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1 Introduction

How important are belief distortions in economic decision making and what role do they play

in macroeconomic fluctuations? Large theoretical literatures have emerged to argue that sys-

tematic expectational errors embedded in beliefs can have important dynamic effects on the

economy. But much less is known about the empirical relation of any such distortions to

macroeconomic activity.

To formalize our notion of “belief distortion,”let us define it in general terms as an expec-

tational error generated by the systematic mis-weighting of available information demonstrably

pertinent to the accuracy of the belief. This definition nests those that consider errors generated

by merely omitting relevant information to include any instance where information is subopti-

mally given too much or too little weight. In the theoretical macroeconomic literatures where

distorted beliefs play a role, economic agents make systematic expectational errors due to a

wide variety of reasons. These include the presence of information frictions driven by rational

or behavioral inattention, the use of simple extrapolative rules, the intentional adoption of con-

servatively pessimistic beliefs, the over-reaction to incoming news, or the presence of skewed

priors, among others.

In this study we are interested in three questions. First, how distorted are observed beliefs

about the macroeconomy? Second, do such distortions matter for macroeconomic activity?

Third, how do any distortions vary with the business cycle? Answers to all three questions are

inextricably tied to the measurement of belief distortions.

A fundamental challenge in this regard is that no objective measure of such distortions exists.

So far, empirical work has largely proceeded by investigating whether forecast errors made by

survey respondents deviate from the standard of full information and rational expectations.1

Yet a review of the literature discussed below finds little agreement on how such a theoretical

standard should be measured. Existing studies differ according to the specific surveys that are

investigated, the segment of the population that is surveyed, the topic of the survey questions,

the time period to which the survey questions pertain, and the empirical methodology used

to identify systematic errors in expectations. Perhaps most important, given the wide-ranging

theoretical literatures cited above and the vast amount of information that could be considered

ex-ante known and pertinent to economic decision making, it is not obvious what benchmark

model of beliefs should be applied to measure any distortion in survey responses.

This paper proposes newmeasures of systematic expectational errors in survey responses and

relates them to macroeconomic activity. Our objective is to construct and study a comprehen-

sive, methodologically consistent, econometric measure of belief distortions in macroeconomic

1Some of this work is discussed below. See also recent surveys of this literature in Gabaix (2019) and
Angeletos, Huo, and Sastry (2020).
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expectations by looking across a range of surveys, a range of agent types, and a range of ques-

tions about future economic outcomes. Returning to our definition of belief distortions above,

it is clear that such a measurement requires four key ingredients.

First, we require direct evidence on what economic decision-makers actually believe. For

this we obtain data from several different surveys, different survey questions, and broad cross-

sections of survey respondents with different beliefs. Second, we must cope with the theoretically

vast quantity of available information that is possibly pertinent to belief accuracy. For this,

we use tools for data rich environments along with machine learning to process hundreds of

pieces of information that would have been available to survey respondents in real time at daily,

quarterly, and monthly sampling intervals. Third, we must account for other bona fide features

of real time decision making, such as the out-of-sample nature of foreword-looking judgements.

Failure to take into account either the data rich environment in which survey respondents

operate or the out-of-sample nature of their forecasts can lead to erroneous conclusions about

belief distortions and their relation to the macroeconomy. Conversely, using information that

may have been unavailable to survey respondents to compute a standard of non-distorted beliefs

could be equally erroneous. To address these issues, we develop a dynamic machine learning

algorithm to detect demonstrable, ex ante expectational errors in real time. The fourth and final

ingredient is the availability of observations on both survey responses and objective economic

information over a suffi ciently long time span. This is required to reduce sampling noise, as

is necessary to distinguish bad luck in a random environment from a systematic mis-weighting

of information, as well as to statistically infer the relation of any belief distortions to dynamic

macroeconomic fluctuations.

With these ingredients in hand, we ask whether cross-sections of survey respondents with

different beliefs systematically mis-weight pertinent economic information. If the machine de-

tects a sustained pattern of demonstrable, ex ante errors in survey respondents’forecasts, the

magnitude of these distortions should be evident from the relative (machine versus respondent)

forecast errors, once they are averaged over a suffi ciently long sample capable of eliminating

differences in ex post predictive outcomes attributable to pure randomness.

Machine learning is itself a model of belief formation. We argue that it provides an appro-

priate benchmark for quantifying biases in survey responses, for at least two reasons. First,

optimized approaches to real world decision and prediction problems almost always require the

effi cient processing of large amounts of information. This clearly applies to professional fore-

casters who are presumably among the most informed agents in the economy, but also to other

agent-types, including investors, firms, governments, and even households. Machine algorithms

are advantageous in this regard because they are explicitly designed to cope with large amounts

of information. This is important because a benchmark based on a small amount of arbitrarily

chosen information could fail to reveal systematic expectational errors or, conversely, lead to
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spurious evidence of systematic error. Second, the machine can easily be coded to adapt to

new information as it becomes available and to make out-of-sample forecasts on this basis.

Thus the approach need not run the risk of spuriously indicating that respondent performance

is suboptimal merely because of the existence of structural breaks and/or the arrival of new

information that even the most effi cient information processing algorithm could have learned

about only slowly over time.

Inherant in our machine-based approach is the idea that minding key features of real world

expectation formation is essential when establishing a benchmark against which belief distor-

tions are measured. Whether doing so matters in practice, however, is an empirical question.

On this question, we can report at least three ways in which our results differ from some in

the extant literature. First, in contrast to well known results from in-sample regressions, we

find little evidence that lagged ex-ante revisions in survey forecasts have predictive power for

average survey forecast errors. Second, information found elsewhere to be consequential for

out-of-sample prediction in a low-dimensional setting is often found to be unimportant in our

high-dimensional, data rich setting. Third, measures of belief distortion created by compar-

ing ex ante survey expectations with ex post historical outcome data typically overstate the

magnitude of distortion. These results are discussed further below.

Our main economic findings may be summarized as follows. First, across a range of sur-

veys and respondent-types with heterogeneous beliefs, the machine model produces lower mean

squared forecast errors of inflation and GDP growth over an extended evaluation sample, some-

times by large margins. This evidence uncovers large distortions even in the consensus estimates

of professional forecasters. The machine algorithm improves forecasts by altering the relative

weight placed on real time information versus the respondent belief, while adapting dynamically

to changing information as it moves through a forecast evaluation sample. A key finding is that

survey respondents of all types place too much weight on their own forecast relative to other

information, and are in that sense overconfident.

Second, we find that biases in inflation expectations for the median respondent of all types

are on average too high over our evaluation sample, a direction we shall refer to as “pessimistic.”2

By contrast, biases in expectations of economic growth are “optimistic” on average—i.e., too

high—for the median respondent among professional forecasters and corporate executives, while

they are very slightly pessimistic for households. These averages mask large variation between

optimism and pessimism over time in the median respondent’s bias, as well across respondents

at any given point in time. For GDP growth, we find extended periods of optimism that are

especially prevalent for the median forecast among professional forecasters. For example, from

2An alternative interpretation is that higher expected inflation represents an optimistic view of the world
in certain episodes, such as recessions. However, such an interpretation seems to be at odds with surveys of
inflation attitudes. See the discussion in Bhandari, Borovicka, and Ho (2019).
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2010-2018, median professional forecasts of economic growth are biased upward by 0.83% at an

annual rate, or 37% of actual GDP growth during this period.

Third, an increase in pessimism about inflation is associated with an increase in the real

wage and a decrease in real investment, real GDP, and the price level. An increase in optimism

about economic growth has the opposite effect and leads to a sizable and more protracted

increase in real activity, the price level, and also the stock market, while the real wage declines.

Importantly, these results are specific to innovations in the systematic expectational errors

survey respondents make, and not to their expectations per se. Indeed, positive innovations to

an index of GDP growth expectations have very different effects and are not associated with a

boom in economic activity or the stock market.

Fourth, we find that survey respondents initially under-react to cyclical shocks but later over-

react, a pattern consistent with that documented in Angeletos, Huo, and Sastry (2020) (AHS).

The magnitudes of both the under- and over-reaction implied by our measures are, however,

smaller than that reported in AHS. Our evidence suggests that under-reaction preponderates

in expectations of economic growth, while the more predominant bias in inflation expectations

is delayed over-reaction.

Fifth, although our machine learning algorithm indicates that sparsity is often optimal in

our data rich setting even in the presence of a high degree of information processing capacity, the

precise information utilized can change from period to period as time evolves. These findings

underscore the importance of using a dynamic, large-scale information processing algorithm to

achieve the optimal forecast, even if much of the information is associated with a coeffi cient

that is shrunk all the way to zero most of the time.

The rest of this paper is organized as follows. Section 2 reviews related literature not

discussed above. Section 3 describes our econometric and machine learning framework. Section

4 describes results pertaining to our measurement of systematic expectational errors, while

Section 5 contains results on their relation to macroeconomic activity. Section 6 concludes.

A large amount of additional material on our data construction, estimation, and additional

robustness checks have been placed in an Appendix for online publication.

2 Related Literature

Our estimates provide a benchmark to evaluate theories for which information capacity con-

straints, extrapolation, sentiments, ambiguity aversion, and other departures from full informa-

tion, rational expectations play a role in business cycles.

In the theoretical literatures on distorted beliefs, economic agents make systematic expecta-

tional errors for a variety of reasons. These reasons include the presence of information frictions

that lead agents to act in a “boundedly rational”manner because they are incapable of attend-
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ing to all the available information at a given moment (e.g., Mankiw and Reis (2002); Woodford

(2002); Sims (2003); Reis (2006a); Reis (2006b); Gabaix (2014)). Alternatively agents may be

inattentive for broader behavioral reasons (e.g., Gabaix (2020)). A key implication of these the-

ories, explored in well known work by Coibion and Gorodnichenko (2015), is that individuals

under-react to objective economic information.

Other theories postulate that individuals use simple extrapolative rules that may over-

weight “representative”events in reacting to incoming news (e.g., De Long, Shleifer, Summers,

and Waldmann (1990); Barberis, Shleifer, and Vishny (1998); Barberis, Greenwood, Jin, and

Shleifer (2015); Bordalo, Gennaioli, and Shleifer (2018); Gennaioli and Shleifer (2018); Bordalo,

Gennaioli, Ma, and Shleifer (2018)). Related theories propose that individual overweight their

personal experiences (e.g., Malmendier and Nagel (2011); Malmendier and Nagel (2015)). A

key implication of many of these theories is that individuals over-react to objective information.

A literature on “sentiments”postulates that communication frictions may prevent agents

from reaching similar expectations about economic activity, in which case aggregate expecta-

tions would exhibit statistical biases (e.g., Angeletos and La’O (2013); Angeletos, Collard, and

Dellas (2018b); Milani (2011); Milani (2017)). Similarly, micro-founded models, some of which

feature “confidence shocks,” include those with ambiguity averse agents who are deliberately

pessimistic on average (e.g., Hansen and Sargent (2008); Epstein and Schneider (2010); Ilut

and Schneider (2015); Bianchi, Ilut, and Schneider (2017); Ilut and Saijo (2020); Bhandari,

Borovicka, and Ho (2019)). Afrouzi, Veldkamp, et al. (2019) have noted that distorted expecta-

tions can be expected whenever individuals have priors that exhibit skewness. There remains a

question of whether ambiguity aversion or skewed priors would be revealed in survey responses.

If not, such models need some other mechanism to explain the systematic expectational errors

documented here and elsewhere.

The systematic expectational errors we seek to measure recall a literature in economic

psychology that studies how basic properties of cognition may give rise to human biases in

expectation formation. Khaw, Stevens, and Woodford (2017) conduct a laboratory experiment

to shed light on cognitive limitations that influence how decision makers respond to changes in

their economic environment. Woodford (2013) argues that the degree of accuracy with which

individuals perceive objective reality can have effects on how expectations are formed.

Any of the above theories provide a mechanism through which a relatively unbiased and

potentially more information-effi cient machine operating in a data rich environment would

provide forecasts that deviate from those made by humans and possibly be more accurate.

The objective of this study is to provide new measures such deviations and to investigate their

relation to macroeconomic fluctuations.

On the empirical side, our work follows a growing body of literature that reports evidence

of belief distortions and relates them to economic activity. These papers include those that
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find evidence of departures from rational expectations in predicting inflation and other macro

variables (Coibion and Gorodnichenko 2012, 2015; Fuhrer 2017), the aggregate stock market

(Bacchetta, Mertens, and van Wincoop 2009, Amromin and Sharpe 2014, Greenwood and

Shleifer 2014, Adam, Marcet, and Buetel 2017), the cross section of stock returns (Bordalo,

Gennaioli, La Porta and Shleifer 2017), credit spreads (Greenwood and Hanson 2013, Bordalo,

Gennaioli, and Shleifer 2018), and corporate earnings (DeBondt and Thaler 1990, Ben-David

et. al. 2013, Gennaioli, Ma, and Shleifer 2016, Bouchaud, Kruger, Landier, and Thesmar 2017).

Although these studies differ widely according to their empirical design, none take into account

the data rich context in which survey respondents operate or the out-of-sample nature of their

recorded predictions in the measurement of belief distortions, gaps our study is designed to fill.

These very differences lead our findings to diverge in notable ways from some in the extant

literature. For example, following Coibion and Gorodnichenko (2015), we ask whether ex ante

revisions in the average forecast reduce average ex post forecast errors, as would be indicative

of models that imply under-reaction to economic news. Using the methodology proposed in

this paper, we find no evidence that they do. Instead, the coeffi cients on forecast revisions

are shrunk to zero by the machine algorithm in favor of placing greater absolute weight on

other pieces of information. In fact, even if no information beyond the forecast revision itself is

included, the coeffi cient on the latter ceases to be an important predictor of forecast errors when

predictions are simply made out-of-sample rather than in-sample. This finding does not imply,

of course, that under-reaction plays no role of macroeconomic expectations. But it underscores

the challenges with using low-dimensional in-sample regressions as means of uncovering evidence

to that end.

The literature discussed so far has little to say about overconfidence. Yet our finding that

survey respondents of all types systematically place too much weight on their own forecasts

relative to other information is one of the most robust patterns we uncover. In this regard, our

findings recall an extensive literature in the field of finance that provides theory and evidence

of overconfidence and its role in explaining a range of stylized facts about stock return pre-

dictability and trading patterns. Ground breaking contributions include Odean (1998), Daniel,

Hirshleifer, and Subrahmanyam (1998), Barber and Odean (2000) and Daniel, Hirshleifer, and

Subrahmanyam (2001). Daniel and Hirshleifer (2015) provide an overview of this literature.

Daniel and Hirshleifer (2015) define overconfidence in the context of financial markets as “hav-

ing mistaken valuations and believing in them too strongly.” In our context, overconfidence

means that whatever private information or prior is embedded in the survey response is be-

lieved in too strongly. To the best of our knowledge, this paper is the first to find pervasive

evidence of overconfidence in macroeconomic expectations that is related to macroeconomic

outcomes.

Our work also connects with a pre-existing econometric forecasting literature. Like any
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econometric model, the machine learning algorithm we develop is incapable of perfect foresight.

Accordingly, it occasionally produces large forecast errors that are only evident ex post, some

of which occur at economic turning points. We view this as an important result that under-

scores the role of largely unforeseen events in generating large prediction error, not all of which

can be attributed to a systematic bias in expectations. At the same time, we find that the

machine learning algorithm proposed here produces notable information-processing effi ciency

gains relative to the best-fitting econometric specifications studied in an extensive pre-existing

econometric forecasting literature. For example, a prior forecasting literature finds that survey

forecasts of inflation are extremely diffi cult if not impossible to beat with statistical models in

out-of-sample forecasting (e.g., Ang, Bekaert, and Wei (2007), Del Negro and Eusepi (2011),

Andersen, Bollerslev, Christoffersen, and Diebold (2011), Genre, Kenny, Meyler, and Timmer-

mann (2013), and Faust and Wright (2013)). By contrast, our machine learning algorithm, with

its focus on detecting demonstrable ex ante errors, performs better in out-of-sample forecasting

than every percentile of all of the survey forecast distributions that we study.

Finally, we are aware of relatively little work that has used machine learning as a benchmark

against which belief distortions are measured. An important exception is Martin and Nagel

(2019) who use it to study models of expected stock returns in the cross-section. Although

their context is very different from ours, they find, as we do, that accounting for the interplay

between a data rich environment and genuine ex ante expectation formation often generates

findings about belief distortions that differ considerably from prior frameworks that side-step

these aspects of decision making.

3 Econometric and Machine Learning Framework

We now turn to a description of our econometric and machine learning framework. Both

aspects require a suffi ciently long time series of observations, including those on survey re-

sponses. Because the panel elements of our survey data are too limited to do the analysis on

a respondent-level basis, we work instead with the surveys’repeated cross-sections to form a

machine benchmark for respondents in different percentiles of the survey forecast distributions

over time. We discuss this further below.

Let yj,t+h generically denote an economic time series indexed by j whose value in period

h ≥ 1 a survey forecaster is asked to predict at time t. Let F(i)
t generically denote a survey

forecast made at time t and let superscript (i) denote either the mean belief, in which case

“i = µ”, or the respondent located at the ith percentile of the survey forecast distribution,

i.e., “i = 65”refers to the belief of the respondent at the 65th percentile. Thus F(65)
t [yj,t+h]

denotes the survey expectation of yj,t+h that is formed at time t by the respondent at the 65th

percentile of the survey distribution.
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In order to identify possible distortions in beliefs, it is imperative that the benchmark

model of belief formation be as rich as possible, so that our measure of distortion does not

miss pertinent information or pertain only to a small number of arbitrarily chosen information

variables. This is especially important in our context since relevant information not considered

by the benchmark can lead to spurious estimates of systematic expectational errors.

To address this problem we take a two-pronged approach that combines diffusion index

estimation with machine learning. The diffusion index estimation component is a preliminary

dimension-reduction step wherein a relatively small number of dynamic factors are estimated

from hundreds of economic time-series. The approach enables the use of a possibly vast set

of economic variables that is more likely to span the information sets available in real time to

economic decision makers. An advantage of this two-pronged approach is that nonlinearities are

readily captured in this step by including polynomial functions of estimated dynamic factors, or

by forming additional factors from polynomials of the raw data. The second step in our analysis

is to combine diffusion index forecasting with a machine algorithm of regularized estimation

to optimally trades off downweighting information with reduced parameter estimation error.

Diffusion index forecasting is increasingly used in data rich environments. Thus we touch only

briefly on this step and focus instead on the machine learning benchmark, leaving details about

estimation of factors to the online Appendix.

3.1 Machine Learning Benchmark

Let xCt = (xC1t, . . . , x
C
Nt)
′ generically denote a dataset of economic information in some category

C that is available for real-time analysis. It is assumed that xCt has been suitably transformed

(such as by taking logs and differencing) so as to render the series stationary. We assume that

xCit has an approximate factor structure taking the form

xCit = ΛC′
i GC

t + eXit ,

where GC
t is an rG × 1 vector of latent common factors (“diffusion indexes”), ΛC

i is a corre-

sponding rC×1 vector of latent factor loadings, and eXit is a vector of idiosyncratic errors.
3 The

number of factors rG is typically significantly smaller than the number of series, N , which facil-

itates the use of very large datasets. Additional factors to account for nonlinearities are formed

by including polynomial functions of GC
t , and by including factors formed from polynomials of

the raw data.

Collect all factors from different datasets of category C, as well as nonlinear components

(polynomials of factors and factors formed from polynomials of raw data) into a single rG
dimensional vector Gt. Let Ĝt denote consistent estimates of a rotation of Gt and let the rW

3In an approximate dynamic factor structure, the idiosyncratic errors eXit are permitted to have a limited
amount of cross-sectional correlation.
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dimensional vector Wt contain additional non-factor information that will be specified below.

Finally, let Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
be a r = 1 + rG + rW vector which collects the data at time t

and let Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W

′
jt, ...,W

′
jt−pW

)′
be a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ′t, W′
jt,

respectively. Even with the use of factors, Zjt can be of high dimension.

With these data in hand, consider the following machine learning benchmark forecasting

model for outcome variable yj,t+h and survey respondent-percentile i:

yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZ︸︷︷︸

1×K

Zjt + εjt+h, h ≥ 1 (1)

where K = r+ py + pG · rG + pW · rW is the number of right-hand-side variables other than F(i)
t ,

and α(i)
j is an intercept term. Due to the potentially large number of information variables that

might be relevant for the outcome yj at t+ h, (1) is estimated using machine learning tools, as

discussed below.

Assume for the moment that the machine is more effi cient at processing information than

is the survey respondent, in the sense that it produces lower forecast errors on average. (We

provide empirical evidence on this below.) Once estimated, (1) delivers a time t machine

learning belief about yj,t+h, denoted E(i)
t [yj,t+h]. We define the machine effi cient benchmark

as a set of parameter restrictions that would imply the survey forecaster in the ith percentile

processes all available information at time t as effi ciently as the machine. This benchmark

corresponds to the following parameter restrictions:

β
(i)
jF = 1; B

(i)
jZ = 0; α

(i)
j = 0. (2)

Systematic expectational errors in the survey forecast are revealed by deviations from the above

benchmark, generated by a mis-weighting of information contained in Zjt or “1”(i.e., B
(i)
jZ 6= 0

or α(i)
j 6= 0) and/or the survey respondent’s own forecast, F(i)

t [yj,t+h] (i.e., β
(i)
jF 6= 1). When β(i)

jF

differs from unity, the benchmark implies that the belief F(i)
t [yj,t+h] could have been improved by

reweighting the respondent’s own forecast against other information contained in Zt. We then
compute a dynamic measure of a survey respondent’s belief distortion by taking the difference

between the survey forecast and the machine forecast, a time t quantity we call the “bias”for

brevity. Denote the bias of forecaster i at time t as

bias
(i)
j,t ≡ F

(i)
t [yj,t+h]− E(i)

t [yj,t+h] . (3)

Several points about this measure of belief distortion bear emphasis. First, bias(i)
j,t captures

ex ante expectational errors, not ex post forecast errors, or “mistakes.” In particular, bias in

expectations is measured relative to the machine forecast, not relative to the ex post outcome.
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As we show below, the machine belief is a non-human benchmark that uses a vast amount

of real-time information and demonstrably produces more reliable forecasts over an extended

sample, but it cannot produce error-free predictions. One implication of this is that it is possible

that every respondent is biased vis-a-vis the machine ex ante, even though there will always be

some respondent that is “right”ex post due to randomness. On the other hand, more than one

type can show no bias if the machine is unable to detect patterns that can be exploited in real

time to improve forecasts.

