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1 Introduction

How important are belief distortions in economic decision making and what role do they play

in macroeconomic fluctuations? Large theoretical literatures have emerged to argue that sys-

tematic expectational errors embedded in beliefs can have important dynamic effects on the

economy. Less is known about the empirical relation of any such distortions to macroeconomic

activity.

To formalize our notion of “belief distortion,”let us define it in general terms as an ex ante

expectational error generated by the systematic mis-weighting of available information demon-

strably pertinent to the accuracy of the belief. This definition nests those that consider errors

generated by merely omitting relevant information to include any instance where information is

suboptimally given too much or too little weight. In the theoretical macroeconomic literatures

where distorted beliefs play a role, economic agents make systematic expectational errors due

to a wide variety of reasons. These include the presence of information frictions driven by ratio-

nal or behavioral inattention, the use of simple extrapolative rules, the intentional adoption of

conservatively pessimistic beliefs, the over-reaction to incoming news, or the presence of skewed

priors, among others.

In this study we are interested in three questions. First, how distorted are observed beliefs

about the macroeconomy? Second, are any such distortions related to macroeconomic activity?

Third, how do distortions vary with the business cycle? Answers to all three questions are

inextricably tied to the measurement of belief distortions.

A fundamental challenge in this regard is that no objective measure of such distortions exists.

So far, empirical work has largely proceeded by investigating whether forecast errors made by

survey respondents deviate from the standard of full information and rational expectations.

Yet a review of the literature discussed below finds little agreement on how such a theoretical

standard should be measured. Existing studies differ according to the specific surveys that are

investigated, the segment of the population that is surveyed, the topic of the survey questions,

the time period to which the survey questions pertain, and the empirical methodology used

to identify systematic errors in expectations. Perhaps most important, given the wide-ranging

theoretical literatures cited above and the vast amount of information that could be considered

ex ante known and pertinent to economic decision making, it is not obvious what benchmark

model of beliefs should be applied to measure any distortion in survey responses.

This paper proposes newmeasures of systematic expectational errors in survey responses and

relates them to macroeconomic activity. Our objective is to construct and study a comprehen-

sive, methodologically consistent, econometric measure of belief distortions in macroeconomic

expectations by looking across a range of surveys, a range of agent types, and a range of ques-

tions about future economic outcomes. Returning to our definition of belief distortions above,

it is clear that such a measurement requires four key ingredients.

First, we require direct evidence on what economic decision-makers actually believe. For
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this we obtain data from several different surveys, different survey questions, and broad cross-

sections of survey respondents with different beliefs. Second, we must cope with the theoretically

vast quantity of available information that is possibly pertinent to belief accuracy. For this,

we use tools for data rich environments along with machine learning to process hundreds of

pieces of information that would have been available to survey respondents in real time at daily,

quarterly, and monthly sampling intervals. Third, we must account for other bona fide features

of real time decision making, such as the out-of-sample nature of foreword-looking judgements.

Failure to properly account for either the data rich environment in which survey respondents

operate or the out-of-sample nature of their forecasts can lead to erroneous conclusions about

belief distortions and their relation to the macroeconomy. Conversely, using information that

may have been unavailable to survey respondents to compute a standard of non-distorted beliefs

could be equally erroneous. To address these issues, we develop a dynamic machine learning

algorithm to detect demonstrable, ex ante expectational errors in real time. The fourth and final

ingredient is the availability of observations on both survey responses and objective economic

information over a suffi ciently long time span. This is required to reduce sampling noise, as

is necessary to distinguish bad luck in a random environment from a systematic mis-weighting

of information, as well as to statistically infer the relation of any belief distortions to dynamic

macroeconomic fluctuations.

With these ingredients in hand, we ask whether cross-sections of survey respondents with

different beliefs systematically mis-weight pertinent economic information. If the machine de-

tects a sustained pattern of demonstrable, ex ante errors in survey respondents’forecasts, the

magnitude of these distortions should be evident from the relative (machine versus respondent-

type) forecast errors once averaged over a sample suffi ciently long so as to eliminate differences

in ex post predictive outcomes attributable to pure randomness.

Machine learning is itself a model of belief formation. We argue that it provides an appro-

priate benchmark for quantifying biases in survey responses, for at least two reasons. First,

optimized approaches to real world decision and prediction problems almost always require the

effi cient processing of large amounts of information. This clearly applies to professional fore-

casters who are presumably among the most informed agents in the economy, but also to other

agent-types, including investors, firms, governments, and even households. Machine algorithms

are advantageous in this regard because they are explicitly designed to cope with large amounts

of information. This is important because a benchmark based on a small amount of arbitrarily

chosen information could fail to reveal systematic expectational errors or, conversely, lead to

spurious evidence of systematic error. Second, the machine can easily be coded to adapt to

new information as it becomes available and to make out-of-sample forecasts on this basis.

Thus the approach does not run the risk of spuriously indicating that respondent performance

is suboptimal merely because of the existence of structural breaks and/or the arrival of new

information that even an effi cient information processing algorithm could have learned about
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only slowly over time.

Inherent in our machine-based approach is the idea that minding key features of real world

expectation formation is essential when establishing a benchmark against which belief distor-

tions are measured. Whether doing so matters in practice, however, is an empirical question.

On this question, we can report at least three ways in which our results differ from some in

the extant literature. First, in contrast to well known results from in-sample regressions, we

find little evidence that lagged ex ante revisions in survey forecasts have predictive power for

average survey forecast errors. Second, information found elsewhere to be consequential for

out-of-sample prediction in a low-dimensional setting is often found to be unimportant in our

high-dimensional, data rich setting. Third, measures of belief distortions created by comparing

ex ante survey expectations with ex post historical outcome data overstate the magnitude of

distortion.

Our main economic findings may be summarized as follows. First, across a range of surveys,

variables, and respondent-types with heterogeneous beliefs, the machine model produces lower

mean squared forecast errors over an extended evaluation sample, sometimes by large margins.

A key finding is that survey respondents of all types place too much weight on their own forecast

relative to other objective economic information, and are in that sense overconfident.

Second, survey expectations of inflation for the median respondent of all surveys are biased

upward on average, a direction we shall refer to as “pessimistic.”By contrast, survey expec-

tations of economic growth professional forecasters and corporate executives are “optimistic”

on average—i.e., biased upward, while they are very slightly pessimistic for households. Profes-

sional forecasters are especially optimistic about economic growth from 2010-2018, when the

median professional forecast of economic growth was biased upward by an amount equal to 37%

of actual GDP growth during this period. These averages mask large variation over time and

across respondent-types.

Third, an increase in pessimism about inflation has the flavor of a cost-push shock and is

associated with an increase in the real wage and a decrease in real investment, real GDP, and

the price level. By contrast, an increase in optimism about economic growth has the opposite

effect and leads to a sizable and more protracted increase in real activity, the price level, and

also the stock market. Importantly, these results are specific to innovations in the systematic

expectational errors survey respondents make, and not to their expectations per se. Indeed,

positive innovations to an index of GDP growth expectations have very different effects and are

not associated with a boom in economic activity or the stock market.

Fourth, survey respondents initially under-react to cyclical shocks but later over-react, a

pattern consistent with that documented in Angeletos, Huo, and Sastry (2020) (AHS). The

magnitudes of under- and over-reaction are, however, smaller than that reported in AHS. We

find that under-reaction preponderates in expectations of economic growth, while the more

predominant bias in inflation expectations is delayed over-reaction.
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Fifth, although our machine learning algorithm indicates that sparsity is often optimal even

in the presence of a high degree of information processing capacity, the precise information

utilized changes from period to period. This result underscores the importance of using a

dynamic, large-scale information processing algorithm to achieve the optimal forecast, even if

much of the information is associated with a coeffi cient that is shrunk all the way to zero most

of the time.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section

3 describes our econometric and machine learning framework. Section 4 describes results per-

taining to our estimates of belief distortions, while Section 5 contains results on their relation

to macroeconomic activity. Section 6 concludes. A large amount of additional material on our

data construction, estimation procedures, and additional robustness checks have been placed

in an Appendix for online publication.

2 Related Literature

Our estimates provide a benchmark to evaluate theories for which information capacity con-

straints, extrapolation, sentiments, ambiguity aversion, and other departures from full informa-

tion, rational expectations play a role in business cycles.

In these theoretical literatures, economic agents make systematic expectational errors for a

variety of reasons. These reasons include the presence of information frictions that lead agents

to act in a “boundedly rational”manner because they are incapable of attending to all the

available information at a given moment (e.g., Mankiw and Reis (2002); Woodford (2002);

Sims (2003); Reis (2006a, 2006b); Gabaix (2014)). Alternatively agents may be inattentive for

broader behavioral reasons (e.g., Gabaix (2020)). A key implication of these theories, explored

in well known work by Coibion and Gorodnichenko (2015), is that individuals under-react to

objective economic information.

Other theories postulate that individuals use simple extrapolative rules or over-weight “rep-

resentative”events in reacting to incoming news (e.g., De Long, Shleifer, Summers, and Wald-

mann (1990); Barberis, Shleifer, and Vishny (1998); Barberis, Greenwood, Jin, and Shleifer

(2015); Bordalo, Gennaioli, and Shleifer (2018); Gennaioli and Shleifer (2018); Bordalo, Gen-

naioli, Ma, and Shleifer (2018)). Related theories propose that individuals overweight their

personal experiences (e.g., Malmendier and Nagel (2011, 2015)). A key implication of some of

these theories is that individuals over-react to objective information.

A literature on “sentiments”postulates that communication frictions can cause aggregate

expectations to exhibit statistical biases (e.g., Angeletos and La’O (2013); Angeletos, Collard,

and Dellas (2018b); Milani (2011, 2017)). Other models feature “confidence shocks,”or am-

biguity averse agents who are deliberately pessimistic on average (e.g., Hansen and Sargent

(2008); Epstein and Schneider (2010); Ilut and Schneider (2015); Bianchi, Ilut, and Schneider

(2017); Ilut and Saijo (2020); Bhandari, Borovicka, and Ho (2019)), or agents with skewed pri-
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ors (Afrouzi and Veldkamp (2019)). There remains a question of whether ambiguity aversion

or skewed priors would be revealed in survey responses. If not, such models need some other

mechanism to explain the systematic expectational errors documented here and elsewhere.

Finally a theoretical literature in economic psychology studies how basic properties of cog-

nition can give rise to human biases in expectation formation (e.g., Woodford (2013); Khaw,

Stevens, and Woodford (2017)).

Any of the above theories provide a mechanism through which a relatively unbiased and

potentially more information-effi cient machine operating in a data rich environment would

provide forecasts that deviate from those made by humans and possibly be more accurate. The

objective of this study is to provide new measures of such deviations and to investigate their

relation to macroeconomic fluctuations.

On the empirical side, our work follows a growing body of literature that reports evidence

of belief distortions and relates them to economic activity. These papers include those that

find evidence of departures from rational expectations in predicting inflation and other macro

variables (Coibion and Gorodnichenko (2012, 2015); Fuhrer (2017)), the aggregate stock market

(Bacchetta, Mertens, and van Wincoop (2009); Amromin and Sharpe (2014), Greenwood and

Shleifer (2014); Adam, Marcet, and Buetel (2017)), the cross section of stock returns (Bor-

dalo, Gennaioli; La Porta and Shleifer (2017)), credit spreads (Greenwood and Hanson (2013);

Bordalo, Gennaioli, and Shleifer (2018)), and corporate earnings (DeBondt and Thaler (1990);

Ben-David et. al. (2013); Gennaioli, Ma, and Shleifer (2016); Bouchaud, Kruger, Landier, and

Thesmar (2017)). Although these studies differ widely according to their empirical design, none

take into account the data rich context in which survey respondents operate or the dynamic,

out-of-sample nature of their forecasts, gaps our study is designed to fill.

These very differences lead our findings to diverge in notable ways from some in the extant

literature. For example, following Coibion and Gorodnichenko (2015), we ask whether ex ante

revisions in the average forecast reduce average ex post forecast errors, as would be indicative

of models that imply under-reaction to economic news. Using the methodology proposed in

this paper, we find no evidence that they do. Instead, the coeffi cients on forecast revisions are

shrunk to zero by the dynamic machine algorithm in favor of placing greater absolute weight

on other pieces of information. Even if no information beyond the forecast revision itself is

included, the forecast revision ceases to be a useful predictor of forecast errors in a dynamic

context when predictions are simply made out-of-sample rather than in-sample. These findings

do not, of course, necessarily imply an absense of under-reaction. But we argue that they

underscore the challenges with relying on low-dimensional, in-sample regressions as means of

establishing evidence on either under- or over-reaction in macroeconomic expectations.

The literature discussed so far has little to say about overconfidence. Yet our finding that

survey respondents of all types systematically place too much weight on their own forecasts

relative to other information is one of the most robust patterns we uncover. In this regard, our
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findings recall an extensive finance literature that provides theory and evidence of overconfi-

dence and its role in explaining a range of stylized facts about stock return predictability and

trading patterns. Ground breaking contributions include Odean (1998), Daniel, Hirshleifer, and

Subrahmanyam (1998), Barber and Odean (2000) and Daniel, Hirshleifer, and Subrahmanyam

(2001). Daniel and Hirshleifer (2015) provide an overview of this literature. Daniel and Hir-

shleifer (2015) define overconfidence in the context of financial markets as “having mistaken

valuations and believing in them too strongly.”In our context, overconfidence means that the

respondent-type believes too strongly in whatever private information or prior is embedded her

survey response. To the best of our knowledge, this paper is the first to find pervasive evidence

of overconfidence in macroeconomic expectations that is related to macroeconomic outcomes.

Our work also connects with a pre-existing econometric forecasting literature. Like any

econometric model, the machine learning algorithm we develop is incapable of perfect foresight.

Accordingly, it occasionally produces large forecast errors that are only evident ex post, some of

which occur at economic turning points. We view this as an important result that underscores

the role of largely unforeseen events in generating large prediction error, not all of which can

be attributed to a systematic bias in expectations. At the same time, the machine algorithm

proposed here produces notable information-processing effi ciency gains relative to best-fitting

econometric specifications studied in an extensive pre-existing econometric forecasting litera-

ture. For example, a prior forecasting literature finds that survey forecasts of inflation are

extremely diffi cult if not impossible to beat with statistical models in out-of-sample forecast-

ing (e.g., Ang, Bekaert, and Wei (2007), Del Negro and Eusepi (2011), Andersen, Bollerslev,

Christoffersen, and Diebold (2011), Genre, Kenny, Meyler, and Timmermann (2013), and Faust

and Wright (2013)). By contrast, our machine learning algorithm, with its focus on detecting

demonstrable ex ante errors, performs better in out-of-sample forecasting than every percentile

of all of the survey forecast distributions that we study.

Finally, we are aware of relatively little work that has used machine learning as a benchmark

against which belief distortions are measured. An important exception is Martin and Nagel

(2019) who use it to study models of expected stock returns in the cross-section. Although their

context is very different from ours, they find, as we do, that accounting for the interplay between

a data rich environment and dynamic, out-of-sample forecasting generates findings about belief

distortions that differ considerably from prior frameworks that side-step these aspects of real

world decision making.

3 Econometric and Machine Learning Framework

This section describes our econometric and machine learning framework. The analysis we

undertake requires a suffi ciently long time series of observations, including those on survey

responses. Since the panel elements of our survey data are too limited to do the analysis

on a respondent-level basis, we instead consider respondents of a particular type, defined to
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be those in specific percentiles of the survey forecast distribution. A maintained assumption

is that survey respondents know their own “type,” so that they have a sense of where in

the time t forecast distribution their response is located. We argue that this assumption is

likely to be a reasonable first-order approximation, since respondents can observe past forecast

distributions including those from the most recent quarter. Moreover, given the practice of many

professional forecasters to continuously communicate updates of their forecasts with clients and

the press, these respondents are likely to have very good information about their location in

the distribution even contemporaneously.

Let yj,t+h generically denote an economic time series indexed by j whose value in period

h ≥ 1 a survey forecaster is asked to predict at time t. Let F(i)
t generically denote a survey

forecast made at time t and let superscript (i) denote the ith respondent-type, where i denotes

either the mean belief, in which case “i = µ”, or the respondent located at the ith percentile of

the survey forecast distribution, i.e., “i = 65”refers to the belief of the respondent at the 65th

percentile. Thus F(65)
t [yj,t+h] denotes the survey expectation of yj,t+h that is formed at time t

by the respondent at the 65th percentile of the survey distribution.

In order to identify possible distortions in beliefs, it is imperative that the benchmark

model of belief formation be as rich as possible, so that our measure of distortion does not

miss pertinent information or pertain only to a small number of arbitrarily chosen information

variables.

To address this problem we take a two-pronged approach that combines diffusion index

estimation with machine learning. The diffusion index estimation component is a preliminary

dimension-reduction step wherein a relatively small number of dynamic factors are estimated

from hundreds of economic time-series. Nonlinearities are readily captured in this step by

including polynomial functions of estimated dynamic factors, or by forming additional factors

from polynomials of the raw data. The second step in our analysis is to use estimated factors as

part of a dynamic machine algorithm of regularized estimation that optimally trade off down-

weighting information against reduced parameter estimation error. Diffusion index forecasting

is increasingly used in data rich environments, so we cover this step in the Online Appendix

and focus below on the machine learning algorithm.

3.1 Machine Effi cient Benchmark

Let xCt = (xC1t, . . . , x
C
Nt)
′ generically denote a dataset of economic information in some category

C that is available for real-time analysis. We assume that xCit has an approximate factor

structure as detailed in the Online Appendix, where GC
t is an rG × 1 vector of latent common

factors (“diffusion indexes”) with ΛC
i a corresponding rC × 1 vector of latent factor loadings.

Collect all factors from different datasets of category C, as well as nonlinear components

(polynomials of factors and factors formed from polynomials of raw data) into a single rG
dimensional vector Gt. Let Ĝt denote consistent estimates of a rotation of Gt and let the rW
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dimensional vector Wt contain additional non-factor information that will be specified below.

Finally, let Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
be a r = 1 + rG + rW vector which collects the data at time t

and let Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W

′
jt, ...,W

′
jt−pW

)′
be a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ′t, W′
jt,

respectively. Even with the use of factors, Zjt can be of high dimension.
With these data in hand, consider the following machine learning benchmark forecasting

model for outcome variable yj,t+h and survey respondent-type i:

yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZZjt + εjt+h, h ≥ 1 (1)

where B
(i)
jZ is a K × 1 vector of coeffi cients, with K = r+ py + pG · rG + pW · rW the number of

right-hand-side variables other than F(i)
t , and α

(i)
j is an intercept term. Given the potentially

large number of information variables that might be relevant for the outcome yj at t + h,

equation (1) is estimated using machine learning tools, as discussed below.

Estimation of the specification in (1) delivers a time t machine learning belief about yj,t+h,

denoted E(i)
t [yj,t+h]. We define the machine effi cient benchmark as a set of parameter re-

strictions that would imply the survey forecaster in the ith percentile processes all available

information at time t as effi ciently as the machine. This benchmark corresponds to the following

parameter restrictions:
β

(i)
jF = 1; B

(i)
jZ = 0; α

(i)
j = 0. (2)

Systematic expectational errors in the survey forecast are revealed by deviations from the above

benchmark, generated by a mis-weighting of information contained in Zjt or “1”(i.e., B
(i)
jZ 6= 0

or α(i)
j 6= 0) and/or the survey respondent’s own forecast, F(i)

t [yj,t+h] (i.e., β
(i)
jF 6= 1). When

estimates of β(i)
jF differ from unity, the benchmark implies that the forecast F(i)

t [yj,t+h] could

have been improved by giving it more or less weight relative to other objective information.

We compute a dynamic measure of a survey respondent-type’s belief distortion by taking

the difference between the survey forecast and the machine forecast, a time t quantity we call

the “bias”for brevity. Denote the bias of forecaster i at time t as

bias
(i)
j,t ≡ F

(i)
t [yj,t+h]− E(i)

t [yj,t+h] . (3)

Several points about the resulting measure of belief distortion bear emphasis. First, bias(i)
j,t

captures ex ante expectational errors, not ex post forecast errors, or “mistakes.”In particular,

bias in expectations is measured relative to the machine forecast, not relative to the ex post

outcome. One implication of this is that it is possible that every respondent-type is biased

vis-a-vis the machine ex ante, even though there will always be some respondent-type that is

“right”ex post.

