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1. Introduction 

There is a large literature examining peer effects in education. This literature typically focuses 

on either the benefits of high-performing peers (Sacerdote, 2001; Whitmore, 2005; Kremer and 

Levy, 2008; Carrell et al., 2009; Black et al., 2013; Booij et al., 2017), or the negative effects of 

having disruptive peers (Hoxby and Weingarth, 2006; Lavy et al., 2012; Carrell and Hoekstra, 

2010; Carrell et al., 2018). However, there is another mechanism whereby having lower-

performing peers could improve student outcomes—namely a student’s rank. 1 We will explore 

a student's ordinal rank within their classroom and the persistence of this effect on their 

outcomes into adulthood. Rank is an appealing attribute to study because it occurs naturally 

in any group of people.  

We consider a student's academic rank in third grade (8 to 9 years old), conditional on 

their achievement, on short- and long-run outcomes. We use the universe of public-school 

students in Texas from 1994 to 2006 and combine this with an identification strategy that 

leverages idiosyncratic variation in rank. We find that a student's rank in third grade impacts 

grade retention, test scores, AP course taking, high school graduation, college enrollment, and 

earnings up to 19 years later.  

Academic achievement and rank are highly correlated. So, to isolate the effect of a 

student's rank, we extend the method used in Murphy and Weinhardt (2014/2020) and 

leverage the idiosyncratic variation in the distribution of test scores across schools, subjects, 

and cohorts. Consider the following hypothetical: two students who have the same level of 

math achievement (as measured by their place in the state-wide distribution) in successive 

cohorts of the same size and mean attainment, at the same school. Because school cohorts are 

small relative to the state cohort, there will be variation in the test score distribution such that 

one student may be the fifth best student in their class while the other may be the eighth.2 This 

is the idiosyncratic variation we leverage to identify the effect of rank, which we argue 

originates from sampling variation in the distribution of human capital within subjects and 

 
1 This can occur through various channels. These channels can be categorized as internal (learning about 
ability, development of non-cognitive skills) or external (parental and school investments).  
2 We standardize rank to the percentile within classrooms throughout the paper, a procedure which 
we discuss in Section 3. 
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cohorts of each school. This variation exists because these groups sample relatively small 

numbers of students, so that distributional differences emerge by chance.3 

 While this source of variation may appear simple, it is not. Later, we set out a 

hypothetical scenario to illustrate the identification challenges of estimating rank effects. Some 

of these challenges extend to the estimation of non-rank types of peer effects. Importantly, 

rank may be correlated with other features of the classroom distribution, such as mean.4 We 

discuss this hypothetical setting and its relationship to our empirical strategy in detail in 

Section 2, and the assumptions required. One contribution of this paper is to outline the 

challenges of identifying the effect of rank, many of which extend to estimating other peer-

effects. 

We perform a battery of further robustness checks to establish the validity of the 

underlying assumptions, including balancing of rank on individual-level covariates, alternate 

functional forms, and definitions of rank.  We also present estimates for small schools where 

there is likely to be one classroom per grade. We address any further concerns about 

measurement error in student test scores resulting in rank being a proxy for student human 

capital: we show that individual non-systematic additive measurement error in student test 

scores, which would be non–rank preserving, would cause a small downward bias to our 

estimates. Our exercise shows that to the extent that test scores are a noisy measure of human 

capital and student rank, our estimates should be interpreted as a lower bound.  

We test for heterogeneous rank effects by gender, parental income, and race. We find 

the impact of rank on male and female students to be very similar for most outcomes. In 

contrast, we find that disadvantaged students (non-white or Free and Reduced-Price Lunch) 

are significantly more affected by rank than their advantaged counterparts. This is seen 

throughout a student’s life, affecting eighth-grade test scores, high school graduation, college 

enrollment, and earnings.  

 
3 Hoxby (2000) is an early example of a study using sampling variation in the context of peer effect 
estimation. Importantly, the variation in the treatment of interest in the present paper (rank) occurs 
within a class, which means we can condition on class effects. 
4 This makes the identification of any specific type of peer effect nontrivial even with randomization.  
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A natural question to ask is: Why would third-grade rank, conditional on achievement, 

impact these outcomes? One possibility is that humans think in terms of heuristics (Tversky 

and Kahneman, 1974) and therefore rely on ordinal rank position rather than the more precise 

cardinal position within a group. Alternatively, ordinal rank may be easier to observe than 

cardinal position. Regardless of the precise behavioral origins of the effect, its impact can be 

seen in the findings that an individual’s ordinal position within a group predicts well-being 

(Luttmer, 2005; Brown et al., 2008) and job satisfaction (Card et al., 2012), conditional on 

cardinal measures of relative standing. Hence, rank may also impact investment decisions and 

subsequent productivity. In the education literature, this is known as the Big-Fish-Little-Pond 

effect, where individuals gain in confidence when they are highly ranked in their local peer 

group (for a review, see Marsh et al., 2008).5  

In this paper, however, we are agnostic about what is driving the effects. We define 

the rank effect to include any reactions to the rank of a student by any individual—the student, 

parents, or teachers. For example, if teachers invest more effort in the worst (or best) students, 

or parents invest in their child less if they believe their child is performing better than their 

peers irrespective of their absolute performance, then this would be included into the rank 

effect (Kinsler and Pavan, 2021).  In summary, anything that is a reaction to a student’s rank 

is a potential mechanism including student effort, parental investment, and teacher 

investment. In contrast, any predetermined factor that covaries with rank conditional on 

achievement could generate a bias.  Note that, while we are agnostic about the mechanisms 

that give rise to the rank effect, we do take great care in establishing that the rank effect is not 

a product of confounding factors. 

Recent studies have documented that a student's relative rank affects short-run 

outcomes independent of achievement. Murphy and Weinhardt (2020) document the effect of 

primary school rank in England, conditional on achievement, on high school test scores and 

confidence. Two papers by Elsner and Isphording apply the same idea to the United States 

using data from the National Longitudinal Study of Adolescent to Adult Health (AddHealth) 

to study effects of contemporaneous high school rank on high school completion, college 

 
5 This has been referred to as the invidious comparison peer effect by Hoxby and Weingarth (2006).  
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going (2017a), and health outcomes (2017b).6 Zax and Rees (2002) consider the effect of peers 

and other student characteristics, including IQ and rank within high school on earnings at 

ages 35 and 53, using a sample of approximately 3,000 male students from Wisconsin. 7 

We make two contributions to this literature. The first is conceptual—we discuss 

identification of rank effects and threats to identification in ways that have not been discussed 

to date. These identification challenges affect all rank studies, including those that use 

randomization to classrooms. We also propose tests for and solutions to identification 

challenges that are common to all papers that estimate rank effects. These issues are also 

important for the estimation of many other peer effects.  The second contribution is empirical; 

we extend the literature by using administrative data on three million individuals to look at 

the long-term effects of a rank at a young age (in third grade) on adult outcomes.  

For our empirical contribution, we consider a student’s rank at ages younger than have 

previously been considered (age 8–9) on outcomes up to 19 years later.8 Our large dataset 

allows us to examine nonlinear effects of rank and we find that rank has a nonlinear 

relationship with outcomes in several instances. We also consider the effects of rank in 

elementary as opposed to high school. Studying the effects of rank in high school is interesting 

but conceptually different. Elementary school students are arranged in classrooms where 

students share the same teacher, peers, and curriculum for the majority of the day, whereas 

high school students do not share the same teacher, peers, or curriculum. Hence, rank may 

 
6 The AddHealth home-survey contains a sample of only 34 students for each school cohort, data which 
are used to compute a measure of rank (Elsner and Isphording, 2017a, 2017b). More recently, there is a 
set of working papers that estimates the impact of rank within college on contemporaneous outcomes 
in various countries (Elsner et al., 2018; Payne and Smith, 2018; Ribas et al., 2018, Ribas et al. 2020, 
Delaney and Devereux, 2019).  
7 A distinct literature has studied the introduction of relative achievement feedback measures in 
education settings. Azmat and Iriberri (2010) find that providing information on relative performance 
feedback during high school increases productivity of all students when they are rewarded for absolute 
test scores. In contrast, Azmat et al. (2019) find relative feedback in college causes significant short-run 
decreases in student performance, but no long-run effects. 
8 Murphy and Weinhardt (2020) consider the effect of rank on test scores 3 and 5 years later. Elsner and 
Isphording (2017a) consider rank in high school on college enrollment and graduation—approximately 
2 to 8 years later. Elsner and Ishpording (2017b) consider the effect of rank on risky behavior as reported 
18 months later. Murphy and Weinhardt consider rank at age 10–11. Elsner and Isphording consider 
rank at age 14–18.  
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affect factors such as course taking or peers, which complicates the interpretation of rank in 

high school. 

Our findings contribute to a growing literature that documents how childhood 

conditions affect adult outcomes. These conditions include a child’s health (Oreopoulos et al., 

2008), where a child lives (Chetty et al., 2016), the quality of a student's teacher (Chetty et al., 

2014), the size of a student's classroom (Chetty et al., 2011), the age of a student when they 

start school (Black et al., 2011), and the presence of disruptive peers (Carrell et al., 2018;  

Bietenbeck, 2020), among others. We add to this list that a child's rank in their third-grade 

classroom, independent of their achievement, has meaningful effects on education and 

earnings in adulthood. 

We find that rank effects are larger for historically disadvantaged groups such as non-

white students or students eligible for Free or Reduced-Price Lunch (FRPL). One implication 

of this is that, unlike linear-in-means peer effects, where moving students between groups 

would have no net impact, rearranging students with rank in mind could improve overall 

outcomes. However, this sort of exercise merits caution because the changes in classroom 

distribution will have general equilibrium effects not accounted for in this paper (Carrell et 

al., 2013).  

The more practical implication of this finding is that programs that move 

disadvantaged students into “high quality” schooling sometimes come at a cost that they will 

then be among the lowest-ranked students. The extensive literature on selective schools and 

school integration has shown mixed results from students attending selective or 

predominantly non-minority schools (Angrist and Lang, 2004; Clark, 2010; Cullen et al., 2006; 

Kling et al., 2007; Abdulkadiroğlu et al., 2014; Dobbie and Fryer, 2014; Bergman, 2018; Barrow 

et al., 2020). Our findings would speak to why the potential benefits of prestigious schools 

may be attenuated among these marginal or ”bussed” students. We explore the magnitude of 

the tradeoffs between rank and school quality in Section 7. 

To examine any such potential rank/school-quality tradeoffs, we address the question 

of which school parents should select for their children, given the existence of rank effects. We 

find that, if parents were to choose schools solely on the basis of mean peer achievement, rank 

effects would reduce 39 percent of the potential gains for median-performing students in the 
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state. In contrast, when choosing based on value added, rank effects only reduce the gains 

from choosing a better school by 12 percent.  

The rest of the paper is structured as follows. Section 2 briefly sets out the empirical design. 

Section 3 describes the data, while Section 4 determines the appropriate specification. Section 

5 presents the results. Section 6 performs a series of robustness tests, and examines 

heterogeneity. Section 7 discusses implications for school choice. Lastly, Section 8 concludes. 

2. Empirical Design 

Figure 1 illustrates the spirit of the variation we will use. It shows the math test score 

distributions of seven hypothetical elementary school classes. The classes share a similar test 

score distribution, each has a student scoring 22 and another scoring 38, and all classes have 

a mean test score of 30. In four of the classes there is a student scoring exactly 35, however 

due to the idiosyncratic variation in the test score distributions, each of these students has a 

different third-grade math rank. To compare ranks across classrooms of different sizes, we 

normalize rank to range from zero to one (see Section 3.2 for details). In this hypothetical, the 

ranks of the students with a score of 35 range between 0.7 and 0.9. 

In this section we discuss how we use such variation to identify the effect of class rank. 

We first discuss an idealized hypothetical setting that illustrates the pitfalls of identifying rank 

effects, along with our solutions. Many of these pitfalls have not been well understood in the 

rank literature to date, and some of them apply to the peer effect literature more generally.9 

We will then discuss how our application departs from this hypothetical setting and how that 

motivates our choice of specification.  

2.1. Challenges in identification 

The first challenge is that rank is cross-sectionally correlated with other features of 

classrooms. For example, a student assigned to a low-performing class will have a 

comparatively high rank, given their ability. Consider the following hypothetical: students 

 
9 Even in this hypothetical we would consider all reactions to the rank of a student as part of the rank 
effect. This includes reactions of the students themselves, teachers, parents, or other students. 
Understanding what is driving the rank effect is interesting but not the primary focus of this paper. 
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with the same ability are randomly assigned to different classrooms. Sampling variation 

would lead to naturally occurring variation in rank for these students.  

In the hypothetical setting with randomization to classrooms, our identical students 

would be assigned to classrooms that are balanced on all characteristics, in expectation. 

However, once students are assigned to classrooms, the classroom distribution of ability will 

be correlated with rank; for example, classroom mean ability will be negatively correlated 

with a student’s rank. As a result, random classroom allocation is not sufficient for the 

identification of rank effects. By the same argument, other types of peer effects such as linear-

in-means peer effects are also non-separable from rank effects using only randomization to 

groups.10  Our strategy, therefore, needs to account for factors correlated with rank that also 

impact student outcomes (e.g. classroom mean ability). To do so, we compare outcomes of 

students with the same predetermined human capital but differences in rank due to sampling 

variation, while holding classroom characteristics (e.g. mean and variance) constant.  