Second, the machine learning model of belief formation is not a meta forecast but instead

a percentile-specific benchmark that adopts the perspective of a forecaster who is in the ith

percentile of the survey forecast distribution in period t. The machine is given any information

that the survey forecaster in the ith percentile could have observed at time t, including her own

forecast F(i)
t [yj,t+h], as well as all objective economic information contained in Zt, which may

include lagged values of her own or other respondent’s forecasts F(s6=i)
t−1 [yj,t+h]. Allowing the

machine benchmark to be percentile-specific allows agents’beliefs to differ because of private

information or idiosyncratic priors characterized by heterogeneous dogmatism. A maintained

assumption is that survey respondents know their own “type,”so that they have a sense of where

in the time t forecast distribution their response is located. We argue that this assumption

is likely to be a reasonable first approximation, since respondents can observe past forecast

distributions including those from the most recent quarter. Were there no data limitations,

the machine effi cient benchmark could instead use observations on individual respondents over

time. Unfortunately, operationalizing this approach using the learning algorithm described

below would require a far longer time-series element for individual survey respondents than is

available in the surveys.4

Third, the machine is given only that information at time t that the survey respondent

in the ith percentile could have observed at time t, and nothing more. This is imperative

for quantifying bias in survey forecasts, since a superior machine forecast formed with ex post

information that the survey respondent couldn’t have observed in real time could simply reflect

the benefit of hindsight, rather than genuine systematic expectational error. For this reason,

some popular techniques for forming benchmarks to measure forecaster bias, such as those

that pool multiple survey forecasts at time t to form a meta forecast, are ruled out because

4The learning algorithm described below employs rolling estimation and training sample windows that could
be as long as 34 quarters once combined, a span of data that must be available before the first out-of-sample
machine forecast can be recorded. By contrast, the length of time that individual respondents remain in the
survey samples is comparatively short. For example, for the Survey of Professional Forecasters survey on
inflation expectations, the average forecaster remains in our sample just 18.5 quarters. Even for individuals who
remain in the survey much longer (the sample maximum is 126 quarters for one respondent), there are gaps
in participation that would require filling in missing values. We show below, however, that our main findings
on ex ante expectational errors are unlikely to be affected by using percentile responses rather than individual
responses, because we find that such errors exist at every percentile of each survey.

10



individual survey respondents do not have access to all the other analysts predictions in real

time. Likewise, initial estimates of quarterly outcome variables such as gross domestic product

(GDP) or inflation are delayed by at least one quarter and are therefore not given to the machine

until then.

3.2 Quantifying Belief Distortions

To simplify notation, collect all the independent variables and coeffi cients on the right-hand-side

of (1) into a single matrix and vector and write the machine predictive model as:

yj,t+h = X ′tβ
(i)
j + εjt+h (4)

whereXt =
(

1,F(i)
t [yj,t+h] ,Zjt

)′
and β(i)

j ≡
(
α

(i)
j , β

(i)
jF ,
(
B

(i)
jZ

))′
. LetXT = (yj,1, ...yj,T , ...X ′1, ...,X ′T )′

be the vector containing all observations in a sample of size T .

We consider estimators of β(i)
j that take the form

β̂
(i)

j = m
(
XT ,λ

(i)
)
,

wherem
(
XT ,λ

(i)
)
defines a machine estimator as a function of the dataXT and a non-negative

regularization parameter vector λ(i) that will be estimated using cross-validation. Denote this

latter estimator λ̂
(i)
and denote the combined final estimator β̂

(i)

j

(
XT , λ̂

(i)
)
. Our main machine

estimator uses Elastic Net (EN) penalties.5

The estimation of (4) is repeated sequentially in rolling subsamples, with parameters esti-

mated from information known at time t used predict variables yj,t+h in subsequent periods.

This leads to a sequence of machine effi cient beliefs about yj,t+h. Denote the coeffi cients and

regularization parameters obtained from an estimation conducted with information at time t

as β̂
(i)

j,t and λ̂
(i)

t , respectively. Note that the time t subscripts on β̂
(i)

j,t and λ̂
(i)

t are used to de-

note one in a sequence of time-invariant parameter estimates obtained from rolling subsamples,

rather than estimates that vary over time within a sample. Likewise, we shall denote the time

t machine learning belief about yj,t+h as E(i)
t [yj,t+h]. This belief is defined by

E(i)
t [yj,t+h] ≡ X ′t β̂

(i)

j,t

(
XT , λ̂

(i)

t

)
.

Forecast errors are differentially denoted for the survey and machine as

survey error(i)t+h = F(i)
t [yj,t+h]− yj,t+h

machine error(i)t+h = E(i)
t [yj,t+h]− yj,t+h,

5We have also implemented the approach lasso, ridge, Elastic random forest, and empirical Bayes linear
regression. The EN estimator was the best performing, followed by lasso, while random forest and Bayesian
regression performed poorly.
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with mean-squared-forecast-errors (MSEs) denoted

survey MSE ≡ MSEF =
1

P

P∑
t=1

(survey errort+h)
2 (5)

machine MSE ≡ MSEE =
1

P

P∑
t=1

(statistical errort+h)2 (6)

where P is the length of the forecast evaluation sample.

To measure any distortions in survey expectations, we compare the forecast accuracy of

the survey respondent with that of the machine. Such a comparison requires a suffi ciently

large number of observations on relative accuracy to eliminate differences in ex post predictive

outcomes attributable to pure randomness. We therefore compare relative forecast performance,

measured as the ratio MSEE/MSEF, over an extended evaluation sample. If the machine

benchmark consistently produces more reliable forecasts over an extended sample, we conclude

that there exist systematic expectational errors, and quantify their magnitude by by the ratio

MSEE/MSEF. Otherwise we conclude there is no systematic bias in survey expectations.

There are potentially thousands of pieces of information that could be considered in the

machine learning model (1). We use dynamic factors both to help cope with the dimensionality

of the estimation problem and because it allows us to conveniently accommodate some forms of

nonlinearities. But even with this first-stage dimension-reduction step, the number of possible

predictors on the right-hand-side of (1) can still be quite large, possibly exceeding the number

of real-time observations available to estimate the relation of yj,t+h with information variables,

especially when rolling subsamples are used as part of a dynamic learning algorithm. In this

setting, high degrees of parameter estimation error and over-fitting are likely even with the aid

of dynamic factors. Our next step is to therefore use machine learning along with data driven

regularization to address the high-dimensional benchmark learning problem.

3.3 Machine Learning Algorithm

This section describes a dynamic machine learning algorithm developed to detect demonstrable,

ex ante expectational errors in real time. The full estimation and evaluation procedure involves

iterating on the following steps, which are described in greater detail in the Appendix.

1. Sample partitioning: At time t, a prior sample of size T̃ is partitioned into two subsam-
ple windows: an “in-sample”estimation subsample consisting of the first TIS observations,

and a hold-out “training”subsample of TTS subsequent observations, i.e., T̃ = TIS +TTS.

2. In-sample estimation: Initial estimates of β(i) are obtained using the EN estimator

using observations 1, ..., TIS, given an arbitrary fixed (non-random) starting value for
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λ
(i)
t . Denote this initial estimate β

∗(i)
TIS

(
XTIS ,λ

(i)
t

)
, where “∗”denotes the value of the

estimator given an arbitrary λ(i)
t .

3. Training and cross-validation: The regularization parameter λ(i)
t is estimated by min-

imizing mean-square loss L
(
λ

(i)
t ,TIS, TTS

)
over pseudo-out-of-sample forecast errors gen-

erated from rolling regressions using only the most recent TIS observations, where

L
(
λ

(i)
t , TIS, TTS

)
≡ 1

TTS − h

TIS+TTS−h∑
τ=TIS

(
X ′τβ

∗(i)
j,τ

(
XTIS ,λ

(i)
t

)
− yj,τ+h

)2

, (7)

and where β∗(i)j,τ

(
XTIS ,λ

(i)
t

)
is the time τ EN estimate of β(i)

j given λ(i)
t and data through

time τ in a sample of size TIS.

4. Steps 1-3 are repeated over a grid of estimation and training sample window lengths T ∗IS
and T ∗TS such that alternative partitions satisfy T

∗
IS + T ∗TS ≤ T̃ , where shorter window

lengths remove consecutive observations at the start of the prior sample. The machine es-

timate of β(i)
j,t

(
XT̃ ,λ

(i)
t

)
uses

{
λ̂

(i)

t , T̂IS, T̂TS

}
= argmin

λ,T ∗IS ,T
∗
TS

L
(
λ

(i)
t ,T

∗
IS, T

∗
TS

)
and is denoted

β̂
(i)

j,t

(
XT̃ , λ̂

(i)

t

)
.

5. Out-of-sample prediction: The values of the regressors at time t are used to make
a true out-of-sample prediction of yt+h, using β̂

(i)

j,t

(
XT̃ , λ̂

(i)

t

)
, and the machine forecast

error yt+h −X ′t β̂
(i)

j,t

(
XT̃ , λ̂

(i)

t

)
stored.

6. Roll forward and repeat: The prior sample of data is rolled forward one period, and
steps 2-5 are repeated.6 This continues until the last out-of-sample forecast is made for

yj,T , where T is the last period of our sample.

Referring back to the notation in (5) and (6), MSEE is computed by averaging across the

sequence of squared forecast errors from step 5 for periods t = (T̃ + h),...,T . We refer to this

subperiod as the forecast evaluation sample.

Several points about the above procedure bear emphasizing. First, the algorithm ensures

that the machine forecast selected from step 4 can only differ from the survey forecast if it

demonstrably improves out-of-sample prediction in the rolling training samples prior making

a true out-of-sample forecast in step 5. Otherwise, the machine adopts the survey forecast.

Thus the algorithm is explicitly designed to reveal ex ante biases that can be evinced in real

time and distinguished from ex post mistakes. It follows that the true out-of-sample forecasts

of the machine recorded in step 5 can only differ from those of the survey if demonstrable,

6For example, if the prior iteration used data from 1, ..., T̃ and an in-sample subperiod that started with data
from 1, ..., TIS , the next iteration starts with data from 2, ..., T̃+1 and the in-sample partician from 2, ..., TIS+1.
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ex ante biases are detected. We quantify the overall magnitude of these biases with the ratio

MSEE/MSEF taken over the evaluation sample.

Second, the machine algorithm is repeated for each i and for each t in the evaluation sample.

Because each new training renews the optimized selection of estimation and training sample

windows lengths, the machine can in principle adapt to a changing economic environment.

This can be important for all the parameter estimates but especially so for the estimate of

the intercept, which functions as a time-varying mean estimated over optimally chosen rolling

window lengths of recent past data.

Finally, although the machine forecasting model and data rich approach just described may

perform well in “normal”times, it may not be well suited to capturing extreme nonlinearities

associated with times of rapid economic change, as in recessions. We therefore augment the

machine algorithm so that it switches to a simpler specification when a specific recession indi-

cator passes a threshold in real time. For this purpose we use the Treasury yield term spread.

When the term spread is suffi ciently low in the real time sample, the machine bases its forecasts

solely on a term spread dummy indicator. The machine considers different dummy indicators

that take the value 1 when the term spread at t−4 is at or below some threshold, and choosing

that threshold to minimizes mean-square loss in the relevant training sample immediately prior

to the actual forecast.

3.4 Data

The data used for this study fall into several categories. For each category the sources and

details are left to the Online Appendix. We describe each category in adumbrated form here

and refer the reader to the Appendix for greater detail.

Survey Data The first data category is the survey data. We study three different surveys

that ask about expectations for future inflation and aggregate economic activity: the Survey of

Professional Forecasters (SPF), the University of Michigan Survey of Consumers (SOC), and

the Blue Chip Survey (BC). The first covers professional forecasters in a variety of institutions,

the second covers households and is designed to be representative of the U.S. population, and

the third covers executives of financial firms. Data from the SPF and the SOC are publicly

available; BC data were purchased and hand-coded for the earlier part of the sample.

The SPF is a quarterly survey. Respondents provide nowcasts and quarterly forecasts from

one to four quarters ahead. We focus on the survey questions that ask about the level of the

GDP deflator (PGDP) and about the level of real GDP. Forecasts of levels are converted to

four quarter-ahead inflation and GDP growth forecasts by dividing the forecasted level by the

survey respondent’s nowcast. For example, forecasts of annualized inflation, denoted πt, are

14



computed as

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
,

and analogously for log real GDP growth.

The SOC asks households directly about inflation, and we use the questions on whether

households expect prices to go up or down during the next twelve months to gauge their

expectations about inflation. Following Curtin (2019), we take these forecasts to be most

relevant for annual consumer price index (CPI) inflation, and therefore compare SOC forecasts

to actual outcomes for CPI inflation. Since the SOC doesn’t directly ask about GDP growth,

we take the approach discussed in Curtin (2019) which is based on responses to question A7:

About a year from now, do you expect that in the country as a whole business conditions will

be better, or worse than they are at present, or just about the same? This qualitative economic

forecast is converted to a point forecast for GDP growth by fitting a regression of future GDP

growth data to the balance score for A7 (% respondents expect economy to improve - % expect

worsen + 100) using rolling regressions and real-time GDP data.

For the BC survey, forecasters are asked to predict the average quarter over quarter percent-

age change in Real GDP and the GDP Price Index and the Consumer Price Index, beginning

with the current quarter and extending four to five quarters into the future.

For all surveys, we align the timing of survey response deadlines with real-time data, so that

respondents and machine could only have used data available in real time before the survey

deadline.

The next sections describe several large panel datasets of information that we use in our

machine learning model of beliefs. We describe only the general categories of data used, and

leave the lists of individual series to the Appendix.

Real Time Macro Data The real-time macro dataset provides observations on the left-

hand-side variables about which forecasts are formed. We use vintages of real-time inflation

and GDP growth on the left-hand-side of (1). Following Coibion and Gorodnichenko (2015),

to construct forecast errors, we use the vintage of data that is available four quarters after the

period being forecast. For example, the forecast error for a survey forecast of P in 2017:Q2

that is made based on data as t = 2016:Q2 is computed by comparing the survey forecast

F(i)
2016:Q2 [P2017:Q2] with the actual value of P2017:Q2 given in the 2018:Q2 vintage of the real time

dataset.

We also use the real time macro data to form real-time quarterly macro factors. At each

forecast date, we construct a dataset of real-time quarterly macro variables observed on or

before the day of the survey deadline. The real-time data are obtained from the Philadelphia

Fed’s Real-Time Dataset, which provides a time-series of different vintages of a macro variable
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for time t. The resulting real-time macro dataset, denoted DM , contains observations on 92
real-time macro variables. In addition to the Philadelphia Fed’s real-time dataset, we include

data on home and energy prices in DM . Energy prices are not revised, so they do not have
multiple vintages. The complete list of macro variables is given in the Online Appendix.

Monthly Financial Factor data To take into account financial market data, we also

form factors from a large panel dataset of monthly financial indicators. The dataset DF uses 147
monthly financial series that include valuation ratios, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields

on Treasuries and yield spreads, and a broad cross-section of industry equity returns. DF also
includes a group of "risk-factors" such as the three Fama and French (1993) risk factors, other

risk-related portfolio returns, the momentum factor UMDt, and the small stock value spread.

We convert the monthly factors formed from the dataset DF into quarterly factors by using the
first month’s observation for each quarter.

Daily Financial Factor Data Finally, we take into account “up-to-the-forecast”infor-

mation in financial market data by using daily data on such variables up to one day before

the survey respondents forecasts are due. Thus, we construct a daily financial dataset, DD,
with series from five broad classes of financial assets: (i) commodities prices (ii) corporate risk

variables, including a number of different credit spreads measuring default risk (iii) equities

(iv) foreign exchange, and (v) Government Securities. In total, we use 87 such series (39 com-

modity and futures prices, 16 corporate risk series, 9 equity series plus implied volatility, 16

government securities, and 7 foreign exchange variables). The complete set of variables is given

in the Appendix.

In order to use both daily and quarterly data in our estimation, we use mixed data sampling

frequency techniques. These involve taking daily indicators and converting them to quarterly

factors in two steps. First, the raw daily data are used to form factors at daily frequency, GD
d ,

where d denotes a business day. Second, the daily factors are converted to quarterly factors by

weighting daily data in the quarter t

GQ
t (w) ≡

ND∑
d=1

wdG
D
ND−d,t.

Here ND is maximum number of business days before the survey deadline in quarter t for which

daily data are used. The weighting wd function is flexibly specified as a function of a few

parameters so that it can take various shapes. Typically these shapes eventually downweight

more distant information but it need not do so monotonically, depending on the parameters.

The parameters themselves are chosen dynamically as part of machine learning problem in

order to minimize mean-squared forecast error in the hold-out training samples.
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Additional Non-Factor Data A number of other non-factor variables are also included

in the machine model in W′
jt. These include the ith percentile’s own nowcast for the variable

being forecast, lags of the ith percentile’s own and forecast and those of other percentiles, higher-

order cross-sectional moments of the forecast observations, such as cross-sectional variance and

skewness, several autoregressive lags of the left-hand-side variables, several long-term trend

inflation measures, and following Hamilton (2018) measures of detrended employment and

GDP.

In all, the machine model entertains a total of 68 predictor variables for inflation and 72

predictor variables for the GDP growth. The complete list of predictor variables is given in the

internet Appendix. Below we refer to estimated factors with an economic name. The economic

name refers to the group names given to individual series and corresponds to the individual

series that generates the highest average R2 in regressions of each series onto that estimated

factor. For example, if non-farm payrolls from the Employment group has the highest average

R2 in regressions on the first common macro factor from real time macro dataset, then that

factor is labeled an “Employment” factor and normalized so that it increases when non-farm

payrolls increase. This gives a sense of which economic information the factor loads most

heavily. The Appendix describes this procedure in greater detail.

4 Results: Measuring Systematic Expectational Errors

4.1 Preliminary Analysis

Before getting into our main findings, we begin with some preliminary analysis to illustrate

the essential role of two key elements of real-world decision making—elements encoded in our

machine-effi cient belief—in establishing evidence of belief distortions in survey responses.

One key element is the principle of out-of-sample rather than in-sample forecasting, a prin-

ciple best illustrated by contrasting results from ex ante and ex post econometric analyses.

To this end, let us consider the regressions run in Coibion and Gorodnichenko (2015) (CG),

which show that mean survey forecast errors are positively predicted by ex ante mean forecast

revisions. We reproduce their findings for the SPF, all generated from in-sample regressions,

on updated data in panel A of Table 1. As reported in CG, we find strong evidence that lagged

forecast revisions predict next period’s forecast error. Moreover, other information, e.g., lagged

inflation, is estimated to be unimportant in predicting mean forecast errors once the informa-

tion in forecast revisions is taken into account, a finding also consistent with CG.7 CG observe

that these findings are consistent with the implications of theories of information frictions and

7We include one lag of the quarterly inflation rate as an additional control variable, consistent with the
procedure implemented in CG. There is a typo in the published version of CG that erroneously indicates their
procedure controlled for one lag of annual rather than quarterly inflation.
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under-reaction to aggregate news. Now turn to the bottom panel of Table 1, which reports

results of running the CG regressions out-of-sample rather than in-sample. Over a range of

forecast evaluation subsamples using either rolling or recursive regressions, we find that the

mean SPF survey forecast generates much lower prediction error than a regression model that

attempts to reduce these prediction errors by including the information in the lagged revision of

the mean forecast. In other words, in contrast to the in-sample findings, information on lagged

forecast revisions substantially worsens predictions of mean survey forecast errors in an out-

of-sample context. This result recalls a body of prior econometric evidence finding that survey

forecasts of inflation are hard to beat or even match out-of-sample with statistical models.8

The contradictory in-sample and out-of-sample evidence could be attributable to an unstable

empirical relationship. If there is enough instability, we expect to observe a high degree of

sampling error so that what is revealed to be important with the benefit of hindsight is simply

not apparent ex ante. We argue that it is impossible to establish the extent to which beliefs

are distorted due to information frictions or any other reason, unless the benchmark against

which distortions are measured adheres to the data availability structure survey respondents

were likely faced with at the time they formed their forecasts. After all, even agents (such

as our machine) who possess vast information processing capacity will optimally downweight

information that might appear relevant ex post, if it systematically fails to improve forecasts

ex ante. It would not be correct to interpret this type of downweighting as under-reaction to

aggregate news or as a systematic bias in expectations. (It should be noted, however, that the

machine forecast errors do not exhibit a correlation with lagged machine forecast revisions even

in in-sample regressions. These results are reported in the Online Appendix.) We return to

the question of what information, if any, is included in lieu of lagged forecast revisions in our

machine learning estimation section below.

A second key element of our learning problem is the data rich environment. To illustrate

the importance of this, we show that predictive information found elsewhere to be important

for out-of-sample forecasting in a low-dimensional setting is found to be unimportant in our

high-dimensional setting. Let us consider an exercise in the spirit of Chauvet and Potter

(2013), who considered a wide range of low dimensional statistical models and found that a

second-order autoregression performed best for predicting GDP growth.9 Figure 1 shows the

estimated autoregressive coeffi cients from high versus low dimensional out-of-sample forecasts

of GDP growth from one-quarter-ahead rolling regressions on predictors. The high dimensional

estimation entertains a very large numbers of potential predictor variables, in the same way

8For example, Ang, Bekaert, and Wei (2007), Del Negro and Eusepi (2011), Andersen, Bollerslev, Christof-
fersen, and Diebold (2011), Genre, Kenny, Meyler, and Timmermann (2013), and Faust and Wright (2013).

9Importantly, these conclusions were reached on the basis of evidence obtained from a single historical sample
and then looking back, ex post, to see which of several competing small-scale forecasting specifications performed
best in out-of-sample prediction over a subset of the historical sample.
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that our machine estimation described above does. Among these predictors, we include the two

autoregressive lags. The low dimensional estimation uses the two autoregressive lags and only

two additional predictors: the SPF median forecast of GDP growth four quarters ahead, and

the current nowcast for GDP growth, both of which are also included in the high dimensional

model. The figure shows that the coeffi cient on the first autoregressive lag is effectively zero in

the high dimensional setting, while it is much larger than zero in the low-dimensional setting.