Second, the machine benchmark of belief formation is a type-specific benchmark that adopts

the perspective of a forecaster-type who is in the ith percentile of the survey forecast distrib-

ution in period t. The machine is given any information that the survey forecaster in the ith

8



percentile could have observed at time t, including her own forecast F(i)
t [yj,t+h], as well as all

objective economic information contained in Zjt.1 Allowing the benchmark to be type-specific
is crucial for capturing the role played, if any, by private information or priors in measured

belief distortions, since doing so allows the machine to optimally re-weight the information

contained in respondent-type forecasts against other objective economic information that is

publicly available. Were there no data limitations, the benchmark could instead be respondent-

specific. Unfortunately, operationalizing this approach using the learning algorithm described

below would require a far longer time-series element for individual survey respondents than is

available in the surveys.2

Third, the machine is given only that information at time t that the survey respondent-

type in the ith percentile could have observed at time t, and nothing more. This is important

because superior machine forecasts formed with ex post information that we cannot be certain

the survey respondent could have observed in real time might simply reflect the benefit of

hindsight, rather than genuine systematic expectational error. For this reason, some popular

techniques for forming benchmarks to measure forecaster bias, such as meta forecasts that pool

multiple survey forecasts at time t to form a meta forecast, are ruled out because individual

survey respondents do not have access to all the other analysts predictions in real time.

3.2 Quantifying Belief Distortions

To measure any distortions in survey expectations, we compare the forecast accuracy of the

survey respondent-type with that of the machine. Such a comparison requires a suffi ciently

large number of observations on relative accuracy to eliminate differences in ex post predictive

outcomes attributable to pure random error. We therefore compare relative forecast perfor-

mance over an extended evaluation sample. If the machine benchmark consistently produces

more reliable forecasts over an extended sample, we conclude that there exist systematic ex-

pectational errors, and quantify their magnitude by the ratio of mean squared forecast errors

(MSE). Otherwise we conclude there is no systematic bias in survey expectations.

To quantify any distortions, we need to estimate the machine specification. We simplify

notation by collecting all the independent variables and coeffi cients on the right-hand-side of

(1) into a single matrix and vector and writing the machine model as:

yj,t+h = X ′tβ
(i)
j + εjt+h (4)

1Nevertheless, we show in the Appendix that results for the machine estimate of the median SPF bias are
very similar even if we do not give the machine the median type’s time t survey forecast F(i)

t [yj,t+h] and instead
replace that observation with a publicly available concensus forecast from Bloomberg.

2The learning algorithm described below employs rolling estimation and training sample windows that could
be as long as 34 quarters once combined, a span of data that must be available before the first out-of-sample
machine forecast can be recorded. By contrast, the length of time that individual respondents remain in the
survey samples is comparatively short. For example, for the Survey of Professional Forecasters survey on inflation
expectations, the average forecaster remains in our sample just 18.5 quarters, with gaps in participation that
would require filling in missing values.
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where Xt =
(

1,F(i)
t [yj,t+h] ,Zjt

)′
and β(i)

j ≡
(
α

(i)
j , β

(i)
jF ,
(
B

(i)
jZ

))′
.

Let XT = (yj,1, ...yj,T , ...X ′1, ...,X ′T )′ be the vector containing all observations in a sample of

size T . We consider estimators of β(i)
j that take the form

β̂
(i)

j = m
(
XT ,λ

(i)
)
,

where m
(
XT ,λ

(i)
)
defines an estimator as a function of the data XT and a non-negative reg-

ularization parameter vector λ(i) estimated using cross-validation. Denote this latter estimator

λ̂
(i)
and denote the combined final estimator β̂

(i)

j

(
XT , λ̂

(i)
)
. Our main approach uses the

Elastic Net (EN) estimator, where λ(i) is a bivariate vector that uses dual (lasso and ridge)

penalties to achieve both shrinkage and sparsity.3

The estimation of (4) is repeated sequentially in rolling subsamples, with parameters esti-

mated from information known at time t used predict variables yj,t+h in subsequent periods.

This leads to a sequence of machine effi cient beliefs about yj,t+h. Denote the coeffi cients and

regularization parameters obtained from an estimation conducted with information through

time t as β̂
(i)

j,t and λ̂
(i)

t , respectively. Note that the time t subscripts on β̂
(i)

j,t and λ̂
(i)

t are used

to denote one in a sequence of time-invariant parameter estimates obtained from rolling sub-

samples, rather than estimates that vary over time within a sample. Likewise, we shall denote

the time t machine belief about yj,t+h as E(i)
t [yj,t+h], defined by

E(i)
t [yj,t+h] ≡ X ′t β̂

(i)

j,t

(
XT , λ̂

(i)

t

)
.

Forecast errors are differentially denoted for the survey and machine

survey error(i)t+h = F(i)
t [yj,t+h]− yj,t+h

machine error(i)t+h = E(i)
t [yj,t+h]− yj,t+h.

Survey and machine MSEs denoted with F and E subscripts, i.e.,
survey MSE ≡ MSEF = (1/P )

∑P
i=1(survey error(i)t+h)

2 (5)

machine MSE ≡ MSEE = (1/P )
∑P

i=1(machine error(i)t+h)
2 (6)

where P is the length of the forecast evaluation sample. To reduce notation clutter, we leave

off superscripts “(i)”in the definitions above, but the reader is reminded that these statistics

also depend on the respondent-type. Distortions in survey responses are quantified by the ratio

MSEE/MSEF over an extended forecast evaluation sample.

In this setting, high degrees of parameter estimation error and over-fitting are likely even

with the aid of dynamic factors. Moreover, our desired benchmark must be effi cient at out-of-

sample prediction in a dynamic context, which is to say it must minimize biases that could be

discovered ex ante. Our next step is to therefore use machine learning along with data driven

regularization to address the high-dimensional, dynamic learning problem.
3We have also implemented the approach in simulated data and hold-out samples for lasso and ridge sepa-

rately, for random forest, and for empirical Bayes linear regression. The EN estimator was the best performing,
followed by lasso, while random forest and Bayesian regression performed poorly.
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3.3 Machine Learning Algorithm

We present a dynamic machine learning algorithm developed to detect demonstrable, ex ante

expectational errors in real time. The full estimation and evaluation procedure involves iterating

on the following steps, which are described in greater detail in the Appendix.

1. Sample partitioning: At time t, a prior sample of size T̃ is partitioned into two subsam-
ple windows: an “in-sample”estimation subsample consisting of the first TIS observations,

and a hold-out “training”subsample of TTS subsequent observations, i.e., T̃ = TIS +TTS.

2. In-sample estimation: Initial estimates of β(i) are obtained with the EN estimator

using observations 1, ..., TIS, given an arbitrary fixed (non-random) starting value for

λ
(i)
t . Denote this initial estimate β

∗(i)
TIS

(
XTIS ,λ

(i)
t

)
, where “∗”denotes the value of the

estimator given an arbitrary λ(i)
t .

3. Training and cross-validation: The regularization parameter λ(i)
t is estimated by min-

imizing mean-square loss L
(
λ

(i)
t , TIS, TTS

)
over pseudo out-of-sample forecast errors gen-

erated from rolling regressions through the training sample, where

L
(
λ

(i)
t , TIS, TTS

)
≡ 1

TTS − h
∑TIS+TTS−h

τ=TIS

(
X ′τβ

∗(i)
j,τ

(
XTIS ,λ

(i)
t

)
− yj,τ+h

)2

, (7)

and where β∗(i)j,τ

(
XTIS ,λ

(i)
t

)
is the time τ EN estimate of β(i)

j given λ(i)
t and data through

time τ in a sample of size TIS.

4. Steps 1-3 are repeated over a grid of estimation and training sample window lengths T ∗IS
and T ∗TS such that alternative partitions satisfy T

∗
IS + T ∗TS ≤ T̃ , where shorter window

lengths remove consecutive observations at the start of the prior sample. The final ma-

chine estimator of β(i)
j,t

(
XT̃ ,λ

(i)
t

)
uses

{
λ̂

(i)

t , T̂IS, T̂TS

}
= argmin

λ,T ∗IS ,T
∗
TS

L
(
λ

(i)
t , T

∗
IS, T

∗
TS

)
and

is denoted β̂
(i)

j,t

(
XT̃ , λ̂

(i)

t

)
.

5. Out-of-sample prediction: The values of the regressors at time t are used to make
a true out-of-sample prediction of yt+h, using β̂

(i)

j,t

(
XT̃ , λ̂

(i)

t

)
, and the machine forecast

error yt+h −X ′t β̂
(i)

j,t

(
XT̃ , λ̂

(i)

t

)
stored.

6. Roll forward and repeat: The prior sample of data is rolled forward one period, and
steps 1-5 are repeated.4 This continues until the last out-of-sample forecast is made for

yj,T , where T is the last period of our sample.

Referring back to the notation in (5) and (6), MSEE is computed by averaging across the

sequence of squared forecast errors from step 5 for periods t = (T̃ + h),...,T . We refer to this

subperiod as the forecast evaluation sample.

4For example, if the prior iteration used data from 1, ..., T̃ and an in-sample subperiod that started with data
from 1, ..., TIS , the next iteration starts with data from 2, ..., T̃+1 and the in-sample partician from 2, ..., TIS+1.
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Several points about the above procedure bear emphasizing. First, the algorithm ensures

that the machine forecast selected from step 4 can only differ from the survey forecast if it

demonstrably improves pseudo out-of-sample prediction in the rolling training samples prior

to making a true out-of-sample forecast in step 5. Otherwise, the machine adopts the survey

forecast. It follows that the true out-of-sample forecasts of the machine recorded in step 5 can

differ from those of the survey only if demonstrable, ex ante biases are detected. The resulting

measure of belief distortion therefore explicitly excludes ex post mistakes that the machine

algorithm could only have understood with hindsight. An implication of this ex ante approach

is that more than one type can show no bias if the machine is unable to detect patterns in

extraneous economic data that can be exploited in real time to improve forecasts. We quantify

the overall magnitude of forecaster bias with the ratioMSEE/MSEF taken over the evaluation

sample.

Second, the machine algorithm is repeated for each i and for each t in the evaluation

sample. Because each new training renews the optimized selection of in-sample estimation and

training sample windows lengths, the machine can in principle adapt to a changing economic

environment. This can be important for all the parameter estimates but especially so for the

estimate of the intercept, which functions as a latent time-varying mean.

Third, the specification just described is unlikely to be well suited to capturing extreme

nonlinearities associated with times of rapid economic change, as in recessions. We therefore

augment the machine algorithm so that it switches to a simpler specification when a specific

recession indicator passes a threshold in real time. For this purpose we use the 10-year minus

3-month Treasury term spread. When the term spread is suffi ciently low in the real time

sample, the machine bases its forecasts solely on a term spread dummy indicator. At time t,

the machine considers different dummy indicators that take the value 1 when the term spread

at t− h is at or below some threshold, where the threshold is chosen to minimize mean-square
loss in the relevant training sample immediately prior to the actual forecast.

3.4 Data

The data used for this study fall into several categories. For each category the sources and

details are left to the Appendix.

Survey Data The first data category is the survey data. We study three different surveys

that ask about expectations for future inflation and aggregate economic activity: the Survey of

Professional Forecasters (SPF), the University of Michigan Survey of Consumers (SOC), and

the Blue Chip Survey (BC). The first covers professional forecasters in a variety of institutions,

the second covers households and is designed to be representative of the U.S. population, and

the third covers executives of financial firms. Data from the SPF and the SOC are publicly

available; BC data were purchased and hand-coded for the earlier part of the sample.

The SPF is a quarterly survey. Respondents provide both nowcasts and quarterly forecasts

12



from one to four quarters ahead. We focus on the survey questions about the level of the GDP

deflator (PGDP) and the level of real GDP. We use these data to construct forecasts of GDP

growth, as explained in the Appendix. We also use SPF forecasts of 10-year-ahead CPI inflation

as information variables.

The SOC asks households directly about inflation, and we use the questions on whether

households expect prices to go up or down during the next twelve months to gauge their

expectations about inflation. Following Curtin (2019), we take these forecasts to be most

relevant for annual consumer price index (CPI) inflation, and therefore compare SOC forecasts

to actual outcomes for CPI inflation. Since the SOC doesn’t directly ask about GDP growth,

we take the approach discussed in Curtin (2019) which is based on responses to question A7:

About a year from now, do you expect that in the country as a whole business conditions will

be better, or worse than they are at present, or just about the same? This qualitative economic

forecast is converted to a point forecast for GDP growth by fitting a regression of future GDP

growth data to the balance score for A7 (% respondents expect economy to improve - % expect

worsen + 100) using rolling regressions and real-time GDP data.

For the BC survey, we use questions in which forecasters are asked to predict the average

quarter over quarter percentage change in Real GDP and the GDP deflator, beginning with

the current quarter and extending four to five quarters into the future.

For all surveys, we align the timing of survey response deadlines with real-time data, so that

respondents and machine could only have used data available in real time before the survey

deadline.

Real Time Macro Data A real-time macro dataset provides observations on the left-

hand-side variables on which forecasts are formed obtained from the Philadelphia Fed’s Real-

Time Dataset. Following Coibion and Gorodnichenko (2015), to construct forecasts and forecast

errors, we use the vintage of inflation and GDP growth data that is available four quarters after

the period being forecast. We also use the real time macro data to form real-time quarterly

macro factors from a constructed dataset of real-time quarterly macro variables observed on or

before the day of the survey deadline at each date t. The resulting real-time macro dataset,

contains observations on 92 real-time macro variables. Our real time macro variable dataset

also include data on home and energy prices, which are not revised and so do not have multiple

vintages. The complete list of macro variables is given in the Online Appendix.

Monthly Financial Data To take into account financial market data, we form factors

from a panel dataset of 147 monthly financial indicators that include valuation ratios, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of different ratings grades, yields on Treasuries and yield spreads, and a broad cross-section of

industry equity returns. We convert the monthly factors formed from the dataset into quarterly

factors by using the first month’s observation for each quarter.
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Daily Financial Data “Up-to-the-forecast” financial market information is accounted

for by using daily data on financial indicators up to one day before the survey respondents

forecasts are due. The daily financial dataset includes series from five broad classes of financial

assets: (i) commodities prices (ii) corporate risk variables including a number of different credit

spreads measuring default risk (iii) equities (iv) foreign exchange, and (v) government securities.

In total, we use 87 such series (39 commodity and futures prices, 16 corporate risk series, 9

equity series plus implied volatility, 16 government securities, and 7 foreign exchange variables),

with the complete set of variables reported in the Online Appendix. In order to use both daily

and quarterly data in our estimation, we combine diffusion index estimation of daily financial

factors with mixed data sampling frequency techniques, described in detail in the Appendix.

Additional Non-Factor Data A number of other non-factor variables are also included

in the machine model in W′
jt. These include the ith percentile’s own nowcast for the variable

being forecast, lags of the ith percentile’s own forecasts and those of other percentiles, higher-

order cross-sectional moments of the lagged forecast distributions, several autoregressive lags

of the left-hand-side variables, long-term trend inflation measures, and measures of detrended

employment and GDP (Hamilton, 2018).

In all, once factors are formed the machine model entertains a total of 68 predictor variables

for inflation and 72 predictor variables for the GDP growth. Below we refer to estimated factors

with an economic name. The economic name makes use of group classifications for individual

series and output from time series regressions of individual series onto estimated factors. This is

done for each time period in our evaluation sample by computing a marginal R2 from regressions

of each of the individual series in a given panel dataset onto each factor, one at a time. For

example, if regressions of non-farm payrolls onto the first common macro factor from the real

time macro panel dataset exhibits the highest average (across all time periods of our evaluation

sample) marginal R2, then that factor is labeled an “Employment” factor and normalized so

that it increases when non-farm payrolls increase.

4 Estimates of Belief Distortions

This section reports results using our estimates of belief distortions across different respondent-

types, surveys, and variables. Before getting into our main findings, we begin with some

preliminary analysis to illustrate the role played by two key elements of our machine learning

problem for establishing whether and by how much beliefs are distorted.

One key element pertains to the principle of out-of-sample versus in-sample forecasting, a

principle best illustrated by contrasting results from ex ante and ex post econometric analyses.

Survey respondents are asked to make genuine out-of-sample forecasts, and so we require our

benchmark against which belief distortions are measured to do so as well. To illustrate the

potential importance of this for the measurement of belief distortions, let us consider the in-

sample regressions run in Coibion and Gorodnichenko (2015) (CG), which show that mean
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Table 1: d
Table 1: CG Regressions of Forecast Errors on Forecast Revisions

Panel A: In-sample Regressions (CG Sample)
Regression: πt+3 − F(µ)

t [πt+3] = α(µ) + β(µ)
(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+δπt−1,t−2 + εt

Constant 0.001 −0.077
t-stat (0.005) (−0.442)

Ft [πt+3,t]− Ft−1 [πt+3,t] 1.194∗∗ 1.141∗∗

t-stat (2.496) (2.560)
πt−1,t−2 0.021
t-stat (0.435)

R̄2 0.195 0.197
Panel B: Out-of-sample Regressions

Regression: πt+3 − F(µ)
t [πt+3] = α(µ) + β(µ)

(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+ εt+3

Method Forecast Sample MSECG/MSEF
Rolling 5 years 1975:Q4 - 2018:Q2 1.38
Rolling 10 years 1980:Q4 - 2018:Q2 1.29
Rolling 20 years 1990:Q4 - 2018:Q2 1.31
Recursive 5 years 1975:Q4 - 2018:Q2 1.69
Recursive 10 years 1980:Q4 - 2018:Q2 1.60
Recursive 20 years 1990:Q4 - 2018:Q2 1.33

In-sample versus out-of-sample regressions using CG specification. Panel A reports the in-sample

results over the sample used in Coibion and Gorodnichenko (2015) (CG), 1969:Q1 to 2014:Q4. Newey-West

corrected t-statistics with lags = 4 are reported in parenthesis. Panel B reports the ratio of out-of sample

mean-squared-error (MSE) of the CG model forecast to that for the survey forecast computed using different

rolling or recursive estimation windows. The MSE for the CG model averages the (square of the) forecast

errors πt+3− π̂(µ)
t+3, where π̂

(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F(µ)
t−1 [πt+3] . In both panels, the regression

estimation uses the latest vintage of inflation in real time and, following CG, computes forecast errors with

real-time data available four quarters after the period being forecast. Annual inflation is defined as πt+3,t =
Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, and Ft [πt+3,t] is the mean forecast of annual inflation as of time t from the Survey

of Professional Forecasters (SPF). The sample of Panel B spans the period 1969:Q1 - 2018:Q2. *sig. at 10%.

**sig. at 5%. ***sig. at 1%.

survey forecast errors are positively predicted by ex ante mean forecast revisions. We reproduce

their findings for the SPF on updated data in panel A of Table 1. Consistent with CG, we

find strong evidence that lagged forecast revisions predict next period’s forecast error in these

regressions. Moreover, other information, e.g., lagged inflation, is found to be unimportant

in predicting forecast errors once the information in forecast revisions is taken into account,

a finding also consistent with CG.5 CG observe that these findings are consistent with the

implications of theories that feature information frictions and under-reaction to aggregate news.

The bottom panel of Table 1 reports results from the same regression forecasts, but this time

run out-of-sample rather than in-sample. Over a range of forecast evaluation subsamples using

5We include one lag of the quarterly inflation rate as an additional control variable, consistent with the
procedure implemented in CG. There is a typo in the published version of CG that erroneously indicates their
procedure controlled for one lag of annual rather than quarterly inflation.
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either rolling or recursive regressions, we find that the mean SPF survey forecast generates

much lower prediction error than a specification that attempts to exploit any information that

may be contained in the lagged revision of the mean forecast. In other words, in contrast to the

in-sample findings, information on lagged forecast revisions substantially worsens predictions

of mean survey forecast errors in an out-of-sample context. This result recalls a body of prior

econometric evidence finding that survey forecasts of inflation are hard to beat or even match

with statistical models when forecasts are conducted out-of-sample.6

The contradictory in-sample and out-of-sample evidence could be attributable to an unstable

empirical relationship. Instability can create a high degree of sampling error so that what is

revealed to be important ex post is simply not apparent ex ante. Whatever the cause, it is

impossible to establish the extent to which beliefs are distorted due to information frictions

or any other reason unless the benchmark against which distortions are measured adheres

to the same forecasting context survey respondents were faced with at the time they made

their predictions. After all, even agents (such as our machine) who possess vast information

processing capacity will optimally downweight information that might appear relevant ex post if

it systematically fails to improve forecasts ex ante. It would not be correct to interpret this type

of downweighting as under-reaction to genuine economic news or as evidence of a systematic

bias in expectations. We return to the question of whether lagged forecast revisions contain

any valuable predictive information for mean forecast errors in our machine learning estimation

section below.7

A second key element of our learning problem is the data rich environment. To illustrate

the importance of this, we consider an exercise in the spirit of Chauvet and Potter (2013),

who considered a wide range of low dimensional statistical models for predicting GDP growth

and found that a second-order autoregression performed best for one-quarter ahead predictions

when evaluated in a hold-out sample. Table 2 shows the estimated autoregressive coeffi cients

estimated from rolling, one-quarter-ahead, out-of-sample forecasting regressions of GDP growth

on predictors, in two specifications. A high dimensional specification entertains a very large

numbers of potential predictor variables, as our machine estimation described above does.

