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1 Introduction

We develop a model of banking panics which is consistent with two important features of the

data: First, banking crises are usually preceded by credit booms. Second, credit booms often

do not result in crises. That is, there are ”bad booms” as well as ”good booms” in the language

of Gorton and Ordonez (2019). We then use the model to study macroprudential policy.

We first describe the main facts we think a model of financial crises should capture. Figure

1 portrays the link between credit growth and financial crises, using data from Krishnamurthy

and Muir (2017). The evidence is based on a panel of annual data of industrialized countries,

ranging from 1869 to 2018. The authors use the narrative based classification in Jordà et al.

(2011) to determine periods in which a country experienced a financial crisis. The figure then

plots the average behavior of output, credit growth and credit spreads, around the time a crisis

occurs. In each of the three panels, the crisis occurs at year zero. The upper-right panel shows

that credit growth on average steadily increases prior to the crisis before declining afterward, as

a number of authors have recently noted, e.g. Schularick and Taylor (2012). The bottom panel

shows that prior to a crisis, GDP growth on average increases relative to trend by roughly two

percent, but when the crisis hits it experiences a sharp and persistent decline of nearly eight

percent. Finally, as support for the notion that the output contractions reflect financial crises,

credit spreads increase on average prior to and during the crisis, before eventually going back

to a normal level, as shown in the upper-left panel.

Figure 2, however, makes clear that high credit growth does not always lead to a crisis, nor

is it necessary for a crisis to arise. The data in the figure plots annual demeaned credit growth

in a country lagged two years (the horizontal axis) versus one year (the vertical axis).1 The red

dots are episodes where a country experienced a financial crisis while the blue are instances

where a crisis did not occur. If we think of a credit boom as a period in which credit growth is

above average for two consecutive years, then the upper right quadrant reflects periods preceded

by credit booms. Accordingly, crisis episodes happening after credit booms are all the red dots

in the upper right hand quadrant in the figure, while the blue dots in the upper right quadrant

are episodes in which a credit boom did not result in a crisis. As the figure shows, more often

than not, a credit boom does not result in a financial crisis. Conditional on a credit boom, the

probability of a crisis is just 4.9 percent. It is true, however, that a credit boom makes a crisis

more likely: conditional on no credit boom, the probability of a crisis drops to 2.8 percent.

Our goal in this paper is to first develop a macroeconomic framework with banking panics

that is consistent with the evidence in Figures 1 and 2, and then to use the model to study

regulatory policy. The framework we develop is based on Gertler et al. (2020b), henceforth

1Credit growth data is from Jordà et al. (2011). To demean the data we compute for each country seperate
means of credit growth for the pre-war period and post-war periods.
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GKP (2020), which is a standard New Keynesian macro model modified to include banks and

banking panics that disrupt real activity. Within that framework, we capture both credit booms

preceding crises and the banking collapse and disruption of real activity that follows. In the

spirit of Geanakoplos (2010) and Bordalo et al. (2018), the source of the boom is optimistic

beliefs by financial intermediaries (or banks in short) about future returns to capital that are

eventually disappointed.2 This leads to a buildup of bank credit that is funded by an increase

in bank leverage, mostly in the form of short term debt. High levels of debt, in turn, make

the system vulnerable to a run by increasing the exposure of banks to negative returns on

their assets, so that even small negative shocks can trigger system wide runs that result in deep

contractions in economic activity. In this latter regard, the model captures the highly nonlinear

dimension of financial crises. We use global methods to solve the model numerically in order

to characterize these nonlinearities.

There are several di↵erences from our earlier work. First, while in our earlier paper we used

a canonical New Keynesian framework with capital accumulation and focused our study on the

Great Recession, here we consider a simple endowment economy but allow for recurrent credit

booms that may or may not result in banking crises. This allows us to capture the statistical

relationship between credit booms and financial crises described above. The presence of good

and bad credit booms sets the stage for our study of macroprudential regulation. By restricting

financial intermediation, macroprudential policies can prevent the large credit booms that are

the root cause of financial crises. However, since the regulator can’t tell apart bad credit

booms from good ones, attempts at preventing crises will often end up stifling good booms.

By matching the relative frequency of good and bad credit booms in the data, our framework

allows us to study quantitatively how the optimal policy weighs the benefits of preventing crises

against the costs of stopping good booms. We also analyze the features of optimal regulation

and show, for example, that countercyclical capital bu↵ers are a critical feature of a successfully

designed macroprudential policy.

One final important modelling di↵erence from our earlier work is that we allow for equity

injections into the banking sector. In our earlier work we assumed that bank capital was

only accumulated via retained earnings. What this implies is that to meet equity capital

requirements, the only margin of adjustment is for banks to reduce assets. Allowing for new

equity injections introduces a second margin of adjustment. We assume however that at the

margin, equity injections are costly. If they were costless, equity finance would become the sole

source of funding for banks, eliminating the possibility of runs or any other type of banking

2Though we use a di↵erent belief mechanism from Bordalo et al. (2018), we follow these authors in our earlier
work (Gertler et al. (2020b)) by showing that investor forecast errors from our mechanism during the recent
boom and bust are consistent with the evidence. See also Boz and Mendoza (2014) and Boissay et al. (2016)
for other models that try to capture the boom-bust cycle in credit associated with financial crises.
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instability.3 However, there is a very large literature in finance that argues that equity finance

is costly for banks and stresses the important role of debt finance in contexts where agency

problems a↵ect the relationship between bank managers and outside investors.4 Accordingly, in

this paper we assume that equity finance comes at a cost. While we do not explicitly model the

frictions that underpin this cost, we discipline its impact on banks funding choices by matching

the observed average leverage ratio and equity issuance rate of financial firms. In particular,

while the data shows that equity issuance rose during the financial crisis, it remained small as

a fraction of total equity. In particular, Figure 4 shows that the average annual equity issuance

of financial firms was one percent of trend equity between 1985 and 2007, and peaked at around

2.4% during 2008-2010.5 Accordingly as a check that our parametrization is reasonable, we show

that the model implied equity injections after a banking panic are in line with that observed

during the recent financial crisis.

Our paper contributes to a large literature that studies the role of financial intermediaries

in macroeconomic fluctuations. Much of this literature builds on the conventional financial

accelerator model of Bernanke et al. (1998), and Kiyotaki and Moore (1997). While the tra-

ditional models were developed to study how procyclical movement in nonfinancial borrowers

balance sheets work to amplify and propagate macroeconomic fluctuations, Gertler and Karadi

(2011) and Gertler and Kiyotaki (2010) showed how the basic mechanism could be applied to

study financial firms as well. One limitation of the original models was that, by studying the

local behavior of the economy around a non-stochastic steady state, they could not capture

the non linear dimension of financial crises. To address this limitation, a series of papers have

tried to capture the nonlinear dimension of financial crises by exploiting occasionally binding

financial constraints, e.g. Mendoza (2010), He and Krishnamurthy (2019) and Brunnermeier

and Sannikov (2014). While we also allow for occasionally binding constraints, the main source

of non-linearity in our paper is the occurrence of a bank run. As in our earlier work, e.g.Gertler

and Kiyotaki (2015), Gertler et al. (2016) and Gertler et al. (2020b), we model bank runs as

rollover panics following the Calvo (1988) and Cole and Kehoe (2000) models of sovereign debt

crises.6 The existence of a bank run equilibrium depends on the health of banks balance sheets.

When banks balance sheets are weak, fears of a bank run can become self-fulfilling even in the

3With one hundred percent equity financing, the banks creditors absorb the risk, making the banking system
perfectly safe.

4See, for example, Calomiris and Kahn (1991) and Diamond and Rajan (2001) .
5This data does not include the government purchase of subordinate debts and preferred stocks through the

Troubled Asset Relief Program during the crisis.
6This is in contrast with the traditional literature on banking panics originating from Diamond and Dybvig

(1983), in which sequential service constraints were key in order to generate bank runs. Our modeling of bank
runs as rollover crises seems to capture well the bank runs that were at the heart of the recent financial crisis.
See Bernanke et al. (2010), Bernanke (2018) and Gorton (2010).
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absence of any negative fundamental shock.7 Bank runs, in turn, force banks to liquidate assets

at firesale prices, causing a sudden collapse in bank equity, and a deep and prolonged economic

contraction.

We also contribute to the growing literature that studies the role of macroprudential regu-

lation in preventing crises. Beginning with Lorenzoni (2008), a lengthy literature has emerged

that examines bank regulation in a macroeconomic setting. The main conceptual motive for

regulation in this literature is the presence of a pecuniary externality, where individual banks

fail to take account of the impact of their risk exposure on the dynamics of asset prices. This

work has been both qualitative, e.g. Angeloni and Faia (2013), Jeanne and Korinek (2019),

Chari and Kehoe (2016), and quantitative, e.g., Bianchi and Mendoza (2018), Benigno et al.

(2013), and Begenau and Landvoigt (2018)). We di↵er in two main ways. First, since we allow

for endogenous nonlinear financial panics that lead to real economic disasters, the main gain

from macroprudential policy in our model is reducing the likelihood of one of these disasters. In

our view, avoiding such disasters is the primary objective of macroprudential policy in practice.

More formally, the externality in our model is that banks fail to account for the impact of their

individual risk exposure on the likelihood of a panic. In addition, by modeling credit booms as

well as busts and making the distinction between good and bad credit booms, we are able to

characterize the tradeo↵ between reducing the likelihood of banking crises versus stifling good

credit booms.

Section 2 develops the baseline model of banking and banking panics. Section 3 introduces

beliefs and then numerically illustrates how the model can generate credit booms and busts,

including good booms as well as bad booms. Section 4 then analyzes macroprudential policy.

The Appendix provides a detailed development of the model and the nonlinear computational

algorithm for solving it.

2 Baseline Model

The framework is an endowment economy with two goods, consumption Ct and capital Kt.

The latter is used to produce consumption goods. We suppose capital is fixed in supply and

normalize the total to be unity. The financing of capital takes on one of two forms. First, banks

may intermediate the quantity K

b
t . By ”intermediate”, we mean that banks issue deposits to

7Some recent examples where self-fulfilling financial crises can emerge depending on the state of the economy
include Benhabib and Wang (2013), Bocola and Lorenzoni (2017), Farhi and Maggiori (2018) and Perri and
Quadrini (2018). For further attempts to incorporate bank runs in macro models, see Angeloni and Faia (2013),
Cooper and Ross (1998), Martin et al. (2014), Robatto (2019) and Uhlig (2010) for example. Adrian et al.
(2019) empirically study the possibility of multiple equilibria in the dynamics of financial conditions and GDP
in the US.
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households and then use the funds together with their own equity to acquire capital. Second,

households directly hold the quantity K

h
t , implying that in the aggregate

K

b
t +K

h
t = 1. (1)

The division of capital financing between intermediated finance versus direct holding is endoge-

nous and determined in the general equilibrium.

We suppose that households are less e�cient in evaluating and monitoring capital projects

than banks. We capture this notion by assuming that household direct finance entails a man-

agement cost ↵
2

�

K

h
t

�2
, which is increasing and convex in the quantity of directly held capital,

K

h
t . The increasing marginal managerial cost is meant to capture that a household has limited

capacity to manage capital.8

In addition to directly holding capital and supplying deposits to banks, we suppose that

households are the owners of banks. (Think of households as owning banks that are di↵erent

from the ones in which they hold deposits.) Accordingly households are the recipients of bank

dividend payouts and decide how much equity to inject into banks. In particular, we assume

that households can costlessly inject an amount ⇠̄ of equity in the banking system, but face

a convex cost ↵⇠

2⇠̄
(⇠Nt � ⇠̄)2 when equity injections ⇠Nt exceed ⇠̄. We introduce costly equity

injections to capture in a simple reduced form way the frictions involved for banks in raising

equity.9 We then pick the parameters of the cost function to match the empirical properties of

equity injections in the banking sector, as shown in Figure 4.