Evidently, the first autoregressive lag is unimportant once additional information is entertained.

This result should not be taken to imply that the machine rarely chooses a sparse specification;

indeed we report below that it often does. Instead, it indicates that it is diffi cult if not impossible

to know in real time which small number of predictors are likely to be informative about the

future, without the benefit of hindsight. The challenge for real time decision making is that

different pieces of information are relevant at different points in time. Forecasts that have

not entertained large and varied datasets risk missing relevant information. Accounting for the

vast array of evolving information that could become pertinent in the future requires a dynamic

large-scale learning algorithm.

In summary, these two examples provide book-end guideposts for avoiding pitfalls in the

construction of a machine algorithm to detect belief distortions in survey responses. On the

one hand, if the machine is only given information variables that, with the benefit of hindsight,

we find to be useful in improving forecasts, we could erroneously conclude that there are large

biases. On the other hand, if variables useful for improving forecasts are excluded from the

analysis, we could erroneously conclude that there is no bias.

4.2 Forecast Comparison

We now compare the accuracy of forecasts made by the machine benchmark and the survey

respondents. If the machine benchmark consistently produces more reliable forecasts over an

extended sample, we take that as evidence of systematic expectational error. Otherwise we

conclude there is no evidence of systematic error.

For each survey, we evaluate the relative forecast performance over the longest common

sample available for all machine specifications after taking into account the different in-sample

and training-sample window lengths chosen by the machine in each case. The evaluation sample

spans from 1995:Q1 to 2018:Q2 for the SPF inflation and GDP growth forecasts. For SOC and

BC, the evaluation samples are shorter because their survey forecasts become available at later

dates. For SOC, the evaluation sample spans 1995:Q1 to 2018:Q2 for GDP growth and 1996:Q4

to 2018:Q2 for inflation. For BC, the evaluation sample spans 1997:Q1 to 2018:Q2 for GDP

growth and 1997:Q3 to 2018:Q2 for inflation Tables 2 and 3 reports the out-of-sample survey

MSEF and machine MSEE for inflation and GDP growth, respectively, for all three surveys
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over their respective forecast evaluation samples.

Table 2 shows that the machine model performs better than the survey forecasts of in-

flation for all surveys as measured by the ratio MSEE/MSEF, which is less than one for

all percentiles, sometimes by large amounts. To put this ratio in the same units as an in-

sample R2, the table also reports an out-of-sample R2 for the machine vis-a-vis the survey as

R2
OOS = 1 −MSEE/MSEF. The overall magnitude by which the machine model improves on

the survey forecasts is in most cases sizable, which is notable since survey forecasts of inflation

are known to be diffi cult to beat or even match by statistical models out-of-sample, as discussed

above. The one exception is for the mean SPF forecast, where the improvement is modest with

MSEE/MSEF = 0.95. But by contrast, the ratioMSEE/MSEF for the median SPF forecast is

0.85. It is worth remembering that the mean SPF forecast is always an amalgam that does not

correspond to the belief of any single respondent in the survey. It is arguably less relevant to

the study of what, if any, systematic errors individuals may make when forming macroeconomic

expectations. These ratios are similar for the BC survey, as shown in the last panel, where in

this case MSEE/MSEF is 0.84 for both the mean and the median respondent. In general, the

magnitude of measured belief distortions about future inflation is much larger for SOC respon-

dents than for the SPF and BC respondents, as shown in the middle panel. The SOC mean

and median MSEE/MSEF ratios are 0.58 and 0.42, respectively, implying large out-of-sample

R2 statistics.

For GDP growth, Table 3 shows that machine model is also always more accurate than

the survey respondents. The MSEE/MSEF ratios for the mean and median SPF forecasts of

GDP growth are 0.83 and 0.89, respectively, while for the BC survey they are 0.83 and 0.76,

respectively. For the SOC, there is only a single forecast, denoted as if it corresponds to the

“median”household. This is because the SOC forecast is constructed from the balance score for

business conditions expectations, a construction that eliminates the heterogeneity (see above).

The MSEE/MSEF for this single SOC forecast of GDP growth is 0.74.

In summary, the results show that the machine model systematically generates better fore-

casts, on average, over an extended forecast evaluation sample. It does so by altering the relative

weight placed on real-time information versus the survey forecast, while learning dynamically

about how to do so as it moves through a forecast evaluation sample.

Given these gains in forecast accuracy, it is of interest to consider the nature of the empirical

specifications chosen by the machine. We therefore close this section by reporting on the

strength of the ridge and lasso penalties that are part of the dual-penalty EN estimator and

chosen via cross-validation in the dynamic machine learning algorithm. Figure 2 reports a

scatter plot that quantifies the strength of these penalties, with each point representing a

combination of the two penalties chosen for one time period of the evaluation sample. The

y-axis displays the degree of sparsity implied by the L1 (lasso) penalty, as measured by the
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fraction of non-zero coeffi cients. The x-axis displays the degree of shrinkage implied by the

L2 (ridge) penalty, as measured by 1/
(

1 + λ̂2,t

)
, where λ̂2,t is the estimated ridge penalty

parameter for period t. The right border of the plot is the case where there is no ridge penalty

at all, while the top edge of the plot is the case where there is no lasso penalty. The figure

shows that machine’s dynamic regularization algorithm often results in a sparse specification.

In many time periods the fraction of non-zero coeffi cients hovers around 10% or less. But this

does not happen all the time. In some periods the machine chooses very little if any sparsity,

but much greater L2 shrinkage, while in other periods it chooses a lot of sparsity but little L2

shrinkage. Occasionally, the machine chooses minimal sparsity and minimal L2 shrinkage. This

demonstrates that achieving the machine-optimal forecast calls for entertaining large amounts of

information in every period, even though most of the time much of the information is associated

with a coeffi cient that is shrunk all the way to zero. Moreover, even when sparse specifications

are chosen, different sparse information sets are relevant at different points in time. Since it

is impossible to know with certainty which information may be relevant ex ante, “openness”

to wide-ranging and rich sources of information are vital for improving forecast accuracy over

extended periods of time.

With this evidence in hand, we now explore how the estimated belief distortions vary over

our sample, and which information is most mis-weighted in generating those distortions.

4.3 Dynamics of Belief Distortions

To investigate the dynamics of systematic expectational errors, we track the difference between

the survey forecast and the machine forecast over the forecast evaluation samples. To this end,

we report bias(i)
j,t ≡ F

(i)
t [yj,t+h] − E(i)

t [yj,t+h] over time in several plots. Figure 3 shows biases

associated with the mean and median respondents for all three surveys. The units of bias(i)
j,t are

the same as the forecasts themselves and are in annual percentage points.

Figure 3 shows that systematic errors in consensus forecasts are large in some time periods,

and can range between 50% and 400% of the average annual inflation or GDP growth, depending

on the survey. Survey forecasts for both inflation and GDP growth oscillate between “optimism”

and “pessimism.” For example, for GDP growth we find extended periods of over-optimism

that is especially prevalent for professional forecasters in the post-Great Recession period. For

2010:Q1-2018:Q2, the median SPF forecast of GDP growth is biased upward by 0.83% at an

annual rate, or 37% of actual GDP growth during this period. The upward bias in median SPF

growth expectations amounts to 20% of actual GDP growth for full evaluation sample1995:Q1-

2018:Q2. These findings are quite similar for the BC survey, where the average upward bias in

growth expectations amounts to 22% of actual GDP growth for 1995:Q1-2018:Q2. This suggests

a robust over-optimism in SPF and BC consensus forecasts of economic growth. For the SOC,
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the average bias over time is close to zero even though the SOC forecast is less accurate. This

happens because the SOC forecast makes systematic errors of greater magnitude that fluctuate

more between optimism and pessimism.

For inflation, Figure 3 shows that mean and median expectations are biased upward (a

direction we define as pessimistic) over most of the sample for the SPF and the SOC, while

the BC survey exhibits an average bias that is close to zero. Nevertheless, the median forecast

across all respondent types also exhibits extended periods of optimism about inflation, despite

being pessimistic on average over the full sample. For example, median inflation forecasts

exhibit a downward bias from 2011 to 2014 that ranges across respondent-types from —0.34%

to -1.03% at an annual rate, or -19% to -47% of actual inflation during this period.10 Given

that inflation has been declining over time, this could be interpreted as evidence of a learning

process.

In summary, the estimates for consensus forecasts suggest that systematic expectational

errors vary over the sample but are at times large, for example on the order of 1% or more for

GDP growth in the post Great Recession period and on the order of —0.5% to -1% for annual

inflation during the 2010-2014 period.

The next three figures contrast the common and heterogenous components of these belief

distortions over time, breaking them out by survey. The common component is measured as

the first principle component of bias(i)
j,t across all percentiles i, with heterogeneity exhibited by

the distribution of bias(i)
j,t across i. Figure 4 shows the common and heterogeneous components

for the SPF survey. We observe large variation in belief distortions over time that is common

across SPF respondents. The optimism about economic growth in the post Great Recession

subsample is present in the common component, as is a downward bias to inflation expectations

for much of this same period. At the same time, there is substantial heterogeneity in beliefs,

with the most optimistic and pessimistic responses differing in some time periods (typically

after recessions) by 4 percent or more for GDP growth and by more than 2% for inflation.

These findings are qualitatively similar for the BC survey, as shown in Figure 5. For both

surveys, there are large spikes in the biases at the cusp of the 2000-2001 recession, which we

discuss further below.

For the SOC, belief distortions are large and volatile over time, as shown in Figure 6.

(There is only one percentile for GDP growth due to use of the balance score.) Heterogeneity

in the magnitude of belief distortions for SOC respondents is enormous, especially in the period

immediately after the Great Recession, where the respondent at the 95th percentile expected

annual inflation four quarters ahead of 15%, while the respondent at the 5th percentile expected

10Although we have followed prior research in associating low inflation in general with optimism, an argument
could be made that—during specific epsides such as those at the zero-lower-bound for nominal interest rates—a
downward bias in inflation expectations could be interpreted as fear of deflation.
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annual inflation of less than −5%.

The next and last figure of this section plots the forecasted values for four-quarter-ahead

inflation or GDP growth along with the actual outcomes for these variables over the relevant

forecast evaluation sample for each survey. Figure 7 plots the median forecast along with the

actual inflation or GDP growth rate during the corresponding four quarter period. Several

points about this figure bear noting.

First, from Tables 2 and 3 we observe that the forecast of the median respondent performs

worse on average than the machine, but Figure 7 shows that this is clearly not true in every

period. This underscores the distinction between luck or random error, and a systematic

expectational bias.

Second, the machine typically performs better later in the sample than earlier. For all

surveys, the machine has been more accurate, sometimes by large amounts, than the median

respondent over the last five years of the evaluation sample, a time when expectations were

biased upward for both inflation and GDP growth. For example, from 2013:Q2 to 2018:Q2, the

MSEE/MSEF ratio for SPF GDP growth is is 0.70, while it is 0.69 for BC. TheMSEE/MSEF

ratio for SOC inflation over this period is 0.47, while it is 0.67 for BC inflation. What this

shows is that, although respondents in the mid 1990s and early 2000s may not have had access

to the same information-processing capacity that our machine model relies on today, this does

not seem to confer an out-sized advantage to the machine in the early periods of our evaluation

sample. This may be because there are countervailing forces that could work to the machine’s

disadvantage in those periods, such as the reliance by the machine on a relatively short time

series of real-time quantitative data in the early recursions of the learning algorithm, and the

lack of access to timely qualitative and quantitative information available to survey respondents

in those periods unavailable to the machine because they weren’t suitably archived.

Third, professional forecasters made large forecast errors that were overly optimistic about

GDP growth at the onset of the Great Recession, as observed in Gennaioli and Shleifer (2018),

Chapter 2. This pattern is likewise evident in Figure 7 for all surveys studied here, where

it is evident for both professional forecasters and households. The figure shows that large ex

post forecast errors were made during this episdoe by the machine as well, with the machine

algorithm doing somewhat better than the SOC forecast, only slightly better than the BC

forecast, and about the same but if anything slightly worse than the SPF forecast during

Great Recession. This occurs despite the fact that the machine algorithm takes into account

hundreds of pieces of real time information including that encoded in numerous financial series

and dozens of credit spreads, recorded at daily, monthly, and quarterly sampling intervals. The

large ex post forecast errors made during this episode become easier to understand, however,

when placed in the broader context of the time, which was characterized by unusually elevated

objective macroeconomic uncertainty (see Jurado, Ludvigson, and Ng (2015) and Ludvigson,
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Ma, and Ng (2019)). This event underscores the role of largely unforeseen events in generating

occasionally large prediction error, not all of which can be attributed to a systematic bias in

expectations.

4.4 Bias Decomposition

We now turn to an analysis of what information was mis-weighted in generating the distortions

documented above. Recall that the time t bias is defined as the difference between the survey

respondent and machine forecasts:

bias
(i)
j,t+h = F(i)

j,t+h|t − E
(i)
j,t+h|t

= F(i)
t [yj,t+h]− α̂j − β̂

(i)

jFF
(i)
t [yj,t+h]− B̂

(i)′
jZZjt

= −α̂(i)
j +

(
1− β̂(i)

jF

)
F(i)
t [yj,t+h]− B̂

(i)′
jZZjt (8)

We are interested in the contribution of the three terms on the right-hand-side of (8). We

decompose bias(i)
j,t+h into three sources of variation:

Contribution of intercept : − α̂(i)
j

Contribution of Survey Forecast:
(

1− β̂(i)

jF

)
F(i)
t [yj,t+h] (9)

Contribution of information in Zj,k,t : − B̂(i)
j,kZj,k,t, for k = 1, 2...K,

where variables with a k subscript refer to the kth element of B̂(i)′
jZ or Zjt. The sum of these three

terms equals 100% of bias(i)
j,t+h. This decomposition gives an indication of which information

is most mis-weighted by the survey respondent, and by how much. The intercept term α̂
(i)
j

changes over the evaluation sample through the dynamic algorithm and is akin to a time-varying

conditional mean applied to the most recent rolling subsample window. In the discussion below

we denote this “rolling mean”with a t subscript, i.e., α̂(i)
j,t. For the same reason, the estimates

β̂
(i)

jF and B̂
(i)′
jZ also vary over the evaluation sample and are therefore sometimes denoted with a

t subscript.

To interpret the machine weighting of information vis-a-vis the forecast, it is useful to

consider the magnitude and signs of the coeffi cients in the components above. For example, if

β̂
(i)

jF < 1, this implies that the machine improves forecasts by downweighting the survey forecast

in favor of giving more weight to other information. Thus an estimate of β̂
(i)

jF < 1 implies that

the respondent at the ith percentile over-weighted on her own forecast, and in that sense is

overconfident. On the other hand, if β̂
(i)

jF > 1, this implies that the machine improves forecasts

by giving greater weight the survey forecast than the implicit weight given by the respondent

to her own forecast relative to other information, suggesting respondent underconfidence.
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For the information variables and the rolling mean, any estimate of B̂(i)
j,k 6= 0 or α̂(i)

j,t 6= 0

indicates that the machine improved forecasts by giving greater absolute weight to Zj,k,t or α̂(i)
j,t

compared to the respondent’s implicit weight of zero conditional on her own forecast. Thus we

say that estimates with B̂(i)
j,k 6= 0 or α̂(i)

j,t 6= 0 imply that the respondent under-weighted these

sources of information. We summarize the respondent over- versus under-weighting as follows:

Over-weight : β̂
(i)

jF < 1;

Under-weight : β̂
(i)

jF > 1; B̂(i)
j,k 6= 0; α̂(i)

j,t 6= 0.

The next set of figures reports the contribution over time to the median bias, bias(50)
j,t+h, of

the three components in (9), i.e., the figure reports the (negative) of the intercept, −α̂(i)
j,t , the

survey forecast
(

1− β̂(i)

jF,t

)
F(i)
t [yj,t+h], and the most important information contributors Zj,k,t

to the information variable component, −B̂(i)
j,k,tZj,k,t. Since there are many Zj,k,t that may be

important at different t, we report the contributions of only those information variables that

have the largest average absolute impact on the bias, as measured by the absolute sum of the

information variable’s contributions over the evaluation sample, i.e.,
∑

t

∣∣∣−B̂(50)
j,k,tZj,k,t

∣∣∣, where
B̂

(50)
j,k,t denotes the rolling, real-time estimate of B

(50)
j,k based on data available through period t

of the evaluation sample. The solid lines in Figures 8- 13 report the total bias, bias(50)
j,t+h. The

contributions themselves are reported as bar charts, where a bar is above zero if the relevant

contribution of the component in (9) is positive, and below zero if it is negative. For example,

for the contribution of the survey forecast, a bar is above zero if
(

1− β̂(50)

jF

)
F(50)
t [yj,t+h] is

positive at time t, which means that the product of
(

1− β̂(i)

jF

)
and F(i)

t [yj,t+h] had an upward

effect on the overall bias. Conversely, a bar is below zero if
(

1− β̂(50)

jF

)
F(50)
t [yj,t+h] is negative,

which means that the product had a downward effect on the overall bias. Finally, the color of

the bars indicates whether the median survey respondent gave too much or too little weight

to her own forecast. A red bar indicates that she over-weighted her own forecast, while a blue

bar indicates that she under-weighted. For the intercept and information variables, any bar

with a non-zero height indicates that the respondent under-weighted that information. Figures

8-10 exhibit this information for survey expectations of inflation, while Figures 11-13 do so for

survey expectations of GDP growth.

A key finding evident from all of these figures is that survey respondents almost always

place too much weight on their own forecast relative to other information, and are in that

sense overconfident. This happens for all surveys, for both inflation and GDP growth, and for

most time periods. This is exhibited in the Figures by the frequent red-colored bars in the

Survey Forecast panels. Much of the time, but not always, this overconfidence tends to happen

when the survey forecast contributes positively to the measured bias. The length of the bars

indicates that the respondent’s over-weighting of her own forecast contributes in most cases to
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quantitatively large distortions in macro expectations.

For example, Figure 8 indicates that the median SPF respondent’s forecast of four-quarter-

ahead inflation contributed 4%—or more than 100%—to the total upward bias in inflation ex-

pectations during several periods right after the Great Recession. (Recessions are shown in the

figure by light grey shaded bars.) This can be observed in the Survey Forecast subplot by the

tall above-zero bars. That these bars are all red indicates that the machine improved forecasts

by greatly downweighted the survey forecast in these periods in favor of placing more absolute

weight on the rolling mean, on a measure of long-run inflation, on the two-period lagged value

of the median SPF inflation forecast, and on daily financial factors related to Treasuries and

corporate risk. The findings are qualitatively similar for the BC and SOC surveys of infla-

tion, though the information variables most mis-weighted are different across these surveys. In

general finding across all surveys, however, is that the survey respondent’s own forecast is the

single most important contributor quantitatively to bias(50)
j,t+h, as indicated by the height of the

bars in the survey forecast subpanel for each case. Moreover in each case, the bars are red,

indicating that survey respondents placed too much weight on their own forecast compared to

the machine-effi cient benchmark. Rarely, if ever, do the respondent’s under-weight their own

forecast.

Figures 11-13 show that these conclusions are even more true for the median survey ex-

pectations of economic growth. For all three surveys, the median respondent’s over-weighting

of her own forecast is the most important quantitative contributor to the excessive optimism

about GDP growth during the last several years of our sample. The tall red bars indicate that

the machine greatly downweighted the survey forecasts in these periods in favor of placing more

absolute weight, primarily in this case, on the rolling mean, though other respondent’s forecasts

of growth last period are also given non-zero weight by the machine.

We close this section by asking whether revisions in survey forecast are an important con-

tributor to expectational biases. We do this by running the following machine version of the CG

regressions, which use the mean rather than median SPF inflation forecast F(µ), with forecast

errors on the left-hand-side:

πj,t+3 − F(µ)
t [πj,t+3]︸ ︷︷ ︸

forecast error

= α(µ)
π + β

(µ)
πFR

F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]︸ ︷︷ ︸
forecast revision

+ B
(µ)′
πZ Zπt + επt+h. (10)

The machine estimates differs from the CG estimation for three reasons. First, the machine

forecasts are made out-of-sample. Second, the machine entertains the large-scale information-

set Zπt as additional potential predictor variables, while CG use only the forecast revision.

Third, the machine uses the EN estimator while CG use least squares. Denote the CG estimate

of the coeffi cient on forecast revisions from this univariate, in-sample least squares regression
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as β(µ)
πCG.

Figure 14 reports the coeffi cients β(µ)
jFR obtained from estimating (10) using the machine

learning algorithm described above. Since the estimation is repeated on rolling samples using

real time information up to time t, the figure reports the entire time-series of estimates β̂
(µ)

jFR,t

using a bar chart, where the height of the bar indicates the magnitude of β̂
(µ)

jFR,t and the time

period t of the forecast evaluation sample 1995:Q1-2018:Q2 is given on the x-axis. Time periods

τ for which there is no bar displayed indicate β̂
(µ)

jFR,τ = 0. For comparison, in-sample estimates

β̂
(µ)

πCG from the CG least squares regressions are shown as separate horizontal lines, one for

each of three estimation samples: 1969:Q1-2014:Q4 (CG sample), 1969:Q1-2018:Q2 (our full

sample) and 1995:Q1-2018:Q2 (our machine forecast evaluation sample). The horizontal lines

for β̂
(µ)

πCG over the first two of these samples lie almost on top of one another, and are close to

1.2, while that for the shorter more recent sample are smaller by half. By contrast, the machine

estimates β̂
(µ)

jFR,t are always much smaller than the univariate, in-sample least squares estimates

β̂
(µ)

πCG when those are obtained using the two longer subsamples, and they only match or exceed

the half-as-large value obtained using the 1995:Q1-2018:Q2 sample in one time period. Instead,

the coeffi cients on forecast revisions are typically shrunk to zero by the machine algorithm

in favor of placing greater absolute weight on other pieces of information contained in Zπt or
α̂

(µ)
π,t . The coeffi cient β̂

(µ)

jFR,t is non-zero in only 6 out of 94 quarters over the evaluation sample.