To be precise about the factors that can and cannot be accounted for, as well as the 

assumptions, we now set this hypothetical out more formally. We would want to estimate the 

following equation among students with the same human capital. Let 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  be the outcome of 

student 𝑖𝑖 who attended elementary school 𝑗𝑗 in subject 𝑠𝑠 from cohort 𝑐𝑐. Let 𝑅𝑅 be a student’s 

rank and 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖  be an indicator for classrooms defined by a school-subject-cohort (SSC) 

grouping. Consider the following equation: 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (1) 

Any impact of rank cannot be identified without additional structure about the 

relationship between classroom characteristics and rank.  This type of assumption is required 

in all work on peer effects—features of the classroom distribution cannot arbitrarily interact 

with all other features. For instance, the classic linear-in-means approach assumes that mean 

peer quality affects all students equally and is additively separable. Similarly, estimating the 

effect of the presence of a disruptive peer generally also assumes that the effect of a disruptive 

 
10 By definition, there will be a negative relationship between peer ability and rank for a given 
student. The omission of a rank parameter would therefore attenuate any linear-in-means parameter 
(Bertoni and Nisticò, 2019).    
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peer is linear and the same for all students. Hence, we make the assumption that rank and 

classroom effects are additively separable, as in Equation 2 below.  

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (2) 

In order to identify the effect of rank in Equation 2, we need a conditional 

independence assumption (CIA), 𝐸𝐸�𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖� = 0. Stated differently, we require rank 

to be uncorrelated with unobserved features of the classroom or student—that is,   𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⊥

 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is an observed or unobserved determinant of future outcomes. How likely 

is this CIA to be met? An obvious violation would be if a student’s rank were systematically 

correlated with classroom mean or variance. This example does not violate the CIA because 

of the inclusion of the classroom fixed effect, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖. Equation 2 ensures that a student’s rank will 

be uncorrelated with all features of the classroom distribution that affect all students equally. 

For example, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 controls for commonly studied linear-in-means peer effects, the presence of 

a disruptive peer, and the variance of the classroom, among many other things.11   

To this point, this model is similar to the equation that has been estimated in the rank 

literature. However, that equation does not account for the possibility of heterogeneous effects 

of the classroom distribution by prior ability (Booij et al., 2017). If there are heterogeneous 

effects of the classroom distribution by ability, the inclusion of class fixed effects would not 

account for them. This is because they only account for classroom features that impact all 

students equally, such as linear-in-means peer effects. We now propose and discuss our 

approach to dealing with heterogeneous effects of the classroom distribution by ability.   

If there are heterogeneous effects of the classroom by ability that are correlated with 

rank, they need to be accounted for. Failing to do so could cause an omitted variable bias. To 

illustrate, we will show how rank can be correlated with the classroom distribution for a 

student of a given ability. In Panel A of Figure 3 there are two approximately normally 

distributed classrooms with different variances. Students at the red line have the same 

absolute level of achievement but have different rank. Generally, above (below) average 

 
11 The inclusion of 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 reduces the unexplained variation in rank conditional on achievement. 
Appendix Figure 1 presents the extent of this variation by plotting math achievement de-meaned by 
school and cohort against class rank. Even when accounting for subject-school-cohort variation there 
is a large amount of variation in rank for a given test score. This variation exists throughout the 
achievement distribution.  
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students in a higher variance class would have a lower (higher) rank. Hence, a student’s rank 

is correlated with the interaction of classroom variance and that student’s ability. If the 

interaction of student ability and classroom variance has an effect on outcomes, this would 

not be accounted for in Equation 2, and there would be an omitted variable bias in the rank 

estimate. More generally, heterogenous effects of the classroom distribution by student ability 

that are not accounted for lead to an omitted variable bias.12  

To combat this, the ideal comparison would be among classrooms with similar 

distributions, which would limit the potential for rank to be correlated with heterogeneous 

effects of the classroom distribution. However, if two classrooms were identical in every way, 

there would be no variation in rank and therefore no way to identify the rank effect. On the 

other hand, as soon as the two classroom distributions are different from each other, these 

differences may be correlated with rank, which could result in omitted variables bias.  

This tension will motivate our choice of specification—we want to compare students 

in similar but not identical classroom distributions. Comparing students in similar but not 

identical distributions would ensure that variation in rank is idiosyncratic, rather than driven 

by specific features of the distribution. Comparisons among similar classrooms could be 

accomplished either by estimating Equation 2 separately on groups of distributions and 

aggregating the coefficients, or in a way that we will discuss later. Moreover, coefficient 

stability across such groups can indicate the empirical relevance of this form of omitted 

variable bias. 

If other measures of the classroom ability distribution are systematically correlated 

with rank, even after making comparisons across similar classroom distributions, we think of 

them as part of what defines rank. This is because some features may be inherently linked 

with rank and cannot be separated. To repurpose a proverb, you cannot make an omelet 

without breaking eggs: some factors are always linked, and we call these the effect of rank.   

 
12 Booij et al. (2017) find evidence that in university study groups, high-prior-achieving students are 
not significantly impacted by the distribution of the classroom while low-prior-achieving students are 
positively affected by the mean and negatively affected by the variance. This would downward-bias 
our estimates. As a robustness test we estimate our effects on high-prior-achievement students.  
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Another way to look at this is that our approach requires something akin to an 

“exclusion restriction.” Namely, after accounting for common impacts of the classroom, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖, 

and making comparisons among classrooms with similar distributions, any remaining effects 

of the classroom for a student (with a given ability) operate through rank. This may seem like 

a strong assumption, but we believe it is satisfied because we can account for many factors, 

including commonly studied peer effects and heterogeneous effects of the classroom on 

students. While we note the possibility of other classroom features correlated with rank that 

we do not account for, we are unaware of any candidate features from models of peer effects. 

Similar exclusion assumptions are implicit in all empirical work that estimates peer 

effects from variation in the student achievement distribution, of both experimental and non-

experimental nature. For example, when estimating the impact of mean peer attainment, a 

student in a class with higher peer attainment would also have a lower rank, even if classes 

are randomly assigned. Papers estimating this type of peer effect must make a similar 

exclusion restriction assumption—that other features of the distribution tied to the mean are 

not impacting the outcomes. However, they typically do not account for a student’s rank in 

their estimation. Given that we go on to establish that rank does have an impact, and would 

be negatively correlated with mean achievement, there will be a downward bias on linear-in-

means peer-effects estimates.  

Finally, we could extend this hypothetical to students with different levels of human 

capital by estimating the following, where 𝑇𝑇 is a measure of human capital. 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑔𝑔�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (3) 

This estimating equation further assumes that rank, human capital, and classroom 

effects are additively separable. If this functional form is misspecified, it may cause rank to be 

correlated with omitted factors, leading to bias. As a result, we relax this additive separability 

assumption by allowing for interactions of classroom characteristics and human capital as 

well as classroom characteristics and rank. 

Note that with inclusion of class effects, the measurement of individuals’ human 

capital will capture any cardinal measures of individual-level position in the classroom ability 

distribution, such as distance to the mean, distance to the top/bottom of the distribution, and 
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so on. Therefore, the rank parameter picks up information only about ordinal position, and 

not about cardinal position relative to the class mean. In other words, if cardinal measures of 

relative achievement were sufficient to explain student outcomes, the rank parameter would 

be insignificant. A significant rank parameter implies that humans additionally use ordinal 

rank information to make decisions. 

To summarize, even in the ideal setting, there are significant challenges to identifying 

the effect of rank. These challenges are not overcome with randomization to classrooms. 

Reality differs from our hypothetical scenario in two ways. We do not have random 

allocation to schools and classes, and, we do not have direct measures of predetermined 

human capital. We now set out the specifics of how these departures could generate a 

spurious correlation between rank and future outcomes to illustrate how our specification 

addresses them.  

2.2. Non-random sorting 

The first deviation from the idealized experiment is that there is substantial sorting of 

students to classrooms in the United States. We categorize sorting into two types: active 

sorting and passive sorting. We define active sorting when parents (or students) choose their 

classroom on the basis of exact rank. Passive sorting occurs when students are sorted to 

schools for reasons unrelated to their rank but that may generate a spurious correlation 

between rank and other factors. If students are actively or passively sorted to schools, then 

there is the risk of omitted variables producing a spurious rank effect.   

Active sorting is only possible if parents can predict their child’s rank at a school. 

However, in practice this would be difficult. Two students with the same achievement, at the 

same school, in different cohorts will often have meaningfully different ranks. Figure 2 shows 

the distribution of class rank that a student with median statewide achievement would receive 

in each of the 13 cohorts from 1995 through 2007, by each school-subject group. Each school-

subject is one column on the horizontal axis, which we have scaled from 1 to 100 for ease of 

interpretation.13 The school-subject groups are sorted such that median class rank of the state 

 
13   We collapse schools-subject values into 100 percentiles, but the conclusions are unchanged when 
using finer data. 
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median student is increasing, e.g. each school-subject group has up to 13 observations, and 

the medians of these groups are used to sort school-subject groups. 

We plot the class rank of the state median student at given percentiles (10th, 25th, 50th, 

75th, 90th) within the school-subject over the 13 cohorts.  There is considerable variation within 

a school-subject group for students at the statewide median level of achievement. For 

example, median state students enrolled in a school at the 50th elementary school-subject 

group could have ranks as low as 0.4 (10th percentile) or as high as 0.6 (90th percentile) 

depending upon which cohort they enrolled in at the school.  This variation in rank would 

make it very difficult to sort actively on the basis of rank, even if parents had such preferences, 

full information about the school environment, and exact measures of student human capital 

before choosing a school. Hence, we think that active sorting is unlikely to be a problem in 

our setting and in similar settings in the United States. 14 

Even though it is difficult for a parent to actively sort their child into a school so as to 

guarantee the child’s precise rank, the gradient in Figure 2 shows that in some schools a 

student at the statewide median will consistently have a high class rank (right hand side), 

while in others they would have a low rank. If students with certain characteristics 

systematically attend schools with a certain test score distribution, then this is what we refer 

to as passive sorting.  

Passive sorting could also generate a spurious rank effect. To see this, let us return to 

panel A of Figure 3, which shows two types of schools, both with achievement approximately 

normally distributed with the same mean, but such that Type A has high variance in student 

achievement while Type B has low variance. Further consider two types of students whose 

type impacts their future outcomes independent of rank, such as disadvantaged and non-

disadvantaged. The red line shows two students whose achievement is the same distance 

above their classroom mean in their respective distributions. Students at this point in the high-

variance class will have systematically higher rankings than students in the low-variance 

class. If students are randomly assigned to classes, then rank will be uncorrelated with student 

characteristics such as disadvantage. However, if non-disadvantaged students more often sort 

 
14 If motivated parents sorted on the basis of the mean attainment of peers, then this would be 
negatively correlated with student rank and would downward-bias the effect.  
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into distribution Type A and disadvantaged students more often sort into distribution Type 

B, then rank becomes correlated with student characteristics (in this case disadvantage) 

conditional on test scores and class fixed effects. This would generate a spurious rank effects 

due to the passive rank-sorting into certain types of schools. In this hypothetical example, 

student characteristics are correlated with rank and future outcomes. This highlights that 

distributions with different variance can generate a spurious relationship between rank and 

student characteristics through passive sorting. 

This is a simple example where only the variance of the class differs. However, the 

principal of passive sorting can be applied to schools varying in any higher moment of the 

test score distribution. All that needs to occur is for students of a certain type and achievement 

to systematically attend schools with distinct distributions from other types of students. If this 

is the case, then rank can become correlated with student characteristics conditional on 

achievement. Figure 3, Panel B provides another illustration of this, where two students with 

the same achievement relative to the classroom mean will have different ranks due to the test 

score distribution. As in Panel A, students in school type B will have a higher rank for a given 

distance to the class mean.  This is a problem if students of a certain type systematically attend 

a school with this type of distribution. One way to address this is to control for predetermined 

characteristics such as gender, race, and income to alleviate some of these concerns, as shown 

in Equation 4. 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑔𝑔�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (4) 

However, it is unlikely that researchers can control for all relevant student characteristics 

because many are likely to be unobserved. We believe it is nevertheless informative to study 

coefficient movements across specifications with/without student controls to quantify 

potential biases through the passive sorting mechanism. But ultimately, studying coefficient 

movements based on observable controls alone is not satisfactory. 

Note that we have discussed passive sorting with regards to student characteristics; 

however, any factor that is systematically related to the test score distribution of the school 

may cause a spurious relationship between rank and the outcomes. For example, there is 

substantial segregation by income in Texas schools and so a low-income student and a high-

income student with the same human capital are likely to have different school environments 
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and distributions. We document this fact in Appendix Figure 9. In this figure, we show 

average classroom distribution characteristics for students from various demographic 

backgrounds (FRPL, race, and ethnicity). We calculate this by computing the average 

classroom median achievement, 90th percentile achievement, and so on for students of 

different characteristics. Notably, the average class median is lower for lower-income 

students, and also for black and Hispanic students. In general, Appendix Figure 9 shows that 

the average classroom that minority and low-income students experience has lower 

achievement. 