Let Zt be a shock to the flow return on capital and W (for labor income) an endowment of

consumption goods that the household receives each period. Since the total supply of capital

is fixed at unity, the aggregate resource constraint is given by

Ct = Yt = Zt +W � ↵

2
(Kh

t )
2 � ↵⇠

2⇠̄
(⇠Nt � ⇠̄)2, (2)

where Zt obeys the following first order process

Zt+1 = 1� ⇢+ ⇢Zt + "t+1. (3)

As we will make precise below, we suppose that banks face constraints in borrowing funds

from depositors. Bank equity helps reduce these frictions, which accounts for why households

8We take the quadratic form for convenience since it implies that the marginal managerial cost is linear.
9Jermann and Quadrini (2012) provide a related way to model costs of equity infusion: They suppose the firm

faces a quadratic cost of deviating from a postive dividend target. Equity injections are then costly since they
involve negative dividend payouts. We model the costs on the household side because it simplifies the algerbra
within our framework. Another approach is Gertler et al. (2012) in which, everything else equal, agency frictions
increase as banks shift funding from short term debt to equity.
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will want to inject equity, even if it is costly at the margin, i.e. ⇠Nt > ⇠̄ in equilibrium. The costs

of equity injections, though, work to limit the amount of equity in the banking system. This

limit on bank equity in turn helps account for why banks do not intermediate the entire capital

stock in equilibrium and instead households hold a fraction, even though direct household

finance entails costs, i.e. Kh
t > 0.

Note that the model implies that net output declines as the share of bank financing of capital

falls because of the direct managerial costs ↵
2 (K

h
t )

2. Thus the model implies in a reduced form

way that disintermediation leads to a drop in output.10 A secondary factor contributing to

the costs of disintermediation involves the costs of equity issuance. As the share of banking

financing of capital declines due to a tightening of credit constraints, the marginal value of

bank equity increases, causing equity injections and hence the costs of equity injections to rise.

It will turn out, however, that these costs are quite small relative to the household managerial

costs for direct finance. Accordingly, it is the managerial costs that largely account for the

negative e↵ect of disintermediation on net output.

Finally, it is instructive to compare the rates of the return on bank intermediated capital,

R

b
t+1, versus that on directly held capital Rh

t+1. Let Qt denote the relative price of capital. Then

R

b
t+1 =

Zt+1 +Qt+1

Qt

,

R

h
t+1 =

Zt+1 +Qt+1

Qt + ↵K

h
t

.

Due to the managerial cost, Rh
t+1 is less than R

b
t+1. Further, this gap widens as households

directly hold a larger share of the capital stock, since the marginal managerial cost, ↵Kh
t , is

increasing in K

h
t . The net e↵ect is that in situations where banks shed assets, Qt must drop

su�ciently in order for households to absorb them. In the case of a fire sale, which will arise

in the event of a run, Qt must drop sharply.

2.1 Households

There is a representative household that contains a measure unity of family members. The

fraction f of the members are bankers and the fraction 1�f are workers. Each worker receives an

endowment (e↵ectively labor income). Each banker manages a financial intermediary and pays

dividends to the household. Within the household there is complete consumption insurance.

An advantage of this setup is that we introduce financial intermediation but at the same time

10Gertler et al. (2020b) provide a more realistic description of how a banking collapse leads to an output
collapse. In their framework the banking panic leads to a sharp contraction in investment which reduces
aggregate demand and output due to nominal rigidities.
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avoid the complication of heterogeneous households.

The household chooses consumption and saving, as well as the allocation of its portfolio

between bank deposits and direct capital holdings. In addition, it can inject new equity into

the banking system by providing startup equity to new banks.11

Further, there is turnover: Each period some bankers exit the business and become workers.

When they exit, they pay as dividends any residual retained earnings back to the households.

An equal number of workers become new bankers. We introduce turnover in banking to give

each banker a finite expected horizon. This ensures that banks use leverage to finance assets

in the stationary equilibrium. Otherwise, with an infinite horizon, they could over time retain

su�cient earnings to purely self finance. In particular, with i.i.d. probability 1 � �, a banker

exits in the subsequent period and with probability � the banker survives and continues to

operate, making a banker’s expected horizon equal to 1
1�� periods. Each period the exiting

bankers are replaced by (1 � �)f workers turned bankers, keeping the total populations of

bankers and workers constant.

Each new banker receives a fixed startup transfer from the household, ⇠̄
(1��)f . Moreover,

households can inject additional equity, It, into new banks. We assume that these injections

entail a quadratic resource cost. In particular, letting ⇠Nt = ⇠̄+It, be the total amount of equity

transferred to new bankers, we assume resource costs associated with ⇠Nt of the form

f⇠

�

⇠

N
t

�

=

(

↵⇠

2⇠̄
(⇠Nt � ⇠̄)2 ⇠

N
t � ⇠̄

0 otherwise

.

As we describe below, the presence of financial market frictions implies that bankers are not

able to arbitrage away excess returns on their investment, so that, in equilibrium, the rate of

return on their assets is above the interest rate they pay on deposits. Therefore, bankers will

always prefer to keep accumulating net worth and only payout dividends when they exit.

Accordingly, for a household with bank equity X

N
t�1 at t � 1, the total dividend payouts

from bank equity the household receives at t, ⇧t, and the total equity it is left with at t, XN
t ,

11We assume for simplicity that all equity injections by households are received by new bankers. Because, as
we show later, what matters is the equity in the banking system as a whole rather than the distribution accross
banks, our results are robust to an alternative specification in which equity injections are received by all active
banks in an amount that is proportional to their retained earnings.
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are given by, respectively:

⇧t = (1� �)XN
t�1R

N
t

| {z }

Dividend at t

(4)

%
X

N
t�1

|{z}

Equity at t� 1 &

X

N
t = �X

N
t�1R

N
t + ⇠

N
t

| {z }

Equity at t

(5)

where R

N
t is the growth rate of bank net worth from t� 1 to t. Time t dividends are given by

the total net worth of the fraction (1� �) of bankers that exit and return to the household.

Total bank equity at time t is the sum of total net worth of surviving bankers, �RN
t X

N
t�1, and

injections into new banks ⇠Nt .

We can now describe the household optimization problem. Let Ct denote consumption, Dt

bank deposits and Rt the return on deposits. Then the household chooses
�

Ct, Dt, K
h
t , X

N
t , ⇠

N
t

 

to maximize

Ut = Et

1
X

i=0

�

i lnCt+i (6)

subject to

Ct +Dt +QtK
h
t +

↵

2
(Kh

t )
2 + ⇠

N
t + f⇠

�

⇠

N
t

�

= W +RtDt�1 + (Zt +Qt)K
h
t�1 + ⇧t, (7)

where dividends, ⇧t, and the evolution of equity holdings are given by (4) and (5). The left

hand side (LHS) of the budget constraint in equation (7) is the use of funds - consumption and

saving in deposit, capital and equity, including the costs of direct finance and equity injection.

The right hand side (RHS) is the source of funds - wages, returns on deposit and capital and

dividend distribution from retired bankers.

Let ⇤t,t+1 ⌘ �

Ct
Ct+1

denote the household stochastic discount factor. Then the household’s

first order conditions for deposits and direct capital holdings are given by:

Et (⇤t,t+1Rt+1) = 1, (8)

Et

✓

⇤t,t+1
Zt+1 +Qt+1

Qt + ↵K

h
t

◆

= 1. (9)
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Note that the return on deposits Rt+1 may be risky due to the possibility of default. (See

equation (15) below.)

Let  ̃h
t be the multiplier on the equity evolution equation in (5) and  

h
t =  ̃h

t
U 0(Ct)

be the

multiplier in terms of consumption goods. Then the first order conditions with respect to

equity holdings XN
t and equity injections ⇠Nt are given by, respectively:

 

h
t = Et

⇥

⇤t,t+1(1� � + � 

h
t+1)R

N
t+1

⇤

, (10)

1 + f

0
⇠

�

⇠

N
t

�

�  

h
t and ⇠Nt � ⇠̄. (11)

Note  h
t is the shadow value to the household of having another unit of bank equity in its

portfolio. According to equation (10) this shadow value equals the expected discounted return

to bank capital, taking into account that the bankers exit with probability 1� � and continue

with probability �. Equation (11) states that the household adds bank equity to the point

where the marginal benefit (the right side) equals the marginal cost of new injections (the

left). The first equation in (11) holds with equality and the second with strict inequality, if the

shadow value of bank equity to the household exceeds unity.

2.2 Bankers

Bankers fund assets Qtk
b
t with net worth (or retained earnings) nt and deposits dt:

Qtk
b
t = dt + nt. (12)

Retained earnings nt are given by the return on bank investments minus debt funding costs:

nt = R

b
tQt�1k

b
t�1 �Rtdt�1. (13)

In the event of default (either due to a run or insolvency), retained earnings go to zero.

As we discussed earlier, the banker operates on behalf of the household and faces an exit

probability 1��. The banker’s objective is to maximize the expected present discounted value

of dividend payouts to the household. Given the banker faces financial market frictions, which

we will introduce shortly, it turns out to be optimal for the banker to delay dividend payouts

until exit.12 Accordingly we can express the banker’s objective as:

Vt = Et {⇤t,t+1[(1� �)nt+1 + �Vt+1]} . (14)

There are two additional features critical to generating banking panics. First, deposits are

12See the Appendix.
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short term and contingent only on the possibility of default. Let R̄t be the promised deposit

rate, pt the default probability. Then the return on deposits is given by:

Rt+1 =

(

R̄t, with probability 1� pt

xt+1R̄t, with probability pt

, (15)

where xt+1 is the depositor recovery rate at t + 1, which equals the ratio of bank assets to its

promised deposit obligations as

xt+1 =
R

b
t+1Qtk

b
t

R̄tdt

. (16)

Notice that the recovery rate does not depend upon the place on the queue because we did not

impose the sequential service constraint. Notice also that default is possible only if xt+1 < 1.

This consideration will turn out to be important for determining whether an equilibrium with

a banking panic can exist, as we discuss shortly.

Second, we introduce an agency problem between a bank and its depositors that limits the

bank’s ability to obtain funds. Absent such a limit, a financial panic cannot emerge: A panic

withdrawal would simply lead the bank to go to the credit market to o↵set the deposit loss. In

particular, we introduce the following moral hazard problem: After the banker borrows funds

at t, it may divert the fraction ✓ of assets for personal use (specifically to pay as dividends

to its owner/family). If the bank does not honor its debt, creditors can recover the residual

funds and shut the bank down. Recognizing this temptation, rational depositors require that

the following incentive constraint be satisfied:

✓Qtk
b
t  Vt. (17)

The left side of (17) is the banker’s gain from diverting funds while the right hand side is the

continuation value Vt from operating honestly.

The bank’s decision problem is to choose assets kb
t , deposits dt and future net worth nt+1,

to maximize the objective (14), subject to the constraints of (12), (17) and the evolution of

net worth at t + 1 implied by (13) . We describe the solution informally and defer a detailed

derivation to the Appendix.

From the bank balance sheet condition (12) and the evolution of the net worth (13) , the

rate of return on bank net worth is given by

nt+1

nt

= R

N
t+1 =

�

R

b
t+1 �Rt+1

�

Qtk
b

nt

+Rt+1. (18)

The first term in the RHS shows how the bank can use leverage, Qtkb

nt
> 1, to amplify its return

on net worth whenever the return on its assets exceed the deposit rate, i.e. when excess returns

11



�

R

b
t+1 �Rt+1

�

are positive. The second term is the rate of return on deposits (which the bank

can save by having an additional unit of net worth). Note that if the bank had no leverage

(i.e.,Qtkb

nt
= 1), then the rate of return on bank equity would simply equal the rate of return on

capital held by banks, Rb
t+1. In the case where (appropriately discounted) excess returns are

positive, banks will want to boost their profit margins by increasing borrowing.