These findings do not indicate an important role for ex ante revisions in the average forecast

in predicting average ex post forecast errors, as would be indicative of models with information

rigidities.

5 Results: Expectational Errors and Macroeconomic Fluctuations

5.1 Do Belief Distortions Matter for Macroeconomic Fluctuations?

What is the dynamic relationship between our measured expectational errors and macroeco-

nomic activity? We use vector autoregressions (VARs) to investigate this question. To do so

we first construct indexes of the common factor component in our measured biases and then

consider two vector autoregressions (VARs) that separately use a different index of our mea-

sured belief distortions. One index, which we denote bias
π

t , is constructed as the first common

factor, measured as the first principle component (PC), of inflation biases bias(i)
π,t+h across all

surveys and all percentiles i of each survey. The other index is constructed analogously to

measure belief distortions in GDP growth and is denoted bias
∆y

t . Since the PCs and their

factor loadings Λ are not separately identifiable, we use a standard normalization to pin down

the magnitudes of Λ and normalize the signs of bias
π

t and bias
∆y

t so that they are positively
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correlated with the average median bias across surveys for π and ∆y, respectively.11 Thus an

increase in bias
π

t corresponds to an increase in pessimism about inflation by the average median

respondent, while an increase in bias
∆y

t corresponds to an increase in optimism about economic

growth by the average median respondent.

A question arises as to which variables to include in the VARs. Given the relatively short

evaluation samples, we cannot entertain too many variables or too many lags.12 We use a

one-lag VARs but choose a range of variable types. To study impulse responses and variance

decompositions with respect to a shock in these bias index, the covariance matrix of VAR resid-

uals is orthogonalized using a Cholesky decomposition with variables ordered as listed below,

with bias index placed last. This placement is conservative for assessing the relation of the

expectational errors to macro fluctuations, since it attributes all the contemporaneous comove-

ment between the bias index and macroeconomic indicators to shocks in the other variables.

The variables in the VAR are 

log (Real GDP)
log(GDP Deflator)
log (Real Investment)
log(Real Wage)
log(S&P500)
federal funds rate
bias

x

t+h


(VAR)

where bias
x

t+h is either bias
∆y

t+h or bias
π

t+h. With respect to the impulse responses and variance

decompositions reported below, a “shock”to bias
x

t is a movement in belief distortions that is

contemporaneously uncorrelated to the aggregate economic state, as measured by the above

non-bias variables. The VAR is estimated with standard Bayesian methods under flat priors.

To what extent are time-varying belief distortions correlated with macroeconomic fluctu-

ations? For results using the inflation bias index, it is instructive to compare three different

cases. Figure 15 reports the dynamic responses using bias
π

t when this index is constructed as

the first principle component of inflation biases across all percentiles in the SPF and BC sur-

veys. This figure shows that a positive innovation to bias
π

t (indicating more pessimism about

inflation) operates like a cost-push shock, driving up the real wage, but driving down prices,

real investment, and real GDP. The effects on the real wage are large and persist for over five

years. On the other hand, perhaps because this shock drives down prices, the effects on real

GDP are smaller and more transitory. The results are quite different, however, when bias
π

t is

constructed as the first principle component of the inflation biases across all percentiles of the

11The loadings are normalized by (Λ′Λ) /N = Iq where N is the number of bias(i) series over which common
factors are formred and q is the number of common factors.
12For the SPF, the evaluation sample spans the periods1995:Q1 to 2018:Q2. As explained above, for the BC

and SOC, observations on the bias starts a few periods after 1995:Q1. Thus we add those observations in when
they become available and use only the SPF in the first few years of the 1995:Q1 to 2018:Q2 sample.
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SOC by itself, as seen in Figure 16. In this case the error bands are much wider and the re-

sults inconclusive, suggesting that biases in household-level inflation expectations exhibit little

reliable relation to aggregate economic activity, in contrast to the biases in professional and cor-

porate executive expectations. This suggests that household-level expectational errors, which

are far more heterogeneous and are based on far less accurate forecasts, are more “noise”than

“news.”Figure 17 reports the dynamic responses using bias
π

t when this index is constructed as

the first principle component of inflation biases across all percentiles of SPF and BC and the

median of SOC. In this case, the responses are virtually identical to those in Figure 15, which

use only the SPF and BC surveys.

Figure 18 shows two sets of impulse response functions. The blue line shows that a one

standard deviation increase in an innovation to bias
∆y

t (indicating more optimism about eco-

nomic growth) leads to a sizable and protracted increase in real activity, in the price level, in

the real wage, and in the stock market.13 It is important to note that these results are specific

to innovations in the systematic expectational errors survey respondents make about future

GDP growth, and not to their expectations per se. Indeed, a positive innovation in an index

of GDP growth expectations has very different effects from those of the bias index bias
∆y

t and

is not associated with a boom in economic activity. This may be observed from Figure 19,

which shows the dynamic responses to innovations in an index of survey expectations of GDP

growth, constructed as the first PC across all surveys and all percentiles of GDP growth expec-

tations and denoted F∆y

t . For the VAR used to generate this figure, we replace bias
∆y

t with F∆y

t

in (VAR). In contrast to the responses to innovations in bias
∆y

t , positive innovations in F
∆y

t

(indicating higher expected economic growth by the average median respondent) are associated

with a decrease rather than an increase in real GDP, in the stock market, and real investment,

though the credible sets for real investment response are wide and include both positive and

negative responses.

To investigate this further, the red lines in Figure 18 reports the impulse responses to a bias

innovation for a VAR that replaces bias
∆y

t with the component of bias
∆y

t that is contempora-

neously orthogonal to the expectations index F∆y

t , denoted bias
∆y,⊥
t . The variable bias

∆y,⊥
t is

computed as the residual from a regression of bias
∆y

t on F∆y

t . The red lines showing the re-

sponses to a one standard deviation positive innovation in bias
∆y,⊥
t are almost identical to the

blue lines showing the responses to a one standard deviation positive innovation in bias
∆y

t . This

shows that a positive innovation in bias
∆y

t happens, not because survey expectations over- or

under-react to economic news, but rather because the machine-effi cient forecast reacts to news

in a direction indicative of slower expected economic growth, while the survey expectations are

13This index is constructed as the first principle component of the bias in SPF, BC, and SOC. Recall that we
only have one forecast for the SOC, since this is constructed from the balance index score, hence the enormous
heterogeneity in the forecast accuracy and bias that is present for household-level inflation forecasts is not
present for the GDP forecasts.
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mostly unchanged. Keeping in mind that an impulse response shows the dynamic consequences

of a counterfactual event, this result implies that we may interpret a positive innovation in

bias
∆y

t as an instance of serendipitous inattentiveness on the part of survey respondents that

acts as a positive economic shock, leaving growth higher than it might otherwise be.

To study the quantitative importance of the bias shocks for macroeconomic fluctuations,

Table 4 reports variance decompositions of the VAR variables, over several VAR forecast hori-

zons. Specifically, we report the fraction of forecast error variance that is explained by shocks

to bias
∆y

t+h or bias
π

t+h with the variables again ordered as above. We use k in this table denote

the VAR forecast horizon and use “max k”to denote the forecast horizon k for which a shock

explains the maximum fraction of forecast error variance. The table also reports the fraction of

forecast error variance explained by shocks to the federal funds rate, which we discuss below.

Table 4 shows that innovations to the GDP growth bias index account for up to 10%, 8% and

3.2% of the forecast error variance in GDP growth, inflation, and the stock market, respectively,

depending on the VAR forecast horizon. Although these magnitudes are relatively modest in

absolute terms, it is worth forming a basis for comparison. Over the same sample, innovations

to the federal funds rate (a common proxy for unanticipated shifts in monetary policy) explain

(at most) 7%, 5.5%, and 1.4% of the forecast error variance in these same variables, despite

the federal funds rate being placed ahead of the bias index in the VAR. On the other hand,

the GDP growth bias index accounts for at most 7.3% and 5.7% of the forecast error variance

in the real wage and real investment, respectively, compared to 7.6% and 11.7% for the federal

funds rate. Overall, innovations in the inflation bias index account for less of the forecast error

variance of the other VAR variables, but contributions are in the same ballpark as innovations

in the federal funds rate. That the effects for both indexes are comparable to or in some cases

quantitatively more important than those for the federal funds rate is consistent with the view

that expectational errors have non-trivial implications for aggregate economic activity.

5.2 Belief Distortions Over the Business Cycle

In this section we investigate how our measured belief distortions vary in response to cyclical

shocks. To do so we follow Angeletos, Huo, and Sastry (2020) (AHS) and estimate the dynamic

responses of inflation or real GDP growth to two cyclical shocks identified in Angeletos, Collard,

and Dellas (2018a).14 These are the “inflation-targeted” shock επt , and the “GDP-targeted

shock,” εGDPt . By construction, these shocks account for most of the business cycle variation

in inflation and GDP growth, respectively.15 Due to limitations of space, we limit our reported

14We are grateful to the authors for providing us their data on these shocks.
15These shocks are identified using a 10 variable macro VAR as the structural shock that maximizes the

volatility of the outcome variable (i.e., inflation, GDP growth) at frequencies corresponding to cycles between
6 and 32 quarters.
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results in this section to belief distortions in the SPF median forecasts. Results not reported

show similar patterns to those discussed below for the 25th and 75th percentiles of the SPF

forecast distribution.

Figure 20 reports dynamic responses of the machine forecast, the median SPF survey fore-

cast, and the relevant outcome variable, to innovations in επt and ε
GDP
t , estimated using the

method of local projection (Jorda (2005)).16 The first column, first row, shows the responses

of the machine forecast E(50)
t [yt+4] and survey forecast F(50)

t [yt+4] to an innovation in επt , while

the first column, second row, produces the the analogous responses to an innovation in εGDPt .

The right column shows the same responses along with the response of the relevant outcome

variable, i.e., inflation or real GDP growth, removing the error bands to eliminate clutter. The

plots in the right column “align”the forecast responses so that, at a given vertical slice of the

plot, the outcome and forecast responses are measured over the same time horizon and the

difference between the two is the forecast error. For example, given a shock at time t, the

first response plotted for the survey forecast is F(50)
t [yt+4] , which is aligned vertically with the

response of y at time t + 4. Following AHS, we set H = 20 quarters as the maximum period

for tracing out impulse responses to these shocks. Several findings from Figure 20 are worthy

of emphasis.

First, survey respondents initially under-react to a shock but later over-react. Dynamic

under- and over-reaction of the survey respondent’s belief is measured vis-a-vis the machine

belief—this is what is shown in the left column of the figure. From the left-hand subplots we

observe that the survey forecast F(50)
t [yt+4] reacts less initially to an increase in both επt and

εGDPt than the machine forecast E(50)
t [yt+4] does, but eventually it reacts more. Qualitatively,

these results are consistent with the dynamic patterns over- and under-reaction emphasized by

AHS.

Second, GDP growth expectations exhibit greater and more protracted under-reaction than

do expectations about inflation. Conversely, inflation expectations exhibit greater and more

protracted eventual over-reaction than do expectations about economic growth. In fact, for

inflation expectations, the eventual over-reaction appears to be more important than the initial

under-reaction, while GDP growth expectations appear to be more subject overall to under-

reaction and only exhibit statistically significant over-reaction starting about 18 quarters after

the shock.

Third, the right column of Figure 20 shows that comparing the survey forecast to the

outcome variable overstates the degree of initial undershooting attributable to belief distortions.

This can be observed in the figure by noting that both the machine and the survey forecasts

16The Appendix gives the details of this estimation. We use a four-quarter forecast horizon, in contrast to
AHS who use a three-quarter horizon. Our sample is also shorter than that used in AHS. The Appendix shows
that we reproduce the results in AHS for the same forecast horizon and sample size that they use, and that the
results are similar using the shorter sample of this paper.
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under-predict the eventual outcome, and that the dynamic difference between the two is often

smaller than the difference between the survey forecast and the outcome variable. Likewise, the

top right plot shows that some, but not all, of the over-shooting exhibited by survey forecast

vis-a-vis the inflation outcome disappears when the survey forecast is compared to the machine

forecast rather than to inflation itself. In both cases the machine forecast is, however, closer

on average to the observed outcome. AHS have interpreted the difference between the outcome

and survey forecast as a measure of non-rational expectations. By contrast, we interpret the

difference between the survey and machine belief as a measure of systematic expectational error,

and the difference between the outcome and the machine forecast as pure random forecast error

rather than bias. We have seen that the machine uses a vast amount of information in real

time and has demonstrably superior real time information processing capacity, but it does not

possess perfect foresight. What this finding suggests is that the shocks at time t are not well

observed in t. This may be because επt and ε
GDP
t are constructed from an in-sample estimation

using final release historical data. Indeed, given the timing of most surveys, initial estimates

of the outcome variables being forecast are typically unavailable at the time of the survey

forecast. For example, the SPF collects survey responses in February on the outlook for GDP

in the second quarter of the year, while the advance estimate of Q2 GDP is not released until

the end of July.17

Finally, the right column reports the ratio of the machine-to-survey mean squared forecast

error across allH periods over which the dynamic responses are tallied in in Figure 20. Here, the

forecast errors are measured as the difference between the outcome variable plotted in the right

column of the figure and either the machine or survey forecast plotted at the same vertical slice.

We find that the machine produces lower forecast errors than the survey respondent for both

inflation and GDP growth in response to these cyclical shocks. The gains in forecast accuracy

are especially large for inflation where the ratio MSEE/MSEF is 0.6. This is noteworthy

because the machine was not trained to optimize out-of-sample prediction at the particular

business cycle frequencies that by construction dominate variation in the outcome variables in

Figure 20.

6 Conclusion

This paper provides new measures of systematic expectational errors in survey responses and

relates them to macroeconomic activity. Biases in inflation expectations for the median respon-

dent of all types are on average too high over our evaluation sample, a direction we refer to

17In addition, the final release data used to construct the shocks are both subject to revision. Some information
pointing toward a large business cycle shock may be available at t, such as that in financial markets, accounted for
by the machine. The signal it provides may however be suffi ciently noisy that it cannot be robustly interpreted
as the genesis of a large cyclical shock without additional information and a significant processing lag.
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as “pessimistic.”By contrast, biases in expectations of economic growth are “optimistic” on

average—i.e., too high—for the median respondent among professional forecasters and corporate

executives, while they are very slightly pessimistic for households. But these averages mask

large variation over time in the median respondent’s bias, as well across respondents at any

given point in time. A pervasive finding across all surveys is that respondents place too much

weight on their own forecast relative to other information, and are in that sense overconfident.

We find that fluctuations in belief distortions exhibit important dynamic relations with the

macroeconomy. A positive innovation to an index of inflation bias (indicating an increase in

pessimism) operates much like a cost-push shock, driving up the real wage and driving down

real investment, real GDP, and the price level. By contrast, a positive innovation to a GDP

growth bias index (indicating an increase in optimism) has the opposite effect and leads to a

sizable and more protracted increase in real activity, the price level, and also the stock market,

while the real wage declines. Innovations in GDP growth expectations, as opposed to the biases

in those expectations, lead to very different effects and are not associated with an increase in

real activity.
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Table 1: d

Table 1: CG Regressions of Forecast Errors on Forecast Revisions

Panel A: In-sample Regressions (CG Sample)
Regression: πt+3 − F(µ)

t [πt+3] = α(µ) + β(µ)
(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+δπt−1,t−2 + εt

Constant 0.001 −0.077
t-stat (0.005) (−0.442)

Ft [πt+3,t]− Ft−1 [πt+3,t] 1.194∗∗ 1.141∗∗

t-stat (2.496) (2.560)
πt−1,t−2 0.021
t-stat (0.435)

R̄2 0.195 0.197
Panel B: Out-of-sample Regressions

Regression: πt+3 − F(µ)
t [πt+3] = α(µ) + β(µ)

(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+ εt+3

Method Forecast Sample MSECG/MSEF
Rolling 5 years 1975:Q4 - 2018:Q2 1.38
Rolling 10 years 1980:Q4 - 2018:Q2 1.29
Rolling 20 years 1990:Q4 - 2018:Q2 1.31
Recursive 5 years 1975:Q4 - 2018:Q2 1.69
Recursive 10 years 1980:Q4 - 2018:Q2 1.60
Recursive 20 years 1990:Q4 - 2018:Q2 1.33

In-sample versus out-of-sample regressions using CG specification. Panel A reports the in-sample

results over the sample used in Coibion and Gorodnichenko (2015) (CG), 1969:Q1 to 2014:Q4. Newey-West

corrected t-statistics with lags = 4 are reported in parenthesis. Panel B reports the ratio of out-of sample

mean-squared-error (MSE) of the CG model forecast to that for the survey forecast computed using different

rolling or recursive estimation windows. The MSE for the CG model averages the (square of the) forecast

errors πt+3− π̂(µ)
t+3, where π̂

(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F(µ)
t−1 [πt+3] . In both panels, the regression

estimation uses the latest vintage of inflation in real time and, following CG, computes forecast errors with

real-time data available four quarters after the period being forecast. Annual inflation is defined as πt+3,t =
Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, and Ft [πt+3,t] is the mean forecast of annual inflation as of time t from the Survey

of Professional Forecasters (SPF). The sample of Panel B spans the period 1969:Q1 - 2018:Q2. *sig. at 10%.

**sig. at 5%. ***sig. at 1%.
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Table 2: d

Table 2:Machine Learning versus Survey Forecasts of Inflation

ML: yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)
jZZjt + εjt+h

Survey of Professional Forecasters (SPF)
Percentile Median Mean 5th 10th 20th
MSEE/MSEF 0.85 0.95 0.56 0.74 0.83
OOS R2 0.15 0.05 0.44 0.26 0.17

25th 30th 40th 60th 70th
MSEE/MSEF 0.90 0.88 0.89 0.74 0.70
OOS R2 0.10 0.12 0.11 0.26 0.30

75th 80th 90th 95th
MSEE/MSEF 0.67 0.59 0.55 0.47
OOS R2 0.33 0.41 0.45 0.53

Michigan Survey of Consumers (SOC)
Percentile Median Mean 5th 10th 20th

MSEE/MSEF 0.58 0.42 0.22 0.28 0.46
OOS R2 0.42 0.58 0.78 0.72 0.54

25th 30th 40th 60th 70th
MSEE/MSEF 0.58 0.67 0.65 0.37 0.21
OOS R2 0.42 0.33 0.35 0.63 0.79

75th 80th 90th 95th
MSEE/MSEF 0.16 0.12 0.05 0.03
OOS R2 0.84 0.88 0.95 0.97

Blue Chip Financial Forecasts (BC)
Percentile Median Mean 5th 10th 20th
MSEE/MSEF 0.84 0.84 0.58 0.60 0.85
OOS R2 0.16 0.16 0.42 0.40 0.15

25th 30th 40th 60th 70th
MSEE/MSEF 0.85 0.86 0.91 0.78 0.69
OOS R2 0.15 0.14 0.09 0.22 0.31

75th 80th 90th 95th
MSEE/MSEF 0.65 0.59 0.48 0.38
OOS R2 0.35 0.41 0.52 0.62

Machine v.s. survey mean-square-forecast errors for inflation. MSEE and MSEF denote the machine
learning and survey mean-squared-forecast-errors, respectively, computed for 4-quarter-ahead forecasts and

averaged over the evaluation period. The out-of-sample Rsquared, OOS R2, is defined as 1-MSEE/MSEF. The

vintage of observations on the variable being forecast is the one available four quarters after the period being

forecast. The evaluation period for the Survey of Professional Forecasters (SPF) is 1995:Q1 to 2018:Q2; for the

Michigan Survey of Consumers (SOC) is 1996:Q4 to 2018:Q2; and for the Bluechip (BC) survey is 1997:Q3 to

2018:Q2. The full estimation sample spans the periods 1969:Q3 to 2018:Q3.
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Table 3: d

Table 3:Machine Learning versus. Survey Forecasts of GDP Growth

ML: yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)
jZZjt + εjt+h

Survey of Professional Forecasters (SPF)
Percentile Median Mean 5th 10th 20th

MSEE/MSEF 0.89 0.93 0.72 0.83 0.82
OOS R2 0.11 0.07 0.28 0.17 0.18

25th 30th 40th 60th 70th
MSEE/MSEF 0.86 0.89 0.90 0.87 0.82
OOS R2 0.14 0.11 0.10 0.13 0.18

75th 80th 90th 95th
MSEE/MSEF 0.81 0.82 0.71 0.65
OOS R2 0.19 0.18 0.29 0.35

Michigan Survey of Consumers (SOC)
Percentile Median

MSEE/MSEF 0.74
OOS R2 0.26

Blue Chip Financial Forecasts (BC)
Percentile Median Mean 5th 10th 20th

MSEE/MSEF 0.76 0.83 0.77 0.75 0.89
OOS R2 0.24 0.17 0.23 0.25 0.11

25th 30th 40th 60th 70th
MSEE/MSEF 0.82 0.81 0.77 0.76 0.73
OOS R2 0.18 0.19 0.23 0.24 0.27

75th 80th 90th 95th
MSEE/MSEF 0.70 0.65 0.67 0.66
OOS R2 0.30 0.35 0.33 0.34

Machine v.s. survey mean-square-forecast errors for GDP growth. MSEE and MSEF denote the
machine learning and survey mean-squared-forecast-errors, respectively, computed for 4-quarter-ahead forecasts

and averaged over the evaluation period. The out-of-sample Rsquared, OOS R2, is defined as 1-MSEE/MSEF.