As illustrated above, the inclusion of class fixed effects would not account for this 

passive sorting based on higher moments of the distribution. The intuition is that classroom 

fixed effects account for the effects of a higher-order moment (such as variance) that affect all 

students equally. However, the relationship between variance and rank depends on a 

student’s achievement. For students at the mean level of achievement, higher variance does 

not affect rank, whereas for students at the 75th percentile of statewide achievement, variance 

is negatively correlated with rank. This is fine if there is random assignment of students to 

classrooms. However, if certain types of students are assigned to high-variance classrooms, 

this will generate a relationship between rank and student type. Hence, controlling for 

variance in an additively separable way does not address this problem. 

Fortunately, there is a solution to passive sorting—researchers should make 

comparisons among classrooms of a similar type, that is with similar test score distributions. 

If distributions are similar, then there is less scope for features of the distribution to be 

systematically correlated with rank, leaving variation in rank to be more likely due to 

idiosyncratic variation.15 To accomplish this, we modify our estimating equation by allowing 

𝑔𝑔(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) to vary by characteristics of the test score distribution, indicated by 𝑔𝑔𝑑𝑑(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). 16  

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑔𝑔𝑑𝑑(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (5) 

 
15 Note that if schools within a type all had exactly identical distributions, there would be no variation 
in rank for a given test score, hence we still require sampling variation to exist within types.   
16 Alternatively, Equation 4 could be estimated within groups of distributions and then aggregated 
across groups. 
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In doing so, this addresses passive sorting through making comparisons among 

similar distributions. If comparisons are among very similar distributions, conditional rank is 

unlikely to be correlated with student characteristics because sorting into classrooms of 

similar distributions is likely to be much smaller than sorting to classrooms of different 

distributions. This equation is closer to our hypothetical where students only experience a 

different rank due to sampling variation in the test score distribution, rather than systematic 

differences, because in the thought experiment, students are randomly assigned to classes. 

One way to achieve comparisons among similar distributions is to classify distributions of 

student achievement into groups based on characteristics of the distribution (for example 

mean and variance) and interact 𝑔𝑔() with indicators for these groups of distributions.17 

Essentially this relaxes the assumption that the relationship between achievement and 

classrooms is additively separable.  

Interacting achievement with features of the class distribution is our preferred 

specification. The identifying assumption is a conditional independence assumption which is 

that 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⊥  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  where 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is realized rank conditional on 𝑔𝑔𝑑𝑑�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�,𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑖𝑖𝛽𝛽.  

2.3. Specification error 

The conditional independence assumption can be restated slightly.  Consider the 

following equation where 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 is specification error. 

 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑔𝑔𝑑𝑑(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (6) 

If there is any specification error, we would need to assume that it is unrelated to rank, 

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ⊥ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .18 One example of a violation of this assumption is if different schools map current 

achievement to future outcomes differently. As an example, in a high-achieving classroom 

high test scores would lead to more four-year college enrollment and less two-year college 

 
17 Another way would be to estimate Equation 5 separately by groups of distributions and aggregate 
the resulting coefficients. Because student achievement is measured in percentiles and is uniformly 
distributed, school mean achievement will be correlated to the skewness of the school distribution. 
Low (high) mean achievement classes will typically have positive (negative) skewness. The skewness 
of a distribution can be important for passive sorting; therefore, allowing for the impact of 
achievement to vary by mean achievement could remain important even with SSC effects due to the 
correlation of the mean and skewness. 
18 This assumption is necessary even when students of different abilities are randomly allocated to 
classrooms. 
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enrollment. In low-achieving classrooms, high test scores might lead to more two-year college 

enrollment.  If human capital has a different relationship to future outcomes in one school 

versus another but is modelled as having the same relationship, this would introduce error 

into the model. If this error is correlated with rank, then our estimate of the rank effect would 

be biased.  

The solution to specification error is to allow the mapping of current achievement to 

future outcomes to be very flexible. This can be thought of as a partial relaxation of the 

assumption of additive separability of the classroom effects and of past achievement. 

Allowing the way current achievement is mapped to future outcomes to be flexible removes 

specification error from the relationship between rank and future outcomes. Consequently, 

papers using this strategy should include robustness exercises where results are shown for 

different flexible specifications of achievement.19 Stability of estimates for different flexibly 

specifications of achievement is consistent with 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 ⊥ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖. 

2.4. Measurement error in human capital  

Last, we do not have direct measures of human capital, instead using student 

achievement in externally graded statewide examinations. We use third-grade test scores 

because it is the earliest achievement measure available. Ideally, we would rank students 

based on a before-school measure of achievement, so that it would be unaffected by their 

ranking in the class. This would be the most similar to the human capital measurement in our 

thought experiment. However, there is no statewide data on student ability available before 

third grade.20 We choose the earliest measure to study how childhood conditions affect a range 

of (long-run) outcomes. It is possible to estimate the impact of later grade ranks on outcomes. 

However, as we find that future test scores are linearly increasing with previous rank, it means 

that later rank itself is an outcome and that rank is self-perpetuating. Hence, it is difficult to 

determine when a child’s ranking has the largest impact. 

 
19 Again, this applies to the estimation of rank and of other types of peer effects, and includes settings 
that use classroom randomization. 
20 As we find the impact of rank is linear on future achievement, the effects of rank are rank 
preserving. Therefore using measures of human capital at the beginning or end of a grouping are 
equivalent. Rank within a group would impact the prior achievement parameters, but would not 
impact the rank parameters. We choose the earliest measure to minimize any concerns about rank 
effects contaminating the achievement metric. 
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One concern is that despite having the same absolute achievement measures (e.g. the 

same scores on the same test), these test scores are a noisy measure of true human capital. 

Measurement error could be at the individual level or at the class level. Individual-level 

measurement error would attenuate any rank effects, as is common in many settings.21 In 

contrast, class-level measurement error in test scores could potentially generate a spurious 

relationship between rank and achievement. An example of a class level measurement error 

would be a disturbance on test day. This class shock would affect all students’ test scores, 

creating measurement error in our measure of human capital, but would also be rank 

preserving. Such class-level measurement error that cannot correlate with rank is not a 

concern because of the inclusion of the classroom fixed effects which would account for such 

shocks. 22 

In summary, our preferred specification will address the problems in the estimation 

of the effect of rank. First, we demonstrate that active sorting on the basis of rank would be 

impractical, and if existent would likely downward-bias the rank effect. Second, we show that 

passive sorting can be addressed by comparing similar distributions. Third, we show that 

misspecification can be addressed by flexibly controlling for the mapping of current 

achievement to future outcomes. While we describe each of these issues separately, in reality 

they are likely to be interrelated. For example, students could be passively sorted to schools 

which have different mapping functions to future outcomes. Notably, addressing passive 

sorting will not necessarily solve misspecification. We return to determining the exact 

specification of Equation 6 in Section 4.  

 

 
21 Despite the measurement error in treatment being nonstandard, as it will be correlated nonlinearly 
with achievement, in Section 6.2 (and Appendix Figure 6) we show that adding measurement error to 
achievement and then recalculating ranks on this measure will lead to a downward bias. 
22 Class-level measurement error in test scores, which is rank preserving, would make rank a proxy 
for underlying ability, because the same absolute achievement measures in different schools will 
reflect different levels of human capital. In this case, larger measurement error would cause test 
scores to become less reliable, but would leave rank unaffected, which would lead to rank acting as a 
proxy for underlying student human capital and generate a spurious “effect” of rank. Since 
researchers always have imperfect measures of human capital, this provides an additional motivation 
for including class fixed effect. 
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3. Data 

This study uses de-identified data from the Texas Education Research Center (ERC), which 

contains information from many state-level institutions.23 Data concerning students’ 

experience during their school years cover the period 1994–2012, although the primary 

estimating sample will focus on the 13 cohorts of 1995–2007. These data contain demographic 

and academic performance information for all students in public K–12 schools in Texas 

provided by the Texas Education Agency (TEA). These records are linked to individual-level 

enrollment and graduation from all public institutions of higher education in the state of Texas 

using data provided by the Texas Higher Education Coordinating Board (THECB).24 

Ultimately, these records are linked to students’ labor force outcomes in years 2009–17 using 

data from the Texas Workforce Commission (TWC). This contains information on quarterly 

earnings, employment, and industry of employment for all workers covered by 

Unemployment Insurance (UI).25 

3.1. Constructing the sample 

The sample used for this analysis consists of students who took their third-grade state 

examinations for the first time between 1995 and 2007.26 We focus on students taking their 

third-grade exam for the first time to alleviate concerns regarding the endogenous 

relationship between class rank and previous grade retention. We focus on students taking 

their exams in English, rather than Spanish. During this period, third-grade students took 

annual reading and math assessments, although the testing regime changed.27 Consequently, 

 
23 For more information on the ERC, see https://research.utexas.edu/erc/ 
24 We do not observe out-of-state enrollment or enrollment at private institutions in Texas. Hence, if 
higher rank tends to cause students to leave the state, we will underestimate the effect of rank on 
college attendance. 
25 Unemployment insurance records include employers who pay at least $1,500 in gross earnings to 
employees or have at least one employee during twenty different weeks in a calendar year regardless 
of the earnings paid. Federal employees are not covered. We do not observe out-of-state employment. 
Hence, if higher rank tends to cause students to leave the state, we will underestimate the effect of rank 
on earnings. 
26 A student is defined as taking their third-grade exam for the first time if the student was observed 
not being in the third grade in the previous year.  
27 Until 2002, the Texas Assessment of Academic Skills (TAAS) was used. Starting in 2003, the Texas 
Assessment of Knowledge and Skills (TAKS) was used. The primary differences had to do with which 
grades offered which subject tests. This does not affect this study substantively as all students took 
exams in math and reading for third and eighth grade. 
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we percentilize student achievement by subject and cohort. This ensures that the test score 

distribution for each subject is constant and uniform for each cohort.28 For each student, we 

generate a rank within their elementary school cohort for math and reading based on their 

test scores, including those who had been retained in their grade. 

We link students to subsequent outcomes, including performance in reading and math 

in eighth grade. Because rank may affect grade retention, we estimate the impact on eighth 

grade test scores only for students who took the test on time. We also consider classes taken 

in high school, including Advanced Placement (AP) courses, and graduation from high 

school. We then consider whether students enroll in a public college or university in Texas 

(separately by two-year and four-year schools), if they declare a Science Technology 

Engineering or Mathematics (STEM) major, and whether they graduate from college. Lastly, 

we examine earnings and the probability of having positive UI earnings. 

For binary outcomes, such as AP course taking, high school graduation, and college 

enrollment, we define the variable as 1 for the event occurring in a school covered by our data 

and 0 otherwise.29 For earnings, we consider average earnings including zeroes as well as 

excluding zeroes. 

To maximize the sample, we consider as many cohorts as possible for each outcome. This 

means that we have more cohorts for outcomes closer to third grade and fewer cohorts for 

later outcomes.30 For K–12 and initial college attended outcomes, we have 13 cohorts of 

students who took their third-grade tests between 1995 and 2007, giving 6,117,690 student-

subject observations. For graduating college in four years we have 10 cohorts (1995–2004), 

totaling 4,573,672 student-subject observations. For graduating in six years and post-college 

outcomes, for individuals aged 23–27 we have 8 cohorts (1995–2002), or 3,597,340 student-

subject observations, while we have 6 cohorts, or 2,647,240 students, for graduating with a BA 

within eight years. This explains the discrepancy in sample size across different outcomes.  

 
28 Murphy & Weinhardt (2020) show that when estimating rank effects, conditional baseline 
achievement should be uniformly distributed to prevent the possibility of a certain type of 
measurement error (one that increases multiplicatively further from the mean), generating a spurious 
rank effect. 
29 As an example, for college enrollment a student who does not attend any college, or attends a 
college out of Texas, will be coded as a zero. 
30 Results are similar when considering a consistent set of cohorts; see Appendix Figure 4. 
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Table 1 presents summary statistics. The sample is 47 percent white, 35 percent Hispanic, 

and 15 percent black. Seventy percent of students in the sample eventually graduate from a 

Texas public high school, while 46 percent of students attend a public university or college in 

the year after “on-time” high school graduation.31 Within three years of on-time high school 

graduation, 23 percent attend a public four-year institution in Texas, and 31 percent attend a 

Texas community college. When students are 23–27 years old, 65 percent have non-zero 

earnings, where the average non-zero earnings income is $24,818 in 2016 dollars. 

3.2. Rank measurement  

We rank each student among their peers within their grade at their school according to their 

state percentile in standardized tests in each tested subject.32 Put simply, a student with the 

highest test score in their grade will have the highest rank. However, a simple absolute rank 

measure would be problematic, because it is not comparable across schools of different sizes. 

