = E[s(D,Z)Y ] for all s ∈ S, ` = 1, . . . , L,

K∑̀
k=1

θ`kΓ̄
s
`k =

K1∑
k=1

θ1kΓ̄
s
1k for all s ∈ S, ` = 2, . . . , L, (24)

where for shorthand we have defined

Γ̄s`k ≡ E

[∫ 1

0
b`k(d|u`, Z−`)ω̄s(u`, Z)du`

]
.

If Θ consists only of linear equalities and inequalities, then (24) remains a finite-

dimensional linear program in terms of quantities that are all point identified.

3.5 Testable Implications

Under Assumption IAM, the nonparametric IV model in Section 2 has testable impli-

cations (Balke and Pearl, 1997; Imbens and Rubin, 1997), and several authors have

developed formal statistical tests of these implications in different forms (Huber and

Mellace, 2014; Kitagawa, 2015; Mourifié and Wan, 2016). MST observe that these

testable implications manifest themselves in the MTE methodology through the pos-

sibility that the identified set is empty. When using each instrument separately, as

in Section 3.3, this would mean that Mid
` is empty, and would imply that either the

`th instrument does not satisfy Assumption IAM, conditional on Z−`, or that some

aspect of Assumptions E are false. If the researcher specifiedM` to include additional

assumptions, then finding Mid
` to be empty could also call these into question.

This logic also holds when combining instruments, as in Section 3.4. Suppose that

Assumptions E and the researcher’s specification of M are beyond question. Then

findingMid empty implies that Assumption PM is violated. Now suppose that we add

the following assumption as part of the specification of M:

m`(d|u, z−`) = m1(d|u, z1) ≡ m0(d|u)

for all d = 0, 1, u ∈ [0, 1], all l, and z−` ∈ Z−`. (25)
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This assumption says that all of the L MTR functions are in fact the same, which

among other things implies that they cannot depend on any component of Z. When

(25) is imposed, the logical consistency condition (23) is immediately satisfied, and

Mid reduces to the identified set obtained by using all instruments together under

Assumption IAM. Thus, finding an empty identified set when (25) is imposed, but not

when it is not, is evidence that Assumption IAM can be rejected, but that the strictly

weaker Assumption PM cannot be rejected.

4 Aggregating Multiple Instruments

In this section, we demonstrate how the logical consistency condition allows multiple

instruments to be aggregated for more informative inference. In Section 4.1, we provide

an algebraic example that shows how a model that would normally be just–identified

becomes over–identified when logical consistency is imposed. In Section 4.2, we show

that the same principles are at work even without point identification. In Section 4.3,

we describe the results of a numerical simulation that shows how logical consistency

interacts with the choice of target parameter and the auxiliary identifying assumptions

maintained by the researcher.

4.1 An Illustrative Example with Point Identification

The following example demonstrates how the logical consistency condition yields addi-

tional over–identifying information that can be used to relax assumptions or to power

a specification test.

Consider a setting with two binary instruments, so that Z = {0, 1}2. As discussed,

these two instruments give rise to two selection equations like (13) with two unobserv-

ables U1 and U2, and therefore two marginal treatment response functions, m1 and m2.

To simplify the example, we will focus solely on the MTR function evaluated at the

treated state, d = 1, so that our objects of concern are m1(1|u1, z2) and m2(1|u2, z1),

viewed as functions of (u1, z2) ∈ [0, 1]×{0, 1} and (u2, z1) ∈ [0, 1]×{0, 1}, respectively.

Suppose that we assume m1(1|u1, z2) is a linear function of u1 for each value of z2,

so that

m1(1|u1, z2) = α0 + α1u1 + α2z2 + α3z2u1, (26)

for some unknown parameters α ≡ (α0, α1, α2, α3). Brinch, Mogstad, and Wiswall

(2012; 2017) showed that α is point identified as long as p(1, 0) 6= p(0, 0), and p(1, 1) 6=
p(0, 1). Their argument uses the implications of (26) for the observed mean of the
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treated group:

E[Y |D = 1, Z1 = z1, Z2 = z2]

= E[Y (1)|U1 ≤ p(z1, z2), Z2 = z2]

=
1

p(z1, z2)

∫ p(z1,z2)

0
m1(1|u1, z2) du1

= α0 +
1

2
p(z1, z2)α1 + z2

[
α2 +

1

2
p(z1, z2)α3

]
. (27)

Thus, if p(1, 0) 6= p(0, 0), then α0 and α1 are point identified by a linear regression of

Y on a constant and 1
2p(Z1, Z2) in the Z2 = 0 subpopulation, while p(1, 1) 6= p(0, 1)

ensures that α2 and α3 can be point identified off of the same linear regression in the

subpopulation with Z2 = 1.