The vintage of observations on the variable being forecast is the one available four quarters after the period being

forecast. The evaluation period for the Survey of Professional Forecasters (SPF) is 1995:Q1 to 2018:Q2; for the

Michigan Survey of Consumers (SOC) is 1995:Q1 to 2018:Q2; and for the Bluechip (BC) survey is 1997:Q1 to

2018:Q2. The full estimation sample spans the periods 1969:Q3 to 2018:Q3.
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Table 4: d

Table 4. Decomposition of Variance
Fraction Variation in Real GDP (%) Fraction Variation in Real Investment (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 1.21 0.10 0.45 0.04 4.68 1.42 0.62 1.60
k = 12 1.56 1.44 5.18 1.96 15.36 13.61 3.93 10.27
k =∞ 1.99 6.16 8.91 5.69 13.97 18.97 5.70 11.67
max k 25 32 34 32 11 ∞ ∞ 163
k = max 3.94 9.04 9.97 6.95 15.39 18.97 5.70 11.67

Fraction Variation in GDP Deflator (%): Fraction Variation in S&P 500 (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 1.94 0.70 0.13 0.60 0.03 1.03 1.39 0.64
k = 12 6.50 2.09 0.29 1.18 2.45 1.51 2.61 1.04
k =∞ 0.79 3.90 7.66 5.22 2.73 2.03 3.17 1.22
max k 10 55 125 117 52 55 23 7
k = max 6.64 4.36 7.91 5.54 3.21 2.21 3.18 1.42

Fraction of Variation in Real Wage (%): Fraction Variation in FFR (%)

Explained by: bias
π

t FFR bias
∆y

t FFR bias
π

t FFR bias
∆y

t FFR
k = 3 2.92 0.16 0.22 0.21 0.12 70.80 3.25 66.55
k = 12 3.49 2.64 4.94 5.04 0.10 44.93 3.27 42.83
k =∞ 3.68 5.48 6.63 6.48 0.73 34.41 2.89 32.62
max k 6 25 25 23 71 1 6 1
k = max 5.02 6.13 7.34 7.59 0.73 75.93 4.26 72.54

Forecast error variance decomposition. Forecast error variances are computed from a VAR using a Cholesky factorization with the following

variables in the order: log(real GDP), log(GDP deflator), log(real wage), log(real investment), log(S&P 500 Index), federal funds rate (FFR), and bias t,

where bias t is either the inflation bias index bias
π

t or the GDP growth bias index bias
∆y

t . Each panel shows the fraction of forecast-error variance of

the variable named in the panel title at VAR forecast horizon k that is explained by bias t or the FFR for that VAR. The row denoted “max k”gives
the horizon k for which the variable named in the column explains the maximum fraction of forecast error variance. The row denoted “k = max”gives

the fraction of forecast error variance explained at max k. The data are quarterly and span the period 1995:Q1 -2018:Q2.
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Figure 1: High- v.s. Low-dimensional Out-of-sample Forecasts
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Autoregressive Coeffi cients in high- v.s. low-dimensional out-of-sample forecasts. Average autore-
gressive coeffi cients from one-year-ahead rolling regressions of real GDP growth on predictors. β1 is the average

coeffi cient on the first AR lag; β2 is the average coeffi cient on the second. The high dimension estimation

entertains very large numbers of potential predictors, in addition to the autoregressive lags, while the low

dimension setting uses only two additional predictors. The sample spans 1995:Q1-2018:Q2.
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Figure 2: Degree of Sparsity and Shrinkage
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Degree of Sparsity and Shrinkage. The figure displays a scatterplot of the strength of the ridge and LASSO
penalties estimated from training samples over time for predicting median inflation or real GDP growth. For

each observation in the evaluation sample from 1995:1-2018:Q2 (94 observations), the y-axis displays the degree

of sparsity implied by the estimated L1 penalty, λ1, in units of the fraction of non-zero regression coeffi cients,

and the x-axis displays the degree of shrinkage implied by the estimated L2 penalty, λ2 in units of 1/ (1 + λ2).
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Figure 3: Biases in the Mean and Median Survey Forecasts
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Biases in the consensus forecasts. The figure reports the time series bias(i)
j,t+h = F(i)

t [yj,t+h] − E(i)
t [yj,t+h]

for i = 50,mean. NBER recessions are shown with grey shaded bars. The sample spans the period

1995:Q1-2018:Q2.
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Figure 4: Common and Heterogeneous Distortions in the SPF
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Biases in the SCF. The figure reports the time series bias(i)
j,t+h = F(i)

t [yj,t+h]−E(i)
t [yj,t+h]. NBER recessions

are shown with grey shaded bars. The sample is 1995:Q1-2018:Q2.
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Figure 5: Common and Heterogeneous Distortions in the Blue Chip
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Biases in the Blue Chip. The figure reports the time series bias(i)
j,t+h = F(i)

t [yj,t+h] − E(i)
t [yj,t+h]. NBER

recessions are shown with grey shaded bars. The sample is 1997:Q1-2017:Q1.
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Figure 6: Common and Heterogeneous Distortions in the SOC

SOC Inflation

1995 2000 2005 2010 2015

-10

-5

0

5

10

15

Rec. Med Mean 5 10 20 25 30
40 60 70 75 80 90 95

SOC GDP growth

1995 2000 2005 2010 2015

-3

-2

-1

0

1

2

3

Biases in the SOC. The figure reports the time series bias(i)
j,t+h = F(i)

t [yj,t+h]−E(i)
t [yj,t+h]. NBER recessions

are shown with grey shaded bars. The sample is 1995:Q1-2018:Q2.
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Figure 7: Forecasted versus Actual Inflation, GDP Growth
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Forecasted and Actual variables. For each variable and survey, the figure reports the median survey

forecast of inflation or GDP growth over the next 4 quarters, the corresponding the machine forecast, and the

actual inflation or GDP growth during this period. NBER recessions are shown with grey shaded bars. The

sample is 1995:Q1-2018:Q2.
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Figure 8: Bias Decomposition: SPF Inflation Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 9: Bias Decomposition: SOC Inflation Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 10: Bias Decomposition: BC Inflation Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 11: Bias Decomposition: SPF Real GDP Growth Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 12: Bias Decomposition: SOC Real GDP Growth Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 13: Bias Decomposition: BC Real GDP Growth Median Forecast
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Decomposition of Bias. The figure plots contributors to the median bias F(50)
t [yj,t+h] − E(50)

t [yj,t+h] =

−α̂(50)
j +

(
1− β̂

(50)

jF

)
F(50)
t [yj,t+h] − B̂(50)′

jZ Zjt at each time t. The solid black lines in each subpanel plot the

median overall bias, F (50)
t [yj,t+h] − E

(50)
t [yj,t+h]. The barchart in the “Intercept” subpanel reports −α̂(50)

j ;

the barchart in the “Survey Forecast”panel reports
(

1− β̂
(50)

jF

)
F(50)
t [yj,t+h] . The barcharts in the remaining

subpanels report −B̂(50)′
jZ Zjt for the top four most important predictor contributors to the bias, as measured

by the absolute sum of contributions over the evaluation sample. Red bars indicate that the survey forecast

was given too much weight relative to the machine effi cient forecast, corresponding to
(

1− β̂
(50)

jF

)
> 0. Blue

bars indicate that the survey forecast was given too little weight relative to the machine effi cient forecast,

corresponding to
(

1− β̂
(50)

jF

)
< 0. NBER recessions are shown with grey shaded bars. The evaluation sample

spans the period 1995:Q1-2018:Q2.
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Figure 14: Coeffi cient on Forecast Revisions
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Coeffi cient on Forecast Revisions. The blue bar plots the estimated coeffi cient of from re-

gressions of forecast errors on forecast revisions for the mean of the SPF inflation forecast

πt+3 − F (µ)
t [πt+3]︸ ︷︷ ︸

Forecast Error

= α
(µ)
j + β

(µ)
jFR

F (µ)
t [πt+3]− F (µ)

t−1 [πt+3]︸ ︷︷ ︸
Forecast Revisions

 + B
(µ)′
jZ Zjt + εjt+h. This regression sample

spans the period 1995:Q1 to 2018:Q2. The dashed red line shows the estimated in-sample coeffi cient over CG

sample 1969:Q1 to 2014:Q4. The dashed blue line shows the estimated in-sample coeffi cient over the full sample

1969:Q1 to 2018:Q2. The dashed black line shows the estimated in-sample coeffi cient over the evaluation

sample used for the machine estimates 1995:Q1 to 2018:Q2.
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Figure 15: Responses to Inflation Bias Shock: SPF and BC
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Impulse responses to a one standard deviation inflation bias index shock. Estimates from quarterly

VAR with one lag. The bias index bias
π

t is constructed as the first principle component of inflation biases

across all percentiles of SPF and BC. An increase in the bias corresponds to greater pessimism, i.e., upwardly

biased forecasts, about future inflation. Units are in percentage points. The sample is 1995:Q1-2018:Q2.
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Figure 16: Responses to Inflation Bias Shock: SOC Only
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Impulse responses to a one standard deviation inflation bias index shock. Estimates from quarterly

VAR with one lag. The bias index bias
π

t is constructed as the first principle component of inflation biases

across all percentiles of SOC. An increase in the bias corresponds to greater pessimism, i.e., upwardly biased

forecasts, about future inflation. Units are in percentage points. The sample is 1995:Q1-2018:Q2.
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Figure 17: Responses to Inflation Bias Shock: SPF, BC and SOC—Med
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Impulse responses to a one standard deviation inflation bias index shock. Estimates from quarterly

VAR with one lag. The bias index bias
π

t is constructed as the first principle component of inflation biases

across all percentiles of SPF and BC and median of SOC. An increase in the bias corresponds to greater

pessimism, i.e., upwardly biased forecasts, about future inflation. Units are in percentage points. The sample

is 1995:Q1-2018:Q2.
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Figure 18: Responses to GDP Growth Bias Shock: SPF, BC and SOC
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Impulse responses to a one standard deviation GDP growth bias index shock. Estimates from a

quarterly VAR with one lag. The blue line shows the impulse response to innovations in bias index bias
∆y

t ,

which is constructed as the first principle component of GDP growth biases across all surveys and percentiles.

The red line shows the impulse response to innovations in the orthogonal bias index bias
∆y,⊥
t , which is

constructed as the residual from a regression of bias
∆y

t on the GDP growth expectation F
∆y

t . An increase in

the bias corresponds to greater optimism, i.e., upwardly biased forecasts, about future real GDP growth. Units

are percentage points. The sample is 1995:Q1-2018:Q2.
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Figure 19: Responses to GDP Growth Expectation Shock
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Impulse responses to a one standard deviation GDP growth expectation shock. Estimates from a

quarterly VAR with one lag. The GDP growth expectation F∆y

t is constructed as the first principle component

of GDP growth survey forecast across all surveys and percentiles. A positive innovation in F
∆y

t indicates

higher expected GDP growth. Units are percentage points. The sample is 1995:Q1-2018:Q2.
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Figure 20: Dynamic Responses to Cyclical Shocks
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Dynamic responses of GDP and inflations.The shaded areas are 68% confidence intervals based on HAC

standard errors with a Bartlett kernel using four quarterly lags. The x-axis denotes quarters from the shock.

In the first row, the outcome variable yj,t is inflation and the shock is the inflation-targeted shock. In the

second row the outcome variable yj,t it is log real GDP growth and the shock is the GDP-targeted shock. In

both rows the machine and survey beliefs F(50)
t [yt+4] and E(50)

t [yt+4] are for the median respondent of the

SPF. Both shocks time series are from Angeletos, Collard, and Dellas (2018a). In the right column, we “align”

the forecast responses such that, at a given vertical slice of the plot, the outcome and forecast responses are

measured over the same horizon, and the difference between the two is the forecast error. “MSEE/MSEF”is

the ratio of the machine to survey mean-squared-forecast error averaged over the response time periods in the

plot. The vintage of observations on the outcome variable is the one available four quarters after the period

being forecast. The sample is 1995:Q1-2018:Q2.
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Online Appendix

Data

This appendix describes our data.

6.0.1 VAR Data

Real GDP: The real Gross Domestic Product is obtained from the US Bureau of Economic
Analysis. It is in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted,
and at annual rate. We take the log of this variable. The source is from Bureau of Economic
Analysis (BEA code: A191RX). The sample spans 1960:Q1 to 2019:Q3.

Real personal consumption expenditures: The real Personal Consumption Expenditures
is obtained from the US Bureau of Economic Analysis. It is in billions of chained 2012 dollars,
quarterly frequency, seasonally adjusted, and at annual rate. We take the log of this variable.
The source is from Bureau of Economic Analysis (BEA code: DPCERX). The sample spans
1960:Q1 to 2019:Q3.

GDP price deflator: The Gross Domestic Product: implicit price deflator is obtained from
the US Bureau of Economic Analysis. Index base is 2012=100, quarterly frequency, and sea-
sonally adjusted. We take the log of this variable. The source is from Bureau of Economic
Analysis (BEA code: A191RD). The sample spans 1960:Q1 to 2019:Q3.

Real investment: The real Gross Private Domestic Investment is obtained from the US
Bureau of Economic Analysis. It is in billions of chained 2012 dollars, quarterly frequency,
seasonally adjusted, and at annual rate. We take the log of this variable. The source is from
Bureau of Economic Analysis (BEA code: A006RX). The sample spans 1960:Q1 to 2019:Q3.

Real wage: We obtain real wages by dividing the Average Hourly Earnings of Production
and Nonsupervisory Employees: Manufacturing over the Personal Consumption Expenditures
(implicit price deflator). Average Hourly Earnings of Production and Nonsupervisory Employ-
ees: Manufacturing is obtained from the US Bureau of Labor Statistics; it is in dollars per hour,
quarterly frequency (average), and seasonally adjusted. BLS Account Code: CES3000000008.
Personal Consumption Expenditures (implicit price deflator) is obtained from the US Bureau
of Economic Analysis. Index base is 2012=100, quarterly frequency, and seasonally adjusted.
We take the log of the ratio of these variables. The source is from Bureau of Economic Analysis
(BEA code: DPCERD). The sample spans 1960:Q1 to 2019:Q3.

S&P 500 stock market index: The S&P 500 is obtained from the S&P Dow Jones Indices
LLC. It is the quarterly average of the daily index value at market close. We take the log of
this variable. The sample spans 1960:Q1 to 2019:Q3.

Federal funds rate (FFR): The Effective Federal Funds Rate is obtained from the Board
of Governors of the Federal Reserve System. It is in percentage points, quarterly frequency
(average), and not seasonally adjusted. The sample spans 1960:Q1 to 2019:Q3.
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6.0.2 Survey Data

All details on survey data and survey forecast construction here, with links to data sources.

Survey of Professional Forecasters The SPF is conducted each quarter by sending out
surveys to professional forecasters, defined as forecasters. The number of surveys sent varies
over time, but recent waves sent around 50 surveys each quarter according to offi cials at the
Federal Reserve Bank of Philadelphia. Only forecasters with suffi cient academic training and
experience as macroeconomic forecasters are eligible to participate. Over the course of our
sample, the number of respondents ranges from a minimum of 9, to a maximum of 83, and the
mean number of respondents is 37. The surveys are sent out at the end of the first month of
each quarter, and they are collected in the second or third week of the middle month of each
quarter. Each survey asks respondents to provide nowcasts and quarterly forecasts from one
to four quarters ahead for a variety of variables. Specifically, we use the SPF micro data on
individual forecasts of the price level, long-run inflation, and real GDP.18 Below we provide
the exact definitions of these variables as well as our method for constructing nowcasts and
forecasts of quarterly and annual inflation and GDP growth for each respondent.19

The following variables are used on either the right- or left-hand-sides of forecasting models:

1. Quarterly and annual inflation (1968:Q4 - present): We use survey responses for the level
of the GDP price index (PGDP), defined as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price index.
Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit deflator. Prior to
1992, GNP implicit deflator. Annual forecasts are for the annual average of the quarterly
levels."

Quarterly and annual inflation forecasts are constructed as follows. Let F(i)
t [Pt+h] be

forecaster i’s prediction of PGDP h quarters ahead and N(i)
t [Pt] be forecaster i’s nowcast

of PGDP for the current quarter. Annualized inflation forecasts for forecaster i are

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
, (A.11)

where h = 1 for quarterly inflation and h = 4 for annual inflation. Similarly, we construct
quarterly and annual nowcasts of inflation as

N(i)
t [πt,t−h] = (400/h)× ln

(
N(i)
t [Pt]

Pt−h

)
,

where h = 1 for quarterly inflation and h = 4 for annual inflation, and where Pt−1 is the
BEA’s advance estimate of PGDP in the previous quarter observed by the respondent
in time t, and Pt−4 is the BEA’s most accurate estimate of PGDP four quarters back.
After computing inflation for each survey respondent, we calculate the 5th through the

18Individual forecasts for all variables can be downloaded at https://www.philadelphiafed.org/research-and-
data/real-time-center/survey-of-professional-forecasters/historical-data/individual-forecasts.
19The SPF documentation file can be found at https://www.philadelphiafed.org/-/media/research-and-

data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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95th percentiles as well as the average, variance, and skewness of inflation forecasts across
respondents.

2. Long-run inflation (1991:Q4 - present): We use survey responses for 10-year-ahead CPI
inflation (CPI10), which is defined as

"Forecasts for the annual average rate of headline CPI inflation over the next 10 years.
Seasonally adjusted, annualized percentage points. The "next 10 years" includes the year
in which we conducted the survey and the following nine years. Conceptually, the calcu-
lation of inflation is one that runs from the fourth quarter of the year before the survey
to the fourth quarter of the year that is ten years beyond the survey year, representing a
total of 40 quarters or 10 years. The fourth-quarter level is the quarterly average of the
underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as an infla-
tion rate, so we do not make any adjustments and cannot compute other moments or
percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP), which is
defined as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Seasonally ad-
justed, annual rate, base year varies. 1992-1995, fixed-weighted real GDP. Prior to 1992,
fixed-weighted real GNP. Annual forecasts are for the annual average of the quarterly
levels. Prior to 1981:Q3, RGDP is computed by using the formula NGDP / PGDP *
100."

Quarterly and annual growth rates are constructed the same way as for inflation, except
RGDP replaces PGDP.

In order to generate OOS forecasts that could have been made in real time, it is necessary
to take a stand on the information set of the forecasters when each forecast was made. We
assume that forecasters could have used all data released before the survey deadlines. Table
A.1 lists the survey deadlines that are available, beginning with the 1990:Q3 survey. Before
1990:Q3, we make the conservative assumption that respondents only had data released by the
first day of the second month of each quarter.

Table A.1: SPF Survey Deadlines20

Survey Deadline Date Survey Deadline Date Survey Deadline Date
1990:Q1 NA 1991:Q1 2/16/91 1992:Q1 2/22/92

Q2 NA Q2 5/18/91 Q2 5/15/92
Q3 8/23/90 Q3 8/18/91 Q3 8/21/92
Q4 11/22/90 Q4 11/16/91 Q4 11/20/92

1993:Q1 2/19/93 1994:Q1 2/21/94 1995:Q1 2/21/95
Q2 5/20/93 Q2 5/18/94 Q2 5/22/95
Q3 8/19/93 Q3 8/18/94 Q3 8/22/95
Q4 11/23/93 Q4 11/18/94 Q4 11/20/95

1996:Q1 3/2/96 1997:Q1 2/19/97 1998:Q1 2/18/98

20SPF survey deadlines are posted online at https://www.philadelphiafed.org/-/media/research-and-
data/real-time-center/survey-of-professional-forecasters/spf-release-dates.txt?la=en.
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Table A.1 (Cont’d)

Survey Deadline Date Survey Deadline Date Survey Deadline Date
Q2 5/18/96 Q2 5/17/97 Q2 5/16/98
Q3 8/21/96 Q3 8/16/97 Q3 8/15/98
Q4 11/18/96 Q4 11/19/97 Q4 11/14/98

1999:Q1 2/16/99 2000:Q1 2/12/00 2001:Q1 2/14/01
Q2 5/15/99 Q2 5/13/00 Q2 5/12/01
Q3 8/14/99 Q3 8/12/00 Q3 8/15/01
Q4 11/13/99 Q4 11/11/00 Q4 11/14/01

2002:Q1 2/12/02 2003:Q1 2/14/03 2004:Q1 2/14/04
Q2 5/13/02 Q2 5/12/03 Q2 5/14/04
Q3 8/14/02 Q3 8/16/03 Q3 8/13/04
Q4 11/13/02 Q4 11/14/03 Q4 11/13/04

2005:Q1 2/9/05 2006:Q1 2/8/06 2007:Q1 2/8/07
Q2 5/12/05 Q2 5/10/06 Q2 5/9/07
Q3 8/11/05 Q3 8/9/06 Q3 8/8/07
Q4 11/8/05 Q4 11/8/06 Q4 11/7/07

2008:Q1 2/7/08 2009:Q1 2/10/09 2010:Q1 2/9/10
Q2 5/8/08 Q2 5/12/09 Q2 5/11/10
Q3 8/7/08 Q3 8/11/09 Q3 8/10/10
Q4 11/10/08 Q4 11/10/09 Q4 11/9/10

2011:Q1 2/8/11 2012:Q1 2/7/12 2013:Q1 2/11/13
Q2 5/10/11 Q2 5/8/12 Q2 5/7/13
Q3 8/8/11 Q3 8/7/12 Q3 8/12/13
Q4 11/8/11 Q4 11/6/12 Q4 11/18/13

2014:Q1 2/10/14 2015:Q1 2/10/15 2016:Q1 2/9/16
Q2 5/11/14 Q2 5/12/15 Q2 5/10/16
Q3 8/11/14 Q3 8/11/15 Q3 8/9/16
Q4 11/10/14 Q4 11/10/15 Q4 11/8/16

2017:Q1 2/7/17 2018:Q1 2/6/18
Q2 5/9/17 Q2 5/8/18
Q3 8/8/17 Q3 8/7/18
Q4 11/7/17 Q4 11/6/18

Michigan Survey of Consumers (SOC) We construct MS forecasts of annual inflation and
GDP growth of respondents answering at time t. Each month, the SOC contains approximately
50 core questions, and a minimum of 500 interviews are conducted by telephone over the course
of the entire month, each month. We use two questions from the monthly survey for which the
time series begins in January 1978, and convert to quarterly observations as explained below.

1. Annual CPI inflation: We use survey responses to question A12b, which asks (emphasis
in original):

By about what percent do you expect prices to go (up/down) on the average, during the
next 12 months?

Respondents provide a numerical value to the interviewer and the SOC provides the mean,
median, and 25th and 75th percentiles. Since this is already reported as an inflation rate,
we do not make any adjustments.

2. Annual real GDP growth: We use survey responses to question A7, which asks (emphasis
in original):
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And how about a year from now, do you expect that in the country as a whole business
conditions will be better, or worse than they are at present, or just about the same?