Therefore, as with state test scores we will percentilize the rank score for individual i with the 

following transformation: 

 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖−1

,       𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ [0,1]  

where Njsc is the cohort size of school j in cohort c of subject s. An individual i's ordinal rank 

position within this group is nijsc,, which is increasing in test score. Here, Rijsc is the 

standardized rank of the student that we will use for our analysis and equals the percentile 

rank in their class. We refer to a student’s rank within their school-subject-cohort (SSC) as 

their class rank.33 For example, a student who had the second-best score in math from a school 

cohort of twenty-one students (nijsc = 20, Njsc = 21) will have Rijsc = 0.95. This rank measure will 

be approximately uniformly distributed, and bounded between 0 and 1, with the lowest- 

(highest-) ranked student in each school cohort having R = 0 (1). In the case of ties in test scores, 

 
31 On-time graduation is defined as graduation if a student did not repeat or skip any grades after third 
grade. 
32 Rank effects likely operate not only though the score on this particular exam, but also through more 
general performance in the class over a longer period of time. We are interested in the effect of rank in 
academic achievement and so use third-grade test scores as a convenient summary measure of class 
interactions. 
33 This is done because there are no data on class assignment during our analysis period. In Figure 11 
we present estimates using a sample of schools with 30 of fewer students per grade. Here an SSC 
grouping would represent a single class. Our parameter estimates are not meaningfully changed by 
using this subsample. 
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each of the students with the same score is given the mean rank of all the students with that 

test score in that school-subject-cohort.34 We will calculate this rank measure for each student 

within a test administration. 

Note that this is our measure of the academic rank of a student within their class. Students 

will not necessarily be told their class rank in these exams by their teachers, nor do we believe 

that students care particularly about their ranking in these low-stakes examinations.  Rather, 

we interpret our test score rank measure as a proxy for students’ day-to-day academic ranking 

in their class. Students learn about their rank through repeated interactions throughout 

elementary school with their class peers (e.g., by observing who answers the most questions 

or gets the best grades in assignments). Similar arguments can be made for teachers or parents 

learning about the rank of students. 

4. Model Specification  

As described in Section 2, it is imperative that the correct functional form is used to 

prevent specification error or passive sorting from causing a spurious rank effect. Therefore, 

a key choice is the proper way to model 𝑔𝑔(). There are two features that this function should 

meet: it should 1) make comparisons among similar classrooms to avoid passive sorting and 

account for potential heterogenous effects of achievement and classroom distributions; and 2) 

flexibly model the relationship between current achievement and future outcomes to avoid 

specification error. Put another way, what specification satisfies the conditional independence 

assumption and yields rank that is conditionally as good as random?  

A natural way to test for passive sorting, similar to a balance test in a randomized 

controlled trial, is replacing 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  in our specification with a predetermined characteristic. If 

the conditional independence assumption is satisfied, predetermined characteristics should 

not be correlated with rank. If observable predetermined characteristics are not correlated 

with rank, then it plausible that unobserved predetermined characteristics are also not 

correlated with rank. 

 
34 Our main analysis limits the sample to students who took their third-grade test on time. However, 
their actual classroom consists of students who are on time and students who are not. In Appendix 
Table 1 we show that our results are very similar when we calculate rank using all students and using 
different methods to break ties. 
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We first start with a specification akin to Equation 4, omitting student characteristics, 

with a flexible function of achievement, 𝑔𝑔�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�, which does not vary by school. Specifically, 

we include 19 indicators for all but the tenth ventiles of student achievement. This allows for 

nonlinear relationships between prior test scores and future outcomes.35 To allow for 

comparison across classes with similar distributions we then interact student achievement 

with indicators for the school’s location within the distribution of schools according to mean 

and variance in achievement, akin to Equation 5. 

Table 2 shows the correlations between student rank and the following student 

characteristics: Male, Low Income (FRPL proxy), English as a Second Language, race/ethnicity 

categories. Each panel shows the correlations for a different specification: Panel A shows 

constant impacts of ventiles of achievement, which then we allow to vary by quartiles of 

school mean achievement (Panel B); deciles of school mean achievement (Panel C); quartiles 

of school variance in achievement (Panel D); deciles of school variance in achievement (Panel 

E); and the interactions of the quartiles of school mean and variance in achievement (Panel 

F).36  Panels A–E show that rank is correlated with predetermined student characteristics. This 

suggests that these specifications have issues with passive sorting.  However, Panel F shows 

that interacting 16 indicators for school variance and mean quartiles eliminates any imbalance 

we have. Therefore, our preferred specification is  

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  � 𝕀𝕀𝑛𝑛( 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟)
20

𝑟𝑟=1,𝑟𝑟≠10

𝜌𝜌𝑟𝑟 + � � 𝕀𝕀𝑛𝑛� 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡�
20

𝑡𝑡=1,𝑡𝑡≠10

16

𝐷𝐷=1

𝕀𝕀𝑑𝑑(𝑑𝑑𝑖𝑖 = 𝐷𝐷)𝜇𝜇𝑛𝑛𝑑𝑑 + 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑖𝑖𝛽𝛽

+ 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖         (7) 

where 𝕀𝕀𝑛𝑛( 𝑅𝑅𝑖𝑖𝑗𝑗𝑠𝑠𝑐𝑐 = 𝑟𝑟) denotes an indicator function, which takes a value of one when the ventile 

of class rank 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 matches 𝑟𝑟. This allows for potential nonlinearities in the effect of rank on 

later outcomes by estimating parameters (𝜌𝜌𝑟𝑟) for each ventile in rank (omitting the tenth 

ventile). We have defined 𝑔𝑔𝑑𝑑(. ) in a similar manner, by allowing for separate impact for each 

 
35 In Figure 11 we show our results are robust to alternate functional forms. We chose ventiles as our 
main specification as we did not want to allow the rank function to have more flexibility than that of 
baseline achievement.  
36 Using school mean has two advantages. First, it allows a different mapping from achievement to 
future outcomes in different settings, which deals with the issues of misspecification. Second, due to 
the bounded nature of test scores, the mean is generally correlated to the skewness of a distribution. 
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of the ventiles of baseline achievement  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, which can vary at the school distribution level, 

𝑑𝑑𝑖𝑖. Schools are characterized by their quartiles in the distributions of mean achievement and 

variance, providing 16 school distribution groups, 𝐷𝐷.  

Appendix Figure 2 shows the remaining variation in class rank for a given test score within 

each of these distributions. This figure plots the class rank of students against their 

achievement de-meaned by school within a subject, for each of the 16 types indexed by 𝐷𝐷. The 

relationship between rank and achievement resembles that presented in Appendix Figure 1, 

but we now see that as the mean and variance of classes change, the expected rank for a given 

test score also changes. For example, distributions in the top row (with the smallest class 

variance) have a shallower gradient than those in the fourth row. Regardless, there still exists 

sufficient variation in rank conditional on achievement to estimate the effects of rank even 

within these distribution types. 

In summary, using this specification (Equation 7) we do not observe imbalance in 

observable characteristics, and so assume the remaining variation in rank to be likewise 

orthogonal to unobservable factors that determine our outcomes. We show that our main 

findings are robust to these choices in Section 6.1 below. We now present our main findings 

using Equation 7 as our model.37 

5. Results 

We will primarily present results for Equation 7 by plotting the estimate coefficients, 𝜌𝜌𝑛𝑛, along 

with the 95 percent confidence intervals. All estimates will be relative to the tenth ventile that 

includes students ranked from the 45th to the 50th percentile in their class. Because there are 

many estimates for each outcome, we present the results visually.38 

5.1. K–12 outcomes 

We first consider the probability of repeating third grade. Panel A of Figure 4 shows that 

lower-ranked students are more likely to repeat third grade even after conditioning on 

 
37 Note that we observe two test scores, one each for students’ math and reading. For most outcomes 
we stack observations so that each student has two observations. For outcomes that are subject 
specific, we estimate specifications that have both math and reading rank and achievement entered 
separately to investigate whether rank in math and reading have different effects. 
38 The corresponding estimates and standard errors are available in table form upon request. 
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achievement. The impact of rank on retention decreases as the rank of the student increases. 

Those in the lowest ventile of the rank distribution are 6 percentage points more likely than 

the median ranked student to be retained, this retention effect halves for the second lowest 

ventile.  Moving a student from being ranked last to being ranked in the 25th class percentile 

reduces the probability of retention by roughly 5 percentage points. This is approximately 

twenty times as large as the increase in probability of retention associated with FRPL (0.003) 

or ESL (0.002) status. Given the mean retention rate of 1.6 percent, this represents a sizable 

shift in how students are treated by their schools, independent of their human capital. Once 

students reach the 40th class percentile, rank has no significant impact on retention. This 

suggests that at least some of the rank effect is likely coming from the way the school treats 

low-ranked students. 

We next examine the effect of third-grade rank on achievement in the eighth grade as 

measured in state test score percentiles. Figure 4 Panel B shows an approximately linear effect 

of rank in the third grade on academic performance. Moving from the 25th percentile to the 

50th percentile in rank (or from the 50th to the 75th) improves grade eight performance by 

approximately 2.5 percentiles. For comparison, students with non-FRPL have on average 4 

percentiles higher achievement than their FRPL counterparts, and which is the same as the 

gap between White and Non-Hispanic Black students. 

This is similar to the estimates in Murphy and Weinhardt (2020) that consider 

outcomes at comparable ages in England, finding that the same change in rank at the end of 

primary school (age 10/11) improves performance in national tests at age 13/14 by 1.9 

percentiles. This is estimated on students who took the test in eighth grade “on time.” As we 

have seen, however, rank causes some students to be retained and will also determine 

whether students are included in this estimating sample.39 Hence, when interpreting the 

estimates of the effect on eighth-grade test scores, one should bear in mind that the sample is 

selected on the basis of the treatment.40 

 
39 Appendix Figure 3 illustrates that rank affects the probability of taking the eighth-grade tests on 
time. 
40 To bound the estimates, one could consider not taking the test on time as the lowest possible score; 
our estimates would then be a lower bound of the effect of third-grade rank on eighth-grade test 
scores. 
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The results for rank’s impact on eighth-grade test scores are not novel, but they do 

corroborate that similar rank effects occur in different educational systems, establishing the 

external validity of each estimate. Moreover, they provide a mechanism for the later outcomes 

we observe. In particular, student achievement in eighth grade is correlated with many 

outcomes including high school achievement, class taking, college enrollment and success, 

and labor market outcomes. 

The first high school outcome we consider is whether a student takes Advanced 

Placement courses.  In the first two panels of Figure 5 (A and B), we use our standard 

specification where the two observations for math and reading for each student are stacked, 

such that we are estimating the mean rank coefficients across subjects. We see that elementary 

school achievement rank positively impacts the probabilities of taking AP Calculus and AP 

English. In both cases, these effects are driven by being highly ranked among classmates 

during elementary school. The pattern and magnitude of the estimates are similar for taking 

both AP subjects, with students around the 75th percentile being around 2 percentage points 

more likely to take AP compared with the median student. Note that the baseline rates for 

taking AP Calculus and AP English for our sample are 8.4 percent and 19.0 percent 

respectively. The exception that there is a discontinuous jump in the probability of taking AP 

Calculus if the student is in the top ventile of their elementary school. Students in the top 

ventile are 6 percentage points more likely to enroll in AP Calculus than the median-ranked 

student.   

The second two panels of Figure 5 (C and D) consider the effect of elementary school 

rank in each subject. To do so we control for achievement and rank in third-grade math and 

reading separately and simultaneously. Panel C shows the impact on taking AP Calculus. A 

higher rank in math causes more students to take AP Calculus. Most of this effect occurs for 

students above the median in rank, whereas below the median there are only small differences 

in the probability of taking AP Calculus. In contrast, a student’s rank in reading has very little 

effect on taking AP Calculus for students with rank above or below the median.  The final 

panel (Panel D) shows the impact of third-grade rank on taking AP English courses. As before, 

rank in math has a stronger effect than rank in reading. Here, however, having a high rank in 
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reading does positively impact the probability of taking AP English courses. This is evidence 

that some rank effects are subject specific while some have spillover effects into other subjects. 

The final set of K–12 outcomes we consider is whether a student graduated from high 

school. The time frame we consider is within three years of on-time high school graduation, 

defined as graduating nine years after third grade to avoid issues of grade retention. In our 

sample, 70 percent graduate from high school by this definition (i.e. at most twelve years after 

third grade). The impact of third-grade rank on high school graduation can be seen in Figure 

6 Panel A. A higher rank makes students more likely to graduate from high school. The effect 

is approximately linear, with impact of rank gradually declining as rank increases.  Moving 

from the 25th to 75th percentile in rank increases the probability of graduating from a public 

Texas high school by 4 percentage points. In comparison, Asian students are 4.6 percentage 

points more likely to graduate than White students, and FRPL students are 11 percentage 

points less likely to graduate than non-FRPL students. 

In summary, a student’s rank in third grade independently affects grade retention, test 

performance five years later, class selection, and ultimately graduation. As we examine 

longer-term outcomes, these changes throughout schooling will be some of the channels that 

affect outcomes such as college education and earnings. 

5.2. College outcomes 

After high school, students face the choice of whether to enter post-secondary education. 

Figure 6 Panel B presents enrollment in any public college in Texas. Rank has a largely linear 

effect on the probability of enrolling in college in Texas. Moving from the 25th to 75th percentile 

in rank leads to an approximately 4-percentage-point increase in college-going. However, 

there is a discontinuous fall in the likelihood of attending college if students were in the lowest 

ventile, compared to the second-lowest-ventile of 1.5 percentage points. This is the same 

magnitude as the FRPL coefficient. 