The logical consistency condition exploits the observation that (26) also has impli-

cations for the conditional mean of the treated outcome for the untreated group. This

quantity is not observed, but it can be expressed in terms of α using an argument

similar to (27):

E[Y (1)|D = 0, Z1 = z1, Z2 = z2]

= α0 +
1

2
(1 + p(z1, z2))α1 + z2

[
α2 +

1

2
(1 + p(z1, z2))α3

]
. (28)

Since α is point identified, these counterfactual mean outcomes are also point identified.

They could be used to evaluate treatment parameters that can be expressed in terms

of the first selection model with unobservable U1. The more surprising finding is that

they could also be used as additional identifying information for the second selection

model with unobservable U2.

One way to see this is to consider a specification form2(1|u2, z1) that would typically

not be point identified in the current setting. For example, suppose that

m2(1|u2, z1) = γ0 + γ1u2 + γ2z1 + γ3z1u2 + γ4u
2
2, (29)

so that m2(1|u2, z1) is more flexible than m1(1|u1, z2) in having an additional quadratic

term. While this function now has five unknown parameters, γ ≡ (γ0, γ1, γ2, γ3, γ4),

there are still only four observed conditional means: E[Y |D = 1, Z1 = z1, Z2 = z2] for

(z1, z2) ∈ {0, 1}2. If the selection model for U2 were viewed in isolation, then γ would

not be point identified. However, the logical consistency condition effectively provides

four more moments via (28). Since α is point identified, these moments can be treated
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as known.

With eight moments total, it is possible to point identify (indeed, overidentify) the

five parameters in γ. In analogy to (27) and (28), the system of equations is given by:

1 p(0,0)
2 0 0 p(0,0)2

3

1 p(1,0)
2 0 0 p(1,0)2

3

1 p(0,1)
2 1 p(0,1)

2
p(0,1)2

3

1 p(1,1)
2 1 p(1,1)

2
p(1,1)2

3

1 1+p(0,0)
2 0 0 1−p(0,0)3

3(1−p(0,0))

1 1+p(1,0)
2 0 0 1−p(1,0)3

3(1−p(1,0))

1 1+p(0,1)
2 1 (1+p(0,1))

2
1−p(0,1)3

3(1−p(0,1))

1 1+p(1,1)
2 1 (1+p(1,1))

2
1−p(1,1)3

3(1−p(1,1))





γ0

γ1

γ2

γ3

γ4


=



E[Y |D = 1, Z = (0, 0)]

E[Y |D = 1, Z = (1, 0)]

E[Y |D = 1, Z = (0, 1)]

E[Y |D = 1, Z = (1, 1)]

E[Y (1)|D = 0, Z = (0, 0)]

E[Y (1)|D = 0, Z = (1, 0)]

E[Y (1)|D = 0, Z = (0, 1)]

E[Y (1)|D = 0, Z = (1, 1)]


. (30)

The entire right-hand side of (30) is known: The first four quantities are observed in

the data, and the second set of four are identified using the selection model for the first

instrument via (28), since α is point identified. The coefficient matrix on the left-hand

side of (30) can be full rank, depending on the values of the propensity score.5 When

this is the case, the linear system of equations either has no solution, or a unique

solution. If there is no solution, then the model is misspecified, while if there is a

unique solution, then γ is point identified.6 Thus, the quadratic MTR specification

(29) can be point identified even though the only source of exogenous variation in the

second selection model is the binary instrument, Z2. The reason is that the second

selection model also harnesses some of the information from the first model—that is,

some of the exogenous variation in Z1—through the logical consistency condition.

4.2 An Illustrative Example with Partial Identification

The next example shows that the implications of the previous example are not specific

to cases with point identification.