Among these predictors, we include the two autoregressive lags. A low dimensional specification

uses the two autoregressive lags and only two additional predictors: the SPF median forecast of

GDP growth and its current nowcast, both of which are also included in the high dimensional

model. Evidently, the coeffi cient on the first autoregressive lag, large in the low-dimensional

setting, is zero once additional information is entertained. This result does not imply that

sparse specifications are rarely optimal (indeed we report below that they often are). What

it points to is the diffi culty with knowing which small number of predictor variables are likely

6For example, Ang, Bekaert, and Wei (2007), Del Negro and Eusepi (2011), Andersen, Bollerslev, Christof-
fersen, and Diebold (2011), Genre, Kenny, Meyler, and Timmermann (2013), and Faust and Wright (2013).

7As an aside, we note that the machine forecast errors do not exhibit a correlation with lagged machine
forecast revisions, even in in-sample regressions. These results are reported in the Online Appendix.
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Table 2: d
Table 2: Average coeffi cients on the first two AR lags

High Dimensional Low Dimensional
β1 0.0000 0.0076
β2 −0.0025 −0.0044

Note: This table reports average autoregressive coeffi cients from one-year-ahead rolling regressions of real GDP

growth on predictors. β1 is the average coeffi cient on the first AR lag; β2 is the average coeffi cient on the

second. The high dimension estimation entertains very large numbers of potential predictors, in addition to

the autoregressive lags, while the low dimension setting uses only two additional predictors. The sample spans

1995:Q1-2018:Q2.

to be informative without the benefit of hindsight afforded an academic study examining a

single hold-out sample. The challenge for real time decision making is that different pieces

of information may become relevant at different points in time and forecasts that have not

entertained large and varied datasets risk missing relevant information.

4.1 Forecast Comparison

This subsection presents a comparison of the accuracy of forecasts made by the machine bench-

mark and the survey respondents. In all cases, we focus on four-quarter-ahead forecasts. For

each survey, we evaluate the relative forecast performance over the longest common sample

available for all machine specifications in a given survey after taking into account the different

in-sample and training-sample window lengths chosen by the machine for each forecaster type.

The estimation sample used by the machine varies slightly across surveys due to differences in

data availability. This in turn leads to slightly different forecast evaluation samples across sur-

veys. For SPF inflation and GDP growth forecasts, the estimation sample is 1969:Q3-2018:Q3

and the forecast evaluation sample for both variables is 1995:Q1 to 2018:Q2. For SOC, the

estimation sample is 1978:Q1-2018:Q3 for GDP growth and inflation, while the forecast eval-

uation samples are 1995:Q1-2018:Q2 for GDP growth and 1996:Q4-2018:Q2 for inflation. For

BC, the estimation sample is 1986:Q1-2018:Q3 for GDP growth and inflation, while the forecast

evaluation samples are 1997:Q1-2018:Q2 for GDP growth and 1997:Q3-2018:Q2 for inflation.

Table 3 reports the ratio of the out-of-sample machine MSEE to survey MSEF for inflation

and GDP growth for all three surveys over their respective forecast evaluation samples.

The top panel of Table 3 shows that the machine model performs better than the survey

forecasts of inflation for all surveys as measured by the ratio MSEE/MSEF, which is less than

one for all percentiles, sometimes by large amounts. To put this ratio in the same units as an

in-sample R2, the table also reports an out-of-sample R2 for the machine vis-a-vis the survey as

R2
OOS ≡ 1−MSEE/MSEF. The overall magnitude by which the machine model improves on

the survey forecasts is in most cases sizable, which is notable since survey forecasts of inflation

are known to be diffi cult to beat or even match by statistical models out-of-sample, as discussed
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Table 3: d

Table 3:Machine Learning versus Survey Forecasts

ML: yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)
jZZjt + εjt+h

Inflation Forecasts
Survey of Professional Forecasters (SPF)

Percentile Median Mean 5th 10th 20th 25th 30th 40th 60th 70th 75th 80th 90th 95th
MSEE/MSEF 0.85 0.95 0.56 0.74 0.83 0.90 0.88 0.89 0.74 0.70 0.67 0.59 0.55 0.47
OOS R2 0.15 0.05 0.44 0.26 0.17 0.10 0.12 0.11 0.26 0.30 0.33 0.41 0.45 0.53

Michigan Survey of Consumers (SOC)
Percentile Median Mean 5th 10th 20th 25th 30th 40th 60th 70th 75th 80th 90th 95th
MSEE/MSEF 0.58 0.42 0.22 0.28 0.46 0.58 0.67 0.65 0.37 0.21 0.16 0.12 0.05 0.03
OOS R2 0.42 0.58 0.78 0.72 0.54 0.42 0.33 0.35 0.63 0.79 0.84 0.88 0.95 0.97

Blue Chip Financial Forecasts (BC)
Percentile Median Mean 5th 10th 20th 25th 30th 40th 60th 70th 75th 80th 90th 95th
MSEE/MSEF 0.84 0.84 0.58 0.60 0.85 0.85 0.86 0.91 0.78 0.69 0.65 0.59 0.48 0.38
OOS R2 0.16 0.16 0.42 0.40 0.15 0.15 0.14 0.09 0.22 0.31 0.35 0.41 0.52 0.62

GDP Forecasts
Survey of Professional Forecasters (SPF)

Percentile Median Mean 5th 10th 20th 25th 30th 40th 60th 70th 75th 80th 90th 95th
MSEE/MSEF 0.89 0.93 0.72 0.83 0.82 0.86 0.89 0.90 0.87 0.82 0.81 0.82 0.71 0.65
OOS R2 0.11 0.07 0.28 0.17 0.18 0.14 0.11 0.10 0.13 0.18 0.19 0.18 0.29 0.35

Michigan Survey of Consumers (SOC)
Percentile Median
MSEE/MSEF 0.74
OOS R2 0.26

Blue Chip Financial Forecasts (BC)
Percentile Median Mean 5th 10th 20th 25th 30th 40th 60th 70th 75th 80th 90th 95th
MSEE/MSEF 0.76 0.83 0.77 0.75 0.89 0.82 0.81 0.77 0.76 0.73 0.70 0.65 0.67 0.66
OOS R2 0.24 0.17 0.23 0.25 0.11 0.18 0.19 0.23 0.24 0.27 0.30 0.35 0.33 0.34

Machine v.s. survey mean-square-forecast errors. MSEE and MSEF denote the machine and survey mean-squared-forecast-errors, respectively,
for 4-quarter-ahead forecasts, averaged over the evaluation sample. The out-of-sample Rsquared, OOS R2, is defined as 1-MSEE/MSEF. The vintage

of observations on the variable being forecast is the one available four quarters after the period being forecast. The evaluation period for the Survey of

Professional Forecasters (SPF) is 1995:Q1 to 2018:Q2; for the Michigan Survey of Consumers (SOC) is 1996:Q4 to 2018:Q2; and for the Bluechip (BC)

survey is 1997:Q3 to 2018:Q2.
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above. The one exception is for the mean SPF forecast, where the improvement is modest with

MSEE/MSEF = 0.95. But by contrast, the ratio MSEE/MSEF for the median SPF forecast

is 0.85. It is worth remembering that the mean SPF forecast is always an amalgam that does

not correspond to the belief of any single respondent-type in the survey. It is arguably less

relevant to the study of what, if any, systematic errors individuals may make when forming

macroeconomic expectations. These ratios are similar for the BC survey, as shown in the last

panel, where in this case MSEE/MSEF is 0.84 for both the mean and the median respondent-

type. In general, the magnitude of measured belief distortions about future inflation is much

larger for SOC respondents than for the SPF and BC respondents, as shown in the middle panel.

The SOC mean and medianMSEE/MSEF ratios are 0.58 and 0.42, respectively, implying large

out-of-sample R2 statistics.

For GDP growth, the lower panel of Table 3 shows that machine model is also always more

accurate than the survey respondent no matter which respondent-type or survey is studied.

The MSEE/MSEF ratios for the mean and median SPF forecasts of GDP growth are 0.83

and 0.89, respectively, while for the BC survey they are 0.83 and 0.76, respectively. For the

SOC, there is only a single forecast, denoted as if it corresponds to the “median”household.

This is because the SOC forecast is constructed from the balance score for business conditions

expectations, a construction that eliminates the heterogeneity (see above). The MSEE/MSEF

for this single SOC forecast of GDP growth is 0.74.

Given these gains in forecast accuracy, it is of interest to consider the nature of the empirical

specifications chosen by the machine. Figure 1 reports a scatter plot that quantifies the strength

of the estimated ridge and lasso penalties, with each point representing a combination of the two

penalties chosen for one time period of the evaluation sample. The y-axis displays the degree of

sparsity implied by the L1 (lasso) penalty, as measured by the fraction of non-zero coeffi cients.

The x-axis displays the degree of shrinkage implied by the L2 (ridge) penalty, as measured by

1/
(

1 + λ̂2,t

)
, where λ̂2,t is the estimated ridge penalty parameter for period t. The right border

of the plot is the case where there is no ridge penalty at all, while the top edge of the plot is

the case where there is no lasso penalty. We see that the machine algorithm often results in a

sparse specification. In many time periods the fraction of non-zero coeffi cients hovers around

10% or less, though in some periods the machine chooses little if any sparsity, but much greater

L2 shrinkage. Occasionally, the machine chooses minimal sparsity and minimal L2 shrinkage.

This implies that achieving the effi ciency gains of the machine over the extended evaluation

sample requires entertaining large amounts of information in every period, even though much

of that information is associated with a coeffi cient that is shrunk all the way to zero most of

the time.
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Figure 1: Degree of Sparsity and Shrinkage
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Degree of Sparsity and Shrinkage. The figure displays a scatterplot of the strength of the ridge and LASSO penalties estimated from training

samples over time for predicting median inflation or real GDP growth. For each observation in the evaluation sample from 1995:1-2018:Q2 (94

observations), the y-axis displays the degree of sparsity implied by the estimated L1 penalty, λ1, in units of the fraction of non-zero regression coeffi cients,

and the x-axis displays the degree of shrinkage implied by the estimated L2 penalty, λ2 in units of 1/ (1 + λ2).

Figure 2: Biases in the Mean and Median Survey Forecasts

SPF Inflation

2000 2010

-1

-0.5

0

0.5

1

1.5
SPF GDP

2000 2010
-1

0

1

2

3

4

5

SOC Inflation

2000 2010

-2

0

2

4

SOC GDP

2000 2010

-3

-2

-1

0

1

2

3

BC Inflation

2000 2010

-1

-0.5

0

0.5

BC GDP

2000 2010

-2

0

2

4

NBER recession Median bias Mean bias

Biases in the consensus forecasts. The figure reports the time series bias(i)
j,t+h = F(i)

t [yj,t+h] − E(i)
t [yj,t+h] for i = 50,mean. NBER recessions are
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4.2 Dynamics of Belief Distortions

To investigate the dynamics of systematic expectational errors, we report bias(i)
j,t ≡ F

(i)
t [yj,t+h]−

E(i)
t [yj,t+h] over our evaluation sample, where the units are the same as the forecasts themselves

and are in annual percentage points. Figure 2 shows biases associated with the mean and

median respondents for all three surveys.

Figure 2 shows that systematic errors in the mean and median forecasts vary substantially

over time and can range between 50% and 400% of the average annual inflation or GDP growth,

depending on the survey. Survey forecasts for GDP growth oscillate between “optimism”and

“pessimism.” For GDP growth the figure shows extended periods of over-optimism that are

especially prevalent for professional forecasters in the post-Great Recession part of our subsam-

ple. From 2010:Q1 to 2018:Q2, the median SPF forecast of GDP growth is biased upward by

0.83% at an annual rate, or 37% of actual GDP growth during this period. This large upward

bias since 2010 makes a large contribution to the upward bias over the full evaluation sample

(1995:Q1-2018:Q2), which is also sizable and amounts to 20% of observed GDP growth. These

distortions are quite similar for the median BC expectation of GDP growth. For the SOC,

the average bias is close to zero even though the SOC forecast is less accurate than the SPF

or BC forecasts. This happens because the SOC forecast makes systematic errors of greater

magnitude that fluctuate more wildly between optimism and pessimism. And for all surveys,

there are large spikes in the biases at the cusp of the 2000-2001 recession, which we discuss

further below.

For inflation, Figure 2 shows that mean and median expectations are biased upward (a

direction we defined above as “pessimistic”) over most of the sample for the SPF and the SOC,

while the BC survey exhibits an average bias that is close to zero.8 Despite being upwardly

biased on average over the full sample, median inflation forecasts exhibit a downward bias from

2011 to 2014 that ranges across surveys from —0.34% to -1.03% at an annual rate, or -19% to

-47% of actual inflation during this period. Given that inflation has been declining over time,

this could be interpreted as evidence of a learning process.

Figure 3 contrasts the common and heterogenous components of these belief distortions

over time, breaking them out by survey. The common component is measured as the first

principle component (PC) of bias(i)
j,t across all percentiles i, with heterogeneity exhibited by

the distribution of bias(i)
j,t across i.

9 For all surveys, we observe substantial variation in belief

8Whether an upward bias in inflation expectations should be viewed as pessimism or optimism may depend
on the time period. Bhandari, Borovicka, and Ho (2019) argue that a general interpretation of higher expected
inflation as optimism is at odds with surveys of inflation attitudes, but others have argued that a downward
bias in inflation expectations could be interpreted as pessimism during specific episodes, such as when nominal
interest rates are at the zero-lower-bound (Masolo and Monti (2015)). We use “pessimistic” as a short-hand
labeling device for upwardly biased inflation expectations, regarding the interpretation as roughly right for
households in most time-periods.

9Since the PCs and their factor loadings Λ are not separately identifiable, the loadings are normalized by
(Λ′Λ) /N = Iq where N is the number of bias(i) series over which common factors are formred and q is the
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Figure 3: Common and Heterogeneous Distortions
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distortions over time that is common across SPF respondents. For SPF and BC, the optimism

about economic growth in the aftermath of the Great Recession is present in the common

component, as is a downward bias to inflation expectations for much of this same time period.

At the same time, there is substantial heterogeneity across responses that varies over time, with

greater dispersion observed in recessions. For the SPF, the most optimistic and pessimistic

responses differ in some recession periods by more than 4% for GDP growth and by more than

2% for inflation, and similarly for the BC survey. For the SOC, heterogeneity in the magnitude

of belief distortions on inflation is enormous, especially immediately after the Great Recession,

where the forecast of annual inflation from the respondent-type at the 95th percentile is almost

15%, while that for the respondent-type at the 5th percentile is less than −5%.

Figure 4 compares forecasted and actual values over time. The figure displays the median

forecast of four-quarter-ahead inflation or GDP growth over our evaluation sample along with

the actual inflation or GDP growth rate during the corresponding four quarter period being

forecast. For all surveys, the machine has been more accurate not just on average but also con-

sistently over the last five years of the evaluation sample from 2013:Q2 to 2018:Q2, sometimes

by large amounts. For GDP growth, the ratio MSEE/MSEF for the median SPF forecast is

0.70 over this subperiod, while it is 0.69 for median BC forecast. Both surveys under-perform

in this subperiod due to over-optimism. For inflation, the ratio MSEE/MSEF over this same

subperiod is 0.47 for the median SOC forecast while it is 0.67 for the median BC forecast. That

the machine does best at the end rather than beginning of the evaluation sample is noteworthy

because it suggests that advances in information-processing technology over the sample are not

the main reason for the machine’s superior forecasting performance. In fact, the machine is

likely to face disadvantages of its own attributable to a lack of access to some forms of timely

information that survey respondents surely have access to either because that information is

inherently intangible and can only be used in a judgemental component of a forecast, or because

a real time format for that information was never suitably archived.

Figure 4 shows that professional forecasters made large forecast errors that were overly

optimistic about GDP growth at the onset of the Great Recession, as noted in Gennaioli and

Shleifer (2018). This pattern is likewise evident in Figure 4 for all surveys studied here. The

figure shows that large forecast errors were made during this episode by the machine as well,

with the machine algorithm doing somewhat better than the SOC forecast, only slightly better

than the BC forecast, and about the same but if anything slightly worse than the SPF forecast.

This occurs despite the fact that the machine algorithm takes into account hundreds of pieces of

real time information including that encoded in numerous financial series and dozens of credit

spreads, recorded at daily, monthly, and quarterly sampling intervals. Large ex post forecast

errors during the Great Recession are arguably more understandable when placed in the broader

number of common factors. This implies that the units for these series have no straight-forward interpretation
in terms of the raw data.
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Figure 4: Forecasted versus Actual Inflation, GDP Growth
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Forecasted and Actual variables. For each variable and survey, the figure reports the median survey

forecast of inflation or GDP growth over the next 4 quarters, the corresponding machine forecast, and the

realized inflation or GDP growth values during this period. Realized values are measured in real-time data

as the vintage available four quarters after the period being forecast. NBER recessions are shown with grey

shaded bars. The sample is 1995:Q1-2018:Q2.

context of the time, which was characterized by unusually elevated objective uncertainty about

the macroeconomy (see Jurado, Ludvigson, and Ng (2015) and Ludvigson, Ma, and Ng (2019)).

This episode underscores the role of largely unforeseen events in generating occasionally large

prediction error, not all of which can be attributed to a systematic bias in expectations.

4.3 Bias Decomposition

If the machine algorithm generates better forecasts, the survey respondents must be either

missing or mis-weighting pertinent economic information. This raises the question of what

type of information the algorithm finds was responsible for the systematic errors? We address

this question by decomposing the belief distortion. Recall that the time t bias is defined as the

difference between the survey respondent-type and machine forecasts:

bias
(i)
j,t+h ≡ F(i)

j,t+h|t − E
(i)
j,t+h|t=F

(i)
t [yj,t+h]− α̂j − β̂

(i)

jFF
(i)
t [yj,t+h]− B̂

(i)′
jZZjt

=
[
−α̂(i)

j

]
︸ ︷︷ ︸
Intercept

+
[(

1− β̂(i)

jF

)
F(i)
t [yj,t+h]

]
︸ ︷︷ ︸

Survey

+
[
−B̂

(i)′
jZZjt

]
︸ ︷︷ ︸
Info variables

(8)
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We are interested in the contribution of the three terms on the right-hand-side of (8), shown

in large square brackets. We decompose bias(i)
j,t+h into these three sources of variation. The

sum of these three terms equals 100% of bias(i)
j,t+h. This decomposition gives an indication of

which information is most mis-weighted by the survey respondent-type, and by how much.

The intercept term α̂
(i)
j changes over the evaluation sample through the dynamic estimation

algorithm and is akin to a time-varying latent conditional mean applied to the most recent

rolling subsample window. We refer to this parameter as a “rolling mean”and denote it with a

t subscript, i.e., α̂(i)
j,t. The estimates β̂

(i)

jF and B̂
(i)′
jZ also vary over the evaluation sample and are

likewise denoted with a t subscript.

It is useful to consider the magnitude and signs of the coeffi cients in the components above.

Consider the coeffi cient on the survey forecast. If β̂
(i)

jF,t < 1, this implies that the machine

improves forecasts by downweighting the survey forecast in favor of giving more weight to other

information. Thus an estimate of β̂
(i)

jF,t < 1 implies that the respondent-type over-weighted

whatever information or prior that was embedded in her own belief while paying too little

attention other objective information that was publicly available, consistent with notions of

overconfidence discussed above. Conversely, if β̂
(i)

jF,t > 1, the machine improved forecasts by

giving greater weight to the survey forecast than the implicit weight given by the respondent-

type to her own forecast, consistent with underconfidence. For the information variables and

the rolling mean, any estimate of B̂
(i)′
jZ,t 6= 0 or α̂(i)

j,t 6= 0 indicates that the machine improved

forecasts by giving greater absolute weight to Zj,k,t or α̂(i)
j,t compared to the respondent-type’s

implicit weight of zero conditional on her own forecast. Thus we refer to any estimate with

B̂
(i)′
jZ,t 6= 0 or α̂(i)

j,t 6= 0 as under-weighting of these sources of information.

Figure 5 reports, for each survey and each variable, the contribution to the median bias of the

three terms in square brackets in (8) at each point in time over our forecast evaluation samples.