To understand this pattern better, we consider enrollment in two-year and four-year 

schools separately in Figure 6 Panels C and D. Figure 6 Panel C considers enrollment in two-

year institutions. Having a low rank reduces the probability of going to community college, 

whereas high rank is not strongly correlated with attending community college. Again, there 

is a discontinuous fall in the likelihood of attending college if students were in the lowest 
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ventile: those in the bottom ventile are 4 percentage points less likely to enroll in community 

college compared the baseline enrollment rate of 31 percent.  Figure 6 Panel D shows the 

impact on enrollment in a four-year institution. Enrollment is increasing in rank, and this is 

driven by primarily by students ranked above the median with the effect of rank increasing 

in rank. The contrast of the effects of enrollment by school type is likely driven by who is at 

the margin of attending a community college versus a four-year institution. 

Once at college, students can declare a major. Given the significant financial returns to 

STEM majors, we now estimate the ultimate impact of third-grade rank on the probability of 

a student declaring a STEM subject as their first major. Figure 7 Panel A shows that there is a 

comparatively small positive relationship between students’ rank in elementary school and 

their likelihood of choosing a STEM major, an effect which is driven largely by top-ranked 

students.41 Like AP choice in high school, major choice is likely to be impacted by students’ 

rankings in particular subjects, and this previous estimate is the average effect of both reading 

and math ranks. To explore this, Panel B of Figure 7 presents the impacts of third-grade math 

and reading rank on declaring a STEM major. Here we find that the relationship is entirely 

driven by math rank, with top-ranked math students over 2 percentage points more likely to 

choose STEM over the mean STEM uptake rate of 4 percent. In contrast, neither top or bottom 

reading rank impacts the probability of declaring a STEM major. 

Continuing with post-secondary outcomes, the panels in Figure 8 consider graduation 

with a bachelor’s degree within various time frames—4 years (Panel A), 6 years (Panel B), and 

8 years (Panel C) after “on-time” graduation from high school. We find that students with 

higher rank in elementary school are more likely to graduate with a bachelor’s degree. 

Consistent with the effects on enrollment, the effect of rank is largely driven by rank above 

the median. The impact of being top of class in terms of percentage points is smallest for 

graduating within 4 years at 2.4 percentage points relative to the median-ranked student, 

compared to 3.4 and 3.3 percent for 6 and 8 years respectively.  

 
41 We code students who declare a STEM major as 1 and students who do not (including students 
who do not enroll in college) as 0. Hence, estimates will conflate the effect of rank college enrollment 
and declaring a STEM major. 
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5.3. Labor market outcomes 

We consider the effects of rank on a range of labor market outcomes. First, we examine 

employment outcomes for students aged 23–27 (or 15–18 years after third grade). We consider 

average annual earnings between the ages for eight cohorts of students who took their third-

grade examinations between 1995 and 2002 (employment years 2009–2016).42 The first panel 

in Figure 9 considers the probability of having positive earnings at age 23–27. The outcome is 

the proportion of years between 23-27 with a positive earning measure. A value of 1 would 

mean having positive earnings recorded in each of these years, a value of 0 would mean 

having no recorded earnings between ages 23 and 27. The pattern in Panel A suggests there 

is little effect of rank on the probability of having positive earnings except for the lowest-

ranked students, who are 1 percentage point less likely to record positive earnings than the 

median-ranked student.43 

The remaining panels of Figure 9 refer to the effect of rank on earnings. Panel B shows that 

increasing rank increases average annual earnings between the ages of 23 and 27. Low-ranked 

students have meaningful earnings penalties, earning on average $1,850 per year less than the 

median-ranked student. High-ranked students likewise see increases in earnings, with the 

highest-ranked students earning $1,200 more per year on average than the median student. 

The lower two panels show the effect on non-zero earnings and log earnings (Panels C and D 

respectively). Conditional on having positive earnings, we find the negative impact of having 

a low rank is exacerbated. Students at the bottom now earn $1,250 less per year, compared to 

students in the middle of the rank distribution.  

With regards to the log of average annual earnings, we see that rank affects average 

earnings throughout the distribution of rank. Taken together, a student’s rank in third grade 

affects labor market outcomes. Moving from the 25th percentile to the 75th percentile in rank 

causes log earnings to increase by approximately 7 log points. This is comparatively smaller 

in magnitude than the parameter for other student characteristics. For example, conditional 

 
42 Note, not all individuals have four years over which to average employment. Those from the most 
recent cohort only have one year of labor outcomes, for instance. We average over all years from age 
23 to 27 for which we have earnings. Appendix Figure 4 Panel D shows the impact on log earnings for 
the 8 cohorts of students for which we have all five years of earnings (who took third grade 1995–2002). 
43 This shows rank does not cause differential attrition from our earnings sample. 
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on third grade achievement and SSC effects males on average earn 20 log points more than 

females and Non-Hispanic Blacks earn 10 log points less than Whites. However, it is 

important to consider that these characteristics are contemporaneous with employment, 

where as a student’s academic rank in third grade occurred up to 19 years ago. 

6. Robustness 

In Section 2 we discussed the concerns relating to correctly specifying the functional form so 

that omitted factors are not driving the results. In Section 4 we used balancing regressions to 

empirically inform the choice of functional form for our regressions. In this section we show 

that our results are robust to several alternative specifications, as well as to different samples, 

rank definitions and measurement error in baseline ability.  

6.1. Functional form choices 

First, we model the relationship between baseline achievement and outcomes using 

various functional forms. Figure 10 presents results for four main outcomes: eighth-grade test 

scores, graduation from high school, the probability of attending any college, and log 

earnings. The point estimates are displayed for various functional forms of student 

achievement, interacted with sixteen indicators for school mean and variance quartiles. In 

addition to our main specification (which controls for achievement using ventiles in student 

achievement interacted with indicators for classroom distribution type), we model student 

achievement using various polynomials from first order to a sixth-order interacted with 

indicators for classroom distribution type. The results are substantively similar once 

achievement is controlled for with a quadratic—the magnitude does vary somewhat across 

specifications, but the direction of the relationship is consistent.44 Hence, our results showing 

that rank has a lasting impact on student outcomes are not dependent on the exact functional 

form chosen to model achievement.  

In addition to choices of nonlinearity in 𝑔𝑔𝑑𝑑(), we also allow of the impact of prior 

achievement to vary by the school achievement distribution. We have shown in Section 4 and 

 
44 The fact that only allowing for a linear impact of percentile rank leads to different estimates may be 
reflective of the predetermined human capital distribution being normally distributed, which we have 
transformed into a uniform distribution through percentalization.  
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Table 2 that the interaction of achievement with 16 indicators for school mean and variance 

results in observable covariate balance. As a result, we use this as our main specification. 

However, we show that our results are not dependent on this specific functional form 𝑔𝑔𝑑𝑑() for 

most outcomes. 

Appendix Table 2 repeats the six interactions of achievement with ways of classifying 

school distributions and shows how these impact the estimates on outcomes. Looking at either 

end of our outcomes chronologically, we can see that the positive impact of rank on not 

repeating third grade, eighth-grade test scores, high school graduation, and log wages 

manifests regardless of exact specification. The coefficients tend to increase in magnitude as 

we allow for more flexible interactions with achievement. This is consistent with the 

imbalance in rank found in Table 2, where more disadvantaged students appeared to have 

higher rank conditional on achievement, and this imbalance decreased once we allowed for 

more flexible functional form. Notwithstanding these slight differences between 

specifications, the estimates are largely consistent.  

Two outcomes are different when comparing our preferred specification to the other 

specifications: enrollment in any college and graduation with a bachelor’s degree. In both 

cases, the coefficient on rank becomes negative if we do not allow the impact of achievement 

to vary by test score distribution. We investigate the sources of this bias in Appendix Figure 

5. For the uninteracted specification where there is imbalance, estimates of the effect of rank 

are very similar when controlling for predetermined characteristics relative to not controlling 

for them. This suggests that imbalance in predetermined covariates is not generating this bias 

in the estimates, which highlights the importance of functional form, because the bias in these 

estimates likely arises due to misspecification of the 𝑔𝑔𝑑𝑑() function, where there are different 

mappings of achievement to outcomes across schools. While the imbalance in student 

characteristics is not driving the bias we observe, imbalance may be correlated to school 

unobservables which impact the mapping into future outcomes. Therefore, while 

misspecification and balance are independent concerns, they may often be linked. 

6.2. Miscellaneous robustness checks: school size, breaking ties, measurement error 

One data limitation is that we do not observe which classroom students are taught in 

for third-grade students. Hence, our main results use fixed effects for school-subject-cohort 
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(SSC), which we have been referring to as a class. Therefore, as a robustness check, we estimate 

the effects separately by the number of students in the third-grade school-subject-cohort. The 

smallest of these groups is under 30 students in a cohort, in which case the SSC would 

represent a single class. Note that estimates from such subsamples make the school 

distribution-type indicators effectively distribution-type-by-school-size indicators.  

Estimating the impact of rank by school size will provide information on two other 

potential concerns. First, given that we are using the sampling variation in the test score 

distribution, one may be concerned that the results are driven by schools with smaller cohorts 

as they would experience more sampling variation. Second, as we use percentile rank, a given 

percentile rank will represent different absolute rankings in schools of different sizes. 

Estimating separately by school size ensures that the percentile rank and absolute rank 

approximate each other within each subsample.    

Figure 11 presents the point estimates for under 30, under 50, 50–75, 75–100, and 100+ 

students in an SSC. While the effects tend to be larger for the larger schools, the pattern of 

results remain regardless of school size.  Moreover, the students in schools with fewer than 

30 students per school-subject-cohort are likely to all be in the same class during third grade, 

and the results hold.  

 In our main specification, we handle ties in rank by assigning students the mean of the 

rank. We consider other methods for breaking ties, including assigning the lowest rank, 

randomly breaking ties, and a rank only among students who are “on time” in third grade. 

Our results are qualitatively similar regardless of our method of dealing with ties. The results 

tend to be slightly smaller when we break ties randomly, which we attribute to the 

introduction of noise into our measure of rank (see Appendix Table 1).  

 We use third-grade student achievement on externally graded state examinations as a 

measure of each student’s human capital. The rank of each student within their class is derived 

from their test score and all the test scores of their class peers. This means that any individual 

non-systematic measurement error in student test scores has impacts on the two key 

explanatory variables, rank and achievement.45 This is potentially problematic for our 

 
45 We address any systematic measurement error at the class level, due to class-level shocks, with the 
inclusion of class fixed effects. Examples of this type of shock are a class having a particularly good or 
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estimation strategy, as both are subject to the same measurement error but to different 

degrees; this could generate a spurious relationship between student rank and gains in test 

scores or conversely attenuate a genuine relationship, depending on the extent of the 

mismeasurement.  

When measurement error is large both the test scores and the rank of the student could 

be impacted. One example is that if a student “got lucky” in an examination, we would record 

them as having a higher rank than they actually have. Subsequently, students with mistakenly 

high ranks would have inferior outcomes compared to students that were not mismeasured, 

which would downward-bias the rank parameter. In contrast, when measurement error in 

student test scores is low, rank may not be impacted at all. In this case measurement error 

only impacts our measure of human capital and not rank, meaning that it is possible for the 

rank measure to pick up some information about human capital that is lost in the test score 

measure. This could generate a spurious correlation between rank and future outcomes, as 

here achievement is just acting as a proxy for innate ability.  

Note that in addition, any measurement error in peers’ test scores may also generate 

additional measurement error in the rank determination. The combination of these factors 

makes this a nonstandard measurement error problem. Specifically, we have nonlinear and 

nonadditive measurement error, in rank which will be correlated to the measurement error in 

human capital, and it is unclear how this would impact the rank parameter in practice.46  

To gauge the importance of this problem in our setting we perform a data-driven 

bounding exercise following the approach of Murphy and Weinhardt (2020).47 We implement 

a set of Monte Carlo simulations which add random noise to our baseline measure, recompute 

 
bad teacher, or a disturbance on examination day. This is critical as such shocks would be rank-
preserving.  
46 We discuss the nature of measurement error in this context in the Appendix. Two solutions to 
nonclassical measurement error, repeated measurements and instrumental variables (Schennach, 
2016), are not available to us. We are using the first standardized test scores of each student; all later 
test score measures are potential outcomes and so could not be considered a repeated measurement. 
Using the test score from the other subject as an instrument is also not valid, as it does not meet the 
exclusion restriction. As we show in Figure 5, the rank (and test scores) in other subjects have 
spillover effects across subjects. 
47 Murphy and Weinhardt (2020) address the same problem and show that additive random noise 
would nonlinearly downward-bias the effect of class rank depending on the extent of the 
measurement error. 
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the student ranks based on this (more) noisy measure, and estimate our main results. We do 

this for three types of measurement with three levels of measurement error, performing 100 

simulations of each.  