Suppose again that there are two instruments, Z1 and Z2. As before, assume that

Z1 ∈ {0, 1} is binary, but now suppose that Z2 is continuous. Actually, assume that

Z2 is not only continuous, but that it has full support, in the sense that the support

of p(z1, Z2)|Z1 = z1 is [0, 1] for both z1 = 0, 1. It is well–known that in this case the

average treatment effect (ATE) is point identified, since for each z1 there exists (at

5 For example, take p(0, 0) = .3, p(1, 0) = .45, p(0, 1) = .55, and p(1, 1) = .7.
6 It is common to call γ point identified regardless of which case holds, since the identified set consists of

no more than a single element for both cases. The ambiguity comes from whether one is tacitly assuming
that the model is correctly specified, which in our notation meansM is not empty. We maintain a distinction
between the two cases here just for clarity.
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least in the limit) an instrument value z̄2 such that p(z1, z̄2) = 1. This implies that

E[Y (1)|Z1 = z1] = E[Y (1)|Z1 = z1, Z2 = z̄2] = E[Y |D = 1, Z1 = z1, Z2 = z̄2],

with a similar argument applying to the case with d = 0. See, for example, Heckman

(1990), Manski (1990) and Heckman and Vytlacil (2001b).

However, suppose that our interest is not in the ATE, but in an instrument–specific

target parameter involving the first instrument. For example, suppose that we are

interested in the average treatment effect among the 99% of the population who are

most likely to take treatment when measured according to Z1. This parameter can be

written as

LATE1(0, .99) ≡ E[Y (1)− Y (0)|U1 ≤ .99]. (31)

This object is nearly the same as the ATE; it differs only by the 1% of the population

excluded from the conditioning event. If we only had the first instrument at our

disposal, we would be trying to identify an object that is very nearly the ATE with

only a binary instrument. The bounds could be expected to be quite wide if p(0, Z2)

and p(1, Z2) are far from 0 and 1 for “many” realizations of Z2.

On the other hand, this line of reasoning ignores the information that we have from

the second instrument. That information is sufficient to point identify the ATE, which

is nearly the same as the generalized LATE in (31). The relationship between the two

objects can be written as

LATE1(0, .99) =
1

.99
(ATE− .01 E[Y (1)− Y (0)|U1 > .99]) .

Since the ATE is point identified from the second instrument, this expression implies

that the identified set for LATE1(0, .99) can actually be quite narrow. Indeed, if
¯
y and

ȳ are the logical bounds on Y , then the identified set for LATE1(0, .99) is contained in

the interval [
1

.99

(
ATE− .01(ȳ −

¯
y)
)
,

1

.99

(
ATE + .01(ȳ −

¯
y)
)]
,

which has width of only .02
.99(ȳ −

¯
y).

4.3 Numerical Simulation

In this section, we illustrate how logical consistency interacts with additional assump-

tions on the MTR functions using a numerical simulation.
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z = (z1, z2) P[Z = z] p(z)

(0, 0) .4 .3
(0, 1) .3 .5
(1, 0) .1 .6
(1, 1) .2 .7

Table 1: The distributions of Z and D|Z = z in the numerical simulation.

The simulation is like the example in Section 4.1 with two binary instruments.

The joint distribution of (Z1, Z2) and the propensity score p(z) are shown in Table 1.

The propensity score is increasing in each component of Z, so that both instruments

can be viewed as incentives that make choosing D = 1 more attractive, as in the

college attendance example. We assume that Y ∈ {0, 1} is binary, so that conditional

expectations of Y are bounded between 0 and 1, and we generate the data using model

` = 1 with an MTR that is linear in u1 and does not depend on z2:

m1(0|u1, z2) = .5− .1u1 and m1(1|u1, z2) = .8− .4u1.

In all results that follow, we use a saturated specification of S, so that S consists of

indicator functions 1[(D,Z) = (d, z)] for all possible combinations of d and z.

Figure 4 reports bounds on the average treatment on the treated (ATT). These

bounds are derived under specifications of m`(d|u`, z−`) that are K`th order Bernstein

polynomials in u`, and fully interacted in z−`, with different parameters for d = 0 and

d = 1. We implement these polynomials using the Bernstein basis so that it is easy

to impose shape constraints (see Mogstad et al., 2018, Section S.2). There are three

sets of bounds shown for increasing values of K1 = K2, as well as exact nonparametric

bounds indicated with horizontal lines.

The two wider sets of bounds are derived using the ` = 1 and ` = 2 instruments

in isolation. The bounds are different because with ` = 1, the instrument is Z1, with

Z2 serving as a control variable, while with ` = 2 the instrument is Z2, with Z1 as a

control. The third set of bounds is computed while also imposing logical consistency

between the two models. This substantially tightens both the nonparametric bounds

and the polynomial bounds at all polynomial degrees.