The incentive constraint (17), on other hand, limits the ability of banks to increase their

borrowing. To see this, let  b
t be the bank franchise value per unit of its net worth - Tobin’s Q

ratio, or the shadow value of bank net worth:

 

b
t =

Vt

nt

. (19)

Using (18) and (19) to substitute for nt+1, Vt and Vt+1 in (14) , we get an expression for the

shadow value of equity as the discounted expected return on bank equity:

 

b
t = Et

⇥

⇤t,t+1(1� � + � 

b
t+1)R

N
t+1

⇤

. (20)

Then, combining equations (17) and (19) yields the following endogenous capital requirement,

t :

t ⌘
nt

Qtk
b
t

� ✓

 

b
t

. (21)

As we discuss in the appendix the shadow value of net worth is independent of bank specific

characteristics and it exceeds unity, i.e.  b
t > 1.13 Therefore, given that ✓ is strictly between

zero and one, the capital requirement t lies strictly between zero and unity as well.

Notice that the shadow value of net worth  b
t is increasing in risk-adjusted expected excess

returns, because the return on bank equity R

N
t+1, in the RHS of (20), is increasing in excess

returns of bank assets over deposit Rb
t+1 � Rt+1.14 When the marginal risk-adjusted expected

excess returns are positive, the bank would like to increase its leverage multiple, Qtkb

nt
, as much

as possible. Equation (21) however implies that banks will be limited in the amount of leverage

they can take. According to (21), the required bank equity - asset ratio is increasing in the

diversion rate ✓ and decreasing in the shadow value of net worth  b
t . A rise in ✓ increases the

bank’s temptation to divert assets, everything else equal. To satisfy the incentive constraint

13Notice that in principle the return on bank net worth RN
t+1 in equation (20) could depend on bank specific

portfolio choices. The appendix shows that in practice all banks choose the same leverage and hence have the
same rate of return on net worth.

14The risk adjusted expected excess return is defined as

Et[⇤t,t+1(1� � + � b
t+1)(R

b
t+1 �Rt+1)].
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the bank must reduce deposits, leading it to scale back assets relative to net worth. Conversely,

an increase in  b
t raises the franchise value Vt reducing the bank’s temptation to divert. As a

result, the bank can satisfy the incentive constraint with a smaller capital asset ratio.

There are three implications of (21) that are relevant to the analysis of runs that follows.

First, the bank cannot operate with nt  0. A bank with zero or negative net worth can never

satisfy the incentive constraint: It will always want to divert the proceeds from any deposits it

issues. It turns out that the inability of the bank to operate with zero net worth is critical for

the existence of a bank run equilibrium, as we describe shortly.

Second, the required capital ratio ✓
 b
t
varies inversely with  b

t . Thus, the endogenous capital

requirement is relaxed in periods when  b
t rises, allowing banks to operate with lower capital

ratios in these instances. Since  b
t depends positively on Et

�

R

b
t+1 �Rt+1

�

, periods in which

expected excess returns on bank assets rise are also periods in which banks capital ratios are

low.15 The significance for our purposes, is that the probability of a run equilibrium increases

when banks capital ratios are low. In our experiments below we explore two possible ways

that expected excess returns increase causing bank capital ratios to decline and the bank run

probability to rise: negative fundamental shocks and positive belief shocks.

Finally, since t does not depend on individual bank’s characteristics, banks portfolio choices

are homogeneous in bank net worth and the aggregate demand for capital by banks is simply

QtK
b
t =

1

t

Nt, (22)

where Nt is total bank net worth.16 Hence, in what follows, we only use the portfolio choices

K

b
t and Dt of a representative bank with net worth Nt.

15In the data, net worth of our model corresponds to the mark-to-market di↵erence between assets and
liabilities of the bank balance sheet. It is di↵erent from the book value often used in the o�cial report, which is
slow in reacting to market conditions. Also bank assets here are securities and loans to the non-financial sector,
which exclude those to other financial intermediaries. In the data, the net mark-to-market capital ratio of the
financial intermediation sector - the ratio of net worth of the aggregate financial intermediaries to the securities
and loans to the nonfinancial sector - tends to move procyclically, even though the gross capital ratio - the ratio
of net worth to the book value total assets (including securities and loans to the other intermediaries) of some
individual intermediaries may move procyclically. While Adrian and Shin (2010) show book leverage, i.e. the
inverse of book capital ratio, is procyclical for investment bankers, He et al. (2010) and He et al. (2017) show
that market leverage is countercyclical, in line with our model prediction of procyclical captial ratios.

16When the constraint is binding, equation (21) holds with equality so that t only depends on  b
t and hence

it is independent of individual bank’s net worth nt. When the constraint is not binding, t will be pinned down
by an arbitrage condition that expected discount excess returns equal zero (where the discount factor takes
into account that the constraint might bind in the future). The arbitrage condition also depends on aggregate
variables only so that it still does not depend on individual bank’s net worth. See Appendix for details.
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2.3 Bank Runs

Within our framework, a bank run is a rollover panic, similar to the Cole and Kehoe (2000)

model of self-fulfilling debt crisis. In particular, a self-fulfilling bank run equilibrium (rollover

crisis) exists under the following circumstances: An arbitrary depositor believes that if other

households do not roll over their deposits, the depositor will lose money by rolling over. This

condition is met if banks’ net worth goes to zero in the event of the run. As we discussed

earlier, banks with zero net worth cannot operate. Because they cannot credibly promise not

to abscond with deposits, any household who lends money to banks in the wake of the run will

lose money.

The timing of events is as follows: At the start of t + 1, depositors decide whether to roll

over deposits. If a run equilibrium exists at t+1, they may choose not to roll over. If the panic

happens, banks liquidate capital and sell to households at the liquidation price Q

⇤
t+1. Because

households are less e�cient at holding capital, Q⇤
t+1 will lie below the normal market price Qt+1.

Depositors then get back a fraction of the promised return, depending on the recovery rate xt+1

as defined in equation (16).

For computational simplicity as well as realism, we assume that new banks do not enter

during the period of the panic: They wait until the next period when the run has stopped.

Thus we have

⇠

N
t = 0, if there is a run at t. (23)

As discussed, the run equilibrium exists if bank net worth goes to zero in the event of the

panic. This will be the case if the depositor recovery rate is less than unity. It follows that the

run equilibrium exists at t+ 1 if the liquidation value of bank assets is less than the promised

obligation of deposits:

(Q⇤
t+1 + Zt+1)K

b
t < R̄tDt, (24)

which is the same as the condition xt+1 < 1. The liquidation price in turn is given by the

household’s first order condition for capital holding,

Q

⇤
t+1 = Et+1 [⇤t+1,t+2(Zt+2 +Qt+2)]� ↵K

h
t+1, (25)

evaluated at Kh
t+1 = 1.

Let ◆t+1 be a sunspot variable that takes on a value of unity if the sunspot occurs and zero

otherwise. Then a run occurs at t+ 1 if (i) condition (24) is met, and (ii) ◆t+1 = 1. In order to

not introduce any exogenous cyclicality into the likelihood of a banking panic, we assume the

sunspot appears with fixed probability {s
. Then, letting Z

R
t+1 be the threshold value of Zt+1

14



below which a run is possible, the probability of a run p

R
t is given by

p

R
t = Pr{Zt+1 < Z

R
t+1} · {s

, (26)

where Z

R
t+1 is the value of productivity at which banks are just able to pay their deposit

obligations even if prices drop to their liquidation value Q

⇤
t+1(Z

R
t+1) :

Q

⇤
t+1(Z

R
t+1) + Z

R
t+1 =

DtR̄t

K

b
t

. (27)

Equations (26) and (27) suggest two forces that can raise the likelihood of a run equilibrium

existing. The first is bad luck: a sequence of negative shocks to the productivity of capital can

increase the likelihood that Zt+1 will fall below the threshold value Z

R
t+1. The second is banks’

financial fragility, measured by the ratio of the deposit obligation to the book value of capital,
DtR̄t

Kb
t
. A rise in leverage increases ZR

t+1, raising the likelihood that Zt+1 will be below Z

R
t+1. To

foreshadow, a credit boom will increase the banking sectors’ exposure to panics by increasing

leverage.

2.4 Aggregation and Equilibrium

If there is no run at time t, the aggregate net worth of active banks is given by the net worth

of surviving bankers from t� 1 plus new net worth injected by households into new banks:

Nt = �

⇥

(Zt +Qt)K
b
t�1 �Dt�1Rt

⇤

+ ⇠

N
t . (28)

Notice that it is possible that, even without a bank run the realization of productivity could

be so low that the banks are forced to default. In this case, equations (15) and (28) imply that

aggregate net worth is simply given by ⇠Nt .

17

Using the expression for the rate return on bank equity and for leverage, (18, 22, 23), yields:

Nt = X

N
t =

(

�R

N
t Nt�1 + ⇠

N
t if there is no run at t

0 if there is a run at t
,

where

R

N
t = (Rb

t �Rt)
1

t�1
+Rt. (29)

Here we see the rate of return on bank equity R

N
t is increasing in the excess return weighted

by the bank leverage multiple at t� 1, the inverse of the bank equity - asset ratio.

17See Appendix for a characterization of the probability of insolvency without runs.
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2.5 Summary of Key Model Ingredients

We conclude this section by summarizing the key features of the model that lead to the possibil-

ity of (i) banking distress a↵ecting the real economy and, in the extreme, (ii) outright banking

panics that precipitate sharp persistent contractions in real activity.

First, to have financial intermediation matter to real activity, banks must be more e�cient

than households (or more generally non-experts) in evaluating and monitoring capital.18 Oth-

erwise a contraction in banking would not matter: Households would simply absorb the capital

in their respective portfolios without any e↵ect on real activity, and the price and rate of return

on capital would remain unchanged. In particular, we capture banks’ advantage by assuming

that households face a management cost that is increasing and convex in the amount of assets

that they hold directly in their portfolios. The convex cost captures the idea that households

face capacity constraints in managing capital. It also implies that following a decline in bank

intermediation, because of households limited ability to absorb capital, the price of capital de-

clines and the rate of return increases. In the limiting case of a panic, which features a firesale

of bank assets to households, the price declines sharply.

In our simple endowment economy model, the shift from bank intermediated to direct

household finance reduces net output due to the rise in managerial costs. But we view this

mechanism as a convenient way to model the real e↵ects of disintermediation in an endowment

economy. In Gertler et al. (2020b), which features a small scale macro model with banking, the

decline in asset prices and increase in excess returns following a banking panic leads to a decline

in investment and real activity. Also, while here a bank run causes the entire banking sector

to be wiped out, in Gertler et al. (2016) we show that the same model of banking instability

can be adapted to characterize runs on a sub-sector of the broad financial industry. Hence, one

should think of the banks in our model as the most exposed and vulnerable sub-sector of the

financial industry, corresponding for instance to the shadow banking sector in the run up to

the Great Recession.

Second, to account for why banks do not intermediate the entire capital stock, we suppose

that there is an agency problem which limits their ability to borrow in credit markets. In

particular, we assume that banks fund assets with short term debt and equity (or net worth).

Further, it is costly for banks to raise equity. Because of the agency problem, the amount of

short term debt a bank can issue depends positively on its net worth. The greater the fraction

of assets a bank funds with equity, the larger is the relative stake that it has in its asset holdings,

making it more likely it will not mishandle depositor funds. This in turn induces creditors to

18In GKP (2020) we allow for the more realistic possibility that banks have an advantage in evaluating and
monitoring only a subset of capital investments. That is, we suppose that households face convex managerial
costs only when the share of capital they hold exceeds a threshhold ratio.
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lend more to the bank as its equity increases. The endogenous equity constraint gives banks

the incentive to raise equity in order to relax the constraint. As we have discussed, though,

banks rely heavily on leverage, even when they are under financial distress. We capture this

behavior by assuming that it is costly for households to inject equity into the banking system.

Further, we parametrize this cost function so that the model is consistent with both the trend

and cycle in new issues of bank equity.