First, we add measurement error drawn from a normal distribution 𝑛𝑛(0,𝜗𝜗), where 𝜗𝜗 

takes the values of 10%, 20%, and 30% of the standard deviation in the third-grade 

achievement. Appendix Figure 6 shows the resulting estimates for our main outcomes. All the 

point estimates using data with additional measurement error are smaller in magnitude than 

our main estimates, and the estimated effect sizes continue to decrease as the amount of 

measurement error increases. The intuition for such a downward bias is that the “lucky 

student” will have higher baseline achievement and rank than they should have had; we 

therefore expect to observe these students (who are artificially highly ranked) having lower 

growth in test scores than expected. 

Second, we add measurement error drawn from a uniform distribution 𝑢𝑢[−𝜗𝜗,𝜗𝜗], 

where 𝜗𝜗 takes the values of 10%, 20%, and 30% of the standard deviation in the third-grade 

achievement. Appendix Figure 7 presents the simulation results for our main estimates with 

this additional uniform noise. These estimates are all smaller than our main effects, but 

increasing amounts of uniform noise in student test scores has no significant impact on the 

rank estimates, with the exception of eighth-grade test scores in the top half of the rank 

distribution.  

Third, we add heterogenous measurement error, which increases the further we go 

from the state median achievement. This reflects the possibility that examinations are less 

accurate at the extremes and are targeted to measuring differences in ability within the 

middle part of the distribution. The additional measurement error was drawn from a normal 

distribution transformed by twice the student’s absolute distance from the median plus 0.5, 

(2|𝛼𝛼|) + 0.5, namely 𝑛𝑛(0,𝜗𝜗) × (2|𝛼𝛼| + 0.5). This is to ensure the mean of the scaling factor is 

1, making it comparable to the normally distributed measurement error (in mean and 

variance). As before, 𝜗𝜗 takes the values of 10%, 20%, and 30% of the standard deviation in 

the third-grade achievement. Despite being scaled by the same amount on average, the 

impact of this type of noise on our estimates is considerably smaller than additional 

normally distributed measurement error (see Appendix Figure 8).   
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In summary, measurement error in test scores, which are then used to determine 

rank, generates nonlinear and nonadditive measurement error in rank, which will be 

correlated to the measurement error in human capital. A priori it is unclear how this would 

impact the rank parameters. We show that in practice increasing measurement error in 

student test scores attenuates the rank effect.   

 

6.3. Heterogeneity  

In this section we explore the heterogeneity of rank effects on the four main outcomes: (1) 

eighth-grade test scores; (2) graduating high school; (3) enrolling in college; and (4) log 

average earnings ages 23–27. We explore this for three predefined variables; race (white/non-

white), gender (male/female), and Free and Reduced-Price Lunch (FRPL) eligibility in third 

grade (eligible/non-eligible). We present the estimates for each of these categories in Figures 

12, 13, and 14, respectively.  

First, is the impact of third-grade rank different for white and non-white students? Figure 

12 shows that the effects of rank on eighth-grade test scores are similar by race. In contrast, 

the effects of rank on high school graduation are more pronounced for non-white students, 

for both low and high ranks. There is a more distinct difference when considering the impact 

on college attendance by race. Having a low rank in elementary school has a considerably 

larger negative effect on college attendance for non-white students compared to white 

students. The lowest-ranked non-white students are 7.5 percentage points less likely to attend 

college than the median-ranked student; in contrast, the lowest-ranked white students are 

only 1 percentage point less likely to attend. Once above the median rank, white and non-

white students react in in a similar manner to their rank. We find that the effects of rank for 

low and high ranks are larger for non-white students, similar in pattern to high school 

graduation.  

In contrast to the large differences by race, there is no evidence for heterogeneity with 

respect to gender for test scores, high school graduation, and college attendance. (Figure 13). 

This finding is different than Murphy and Weinhardt (2020), who show that boys’ secondary 

school test scores have a more positive reaction to high elementary rank and a less negative 
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reaction to having a low rank.  However, we find that the case of males experiencing a low 

rank does have a less negative impact on earnings compared to females.  

Finally, the heterogeneity of estimates with regards to FRPL students mirror those of 

white/non-white students, with the more disadvantaged group being more strongly affected 

by rank than their counterparts (Figure 14). This is true for test scores, graduation, college 

enrollment, and earnings. This finding is similar to Murphy and Weinhardt (2020) who find 

that in England, Free School Lunch students gain more from being highly ranked. One 

explanation is that these sets of students have low academic confidence or a different 

information set about achievement, and weight their school experience more heavily than 

non-disadvantaged students. This has important consequences for optimal classroom 

composition, which we discuss below. 

7. Implications for School Choice 

We estimate the effects of rank, net of SSC fixed effects. Traditional peer effects suggest that 

better peers should help performance. However, we show that having more better peers also 

has a negative effect by lowering rank. In this section we quantify the effects of rank as 

compared to the benefits of having better peers and school environments, and how these 

effects relate to other findings in the literature. 

 Consider the following thought experiment. A parent may move their child to a 

“better” school. This would come with a decrease in their child’s rank and a likely increase in 

the quality of their child’s peers. What would be the net gain in test scores from such a move?  

To operationalize this, we categorize elementary schools into “good”, “bad”, and 

“average” according to two different measures of quality, mean achievement and value 

added. First, mean third-grade achievement is simply third-grade achievement estimated on 

indicators for a student’s third-grade school (Columns 1–4, Table 3). Each school fixed effect 

represents the average third-grade achievement at that school. This is clearly not the causal 

effect of attending the school, although it may reflect what parents consider when choosing 

an elementary school, as such effects are relatively easy to observe. For our second quality 

measure, we calculate elementary schools’ third- to eighth-grade unconditional value added 

by controlling for students’ third-grade achievement (Columns 5–8, Table 3), which yields the 
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average growth in test scores for students who attended a particular school. Each school fixed 

effect in this specification will capture many factors including student’s own human capital, 

peer effects, resource differences, and parental investments. The standard deviation of these 

school value-added measures is 0.055. So, a student in a one standard deviation–better school 

has on average 5.5 percentile higher growth in test scores. Note, this is for benchmarking 

purposes only, which is reflected in our use of unconditional school value added in order to 

keep the analysis and interpretation as simple as possible (using estimates of school value 

added while conditioning on school demographic proportions provides very similar results)..  

To gauge the benefit of attending an elementary school with better attainment, we also 

record the mean value added of “good”, “bad”, and “average” schools in terms of attainment. 

It appears that schools with higher mean achievement also have higher third-to-eighth-grade 

value added, although these gains are only half the size compared to the effects if parents 

were selecting schools on the basis of value added: 0.026 versus 0.055 (final row of Table 3). 

To ascertain the net benefits of attending these schools net of rank effects, we need to 

consider how a student’s rank would change. The values in the columns of Table 3 are the 

mean rank of students in each state achievement ventile in each school type. For example, 

consider the median student at the tenth achievement ventile. If they attended an average 

elementary school in terms of third-grade achievement, their expected class rank would be 

0.479, whereas they would have an expected rank of 0.613 (0.346) if they had attended a “bad” 

(“good”) school. We can see that there is a clear trade-off in terms of rank and the quality of 

school when measured in absolute achievement. As may be expected, this rank–quality 

tradeoff is higher when elementary school quality is measured in mean achievement 

compared to value added. When parents move their child from a “bad” value-added school 

to a “good” one, the loss in rank is only −0.155. If they instead use mean achievement to decide, 

the change in rank is larger at −0.267 (Table 3, row 10).  

We can see that students from higher up in the state achievement distribution also 

have higher ranks in their classes. There is not much difference in terms of expected rank at 

an average school, independent of whether school quality is measured in terms of value added 

or absolute attainment throughout the achievement distribution. However, this thought 

experiment clearly shows that the decrease in rank from moving from a “bad” to “good” 
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school is always smaller when considering schools in terms of their value added. Moreover, 

the loss of rank from attending a “better” school is largest for the students near the middle of 

the distribution. 

How would these changes in ranks and school environments impact a student’s 

overall attainment? For this, we require one last piece of information, the linear relationship 

between rank and eighth-grade test score, which is 0.09. We estimate this by modifying 

Equation 5 to have a linear effect of rank. We can now calculate the impact on test scores.  

Let us consider the case of parents of a median student (tenth ventile) considering 

“good” or “bad” schools in terms of mean third-grade achievement. Sending the child to the 

“better” school would lead to an increase in eighth-grade test scores by 6.1 percentiles (using 

the associated value-added scores from the bottom of Table 3, 0.026− (−0.035)). However, 

sending the child to the “better” school would reduce their expected class rank by 0.267. This 

would tend to reduce the student’s eighth-grade test score by 2.4 percentiles (0.09 × 0.267). 

Therefore, the rank effect has reduced the gains from attending a school whose performance 

is two standard deviations better by 39 percent, resulting in a net gain of 3.7 percentiles. 

Alternatively, if parents were better informed and selected elementary schools on the 

basis of value added, then there would be a smaller trade-off in class rank (−0.155) and larger 

increases in future test scores (0.11). In this case, a median student attending a “good” school 

rather than a “bad” one would gain 11 percentile points in the eighth-grade test score 

distribution. In contrast, the student would lose 1.4 percentiles due to their lower rank 

(−0.014 = (−0.15) × 0.09). Hence, if parents were to choose on the basis of value added, there 

would be a net gain of 9.6 percentiles.  

In the case of parents choosing on the basis of value added, the effect of school quality 

is roughly eight times the size of the rank effect. Note, while this rank effect is relatively small, 

this school quality measure encapsulates all observable and unobservable factors that 

contribute to student value added.  

Ideally, we could describe the contribution of rank relative to all other peer effects; 

however, estimating all other types of peer effects is implausible in our setting. Moreover, 

while choosing the best school for their child in value-added terms is what most parents try 
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to achieve, value added is difficult to observe. Basing school choice on the basis of mean 

achievement, we see that the importance of class rank is substantial, reducing any perceived 

benefits by up to 39 percent. The main message for parents weighing the trade-off of rank is 

that choosing schools based on value added is the best strategy.  

Finally, what does the presence of rank effects mean for optimal classroom 

composition, given the heterogeneity of the effects? We find that disadvantaged groups such 

as non-white students or students eligible for FRPL are more affected by rank. Therefore, 

unlike linear-in-means peer effects, where moving students between groups would have no 

net impact, rearranging students with rank in mind could improve overall outcomes. This 

would require variation in test score distributions across classes, such that some low ranked 

disadvantaged students have the same achievement as high ranked advantaged students in 

other classes. These two groups of students exchanging classes would generate a net gain in 

achievement as the disadvantaged students would gain more from the higher rank than the 

non-disadvantaged students would lose from having a lower rank. However, this sort of 

exercise warrants caution because the changes in classroom distribution may be out of sample 

for the estimates in this paper (Carrell et al., 2013). 

This finding illustrates a trade-off for programs that move disadvantaged third-grade 

students into situations where they will be the lowest-ranked student. The extensive literature 

on selective schools and school integration has shown mixed results from students attending 

selective or predominantly non-minority schools. There are generally two quasi-experimental 

approaches used for the impact of getting into a “high-quality” school, lottery admissions and 

regression discontinuities around admission thresholds. With respect to our paper, the key 

difference between these approaches is that only in regression discontinuities does attending 

a “higher quality” school necessarily come at the at the cost of a lower rank. Being admitted 

to a high value-added school via lottery would not necessarily cause a decrease in rank, but 

going to a selective school by just making the admission threshold would do so. In light of 

this, we now discuss our findings with relation to the existing literature on school quality.  

The use of regression discontinuities in estimating the impact of attending an academically 

selective school ensures that students are similar across the boundary. The preponderance of 

evidence is that there are no benefits in terms of academic achievement, despite large 
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improvements in peer quality (Angrist and Lang, 2004; Clark, 2010; Kling et al., 2007; Dobbie 

and Fryer, 2014 , Abdulkadiroğlu et al., 2014)48. In crossing the threshold, at least two types of 

peer effects would be at play in addition to other school factors. Students have better peers on 

average, but will have a lower rank. One can think of this as attending a “better school” as 

defined by mean achievement in our policy example, but more extreme. In this case the 

marginal student would mechanically go from highest ranked in one school to the lowest 

ranked in another.  

The effectiveness of schools has also been estimated through lottery admissions to 

oversubscribed charter schools and voucher programs. In contrast to studies that use 

academic cutoffs, lottery admissions to charter schools do not necessarily pose a rank–school 

quality trade-off; in fact, in some cases students may gain in both rank and quality. We can 

think of this as a more extreme version of attending a better school, as defined by value added.  

Entry to an oversubscribed charter school often improves student performance (Angrist 

et al., 2010, Angrist et al., 2013, Abdulkadiroğlu et al., 2011). Critically, attendance at these 

“high-quality” schools may not come at the expense of rank if they are recruiting low-

attaining students. This can be seen in the heterogeneity of charter school effects for low-

achievement students, which are positive in lower-achieving districts (Angrist et al., 2013), 

and are decreasing in the achievement of peers (Abdulkadiroğlu et al., 2011, Cullen et al., 

2006). In summary, our results on class rank can help reconcile the different measured effects 

of “high-quality” schools across studies. Essentially, rank may “undo” the benefits of 

attending a “good” school for students who will be the lowest ranked in their class. 