The solid lines in each subfigure of Figure 5 report the total median bias, bias(50)
j,t+h, while the

contributions of the three terms in square brackets in (8) are reported as bar charts, with the

height of the bar showing the absolute magnitude by which that component contributed to the

bias. Any above (below) zero bar indicates that the term contributed positively (negatively) to

the overall bias. Since there are many terms in the information variable term, the figure reports

contributions only for the most quantitatively important information variable contributors to

the bias at each time t. In the case of the survey contribution, we further indicate with

color coded bars whether a contribution to the bias was created by the respondent-type having

over- or under-weighted her own forecast. A red bar indicates that the median respondent-type

over-weighted her own forecast (i.e., β̂
(i)

jF,t < 1), consistent with overconfidence, while a blue

bar indicates that she under-weighted, consistent with underconfidence. For the intercept and

information variables terms, any bar with a non-zero height indicates that the respondent-type

gave too little absolute weight to that information. Recessions are shown in the figure by light

grey shaded bars.
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Figure 5: Bias Decomposition: Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h]− E(50)

t [yj,t+h] = −α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h]− B̂(50)′

jZ Zjt
at each time t. The solid black lines in each subpanel plot the median bias, F (50)

t [yj,t+h] − E(50)
t [yj,t+h]. The barcharts in the first row panel report(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] ; those in the second row report −α̂(50)

j ; those in the third row report −B̂(50)′
jZ Zjt for the most important predictor contributors

to the time t bias. Red bars indicate that the survey forecast was given too much weight relative to the machine effi cient forecast, corresponding to(
1− β̂

(50)

jF

)
> 0. Blue bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast, corresponding to(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars.
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A key finding exhibited in Figure 5 that is robust across all surveys and all variables is that

survey respondents almost always place too much weight on their own forecast relative to other

objective economic information, and are in that sense overconfident. This happens not only

for all surveys and for both inflation and GDP growth expectations, but also for virtually all

time periods. This is exhibited in the figure by the frequent and tall red bars in the Survey

Forecast panels of the first row. The length of the bars indicates that the respondent-type’s

over-weighting of her own forecast contributes in most cases to quantitatively large distortions

in macro expectations. For example, the first panel in Figure 5 indicates that the median SPF

respondent’s forecast of four-quarter-ahead inflation contributed 4%—or more than 100%—to

the total upward bias in inflation expectations during several periods at the end of the Great

Recession. That the bars are all red rather than blue indicates that the machine improved

forecasts by greatly downweighted the survey forecast in these periods in favor of placing more

absolute weight on other objective economic information.

If the median forecaster typically placed too much weight on her own forecast, then by

definition she placed too little absolute weight on other information. The bottom two rows of

Figure 5 gives an indication of the type of other objective economic information that was mis-

weighted by the median forecaster over time. A key finding here is that the type of information

is not static but instead changes over time. For example, regarding inflation expectations the

third rows shows that, during the Great Recession, too little attention was paid by the median

SPF respondent to daily data on corporate credit spreads and to monthly data on long-run

survey inflation forecasts, while in the years between 2010 and 2015 the median respondent

paid too little attention to daily information on Treasury yields and lagged values of the SPF

forecasts. The type of information that was under-weighted varies also across surveys. For

the SOC under-weighting of long-run CPI survey forecasts shows up right before the Great

Recession, but not elsewhere in the sample, while the BC median forecast under-weighted this

information after the Great Recession while subsequently giving too little weight to lagged

survey forecasts.

Turning to expectations of economic growth, Figure 5 shows that the over-optimism dis-

played by professional forecasters (both SPF and BC) in the post-Great Recession period was

largely driven, at first, by paying too little attention to the predictable slowing of average eco-

nomic growth captured by the rolling mean, and then subsequently by an over-confidence in

their mistaken beliefs that accounts for more than 100% of the bias in the last five years of the

sample.

Taken together, the findings in Figure 5 underscore the crucial role of considering extensive

and varied information in reducing forecaster bias. Although our machine learning algorithm

often chooses sparse specifications, different sparse information sets are relevant at different

points in time. Since it is impossible to know with certainty which information may be relevant

ex ante, “openness” to wide-ranging and rich sources of information are vital for improving
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forecast accuracy over extended periods of time.

We close this section by returning to the question of whether revisions in survey forecast

are an important contributor to expectational biases. To do so, we run the following machine

version of the CG regressions, which use the mean forecast F(µ) and put forecast errors on the

left-hand-side:

πj,t+3 − F(µ)
t [πj,t+3] = α(µ)

π + β
(µ)
πFR

(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+ B
(µ)′
πZ Zπt + επt+h. (9)

The machine estimation of the above specification differs from the CG estimation in three

ways. First, the machine forecasts are made out-of-sample rather than in-sample. Second, the

machine entertains the large-scale information-set Zπt as additional predictor variables. Third,
the machine uses the EN estimator and dynamic cross-validation algorithm described above,

while CG use least squares. Denote the estimate of the coeffi cient on forecast revisions from this

machine estimation with β(µ)
πFR and that from the univariate, in-sample least squares regression

of CG as β(µ)
πCG.

Figure 6 reports the coeffi cients β(µ)
jFR obtained from estimating (9) using the machine al-

gorithm. Since the estimation is repeated on rolling samples using real time information up

to time t, the figure reports the entire time-series of estimates β̂
(µ)

jFR,t using a bar chart, where

the height of the bar indicates the magnitude of β̂
(µ)

jFR,t and the time period t of the forecast

evaluation sample 1995:Q1-2018:Q2 is given on the x-axis. Time periods τ for which there is no

bar displayed indicate β̂
(µ)

jFR,τ = 0. For comparison, in-sample estimates β̂
(µ)

πCG from the CG least

squares regressions are shown as separate horizontal lines, one for each of three estimation sam-

ples: 1969:Q1-2014:Q4 (CG sample), 1969:Q1-2018:Q2 (our full sample) and 1995:Q1-2018:Q2

(our machine forecast evaluation sample). The horizontal lines for β̂
(µ)

πCG over the first two

samples are both close to 1.2, while that for the shorter recent sample are smaller by half. By

contrast, the machine estimates β̂
(µ)

jFR,t are always much smaller than the in-sample least squares

estimates β̂
(µ)

πCG when those are obtained using the two longer subsamples, and they only match

or exceed the half-as-large value in the shorter recent sample in one time period. Instead, the

coeffi cients on forecast revisions are shrunk all the way to zero by the machine algorithm in

88 out of 94 quarters in favor of placing greater absolute weight on other pieces of information

contained in Zπt or α̂(µ)
π,t . These findings do not indicate an important role for ex ante revisions

in predicting average ex post forecast errors.

5 Belief Distortions and Macroeconomic Fluctuations

This section studies the dynamic relationship between our measured belief distortions and

macroeconomic activity. The first subsection uses Vector Autoregressions (VARs) to explore

whether innovations in belief distortions are related to macroeconomic fluctuations. The second

subsection uses linear projections to study how cyclical shocks affect belief distortions.
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Figure 6: Coeffi cient on Forecast Revisions
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The solid red line shows the estimated in-sample coeffi cient over the CG sample 1969:Q1-2014:Q4. The dashed

blue line shows the estimated in-sample coeffi cient over the full sample 1969:Q1-2018:Q2. The dotted black line

shows the estimated in-sample coeffi cient over the evaluation sample 1995:Q1-2018:Q2.

5.1 Belief Distortions in a Macro VAR

To investigate the relation of our measured belief distortions to macroeconomic fluctuations,

we use the common factor component of our measured distortions, which we denote bias
π

t ,

measured as the PC of inflation biases bias(i)
π,t+h across all surveys and all percentiles i of

each survey, and analogously for distortions about future GDP growth, denoted bias
∆y

t . We

normalize the signs of bias
π

t and bias
∆y

t so that they are positively correlated with the average

(across surveys) median bias for π and ∆y, respectively. Thus a positive innovation in bias
π

t

corresponds to greater pessimism about inflation by the average median respondent, while an

increase in bias
∆y

t corresponds to greater optimism about economic growth by the average

median respondent.

A question arises as to which economic variables to include in the VARs. Given the rela-

tively short evaluation samples over which we have measured biases, we cannot entertain too

many variables or too many lags. We therefore use a one lag VAR but include a range of macro

variables. The variables in the VAR are real GDP, the GDP deflator, real investment, the

real wage, the S&P 500 stock market index, the federal funds rate (FFR), and a bias bias
x

t+h,
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Figure 7: Responses to An Inflation Bias Shock
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Impulse responses to a positive inflation bias shock. The figure plots responses to one standard deviation
positive innovations in an inflation bias index bias

π

t , corresponding to greater upward bias. The blue line shows

the responses when the bias index is constructed using biases across all percentiles of the SPF and BC surveys and

the median SOC survey. The red dotted line shows responses when the index is constructed using biases across

all percentiles of the SPF and BC surveys. Units are in percentage points. The sample is 1995:Q1-2018:Q2.

where bias
x

t+h is either bias
∆y

t+h or bias
π

t+h. The first five variables are transformed with logs. To

study impulse responses and variance decompositions with respect to a shock in the bias in-

dex, the covariance matrix of VAR residuals is orthogonalized using a Cholesky decomposition

with variables ordered as listed above, i.e., with the bias index ordered last. This placement

is conservative for assessing the role of systematic expectational errors to macroeconomic fluc-

tuations, since it attributes all the contemporaneous comovement between the bias index and

the macro indicators to shocks in the macro variables. A “shock”to bias
x

t is a movement in

belief distortions that is contemporaneously uncorrelated with the aggregate economic state,

as measured by the above macro variables. The VAR is estimated with standard Bayesian

methods under flat priors.

Figure 7 reports the dynamic responses to innovations in bias
π

t when this index is constructed

as the first principle component of inflation biases across all percentiles in the SPF and BC

surveys and the median of the SOC. In this case, a positive innovation to bias
π

t (indicating

more pessimism about inflation) operates like a cost-push shock, driving up the real wage, but

driving down prices, real investment, and real GDP. The effects on the real wage are large and

persist for over five years, while the effects on real GDP are smaller and more transitory. These

results are virtually identical when bias
π

t is constructed using only the percentiles of SPF and
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BC surveys (shown in dotted lines). As shown in Appendix Figure A.1, the results change

when bias
π

t is constructed over all percentiles of the SOC only. In this case the error bands

are much wider and the results inconclusive, implying that biases in household-level inflation

expectations exhibit little reliable relation to aggregate economic activity, in contrast to those

for professional and corporate executives. Evidently, household-level belief distortions are more

“noise”than “news”for macroeconomic fluctuations.

Figure 8 reports dynamic responses to positive innovations in bias
∆y

t . The first row shows

two sets of impulse response functions. The blue lines show that a one standard deviation

positive shock to bias
∆y

t (indicating more optimism about economic growth) leads to a sizable

and protracted increase in real activity, in the price level, in the real wage, and in the stock

market. Importantly, these results are specific to innovations in the systematic expectational

errors survey respondents make about future GDP growth, and not to their expectations per

se. The second row of Figure 8 shows that a positive innovation in an index of GDP growth

expectations has very different effects from those of a positive innovation in GDP growth biases

bias
∆y

t . For the results reported in the second row, we create an index of survey expectations,

denoted F∆y

t , exactly as we do for biases but this time using all surveys and all percentiles of

GDP growth survey forecasts rather than measured biases. In contrast to the responses using

bias
∆y

t , positive innovations in F
∆y

t (indicating higher expected economic growth by the average

median respondent) are associated with a decrease rather than an increase in real GDP, in the

stock market, and real investment.

To investigate this further, the red dotted lines in the first row of Figure 8 report the impulse

responses from a VAR that replaces bias
∆y

t with the component of bias
∆y

t that is contempo-

raneously orthogonal to F∆y

t , denoted bias
∆y,⊥
t , computed as the residual from a regression of

bias
∆y

t on F∆y

t . The responses to a positive innovation in bias
∆y,⊥
t and bias

∆y

t are virtually

identical. This implies that a positive innovation in bias
∆y

t happens not because survey ex-

pectations over-react to some positive economic news embedded in the innovation, but instead

because the innovation causes the machine to lower its forecast of economic growth, while the

survey forecast is mostly unchanged. This fact is inconsistent with simple reverse causality

stories in which positive economic shocks cause over-optimism by pushing up growth expecta-

tions too much. Keeping in mind that an impulse response shows the dynamic consequences

of a counterfactual event, this result implies that positive innovations in bias
∆y

t trace out the

effects of instances where survey respondents maintain their forecasts even as objective eco-

nomic evidence points toward a deterioration in economic growth. Evidently, such moments of

serendipitous inattention act like positive economic shocks, leaving growth higher than it would

otherwise be.

To study the quantitative importance of the bias shocks for macroeconomic fluctuations,

Table 4 reports variance decompositions of the VAR variables, over several VAR forecast hori-

zons. The table reports the fraction of forecast error variance that is explained by shocks to
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Figure 8: Responses to GDP Growth Bias and Expectation Shocks
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Impulse responses to a positive GDP growth bias shock and a positive GDP expectation shock. The blue line shows the responses to one
standard deviation positive innovations in the bias index bias

∆y

t . The red line shows responses to innovations in the orthogonal bias index bias
∆y,⊥
t ,

constructed as the residual from a regression of bias
∆y

t on a GDP growth expectation index F
∆y

t . An increase in the bias corresponds to greater

optimism, i.e., greater upward bias. The purple line in the second row plots responses to innovations in F∆y

t , constructed as the first principle component

of GDP growth survey forecasts across all surveys and percentiles. Units are percentage points. The sample is 1995:Q1-2018:Q2.
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bias
∆y

t+h or bias
π

t+h with the variables again ordered as above, where k denotes the VAR forecast

horizon and “max k”denotes the forecast horizon k for which a shock explains the maximum

fraction of forecast error variance. For comparison, the table also reports the fraction of forecast

error variance explained by shocks to the federal funds rate.

Table 4 shows that innovations to the GDP growth bias index account for up to 10%, 8% and

3.2% of the forecast error variance in GDP growth, inflation, and the stock market, respectively,

depending on the VAR forecast horizon. Although these magnitudes are relatively modest in

absolute terms, it is worth forming a basis for comparison. Over the same sample, innovations

to the federal funds rate (a common proxy for unanticipated shifts in monetary policy) explain

(at most) 7%, 5.5%, and 1.4% of the forecast error variance in these same variables, despite the

federal funds rate being placed ahead of the bias index in the VAR. For the inflation bias index,

contributions are in the same ballpark as those for the federal funds rate. That the effects

for both indexes are comparable to or in some cases quantitatively more important than those

for the federal funds rate is consistent with the view that expectational errors have non-trivial

implications for aggregate economic activity.

5.2 Belief Distortions in Response to Business Cycle Shocks

In this section we investigate how our measured belief distortions vary in response to cyclical

shocks. To do so we follow Angeletos, Huo, and Sastry (2020) (AHS) and estimate the dynamic

responses of inflation or real GDP growth to two cyclical shocks identified in Angeletos, Collard,

and Dellas (2018a).10 These are the “inflation-targeted” shock επt , and the “GDP-targeted

shock,”εGDPt . By construction, these shocks account for most of the business cycle variation in

inflation and GDP growth, respectively.11 Due to limitations of space, we restrict our reported

results in this section to belief distortions in the SPF median forecasts of four-quarter-ahead

inflation or GDP growth. Results not reported show patterns for the 25th and 75th percentiles

of the SPF forecast distribution are similar to those for the median.

Figure 9 reports dynamic responses of the machine forecast, the median SPF survey fore-

cast, and the relevant outcome variable, to innovations in επt and ε
GDP
t , estimated using local

projections (Jorda (2005)).12 The first column, first row, reports the responses of the machine

and survey forecasts of inflation to an innovation in επt , while the first column, second row,

reports the responses of the machine and survey forecasts of GDP growth to an innovation in

εGDPt . The right column shows these same responses along with the response of the relevant

10We are grateful to the authors for providing us their data on these shocks.
11These shocks are identified using a 10 variable macro VAR as the structural shock that maximizes the

volatility of the outcome variable (i.e., inflation, GDP growth) at frequencies corresponding to cycles between
6 and 32 quarters.
12The Appendix gives the details of this estimation. We use a four-quarter forecast horizon, in contrast to

AHS who use a three-quarter horizon. Our sample is also shorter than that used in AHS. The Appendix shows
that we reproduce the results in AHS for the same forecast horizon and sample size that they use, and that the
results are similar using the shorter sample of this paper.
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Table 4: d

Table 4. Decomposition of Variance
Fraction Variation in Real GDP (%) Fraction Variation in Real Investment (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 1.21 0.10 0.45 0.04 4.68 1.42 0.62 1.60
k = 12 1.56 1.44 5.18 1.96 15.36 13.61 3.93 10.27
k =∞ 1.99 6.16 8.91 5.69 13.97 18.97 5.70 11.67
max k 25 32 34 32 11 ∞ ∞ 163
k = max 3.94 9.04 9.97 6.95 15.39 18.97 5.70 11.67

Fraction Variation in GDP Deflator (%): Fraction Variation in S&P 500 (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 1.94 0.70 0.13 0.60 0.03 1.03 1.39 0.64
k = 12 6.50 2.09 0.29 1.18 2.45 1.51 2.61 1.04
k =∞ 0.79 3.90 7.66 5.22 2.73 2.03 3.17 1.22
max k 10 55 125 117 52 55 23 7
k = max 6.64 4.36 7.91 5.54 3.21 2.21 3.18 1.42

Fraction of Variation in Real Wage (%): Fraction Variation in FFR (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 2.92 0.16 0.22 0.21 0.12 70.80 3.25 66.55
k = 12 3.49 2.64 4.94 5.04 0.10 44.93 3.27 42.83
k =∞ 3.68 5.48 6.63 6.48 0.73 34.41 2.89 32.62
max k 6 25 25 23 71 1 6 1
k = max 5.02 6.13 7.34 7.59 0.73 75.93 4.26 72.54

Forecast error variance decomposition. Forecast error variances are computed from a VAR using a Cholesky factorization with the following

variables in the order: log(real GDP), log(GDP deflator), log(real wage), log(real investment), log(S&P 500 Index), federal funds rate (FFR), and bias t,

where bias t is either the inflation bias index bias
π

t or the GDP growth bias index bias
∆y

t . Each panel shows the fraction of forecast-error variance of

the variable named in the panel title at VAR forecast horizon k that is explained by bias t or the FFR for that VAR. The row denoted “max k”gives
the horizon k for which the variable named in the column explains the maximum fraction of forecast error variance. The row denoted “k = max”gives

the fraction of forecast error variance explained at max k. The data are quarterly and span the period 1995:Q1 -2018:Q2.
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Figure 9: Dynamic Responses to Cyclical Shocks
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Dynamic responses of beliefs to cyclical shocks. The figure plots dynamic responses of the machine and
survey beliefs F(50)

t [·] and E(50)
t [·] for the median respondent of the SPF to cyclical shocks from Angeletos,

Collard, and Dellas (2018a) (AHS). The AHS inflation and GDP growth “targeted” cyclical shocks are those

from a 10-variable VAR that maximize the volatility in inflation and GDP growth at business cycle frequencies,

respectively. The right column aligns the forecast responses such that, at a given vertical slice, the outcome and

forecast responses are measured over the same horizon, and the difference between the two is the forecast error.

“MSEE/MSEF”is the ratio of the machine to survey mean-squared-forecast error averaged over the response

time periods in the plot. The vintage of observations on the outcome variable is the one available four quarters

after the period being forecast. Shaded areas are 68% confidence intervals based on HAC standard errors with

a Bartlett kernel using four quarterly lags. The sample is 1995:Q1-2018:Q2.

outcome variable, i.e., inflation or real GDP growth, removing the error bands to eliminate

clutter. The plots in the right column “align”the forecast responses so that, at a given vertical

slice of the plot, the outcome and forecast responses are measured over the same time horizon

and the difference between the two is the forecast error. For example, given a shock at time t,

the first response plotted for the survey forecast is F(50)
t [yt+4] , which is aligned vertically with

the response of y at time t+4. Following AHS, we set H = 20 quarters as the maximum period

for tracing out impulse responses. Several findings from Figure 9 are worthy of emphasis.

First, survey respondents initially under-react to a shock but later over-react. Dynamic
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under- and over-reaction of the survey respondent’s belief is measured vis-a-vis the machine

belief—this is what is shown in the left column of the figure. From the left-hand subplots we

observe that the survey forecast F(50)
t [yt+4] reacts less initially to an increase in both επt and

εGDPt than the machine forecast E(50)
t [yt+4] does, but eventually it reacts more. Qualitatively,

these results are consistent with the dynamic patterns of initial under-reaction but delayed

over-reaction emphasized by AHS.

Second, GDP growth expectations exhibit greater and more protracted under-reaction than

do expectations about inflation. Conversely, inflation expectations exhibit greater and more

protracted delayed over-reaction than do expectations about economic growth. In fact, for

inflation expectations, the eventual over-reaction appears to be more important than the initial

under-reaction, while GDP growth expectations appear to be more subject overall to under-

reaction and only exhibit statistically significant over-reaction starting about 18 quarters after

the shock.

Third, comparing the survey forecast to the realized value of the outcome variable greatly

overstates the degree of over- or under-reaction that can be attributed to belief distortions.

This can be observed in the right column of Figure 9 by noting that the first survey forecasts

recorded after the shock under-shoot the realized outcome by much more than they under-shoot

the machine forecasts. Likewise, the survey forecasts subsequently over-shoot the realized out-

come by more than they over-shoot the machine forecast. AHS have interpreted the difference

between the survey forecast and the realized value of the outcome variable as a measure of

non-rational expectations. By contrast, we interpret the difference between the survey and

machine forecasts as a measure of systematic expectational error, and the difference between

the machine forecast and the outcome variable as pure random forecast error, rather than bias.