Finally, what makes banks financial fragile and vulnerable to runs? Here there are two key

considerations. First, from the incentive constraint that falls out of the agency problem, banks

cannot operate with zero net worth. With zero net worth, they will be unable to raise funds:

Any rational creditor will realize that a bank with zero net worth has no stake in its’ portfolio

and will thus only mishandle funds. Second, banks rely heavily on short term debt. These

two considerations open up the possibility of a self-fulfilling roll over panic. In such a panic,

depositors collectively decide not to roll over their deposits to banks, forcing banks to liquidate

assets. An equilibrium with a rollover crisis exists if the panic forces bank net worth to zero.

In this instance, no individual creditor has the incentive to deviate from the group and supply

the bank with credit, since the bank has zero net worth. Finally, we note that bank net worth

goes to zero during a panic when the depositor recovery rate is less than unity; that is, when

the liquidation value of bank assets lies below the face value of the banks deposit obligations. It

follows that a run equilibrium is more likely to exist when bank leverage is high. As we discuss

shortly, our belief driven credit booms are situations in which bank leverage increases. In this

respect, the credit boom raises the likelihood of a bank run and can lead the system to a panic

even in the absence of negative fundamental shocks to banks’ assets.

The Appendix provides a detailed description of the equilibrium equations.

3 Credit Booms and Busts: A Numerical Illustration

We now show via numerical simulation how the model can generate credit booms and busts

consistent with the evidence presented in Figures 1 and 2. For expositional reasons, we first

start with the bust phase of a crisis. That is, we consider a model where fundamental shocks

are the outside force that drives the economy into a crisis zone where runs can occur. Here the

idea is to illustrate how the model can generate a financial collapse which has spillover e↵ects

for the real economy.

We first describe how we calibrate our model. Then we illustrate how, starting with a

banking system that is ”safe”, i.e. not susceptible to runs, a series of negative shocks can

weaken bank balance sheets, moving the economy to a crisis zone where a financial collapse can

occur. We then introduce our belief mechanism and show how it can generate a credit boom
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that may or may not lead to a bust.

3.1 Calibration

Table 1 shows the parameter values used in our experiments together with the calibration

targets. There are ten parameters. Four are reasonably standard: including the discount factor

�, the serial correlation of the capital productivity shock, ⇢z, the standard deviation of this

shock � and the household ”labor” endowment W. We set � at 0.99, a standard value in the

literature. We choose a similarly conventional value for ⇢ = 0.95. We pick �z so that the model

produces a standard deviation of output equal to 1.9 percent, consistent with the evidence.

Finally, we set W equal to twice the size of steady state capital income Z to capture the idea

that on average the labor share is twice the capital share.

Six parameters govern the financial sector and are nonstandard. They include: the fraction

of assets banker can divert ✓, the banker survival rate �, the parameter governing marginal

household direct financing costs ↵, the new bankers endowment ⇠̄, the parameters governing

costs of equity injections, ↵⇠, and the sunspot probability {s. We choose these parameters to

hit the following six targets: (a) The average bank equity - asset ratio  equals 0.1; (b) An

average annual spread between the return on bank assets R

b and the deposit rate R of two

hundred basis points;19 (c) The average household share of asset holding equals one half; (d)

An average annual run probability of 3.7 percent (roughly, one every twenty-five years); (e) An

output contraction during a bank run of ten percent on average, consistent with the evidence

from Krishnamurthy and Muir (2017); (f) An average ratio of bank equity injections and trend

financial equity of 1 percent.

3.2 A Run Driven by Fundamental Shocks

Before introducing a belief mechanism that can generate credit booms and busts, we first

illustrate how the model can generate a nonlinear financial crisis with fundamental shocks as

the underlying driving force. Under our parametrization, a run equilibrium does not exist in

the risk adjusted steady state. We accordingly suppose that at time 1, there is a negative

innovation to productivity just large enough to move the economy into a crisis zone, i.e., an

environment where a run equilibrium exists. Intuitively a large negative productivity shock

can open up the possibility of a run by (i) reducing bank net worth and hence increasing bank

leverage and (ii) reducing the liquidation price of bank assets.

The solid line in the upper left panel of Figure 3 displays the path of the productivity shock.

The diamond on the vertical axis is the threshold value of the productivity shock, ZR
t+1, below

19See Philippon (2015).
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which a run equilibrium exists at t+ 1. The threshold is almost two standard deviations below

the risk adjusted steady state value of Zt. As the panel illustrates the shock puts Zt+1 just

below the threshold Z

R
t+1. Moving forward through time, the dotted line gives the crisis zone

threshold for Zt+i for each value of i > 1 after the run has occurred.20

Given the economy reaches the crisis zone in period 1, we suppose there is a run, i.e. the

sunspot appears and households do not rollover deposits. The solid line in each of the remaining

panels gives the response of the economy in the case of the run. For comparison the dashed

line shows the response for the case where the sunspot is not observed and hence the run

does not occur. The run leads to a firesale of bank assets, causing bank net worth and bank

intermediation to go to zero. Because it is costly for households to absorb the assets, the

spread between the expected return on bank assets and the risk free rate jumps more than

three hundred basis points, causing the shadow value of bank equity to more than triple. The

disintermediation of bank assets leads to a sharp drop in output of more than ten percent. The

figure makes clear the nonlinear aspect of the crisis. Absent the panic, output only drops less

than one percent. In the wake of the run, the level of bank net worth slowly recovers as new

banks enter and households increase equity injections in the financial sector in response to the

sharp rise in the shadow value of bank equity. However, given that injecting equity is costly,

the share of assets intermediated by banks recovers only slowly and so does output.

As discussed above, the assumption that equity injections in the financial sector are costly is

key in order for financial frictions to have a bite and for banking panics to be possible. Figure 4

shows that while we calibrated our cost function to match the average level of equity injections

over time, our model predictions about the increase in equity injections after a crisis captures

quite well the observed market response during the recent financial crisis.

3.3 News Driven Optimism and Credit Booms

One of the major weaknesses of the model of bank runs driven by fundamental shocks is that

financial crises often occur without major productivity shocks, as in the recent Global Financial

Crisis. To address this, we now extend the model to allow for credit booms, building on our

earlier work, GKP (2020). In that framework, news that bankers receive about the possibility of

improved fundamentals lead to a credit buildup. However, because the improved fundamentals

do not materialize, the high leverage pushes the economy into a crisis zone where a banking

panic is possible. Here we allow for the possibility that the credit booms can lead to good as

well as bad outcomes. Good outcomes are possible either because the improved fundamentals

arise or because, even if they don’t, depositors do not coordinate on the run equilibrium and the

20If the run does not happen the threshold reverts back to its mean, as can be deduced by the behavior of
the run probability and inspection of equation (26).
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panic never materializes. In this latter case, the credit boom raises the share of intermediated

finance, which is expansionary even if the improved fundamentals do not arise. In the end, our

goal is to match the data presented earlier in Figure 2, which shows that, while high credit

growth makes a crisis more likely, it typically does not lead to a crisis. Conversely, crises can

occur in the absence of large credit growth.

Following GKP (2020), we model beliefs by considering a variant of a ”news” shock. Under

the standard formulation, at time t, individuals suddenly learn with certainty that a funda-

mental disturbance of a given size will occur j periods in the future. We relax this assumption

in two ways. First, we assume that there is a probability the shock may not occur. Second, we

assume that rather than having a single date in the future when the shock can occur, there is a

probability distribution over a number of possible dates. As time passes without the occurrence

of the shock, individuals update their priors on these various possibilities. We also assume that

only bankers, who are the experts at managing assets, have optimistic beliefs. In fact, it is the

relative optimism of bankers compared to households that generates the vulnerability of the

financial system.21

In particular, with some fixed probability {n
, at time t

N bankers receive news that there

may be a high return on capital in the form of a large positive capital productivity shock. But

they do not know for sure (i) whether the shock will occur and (ii) conditional on the shock

arriving, when it will occur. If the shock is realized at some time ⌧ > t

N , it takes the form of

a one time impulse to the capital productivity shock process of size B > 0. Formally, the news

bankers receive is that the capital productivity will follow the process

Z⌧ = 1� ⇢⇠ + ⇢⇠Z⌧�1 + ✏⌧ + e

B⌧ for ⌧ > t

N

where e

B⌧ = B if the large shock realizes at ⌧, and e

B⌧ = 0 otherwise. Given the capital

productivity shock is serially correlated, there will be a persistent e↵ect of B. However, given

it is a one time shock, if it occurs, there will be no subsequent realizations of this impulse.

In contrast to our earlier paper, though, we will allow for recurrent (though infrequent) news

shocks as we describe below.

When they receive the news at tN , bankers’ prior probability that a shock will eventually

occur is given by P̄ . Conditional on the shock happening, the future date when it will happen,

t

N + ⌧ 2 {tN + 1, tN + 2, ..., tN + T}, is random. In particular ⌧ is distributed according to a

21As we describe in Appendix, we assume that households are aware that bankers became optimistic but do
not change their beliefs about the productivity of capital, i.e. they do not believe the news. This allows us to
have diverse beliefs without having households extract information from prices. A similar assumption is made
for the same reason, for instance, in Cogley and Sargent (2009). Because households know bankers are more
optimistic, they understand that there is less danger for bankers to divert their assets and loose their franchise.
This allows bankers to raise their leverage multiple.
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probability mass function ⇣⌧ which we assume to be a discrete approximation of a truncated

normal with mean µ

B , standard deviation �

B
, and support [ 1 , T ]. Thus at date t

N
, the

probability that the shock happens at tN + ⌧ is given by

Pr tN ( eBtN+⌧ = B) =

(

P̄ · ⇣⌧ , for ⌧ = 1, 2, ..., T

0, for ⌧ > T

.

As long as no shock is observed for ⌫ quarters, i.e. until date t= t

N + ⌫ (� t

N + 1), bankers

update their beliefs using Bayes rule:

Pr tN+⌫( eBtN+⌧ = B) =
P̄ · ⇣⌧

1�
Pv

j=1 P̄ · ⇣j

=

PT
j=⌫+1 P̄ · ⇣j

1�
P⌫

j=1 P̄ · ⇣j
· ⇣⌧
PT

j=⌫+1 ⇣j

, (30)

for ⌧ = ⌫ + 1, ..., T, and Pr tN+⌫( eBtN+⌧ = B) = 0 for ⌧ > T. The first term in the last line

is the posterior probability of the shock ever happening, which we denote by P t and which

is decreasing with t. The second term is the probability that the shock realizes at t

N + ⌧

conditional on the shock eventually happening. The latter is increasing with ⌫ until ⌫ = T � 1,

before becoming zero.

Observe that the process will generate a burst of optimism that will eventually fade if the

good news is not realized. Early on, bankers will steadily raise their forecasts of the near term

return on capital as they approach the date where, a priori, the shock is most likely to occur.

As time passes without the realization of the shock, bankers’ become less certain it will ever

occur: The optimism proceeds to vanish.

We now illustrate how with the belief mechanism just described, the model generates a

boom/bust scenario. Table 2 describes our calibration of the belief process. We assume that

bankers receive the optimistic news ten quarters in advance of the prior on the most likely date

the boom in fundamentals is likely to occur. Our empirical motivation is the housing boom

which began in early 2005 and peaked roughly ten quarters later. Accordingly we pick the

mean of the conditional distribution of ⌧, µB, so that the prior on when the shock is most likely

to occur is ten quarters after to receipt of the news. We pick the standard deviation �

B to

ensure that by six quarters after the conditional mean, if the shock has not occurred, bankers’

will give up hope that it will ever occur.22 Next we set the size of the impulse B to equal a

two standard deviation shock, that is, a shock which is unusually large but not beyond the

realm of possibility.23 Finally, we pick the prior probability that the shock will even occur P̄ ,

22Given our discrete approximation of the normal distribution, a choice of �B translates into a maximum
numbers of periods within which the shock can occur.

23Note that the prior probability that the shock will occur, P̄tN , and the size of the shock when it occurs, B,
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to ensure that economy reaches the crisis zone six quarters after the conditional mean without

any fundamental shocks.