8. Conclusions 

We make two contributions in this paper. First, we discuss identification of the effects 

of class rank. In particular, we discuss active sorting, passive sorting, and misspecification of 

the achievement mapping as potential sources of bias in this literature. We provide guidance 

on how to address these issues and reinforce the utility of balance and specification checks. 

Notably, the issues of misspecification and measurement error also apply to the literature that 

 
48  There are improvements in non-academic outcomes or college attendance. 
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estimates effects of rank, as well as other types of peer effects, using experiments that 

randomly allocate students of different abilities into classrooms.  

Second, we demonstrate that a student’s rank among their peers at a young age has 

long-lasting impacts. This affects a student’s performance in school, including tests, courses 

taken, and progress through toward graduation. Ultimately, it also affects the chance of 

student graduation from high school. Relative position affects the decision to enroll in post-

secondary education. Strikingly, it affects a student’s real earnings in their mid-twenties. We 

find that a student enrolling in a class where they are at the 75th percentile rather than the 25th 

in third grade increases their real wages between ages 23 and 27 by $1500 per annum, or 

approximately 7 percent. 49 For comparison, Carrell et al. (2018) look at the long-run impact of 

peers at the same ages, and find that being in a class of 25 with a student who was exposed to 

domestic violence reduces an individual’s earnings by 3 percent.  

Our findings add to a growing list of papers demonstrating that conditions for young 

children have long-lasting consequences. In contrast to other papers that focus on policy 

differences faced by students, we document the effect of an unavoidable phenomenon in 

groups: relative rank. Some of the effect of rank may come via teachers and administrator 

interactions with students. We document that students are more likely to be retained in third 

grade which is a decision made not by the student but by teachers, administrators, and 

families.  

Moreover, we find that disadvantaged groups gain more from being highly ranked 

and lose more from being lowly ranked among their peers. Therefore, unlike linear-in-means 

peer effects, where moving students between groups would have no net impact, grouping 

students with rank and these heterogeneous effects in mind could improve overall outcomes. 

Schools may also influence student performance by manipulating the salience of rank. 

Finally, we examine if and to what extent parents should consider rank effects when 

choosing the best school for their children. Critically, we document a trade-off from attending 

 
49 Using the present discounted value of earnings of $522,000 as in Chetty et al. (2014), who follow 
Krueger (1999) in discounting earnings gains at a 3 percent real annual rate, we calculate that these rank 
differences would increase life-time earnings by $36,540 in net present value. This figure is based on 
the point estimates from Chetty et al. (2014), Figure 10 Panel 5. The 5th ventile has a coefficient of −0.032 
while the 15th ventile has an estimate of 0.035. 
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a school with high-achieving peers: this mechanically lowers the class rank of your own child. 

We examine this trade-off in detail based on the observed student and school allocations in 

Texas. We find that rank offsets about 40 percent of the benefits of school value added for the 

median-performing student, if parents choose schools based on mean peer achievement. If 

parents instead choose schools based on value added, the offsetting effects of rank from 

attending a better school are much smaller. 

Future research on rank should focus on the interaction between rank and policies that 

exaggerate or mediate the effects of rank. Future research should also consider the effect of 

rank in groups outside of school settings. 
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Figure 1: Class Test Score Distributions 

 

 
Note: These figures are based on hypothetical data, based on schools in Texas. This example shows seven 
classrooms with the same minimum, maximum, and mean scores, with students who achieve the same score 
having different ranks. 

 

Figure 2: Variation of Local Rank of Median Student  
Within School-Subject Groups 

 
Note: This figure plots the distribution of rank for students at the 50th percentile of the statewide achievement 
distribution within different school-subject groups. The horizontal axis plots elementary school-subjects as 
percentiles so that the school with the lowest (highest) rank for the statewide median student has a value of 1 
(100). The variation in class rank for the state median student comes from the 13 cohorts from 1995 to 2007. For 
each school-subject percentile, we first plot the class rank of the 10th percentile of students with state median 
achievement. The equivalent curves are also drawn for the 25th, 50th, 75th, and 90th percentiles.  
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Figure 3: Passive Sorting and Rank 

A. High/Low Variance  
               

             

 

B.  Nonstandard Distribution 

  

Note: These figures display several hypothetical test score distributions to illustrate the issue of passive sorting. 
Each panel shows the test score distribution of two types of schools, Type A and Type B, that have been 
transformed such that they have the same mean. The red line indicates an arbitrary test score of students a set 
distance from the type average. In both panels, due to the shape of the test score distributions, a student with 
the same test score relative to the mean (red line) would have a higher rank in in Type B compared to Type A. 
Passive sorting could occur if students with different characteristics systematically attended schools with 
different distribution types. Passive sorting would then cause a bias if the characteristics directly impact future 
outcomes.  
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Figure 4 – Effect of Third-Grade Rank on K–12 Outcomes, 1 

A. Repeat Third Grade 

 

B. Eighth-Grade Test Scores 

 
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test-score distribution. The mean 
retention rate is 1.6 percent. 
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Figure 5 – Effect of Third-Grade Rank on K–12 Outcomes, 2 

 

A. AP Calculus    B. AP English 

       

 

C. AP Calculus, Subject-Specific Rank D. AP English, Subject-Specific Rank 

 

    
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test score distribution. Panels C and 
D come from a specification which controls for achievement and rank in the third grade in both subjects 
simultaneously.  
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Figure 6 – Effect of Third-Grade Rank on High School Graduation and College 
Enrollment 

 

A. High School Graduation   B. College Enrollment 

       

 

C. Community College Enrollment   D. 4-Year College Enrollment 

 

    
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test score distribution. The mean 
high school graduation rate is 71 percent, with a college enrollment rate of 47 percent. The mean two-year 
college enrollment rate is 31 percent, and the mean four-year college enrollment rate is 23 percent, as some 
attend both two- and four-year colleges. 
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Figure 7 – Effect of Third-Grade Rank on Major Choice 

A. Declaring a STEM Major 

 

B. Declaring a STEM Major by Subject-Specific Rank 

 
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test score distribution. Panel B comes 
from a specification which controls for achievement and rank in third grade in both subjects simultaneously. 
Mean STEM enrolment is 0.04. 
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Figure 8 – Effect of Third-Grade Rank on Bachelor’s Degree Receipt 

A. Graduate 4-Year College in 4 years 

 

B. Grad 4-Year College in 6 years 

 

C. Grad 4-Year College in 8 years 

 
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test score distribution. Mean 
graduation rate in 4/6/8 years is 4/14/16 percent. 
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Figure 9 – Effect of Third-Grade Rank on Labor Market Outcomes (Age 23–27) 

A. Positive Earnings     B. Average Earnings 

 

                  C. Average Nonzero Earnings             D. Log Average Earnings 

 
Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement interacted with type of elementary school test score distribution. The mean 
positive annual earnings between 23–27 are $24,912.  Mean earnings including zeroes are $17,365. 
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Figure 10 – Flexible Controls for Achievement 

 

A. Eighth-Grade Test  B. Ever Graduate HS 

  
  

C. Any College             D. Log Earnings Age 23–27 

    
  Note: These figures plot the coefficient for ventiles of class rank. The 45th to 50th percentile interval is the 
omitted category. Estimates come from Equation 7, which includes controls for race, gender, ESL status, and 
indicators for ventiles of student achievement. 
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Figure 11 – Results by Class Size 

 

A. Eighth Grade Test                     B. Ever Graduate HS 

  

 

C. Any College       D. Log Earnings Age 23–27 

 
  Note: These figures plot the coefficient for ventiles of class ran with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement. 
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Figure 12 – Heterogeneity by Race 

   A. Eighth-Grade Test            B. Ever Graduate HS 

      

 

C. Any College               D. Log Earnings Age 23–27 

      

Note: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 7, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement. 
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Figure 13 – Heterogeneity by Gender 

A. Eighth-Grade Test          B. Ever Graduate HS 

      

 

C. Any College               D. Log Earnings Age 23–27 

      
Note: These figures plot the coefficient for ventiles of class rank. The 45th to 50th percentile interval is the omitted 

category with 95% confidence intervals calculated using standard errors clustered at the school level. Estimates 
come from Equation 7, which includes controls for race, gender, ESL status, and indicators for ventiles of student 
achievement. 
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Figure 14 – Heterogeneity by Free and Reduced-Price Lunch 

A. Eighth-Grade Test          B. Ever Graduate HS 

      

 

C. Any College               D. Log Earnings Age 23–27 

      
Note: These figures plot the coefficient for ventiles of class rank. The 45th to 50th percentile interval is the omitted 

category with 95% confidence intervals calculated using standard errors clustered at the school level. Estimates 
come from Equation 7, which includes controls for race, gender, ESL status, and indicators for ventiles of student 
achievement. 
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Table 1: Summary Statistics 

 Mean 
Standard 
Deviation Observations 

Demographics – 13 Cohorts    
Male 0.50 0.50 6,117,690 
Economic Disadvantage 0.49 0.50 6,117,690 
English as a Second Language 0.12 0.32 6,117,690 
White 0.47 0.50 6,117,690 
Asian 0.03 0.17 6,117,690 
Black 0.15 0.36 6,117,690 
Hispanic 0.35 0.48 6,117,690 
Size of Third Grade SSC 93.7 46.6 6,117,690 
Repeat Third Grade 0.02 0.13 6,117,690 

    
K–12 Outcomes – 13 Cohorts    
State Test Percentile, Eighth Grade 0.55 0.28 4,919,673 
Ever Graduate High School 0.70 0.46 6,117,690 
AP Calculus 0.08 0.28 6,117,690 
AP English 0.18 0.39 6,117,690 
Any College 0.46 0.50 6,117,690 
Enroll, 4-Yr College 0.23 0.42 6,117,690 
Enroll, 2-Yr College 0.31 0.46 6,117,690 
    
College Outcomes – 10/8/6 Cohorts    
Declare STEM Major 0.041 0.198 6,117,690 
BA in 4 years 0.06 0.24 4,573,672 
BA in 6 years 0.14 0.34 3,597,340 
BA in 8 years 0.16 0.37 2,647,240 

    
Age 23–27 Labor Outcomes – 8 Cohorts    
Nonzero Wages 0.65 0.43 3,597,340 
Real Wages 17,300 24,093 3,597,340 
Real Nonzero Wages 24,818 25,372 2,652,284 

Note: This table contains summary statistics for the main estimating sample of third 
graders from 1995 to 2007. Some outcomes are only available for early cohorts which 
generates the differences in sample size. Enroll, 4-Yr College means enrollment within three 
years of “on-time” high school graduation and is similarly defined for two-year colleges.  
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Table 2 – Balance Test 

 
Low 

Income Male ESL White Asian Black Hispanic 

        
 A. Uninteracted 
Rank 0.097*** −0.011** 0.030*** −0.085*** −0.001* 0.047*** 0.037*** 
 (0.005) (0.004) (0.003) (0.005) (0.000) (0.004) (0.004) 
        
 B. School Mean Quartiles 
Rank 0.030*** −0.004 0.010* −0.028*** −0.001 0.024*** 0.006 

 (0.006) (0.005) (0.004) (0.006) (0.002) (0.005) (0.005) 

        
 C. School Mean Deciles 
Rank 0.025*** −0.001 0.006 −0.024*** −0.004 0.023*** 0.006 

 (0.006) (0.005) (0.004) (0.006) (0.002) (0.005) (0.005) 

        
 D. School Variance Quartiles 
Rank 0.039*** −0.015*** 0.020*** −0.039*** 0.000 0.021*** 0.018*** 

 (0.004) (0.004) (0.004) (0.004) (0.001) (0.004) (0.004) 

        
 E. School Variance Deciles 
Rank 0.030*** −0.014*** 0.020*** −0.031*** −0.001 0.016*** 0.015*** 

 (0.004) (0.004) (0.003) (0.004) (0.001) (0.004) (0.004) 

        
 F. School Quartiles of Mean and Quartiles of Variance 
Rank −0.006 −0.006 0.002 0.008 0.003* −0.003 −0.009* 

 (0.005) (0.005) (0.004) (0.005) (0.002) (0.004) (0.004) 

        
N 6,117,651 6,117,651 6,117,651 6,117,651 6,117,651 6,117,651 6,117,651 

Notes: This table regresses predetermined characteristics on a linear effect of rank, SSC fixed effects, and 
achievement controls. Panel A does not interact ventiles of achievement with anything. Panel B interacts 
ventiles of achievement with indicators for quartiles of school mean achievement. Panel C interacts 
achievement with deciles of school mean. Panel D interacts achievement with quartiles of school variance. 
Panel E interacts achievement with deciles of school variance. Panel F is our preferred specification and 
interacts achievement with 16 indicators for school mean and variance (quartiles of mean × quartiles of 
variance). Standard errors are clustered at the school level. 
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Table 3: The Distribution of Rank by Elementary School Effectiveness Measures 