Respondents select one of three options: “better a year from now,”“about the same,”
or “worse a year from now.”There is a long history of using survey data as a proxy for
spending and output (see, for example, Ludvigson - “Consumer Confidence and Consumer
Spending” - Journal of Economic Perspectives - 2004). Using a companion question
in the SOC that asks about contemporaneous business conditions, Curtin (2019) and
the SOC survey documentation suggest constructing a “balance score” to generate a
contemporaneous measure of real GDP growth. The balance score equals the percentage
of respondents who expected that the economy to improve minus the percentage that
expected it to worsen + 100. Applying this methodology to question A7.

The balance score is obtained monthly and we use the observation for the middle month of
each quarter as our quarterly observation. We convert the score to a quantitative survey-
based measure of real GDP growth using a simple linear regression. Specifically, at time s,
we assume that GDP growth, yj,s+4, is related to the contemporaneous Michigan Survey
balance sore, Ms, by:

yj,s+4 = β0 + β1Ms + εs.

This equation is estimated using OLS and the real-time vintage data, and then the forecast
is constructed as Fj,t[yj,t+4] = β̂0 + β̂1Mt

Specifically, we first estimate the coeffi cients of this regression over the sample 1978:Q1-
1994:Q1. Using the estimated coeffi cients and the balance score from 1995:Q1 gives us
the point forecast of inflation for 1995:Q1-1996:Q1. We then re-estimate this equation,
recursively, adding one observation to the end of the sample at a time, and storing the
fitted values. This results in a time series of forecasts Fj,t[yj,t+4] .

As with the SPF, we take a stand on the information set of consumers when each forecast was
made, and we assume that consumers could have used all data released before they completed
the survey. For the SOC interviews are conducted monthly over the course of an entire month.
We set the interview response deadline for each survey as the first day of the survey month. For
example, we set the deadline to February 1st, 2019, for the February 2019 Survey of Consumers,
while in reality, the interview period was from February 2 to February 29, 2019. In other months,
the true interview start period may be near the end of the previous month, such as in February
2019, when it was January 31st, 2019. To align the SOC more closely with the SPF deadline
for survey completion (end of the second or third week of the middle month of the quarter), we
use the middle month of each quarter as our quarterly observation for the SOC.

Bluechip Data We obtain Blue Chip expectation data from Blue Chip Financial Forecasts.
The surveys are conducted each month by sending out surveys to forecasters in around 50
financial firms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis, Sayles &
Company, and J.P. Morgan Chase. The participants are surveyed around the 25th of each month
and the results published a few days later on the 1st of the following month. The forecasters
are asked to forecast the average of the level of U.S. interest rates over a particular calendar
quarter, e.g. the federal funds rate and the set of H.15 Constant Maturity Treasuries (CMT) of
the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year and 10-year, and the quarter
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over quarter percentage changes in Real GDP, the GDP Price Index and the Consumer Price
Index, beginning with the current quarter and extending 4 to 5 quarters into the future.
In this study, we look at a subset of the forecasted variables. Specifically, we use the Blue

Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q) percentage change
in the Real GDP, the GDP Price Index and the CPI, and convert to quarterly observations as
explained below.

1. Quarterly and annual PGDP inflation (1986:Q1 - 2018:Q3): We use survey responses for
the quarter-over-quarter percentage change in the GDP price index, defined as:

“Forecasts for the quarter-over-quarter percentage change in the GDP Chained Price In-
dex. Seasonally adjusted annual rate (SAAR). 1992 Jan. to 1996 June, Q/Q % change
(SAAR) in GDP implicit deflator. 1986 Jan. to 1991 Dec., Q/Q % change (SAAR) in
GNP implicit deflator.”

Quarterly and annual inflation forecasts are constructed as follows. Let F(i)
t

[
gP

(Q/Q)
t+h

]
be forecaster i’s prediction of Q/Q % change in PGDP h quarters ahead. Annualized
inflation forecasts for forecaster i in the next quarter are:

F(i)
t [πt+1,t] = 400× ln

1 +
F(i)
t

[
gP

(Q/Q)
t+1

]
100


1
4

Annual Inflation forecasts are:

F(i)
t [πt+4,t] = 100× ln

 4∏
h=1

1 +
F(i)
t

[
gP

(Q/Q)
t+h

]
100


1
4

Quarterly nowcasts of inflation are constructed as:

N(i)
t [πt,t−1] = 400× ln

1 +
N(i)
t

[
gP

(Q/Q)
t

]
100


1
4

where N(i)
t

[
gP

(Q/Q)
t

]
is forecaster i’s nowcast of Q/Q % change in PGDP for the current

quarter. Annual nowcasts of inflation for forecaster i are:

N(i)
t [πt,t−4] = 100× ln

(
N(i)
t [Pt]

Pt−4

)
,

where Pt−4 is the BEA’s most accurate estimate of PGDP four quarters back andN(i)
t [Pt] is

forecaster i’s nowcast of PGDP for the current quarter which is constructed as: N(i)
t [Pt] =

exp
(
N(i)
t [πt,t−1] /400 + lnPt−1

)
. Similarly, we also calculate the 5th through the 95th

percentiles as well as the average, variance, and skewness of inflation forecasts across
respondents.
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2. Real GDP growth (1984:Q3 - 2018:Q3): We use quarter-over-quarter percentage change
in the Real GDP, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the level of chain-weighted
real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change (SAAR) in
real GNP.”

Quarterly and annual growth rates are constructed the same way as for inflation, except
RGDP replaces PGDP.

3. CPI inflation (1984:Q3 - 2018:Q3): We use quarter-over-quarter percentage change in the
consumer price index, which is defined as

“Forecasts for the quarter-over-quarter percentage change in the CPI (consumer prices
for all urban consumers). Seasonally adjusted, annual rate.”

Quarterly and annual CPI inflation are constructed the same way as for PGDP inflation,
except CPI replaces PGDP.

The surveys are conducted right before the publication of the newsletter. Each issue is
always dated the 1st of the month and the actual survey conducted over a two-day period
almost always between 24th and 28th of the month. The major exception is the January issue
when the survey is conducted a few days earlier to avoid conflict with the Christmas holiday.
Therefore, we assume that the end of the last month (equivalently beginning of current month)
is when the forecast is made. For example, for the report in 2008 Feb, we assume that the
forecast is made on Feb 1, 2008. To convert monthly forecasts to quarterly forecasts, we use
the forecasts in the middle month of each quarter as the quarterly forecasts. This is to align
the Blue Chip more closely with the SPF deadline for survey completion, similar to what we
do for the SOC.

Real-Time Macro Data

At each forecast date in the sample, we construct a dataset of macro variables that could have
been observed on or before the day of the survey deadline. We use the Philadelphia Fed’s
Real-Time Data Set to obtain vintages of macro variables.21 These vintages capture changes
to historical data due to periodic revisions made by government statistical agencies. The
vintages for a particular series can be available at the monthly and/or quarterly frequencies,
and the series have monthly and/or quarterly observations. In cases where a variable has
both frequencies available for its vintages and/or its observations, we choose one format of
the variable. For instance, nominal personal consumption expenditures on goods is quarterly
data with both monthly and quarterly vintages available; in this case, we use the version with
monthly vintages.

Real Time Regressands Following CG, all regressions are run and forecast errors computed
using forecasts of real-time inflation and GDP data available four quarters after the period being

21The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-files.
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forecast. Following Faust and Wright (2013), we use continuous time compounding of inflation
and GDP growth. For example, four quarter inflation is computed as

πt+4,t = (100)× ln
(
Pt+h
Pt

)
,

where Pt is the time t price level.

Real Time Regressors For the regressors we need to combine all of the data observed at
the time of a forecast date, and know the specific day that the data in each vintage are released.
It is not suffi cient to align vintage dates with forecast dates because the time t vintage might
include data released after the time t forecast was made. The series-specific documentation on
the Philadelphia Fed’s website provides details on the timing of the vintages for each series.
For some series, exact release dates are known, and thus the vintages reflect the data available
at the time of the data release. When this is the case, we download the release dates from the
relevant statistical agency and compare each vintage release date to the corresponding survey
deadline to determine whether a particular vintage can be included in a survey respondent’s
information set.
For other variables, we only know that vintages contain data available in the middle of a

month or quarter, but not the exact day. A subset of these variables come from the BEA
National Income and Product Accounts, which are released at the end of each month. Since
NIPA series are released at the end of each month, and vintages reflect data available in the
middle of each month, a survey respondent making a forecast in the middle of a month includes
the current month’s vintage of NIPA data in her information set. However, there is another
subset of variables with unknown release dates, for which we must make the conservative
assumption that a forecaster at time t observes at most the time t − 1 vintage of data. An
Excel Workbook containing the known release dates and timing assumptions is available on the
authors’websites.
In addition to the macro variables with different vintages that we obtain from the Philadel-

phia Fed, we include a measure of residential real estate prices from the Case-Shiller/S&P index
deflated by the Consumer Price Index, and energy prices from the U.S. Bureau of Labor Sta-
tistics (BLS). Energy prices do not get revised, so they do not have multiple vintages. Instead
there is just one historical version of the data.
After combining all of the series that are known by the forecasters at each date, we convert

monthly data to quarterly by using either the beginning-of-quarter or end-of-quarter values.
The decision to use beginning-of-quarter or end-of-quarter depends on the survey deadline of
a particular forecast date. If the survey deadline is known to be in the middle of the second
month of quarter t, then it is conceivable that the forecasters would have information about the
first month of quarter t. Therefore, we use beginning-of-quarter values. Alternatively, if the
survey deadline is unknown we allow only information up to quarter t− 1 to enter the model.
Thus, we use end-of-quarter values in these cases.
Table A.2 gives the complete list of real time macro variables. Included in the table is the

first available vintages for each variable that has multiple vintages. We do not include the
last vintage because most variables have vintages through the present.22 Table A.2 also lists

22For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the last
available vintage is 2013:Q2.
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the transformation applied to each variable to make them stationary before generating factors.
Let Xit denote variable i at time t after the transformation, and let XA

it be the untransformed
series. Let ∆ = (1− L) with LXit = Xit−1. There are seven possible transformations with the
following codes:

1 Code lv: Xit = XA
it

2 Code ∆lv: Xit = XA
it −XA

it−1

3 Code ∆2lv: Xit = ∆2XA
it

4 Code ln: Xit = ln(XA
it )

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1)

6 Code ∆2ln: Xit = ∆2ln(XA
it )

7 Code ∆lv/lv: Xit = (XA
it −XA

it−1)/XA
it−1

Table A.2: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage
Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962:M11
2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962:M11
3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979:M8
4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983:M7
5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. profits after tax without IVA/CCAdj 1965:Q4
6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. profits after tax with IVA/CCAdj 1981:Q1
7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998:Q4
8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965:Q4
9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965:Q4
10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965:Q4
11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965:Q4
12 OLIQVQD Philly Fed ∆ln Other labor income 1965:Q4
13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965:Q4
14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965:Q4
15 PROPIQVQD Philly Fed ∆ln Proprietors’income 1965:Q4
16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965:Q4
17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965:Q4
18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965:Q4
19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965:Q4
20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965:Q4
21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965:Q4
22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965:Q4
23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj
Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946:M12
25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971:M9
26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971:M9
27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971:M9
28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998:M11
29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998:M11
30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998:M11
31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998:Q4
32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965:Q4
33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965:Q4

Group 3: Orders, Investment, Housing
34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968:M2
35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965:Q4
36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories
1965:Q4

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965:Q4
38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987:M1

Group 4: Consumption
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Table A.2 (Cont’d)

No. Short Name Source Tran Description First Vintage
39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:M8
40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009:M8
41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:M8
42 NCONSNPMMVMD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009:M8
43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998:M11
44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:M8
45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009:M8
46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998:M11
47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998:M11
48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:M8
49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998:M11
50 RCONSNPMMVMD Philly Fed ∆ln Real final cons. exp. of NPISH 2009:M8
51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:Q3
52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 0209:Q3
53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:Q3
54 NCONSNPMVQD Philly Fed ∆ln Nom. final cons. exp. of NPISH 2009:Q3
55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965:Q4
56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:Q3
57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009:Q3
58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965:Q4
59 RCONNDMVQD Philly Fed ∆ln Real pesonal cons. exp. - Nondurable goods 1965:Q4
60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:Q3
61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965:Q4
62 RCONSNPMVQD Philly Fed ∆ln Real final cons. exp. of NPISH 2009:Q3
63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965:Q4

Group 5: Prices
64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009:M8
65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:M8
66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:M8
67 PCONSNPMMVMD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009:M8
68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998:M11
69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998:M11
70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998:M11
71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998:M11
72 PCONGMVQD Philly Fed ∆2ln Price index for personal. cons. exp. - Goods 2009:Q3
73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:Q3
74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:Q3
75 PCONSNPMVQD Philly Fed ∆2ln Price index for final cons. exp. of NPISH 2009:Q3
76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996:Q1
77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994:Q3
78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965:Q4
79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965:Q4
80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965:Q4

Group 6: Trade and Government
81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965:Q4
82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965:Q4
83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965:Q4
84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local
1965:Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965:Q4
86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965:Q4

Group 7: Money and Credit
87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980:Q2
88 M1QVMD Philly Fed ∆2ln M1 money stock 1965:Q4
89 M2QVMD Philly Fed ∆2ln M2 money stock 1971:Q2
90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967:Q3
91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984:Q2
92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967:Q3
93 DIVQVQD Philly Fed ∆ln Dividends 1965:Q4

Monthly Financial Factor Data

The 147 financial series in this data set are versions of the financial dataset used in Jurado,
Ludvigson, and Ng (2015) and Ludvigson, Ma, and Ng (2019). It consists of a number of indica-
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tors measuring the behavior of a broad cross-section of asset returns, as well as some aggregate
financial indicators not included in the macro dataset. These data include valuation ratios
such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends
and prices, default and term spreads, yields on corporate bonds of different ratings grades,
yields on Treasuries and yield spreads, and a broad cross-section of industry equity returns.
Following Fama and French (1992), returns on 100 portfolios of equities sorted into 10 size and
10 book-market categories. The dataset Xf also includes a group of variables we call “risk-
factors,”since they have been used in cross-sectional or time-series studies to uncover variation
in the market risk-premium. These risk-factors include the three Fama and French (1993) risk
factors, namely the excess return on the market MKTt, the “small-minus-big” (SMBt) and
“high-minus-low”(HMLt) portfolio returns, the momentum factor UMDt, and the small stock
value spread R15−R11.
The raw data used to form factors are always transformed to achieve stationarity. In addi-

tion, when forming forecasting factors from the large macro and financial datasets, the raw data
(which are in different units) are standardized before performing PCA. When forming common
uncertainty from estimates of individual uncertainty, the raw data (which are in this case in
the same units) are demeaned, but we do not divide by the observation’s standard deviation
before performing PCA.
Throughout, the factors are estimated by the method of static principal components (PCA).

Specifically, the T × rF matrix F̂t is
√
T times the rF eigenvectors corresponding to the rF

largest eigenvalues of the T × T matrix xx′/(TN) in decreasing order. In large samples (when√
T/N → ∞), Bai and Ng (2006) show that the estimates F̂t can be treated as though they

were observed in the subsequent forecasting regression.
All returns and spreads are expressed in logs (i.e. the log of the gross return or spread),

are displayed in percent (i.e. multiplied by 100), and are annualized by multiplying by 12,
i.e., if x is the original return or spread, we transform to 1200ln (1 + x/100). Federal Reserve
data are annualized by default and are therefore not “re-annualized.”Note: this annualization
means that the annualized standard deviation (volatility) is equal to the data standard deviation
divided by

√
12. The data series used in this dataset are listed below by data source. Additional

details on data transformations are given below the table.
Let Xit denote variable i observed at time t after e.g., logarithm and differencing transfor-

mation, and let XA
it be the actual (untransformed) series. Let ∆ = (1− L) with LXit = Xit−1.

There are six possible transformations with the following codes:

1 Code lv: Xit = XA
it .

2 Code ∆lv: Xit = XA
it −XA

it−1.

3 Code ∆2lv: Xit = ∆2XA
it .

4 Code ln: Xit = ln(XA
it ).

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1).

6 Code ∆2ln: Xit = ∆2lnXA
it .

7 Code ∆lv/lv:
(
XA
it −XA

it−1

)
/XA

it−1
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Table A.3: List of Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Prices, Yield, Dividends

1 D_log(DIV) CRSP ∆ln ∆ logD∗t see additional details below
2 D_log(P) CRSP ∆ln ∆ logPt see additional details below
3 D_DIVreinvest CRSP ∆ln ∆ logDre,∗

t see additional details below
4 D_Preinvest CRSP ∆ln ∆ logP re,∗t see additional details below
5 d-p CRSP ln log(D∗t )− logPt see additional details below

Group 2: Equity Risk Factors
6 R15-R11 Kenneth French lv (Small, High) minus (Small, Low) sorted on (size, book-to-market)
7 Mkt-RF Kenneth French lv Market excess return
8 SMB Kenneth French lv Small Minus Big, sorted on size
9 HML Kenneth French lv High Minus Low, sorted on book-to-market
10 UMD Kenneth French lv Up Minus Down, sorted on momentum

Group 3: Industries
11 Agric Kenneth French lv Agric industry portfolio
12 Food Kenneth French lv Food industry portfolio
13 Beer Kenneth French lv Beer industry portfolio
14 Smoke Kenneth French lv Smoke industry portfolio
15 Toys Kenneth French lv Toys industry portfolio
16 Fun Kenneth French lv Fun industry portfolio
17 Books Kenneth French lv Books industry portfolio
18 Hshld Kenneth French lv Hshld industry portfolio
19 Clths Kenneth French lv Clths industry portfolio
20 MedEq Kenneth French lv MedEq industry portfolio
21 Drugs Kenneth French lv Drugs industry portfolio
22 Chems Kenneth French lv Chems industry portfolio
23 Rubbr Kenneth French lv Rubbr industry portfolio
24 Txtls Kenneth French lv Txtls industry portfolio
25 BldMt Kenneth French lv BldMt industry portfolio
26 Cnstr Kenneth French lv Cnstr industry portfolio
27 Steel Kenneth French lv Steel industry portfolio
28 Mach Kenneth French lv Mach industry portfolio
29 ElcEq Kenneth French lv ElcEq industry portfolio
30 Autos Kenneth French lv Autos industry portfolio
31 Aero Kenneth French lv Aero industry portfolio
32 Ships Kenneth French lv Ships industry portfolio
33 Mines Kenneth French lv Mines industry portfolio
34 Coal Kenneth French lv Coal industry portfolio
35 Oil Kenneth French lv Oil industry portfolio
36 Util Kenneth French lv Util industry portfolio
37 Telcm Kenneth French lv Telcm industry portfolio
38 PerSv Kenneth French lv PerSv industry portfolio
39 BusSv Kenneth French lv BusSv industry portfolio
40 Hardw Kenneth French lv Hardw industry portfolio
41 Chips Kenneth French lv Chips industry portfolio
42 LabEq Kenneth French lv LabEq industry portfolio
43 Paper Kenneth French lv Paper industry portfolio
44 Boxes Kenneth French lv Boxes industry portfolio
45 Trans Kenneth French lv Trans industry portfolio
46 Whlsl Kenneth French lv Whlsl industry portfolio
47 Rtail Kenneth French lv Rtail industry portfolio
48 Meals Kenneth French lv Meals industry portfolio
49 Banks Kenneth French lv Banks industry portfolio
50 Insur Kenneth French lv Insur industry portfolio
51 RlEst Kenneth French lv RlEst industry portfolio
52 Fin Kenneth French lv Fin industry portfolio
53 Other Kenneth French lv Other industry portfolio

Group 4: Size/BM
54 1_2 Kenneth French lv (1, 2) portfolio sorted on (size, book-to-market)
55 1_4 Kenneth French lv (1, 4) portfolio sorted on (size, book-to-market)
56 1_5 Kenneth French lv (1, 5) portfolio sorted on (size, book-to-market)
57 1_6 Kenneth French lv (1, 6) portfolio sorted on (size, book-to-market)
58 1_7 Kenneth French lv (1, 7) portfolio sorted on (size, book-to-market)
59 1_8 Kenneth French lv (1, 8) portfolio sorted on (size, book-to-market)
60 1_9 Kenneth French lv (1, 9) portfolio sorted on (size, book-to-market)
61 1_high Kenneth French lv (1, high) portfolio sorted on (size, book-to-market)
62 2_low Kenneth French lv (2, low) portfolio sorted on (size, book-to-market)
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Table A.3 (Cont’d)