Figure 5 characterizes the dynamics of beliefs and the credit boom that can emerge absent

any fundamental shocks. The top-left panel gives the prior distribution for the time the shock

will happen, conditional on it happening, i.e. {⇣tN+i}Ti=1. The top-middle panel then illustrates

the ingredients bankers use to forecast the shock. The blue line gives the probability the shock

will eventually happen, P t. When the news is received at t = 1, the probability jumps to its

prior value near unity. Time passing without the shock occurring leads bankers’ to reduce this

probability. The optimism fades rapidly as time passes the conditional mean, the most likely

time the shock was expected to occur. The dashed red line then gives the probability the shock

will occur in the subsequent period, conditional on it eventually happening. Notice that this

conditional probability equals unity at date tN +T �1 when the next period is the last possible

date for the shock to occur, see equation (30) with ⌫ = T � 1. The estimate that the shock will

occur in the subsequent period is then the product of the blue and red lines.

We choose our belief process to capture the idea that, once bankers become optimistic, their

optimism is relatively resilient to disappointing news until the later stages of the boom. The

relative optimism of bankers during the early stage of the boom leads to a shift in the allocation

of capital finance from household to bank portfolios. Further, the way banks expand their asset

holding is by increasing their borrowing. As a result, bank leverage increases, which in turn

increases the vulnerability of the banking system to a panic.

To illustrate the boom/bust nature of beliefs, the top-right panel portrays one quarter ahead

forecast of the productivity shock (the dashed red line). After receiving the news at t = 1,

optimism steadily builds. However, as time continues to pass without a large productivity

improvement happening, the optimism fades. Note that throughout the boom and bust in

beliefs, the true fundamental shock (the blue line), is unchanged. Thus, there is serial correlation

in the forecast errors of the capital productivity shock.

The bottom-left panel shows the response of output to the news. The increase in bankers’

optimism leads bankers to expect higher returns on assets which induces a rise in bank in-

termediation and, in turn, an increase in output of nearly one percent. There is however a

nontrivial buildup of debt as bankers fund the twenty five percent increase in assets mostly by

issuing deposits in the bottom-middle panel. The bank capital ratio (equity to assets) in fact

declines as bankers’ optimism raises their perceived shadow value of net worth  b
t , relaxing the

incentive constraint.24 (See equation (21).) The increase in leverage raises the probability the

only influence the expected capital productivity through their product P̄tN ·B.
24As discussed by Gertler et al. (2016), there were additional factors contributing to the leverage buildup,

including financial innovation. For simplicity we abstract from these factors and note only that including them
would increase the debt buildup further and the resulting degree of fragility.
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economy moves into a crisis zone where a run is possible, as the bottom-right panel shows. In

this regard, the boom lays the seeds of the bust.

We now illustrate how a wave of optimism can generate a credit boom that leads to a banking

panic. Figure 6 illustrates the experiment. The news of a possible improvement in fundamentals

is received in period 1. The prior probability distribution is as described in the previous

figure. The top-left panel is the one period ahead forecast of capital productivity. Expected

productivity increases as the economy approaches the prior conditional mean. However, because

the productivity boom is not realized, the expected productivity begins to decline in the later

periods. As just described, bankers’ optimism leads to an overall increase in bank assets funded

by a rise in bank leverage, which moves the economy into a crisis zone. In the top-middle panel,

the solid line is realized productivity, which is unchanged throughout. As before, the dotted line

is the threshold value for the capital productivity shock, ZR
t+1, below which a run equilibrium

exists. As the panel makes clear the news shock moves the economy steadily toward a crisis

zone, which it reaches roughly three years later.25

Here we illustrate a case in which, once the economy reaches the crisis zone, the sunspot

appears and a rollover panic ensues. The di↵erence from the earlier case is that we do not require

a fundamental shock to move the economy to a crisis zone, so we do without it. Overall, the

e↵ect of the banking crisis is very similar to the case without the debt boom. The contraction

in output in terms of both amplitude and persistence is similar to the case of the fundamentals

driven panic. As before the spread between the expected rate of return on bank assets and

the risk-free rate increases prior to and during the crisis (in the middle-middle panel), again

consistent with the evidence presented in the introduction. One important di↵erence is that the

wave of optimism generates a credit boom prior to the crisis, also consistent with the facts we

presented earlier. Finally, as shown in the bottom-right panel, despite the increase in fragility

of the banking sector households do not start injecting equity until after the crisis occurs.

This is because the increase in fragility in this case is by an excessive optimism of financial

intermediaries that is not shared by households. Accordingly, households’ expectations of future

bank excess returns do not increase with those of bankers, leading their subjective probability

of a crisis to rise. As a result, households’ desire to hold bank equity slightly declines before

the crisis occurs.

We next illustrate that, consistent with the earlier evidence we presented, it is possible to

have a credit boom that does not lead to a crisis. There are two possible reasons for why. First,

the positive fundamental shock actually materializes. Second, the shock does not materialize

25The run threshold in the figure is the one associated with the case in which the run does not happen.
This facilitates comparison with figure 7 and helps to visualize that the threshold crosses the realized level of
productivity 13 quarters after the shock, making the run possible. The behavior of the threshold after a run is
as depicted in Figure 3.
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but the panic doesn’t arise even though the economy is in a crisis zone because depositors do

not coordinate on the bad equilibrium (i.e. the sunspot doesn’t appear). Figure 7 displays both

cases. As in the previous experiment, bankers receive positive news at time 1. The solid lines

portray the case where the large productivity improvement materializes as bankers expected.

In this case the expected jump in productivity arises in period 10, the peak of the conditional

prior mean. The runup to period ten is identical to the case where a panic occurs, as portrayed

in the previous figure. However, the realization of the productivity improvement leads to an

increase in output (in the middle-right panel), which moves the economy out of the crisis zone

as the top-middle panel shows. The dashed lines are the case where the boom never occurs

but a panic still does not arise because the sunspot does not appear. There is in fact a rise in

output, though smaller than in the case where the productivity boom is realized. The source

of the rise in output is the optimism that gives rise to an increased in the share of capital

intermediated by banks.26

Thus far we have characterized single episodes of credit booms and displayed circumstances

where they may or may not lead to a bank run. As a prelude to analyzing macroprudential

regulation, we next consider recurrent credit booms and busts. Our goal is to match the evidence

on the link between credit growth and the frequency of financial panics described in Figure 2.

We assume that the probability of receiving news {n is equal to 2 percent per quarter, which

corresponds to once every twelve and a half years on average. Further, once news is received,

there is no additional news realization until the current process has played out, i.e. there is no

news from t

N + 1 until either tN + T or the period in which the boom actually happens.27

We suppose the true probability the boom actually happens is fifty percent conditional on

bankers receiving the news. We capture the idea that bankers are optimistic by supposing

that upon receiving the news, they have a strong prior probability of .999 that the boom will

happen. Given that credit booms are relatively infrequent it is not unreasonable to suppose

that bankers have not had enough experience to learn the true probability of good realizations.

Alternatively, think of the high prior as capturing a ”This Time is Di↵erent” mentality.28

We simulate the model and then record the relation between the occurrence of a crisis in

a given year and credit growth in the two preceding years in Figure 8. The left panel shows

the data from Jordà et al. (2011) as in Figure 2. The right panel is the simulation result of

the model. The model does a reasonable job of capturing that, as in the data, crises are more

likely following a sustained period of positive credit growth. Within the model, conditional

on positive credit growth in the prior two consecutive years, a crisis occurs 4.9 percent of the

26Interestingly, without the realization of productivity improvement, the bank net worth increases more than
the case of the realization, as long as there is no run, because the excess return on bank asset is larger.

27Thus the unconditional mean arrival rate of news is lower than two percent per quarter.
28See Reinhart and Rogo↵ (2009).
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time just as in the data. Runs without credit booms are a bit more frequent in the model than

in the data, i.e. 3.2 against 2.8, but overall the predictive power of credit booms for banking

crises as captured by the odds ratio of bank runs with and without a boom is in line with the

empirical counterpart: 1.5 in the model against 1.8 in the data. One di↵erence though is that

credit growth in the model is less persistent than in the data.

4 Macroprudential Regulation

Within our framework, the decentralized banking equilibrium is ine�cient for two reasons.

First, as in Lorenzoni (2008), there is a pecuniary externality that leads banks to fail to inter-

nalize the impact of their leverage decisions on the behavior of the price of capital. Second,

banks also fail to internalize the impact of their leverage decisions on the likelihood of a panic

- we call this externality ”run externality”. The ine�ciency of the decentralized equilibrium

provides a rationale for macroprudential policy. Indeed, it turns out that the quantitative gains

from macroprudential policy in our framework are associated with the run externality.

We consider a macroprudential regulator that sets a time varying bank capital requirement

̄t. This implies that the relevant capital requirement for banks, t, is now the maximum

between the regulatory requirement, ̄t, and the market imposed capital requirement mt , given

by equation (21). That is,

t = max (̄t,
m
t ) , (31)

with mt = ✓/ 

b
t .
29

We consider a simple policy rule for bank capital requirements that allows for a counter-

cyclical bu↵er. Let N̄ be a threshold value of net worth in the banking system above which the

capital requirement is set at the ”normal value” ̄. When bank net worth falls below N , the

requirement is relaxed.30 We assume for simplicity the regulatory requirement goes to zero. In

this instance the market requirement mt will apply.

We restrict policy to be determined by the simple rule

̄t =

(

̄ Nt � N̄

0 Nt < N̄

.

We look for (̄, N̄) that maximize welfare, which we take to be the unconditional expected

29The presence of regulation implies that the equilibrium value of  b
t will be di↵erent in the regulated economy

as we explain below.
30For computational reasons, the criterion to relax the capital requirement is based on the level of bank net

worth. However, given the very high correlation between bank net worth and output in the model, similar
results would follow if the criterion for relaxing the capital requirement was based on output.
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utility of the representative household. Note that the rule allows for a countercyclical capital

bu↵er, since the capital requirement is relaxed when aggregate bank net worth drops below the

threshold N.

31

Figure 9 shows the market determined capital requirement in the unregulated equilibrium.

At the value of equity in the risk adjusted steady state N

DE
SS , the capital requirement is ten

percent. As bank net worth falls below the risk adjusted steady state the market capital

requirement falls as well. With low bank net worth, bank credit availability is lower, implying

high excess returns to bank assets. The high excess returns are associated with a high shadow

value of bank net worth, which relaxes the incentive constraint permitting greater leverage and

hence leads to a lower market determined capital requirement. Conversely, as net worth goes

above steady state, excess returns fall which tightens capital requirements.

Figure 10 then compares the optimal regulatory capital requirements in the solid line with

ones arising in the unregulated equilibrium in the dashed line. The threshold N̄ lies below

the risk adjusted steady state value N

DE
SS . When net worth falls below N̄ , the regulatory

requirement falls to zero. Conversely, when it goes above N̄ , the requirement goes to twelve

percent, which is above the steady state requirement for the unregulated equilibrium. For

computational reasons, we smooth out the increase as N rises above N̄ .

Figure 10 shows the pattern of capital requirements for the regulated equilibrium. Regula-

tory capital requirements are binding for intermediate levels of net worth. When bank net worth

is very low, ̄t drops to 0 so that market requirements become binding. When net worth is high

enough, the induced decline in excess returns causes market determined capital requirements

to exceed ̄.

Note that as bank net worth is just below the threshold where capital requirements are

binding, the market determined requirement for the regulated economy actually falls below the

capital requirement for the unregulated case. This is because the shadow value of bank net

worth is higher in the regulated economy than in the unregulated economy. Intuitively, when

regulatory requirements are binding, the shadow value of net worth in the regulated economy is

higher than in the unregulated equilibrium since the run probability is lower and excess returns

on bank assets are higher due to the anticipated regulation in future. This in turn has a positive

impact on the shadow value of net worth when banks are close to the regulatory threshold since

they will eventually move to the region where the regulatory requirements applies.32

We next analyze how the optimal macroprudential policy a↵ects behavior. In Figure 11

we consider a optimism driven credit boom of the type that leads to a banking panic. The

31See Kashyap et al. (2004) for a discussion of countercyclical capital requirements. Faria-e Castro (2019) is
another papaer that studies countercyclical capital bu↵ers in a model with bank runs.