  Third-Grade Attainment  Third- to Eighth-Grade Value Added 

State 
Ventile 

 “Average” 
School 
Rank 

“Bad” 
School 
Rank 

“Good” 
School 
Rank 

(3)-(2) 
Change 

 “Average” 
School 
Rank 

“Bad” 
School 
Rank 

“Good” 
School 
Rank 

(3)-(2) 
Change 

  (1) (2) (3) (4)  (5) (6) (7) (8) 
1  0.028 0.054 0.014 −0.040  0.049 0.075 0.035 −0.040 
2  0.074 0.137 0.039 −0.098  0.106 0.145 0.075 −0.070 
3  0.123 0.211 0.068 −0.143  0.160 0.203 0.113 −0.090 
4  0.172 0.279 0.100 −0.179  0.213 0.257 0.153 −0.104 
5  0.222 0.341 0.133 −0.208  0.261 0.309 0.188 −0.121 
6  0.272 0.401 0.170 −0.231  0.310 0.354 0.227 −0.127 
7  0.323 0.458 0.210 −0.248  0.358 0.399 0.264 −0.135 
8  0.374 0.509 0.250 −0.259  0.403 0.447 0.304 −0.143 
9  0.426 0.565 0.294 −0.271  0.449 0.493 0.349 −0.144 
10  0.479 0.613 0.346 −0.267  0.497 0.542 0.387 −0.155 
11  0.527 0.650 0.390 −0.260  0.541 0.581 0.435 −0.146 
12  0.577 0.703 0.452 −0.251  0.590 0.624 0.485 −0.139 
13  0.627 0.737 0.495 −0.242  0.630 0.667 0.527 −0.14 
14  0.685 0.787 0.561 −0.226  0.684 0.718 0.587 −0.131 
15  0.726 0.810 0.613 −0.197  0.724 0.749 0.634 −0.115 
16  0.784 0.858 0.685 −0.173  0.778 0.799 0.693 −0.106 
17  0.828 0.889 0.745 −0.144  0.821 0.841 0.752 −0.089 
18  0.876 0.916 0.808 −0.108  0.870 0.881 0.819 −0.062 
19  0.930 0.995 0.889 −0.106  0.924 0.930 0.890 −0.040 
20  0.962 0.973 0.934 −0.039  0.959 0.961 0.940 −0.021 

Value 
Added 

 
−0.001 −0.035 0.026 0.061 

 
0.000 −0.055 0.055 0.11 

Notes: This table categorizes elementary schools into “good”, “bad”, and “average” in terms of average third-
grade attainment and third- to eighth-grade value added. “Good” (”bad”) is defined as being one standard 
deviation above (below) the average (with tolerance of 0.0045). Each row shows the average class rank of 
students in this type of school for that ventile. The Rank Change column is the average rank change of students 
in that ventile from moving from a “bad” to a “good” school. The final row presents the third- to eighth-grade 
school-level value added for this type of school. Value added is calculated conditional on a cubic of third-grade 
percentile.  
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For Online Publication 

Appendix Figures and Tables 

Appendix Figure 1: Common Support of Class Test Score 

 
Notes: This figure shows a student’s rank for a given test score relative to the mean. We show the differences in 

rank across SSCs. Each line represents a percentile of students with that test score relative to the mean. (e.g. 10th 
percentile).  The vertical spread shows the different rank values held by students with the same relative position 
within their classes. The red line represents where the students from Figure 1, who are five points above their class 
mean would reside.  
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Appendix Figure 2 – Variation in Local Rank of Median Student Rank  
Within School-Subject Groups 

 
Notes: These figures show the rank for a student for a given test score relative to the mean in each school 

distribution type 𝑔𝑔𝑑𝑑( ). We show the differences in rank across SSCs. Each line represents a percentile of students 
with that test score (e.g. 10th percentile) relative to the mean.  The vertical spread shows the different rank values 
held by students with the same relative position within their classes.  

 

  



65 
 

Appendix Figure 3 – Testing for Missingness 

A. Missing Eighth-Grade Test 

 
Note: This figure plots the coefficient for ventiles of class rank with 95% confidence intervals calculated using 

standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. Estimates 
come from Equation 7, which includes controls for race, gender, ESL status, and indicators for ventiles of student 
achievement. The mean retention rate is 1.6. 
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Appendix Figure 4 – Balanced Sample for Full Set of Outcomes 

A. Eighth-Grade Test          B. Ever Graduate HS 

      
   

C. Any College               D. Log Real Earnings Age 23–27 

 
Notes: These figures are constructed on the reduced balanced Sample for Full Set of Outcomes with 8 Cohorts 

Third Grade 1995–2002. They plot the coefficient for ventiles of class rank. The 45th to 50th percentile interval is the 
omitted category. Estimates come from Equation 7, which includes controls for race, gender, ESL status, and 
indicators for ventiles of student achievement. 
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Appendix Figure 5 – Conditional/Unconditional Estimates 

A. Eighth-Grade Test          B. Ever Graduate HS 

            

C. Any College               D. Log Real Earnings Age 23–27 

           

 

Notes: These figures plot the coefficient for ventiles of class rank with 95% confidence intervals calculated using 
standard errors clustered at the school level. The 45th to 50th percentile interval is the omitted category. 
Estimates come from Equation 4, which includes controls for race, gender, ESL status, and indicators for 
ventiles of student achievement, not interacted by school test score distribution. We show how the estimates 
change when including controls for predetermined characteristics including race, gender, and ESL status (our 
preferred specification) and when we do not. 
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Appendix Figure 6 – Measurement Error Simulations with Normally Distributed 
Measurement Error 

A. Eighth-Grade Test          B. Ever Graduate HS 

 

         

C. Any College               D. Log Real Earnings Age 23–27 

 

 

Notes: These figures show estimates for our main specification where we added normally distributed noise with 
zero mean and a standard deviation equivalent to 10%, 20% and 30% of the standard deviation in the third -grade 
achievement before calculating ranks. The resulting nonlinear and correlated measurement error in third-grade 
achievement and the rank measure results in a nonlinear downward bias in the rank estimate.  
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Appendix Figure 7 – Measurement Error Simulations with Uniformly Distributed 
Measurement Error 

A. Eighth-Grade Test             B. Ever Graduate HS 

         

C. Any College              D. Log Real Earnings Age 23–27 

         
Notes: These figures show estimates for our main specification where we added uniformly distributed noise with 

zero mean and a maximum/minimum value equal to ±10%, ±20%, and ±30% of the standard deviation in the third-
grade achievement before calculating ranks.  
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Appendix Figure 8 – Measurement Error Simulations with Heterogenous 
Measurement Error 

A. Eighth-Grade Test             B. Ever Graduate HS 

 

C. Any College              D. Log Real Earnings Age 23–27 

 
Notes: These figures show estimates for our main specification where we added measurement error drawn from 

a normal distribution transformed by twice the student’s absolute distance from the median plus 0.5, (2|𝛼𝛼|) + 0.5, 
namely 𝑛𝑛(0,𝜗𝜗) ∗ (2|𝛼𝛼| + 0.5). This is to ensure the mean of the scaling factor is 1. 
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Appendix Figure 9 – Average Classroom Distributions by Student Characteristics 

 
Notes: This figure displays the average classroom distribution statistics for students with different 
characteristics. The triangle shows the average minimum test score (in statewide percentiles), the 
whiskers show the class average 10th and 90th percentiles, and the plus sign shows the average 
maximum. The rectangles show the interquartile range with the median separating the two colors. 
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Appendix Table 1 – Alternate Measures of Rank on Main Outcomes 

  Method for Calculating Rank 

 
Mean 
Rank 

Bottom 
Rank 

Random 
Rank 

On-
Time 

Students 

 (1) (2) (3) (4) 
Outcome     
Test Scores 0.149*** 0.155***  0.100***    0.147*** 
 (0.003) (0.002) (0.002) (0.003) 
     
Grad High 
School   0.085***      0.078***  0.059*** 0.083*** 
 (0.004) (0.004) (0.004) (0.004) 
     
Any College 0.088*** 0.090*** 0.060*** 0.086*** 
 (0.005) (0.004) (0.004) (0.005) 
     

Real Earnings 1853.1*** 1983.5*** 1482.3*** 
 

1785.8*** 
  (251.1) (244.6) (213.7) (247.7) 

Notes: This table presents the rank estimates from 16 different regressions, 
using four different rank measures on four outcomes. Mean Rank assigns 
the average rank to all students tied with the same score (this is the measure 
we use in the paper). Bottom Rank assigns the bottom rank to all students 
tied with the same score. Random Rank assigns a random rank to all 
students with tied with the same score. On-time students assigns rank on a 
mean rank basis only among students who took their third-grade exam on 
time, rather than all students in their class who took the exam. Standard 
errors are clustered at the school level. 
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Appendix Table 2 – Outcomes by Function of Distribution 

 
Repeat 

3rd 
Grade 8 

Test Grad HS 
Any 

College 
Grad BA 
in 8 yrs 

Log 
Wage 

       
 A. Uninteracted 
Rank −0.037*** 0.089*** 0.061*** −0.007 −0.013** 0.121*** 
 (0.005) (0.003) (0.004) (0.005) (0.005) (0.017) 
       
 B. School Mean Quartiles 
Rank −0.038*** 0.141*** 0.084*** 0.084*** 0.019*** 0.171*** 

 (0.003) (0.003) (0.005) (0.005) (0.005) (0.020) 
       

 C. School Mean Deciles 
Rank −0.040*** 0.152*** 0.088*** 0.092*** 0.027*** 0.185*** 

 (0.003) (0.003) (0.005) (0.005) (0.005) (0.021) 
       

 D. School Variance Quartiles 
Rank −0.039*** 0.106*** 0.083*** 0.041 −0.002 0.144*** 

 (0.003) (0.002) (0.004) (0.004) (0.005) (0.017) 
       

 E. School Variance Deciles 
Rank −0.040*** 0.113*** 0.089*** 0.050*** 0.005 0.152*** 

 (0.003) (0.002) (0.004) (0.004) (0.005) (0.018) 
       

 F. School Quartiles of Mean and Quartiles of Variance 
Rank −0.036*** 0.147*** 0.087*** 0.088*** 0.029*** 0.173*** 

 (0.003) (0.003) (0.004) (0.005) (0.005) (0.020) 

       
N 6,117,651 4,919,628 6,117,651 6,117,651 2,647,234 2,652,264 

Notes: This table considers the linear effect of rank for different specification of 𝑔𝑔𝑑𝑑(). Panel 
A controls for student prior achievement with ventiles for third-grade achievement. Panel B 
interacts achievement with quartile of school mean achievement. Panel C interacts 
achievement with deciles of school variance. Panel D interacts achievement with quartile of 
school achievement variance. Panel E interacts achievement with deciles of school 
achievement variance. Panel F is our preferred specification and interacts achievement with 
16 indicators for school mean and variance (quartiles of mean × quartiles of variance). 
Standard errors are clustered at the school level. 
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Appendix: Measurement Error  

Consider the simplest of situations where we have only one group and two 

explanatory variables, individual i’s human capital 𝑇𝑇𝑖𝑖′ and true class ranking 𝑅𝑅𝑖𝑖′. 

Assume 𝑇𝑇𝑖𝑖′ cannot be measured directly, so we use a test score 𝑇𝑇𝑖𝑖 as a baseline, 

meaning a noisy measure of true human capital which has measurement error 𝑇𝑇𝑖𝑖 =

𝑙𝑙𝑖𝑖(𝑇𝑇𝑖𝑖′ , 𝑒𝑒𝑖𝑖). We also use this observed test score 𝑇𝑇𝑖𝑖 in combination with the test scores of 

all others in that group, 𝑇𝑇−𝑖𝑖, to generate the rank of an individual, 𝑅𝑅𝑖𝑖 = 𝑘𝑘(𝑇𝑇𝑖𝑖 , 𝑇𝑇−𝑖𝑖). We 

know this rank measure is going to be measured with error 𝜖𝜖𝑖𝑖 , such that 𝑅𝑅𝑖𝑖 = ℎ𝑖𝑖(𝑅𝑅𝑖𝑖′ 

, 𝜖𝜖𝑖𝑖). The problem is that this error, 𝜖𝜖𝑖𝑖, is a function of the student’s ability 𝑇𝑇𝑖𝑖′ and their 

own measurement error , 𝑒𝑒𝑖𝑖, but also depends on the ability and measurement errors 

of all other individuals in their group (𝑇𝑇−𝑖𝑖′ , 𝑒𝑒−𝑖𝑖, respectively): 𝑅𝑅𝑖𝑖 =

𝑘𝑘�𝑙𝑙𝑖𝑖(𝑇𝑇𝑖𝑖′ , 𝑒𝑒𝑖𝑖), 𝑙𝑙−𝑖𝑖(𝑇𝑇−𝑖𝑖′  , 𝑒𝑒−𝑖𝑖)� = 𝑓𝑓(𝑇𝑇𝑖𝑖′ , 𝑒𝑒𝑖𝑖,𝑇𝑇−𝑖𝑖′  , 𝑒𝑒−𝑖𝑖). Therefore, any particular realization of 

𝑒𝑒𝑖𝑖 not only causes noise in measuring 𝑇𝑇𝑖𝑖′, but also in 𝑅𝑅𝑖𝑖′. This means we have correlated 

nonlinear and nonadditive measurement error, where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒𝑖𝑖, 𝑒𝑒−𝑖𝑖) ≠  0. This specific 

type of nonclassical measurement error is not a standard situation, and it is unclear 

how this would impact the estimated rank parameter. 

 

 

 