Notice in particular that the logical consistency bounds are tighter than the inter-

sections of the ` = 1 and ` = 2 bounds. This shows that logical consistency is not

just a matter of taking intersection bounds across differ instruments used separately.

Instead, it involves harmonizing the intricate common predictions about instrument-
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Figure 4: Imposing logical consistency tightens bounds on the average treatment on the treated
(ATT) for both parametric and nonparametric specifications of the MTR functions.

invariant quantities that one would obtain using each instrument separately, as for-

malized through the set of equalities (23). These equalities effectively combine the

information from the two instruments into a whole that is greater than the sum of

their parts. As Figure 4 shows, this can substantially tighten inference. For example,

the nonparametric bounds under logical consistency are as tight as the bounds using

each instrument separately with a 5th order polynomial.

In Figure 5, we report bounds on LATE1(+δ%), as defined in (17) for δ = 20.

This quantity can only be expressed in terms of the unobservable U1 for the first in-

strument. Nevertheless, comparing the four sets of bounds in Figure 5 shows that the

second instrument provides information on LATE1(+20%) through the logical consis-

tency condition. Thus, the logical consistency condition allows information from the

second instrument to propagate to the first instrument. This extra information results

in tighter bounds than would be possible using the first instrument in isolation. In

this data generating process, the additional information is small (but still present)

when m2 is left nonparametric. Adding the nonparametric shape constraints that

m2(0|·, z1),m2(1|·, z1) and m2(1|·, z1)−m2(0|·, z2) are decreasing functions for every z1
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Figure 5: The ` = 2 model provides identifying content for parameters, such as LATE1(+%20),
that can only be defined using the ` = 1 model.

provides substantially more information.

A vivid case occurs when m2 is specified as linear (K2 = 1). Under this assumption,

all instrument-invariant quantities are point identified using only variation in Z2. A

parameter that is specific to the first instrument, like LATE1(+20%), generally remains

partially identified. Suppose, however, that we impose the assumption that m1 is

quadratic (K1 = 2). If we were using only variation in Z1, then we would still expect

LATE1(+20%) to be partially identified. Indeed we can see that this is the case in

Figure 5, where the bounds without imposing logical consistency are approximately

[.075, .175] when K = 2. Imposing logical consistency with m2 linear collapses these

bounds into a single point, consistent with the example discussed in Section 4.1.

5 Conclusion

A central conclusion of the modern IV literature is that the parameter estimated by

a traditional linear IV estimator depends on the instrument itself. This conclusion

gives cause for concern; certain instruments may lead to less relevant parameters and
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there might be no available instrument that answers the researcher’s specific scientific

or policy question. MTE methods address this dilemma by returning primary focus to

the definition of the target parameter, leaving the specifics of how it can be identified

(parametrically, nonparametrically, partially, etc.) as a separate and conceptually dis-

tinct issue. However, MTE methods crucially depend on the monotonicity condition

(threshold-crossing equation) introduced by Imbens and Angrist (1994). This condi-

tion is extremely strong when there are multiple instruments, since it assumes away

all meaningful choice heterogeneity (Mogstad et al., 2020).

In this paper, we have extended the MTE methodology under a weaker, par-

tial monotonicity condition. Partial monotonicity allows for rich patterns of unob-

served heterogeneity in choices, while still remaining rooted in an interpretable choice-

theoretic model that is fundamentally nonparametric. We showed how to modify the

general partial identification framework of Mogstad et al. (2018) to allow for par-

tial monotonicity instead of the stronger, traditional monotonicity condition. The

framework provides a general, flexible way for researchers to explore the assumptions–

conclusion frontier through different parametric and nonparametric shape restrictions

on the underlying marginal treatment response functions. It can be implemented at

scale using linear programming.

An unusual feature of the framework is that it can be viewed as having multiple

different selection models for the same treatment. In order to rationalize these models

simultaneously, we imposed a condition called logical consistency. The logical consis-

tency condition effectively allows information from one instrument about one marginal

treatment response function to be transferred to another marginal treatment response

function defined by a different instrument. This allows for the accumulation of iden-

tifying content from multiple instruments, ensuring that the whole is greater than the

sum of its parts. The method provides a path for extracting and aggregating infor-

mation about treatment effects from multiple different sources of exogenous variation

while still maintaining plausible conditions on choice behavior and allowing for rich

unobserved heterogeneity.
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