32See Van der Ghote (2018) for a similar argument for a coordinating monetary and financial regulation
policies.
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dotted line portrays the credit boom and bust that occurs in the unregulated equilibrium. The

solid line is the behavior with the macroprudential policy put in place. For comparability, we

suppose the economy begins in the unregulated equilibrium, so that in both cases the initial

state is the risk adjusted steady state of the unregulated economy. The macroprudential policy

is then imposed at time 0. The tightening of capital requirements produces an initial drop in

bank intermediation. As in the unregulated equilibrium, the optimism wave which fails to be

validated by a productivity boom leads to an increase in the run probability. But this increase

is far more modest than in the unregulated equilibrium. Absent any large negative shock to

fundamentals, the economy never enters a crisis zone. The regulation avoids a panic in this

case. The cost is that output growth is muted during the optimism phase.

In Figure 12 we consider a case where the credit boom is a false alarm. We consider the

example where the fundamental does not materialize but the panic still does not occur (i.e.,

the sunspot does not appear). In this case the unregulated economy would produce a modest

output boom. Thus, in this instance, the unregulated economy yields a better outcome. The

same would be true for the case where the productivity boom is realized. Accordingly, the gain

from macroprudential regulation is reducing the likelihood of a costly banking panic. This gain

of course must be weighed against the cost of constraining the economy during credit booms

that are false alarms.

Figure 13 shows how macroprudential policy a↵ects the distribution of output and welfare.

By preventing boom bust cycles in credit as well as good booms, macroprudential policy induces

a much less variable distribution of output while having only negligible e↵ects on average output.

This stabilization properties however have non-negligible e↵ects on welfare as the policy is

e↵ective in reducing the probability of the large and persistent drops in output associated with

bank runs.

The overall e↵ects of the optimal macroprudential policy on output, the run probability

and welfare are reported in the middle column of Table 3, which also reports the behavior of

the decentralized economy in the left column. Macroprudential policy cuts the quarterly run

probability more than half, to 0.4 percent from 0.9. The capital requirements lead to a reduction

in quarterly output of 0.6 percent during periods without a banking crises. However, because

the likelihood of costly banking panics is reduced, average output is 0.1 percent higher.33 The

average output with regulation is slightly higher than without regulation because the loss of

output due to banking crisis is deep and persistent even though the crises are rare and the

average output is lower during booms. Combined with the reduction in the variance and left

skewness of the output distribution, this delivers an increase in welfare of 0.25 percentage points

33In Gertler et al. (2020a), we elaborate on the point that the main gains from macroprudential policy come
from reducing the likelihood of costly panics.
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of steady state consumption per period. Note that this is a very conservative estimate since we

are using log preferences with a coe�cient of relative risk aversion of unity.

The last column in Table 3 portrays the case where we eliminate the countercyclical capital

bu↵er and instead assume that regulatory capital requirements are uniform over the cycle. This

policy has the same e↵ect on the run probability as the optimal coutercyclical policy, but this

reduction in the run probability comes at a much higher cost in terms of output which ends up

being almost one percent below the unregulated equilibrium on average. The net e↵ect is that

the policy produces a welfare loss of about three quarters percent of steady state consumption

each quarter.

Figure 14 illustrates why not relaxing the capital requirement in bad times has harmful

e↵ects. Under the optimal policy (the dotted line), relaxing capital requirements allows banks

greater freedom to issue deposits to invest in high excess return assets after the crisis at date

0. This in turn allows banks to build their equity base at a faster pace, returning the economy

to normal. By contrast, if capital requirements are rigid and not relaxed after the crisis (the

solid line), banks build equity at a much slower pace, implying a more protracted period of low

output.

5 Concluding Remarks

We develop a simple quantitative model of credit booms and busts. The framework is consistent

with the evidence that credit booms tend to lead crises, but most of the time a boom does

not lead to a bust. The model also replicates other key features of financial crises, including

increasing credit spreads and sharply contracting output. Importantly, the model captures the

nonlinear dimension of financial crises. Much of the time, the economy operates in a ”safe

zone” with a banking system that is financially strong and not susceptible to a run. However, a

belief driven credit boom or a series of bad fundamental shocks can raise bank leverage ratios,

making the system vulnerable to runs. These runs, further have costly e↵ects on the real

economy. Because the model is highly nonlinear, we use global methods to solve it numerically,

as discussed in the appendix.

We then use the framework to study macroprudential policy. The particular policy we

consider is a capital requirement that limits bank leverage. The primary goal of this policy

is to reduce the likelihood of a disastrous financial collapse. Because in our model, as in the

data, credit booms could be good as well as bad, regulators face a tradeo↵ between reducing

the likelihood of crisis versus stifling a good credit boom. We consider a simple regulatory

policy that allows for a countercyclical capital bu↵er. We then solve for the parameters of

the rule the maximize welfare. We find that the regulatory policy indeed improves welfare
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mainly by reducing the frequency of costly financial panics. Further, the countercyclical bu↵er

is important. Not relaxing capital requirements in a crisis has the e↵ect of amplifying the

downturn, thus reducing welfare.

There are several directions for new research. Limits on banks’ ability to raise equity capital

plays a key role. It constrains their ability to raise funds and opens up the possibility that they

can become vulnerable to panics. We relied on a reduced form function to capture costs of

capital injections that was consistent with the evidence on new equity issuance. However,

a deeper understanding of these costs would be desirable. Similarly, that banks rely heavily

on short term non-contingent debt plays a key role in making them occasionally susceptible

to panics. A deeper treatment of this issue is also in order. Finally, our model blurs the

distinction between commercial and shadow banks. Of course, any regulation of commercial

banks will a↵ect the allocation of funds between commercial and shadow banks (e.g. Begenau

and Landvoigt (2018)). Adding in this consideration is an important topic for future research.
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Figure 1: This figure is from Krishnamurthy and Muir (2017). It plots the behavior of credit
spreads, GDP, and the quantity of credit around a financial crisis with the crisis beginning at
date 0. GDP and credit are expressed in deviation from (country specific) trend. Spreads are

normalized by dividing by the unconditional mean.

This figure plots the behavior of credit spreads,
GDP, and the quantity of credit around a financial crisis with the crisis beginning at date 0.
GDP and credit are expressed in . Spreads are
normalized by dividing by the unconditional mean.
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Figure 2: Credit Booms and Financial Crises.
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Figure 3: Run after a large negative shock.
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Figure 4: Financial firms equity issuance as a fraction of trend equity.
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Figure 5: Belief dynamics and credit booms.
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Figure 6: A bank run after a credit boom.
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Figure 7: Good booms.
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Figure 8: Good and bad booms in the model and in the data.
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Figure 9: Equilibrium capital ratios in the decentralized economy.
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Figure 10: Equilibrium capital ratios in the regulated economy.
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Figure 11: Avoiding runs with macroprudential regulation.
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Figure 12: Stifling good booms with macroprudential regulation.
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Figure 13: Distribution of output and welfare: decentralized and regulated economy.
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Figure 14: Recovery from a run: the role of countercyclical bu↵ers.

0 10 20 30 40 50 60

Quarters

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

 %
 

 f
ro

m
 D

E
 S

S

Asset Price

0 10 20 30 40 50 60

Quarters

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

 %
 

 f
ro

m
 D

E
 S

S

Net Worth

0 10 20 30 40 50 60

Quarters

-12

-10

-8

-6

-4

-2

0

 %
 

 f
ro

m
 D

E
 S

S

Output

47



Table 1: Calibration of baseline parameters.TABLE 1

Calibration
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Table 2: Calibration of news shocks.

TABLE 2

Calibration of News
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Table 3: E↵ects of macroprudential regulation.

TABLE 3

 Effects of Macro Pru

Run Frequency 0.9 pct 0.4 pct 0.4 pct

AVG Output Cond No Run

 from Decentralized Economy
0 pct -0.6 pct -0.7 pct

AVG Output 

 from Decentralized Economy
0 pct 0.1 pct -0.9 pct

Welfare Gain

 Permanent Consumption
0 pct 0.25 pct -0.77 pct

50



A Appendix

Sections A.1 and A.2 describe the banker’s problem and properties of bankers Tobin’s Q in a

baseline version of the model without news shocks.

A.1 Bankers Problem

Let V ⇤
t (nt) be the optimal value of a bank with net worth nt. This solves the Bellman equation

V

⇤
t (nt) = max

kbt ,dt,nt+1,r̄t
Et

�

⇤t,t+1[(1� �)nt+1 + �V

⇤
t+1 (nt+1)]

 

, (A.1)

subject to the flow of funds constraint

Qtk
b
t = dt + nt, (A.2)

the incentive constraint

✓Qtk
b
t  Et

�

⇤t,t+1[(1� �)nt+1 + �V

⇤
t+1 (nt+1)]

 

,

the evolution of net worth given by

nt+1 = max
�

R

b
t+1Qtk

b
t � r̄tdt, 0

�

, (A.3)

and the promised rate r̄t satisfying the demand schedule of depositors

�

1� p

d
t

�

E

ND
t {⇤t,t+1r̄t}+ p

d
tE

D
t

⇢

⇤t,t+1
(Qt+1 + Zt+1) kb

t

dt

�

= 1, (A.4)

where p

d
t is the probability of default at t+1 and E

ND
t and E

D
t are conditional expectations

given default and no default. Notice that we are not explicitly capturing the dependence of

p

d
t on banks’ individual portfolio choices. As we explain in Gertler, Kiyotaki and Prestipino

(2020), this dependence does not a↵ect first order conditions so we will simply abstract from

it here. The analysis of global optimality of this problem is the same as the one in Gertler,

Kiyotaki and Prestipino (2020) so we refer the reader interested in the details to that paper.

To simplify the problem above, it is useful to introduce the individual bank leverage multiple

�̃t =
Qtk

b
t

nt

=
1

t

, (A.5)

which is the inverse of the capital ratio. We can then use (A.5) and (A.2) in (A.3) and (A.4)to

A.1



rewrite the evolution of net worth as

nt+1 = ntr
N
t+1

⇣

�̃t

⌘

, (A.6)

where

r

N
t+1

⇣

�̃t

⌘

= max
n ⇣

R

b
t+1 � r̄t

⇣

�̃t

⌘ ⌘

�̃t + r̄t

⇣

�̃t

⌘

, 0
o

, (A.7)

and

r̄t(�̃t) =

h

1� �̃t
�̃t�1

p

d
tE

D
t

�

⇤t,t+1R
b
t+1

 

i

�

1� p

d
t

�

E

ND
t {⇤t,t+1}

. (A.8)

We can then rewrite the problem as

V

⇤
t (nt) = max

�̃t

Et

n

⇤t,t+1

h

(1� �)ntr
N
t+1

⇣

�̃t

⌘

+ �V

⇤
t+1

⇣

ntr
N
t+1

⇣

�̃t

⌘ ⌘io

, (A.9)

subject to

✓�̃tnt  Et

n

⇤t,t+1

h

(1� �)ntr
N
t+1

⇣

�̃t

⌘

+ �V

⇤
t+1

⇣

ntr
N
t+1

⇣

�̃t

⌘ ⌘io

. (A.10)

Now, guess that the value function V

⇤
t (nt) is linear and given by

V

⇤
t (nt) =  

⇤
t nt.

The problem becomes

 

⇤
t nt = max

�̃t

Et

n

⇤t,t+1nt

⇥

(1� �) + � 

⇤
t+1

⇤

r

N
t+1

⇣

�̃t

⌘o

,

subject to

✓�̃tnt  Et

n

⇤t,t+1nt

⇥

(1� �) + � 

⇤
t+1

⇤

r

N
t+1

⇣

�̃t

⌘o

.