The discrepancy between the two suggests that the cyclical shocks επt and ε
GDP
t are unlikely to

be well observed in real time, even by a machine with a high degree of information processing

capacity. This may be because επt and ε
GDP
t are constructed from an in-sample estimation using

fully revised, final release historical data, while both the survey and machine forecasts use only

information that we know could have been observed in real time including the information on

the outcome variables, which are subject to significant processing and estimation delays.13

Fourth, in the wake of both cyclical shocks, the machine produces more accurate forecasts

than the median SPF survey respondent. The right column of Figure 9 reports the ratio of

the machine-to-survey MSE over the H periods for which the dynamic responses are tallied.

The gains in forecast accuracy are especially large for inflation where the ratio MSEE/MSEF

is 0.6, but even for GDP growth the ratio MSEE/MSEF is 0.87. That the machine improves

13The SPF collects survey responses in February on the outlook for GDP in the second quarter of the year, but
the advance estimate of Q2 GDP is not released until the end of July. The final release data used to construct
the shocks are both subject to subsequent revision. Some information pointing toward a large business cycle
shock may be available at t, such as that contained in financial markets, but those are already accounted for by
the machine.
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forecasts in this context is noteworthy because it was not trained to optimize out-of-sample

prediction at the specific business cycle frequencies that, by construction, dominate variation

in the outcome variables in Figure 9.

6 Conclusion

This paper provides new measures of belief distortions in survey responses and relates them

to macroeconomic activity. Our measures are based on a novel dynamic machine learning

algorithm designed to detect demonstrable, ex ante errors in macroeconomic expectations. For

the median respondent from all surveys, expectations about both inflation and GDP growth are

biased upward on average, with over-optimism about GDP growth especially prevalent among

professional forecasters post-Great Recession to 2018:Q2. These averages mask large variation

over time in the median respondent’s bias, as well across respondents at any given point in

time. A pervasive finding across all surveys is that respondents place too much weight on their

own belief and too little weight on other publicly available information.

These measures of belief distortions exhibit dynamic relations with the macroeconomy. A

positive innovation to an index of inflation bias (indicating greater upward bias) is associated

with an increase in the real wage, and a decrease in real investment, real GDP, and the price

level. By contrast, a positive innovation to a GDP growth bias index is associated with a sizable

and more protracted increase in real activity, the price level, and also the stock market, while

the real wage declines. In response to cyclical shocks, we find that under-reaction preponderates

in survey expectations of economic growth, while inflation expectations show greater delayed

over-reaction. The estimates of belief distortions provide a benchmark to evaluate theories

in which information capacity constraints, extrapolation, sentiments, ambiguity aversion, and

other departures from full information rational expectations play a role in business cycles.
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Online Appendix

Data

This appendix describes our data.

VAR Data

Real GDP: The real Gross Domestic Product is obtained from the US Bureau of Economic
Analysis. It is in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted,
and at annual rate. We take the log of this variable. The source is from Bureau of Economic
Analysis (BEA code: A191RX). The sample spans 1960:Q1 to 2019:Q3.

Real personal consumption expenditures: The real Personal Consumption Expenditures
is obtained from the US Bureau of Economic Analysis. It is in billions of chained 2012 dollars,
quarterly frequency, seasonally adjusted, and at annual rate. We take the log of this variable.
The source is from Bureau of Economic Analysis (BEA code: DPCERX). The sample spans
1960:Q1 to 2019:Q3.

GDP price deflator: The Gross Domestic Product: implicit price deflator is obtained from
the US Bureau of Economic Analysis. Index base is 2012=100, quarterly frequency, and sea-
sonally adjusted. We take the log of this variable. The source is from Bureau of Economic
Analysis (BEA code: A191RD). The sample spans 1960:Q1 to 2019:Q3.

Real investment: The real Gross Private Domestic Investment is obtained from the US
Bureau of Economic Analysis. It is in billions of chained 2012 dollars, quarterly frequency,
seasonally adjusted, and at annual rate. We take the log of this variable. The source is from
Bureau of Economic Analysis (BEA code: A006RX). The sample spans 1960:Q1 to 2019:Q3.

Real wage: We obtain real wages by dividing the Average Hourly Earnings of Production
and Nonsupervisory Employees: Manufacturing over the Personal Consumption Expenditures
(implicit price deflator). Average Hourly Earnings of Production and Nonsupervisory Employ-
ees: Manufacturing is obtained from the US Bureau of Labor Statistics; it is in dollars per hour,
quarterly frequency (average), and seasonally adjusted. BLS Account Code: CES3000000008.
Personal Consumption Expenditures (implicit price deflator) is obtained from the US Bureau
of Economic Analysis. Index base is 2012=100, quarterly frequency, and seasonally adjusted.
We take the log of the ratio of these variables. The source is from Bureau of Economic Analysis
(BEA code: DPCERD). The sample spans 1960:Q1 to 2019:Q3.
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Figure A.1: Responses to Inflation Bias Shock: SOC Only
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S&P 500 stock market index: The S&P 500 is obtained from the S&P Dow Jones Indices
LLC. It is the quarterly average of the daily index value at market close. We take the log of
this variable. The sample spans 1960:Q1 to 2019:Q3.

Federal funds rate (FFR): The Effective Federal Funds Rate is obtained from the Board
of Governors of the Federal Reserve System. It is in percentage points, quarterly frequency
(average), and not seasonally adjusted. The sample spans 1960:Q1 to 2019:Q3.

Survey Data

All details on survey data and survey forecast construction here, with links to data sources.

Survey of Professional Forecasters The SPF is conducted each quarter by sending out
surveys to professional forecasters, defined as forecasters. The number of surveys sent varies
over time, but recent waves sent around 50 surveys each quarter according to offi cials at the
Federal Reserve Bank of Philadelphia. Only forecasters with suffi cient academic training and
experience as macroeconomic forecasters are eligible to participate. Over the course of our
sample, the number of respondents ranges from a minimum of 9, to a maximum of 83, and the
mean number of respondents is 37. The surveys are sent out at the end of the first month of
each quarter, and they are collected in the second or third week of the middle month of each
quarter. Each survey asks respondents to provide nowcasts and quarterly forecasts from one
to four quarters ahead for a variety of variables. Specifically, we use the SPF micro data on
individual forecasts of the price level, long-run inflation, and real GDP.14 Below we provide
the exact definitions of these variables as well as our method for constructing nowcasts and
forecasts of quarterly and annual inflation and GDP growth for each respondent.15

The following variables are used on either the right- or left-hand-sides of forecasting models:

1. Quarterly and annual inflation (1968:Q4 - present): We use survey responses for the level
of the GDP price index (PGDP), defined as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price index.
Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit deflator. Prior to
1992, GNP implicit deflator. Annual forecasts are for the annual average of the quarterly
levels."

Since advance BEA estimates of these variables for the current quarter are unavailable at
the time SPF respondents turn in their forecasts, four quarter-ahead inflation and GDP

14Individual forecasts for all variables can be downloaded at https://www.philadelphiafed.org/research-and-
data/real-time-center/survey-of-professional-forecasters/historical-data/individual-forecasts.
15The SPF documentation file can be found at https://www.philadelphiafed.org/-/media/research-and-

data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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growth forecasts are constructed by dividing the forecasted level by the survey respondent-
type’s nowcast. Let F(i)

t [Pt+h] be forecaster i’s prediction of PGDP h quarters ahead and
N(i)
t [Pt] be forecaster i’s nowcast of PGDP for the current quarter. Annualized inflation
forecasts for forecaster i are

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
, (A.10)

where h = 1 for quarterly inflation and h = 4 for annual inflation. Similarly, we construct
quarterly and annual nowcasts of inflation as

N(i)
t [πt,t−h] = (400/h)× ln

(
N(i)
t [Pt]

Pt−h

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation, and where Pt−1 is the
BEA’s advance estimate of PGDP in the previous quarter observed by the respondent
in time t, and Pt−4 is the BEA’s most accurate estimate of PGDP four quarters back.
After computing inflation for each survey respondent, we calculate the 5th through the
95th percentiles as well as the average, variance, and skewness of inflation forecasts across
respondents.

2. Long-run inflation (1991:Q4 - present): We use survey responses for 10-year-ahead CPI
inflation (CPI10), which is defined as

"Forecasts for the annual average rate of headline CPI inflation over the next 10 years.
Seasonally adjusted, annualized percentage points. The "next 10 years" includes the year
in which we conducted the survey and the following nine years. Conceptually, the calcu-
lation of inflation is one that runs from the fourth quarter of the year before the survey
to the fourth quarter of the year that is ten years beyond the survey year, representing a
total of 40 quarters or 10 years. The fourth-quarter level is the quarterly average of the
underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as an infla-
tion rate, so we do not make any adjustments and cannot compute other moments or
percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP), which is
defined as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Seasonally ad-
justed, annual rate, base year varies. 1992-1995, fixed-weighted real GDP. Prior to 1992,
fixed-weighted real GNP. Annual forecasts are for the annual average of the quarterly
levels. Prior to 1981:Q3, RGDP is computed by using the formula NGDP / PGDP *
100."
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Quarterly and annual growth rates are constructed the same way as for inflation, except
RGDP replaces PGDP.

In order to generate OOS forecasts that could have been made in real time, it is necessary
to take a stand on the information set of the forecasters when each forecast was made. We
assume that forecasters could have used all data released before the survey deadlines. Table
A.1 lists the survey deadlines that are available, beginning with the 1990:Q3 survey. Before
1990:Q3, we make the conservative assumption that respondents only had data released by the
first day of the second month of each quarter.

Table A.1: SPF Survey Deadlines16

Survey Deadline Date Survey Deadline Date Survey Deadline Date
1990:Q1 Unknown 1991:Q1 2/16/91 1992:Q1 2/22/92

Q2 Unknown Q2 5/18/91 Q2 5/15/92
Q3 8/23/90 Q3 8/18/91 Q3 8/21/92
Q4 11/22/90 Q4 11/16/91 Q4 11/20/92

1993:Q1 2/19/93 1994:Q1 2/21/94 1995:Q1 2/21/95
Q2 5/20/93 Q2 5/18/94 Q2 5/22/95
Q3 8/19/93 Q3 8/18/94 Q3 8/22/95
Q4 11/23/93 Q4 11/18/94 Q4 11/20/95

1996:Q1 3/2/96 1997:Q1 2/19/97 1998:Q1 2/18/98
Q2 5/18/96 Q2 5/17/97 Q2 5/16/98
Q3 8/21/96 Q3 8/16/97 Q3 8/15/98
Q4 11/18/96 Q4 11/19/97 Q4 11/14/98

1999:Q1 2/16/99 2000:Q1 2/12/00 2001:Q1 2/14/01
Q2 5/15/99 Q2 5/13/00 Q2 5/12/01
Q3 8/14/99 Q3 8/12/00 Q3 8/15/01
Q4 11/13/99 Q4 11/11/00 Q4 11/14/01

2002:Q1 2/12/02 2003:Q1 2/14/03 2004:Q1 2/14/04
Q2 5/13/02 Q2 5/12/03 Q2 5/14/04
Q3 8/14/02 Q3 8/16/03 Q3 8/13/04
Q4 11/13/02 Q4 11/14/03 Q4 11/13/04

2005:Q1 2/9/05 2006:Q1 2/8/06 2007:Q1 2/8/07
Q2 5/12/05 Q2 5/10/06 Q2 5/9/07
Q3 8/11/05 Q3 8/9/06 Q3 8/8/07
Q4 11/8/05 Q4 11/8/06 Q4 11/7/07

2008:Q1 2/7/08 2009:Q1 2/10/09 2010:Q1 2/9/10
Q2 5/8/08 Q2 5/12/09 Q2 5/11/10
Q3 8/7/08 Q3 8/11/09 Q3 8/10/10
Q4 11/10/08 Q4 11/10/09 Q4 11/9/10

2011:Q1 2/8/11 2012:Q1 2/7/12 2013:Q1 2/11/13
Q2 5/10/11 Q2 5/8/12 Q2 5/7/13
Q3 8/8/11 Q3 8/7/12 Q3 8/12/13
Q4 11/8/11 Q4 11/6/12 Q4 11/18/13

2014:Q1 2/10/14 2015:Q1 2/10/15 2016:Q1 2/9/16
Q2 5/11/14 Q2 5/12/15 Q2 5/10/16
Q3 8/11/14 Q3 8/11/15 Q3 8/9/16
Q4 11/10/14 Q4 11/10/15 Q4 11/8/16

2017:Q1 2/7/17 2018:Q1 2/6/18

16SPF survey deadlines are posted online at https://www.philadelphiafed.org/-/media/research-and-
data/real-time-center/survey-of-professional-forecasters/spf-release-dates.txt?la=en.
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Table A.1 (Cont’d)

Survey Deadline Date Survey Deadline Date Survey Deadline Date
Q2 5/9/17 Q2 5/8/18
Q3 8/8/17 Q3 8/7/18
Q4 11/7/17 Q4 11/6/18

Michigan Survey of Consumers (SOC) We construct MS forecasts of annual inflation and
GDP growth of respondents answering at time t. Each month, the SOC contains approximately
50 core questions, and a minimum of 500 interviews are conducted by telephone over the course
of the entire month, each month. We use two questions from the monthly survey for which the
time series begins in January 1978, and convert to quarterly observations as explained below.

1. Annual CPI inflation: To get a point forecast, we combine the information in the survey
responses to questions A12 and A12b.

• Question A12 asks (emphasis in original): During the next 12 months, do you think
that prices in general will go up, or go down, or stay where they are now?

• A12b asks (emphasis in original): By about what percent do you expect prices to go
(up/down) on the average, during the next 12 months?

2. Annual real GDP growth: We use survey responses to question A7, which asks (emphasis
in original):

And how about a year from now, do you expect that in the country as a whole business
conditions will be better, or worse than they are at present, or just about the same?

Respondents select one of three options: “better a year from now,”“about the same,”
or “worse a year from now.”There is a long history of using survey data as a proxy for
spending and output (see, for example, Ludvigson - “Consumer Confidence and Consumer
Spending” - Journal of Economic Perspectives - 2004). Using a companion question
in the SOC that asks about contemporaneous business conditions, Curtin (2019) and
the SOC survey documentation suggest constructing a “balance score” to generate a
contemporaneous measure of real GDP growth. The balance score equals the percentage
of respondents who expected that the economy to improve minus the percentage that
expected it to worsen + 100. Applying this methodology to question A7.

The balance score is obtained monthly and we use the observation for the middle month of
each quarter as our quarterly observation. We convert the score to a quantitative survey-
based measure of real GDP growth using a simple linear regression. Specifically, at time s,
we assume that GDP growth, yj,s+4, is related to the contemporaneous Michigan Survey
balance sore, Ms, by:

yj,s+4 = β0 + β1Ms + εs.

6



This equation is estimated using OLS and the real-time vintage data, and then the forecast
is constructed as Fj,t[yj,t+4] = β̂0 + β̂1Mt

Specifically, we first estimate the coeffi cients of this regression over the sample 1978:Q1-
1994:Q1. Using the estimated coeffi cients and the balance score from 1995:Q1 gives us
the point forecast of inflation for 1995:Q1-1996:Q1. We then re-estimate this equation,
recursively, adding one observation to the end of the sample at a time, and storing the
fitted values. This results in a time series of forecasts Fj,t[yj,t+4] .

As with the SPF, we take a stand on the information set of consumers when each forecast was
made, and we assume that consumers could have used all data released before they completed
the survey. For the SOC interviews are conducted monthly over the course of an entire month.
We set the interview response deadline for each survey as the first day of the survey month. For
example, we set the deadline to February 1st, 2019, for the February 2019 Survey of Consumers,
while in reality, the interview period was from February 2 to February 29, 2019. In other months,
the true interview start period may be near the end of the previous month, such as in February
2019, when it was January 31st, 2019. To align the SOC more closely with the SPF deadline
for survey completion (end of the second or third week of the middle month of the quarter), we
use the middle month of each quarter as our quarterly observation for the SOC.

Bluechip Data We obtain Blue Chip expectation data from Blue Chip Financial Forecasts.
The surveys are conducted each month by sending out surveys to forecasters in around 50
financial firms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis, Sayles &
Company, and J.P. Morgan Chase. The participants are surveyed around the 25th of each month
and the results published a few days later on the 1st of the following month. The forecasters
are asked to forecast the average of the level of U.S. interest rates over a particular calendar
quarter, e.g. the federal funds rate and the set of H.15 Constant Maturity Treasuries (CMT) of
the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year and 10-year, and the quarter
over quarter percentage changes in Real GDP, the GDP Price Index and the Consumer Price
Index, beginning with the current quarter and extending 4 to 5 quarters into the future.
In this study, we look at a subset of the forecasted variables. Specifically, we use the Blue

Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q) percentage change
in the Real GDP, the GDP Price Index and the CPI, and convert to quarterly observations as
explained below.

1. Quarterly and annual PGDP inflation (1986:Q1 - 2018:Q3): We use survey responses for
the quarter-over-quarter percentage change in the GDP price index, defined as:

“Forecasts for the quarter-over-quarter percentage change in the GDP Chained Price In-
dex. Seasonally adjusted annual rate (SAAR). 1992 Jan. to 1996 June, Q/Q % change
(SAAR) in GDP implicit deflator. 1986 Jan. to 1991 Dec., Q/Q % change (SAAR) in
GNP implicit deflator.”
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Quarterly and annual inflation forecasts are constructed as follows. Let F(i)
t

[
gP

(Q/Q)
t+h

]
be

forecaster i’s prediction of Q/Q % change in PGDP h quarters ahead. F(i)
t

[
gP

(Q/Q)
t+h

]
are

reported at annual rates in percentage points, so we convert to quarterly raw units before
compounding. Annualized inflation forecasts for forecaster i in the next quarter are:

F(i)
t [πt+1,t] = 400× ln

1 +
F(i)
t

[
gP

(Q/Q)
t+1

]
100


1
4

Annual Inflation forecasts are:

F(i)
t [πt+4,t] = 100× ln

 4∏
h=1

1 +
F(i)
t

[
gP

(Q/Q)
t+h

]
100


1
4


Quarterly nowcasts of inflation are constructed as:

N(i)
t [πt,t−1] = 400× ln

1 +
N(i)
t

[
gP

(Q/Q)
t

]
100


1
4

where N(i)
t

[
gP

(Q/Q)
t

]
is forecaster i’s nowcast of Q/Q % change in PGDP for the current

quarter. Annual nowcasts of inflation for forecaster i are:

N(i)
t [πt,t−4] = 100× ln

(
N(i)
t [Pt]

Pt−4

)
,

where Pt−4 is the BEA’s most accurate estimate of PGDP four quarters back andN(i)
t [Pt] is

forecaster i’s nowcast of PGDP for the current quarter which is constructed as: N(i)
t [Pt] =

exp
(
N(i)
t [πt,t−1] /400 + lnPt−1

)
. Similarly, we also calculate the 5th through the 95th

percentiles as well as the average, variance, and skewness of inflation forecasts across
respondents.

2. Real GDP growth (1984:Q3 - 2018:Q3): We use quarter-over-quarter percentage change
in the Real GDP, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the level of chain-weighted
real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change (SAAR) in
real GNP.”

Quarterly and annual growth rates are constructed the same way as for inflation, except
RGDP replaces PGDP.
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3. CPI inflation (1984:Q3 - 2018:Q3): We use quarter-over-quarter percentage change in the
consumer price index, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the CPI (consumer prices
for all urban consumers). Seasonally adjusted, annual rate.”

Quarterly and annual CPI inflation are constructed the same way as for PGDP inflation,
except CPI replaces PGDP.

The surveys are conducted right before the publication of the newsletter. Each issue is
always dated the 1st of the month and the actual survey conducted over a two-day period
almost always between 24th and 28th of the month. The major exception is the January issue
when the survey is conducted a few days earlier to avoid conflict with the Christmas holiday.
Therefore, we assume that the end of the last month (equivalently beginning of current month)
is when the forecast is made. For example, for the report in 2008 Feb, we assume that the
forecast is made on Feb 1, 2008. To convert monthly forecasts to quarterly forecasts, we use
the forecasts in the middle month of each quarter as the quarterly forecasts. This is to align
the Blue Chip more closely with the SPF deadline for survey completion, similar to what we
do for the SOC.