No. Short Name Source Tran Description
63 2_2 Kenneth French lv (2, 2) portfolio sorted on (size, book-to-market)
64 2_3 Kenneth French lv (2, 3) portfolio sorted on (size, book-to-market)
65 2_4 Kenneth French lv (2, 4) portfolio sorted on (size, book-to-market)
66 2_5 Kenneth French lv (2, 5) portfolio sorted on (size, book-to-market)
67 2_6 Kenneth French lv (2, 6) portfolio sorted on (size, book-to-market)
68 2_7 Kenneth French lv (2, 7) portfolio sorted on (size, book-to-market)
69 2_8 Kenneth French lv (2, 8) portfolio sorted on (size, book-to-market)
70 2_9 Kenneth French lv (2, 9) portfolio sorted on (size, book-to-market)
71 2_high Kenneth French lv (2, high) portfolio sorted on (size, book-to-market)
72 3_low Kenneth French lv (3, low) portfolio sorted on (size, book-to-market)
73 3_2 Kenneth French lv (3, 2) portfolio sorted on (size, book-to-market)
74 3_3 Kenneth French lv (3, 3) portfolio sorted on (size, book-to-market)
75 3_4 Kenneth French lv (3, 4) portfolio sorted on (size, book-to-market)
76 3_5 Kenneth French lv (3, 5) portfolio sorted on (size, book-to-market)
77 3_6 Kenneth French lv (3, 6) portfolio sorted on (size, book-to-market)
78 3_7 Kenneth French lv (3, 7) portfolio sorted on (size, book-to-market)
79 3_8 Kenneth French lv (3, 8) portfolio sorted on (size, book-to-market)
80 3_9 Kenneth French lv (3, 9) portfolio sorted on (size, book-to-market)
81 3_high Kenneth French lv (3, high) portfolio sorted on (size, book-to-market)
82 4_low Kenneth French lv (4, low) portfolio sorted on (size, book-to-market)
83 4_2 Kenneth French lv (4, 2) portfolio sorted on (size, book-to-market)
84 4_3 Kenneth French lv (4, 3) portfolio sorted on (size, book-to-market)
85 4_4 Kenneth French lv (4, 4) portfolio sorted on (size, book-to-market)
86 4_5 Kenneth French lv (4, 5) portfolio sorted on (size, book-to-market)
87 4_6 Kenneth French lv (4, 6) portfolio sorted on (size, book-to-market)
88 4_7 Kenneth French lv (4, 7) portfolio sorted on (size, book-to-market)
89 4_8 Kenneth French lv (4, 8) portfolio sorted on (size, book-to-market)
90 4_9 Kenneth French lv (4, 9) portfolio sorted on (size, book-to-market)
91 4_high Kenneth French lv (4, high) portfolio sorted on (size, book-to-market)
92 5_low Kenneth French lv (5, low) portfolio sorted on (size, book-to-market)
93 5_2 Kenneth French lv (5, 2) portfolio sorted on (size, book-to-market)
94 5_3 Kenneth French lv (5, 3) portfolio sorted on (size, book-to-market)
95 5_4 Kenneth French lv (5, 4) portfolio sorted on (size, book-to-market)
96 5_5 Kenneth French lv (5, 5) portfolio sorted on (size, book-to-market)
97 5_6 Kenneth French lv (5, 6) portfolio sorted on (size, book-to-market)
98 5_7 Kenneth French lv (5, 7) portfolio sorted on (size, book-to-market)
99 5_8 Kenneth French lv (5, 8) portfolio sorted on (size, book-to-market)
100 5_9 Kenneth French lv (5, 9) portfolio sorted on (size, book-to-market)
101 5_high Kenneth French lv (5, high) portfolio sorted on (size, book-to-market)
102 6_low Kenneth French lv (6, low) portfolio sorted on (size, book-to-market)
103 6_2 Kenneth French lv (6, 2) portfolio sorted on (size, book-to-market)
104 6_3 Kenneth French lv (6, 3) portfolio sorted on (size, book-to-market)
105 6_4 Kenneth French lv (6, 4) portfolio sorted on (size, book-to-market)
106 6_5 Kenneth French lv (6, 5) portfolio sorted on (size, book-to-market)
107 6_6 Kenneth French lv (6, 6) portfolio sorted on (size, book-to-market)
108 6_7 Kenneth French lv (6, 7) portfolio sorted on (size, book-to-market)
109 6_8 Kenneth French lv (6, 8) portfolio sorted on (size, book-to-market)
110 6_9 Kenneth French lv (6, 9) portfolio sorted on (size, book-to-market)
111 6_high Kenneth French lv (6, high) portfolio sorted on (size, book-to-market)
112 7_low Kenneth French lv (7, low) portfolio sorted on (size, book-to-market)
113 7_2 Kenneth French lv (7, 2) portfolio sorted on (size, book-to-market)
114 7_3 Kenneth French lv (7, 3) portfolio sorted on (size, book-to-market)
115 7_4 Kenneth French lv (7, 4) portfolio sorted on (size, book-to-market)
116 7_5 Kenneth French lv (7, 5) portfolio sorted on (size, book-to-market)
117 7_6 Kenneth French lv (7, 6) portfolio sorted on (size, book-to-market)
118 7_7 Kenneth French lv (7, 7) portfolio sorted on (size, book-to-market)
119 7_8 Kenneth French lv (7, 8) portfolio sorted on (size, book-to-market)
120 7_9 Kenneth French lv (7, 9) portfolio sorted on (size, book-to-market)
121 8_low Kenneth French lv (8, low) portfolio sorted on (size, book-to-market)
122 8_2 Kenneth French lv (8, 2) portfolio sorted on (size, book-to-market)
123 8_3 Kenneth French lv (8, 3) portfolio sorted on (size, book-to-market)
124 8_4 Kenneth French lv (8, 4) portfolio sorted on (size, book-to-market)
125 8_5 Kenneth French lv (8, 5) portfolio sorted on (size, book-to-market)
126 8_6 Kenneth French lv (8, 6) portfolio sorted on (size, book-to-market)
127 8_7 Kenneth French lv (8, 7) portfolio sorted on (size, book-to-market)
128 8_8 Kenneth French lv (8, 8) portfolio sorted on (size, book-to-market)
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Table A.3 (Cont’d)

No. Short Name Source Tran Description
129 8_9 Kenneth French lv (8, 9) portfolio sorted on (size, book-to-market)
130 8_high Kenneth French lv (8, high) portfolio sorted on (size, book-to-market)
131 9_low Kenneth French lv (9, low) portfolio sorted on (size, book-to-market)
132 9_2 Kenneth French lv (9, 2) portfolio sorted on (size, book-to-market)
133 9_3 Kenneth French lv (9, 3) portfolio sorted on (size, book-to-market)
134 9_4 Kenneth French lv (9, 4) portfolio sorted on (size, book-to-market)
135 9_5 Kenneth French lv (9, 5) portfolio sorted on (size, book-to-market)
136 9_6 Kenneth French lv (9, 6) portfolio sorted on (size, book-to-market)
137 9_7 Kenneth French lv (9, 7) portfolio sorted on (size, book-to-market)
138 9_8 Kenneth French lv (9, 8) portfolio sorted on (size, book-to-market)
139 9_high Kenneth French lv (9, high) portfolio sorted on (size, book-to-market)
140 10_low Kenneth French lv (10, low) portfolio sorted on (size, book-to-market)
141 10_2 Kenneth French lv (10, 2) portfolio sorted on (size, book-to-market)
142 10_3 Kenneth French lv (10, 3) portfolio sorted on (size, book-to-market)
143 10_4 Kenneth French lv (10, 4) portfolio sorted on (size, book-to-market)
144 10_5 Kenneth French lv (10, 5) portfolio sorted on (size, book-to-market)
145 10_6 Kenneth French lv (10, 6) portfolio sorted on (size, book-to-market)
146 10_7 Kenneth French lv (10, 7) portfolio sorted on (size, book-to-market)
147 VXO Fred MD lv VXOCLSx

CRSP Data Details Value-weighted price and dividend data were obtained from the
Center for Research in Security Prices (CRSP). From the Annual Update data, we obtain
monthly value-weighted returns series vwretd (with dividends) and vwretx (excluding divi-
dends). These series have the interpretation

VWRETDt =
Pt+1 +Dt+1

Pt

VWRETXt =
Pt+1

Pt

From these series, a normalized price series P , can be constructed using the recursion

P0 = 1

Pt = Pt−1 · VWRETXt.

A dividend series can then be constructed using

Dt = Pt−1(VWRETDt − VWRETXt).

In order to remove seasonality of dividend payments from the data, instead of Dt we use the
series

D∗t =
1

12

11∑
j=0

Dt−j

i.e., the moving average over the entire year. For the price and dividend series under “reinvest-
ment,”we calculate the price under reinvestment, P re

t , as the normalized value of the market
portfolio under reinvestment of dividends, using the recursion

P re
0 = 1

P re
t = Pt−1 · VWRETDt
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Similarly, we can define dividends under reinvestment, Dre
t , as the total dividend payments on

this portfolio (the number of “shares”of which have increased over time) using

Dre
t = P re

t−1(VWRETDt − VWRETXt).

As before, we can remove seasonality by using

Dre,∗
t =

1

2

11∑
j=0

Dre
t−j.

Five data series are constructed from the CRSP data as follows:

• D_log(DIV): ∆ logD∗t .

• D_log(P): ∆ logPt.

• D_DIVreinvest: ∆ logDre,∗
t

• D_Preinvest: ∆ logP re,∗
t

• d-p: log(D∗t )− log(Pt)

Kenneth French Data Details The following data are obtained from the data library of
Kenneth French’s Dartmouth website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html):

• Fama/French Factors: From this dataset we obtain the data series RF, Mkt-RF, SMB,
HML.

• 25 Portfolios formed on Size and Book-to-Market (5 x 5): From this dataset we obtain
the series R15-R11, which is the spread between the (small, high book-to-market) and
(small, low book-to-market) portfolios.

• Momentum Factor (Mom): From this dataset we obtain the series UMD, which is equal
to the momentum factor.

• 49 Industry Portfolios: From this dataset we use all value-weighted series, excluding any
series that have missing observations from Jan. 1960 on, from which we obtain the series
Agric through Other. The omitted series are: Soda, Hlth, FabPr, Guns, Gold, Softw.

• 100 Portfolios formed in Size and Book-to-Market: From this dataset we use all value-
weighted series, excluding any series that have missing observations from Jan. 1960 on.
This yields variables with the name X_Y where X stands for the index of the size variable
(1, 2, ..., 10) and Y stands for the index of the book-to-market variable (Low, 2, 3, ..., 8,
9, High). The omitted series are 1_low, 1_3, 7_high, 9_9, 10_8, 10_9, 10_high.
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6.0.3 Daily Financial Data

Daily Data and construction of daily factors The daily financial series in this data set
are from the daily financial dataset used in Andreou, Ghysels, and Kourtellos (2013). We create
a smaller daily database which is a subset of the large cross-section of 991 daily series in their
dataset. Our dataset covers five classes of financial assets: (i) the Commodities class; (ii) the
Corporate Risk category; (iii) the Equities class; (iv) the Foreign Exchange Rates class and (v)
the Government Securities.
The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959 to

24-Oct-2018 (14852 trading days) from the above five categories of financial assets. We remove
series with fewer than ten years of data and time periods with no variables observed, which
occurs for some series in the early part of the sample. For those years, we have less than 87
series. There are 39 commodity variables which include commodity indices, prices and futures,
16 corporate risk series, 9 equity series which include major US stock market indices and the 500
Implied Volatility, 16 government securities which include the federal funds rate, government
treasury bills of securities from three months to ten years, and 7 foreign exchange variables
which include the individual foreign exchange rates of major five US trading partners and two
effective exchange rate. We choose these daily predictors because they are proposed in the
literature as good predictors of economic growth.
We construct daily financial factors in a quarterly frequency in two steps. First, we use

these daily financial time series to form factors at a daily frequency. The raw data used to form
factors are always transformed to achieve stationarity. The raw daily data are also standardized
before performing factor estimation (see generic description below). We estimate factors at each
daily date in the sample using the entire history (from 23-Oct-1959) of variables observed in
real time.
In the second step, we convert these daily financial indicators to quarterly weighted variables

to form quarterly factors using the optimal weighting scheme according to the method described
below (see the optimal weighting scheme section).
The data series used in this dataset are listed below in Table A.4 by data source. The tables

also list the transformation applied to each variable to make them stationary before generating
factors. The transformations used to stationarize a time series are the same as those explained
in the section “Monthly financial factor data”.

Table A.4: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description
Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX
2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX
3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX
4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX
5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX
6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX
7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX
8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX
9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX
10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX
11 GSKCSPT Data Stream ∆ln S&P GSCI Coffee Spot - PRICE INDEX
12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX



Table A.4 (Cont’d)

No. Short Name Source Tran Description
13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX
14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX
15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily
16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE
17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT
18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.

PRICE
19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE
20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE
21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE
22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE
23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE
24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE
25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE
26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE
27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.

PRICE
28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE
29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE
30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT
31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT
32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT
33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT
34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)
35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)
36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)
37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)
38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)
39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract

Settlement ($/Bbl)
Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX
41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE
42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX
43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX
44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE
45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX
46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX
47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX
48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk
49 LIBOR FRED ∆lv Overnight London Interbank Offered Rate (%)
50 1MLIBOR FRED ∆lv 1-Month London Interbank Offered Rate (%)
51 3MLIBOR FRED ∆lv 3-Month London Interbank Offered Rate (%)
52 6MLIBOR FRED ∆lv 6-Month London Interbank Offered Rate (%)
53 1YLIBOR FRED ∆lv One-Year London Interbank Offered Rate (%)
54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds
57 APFNF-

AANF
Data Stream lv 1-Month A2/P2/F2 Nonfinancial Commercial Paper (NCP)

(% P. A.) minus 1-Month Aa NCP (% P.A.)
58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-

cial Commercial Paper (% P.A.)
59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank Offered Rate

(%)
60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus

Y10-Tbond
61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus

Y10-Tbond
62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: Effective Yield (%)

minus Y10-Tbond
63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: Effective Yield

(%) minus Y10-Tbond



Table A.4 (Cont’d)

No. Short Name Source Tran Description
64 MLAAA-

10YTB
Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: Effective Yield

(%) minus Y10-Tbond
Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE
66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE
67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE
68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE

RATE
69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE

RATE
70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity

(%) minus Fed Funds
71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

Fed Funds
72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus Fed Funds
73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) mi-

nus 3M-Tbills
74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills
75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus 3M-Tbills
76 BKEVEN05 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 5-year (%)
77 BKEVEN10 FRB lv US Inflation compensation: continuously compounded zero-

coupon yield: 10-year (%)
78 BKEVEN1F4 FRB lv BKEVEN1F4
79 BKEVEN1F9 FRB lv BKEVEN1F9
80 BKEVEN5F5 FRB lv US Inflation compensation: coupon equivalent forward rate:

5-10 years (%)
Group 5: Foreign Exchange (FX)

81 US_CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-
DEX

82 US_CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-
CHANGE INDEX

83 US_CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE
84 EU_USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE
85 US_YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE
86 US_SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE
87 US_UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

From Daily to Quarterly Factors: Weighting Schemes After we obtain daily financial
factors GD,t, we use some weighting schemes proposed in the literature about Mixed Data
Sampling (MIDAS) regressions to form quarterly factors, GQ

D,t. Denote by G
D
t a factor in a

daily frequency formed from the daily financial dataset and denote by GQ
t a quarterly aggregate

of the corresponding daily factor time series. Let GD
ND−j,dt,t denote the value of a daily factor

in the jth day counting backwards from the survey deadline dt in quarter t. Hence, the day dt
of quarter t corresponds with j = 0 and is therefore GD

ND,dt,t
. For simplicity, we suppress the

subscript dt thus GD
ND−j,dt,t ≡ GD

ND−j,t.
We compute the quarterly aggregate of a daily financial factor as a weighted average of

observations over the ND business days before the survey deadline. This means that the fore-
casters’s information set includes daily financial data up to the previous ND business days. G

Q
t

is defined as:

GQ
t (w) ≡

ND∑
i=1

wiG
D
ND−i,t

where w is a vector of weights. We consider the following three types of weighting schemes to



convert daily factor observations to quarterly. Each weighting scheme weights information by
some function of the number of days prior to the survey deadline.
1. wi = 1 for i = 1 and wi = 0 otherwise. This weighting scheme places all weight on data

in the last business day before the survey deadline for that quarter and zero weight on any data
prior to that day.
2. wi = θj∑ND

j=1 θ
j
where we consider a range of θj for θj = (0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1)′. The

smaller is θj, the more rapidly information prior to the survey deadline day is downweighted.
This down-weighting is progressive but not nonmonotone. θj = 1 is a simple average of the
observations across all days in the quarter.
3. The third parameterization has two parameters, or θD = (θ1, θ2)′ and allows for non-

monotone weighting of past information:

w (i; θ1, θ2) =
f
(

i
ND
, θ1; θ2

)
∑ND

j=1 f
(

j
ND
, θ1; θ2

)
where:

f(x, a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)

Γ(a) =

∫ ∞
0

e−xxa−1dx

The weights w (i; θ1, θ2) are the Beta polynomial MIDAS weights of Ghysels, Sinko, and Valka-
nov (2007), which are based on the Beta function. This weighting scheme is flexible enough to
generate a range of possible shapes with only two parameters.
We consider these possible weighting schemes and choose the optimal weighting scheme w∗

from these 24 weighting schemes for a daily financial factor GD
t by minimizing the sum of square

residuals in a regression of yj,t+h on G
Q
t (w):

yj,t+h = a+ b ·
ND∑
i=1

wiG
D
ND−i,t︸ ︷︷ ︸

GQt (w)

+ ut+h.

This is done in real time using recursive regressions and an initial in-sample estimation window
that matches the timing described below for the data-dependent choice of tuning parameter in
the machine learning estimation (see the section on Estimation and Machine Learning).
We assume that ND = 14 which implies that forecasters use daily information in at most

the past two weeks before the survey deadline. The process is repeated for each daily financial
factor in GD,t to form quarterly factors GQ

D,t.

Estimation and Machine Learning

The model to be estimated is
yj,t+h = X ′tβ

(i)
j + εjt+h.

It should be noted that the most recent observation on the left-hand-side is generally available
in real time only with a one-period lag, thus the forecasting estimations can only be run with



data over a sample that stops one period later than today in real time. Xt always denotes the
most recent data that would have been in real time prior to the date on which the forecast
was submitted. The coeffi cients β(i)

j,t are estimated using the Elastic Net (EN) estimator, which

depend on regularization parameter parameters λ(i)
t =

(
λ

(i)
1t , λ

(i)
2t

)′
(See the next section for a

description of EN). The procedure involves iterating on the steps given in the main text.
We allow the machine to additionally learn about whether the coeffi cient on the survey

forecast should be shrunk toward zero or toward unity. Recall that the machine forecast for
the ith percentile is

E(i)
t (yj,t+h) ≡ α̂

(i)
j + β̂

(i)

jFF
(i)
t [yj,t+h] + B̂

(i)′
jZZjt.

If the machine model is implemented as an estimation with using forecast errors as the depen-
dent variable, i.e.,

yj,t+h − F(i)
t [yj,t+h] = α

(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZZt + εjt+h, (A.12)

the machine effi cient benchmark is characterized by β(i)
jF = 0; B

(i)
jZ = 0;α

(i)
j = 0. Because EN

shrinks estimated coeffi cients toward zero, this results in shrinkage of β(i)
jF toward unity. In this

case the machine forecast is given by

E(i)
t (yj,t+h) ≡ α̂

(i)
j +

(
β̂

(i)

jF + 1
)
F(i)
t [yj,t+h] + B̂

(i)′
jZZjt.

By contrast, if the machine forecast is implemented by running the specification

yj,t+h = α
(i)
j + β

(i)
jFF

(i)
t [yj,t+h] + B

(i)′
jZZt + εjt+h,

then β(i)
jF is shrunk toward zero and the algorithm will typically place less weight on the sur-

vey forecast than the specification (A.12). In the implementation, we allow the machine to
choose which specification to run over time by having it pick the one that that minimizes the
mean-square loss function L

(
λ

(i)
t ,TIS, TTS

)
over psuedo out-of-sample forecast errors in every

training sample.
To capture extreme non-linearities associated with recessions, the machine forecasts follow a

simple switching model. In most periods, the forecast is based on the “normal-times”statistical
model just described. To cope with rapid economic change, as in a recession, the machine
forecast is permitted to switch to a simpler model based on a recession indicator. We use as
the recession indicator the term spread, defined as the difference between the 10-year Treasury
bond rate and the 3-month Treasury bill rate. When the term spread at time t is at or below the
real time sample 10th percentile value, the machine forecast of t+ 4 is switched to a recession-
model forecast which is based solely on a dummy indicator It−4, which takes the value 1 when
the term spread at t − 4 is below a threshold. The precise threshold used is the one that
minimizes the mean-square loss function in the relevant training sample prior to the actual
forecast. The machine chooses among thresholds that represent the real time sample 10th, 5th,
or 1st percentile values for the term spread. The recession model forecast is the fitted value
from a regression of real time real GDP growth at time t on the 4-quarter lagged value of It−4.



Elastic Net

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Selection
Operator (LASSO) and ridge type penalties. LASSO. Suppose our goal is to estimate the
coeffi cients in the linear model:

yj,t+h = αj + βjFF
(i)
t [yj,t+h] + BjZ︸︷︷︸

qr×qr

Zjt + εjt+h

Collecting all the independent variables and coeffi cients into a single matrix and vector, the
model can be written as:

yj,t+h = X ′tjβj + εjt+h

where Xt = (1,X1t,...,XKt)′ collects all the independent variable observations
(
F(i)
t [yj,t+h] ,Zjt

)
into a vector with “1”and βj =

(
αj, βjF, vec (BjZ)

)′ ≡ (β0, β1, ...βK)′ collects all the coeffi cient.
It is customary to standardize the elements of Xt such that sample means are zero and sample
standard deviations are unity. The coeffi cient estimates are then put back in their original scale
by multiplying the slope coeffi cients by their respective standard deviations, and adding back
the mean (scaled by slope coeffi cient over standard deviation.)
The EN estimator incorporates both an L1 and L2 penalty:

β̂
EN

= argmin
β0,β1,...,βk


T∑
τ=1

(
yj,τ+h −X

′

τβ
(i)
j

)2

+ λ
(i)
1

k∑
j=1

∣∣βj∣∣︸ ︷︷ ︸
LASSO

+ λ
(i)
2

k∑
j=1

β2
j︸ ︷︷ ︸

ridge


By minimizing the MSE over the training samples, we choose the optimal λ(i)

1 and /λ(i)
2 values

simultaneously.

Dynamic Factor Estimation

We re-estimate factors at each date in the sample using the entire history of variables observed
in real time. Let xit denote the ith variable in a large dataset. The following steps are taken
in forming the macro, financial, and daily factors:

1. Remove outlier values from a series, defined as values whose distance from the median is
greater than ten times the interquartile range.

2. Scale each series according to the procedure proposed by Huang, Jiang, and Tong (2017).
We run the following regression for each variable xit:

yjt+h = βj,i,0 + βj,i,xxit + νj,i,t+h.

Then, we form a new dataset of variables β̂j,i,xxit where β̂j,i,x denotes the OLS estimate
of βj,i,x. These “scaled”variables are standardized and denoted x̃it.