The constraint is binding when

µt � (�t � 1)
⌫t

r̄t(�̃t)

dr̄t

⇣

�̃t

⌘

d�̃t

> 0, (A.11)

where

µt =
�

1� p

d
t

�

E

ND
t

�

⇤t,t+1

⇥

(1� �) + � 

⇤
t+1

⇤

[Rb
t+1 � r̄t (�t)

 

, (A.12)

⌫t =
�

1� p

d
t

�

E

ND
t

�

⇤t,t+1

⇥

(1� �) + � 

⇤
t+1

⇤

r̄t (�t)
 

. (A.13)

In this case, the optimal leverage is given by:

✓�t =  

⇤
t .
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Otherwise optimal leverage is given by

µt � (�t � 1)
⌫t

r̄t

dr̄t (�t)

d�t

= 0. (A.14)

In either case optimal leverage does not depend on nt and is therefore constant across banks so

that

R

N
t+1 = r

N
t+1 (�t) = r

N
t+1

✓

QK

b
t

Nt

◆

, (A.15)

and Tobin’s Q

 

⇤
t = Et

�

⇤t,t+1

⇥

(1� �) + � 

⇤
t+1

⇤

R

N
t+1

 

, (A.16)

does not depend on nt either, which verifies the guess.

A.2 Dividend payout and bank Tobin’s Q

In writing down the recursive optimization problem in (A.9) and (A.10) we have guessed that

the bank does not pay dividends until exit. Here we show that this is indeed optimal whenever

financial constraint are either binding or they are expected to bind with positive probability

some time in the future. In this case, in fact, we have that  ⇤
t > 1.

To describe the optimal dividend policy of the bank, let V ⇤
�,t (nt) be the optimal value of a

bank with net worth nt that can pay dividends �t at t :

V

⇤
�,t (nt) = max

0�tnt

�t + V

⇤
t (nt � �t)

= max
0�tnt

�t +  

⇤
t (nt � �t)

If  ⇤
t < 1 the bank will want to pay out dividends �t = nt and shut down. Thus there is no

equilibrium with  ⇤
t < 1 with active banks. Therefore

 

⇤
t � 1. (A.17)

Moreover when  ⇤
t > 1 it is optimal to set �t = 0.

To show that  ⇤
t > 1 whenever financial constraint are expected to bind with positive

probability some time in the future we proceed in steps.

(a) If Kh
t > 0 then  ⇤

t > 1.

Notice that, if at time t households are holding some capital, i.e. Kh
t > 0, from the house-

hold’s utility maximization condition we have

1 = Et

�

⇤t,t+1R
h
t+1

�

=
Qt

Qt + ↵K

h
t

Et

�

⇤t,t+1R
b
t+1

�

< Et

�

⇤t,t+1R
b
t+1

�

. (A.18)
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But then since the bank can always choose to hold capital without leverage, we have

 

⇤
t � Et

⇥

⇤t,t+1(1� � + � 

⇤
t+1)R

b
t+1

⇤

(A.19)

� Et

�

⇤t,t+1R
b
t+1

�

, by (A.17)

> 1, by (A.18) .

(b) If  ⇤
s > 1 with positive (time t) probability for s � t then  ⇤

t > 1.

Household optimality condition for deposit holdings is

Es�1 (⇤s�1,sRs) = 1, (A.20)

where Rs is the return on deposits at time s.

Since an individual bank can always choose to hold no capital and lend to other banks, i.e.

set �s�1 = 0 and ds�1 = �ns�1, we have

 

⇤
s�1 � Es�1 [⇤s�1,s(1� � + � 

⇤
s)Rs] (A.21)

= 1 + �Es�1 (⇤s�1,sRs ( 
⇤
s � 1)) , by (A.20)

> 1
by (A.17)

and Prs�1 { ⇤
s > 1} > 0

and proceeding backward we have  ⇤
t > 1 if  ⇤

s > 1 with positive (time t) probability for s � t.

(c) If KH
s > 1 with positive (time t) probability for s � t then  ⇤

t > 1.

Follows directly from (a) and (b) .

(d) If financial constraints are binding with positive (time t) probability for s � t then

 

⇤
t > 1.

We show that if  ⇤
t = 1 then the constraints are never binding with probability one. This is

equivalent because, from (A.17) , if  ⇤
t is not strictly greater then unity then it must be unity.

If  ⇤
t = 1, then (a) and (b) imply that  ⇤

s = 1 and K

H
s = 1 with probability one for s � t.

Then we have that

µt � (�t � 1)
⌫t

r̄t

dr̄t (�)

d�

= Et⇤t,t+1R
b
t+1 � 1 = Et⇤t,t+1R

h
t+1 � 1  0, (A.22)

where the first equality in (A.22) follows from using  ⇤
t+1 = 1 in (A.12) and (A.13) and di↵er-

entiation of (A.8); the second equality and the last inequality of (A.22) follow from the fact

that Kh
t = 0. Equation (A.22) implies that financial constraints are not binding, see equations

(A.14) and (A.11) above.
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A.3 Equilibrium equations

Here we give the equilibrium equations of the complete model with news shocks.

The state of the economy is given by Mt = {Nt, Zt, ◆t, St} where ◆t is the sunspot variable

and St is the state determining banker’s and households beliefs, described below.

The equilibrium equations determining

{Ct, K
h
t , ⇠

N
t , 

h
t , K

b
t ,t, 

b
t , Nt+1, R

N
t+1, Rt, Qt, R̄t, Zt+1, Bt+1, St+1, Z

R
t+1, Z

I
t+1}

are given by: Household deposit demand

�E

h
t

⇢✓

Ct

Ct+1

◆

Rt+1

�

= 1. (A.23)

Household demand for capital

�E

h
t

⇢✓

Ct

Ct+1

◆

Zt+1 +Qt+1

Qt + ↵K

h
t

�

= 1. (A.24)

Household demand for bank equity

1 + f

0
⇠

�

⇠

N
t

�

=  

h
t if no run

⇠

N
t = 0 if run

. (A.25)

Household marginal value of bank equity

 

h
t = E

h
t ⇤t,t+1

⇥

(1� �) + � 

h
t+1

⇤

R

N
t+1. (A.26)

Banks capital demand

QtK
b
t =

1

t

Nt. (A.27)

Banks portfolio choice

t =
✓
 b
t

(binding IC) . 34 (A.28)

Banks marginal value of wealth

 

b
t = E

b
t{⇤t,t+1

⇥

(1� �) + � 

b
t+1

⇤

R

N
t+1}. (A.29)

34In our calibration the constraint is always binding. See Gertler, Kiyotaki, and Prestipino (2019) for a formal
analysis of the bank’s optimal portfolio choice that allows for occasionally binding constraints.
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Banker’s net worth evolution

Nt+1 =

8

>

<

>

:

�NtR
N
t+1 + ⇠

N
t+1 if no run at t+ 1

0 if run at t+ 1

. (A.30)

The return on net worth

R

N
t+1 =

✓

Zt+1 +Qt+1

Qt

�Rt+1

◆

1

t

+Rt+1. (A.31)

The return on deposits

Rt+1 = min

⇢

R̄t,
(Zt+1 +Qt+1)

Qt

1

1� t

�

, (A.32)

where we are using (A.27) and (A.2) to write the return upon default as

(Zt+1 +Qt+1)Kb
t

Dt

=
(Zt+1 +Qt+1)

Qt

1

1� t

.

Market clearing for assets

K

b
t +K

h
t = 1. (A.33)

Market clearing for consumption

Ct = Zt +Wh �
↵

2

�

K

h
t

�2 � f⇠

�

⇠

N
t

�

. (A.34)

The evolution of productivity

Zt+1 = ⇢Zt +Bt+1 + "t+1, (A.35)

where "t+1 ⇠ N

�

0, �Z
�

and

Bt+1 (st, st+1) =

(

B̄ if st 2 {1, ..., T} and st+1 = T + 2

0 otherwise

. (A.36)
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St 2 GS = {1, ..., T + 2} is a finite state Markov chain with transition probability

TP =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

St+1 = 1 St+1 = 2 St+1 = 3 ... St+1 = T + 1 St+1 = T + 2

St = 1 0 1� ⌘1 ... ... ⌘1

St = 2 0 0 1� ⌘2 ... ... ⌘2

... ... ... ... ... ... 0

St = T 0 0 0 ... 1� ⌘T ⌘T

St = T + 1 ⇡

n 0 0 ... 1� ⇡

n 0

St = T + 2 ⇡

n 0 0 ... ... 1� ⇡

n

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(A.37)

Bankers believe that the transition probability is

⌘

b
i =

P̄ ⇣i

1� P̄⌃i�1
s=1⇣s

.

where {⇣⌧}T⌧=1 is a discrete approximation of a normal. While households believe

⌘

h
i = 0.

Threshold for insolvency

Z

I
t+1 = inf

�

Z

0 s.t.
⇥

Z

0 +Q

I
t+1 (Z

0)
⇤

K

b
t �

�

QtK
b
t �Nt

�

R̄t > 0
 

, (A.38)

where Q

I
t+1 (Z

0) is the price of capital at t+ 1 if productivity is Z 0 and no run happens:

Q

I
t+1 (Z

0) = Q

⇣

Nt+1

⇣

Mt , Z

0
, St+1

⌘

, Z

0
, 0 , St+1

⌘

.

Similarly thresholds for run

⇥

Z

R
t+1 +Q

R
t+1

�

Z

R
t+1

�⇤

K

b
t �

�

QtK
b
t �Nt

�

R̄t = 0, (A.39)

where

Q

R
t+1

�

Z

R
t+1

�

= Q

�

0 , Z

R
t+1 , 1 , St+1

�

.

A.4 Computation

It is convenient for computations to let the aggregate state of the economy be given by

Mt=(N̂t, Zt, ◆t, St).
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where

N̂t =
Nt � ⇠

N
t

�

.

We can then look for equilibrium functions

# =
�

Q (M) ,C (M) , h (M) , b (M) ,ZR
t+1 (M;S 0) ,ZI

t+1 (M;S 0) , T (M;Z 0
, ◆

0
, S

0)
 

where T (Mt; ✏0, ◆0, S 0) is the transition law determining the evolution of the state as a function

of the state today and stochastic shocks tomorrow. All other variables can be easily recovered

from variables # by using static equilibrium conditions (see below point 5 below).

The computational algorithm to approximate the functions in # proceeds as follows:

1. Determine a functional space to use for approximating equilibrium functions. (We use

piecewise linear).

2. Fix a grid of values for the stateG ⇢
⇥

0, NM
⇤

⇥
⇥

1� 4�Z
, 1 + 4�Z

⇤

⇥ {0, 1}⇥ {1, 2, ..., T + 2}
and a grid of value for future shocks to Z, "

0 2 G

" ⇢ [1� 4�", 1 + 4�"]

3. Set i = 0 and guess initial values for the equilibrium objects of interest on the grid

#

0 =

n

Q

0 (M) , C0 (M) , h,0 (M) , b,0 (M) , ZR,0
t+1 (M;S 0) , ZI,0

t+1 (M;S 0) , T 0 (M;Z 0
, ◆

0
, S

0)
o

M2G

4. Assume that #i has been found for i < M where M is set to 10000. Use #i to find

associated functions #i in the approximating space, e.g. Qi is the price function that

satisfies Qi (M) = Q

i (M) for each M 2 G.

5. Compute all time t+1 variables in the system of equilibrium equations by using the func-

tions #i from the previous step, e.g. for eachM 2 G letQt+1 (#i) = Qi (T i (M;Z 0
, ◆

0
, S

0)) ,

and then solve the system of equilibrium equations to get the implied #i+1
.