Real-Time Macro Data

At each forecast date in the sample, we construct a dataset of macro variables that could have
been observed on or before the day of the survey deadline. We use the Philadelphia Fed’s
Real-Time Data Set to obtain vintages of macro variables.17 These vintages capture changes
to historical data due to periodic revisions made by government statistical agencies. The
vintages for a particular series can be available at the monthly and/or quarterly frequencies,
and the series have monthly and/or quarterly observations. In cases where a variable has
both frequencies available for its vintages and/or its observations, we choose one format of
the variable. For instance, nominal personal consumption expenditures on goods is quarterly
data with both monthly and quarterly vintages available; in this case, we use the version with
monthly vintages.
Following Coibion and Gorodnichenko (2015), to construct forecasts and forecast errors,

we use the vintage of inflation and GDP growth data that is available four quarters after the
period being forecast. For example, the forecast error for a survey forecast of P in 2017:Q2
that is made based on data as t = 2016:Q2 is computed by comparing the survey forecast
F(i)
2016:Q2 [P2017:Q2] with the actual value of P2017:Q2 given in the 2018:Q2 vintage of the real time
dataset.
17The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-

center/real-time-data/data-files.
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Real Time Regressands Following CG, all regressions are run and forecast errors computed
using forecasts of real-time inflation and GDP data available four quarters after the period being
forecast. Following Faust and Wright (2013), we use continuous time compounding of inflation
and GDP growth. For example, four quarter inflation is computed as

πt+4,t = (100)× ln
(
Pt+h
Pt

)
,

where Pt is the time t price level.

Real Time Regressors For the regressors we need to combine all of the data observed at
the time of a forecast date, and know the specific day that the data in each vintage are released.
It is not suffi cient to align vintage dates with forecast dates because the time t vintage might
include data released after the time t forecast was made. The series-specific documentation on
the Philadelphia Fed’s website provides details on the timing of the vintages for each series.
For some series, exact release dates are known, and thus the vintages reflect the data available
at the time of the data release. When this is the case, we download the release dates from the
relevant statistical agency and compare each vintage release date to the corresponding survey
deadline to determine whether a particular vintage can be included in a survey respondent’s
information set.
For other variables, we only know that vintages contain data available in the middle of a

month or quarter, but not the exact day. A subset of these variables come from the BEA
National Income and Product Accounts, which are released at the end of each month. Since
NIPA series are released at the end of each month, and vintages reflect data available in the
middle of each month, a survey respondent making a forecast in the middle of a month includes
the current month’s vintage of NIPA data in her information set. However, there is another
subset of variables with unknown release dates, for which we must make the conservative
assumption that a forecaster at time t observes at most the time t − 1 vintage of data. An
Excel Workbook containing the known release dates and timing assumptions is available on the
authors’websites.
In addition to the macro variables with different vintages that we obtain from the Philadel-

phia Fed, we include a measure of residential real estate prices from the Case-Shiller/S&P index
deflated by the Consumer Price Index, and energy prices from the U.S. Bureau of Labor Sta-
tistics (BLS). Energy prices do not get revised, so they do not have multiple vintages. Instead
there is just one historical version of the data.
After combining all of the series that are known by the forecasters at each date, we convert

monthly data to quarterly by using either the beginning-of-quarter or end-of-quarter values.
The decision to use beginning-of-quarter or end-of-quarter depends on the survey deadline of
a particular forecast date. If the survey deadline is known to be in the middle of the second
month of quarter t, then it is conceivable that the forecasters would have information about
the first month of quarter t. Therefore, we use the first month of that quarter’s values. A few
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anomalous observations have unknown survey deadlines (e.g., the SPF deadlines for 1990:Q1).
In such cases, we allow only information up to quarter t− 1 to enter the model. Thus, we use
the last month of the previous quarter’s values in these cases.
Table A.2 gives the complete list of real time macro variables. Included in the table is the

first available vintages for each variable that has multiple vintages. We do not include the
last vintage because most variables have vintages through the present.18 Table A.2 also lists
the transformation applied to each variable to make them stationary before generating factors.
Let Xit denote variable i at time t after the transformation, and let XA

it be the untransformed
series. Let ∆ = (1− L) with LXit = Xit−1. There are seven possible transformations with the
following codes:

1 Code lv: Xit = XA
it

2 Code ∆lv: Xit = XA
it −XA

it−1

3 Code ∆2lv: Xit = ∆2XA
it

4 Code ln: Xit = ln(XA
it )

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1)

6 Code ∆2ln: Xit = ∆2ln(XA
it )

7 Code ∆lv/lv: Xit = (XA
it −XA

it−1)/XA
it−1

Table A.2: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage
Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962:M11
2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962:M11
3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979:M8
4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983:M7
5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. profits after tax without IVA/CCAdj 1965:Q4
6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. profits after tax with IVA/CCAdj 1981:Q1
7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998:Q4
8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965:Q4
9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965:Q4
10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965:Q4
11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965:Q4
12 OLIQVQD Philly Fed ∆ln Other labor income 1965:Q4
13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965:Q4
14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965:Q4
15 PROPIQVQD Philly Fed ∆ln Proprietors’income 1965:Q4
16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965:Q4
17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965:Q4
18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965:Q4
19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965:Q4
20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965:Q4
21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965:Q4
22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965:Q4
23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj
Group 2: Employment

18For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013:Q2.
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Table A.2 (Cont’d)

No. Short Name Source Tran Description First Vintage
24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946:M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971:M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971:M9
27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971:M9
28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998:M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998:M11
30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998:M11
31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998:Q4
32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965:Q4
33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965:Q4

Group 3: Orders, Investment, Housing
34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968:M2
35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965:Q4
36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories
1965:Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965:Q4
38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987:M1

Group 4: Consumption
39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:M8
40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009:M8
41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:M8
42 NCONSNPMMVMD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009:M8
43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998:M11
44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:M8
45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009:M8
46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998:M11
47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998:M11
48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:M8
49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998:M11
50 RCONSNPMMVMD Philly Fed ∆ln Real final cons. exp. of NPISH 2009:M8
51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:Q3
52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 0209:Q3
53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:Q3
54 NCONSNPMVQD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009:Q3
55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965:Q4
56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:Q3
57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009:Q3
58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965:Q4
59 RCONNDMVQD Philly Fed ∆ln Real pesonal cons. exp. - Nondurable goods 1965:Q4
60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:Q3
61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965:Q4
62 RCONSNPMVQD Philly Fed ∆ln Real final cons. exp. of NPISH 2009:Q3
63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965:Q4

Group 5: Prices
64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009:M8
65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:M8
66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:M8
67 PCONSNPMMVMD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009:M8
68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998:M11
69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998:M11
70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998:M11
71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998:M11
72 PCONGMVQD Philly Fed ∆2ln Price index for personal. cons. exp. - Goods 2009:Q3
73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:Q3
74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:Q3
75 PCONSNPMVQD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009:Q3
76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996:Q1
77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994:Q3
78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965:Q4
79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965:Q4
80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965:Q4

Group 6: Trade and Government
81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965:Q4
82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965:Q4
83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965:Q4
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Table A.2 (Cont’d)

No. Short Name Source Tran Description First Vintage
84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local
1965:Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965:Q4
86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965:Q4

Group 7: Money and Credit
87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980:Q2
88 M1QVMD Philly Fed ∆2ln M1 money stock 1965:Q4
89 M2QVMD Philly Fed ∆2ln M2 money stock 1971:Q2
90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967:Q3
91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984:Q2
92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967:Q3
93 DIVQVQD Philly Fed ∆ln Dividends 1965:Q4

Monthly Financial Factor Data

The 147 financial series in this data set are versions of the financial dataset used in Jurado,
Ludvigson, and Ng (2015) and Ludvigson, Ma, and Ng (2019). It consists of a number of indica-
tors measuring the behavior of a broad cross-section of asset returns, as well as some aggregate
financial indicators not included in the macro dataset. These data include valuation ratios
such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends
and prices, default and term spreads, yields on corporate bonds of different ratings grades,
yields on Treasuries and yield spreads, and a broad cross-section of industry equity returns.
Following Fama and French (1992), returns on 100 portfolios of equities sorted into 10 size and
10 book-market categories. The dataset Xf also includes a group of variables we call “risk-
factors,”since they have been used in cross-sectional or time-series studies to uncover variation
in the market risk-premium. These risk-factors include the three Fama and French (1993) risk
factors, namely the excess return on the market MKTt, the “small-minus-big” (SMBt) and
“high-minus-low”(HMLt) portfolio returns, the momentum factor UMDt, and the small stock
value spread R15−R11.
The raw data used to form factors are always transformed to achieve stationarity. In addi-

tion, when forming forecasting factors from the large macro and financial datasets, the raw data
(which are in different units) are standardized before performing PCA. When forming common
uncertainty from estimates of individual uncertainty, the raw data (which are in this case in
the same units) are demeaned, but we do not divide by the observation’s standard deviation
before performing PCA.
Throughout, the factors are estimated by the method of static principal components (PCA).

Specifically, the T × rF matrix F̂t is
√
T times the rF eigenvectors corresponding to the rF

largest eigenvalues of the T × T matrix xx′/(TN) in decreasing order. In large samples (when√
T/N → ∞), Bai and Ng (2006) show that the estimates F̂t can be treated as though they

were observed in the subsequent forecasting regression.
All returns and spreads are expressed in logs (i.e. the log of the gross return or spread),

are displayed in percent (i.e. multiplied by 100), and are annualized by multiplying by 12,
i.e., if x is the original return or spread, we transform to 1200ln (1 + x/100). Federal Reserve
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data are annualized by default and are therefore not “re-annualized.”Note: this annualization
means that the annualized standard deviation (volatility) is equal to the data standard deviation
divided by

√
12. The data series used in this dataset are listed below by data source. Additional

details on data transformations are given below the table.
We convert monthly data to quarterly by using either the beginning-of-quarter or end-of-

quarter values. The decision to use beginning-of-quarter or end-of-quarter depends on the
survey deadline of a particular forecast date. If the survey deadline is known to be in the
middle of the second month of quarter t, then it is conceivable that the forecasters would have
information about the first month of quarter t. Therefore, we use the first month of that
quarter’s values. Alternatively, a few anomalous observations have unknown survey deadlines
(e.g., the SPF deadlines for 1990:Q1). In such cases, we allow only information up to quarter
t− 1 to enter the model. Thus, we use the last month of the previous quarter’s values in these
cases.
Let Xit denote variable i observed at time t after e.g., logarithm and differencing transfor-

mation, and let XA
it be the actual (untransformed) series. Let ∆ = (1− L) with LXit = Xit−1.

There are six possible transformations with the following codes:

1 Code lv: Xit = XA
it .

2 Code ∆lv: Xit = XA
it −XA

it−1.

3 Code ∆2lv: Xit = ∆2XA
it .

4 Code ln: Xit = ln(XA
it ).

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1).

6 Code ∆2ln: Xit = ∆2lnXA
it .

7 Code ∆lv/lv:
(
XA
it −XA

it−1

)
/XA

it−1

Table A.3: List of Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Prices, Yield, Dividends

1 D_log(DIV) CRSP ∆ln ∆ logD∗t see additional details below
2 D_log(P) CRSP ∆ln ∆ logPt see additional details below
3 D_DIVreinvest CRSP ∆ln ∆ logDre,∗t see additional details below
4 D_Preinvest CRSP ∆ln ∆ logP re,∗t see additional details below
5 d-p CRSP ln log(D∗t )− logPt see additional details below

Group 2: Equity Risk Factors
6 R15-R11 Kenneth French lv (Small, High) minus (Small, Low) sorted on (size, book-to-market)
7 Mkt-RF Kenneth French lv Market excess return
8 SMB Kenneth French lv Small Minus Big, sorted on size
9 HML Kenneth French lv High Minus Low, sorted on book-to-market
10 UMD Kenneth French lv Up Minus Down, sorted on momentum

Group 3: Industries
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Table A.3 (Cont’d)

No. Short Name Source Tran Description
11 Agric Kenneth French lv Agric industry portfolio
12 Food Kenneth French lv Food industry portfolio
13 Beer Kenneth French lv Beer industry portfolio
14 Smoke Kenneth French lv Smoke industry portfolio
15 Toys Kenneth French lv Toys industry portfolio
16 Fun Kenneth French lv Fun industry portfolio
17 Books Kenneth French lv Books industry portfolio
18 Hshld Kenneth French lv Hshld industry portfolio
19 Clths Kenneth French lv Clths industry portfolio
20 MedEq Kenneth French lv MedEq industry portfolio
21 Drugs Kenneth French lv Drugs industry portfolio
22 Chems Kenneth French lv Chems industry portfolio
23 Rubbr Kenneth French lv Rubbr industry portfolio
24 Txtls Kenneth French lv Txtls industry portfolio
25 BldMt Kenneth French lv BldMt industry portfolio
26 Cnstr Kenneth French lv Cnstr industry portfolio
27 Steel Kenneth French lv Steel industry portfolio
28 Mach Kenneth French lv Mach industry portfolio
29 ElcEq Kenneth French lv ElcEq industry portfolio
30 Autos Kenneth French lv Autos industry portfolio
31 Aero Kenneth French lv Aero industry portfolio
32 Ships Kenneth French lv Ships industry portfolio
33 Mines Kenneth French lv Mines industry portfolio
34 Coal Kenneth French lv Coal industry portfolio
35 Oil Kenneth French lv Oil industry portfolio
36 Util Kenneth French lv Util industry portfolio
37 Telcm Kenneth French lv Telcm industry portfolio
38 PerSv Kenneth French lv PerSv industry portfolio
39 BusSv Kenneth French lv BusSv industry portfolio
40 Hardw Kenneth French lv Hardw industry portfolio
41 Chips Kenneth French lv Chips industry portfolio
42 LabEq Kenneth French lv LabEq industry portfolio
43 Paper Kenneth French lv Paper industry portfolio
44 Boxes Kenneth French lv Boxes industry portfolio
45 Trans Kenneth French lv Trans industry portfolio
46 Whlsl Kenneth French lv Whlsl industry portfolio
47 Rtail Kenneth French lv Rtail industry portfolio
48 Meals Kenneth French lv Meals industry portfolio
49 Banks Kenneth French lv Banks industry portfolio
50 Insur Kenneth French lv Insur industry portfolio
51 RlEst Kenneth French lv RlEst industry portfolio
52 Fin Kenneth French lv Fin industry portfolio
53 Other Kenneth French lv Other industry portfolio

Group 4: Size/BM
54 1_2 Kenneth French lv (1, 2) portfolio sorted on (size, book-to-market)
55 1_4 Kenneth French lv (1, 4) portfolio sorted on (size, book-to-market)
56 1_5 Kenneth French lv (1, 5) portfolio sorted on (size, book-to-market)
57 1_6 Kenneth French lv (1, 6) portfolio sorted on (size, book-to-market)
58 1_7 Kenneth French lv (1, 7) portfolio sorted on (size, book-to-market)
59 1_8 Kenneth French lv (1, 8) portfolio sorted on (size, book-to-market)
60 1_9 Kenneth French lv (1, 9) portfolio sorted on (size, book-to-market)
61 1_high Kenneth French lv (1, high) portfolio sorted on (size, book-to-market)
62 2_low Kenneth French lv (2, low) portfolio sorted on (size, book-to-market)
63 2_2 Kenneth French lv (2, 2) portfolio sorted on (size, book-to-market)
64 2_3 Kenneth French lv (2, 3) portfolio sorted on (size, book-to-market)
65 2_4 Kenneth French lv (2, 4) portfolio sorted on (size, book-to-market)
66 2_5 Kenneth French lv (2, 5) portfolio sorted on (size, book-to-market)
67 2_6 Kenneth French lv (2, 6) portfolio sorted on (size, book-to-market)
68 2_7 Kenneth French lv (2, 7) portfolio sorted on (size, book-to-market)
69 2_8 Kenneth French lv (2, 8) portfolio sorted on (size, book-to-market)
70 2_9 Kenneth French lv (2, 9) portfolio sorted on (size, book-to-market)
71 2_high Kenneth French lv (2, high) portfolio sorted on (size, book-to-market)
72 3_low Kenneth French lv (3, low) portfolio sorted on (size, book-to-market)
73 3_2 Kenneth French lv (3, 2) portfolio sorted on (size, book-to-market)
74 3_3 Kenneth French lv (3, 3) portfolio sorted on (size, book-to-market)
75 3_4 Kenneth French lv (3, 4) portfolio sorted on (size, book-to-market)
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Table A.3 (Cont’d)

No. Short Name Source Tran Description
76 3_5 Kenneth French lv (3, 5) portfolio sorted on (size, book-to-market)
77 3_6 Kenneth French lv (3, 6) portfolio sorted on (size, book-to-market)
78 3_7 Kenneth French lv (3, 7) portfolio sorted on (size, book-to-market)
79 3_8 Kenneth French lv (3, 8) portfolio sorted on (size, book-to-market)
80 3_9 Kenneth French lv (3, 9) portfolio sorted on (size, book-to-market)
81 3_high Kenneth French lv (3, high) portfolio sorted on (size, book-to-market)
82 4_low Kenneth French lv (4, low) portfolio sorted on (size, book-to-market)
83 4_2 Kenneth French lv (4, 2) portfolio sorted on (size, book-to-market)
84 4_3 Kenneth French lv (4, 3) portfolio sorted on (size, book-to-market)
85 4_4 Kenneth French lv (4, 4) portfolio sorted on (size, book-to-market)
86 4_5 Kenneth French lv (4, 5) portfolio sorted on (size, book-to-market)
87 4_6 Kenneth French lv (4, 6) portfolio sorted on (size, book-to-market)
88 4_7 Kenneth French lv (4, 7) portfolio sorted on (size, book-to-market)
89 4_8 Kenneth French lv (4, 8) portfolio sorted on (size, book-to-market)
90 4_9 Kenneth French lv (4, 9) portfolio sorted on (size, book-to-market)
91 4_high Kenneth French lv (4, high) portfolio sorted on (size, book-to-market)
92 5_low Kenneth French lv (5, low) portfolio sorted on (size, book-to-market)
93 5_2 Kenneth French lv (5, 2) portfolio sorted on (size, book-to-market)
94 5_3 Kenneth French lv (5, 3) portfolio sorted on (size, book-to-market)
95 5_4 Kenneth French lv (5, 4) portfolio sorted on (size, book-to-market)
96 5_5 Kenneth French lv (5, 5) portfolio sorted on (size, book-to-market)
97 5_6 Kenneth French lv (5, 6) portfolio sorted on (size, book-to-market)
98 5_7 Kenneth French lv (5, 7) portfolio sorted on (size, book-to-market)
99 5_8 Kenneth French lv (5, 8) portfolio sorted on (size, book-to-market)
100 5_9 Kenneth French lv (5, 9) portfolio sorted on (size, book-to-market)
101 5_high Kenneth French lv (5, high) portfolio sorted on (size, book-to-market)
102 6_low Kenneth French lv (6, low) portfolio sorted on (size, book-to-market)
103 6_2 Kenneth French lv (6, 2) portfolio sorted on (size, book-to-market)
104 6_3 Kenneth French lv (6, 3) portfolio sorted on (size, book-to-market)
105 6_4 Kenneth French lv (6, 4) portfolio sorted on (size, book-to-market)
106 6_5 Kenneth French lv (6, 5) portfolio sorted on (size, book-to-market)
107 6_6 Kenneth French lv (6, 6) portfolio sorted on (size, book-to-market)
108 6_7 Kenneth French lv (6, 7) portfolio sorted on (size, book-to-market)
109 6_8 Kenneth French lv (6, 8) portfolio sorted on (size, book-to-market)
110 6_9 Kenneth French lv (6, 9) portfolio sorted on (size, book-to-market)
111 6_high Kenneth French lv (6, high) portfolio sorted on (size, book-to-market)
112 7_low Kenneth French lv (7, low) portfolio sorted on (size, book-to-market)
113 7_2 Kenneth French lv (7, 2) portfolio sorted on (size, book-to-market)
114 7_3 Kenneth French lv (7, 3) portfolio sorted on (size, book-to-market)
115 7_4 Kenneth French lv (7, 4) portfolio sorted on (size, book-to-market)
116 7_5 Kenneth French lv (7, 5) portfolio sorted on (size, book-to-market)
117 7_6 Kenneth French lv (7, 6) portfolio sorted on (size, book-to-market)
118 7_7 Kenneth French lv (7, 7) portfolio sorted on (size, book-to-market)
119 7_8 Kenneth French lv (7, 8) portfolio sorted on (size, book-to-market)
120 7_9 Kenneth French lv (7, 9) portfolio sorted on (size, book-to-market)
121 8_low Kenneth French lv (8, low) portfolio sorted on (size, book-to-market)
122 8_2 Kenneth French lv (8, 2) portfolio sorted on (size, book-to-market)
123 8_3 Kenneth French lv (8, 3) portfolio sorted on (size, book-to-market)
124 8_4 Kenneth French lv (8, 4) portfolio sorted on (size, book-to-market)
125 8_5 Kenneth French lv (8, 5) portfolio sorted on (size, book-to-market)
126 8_6 Kenneth French lv (8, 6) portfolio sorted on (size, book-to-market)
127 8_7 Kenneth French lv (8, 7) portfolio sorted on (size, book-to-market)
128 8_8 Kenneth French lv (8, 8) portfolio sorted on (size, book-to-market)
129 8_9 Kenneth French lv (8, 9) portfolio sorted on (size, book-to-market)
130 8_high Kenneth French lv (8, high) portfolio sorted on (size, book-to-market)
131 9_low Kenneth French lv (9, low) portfolio sorted on (size, book-to-market)
132 9_2 Kenneth French lv (9, 2) portfolio sorted on (size, book-to-market)
133 9_3 Kenneth French lv (9, 3) portfolio sorted on (size, book-to-market)
134 9_4 Kenneth French lv (9, 4) portfolio sorted on (size, book-to-market)
135 9_5 Kenneth French lv (9, 5) portfolio sorted on (size, book-to-market)
136 9_6 Kenneth French lv (9, 6) portfolio sorted on (size, book-to-market)
137 9_7 Kenneth French lv (9, 7) portfolio sorted on (size, book-to-market)
138 9_8 Kenneth French lv (9, 8) portfolio sorted on (size, book-to-market)
139 9_high Kenneth French lv (9, high) portfolio sorted on (size, book-to-market)
140 10_low Kenneth French lv (10, low) portfolio sorted on (size, book-to-market)
141 10_2 Kenneth French lv (10, 2) portfolio sorted on (size, book-to-market)
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Table A.3 (Cont’d)

No. Short Name Source Tran Description
142 10_3 Kenneth French lv (10, 3) portfolio sorted on (size, book-to-market)
143 10_4 Kenneth French lv (10, 4) portfolio sorted on (size, book-to-market)
144 10_5 Kenneth French lv (10, 5) portfolio sorted on (size, book-to-market)
145 10_6 Kenneth French lv (10, 6) portfolio sorted on (size, book-to-market)
146 10_7 Kenneth French lv (10, 7) portfolio sorted on (size, book-to-market)
147 VXO Fred MD lv VXOCLSx

CRSP Data Details Value-weighted price and dividend data were obtained from the
Center for Research in Security Prices (CRSP). From the Annual Update data, we obtain
monthly value-weighted returns series vwretd (with dividends) and vwretx (excluding divi-
dends). These series have the interpretation

VWRETDt =
Pt+1 +Dt+1

Pt

VWRETXt =
Pt+1

Pt

From these series, a normalized price series P , can be constructed using the recursion

P0 = 1

Pt = Pt−1 · VWRETXt.

A dividend series can then be constructed using

Dt = Pt−1(VWRETDt − VWRETXt).

In order to remove seasonality of dividend payments from the data, instead of Dt we use the
series

D∗t =
1

12

11∑
j=0

Dt−j

i.e., the moving average over the entire year. For the price and dividend series under “reinvest-
ment,”we calculate the price under reinvestment, P re

t , as the normalized value of the market
portfolio under reinvestment of dividends, using the recursion

P re
0 = 1

P re
t = Pt−1 · VWRETDt

Similarly, we can define dividends under reinvestment, Dre
t , as the total dividend payments on

this portfolio (the number of “shares”of which have increased over time) using

Dre
t = P re

t−1(VWRETDt − VWRETXt).

As before, we can remove seasonality by using

Dre,∗
t =

1

2

11∑
j=0

Dre
t−j.

Five data series are constructed from the CRSP data as follows:
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• D_log(DIV): ∆ logD∗t .

• D_log(P): ∆ logPt.

• D_DIVreinvest: ∆ logDre,∗
t

• D_Preinvest: ∆ logP re,∗
t

• d-p: log(D∗t )− log(Pt)

Kenneth French Data Details The following data are obtained from the data library of
Kenneth French’s Dartmouth website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html):

• Fama/French Factors: From this dataset we obtain the data series RF, Mkt-RF, SMB,
HML.

• 25 Portfolios formed on Size and Book-to-Market (5 x 5): From this dataset we obtain
the series R15-R11, which is the spread between the (small, high book-to-market) and
(small, low book-to-market) portfolios.

• Momentum Factor (Mom): From this dataset we obtain the series UMD, which is equal
to the momentum factor.

• 49 Industry Portfolios: From this dataset we use all value-weighted series, excluding any
series that have missing observations from Jan. 1960 on, from which we obtain the series
Agric through Other. The omitted series are: Soda, Hlth, FabPr, Guns, Gold, Softw.

• 100 Portfolios formed in Size and Book-to-Market: From this dataset we use all value-
weighted series, excluding any series that have missing observations from Jan. 1960 on.
This yields variables with the name X_Y where X stands for the index of the size variable
(1, 2, ..., 10) and Y stands for the index of the book-to-market variable (Low, 2, 3, ..., 8,
9, High). The omitted series are 1_low, 1_3, 7_high, 9_9, 10_8, 10_9, 10_high.

Daily Financial Data

Daily Data and construction of daily factors The daily financial series in this data set
are from the daily financial dataset used in Andreou, Ghysels, and Kourtellos (2013). We create
a smaller daily database which is a subset of the large cross-section of 991 daily series in their
dataset. Our dataset covers five classes of financial assets: (i) the Commodities class; (ii) the
Corporate Risk category; (iii) the Equities class; (iv) the Foreign Exchange Rates class and (v)
the Government Securities.
The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959 to

24-Oct-2018 (14852 trading days) from the above five categories of financial assets. We remove
series with fewer than ten years of data and time periods with no variables observed, which
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occurs for some series in the early part of the sample. For those years, we have less than 87
series. There are 39 commodity variables which include commodity indices, prices and futures,
16 corporate risk series, 9 equity series which include major US stock market indices and the 500
Implied Volatility, 16 government securities which include the federal funds rate, government
treasury bills of securities from three months to ten years, and 7 foreign exchange variables
which include the individual foreign exchange rates of major five US trading partners and two
effective exchange rate. We choose these daily predictors because they are proposed in the
literature as good predictors of economic growth.
We construct daily financial factors in a quarterly frequency in two steps. First, we use

these daily financial time series to form factors at a daily frequency. The raw data used to form
factors are always transformed to achieve stationarity. The raw daily data are also standardized
before performing factor estimation (see generic description below). We estimate factors at each
daily date in the sample using the entire history (from 23-Oct-1959) of variables observed in
real time.
In the second step, we convert these daily financial indicators to quarterly weighted variables

to form quarterly factors using the optimal weighting scheme according to the method described
below (see the optimal weighting scheme section).
The data series used in this dataset are listed below in Table A.4 by data source. The tables

also list the transformation applied to each variable to make them stationary before generating
factors. The transformations used to stationarize a time series are the same as those explained
in the section “Monthly financial factor data”.

Table A.4: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX
2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX
3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX
4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX
5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX
6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX
9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX
10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX
11 GSKCSPT Data Stream ∆ln S&P GSCI Coffee Spot - PRICE INDEX
12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX
13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily
16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE
17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT
18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.

PRICE
19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE
20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE
21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE
22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE
23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE
24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE
25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

19



Table A.4 (Cont’d)

No. Short Name Source Tran Description
26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE
27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.

PRICE
28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE
29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE
30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT
31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT
32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT
33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT
34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)
35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)
36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)
37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)
38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)
39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract

Settlement ($/Bbl)
Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX
41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE
42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX
43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX
44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE
45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX
46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX
47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX
48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk
49 LIBOR FRED ∆lv Overnight London Interbank Offered Rate (%)
50 1MLIBOR FRED ∆lv 1-Month London Interbank Offered Rate (%)
51 3MLIBOR FRED ∆lv 3-Month London Interbank Offered Rate (%)
52 6MLIBOR FRED ∆lv 6-Month London Interbank Offered Rate (%)
53 1YLIBOR FRED ∆lv One-Year London Interbank Offered Rate (%)
54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
57 APFNF-

AANF
Data Stream lv 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP)

(% P. A.) minus 1-Month Aa NCP (% P.A.)
58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-

cial Commercial Paper (% P.A.)
59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank Offered Rate

(%)
60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus

Y10-Tbond
61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus

Y10-Tbond
62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)

minus Y10-Tbond
63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield

(%) minus Y10-Tbond
64 MLAAA-

10YTB
Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield

(%) minus Y10-Tbond
Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE
66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE
67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE
68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE

RATE
69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE

RATE
70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity

(%) minus Fed Funds
71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

Fed Funds
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Table A.4 (Cont’d)

No. Short Name Source Tran Description
72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus Fed Funds
73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) mi-

nus 3M-Tbills
74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus 3M-Tbills
76 BKEVEN05 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 5-year (%)
77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)
78 BKEVEN1F4 FRB lv BKEVEN1F4
79 BKEVEN1F9 FRB lv BKEVEN1F9
80 BKEVEN5F5 FRB lv US Inflation compensation: coupon equivalent forward rate:

5-10 years (%)
Group 5: Foreign Exchange (FX)

81 US_CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX

82 US_CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-
CHANGE INDEX

83 US_CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE
84 EU_USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE
85 US_YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE
86 US_SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE
87 US_UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

From Daily to Quarterly Factors: Weighting Schemes After we obtain daily financial
factors GD,t, we use some weighting schemes proposed in the literature about Mixed Data
Sampling (MIDAS) regressions to form quarterly factors, GQ

D,t. Denote by G
D
t a factor in a

daily frequency formed from the daily financial dataset and denote by GQ
t a quarterly aggregate

of the corresponding daily factor time series. Let GD
ND−j,dt,t denote the value of a daily factor

in the jth day counting backwards from the survey deadline dt in quarter t. Hence, the day dt
of quarter t corresponds with j = 0 and is therefore GD

ND,dt,t
. For simplicity, we suppress the

subscript dt thus GD
ND−j,dt,t ≡ GD

ND−j,t.
We compute the quarterly aggregate of a daily financial factor as a weighted average of

observations over the ND business days before the survey deadline. This means that the fore-
casters’s information set includes daily financial data up to the previous ND business days. G

Q
t

is defined as:

GQ
t (w) ≡

ND∑
i=1

wiG
D
ND−i,t

where w is a vector of weights. We consider the following three types of weighting schemes to
convert daily factor observations to quarterly. Each weighting scheme weights information by
some function of the number of days prior to the survey deadline.
1. wi = 1 for i = 1 and wi = 0 otherwise. This weighting scheme places all weight on data

in the last business day before the survey deadline for that quarter and zero weight on any data
prior to that day.
2. wi = θj∑ND

j=1 θ
j
where we consider a range of θj for θj = (0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1)′. The
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smaller is θj, the more rapidly information prior to the survey deadline day is downweighted.
This down-weighting is progressive but not nonmonotone. θj = 1 is a simple average of the
observations across all days in the quarter.
3. The third parameterization has two parameters, or θD = (θ1, θ2)′ and allows for non-

monotone weighting of past information:

w (i; θ1, θ2) =
f
(

i
ND
, θ1; θ2

)
∑ND

j=1 f
(

j
ND
, θ1; θ2

)
where:

f(x, a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)

Γ(a) =

∫ ∞
0

e−xxa−1dx

The weights w (i; θ1, θ2) are the Beta polynomial MIDAS weights of Ghysels, Sinko, and Valka-
nov (2007), which are based on the Beta function. This weighting scheme is flexible enough to
generate a range of possible shapes with only two parameters.
We consider these possible weighting schemes and choose the optimal weighting scheme w∗

from 24 weighting schemes for a daily financial factor GD
t by minimizing the sum of square

residuals in a regression of yj,t+h on G
Q
t (w):

yj,t+h = a+ b ·
ND∑
i=1

wiG
D
ND−i,t︸ ︷︷ ︸

GQt (w)

+ ut+h.

This is done in real time using recursive regressions and an initial in-sample estimation window
that matches the timing described below for the data-dependent choice of tuning parameter in
the machine learning estimation (see the section on Estimation and Machine Learning).
We assume that ND = 14 which implies that forecasters use daily information in at most

the past two weeks before the survey deadline. The process is repeated for each daily financial
factor in GD,t to form quarterly factors GQ

D,t.

Estimation and Machine Learning

The model to be estimated is
yj,t+h = X ′tβ

(i)
j + εjt+h.

It should be noted that the most recent observation on the left-hand-side is generally available
in real time only with a one-period lag, thus the forecasting estimations can only be run with
data over a sample that stops one period later than today in real time. Xt always denotes the
most recent data that would have been in real time prior to the date on which the forecast
was submitted. The coeffi cients β(i)

j,t are estimated using the Elastic Net (EN) estimator, which
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depend on regularization parameter parameters λ(i)
t =

(
λ

(i)
1t , λ

(i)
2t

)′
(See the next section for a

description of EN). The procedure involves iterating on the steps given in the main text.
We allow the machine to additionally learn about whether the coeffi cient on the survey

forecast should be shrunk toward zero or toward unity. Recall that the machine forecast for
the ith percentile is

E(i)
t (yj,t+h) ≡ α̂

(i)
j + β̂

(i)

jFF
(i)
t [yj,t+h] + B̂

(i)′
jZZjt.

If the machine model is implemented as an estimation with using forecast errors as the depen-
dent variable, i.e.,

yj,t+h − F(i)
t [yj,t+h] = α

(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZZt + εjt+h, (A.11)

the machine effi cient benchmark is characterized by β(i)
jF = 0; B

(i)
jZ = 0;α

(i)
j = 0. Because EN

shrinks estimated coeffi cients toward zero, this results in shrinkage of β(i)
jF toward unity. In this

case the machine forecast is given by

E(i)
t (yj,t+h) ≡ α̂

(i)
j +

(
β̂

(i)

jF + 1
)
F(i)
t [yj,t+h] + B̂

(i)′
jZZjt.

By contrast, if the machine forecast is implemented by running the specification

yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZZt + εjt+h,

then β(i)
jF is shrunk toward zero and the algorithm will typically place less weight on the sur-

vey forecast than the specification (A.11). In the implementation, we allow the machine to
choose which specification to run over time by having it pick the one that that minimizes the
mean-square loss function L

(
λ

(i)
t ,TIS, TTS

)
over psuedo out-of-sample forecast errors in every

training sample.
To capture extreme non-linearities associated with recessions, the machine forecasts follow a

simple switching model. In most periods, the forecast is based on the “normal-times”statistical
model just described. To cope with rapid economic change, as in a recession, the machine
forecast is permitted to switch to a simpler specification based on a recession indicator. As
the recession indicator, we use the term spread, defined as the difference between the 10-year
Treasury bond rate and the 3-month Treasury bill rate. When the term spread at time t is at
or below the real time sample 10th percentile value, the machine forecast of t + h is switched
to a recession-model forecast based solely on a dummy indicator It−h, which takes the value
1 when the term spread at t − h is below a threshold. The precise threshold used is the one
that minimizes mean square loss in the relevant training sample prior to the actual forecast.
The machine chooses among thresholds that represent the real time sample 10th, 5th, or 1st
percentile values for the term spread. The recession specification forecast for t + h is then the
fitted value from a regression of real time real GDP growth at time t on the resulting It−h.
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Elastic Net Estimator

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection
Operator (LASSO) and ridge type penalties. LASSO. Suppose our goal is to estimate the
coeffi cients in the linear model:

yj,t+h = αj + βjFF
(i)
t [yj,t+h] + BjZ︸︷︷︸

qr×qr

Zjt + εjt+h

Collecting all the independent variables and coeffi cients into a single matrix and vector, the
model can be written as:

yj,t+h = X ′tjβj + εjt+h

where Xt = (1,X1t,...,XKt)′ collects all the independent variable observations
(
F(i)
t [yj,t+h] ,Zjt

)
into a vector with “1”and βj =

(
αj, βjF, vec (BjZ)

)′ ≡ (β0, β1, ...βK)′ collects all the coeffi cient.
It is customary to standardize the elements of Xt such that sample means are zero and sample
standard deviations are unity. The coeffi cient estimates are then put back in their original scale
by multiplying the slope coeffi cients by their respective standard deviations, and adding back
the mean (scaled by slope coeffi cient over standard deviation.)
The EN estimator incorporates both an L1 and L2 penalty:

β̂
EN

= argmin
β0,β1,...,βk


T∑
τ=1

(
yj,τ+h −X

′

τβ
(i)
j

)2

+ λ
(i)
1

k∑
j=1

∣∣βj∣∣︸ ︷︷ ︸
LASSO

+ λ
(i)
2

k∑
j=1

β2
j︸ ︷︷ ︸

ridge


By minimizing the MSE over the training samples, we choose the optimal λ(i)

1 and /λ(i)
2 values

simultaneously.

Dynamic Factor Estimation

Let xCt = (xC1t, . . . , x
C
Nt)
′ generically denote a dataset of economic information in some category

C that is available for real-time analysis. It is assumed that xCt has been suitably transformed
(such as by taking logs and differencing) so as to render the series stationary. We assume that
xCit has an approximate factor structure taking the form

xCit = ΛC′
i GC

t + eXit ,

where GC
t is an rG × 1 vector of latent common factors (“diffusion indexes”), ΛC

i is a corre-
sponding rC×1 vector of latent factor loadings, and eXit is a vector of idiosyncratic errors.

19 The

19In an approximate dynamic factor structure, the idiosyncratic errors eXit are permitted to have a limited
amount of cross-sectional correlation.
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number of factors rG is typically significantly smaller than the number of series, N , which facil-
itates the use of very large datasets. Additional factors to account for nonlinearities are formed
by including polynomial functions of GC

t , and by including factors formed from polynomials of
the raw data.
We re-estimate factors at each date in the sample using the entire history of variables

observed in real time. Let xit denote the ith variable in a large dataset. The following steps
are taken in forming the macro, financial, and daily factors:

1. Remove outlier values from a series, defined as values whose distance from the median is
greater than ten times the interquartile range.

2. Scale each series according to the procedure proposed by Huang, Jiang, and Tong (2017).
We run the following regression for each variable xit:

yjt+h = βj,i,0 + βj,i,xxit + νj,i,t+h.

Then, we form a new dataset of variables β̂j,i,xxit where β̂j,i,x denotes the OLS estimate
of βj,i,x. These “scaled”variables are standardized and denoted x̃it.

3. Throughout, the factors are estimated over x̃it by the method of static principal compo-
nents (PCA). The approach we consider is to posit that x̃it has a factor structure taking
the form

x̃it = λ′iGt + eit, (A.12)

where Gt is a r× 1 vector of latent common factors, λi is a corresponding r× 1 vector of
latent factor loadings, and eit is a vector of idiosyncratic errors.20 Specifically, the T × r
matrix ĝt is

√
T times the r eigenvectors corresponding to the r largest eigenvalues of the

T×T matrix x̃x̃′/(TNx̃) in decreasing order, where T is the number of time periods andNx̃

is the number of variables in the large dataset. The optimal number of common factors,
r is determined by the panel information criteria developed in Bai and Ng (2002). To
handle missing values in any series, we use an expectation-maximization (EM) algorithm
by filling with an initial guess and forming factors, using (A.12) to update the guess with
E(x̃it) = E (λ′iĝt) , and iterating until the successive values for E(x̃it) are arbitrarily close.

4. Collect the common factors into the matrix Graw, where each principle component is a
column.

20We consider an approximate dynamic factor structure, in which the idiosyncratic errors eit are permitted to
have a limited amount of cross-sectional correlation. The approximate factor specification limits the contribution
of the idiosyncratic covariances to the total variance of x as N gets large:

N−1
N∑
i=1

N∑
j=1

|E (eitejt)| ≤M,

where M is a constant.
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5. Square the raw variables and repeat steps 2 through 5. Collect the common factors from
squared data into a matrix Gsqr, where component is a column.

6. Square the first factor in Graw, and call this G2
raw1.

7. Our matrix of factors is [Graw,Gsqr1,G
2
raw1], where Gsqr1 is the first column of Gsqr.

For macro factors, we use all of the variables listed in Table A.2. After step 1 above, an
additional step of removing missing variables and observations is needed for the macro variables.
We remove series with fewer than seven years of data and time periods with less than fifty-
percent of variables observed, which occur in the early part of the sample. Furthermore, we
lag variables with missing data in the final observation whenever more than twenty-percent of
variables are missing data in the last observation.21

For the financial factors, we use all of the variables listed in Table A.3, and no additional
steps are performed beyond those described above.

Economic Names of Factors

Any labeling of the factors is imperfect because each is influenced to some degree by all the vari-
ables in the large dataset and the orthogonalization means that no one of them will correspond
exactly to a precise economic concept like output or unemployment. Following Ludvigson and
Ng (2009), we relate the factors to the underlying variables in the large dataset. For each time
period in our evaluation sample, we compute the marginal R2 from regressions of each of the
individual series in the panel dataset onto each factor, one at a time. Each series x̃it is assigned
the group name in the data appendix tables naming all series, e.g., non-farm payrolls are part
of the Employment group (EMP). If series x̃it has the highest average marginal R2 over all
evaluation periods for factor Gkt, we label Gkt according to the group to which x̃it belongs, e.g.,
Gkt is an Employment factor. We further normalize the sign of each factor so that an increase
in the factor indicates an increase in x̃it. Thus, in the example above, an increase in Gkt would
indicate a rise in non-farm payrolls. Table A.5 reports the series with largest average marginal
R2 for each factor of each large dataset.

Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1 + rG + rW vector which collects the data at

time t with Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W

′
jt, ...,W

′
jt−pW

)′
a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ′t, W′
jt,

respectively. Superscript (i) refers to the ith forecaster, where i denotes either the mean “mean”
or an ith percentile value of the forecast distribution, i.e., “65” is the 65th percentile. The
predictors below are listed as elements of yj,t, Ĝ′jt, or W′

jt for different surveys and variables.

21Even though the EM algorithm is designed to estimate missing observations, it does not perform well when
there are too many missing observations at a single point in time.
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Table A.5: Economic Interpretation of the Factors

Series with Largest R2

Macro Factors Label
G1,M,t Nonfarm Payrolls Macro Factor: Employment
G2,M,t Interest paid by consumers Macro Factor: Money and Credit
G3,M,t Agg. Weekly hours - Service-producing Macro Factor: Employment.
G4,M,t Agg. Weekly hours - Good-producing Macro Factor: Employment
G5,M,t Nonborrowed Reserves Macro Factor: Money and Credit
G6,M,t Housing Starts Macro Factor: Housing
G7,M,t Change in private inventories Macro Factor: Orders and Investment
G8,M,t PCE: Service Macro Factor: Consumption

Financial Factors
G1,F,t D_log(P) Financial Factor: Prices, Yield, Dividends
G2,F,t SMB Financial Factor: Equity Risk Factors
G3,F,t HML Financial Factor: Equity Risk Factors
G4,F,t R15_R11 Financial Factor: Equity Risk Factors
G5,F,t D_DIVreinvest Financial Factor: Prices, Yield, Dividends
G6,F,t Smoke Financial Factor: Industries
G7,F,t UMD Financial Factor: Equity Risk Factors
G8,F,t Telcm Financial Factor: Industries

Daily Factors
G1,D,t ECBOT-SOYBEAN OIL Daily Factor: Commodities
G2,D,t A Rated minus Y10 Tbond Daily Factor: Corporate Risk
G3,D,t 6-month US T-bill Daily Factor: Treasuries
G4,D,t 6-month treasury bill minus 3M-Tbills Daily Factor: Treasuries
G5,D,t CBT-MINI DOW JONES Daily Factor: Equities
G6,D,t Corn Daily Factor: Commodities
G7,Dt APFNF-AAF Daily Factor: Corporate Risk
G8,D,t US nominal dollar broad index Daily Factor: FX

Note: This table reports the series with largest marginal R2 for the factor specified in the first column. The

marginal R2 is computed from regressions of each of the individual series onto the factor, one at a time, for the

time period that the factor shows up as relevant for the median bias.

SPF Inflation For yj equal to inflation the forecasting model considers the following vari-
ables.
In W′

jt:

1. F(i)
jt−k [yjt+h−k], where k = 1, . . . , 2

2. F(s 6=i)
jt−1 [yjt+h−1], where s = mean, 50, 25, 75 for all s 6= i

3. varN
(
F(·)
t−1 [yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged survey

forecasts

4. skewN
(
F(·)
t−1 [yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged

survey forecasts

5. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t <1991:Q4
CPI10t−1 if t ≥1991:Q4, where

CPI10 is the median SPF forecast of annualized average inflation over the current and
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next nine years. Trend inflation is intended to capture long-run trends. When long-run
forecasts of inflation are not available, as is the case pre-1991:Q4, we us a moving average
of past inflation.

6. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

7. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of inflation over the period t− h
to t.

Lags of the dependent variable:

1. yt−1,t−h−1 one quarter lagged annual inflation.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
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grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.22 The 87 daily financial indicators in DD

include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SPF GDP Growth For yj equal to GDP growth the forecasting model considers the follow-
ing variables.
In W′

jt

1. F(i)
jt−k [yjt+h−k], where k = 1, 2

2. F(s 6=i)
jt−1 [yjt+h−1], where s = mean, 50, 25, 75 for all s 6= i

3. varN
(
F(·)
t−1 [yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of forecasts

4. skewN
(
F(·)
t−1 [yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of forecasts

5. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

6. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

7. N(i)
t [yt,t−h] = Nowcast as of time t of the ith percentile of GDP growth over the period

t− h to t.

8. V XOt, defined as CBOE S&P 100 volatility index. We also include its squared and cubic
terms, V XO2

t , and V XO
3
t .

Lags of the dependent variable:

1. yj,t−1,t−h−1, yj,t−2,t−h−2 one and two quarter lagged annual GDP growth.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

22A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.23 The 87 daily financial indicators in DD

include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SOC Inflation For consistency, the predictors for the SOC inflation forecasts are constructed
similarly to those of the SPF inflation forecasts. Again, consider the following forecast regres-
sion,

yj,t+h = αj + βjFF
MS,(i)
j,t [yj,t+h] + BjZ︸︷︷︸

1xq

Zjt + εjt+h,

where the variables are defined as above, and i is either the mean “mean”or an ith percentile
value of the forecast distribution. We denote forecasts from the SPF using FSPF,(i)js [·] and from
the Michigan Survey using FMS,(i)

js [·].
In W′

jt:

1. FSPF,(µ)
jt−1 [yjt+h−1], the mean SPF forecast for CPI.

2. FSPF,(50)
jt−1 [yjt+h−1], the 50th percentile SPF forecast for CPI.

3. FSPF,(25)
jt−1 [yjt+h−1], the 25th percentile SPF forecast for CPI.

23A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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4. FSPF,(75)
jt−1 [yjt+h−1], the 75th percentile SPF forecast for CPI.

5. varN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional variance of SPF forecasts of CPI.

6. skewN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional skewness of SPF forecasts of CPI.

7. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t <1991:Q4
CPI10t−1 if t ≥1991:Q4, where

CPI10 is the median SPF forecast of annualized average inflation over the current and
next nine years. Trend inflation is intended to capture long-run trends. When long-run
forecasts of inflation are not available, as is the case pre-1991:Q4, we us a moving average
of past inflation.

8. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

9. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

Lags of dependent variables:

1. yt−1,t−h−1 one quarter lagged annual CPI inflation.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
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labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.24 The 87 daily financial indicators in DD

include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SOC GDP Growth For yj equal to GDP growth the forecasting model considers the fol-
lowing variables
In W′

jt:

1. FSPF,(µ)
jt−1 [yjt+h−1], the mean SPF forecast for GDP growth.

2. FSPF,(50)
jt−1 [yjt+h−1], the 50th percentile SPF forecast for GDP growth.

3. FSPF,(25)
jt−1 [yjt+h−1], the 25th percentile SPF forecast for GDP growth.

4. FSPF,(75)
jt−1 [yjt+h−1], the 75th percentile SPF forecast for GDP growth.

5. varN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional variance of SPF forecasts for GDP growth.

6. skewN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional skewness of SPF forecasts for GDP growth.

7. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

8. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

9. V XOt, defined as CBOE S&P 100 volatility index. We also include its squared and cubic
terms, V XO2

t , and V XO
3
t .

Lags of dependent variables:

1. yj,t−1,t−h−1, yj,t−2,t−h−2 one and two quarter lagged annual GDP growth.

24A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.25 The 87 daily financial indicators in DD

include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

Blue Chip Inflation For consistency, the predictors for the BC inflation (PGDP inflation
and CPI inflation) forecasts are constructed analogously to those of the SPF inflation forecasts.
The only differences are that for own-survey forecasting variables (including nowcasts), e.g.
F(i)
t [yjt+h] in W′

jt, we now use survey forecasts from Blue Chip, instead of SPF.

Blue Chip GDP Growth For yj equal to GDP growth the forecasting model considers the
same variables as in the SPF GDP growth forecasts with SPF forecasts replaced with Blue
Chip Forecasts.

25A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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Coibion Gorodnichenko Regressions

To construct SPF forecasts of annual inflation, forecasters at time t are presumed to use an
advance estimate of t − 1 price level combined with their survey respondent forecast of that
price level at t+ 3 to form a forecast of πt+3.

πt+3 − F(µ)
t [πt+3]︸ ︷︷ ︸

Forecast Error

= α + β

F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]︸ ︷︷ ︸
Forecast Revision

+ εt+3 (A.13)

where the annual inflation at time t+ 3 is defined as,

πt+3 = 100×
(

Pt
Pt−1

× Pt+1

Pt
× Pt+2

Pt+1

× Pt+3

Pt+2

− 1

)
. (A.14)

Following CG, regressions are run and forecast errors computed using forecasts of real-time
inflation data available four quarters after the period being forecast.
The survey forecast is constructed as follows

Ft [πt+3] = 100×
(
P avg
t

Pt−1

× P avg
t+1

P avg
t

× P avg
t+2

P avg
t+1

× P avg
t+3

P avg
t+2

− 1

)
,

where P avg
t+h = 1

Nt+h

∑Nt+h
i=1 P i

t+h, for h = 0, . . . , 3, i represents an individual forecaster, Nt+h is
the number of forecasters at time time t + h, and Pt−1 is the BEA’s advance estimate at t for
prices in t− 1.

Forecast Error

The forecast error on the LHS of the regressions (A.13) is constructed in the following way:

πt+3,t − F(µ)
t [πt+3,t] ≡ 100×

[(
πt,t−1 − F(µ)

t [πt,t−1]

400
+ 1

)
(A.15)

×
(
πt+1,t − F(µ)

t [πt+1,t]

400
+ 1

)

×
(
πt+2,t+1 − F(µ)

t [πt+2,t+1]

400
+ 1

)

×
(
πt+3,t+2 − F(µ)

t [πt+3,t+2]

400
+ 1

)
− 1

]

In brackets is the product of quarterly forecast errors from the nowcast to h = 3 quarters ahead.
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Table A.6: CG In-Sample Regressions of Forecast Errors on Forecast Revisions (Survey)

Regression: πt+3,t − Ft [πt+3,t] = α+ β (Ft [πt+3,t]− Ft−1 [πt+3,t]) + δπt−1,t−2 + εt
(1) (2) (3) (4)

Panel A: Sample: 1969:Q1 - 2014:Q4 Panel B: Sample: 1969:Q1 - 2018:Q2
Constant 0.001 -0.077 -0.022 -0.116
t-stat (0.005) (-0.442) (-0.167) (-0.758)

Ft [πt+3,t]− Ft−1 [πt+3,t] 1.194∗∗ 1.141∗∗ 1.186∗∗ 1.116∗∗

t-stat (2.496) (2.560) (2.478) (2.532)
πt−1,t−2 0.021 0.027
t-stat (0.435) (0.574)

R̄2 0.195 0.197 0.193 0.195

Notes: The annual inflation is defined as πt+3,t = Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, the covariate Ft [πt+3,t] is the SPF

of annual inflation with information in period t and Ft−1 [πt+3,t] is the SPF mean forecast of the same annual
inflation but with information in t− 1. Panel A presents the sample in Coibion and Gorodnichenko (2015) and
Panel B updates the sample to 2018:Q2. Regressions are run and model evaluated using real-time data with
observation on πt+3,t available 4 quarters after the advance estimate of it. Newey-West corrected (t-statistics)
with lags = 4. Newey-West HAC: *sig. at 10%. **sig. at 5%. ***sig. at 1%.

In-sample analysis

Table A.6 presents the replication for CG, as well as results from extending the sample size to
2018:Q2. Panel A replicates the numbers from columns (1) and (2) of Table 1 Panel B of CG.
Panel B presents the results for the extended sample.
Table A.7 presents the results from CG regressions when we replace the survey forecast with

our machine forecast for SPF mean inflation. More specifically, we estimate is the following
regression:

πt+3,t − E(µ)
t+3|t︸ ︷︷ ︸

Machine Forecast Errors

= α + β

E(µ)
t [πt+3,t]− E(µ)

t−1 [πt+3,t]︸ ︷︷ ︸
Machine Forecast Revision

+ δπt−1 + εjt+3

where E(µ)
t [πt+3,t] is the machine mean forecast made at time t and E(µ)

t−1 [πt+3,t] is the machine
forecast made at time t− 1.

Out-of-Sample Analysis

We seek to construct a series of real-time OOS forecasts using the model:

πt+3 − F(µ)
t [πt+3] = α(µ) + β(µ)

(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+ εt+3

We estimate over an initial sample, forecast out one period, roll (or recurse) forward and repeat
estimation and forecast. The regression estimation uses the latest vintage of inflation in real
time and, following CG, computes forecast errors real-time data available four quarters after
the period being forecast. The CG model forecast for πt+3

π̂
(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F
(µ)
t−1 [πt+3]
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Table A.7: CG Regressions of Forecast Errors on Forecast Revisions (Machine)

Regression: πt+3,t − Et [πt+3,t] = α+ β (Et [πt+3,t]− Et−1 [πt+3,t]) + δπt−1,t−2 + εt
(1) (2)

Constant -0.12 -0.13
t-stat (−1.21) (−0.94)

Et [πt+3,t]− Et−1 [πt+3,t] -0.04 -0.04
t-stat (−0.22) (−0.24)

πt−1,t−2 0.00
t-stat (0.08)
R̄2 0.0008 0.0008

Notes: The annual inflation is defined as πt+3,t = Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, the covariate Et [πt+3,t] is the

machine mean forecast of annual inflation with information in period t and Et−1 [πt+3,t] is the machine mean
forecast of the same annual inflation but with information in t − 1. Regressions are run and model evaluated
using real-time data with observation on πt+3,t available 4 quarters after the advance estimate of it. Newey-West
corrected (t-statistics) with lags = 4. Newey-West HAC: *sig. at 10%. **sig. at 5%. ***sig. at 1%. The
sample is 1995:Q1 to 2018:Q2.

For the rolling procedure, we try windows of sizes w = 5, 10, and 20 years. For the recursive
procedure, we try initial window sizes of 5, 10, and 20 years as well.
The survey and model errors are

survey errort = F(µ)
t [πt+3]− πt+3

CG model errort = π̂
(µ)
t+3 − πt+3

We also compute rolling MSEs over different forecast samples of size P as

MSEF =
1

P

P∑
s=1

(
survey errort+s

)2

MSECG =
1

P

P∑
s=1

(CG model errort+s)
2

Dynamic Responses to Cyclical Shocks—Local Projection

We follow Angeletos, Huo, and Sastry (2020) (AHS) and estimate the dynamic responses to
inflation or GDP growth shocks from Angeletos, Collard, and Dellas (2018a) via local projection
using a series of single equation regressions, one for each horizon 0 ≤ h ≤ H taking the form

zt+h = αh + βhεt + γ′Wt + ut+h (A.16)

where zt is either the outcome variable at t, the survey forecast made at t, F(i)
t [yj,t+h] , or the

machine forecast made at time t, E(i)
t [yj,t+h]. The dynamic responses plotted in the figures

of the main text and below are given by the sequence of coeffi cients {β}Hh=0, where Wt is a
vector of control variables that are the same as those used in AHS and include one lag each of

36



Table A.8: Mean Square Errors for the CG Model and SPF

Forecast model: π̂(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F
(µ)
t−1 [πt+3]

MSECG/MSEF
Method Quarterly Compound Continuous Compound CG Sample

Rolling 5 years 1.38 1.38 1.39
Rolling 10 years 1.29 1.29 1.29
Rolling 20 years 1.31 1.30 1.34
Recursive 5 years 1.69 1.68 1.71
Recursive 10 years 1.60 1.59 1.59
Recursive 20 years 1.33 1.30 1.34

Notes: The table reports the ratio of MSEs of the CG model forecast over the survey forecast. The regression
estimation uses the latest vintage of inflation in real time and, following CG, computes forecast errors real-time
data available four quarters after the period being forecast. The sample spans the period 1969:Q1 - 2018:Q2.
The CG sample refers to the sample in Coibion and Gorodnichenko (2015) that ends in 2014:Q4.

the outcome and survey forecast. We consider two outcome variables: inflation and real GDP
growth. Following Angeletos, Huo, and Sastry (2020), we plot forecasts and outcome variables
so that F(50)

t [yj,t+h] is lined up with yj,t+h along a vertical slice and the difference between the
two is the forecast error. On the left-hand-side the forecasts are made at time t for period t+h,
while the shock occurs at t. We compute the heteroskedasticity and autocorrelation robust
(HAC) standard errors with a 4-quarter Bartlett kernel to calculate standard errors for the
impulse responses. The ±1 standard error bands are reported.
Top panel of Figure A.2 shows that we replicate the dynamic responses of inflation to an

inflation targeted shock over the same sample used in Angeletos, Huo, and Sastry (2020). The
bottom panel of Figure A.2 shows the dynamic responses are similar using the local projection
estimation over our evaluation sample 1995:1-2018:Q2.

Machine Forecasts without using Contemporaneous Survey Responses

To form an estimate of the median SPF machine forecast E(50)
t [yj,t+h] for four-quarter ahead

GDP growth that does not use the median type’s time t survey forecast F(i)
t [yj,t+h] , we instead

use other professional concensus survey forecast information publicly available on or close to
the time t SPF survey deadline. We obtain the Bloomberg (BBG) US GDP consensus median
forecast from the Bloomberg Terminal. It reports daily quarter-over-quarter real GDP growth
forecasts from 2003:Q1. These forecasts provide more high-frequency information on the pro-
fessional outlook for economic indicators. To be consistent with the SPF forecasts, we construct
the annual GDP growth forecast as follows.
Let gY (Q/Q)

t+h denote annualized quarter-over-quarter GDP growth in percent, h quarters

ahead, and letBB(50)
t

[
gY

(Q/Q)
t+h

]
be the median BBG forecaster’s prediction of this variable made

37



Figure A.2: Dynamic Responses: Forecast and Outcome
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Dynamic responses of GDP and inflations.The shaded areas are 68% confidence intervals based on HAC

standard errors with a Bartlett kernel and 4 lags. The x-axis denotes quarters from the shock. The outcome

variable is inflation πt and the shock is the inflation-targeted shock. The survey forecast is F
(50)
t [yt+3]. The

shock time series are from Angeletos, Collard, and Dellas (2018a). In the first row, the impulse responses are

estimated over sample 1969:Q1 to 2018:Q2. In the second row, the impulse responses are estimated over sample

1995:Q1 to 2018:Q2. In both rows, we “align”the forecast responses such that, at a given vertical slice of the

plot, the outcome and forecast responses are measured over the same horizon, and the difference between the

two is the forecast error. The vintage of observations on the outcome variable is final-release data.
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at time t, where time t is the day of or one day before (if the Bloomberg forecast is unavailable
at the day of ) the SPF survey deadline listed in Table A.1. Bloomberg B(50)

t

[
gY

(Q/Q)
t+h

]
are

reported at annual rates in percentage points, so we convert to quarterly raw units before
compounding. Let yt+4,t denote four-quarter real GDP growth. We construct the four-quarter
real GDP growth BBG forecast from gY

(Q/Q)
t+h as:

B(50)
t [yt+4,t] = 100× ln

 4∏
h=1

1 +
B(50)
t

[
gY

(Q/Q)
t+h

]
100


1
4

.
B(50)
t [yt+4,t] exhibits a correlation with the SPF median annual GDP forecast F(50)

t [yt+4,t] of
96.4% over the common sample from 2003:Q1 to 2018:Q2.
To form an estimate of the median SPF machine forecast E(50)

t [yj,t+h] for four-quarter ahead
GDP growth that does not use the median type’s time t survey forecast F(i)

t [yj,t+h] , we instead
use the BBG professional consensus survey forecast which is publicly available on or close to
the time t SPF survey deadline. The estimation is the same as in the baseline estimation with
two exceptions. First, we replace the survey deadline observation of the time t SPF median
forecast series F(50)

t [yj,t+h] with the time t observation on the median forecast from the BBG
survey, B(50)

t [yt+4,t]. Second, the machine forecast is estimated over a shorter sample starting
from 2003:Q1, when BBG data are available. The evaluation sample is for this estimation spans
2010:Q1-2018:Q2.

Table A.9: Results with Bloomberg Forecasts

ML: yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] +B

(i)
jZZjtεjt+h

SPF GDP Median Forecast
Replace survey deadline observation F (50)

t with BB(50)
t

Use F (50)
t for all t Replace survey deadline F (50)

t with B(50)
t

MSEE/MSEF 0.808 0.863
OOS R2 0.19 0.14

Notes: This table reports the MSE ratios with and without using Bloomberg consensus forecasts. The second
column reports the results when SPF median forecasts are used for all quarters. The second column reports
the results when the current-quarter SPF median forecast of GDP growth is replaced by the Bloomberg median
forecast and include one lag of SPF forecasts of all types. MSEE and MSEF denote the machine and SPF
survey mean-squared-forecast-errors, respectively, for 4-quarter-ahead forecasts, averaged over the evaluation
sample. The out-of-sample Rsquared, OOS R2, is defined as 1-MSEE/MSEF. The evaluation period is 2010:Q1
to 2018:Q2;
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