Specifically :

• for any M =
n

N̂t, Zt, ◆t, St

o

2 G such that there is no run at time t, i.e. N̂t > 0 or

◆t = 0, we can solve for

n

Q

i+1
t , C

i+1
t , 

h,i+1
t , 

b,i+1
t , K

h,i+1
t , K

b,i+1
t , ⇠

N,i+1
t ,

i+1
t

o

,

where we use the shorthand Q

i+1
t for Qi+1 (M) , by finding the root of the system

C

i+1
t �E

h
t

⇢

Zt+1 +Qt+1 (#i)

Ct+1 (#i)

�

= Q

i+1
t + ↵K

h,i+1
t (A.40)
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h,i+1
t

C

i+1
t

= E

h
t

⇥

(1� �) + � 

h
t+1 (#

i)
⇤

Ct+1 (#i)

N̂t+1 (#i)

�N̂t + ⇠

N,i+1
t

(A.41)

1 + f

0
⇠

⇣

⇠

N,i+1
t

⌘

=  

h,i+1
t (A.42)

 

b,i+1
t

C

i+1
t

= E

b
t

⇥

(1� �) + � 

b
t+1 (#

i)
⇤

Ct+1 (#i)

N̂t+1 (#i)

�N̂t + ⇠

N,i+1
t

(A.43)

Q

i+1
t K

b,i+1
t =

�N̂t + ⇠

N,i+1
t



i+1
t

(A.44)



i+1
t =

✓

 

b,i+1
t

(A.45)

K

b,i+1
t +K

h,i+1
t = 1 (A.46)

C

i+1
t = Zt +Wh �

↵

2

⇣

K

h,i+1
t

⌘2

� f⇠

⇣

⇠

N,i+1
t

⌘

(A.47)

• For any M = {0, Zt, 1, St} such that there is a run at time t, i.e N̂t = 0 or ◆t = 1, we

can solve for

n

Q

i+1
t , C

i+1
t , 

h,i+1
t , 

b,i+1
t , K

h,i+1
t , K

b,i+1
t , ⇠

N,i+1
t ,

i+1
t

o

,

where we use the shorthand Q

i+1
t for Qi+1 (M) , by finding the root of the system

C

i+1
t �E

h
t

⇢

Zt+1 +Qt+1 (#i)

Ct+1 (#i)

�

= Q

i+1
t + ↵ (A.48)

K

h,i+1
t = 1 (A.49)

C

i+1
t = Zt +Wh �

↵

2
(A.50)

 

h,i+1
t = 0 (A.51)

⇠

N,i+1
t = 0 (A.52)

 

b,i+1
t = 0 (A.53)

K

b,i+1
t = 0 (A.54)



i+1
t = 0 (A.55)

We then find the new implied thresholds for any M =
n

N̂t, Zt, ◆t, St

o

2 G such that

there is no run at time t, given by Z

R,i+1
t+1 (M;S 0) and Z

I,i+1
t+1 (M;S 0) by solving for any
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S

0 2 {1, 2, ..., T + 2}
h

Z

R,i+1
t+1 +Qi

⇣

0, ZR,i+1
t , 1, S 0

⌘i

K

b,i+1
t �

⇣

Q

i+1
t K

b,i+1
t � �N̂t � ⇠

N,i+1
t

⌘

R̄

i+1
t = 0 (A.56)

Z

I,i+1
t+1 = inf

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Z

such that
2

6

6

4

h

Z +Qi
⇣

N̂

i
t+1 (M;Z, 0, S 0) , Z, 0, S 0

⌘i

K

b,i+1
t

�
⇣

Q

i+1
t K

b,i+1
t � �N̂t � ⇠

N,i+1
t

⌘

R̄

i+1
t

3

7

7

5

= 0

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(A.57)

We update the evolution of the state by letting for any "0 2 G

" and any S 0 2 {1, 2, ....., T + 2}

Bt+1 =

(

B̄ if st 2 {1, ..., T} and st+1 = T + 2

0 otherwise

.

Z

0 = ⇢Zt +Bt+1 + "

0

N̂

i+1
t+1 (M;Z 0

, ◆

0
, S

0) =
8

>

>

>

>

<

>

>

>

>

:

0,
if Z

0
< Z

I,i+1
t+1 (M;S 0) , or

Z

0
< Z

R,i+1
t+1 (M;S 0) and ◆0 = 1

⇣

�N̂t + ⇠

N,i+1
t

⌘ h⇣

Qi(Ti(M;"0,0,S0))+ Zt+1(M;"0)

Qi+1
t

� R̄

i+1
t

⌘

1
i+1
t

+ R̄

i+1
t

i

, otherwise

RUNt+1 =

(

1 if Z 0
< Z

R,i+1
t+1 (M;S 0) and ◆0 = 1

0 otherwise

we can then collect all the values in

#

i+1 =
n

⇥

Q

i+1
, C

i+1
, 

h,i+1
, 

b,i+1
⇤

(M) ,
h

Z

R,i+1
t+1 , Z

I,i+1
t+1

i

(M;S 0) ,T i+1 (M;Z 0
, ◆

0
, S

0)
o

M2G

6. Repeat 4 and 5 until convergence of |#i+1 � #

i| < conv criterion.

A.5 Insolvency

The states in which a bank is insolvent are states in which no equilibrium in which bankers

pay depositors in full can exist. In insolvency states banks default irrespective of whether

depositors run on banks, simply because fundamentals are so bad that banks cannot possibly

pay their obligations. The definition of the insolvency threshold Z

I
t+1in equation (A.38) and

its computational counterpart in (A.57) accordingly select the threshold for insolvency as the
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lowest value of Z at which banks are able to satisfy their obligations absent a sunspot. Notice

that to select this value we do not impose that at the threshold Z

I
t+1 net surviving banks net

worth is zero, because in general this will not be the case. That is, the insolvency threshold

Z

I
t+1 will be di↵erent in general from the value Z

P
t+1 given by

⇥

Z

P
t+1 +Q

�

0 , Z

P
t+1 , 0 , St+1

�⇤

K

b
t �

�

QtK
b
t �Nt

�

R̄t = 0. (A.58)

To understand why it is possible, indeed usually true, that ZP
t+1 < Z

I
t+1 assume that at time

t the state is Mt =
⇣

N̂t, Zt, ◆t, St

⌘

and banks total asset holdings are K

b
t and total liabilities

Lt =
�

QtK
b
t �Nt

�

R̄t. Consider the following function

ft+1

⇣

N̂

0
, Z

0
⌘

=
h

Z

0 +Q
⇣

N̂

0
, Z

0
, 0 , St+1

⌘i

K

b
t � Lt,

which measures what the net worth of all time t banks would be at t+1 if the the productivity

was Z

0 and the price of capital at t + 1 was the one associated with a net worth of N̂ 0
, i.e.

Q
⇣

N̂

0
, Z

0
, 0 , St+1

⌘

. The time t + 1 subscript of function ft+1 captures how this value

depends on the belief state St+1 and the time t choice of assets Kb
t and liabilities Lt. Clearly,

in equilibrium we have

N̂t+1 (Mt;Z
0
, 0, St+1) =

h

Z

0 +Q
⇣

N̂t+1 (Mt;Z
0
, 0, St+1) , Z

0
, 0 , St+1

⌘i

K

b
t � Lt

= ft+1

⇣

N̂t+1 (Mt;Z
0
, 0, St+1) , Z

0
⌘

.

However, for some values of Z 0
, there are multiple values of N̂

0 that satisfy

N̂

0 = ft+1

⇣

N̂

0
, Z

0
⌘

. (A.59)

Figure A.1 shows this using the policy functions approximated from our model. The figure plots

the function ft+1

⇣

N̂

0
, Z

0
⌘

for five di↵erent values of Z 0. As illustrated by the case in which

Z

0 = Z

H
t+1, when productivity is high enough, i.e. Z

0
> Z

P
t+1, there is only one value of net

worth that satisfies equation (A.59), which is the equilibrium value N̂t+1

�

Mt;ZH
t+1, 0, St+1

�

. A

default equilibrium becomes possible whenever productivity drops below the threshold Z

P
t+1,

which is the lowest value for Z 0 at which banks are able to pay their deposit obligations even

if the capital price and dividends drop to the values associated with insolvency as defined in

equation (A.58) .

Notice that while at Z

P
t+1 default is possible, it is not an equilibrium because, contrary

to what happens during a run, we assume that agents always coordinate on the equilibrium

with highest bank net worth when a sunspot is not observed. Hence, as the figure shows, the

equilibrium value of net worth is N̂t+1

�

Mt;ZP
t+1, 0, St+1

�

> 0.
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As Z 0 drops further below Z

P
t+1 to a value Z

M
t+1 2

�

Z

I
t+1, Z

P
t+1

�

the function ft+1

⇣

N̂

0;ZM
t+1

⌘

crosses the 45 degree lines three times: at zero, at an intermediate value and at the equilibrium

value N̂t+1

�

Mt;ZM
t+1, 0, St+1

�

. Finally, Z

I
t+1 is the lowest value of Z

0 such that agents can

coordinate on an equilibrium in which default is avoided

Z

I
t+1 = inf

n

Z

0 such that there is N̂ 0
> 0 satisfying N̂

0 = ft+1

⇣

N̂

0
, Z

0
⌘ o

. (A.60)

Below Z

I
t+1, as illustrated by the case ZL

t+1 < Z

I
t+1all banks that were active at time t necessarily

default at t+ 1 and N̂t+1

�

Mt;ZL
t+1, 0, St+1

�

= 0.

The figure illustrates the key reason why Z

P
t+1 is di↵erent from Z

I
t+1, which is that the

equilibrium value of net worth is discontinuous at ZI
t+1 dropping from a strictly positive value

at ZI
t+1 to 0 for any value below Z

I
t+1:

lim
Z0"ZI

t+1

N̂t+1 (Mt;Z
0
, 0, St+1) = 0 < N̂t+1

�

Mt;Z
I
t+1, 0, St+1

�

.

This discontinuity is present in our calibrated model for a large region of the state space

but does not generally need to be true. The conditions under which it is true are that the

partial derivative of the function ft+1

⇣

N̂

0;Z 0
⌘

with respect to N at
⇣

N̂

0;Z 0
⌘

=
�

0;ZP
t+1

�

is

strictly greater than one, i.e. @ft+1

@N̂ 0

�

0;ZP
t+1

�

> 1, together with the natural assumption that

limN!1
@ft+1

@N̂ 0 < 1. The condition that @ft+1

@N̂ 0

�

0;ZP
t+1

�

> 1 is also natural in models with financial

constraints, as it follows from the fact that the price of capital becomes extremely sensitive to

variation in bank net worth when total bank net worth is very low. This is indeed the very

force that gives rise to the possibility of runs in our model.

A.6 Impulse Response Functions

We let the risk adjusted steady state be given by M̄ =(N̄ , 1, 0, T + 1) which satisfies:

M̄ =T
�

M̄; 0, 0, T + 1
�

.

That is, it is a state that will remain constant in the absence of any shocks to productivity and

as long as bankers do not receive any news.

We compute responses to a sequence of n shocks
n

✏

irfs
t , ◆

irfs
t , S

irfs
t

on

t=1
by starting the econ-

omy in the risk adjusted steady state, M0 = M̄, and computing the evolution of the state

given the assumed shocks from time 1 to n and setting all future shocks to 0, i.e. ✏t = ◆t = 0

for t � n+ 1 :

Mt+1=

8

<

:

T
⇣

Mt; ✏
irfs
t , ◆

irfs
t , S

irfs
t

⌘

if t  n

T (Mt; 0, 0, S⇤ (St�1)) if t > n

,
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where S

⇤ (St�1) implies no news arrival and no boom realization

S

⇤ (St�1) =

(

St�1 + 1 if St�1 2 {1, 2, ..., T}
St�1 if St�1 2 {T + 1, T + 2}

.

We then plot for each variable, the values of the associated policy function computed along

this path for the state, e.g. Qt = Q (Mt). Notice that, given our nonlinear policy func-

tions, these values are di↵erent from conditional expectations given the sequence of shocks
n

✏

irfs
t , ◆

irfs
t , S

irfs
t

on

t=1
.
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Figure A.1: Multiplicity and Insolvency.
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