3. Throughout, the factors are estimated over x̃it by the method of static principal compo-
nents (PCA). The approach we consider is to posit that x̃it has a factor structure taking
the form

x̃it = λ′iGt + eit, (A.13)

where Gt is a r× 1 vector of latent common factors, λi is a corresponding r× 1 vector of
latent factor loadings, and eit is a vector of idiosyncratic errors.23 Specifically, the T × r
matrix ĝt is

√
T times the r eigenvectors corresponding to the r largest eigenvalues of the

T×T matrix x̃x̃′/(TNx̃) in decreasing order, where T is the number of time periods andNx̃

is the number of variables in the large dataset. The optimal number of common factors,
r is determined by the panel information criteria developed in Bai and Ng (2002). To
handle missing values in any series, we use an expectation-maximization (EM) algorithm
by filling with an initial guess and forming factors, using (A.13) to update the guess with
E(x̃it) = E (λ′iĝt) , and iterating until the successive values for E(x̃it) are arbitrarily close.

4. Collect the common factors into the matrix Graw, where each principle component is a
column.

5. Square the raw variables and repeat steps 2 through 5. Collect the common factors from
squared data into a matrix Gsqr, where component is a column.

6. Square the first factor in Graw, and call this G2
raw1.

7. Our matrix of factors is [Graw,Gsqr1,G
2
raw1], where Gsqr1 is the first column of Gsqr.

For macro factors, we use all of the variables listed in Table A.2. After step 1 above, an
additional step of removing missing variables and observations is needed for the macro variables.
We remove series with fewer than seven years of data and time periods with less than fifty-
percent of variables observed, which occur in the early part of the sample. Furthermore, we
lag variables with missing data in the final observation whenever more than twenty-percent of
variables are missing data in the last observation.24

For the financial factors, we use all of the variables listed in Table A.3, and no additional
steps are performed beyond those described above.

Economic Interpretation of the Factors

Any labeling of the factors is imperfect because each is influenced to some degree by all the vari-
ables in the large dataset and the orthogonalization means that no one of them will correspond
exactly to a precise economic concept like output or unemployment. Following Ludvigson and

23We consider an approximate dynamic factor structure, in which the idiosyncratic errors eit are permitted to
have a limited amount of cross-sectional correlation. The approximate factor specification limits the contribution
of the idiosyncratic covariances to the total variance of x as N gets large:

N−1
N∑
i=1

N∑
j=1

|E (eitejt)| ≤M,

where M is a constant.
24Even though the EM algorithm is designed to estimate missing observations, it does not perform well when

there are too many missing observations at a single point in time.



Ng (2009), we relate the factors to the underlying variables in the large dataset. For each time
period in our evaluation sample, we compute the marginal R2 from regressions of each of the
individual series in the panel dataset onto each factor, one at a time. Each series x̃it is assigned
the group name in the data appendix tables naming all series, e.g., non-farm payrolls are part
of the Employment group (EMP). If series x̃it has the highest average marginal R2 over all
evaluation periods for factor Gkt, we label Gkt according to the group to which x̃it belongs, e.g.,
Gkt is an Employment factor. We further normalize the sign of each factor so that an increase
in the factor indicates an increase in x̃it. Thus, in the example above, an increase in Gkt would
indicate a rise in non-farm payrolls. Table A.5 reports the series with largest average marginal
R2 for each factor of each large dataset.

Table A.5: Economic Interpretation of the Factors

Series with Largest R2

Macro Factors Label
G1,M,t Nonfarm Payrolls Macro Factor: Employment
G2,M,t Interest paid by consumers Macro Factor: Money and Credit
G3,M,t Agg. Weekly hours - Service-producing Macro Factor: Employment.
G4,M,t Agg. Weekly hours - Good-producing Macro Factor: Employment
G5,M,t Nonborrowed Reserves Macro Factor: Money and Credit
G6,M,t Housing Starts Macro Factor: Housing
G7,M,t Change in private inventories Macro Factor: Orders and Investment
G8,M,t PCE: Service Macro Factor: Consumption

Financial Factors
G1,F,t D_log(P) Financial Factor: Prices, Yield, Dividends
G2,F,t SMB Financial Factor: Equity Risk Factors
G3,F,t HML Financial Factor: Equity Risk Factors
G4,F,t R15_R11 Financial Factor: Equity Risk Factors
G5,F,t D_DIVreinvest Financial Factor: Prices, Yield, Dividends
G6,F,t Smoke Financial Factor: Industries
G7,F,t UMD Financial Factor: Equity Risk Factors
G8,F,t Telcm Financial Factor: Industries

Daily Factors
G1,D,t ECBOT-SOYBEAN OIL Daily Factor: Commodities
G2,D,t A Rated minus Y10 Tbond Daily Factor: Corporate Risk
G3,D,t 6-month US T-bill Daily Factor: Treasuries
G4,D,t 6-month treasury bill minus 3M-Tbills Daily Factor: Treasuries
G5,D,t CBT-MINI DOW JONES Daily Factor: Equities
G6,D,t Corn Daily Factor: Commodities
G7,Dt APFNF-AAF Daily Factor: Corporate Risk
G8,D,t US nominal dollar broad index Daily Factor: FX

Note: This table reports the series with largest marginal R2 for the factor specified in the first column. The

marginal R2 is computed from regressions of each of the individual series onto the factor, one at a time, for the

time period that the factor shows up as relevant for the median bias.

Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1 + rG + rW vector which collects the data at

time t with Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG ,W

′
jt, ...,W

′
jt−pW

)′
a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ′t, W′
jt,



respectively. Superscript (i) refers to the ith forecaster, where i denotes either the mean “mean”
or an ith percentile value of the forecast distribution, i.e., “65” is the 65th percentile. The
predictors below are listed as elements of yj,t, Ĝ′jt, or W′

jt for different surveys and variables.

SPF Inflation For yj equal to inflation the forecasting model considers the following vari-
ables.
In W′

jt:

1. F(i)
jt−k [yjt+h−k], where k = 1, . . . , 2

2. F(s6=i)
jt−1 [yjt+h−1], where s = mean, 50, 25, 75 for all s 6= i

3. varN
(
F(·)
t−1 [yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged survey

forecasts

4. skewN
(
F(·)
t−1 [yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged

survey forecasts

5. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t <1991:Q4

CPI10t−1 if t ≥1991:Q4
Trend

inflation is intended to capture long-run trends. When long-run forecasts of inflation are
not available, as is the case pre-1991:Q4, we us a moving average of past inflation.

6. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

7. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of inflation over the period t− h
to t.

Lags of the dependent variable:

1. yt−1,t−h−1 one quarter lagged annual inflation.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.



3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.25 The 87 daily financial indicators in DD
include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SPF GDP Growth For yj equal to GDP growth the forecasting model considers the follow-
ing variables.
In W′

jt

1. F(i)
jt−k [yjt+h−k], where k = 1, 2

2. F(s6=i)
jt−1 [yjt+h−1], where s = mean, 50, 25, 75 for all s 6= i

3. varN
(
F(·)
t−1 [yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of forecasts

4. skewN
(
F(·)
t−1 [yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of forecasts

5. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

6. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

7. N(i)
t [yt,t−h] = Nowcast as of time t of the ith percentile of GDP growth over the period

t− h to t.
25A detailed description of the series is given in the Data Appendix of the online supplementary file at

www.sydneyludvigson.com/s/ucc_data_appendix.pdf



8. V XOt, defined as CBOE S&P 100 volatility index. We also include its squared and cubic
terms, V XO2

t , and V XO
3
t .

Lags of the dependent variable:

1. yj,t−1,t−h−1, yj,t−2,t−h−2 one and two quarter lagged annual GDP growth.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.26 The 87 daily financial indicators in DD
include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SOC Inflation For consistency, the predictors for the SOC inflation forecasts are constructed
similarly to those of the SPF inflation forecasts. Again, consider the following forecast regres-
sion,

yj,t+h = αj + βjFF
MS,(i)
j,t [yj,t+h] + BjZ︸︷︷︸

1xq

Zjt + εjt+h,

where the variables are defined as above, and i is either the mean “mean”or an ith percentile
value of the forecast distribution. We denote forecasts from the SPF using FSPF,(i)js [·] and from
the Michigan Survey using FMS,(i)

js [·].
In W′

jt:

26A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf



1. FSPF,(µ)
jt−1 [yjt+h−1], the mean SPF forecast for CPI.

2. FSPF,(50)
jt−1 [yjt+h−1], the 50th percentile SPF forecast for CPI.

3. FSPF,(25)
jt−1 [yjt+h−1], the 25th percentile SPF forecast for CPI.

4. FSPF,(75)
jt−1 [yjt+h−1], the 75th percentile SPF forecast for CPI.

5. varN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional variance of SPF forecasts of CPI.

6. skewN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional skewness of SPF forecasts of CPI.

7. Trend inflation measured as πt−1 =

{
ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t <1991:Q4

CPI10t−1 if t ≥1991:Q4
Trend

inflation is intended to capture long-run trends. When long-run forecasts of inflation are
not available, as is the case pre-1991:Q4, we us a moving average of past inflation.

8. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

9. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

Lags of dependent variables:

1. yt−1,t−h−1 one quarter lagged annual CPI inflation.

The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).



The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.27 The 87 daily financial indicators in DD
include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

SOC GDP Growth For yj equal to GDP growth the forecasting model considers the fol-
lowing variables
In W′

jt:

1. FSPF,(µ)
jt−1 [yjt+h−1], the mean SPF forecast for GDP growth.

2. FSPF,(50)
jt−1 [yjt+h−1], the 50th percentile SPF forecast for GDP growth.

3. FSPF,(25)
jt−1 [yjt+h−1], the 25th percentile SPF forecast for GDP growth.

4. FSPF,(75)
jt−1 [yjt+h−1], the 75th percentile SPF forecast for GDP growth.

5. varN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional variance of SPF forecasts for GDP growth.

6. skewN
(
FSPF,(·)t−1 [yjt+h−1]

)
, the cross-sectional skewness of SPF forecasts for GDP growth.

7. G̃DP t−1 = detrended gross domestic product, defined as the residual from a regression
of GDPt−1 on a constant and the four most recent values of GDP as of date t − 8. See
Hamilton (2018).

8. ẼMP t−1 = detrended employment, defined as the residual from a regression of EMPt−1

on a constant and the four most recent values of EMP as of date t − 8. See Hamilton
(2018).

9. V XOt, defined as CBOE S&P 100 volatility index. We also include its squared and cubic
terms, V XO2

t , and V XO
3
t .

Lags of dependent variables:

1. yj,t−1,t−h−1, yj,t−2,t−h−2 one and two quarter lagged annual GDP growth.

27A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf



The factors in Ĝ′jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real time macro dataset DM with 92
real time macro series; includes both monthly and quarterly series, with monthly series
converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a financial data set DF with 147 monthly
financial series.

3. GQ
D,t, are quarterly factors formed from a daily financial dataset DD of 87 daily financial

indicators. The raw daily series are first converted to daily factors GD,t (w) and the daily
factors are aggregated up to quarterly observations GQ

D,t (w) using a weighted average of
daily factors, with the weights w dependent on two free parameters that are chosen to
minimize the sum of squared residuals in a regression of yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time
series. The majority of these are real activity measures: real output and income, employment
and hours, consumer spending, housing starts, orders and unfilled orders, compensation and
labor costs, and capacity utilization measures. The dataset also includes commodity and price
indexes and a handful of bond and stock market indexes, and foreign exchange measures. The
financial dataset Df is an updated monthly version of the of 147 variables comprised solely
of financial market time series used in Ludvigson and Ng (2007). These data include valua-
tion ratios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate
dividends and prices, default and term spreads, yields on corporate bonds of different ratings
grades, yields on Treasuries and yield spreads, and a broad cross-section of industry, size, book-
market, and momentum portfolio equity returns.28 The 87 daily financial indicators in DD
include daily time series on commodities spot prices and futures prices, aggregate stock market
indexes, volatility indexes, credit spreads and yield spreads, and exchange rates.

Blue Chip Inflation For consistency, the predictors for the BC inflation (PGDP inflation
and CPI inflation) forecasts are constructed analogously to those of the SPF inflation forecasts.
The only differences are that for own-survey forecasting variables (including nowcasts), e.g.
F(i)
t [yjt+h] in W′

jt, we now use survey forecasts from Blue Chip, instead of SPF.

Blue Chip GDP Growth For yj equal to GDP growth the forecasting model considers the
same variables as in the SPF GDP growth forecasts with SPF forecasts replaced with Blue
Chip Forecasts.

Coibion Gorodnichenko Regressions

To construct SPF forecasts of annual inflation, forecasters at time t are presumed to use an
advance estimate of t − 1 price level combined with their survey respondent forecast of that

28A detailed description of the series is given in the Data Appendix of the online supplementary file at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf



price level at t+ 3 to form a forecast of πt+3.

πt+3 − F(µ)
t [πt+3]︸ ︷︷ ︸

Forecast Error

= α + β

F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]︸ ︷︷ ︸
Forecast Revision

+ εt+3 (A.14)

where the annual inflation at time t+ 3 is defined as,

πt+3 = 100×
(

Pt
Pt−1

× Pt+1

Pt
× Pt+2

Pt+1

× Pt+3

Pt+2

− 1

)
. (A.15)

Following CG, regressions are run and forecast errors computed using forecasts of real-time
inflation data available four quarters after the period being forecast.
The survey forecast is constructed as follows

Ft [πt+3] = 100×
(
P avg
t

Pt−1

× P avg
t+1

P avg
t

× P avg
t+2

P avg
t+1

× P avg
t+3

P avg
t+2

− 1

)
,

where P avg
t+h = 1

Nt+h

∑Nt+h
i=1 P i

t+h, for h = 0, . . . , 3, i represents an individual forecaster, Nt+h is
the number of forecasters at time time t + h, and Pt−1 is the BEA’s advance estimate at t for
prices in t− 1.

Forecast Error

The forecast error on the LHS of the regressions (A.14) is constructed in the following way:

πt+3,t − F(µ)
t [πt+3,t] ≡ 100×

[(
πt,t−1 − F(µ)

t [πt,t−1]

400
+ 1

)
(A.16)

×
(
πt+1,t − F(µ)

t [πt+1,t]

400
+ 1

)

×
(
πt+2,t+1 − F(µ)

t [πt+2,t+1]

400
+ 1

)

×
(
πt+3,t+2 − F(µ)

t [πt+3,t+2]

400
+ 1

)
− 1

]

In brackets is the product of quarterly forecast errors from the nowcast to h = 3 quarters ahead.

In-sample analysis

Table A.6 presents the replication for CG, as well as results from extending the sample size to
2018:Q2. Panel A replicates the numbers from columns (1) and (2) of Table 1 Panel B of CG.
Panel B presents the results for the extended sample.
Table A.7 presents the results from CG regressions when we replace the survey forecast with

our machine forecast for SPF mean inflation. More specifically, we estimate is the following



Table A.6: CG In-Sample Regressions of Forecast Errors on Forecast Revisions (Survey)

Regression: πt+3,t − Ft [πt+3,t] = α+ β (Ft [πt+3,t]− Ft−1 [πt+3,t]) + δπt−1,t−2 + εt
(1) (2) (3) (4)

Panel A: Sample: 1969:Q1 - 2014:Q4 Panel B: Sample: 1969:Q1 - 2018:Q2
Constant 0.001 -0.077 -0.022 -0.116
t-stat (0.005) (-0.442) (-0.167) (-0.758)

Ft [πt+3,t]− Ft−1 [πt+3,t] 1.194∗∗ 1.141∗∗ 1.186∗∗ 1.116∗∗

t-stat (2.496) (2.560) (2.478) (2.532)
πt−1,t−2 0.021 0.027
t-stat (0.435) (0.574)

R̄2 0.195 0.197 0.193 0.195

Notes: The annual inflation is defined as πt+3,t = Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, the covariate Ft [πt+3,t] is the SPF

of annual inflation with information in period t and Ft−1 [πt+3,t] is the SPF mean forecast of the same annual
inflation but with information in t− 1. Panel A presents the sample in Coibion and Gorodnichenko (2015) and
Panel B updates the sample to 2018:Q2. Regressions are run and model evaluated using real-time data with
observation on πt+3,t available 4 quarters after the advance estimate of it. Newey-West corrected (t-statistics)
with lags = 4. Newey-West HAC: *sig. at 10%. **sig. at 5%. ***sig. at 1%.

regression:

πt+3,t − E(µ)
t+3|t︸ ︷︷ ︸

Machine Forecast Errors

= α + β

E(µ)
t [πt+3,t]− E(µ)

t−1 [πt+3,t]︸ ︷︷ ︸
Machine Forecast Revision

+ δπt−1 + εjt+3

where E(µ)
t [πt+3,t] is the machine mean forecast made at time t and E(µ)

t−1 [πt+3,t] is the machine
forecast made at time t− 1.

Table A.7: CG Regressions of Forecast Errors on Forecast Revisions (Machine)

Regression: πt+3,t − Et [πt+3,t] = α+ β (Et [πt+3,t]− Et−1 [πt+3,t]) + δπt−1,t−2 + εt
(1) (2)

Constant -0.12 -0.13
t-stat (−1.21) (−0.94)

Et [πt+3,t]− Et−1 [πt+3,t] -0.04 -0.04
t-stat (−0.22) (−0.24)

πt−1,t−2 0.00
t-stat (0.08)
R̄2 0.0008 0.0008

Notes: The annual inflation is defined as πt+3,t = Pt
Pt−1

× Pt+1
Pt
× Pt+2

Pt+1
× Pt+3

Pt+2
, the covariate Et [πt+3,t] is the

machine mean forecast of annual inflation with information in period t and Et−1 [πt+3,t] is the machine mean
forecast of the same annual inflation but with information in t − 1. Regressions are run and model evaluated
using real-time data with observation on πt+3,t available 4 quarters after the advance estimate of it. Newey-West
corrected (t-statistics) with lags = 4. Newey-West HAC: *sig. at 10%. **sig. at 5%. ***sig. at 1%. The
sample is 1995:Q1 to 2018:Q2.

Out-of-Sample Analysis

We seek to construct a series of real-time OOS forecasts using the model:

πt+3 − F(µ)
t [πt+3] = α(µ) + β(µ)

(
F(µ)
t [πt+3]− F(µ)

t−1 [πt+3]
)

+ εt+3



We estimate over an initial sample, forecast out one period, roll (or recurse) forward and repeat
estimation and forecast. The regression estimation uses the latest vintage of inflation in real
time and, following CG, computes forecast errors real-time data available four quarters after
the period being forecast. The CG model forecast for πt+3

π̂
(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F
(µ)
t−1 [πt+3]

For the rolling procedure, we try windows of sizes w = 5, 10, and 20 years. For the recursive
procedure, we try initial window sizes of 5, 10, and 20 years as well.
The survey and model errors are

survey errort = F(µ)
t [πt+3]− πt+3

CG model errort = π̂
(µ)
t+3 − πt+3

We also compute rolling MSEs over different forecast samples of size P as

MSEF =
1

P

P∑
s=1

(
survey errort+s

)2

MSECG =
1

P

P∑
s=1

(CG model errort+s)
2

Table A.8: Mean Square Errors for the CG Model and SPF

Forecast model: π̂(µ)
t+3 = α̂

(µ)
t +

(
1 + β̂

(µ)

t

)
F(µ)
t [πt+3]− β̂

(µ)

t F
(µ)
t−1 [πt+3]

MSECG/MSEF
Method Quarterly Compound Continuous Compound CG Sample

Rolling 5 years 1.38 1.38 1.39
Rolling 10 years 1.29 1.29 1.29
Rolling 20 years 1.31 1.30 1.34
Recursive 5 years 1.69 1.68 1.71
Recursive 10 years 1.60 1.59 1.59
Recursive 20 years 1.33 1.30 1.34

Notes: The table reports the ratio of MSEs of the CG model forecast over the survey forecast. The regression
estimation uses the latest vintage of inflation in real time and, following CG, computes forecast errors real-time
data available four quarters after the period being forecast. The sample spans the period 1969:Q1 - 2018:Q2.
The CG sample refers to the sample in Coibion and Gorodnichenko (2015) that ends in 2014:Q4.

Dynamic Responses to Cyclical Shocks—Local Projection

We follow Angeletos, Huo, and Sastry (2020) (AHS) and estimate the dynamic responses to
inflation or GDP growth shocks from Angeletos, Collard, and Dellas (2018a) via local projection
using a series of single equation regressions, one for each horizon 0 ≤ h ≤ H taking the form

zt+h = αh + βhεt + γ′Wt + ut+h (A.17)



where zt is either the outcome variable at t, the survey forecast made at t, F(i)
t [yj,t+h] , or the

machine forecast made at time t, E(i)
t [yj,t+h]. The dynamic responses plotted in the figures

of the main text and below are given by the sequence of coeffi cients {β}Hh=0, where Wt is a
vector of control variables that are the same as those used in AHS and include one lag each of
the outcome and survey forecast. We consider two outcome variables: inflation and real GDP
growth. Following Angeletos, Huo, and Sastry (2020), we plot forecasts and outcome variables
so that F(50)

t [yj,t+h] is lined up with yj,t+h along a vertical slice and the difference between the
two is the forecast error. On the left-hand-side the forecasts are made at time t for period t+h,
while the shock occurs at t. We compute the heteroskedasticity and autocorrelation robust
(HAC) standard errors with a 4-quarter Bartlett kernel to calculate standard errors for the
impulse responses. The ±1 standard error bands are reported.
Top panel of Figure 21 shows that we replicate the dynamic responses of inflation to an

inflation targeted shock over the same sample used in Angeletos, Huo, and Sastry (2020). The
bottom panel of Figure 21 shows the dynamic responses are similar using the local projection
estimation over our evaluation sample 1995:1-2018:Q2.



Figure 21: Dynamic Responses: Forecast and Outcome
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Dynamic responses of GDP and inflations.The shaded areas are 68% confidence intervals based on HAC

standard errors with a Bartlett kernel and 4 lags. The x-axis denotes quarters from the shock. The outcome

variable is inflation πt and the shock is the inflation-targeted shock. The survey forecast is F
(50)
t [yt+3]. The

shock time series are from Angeletos, Collard, and Dellas (2018a). In the first row, the impulse responses are

estimated over sample 1969:Q1 to 2018:Q2. In the second row, the impulse responses are estimated over sample

1995:Q1 to 2018:Q2. In both rows, we “align”the forecast responses such that, at a given vertical slice of the

plot, the outcome and forecast responses are measured over the same horizon, and the difference between the

two is the forecast error. The vintage of observations on the outcome variable is final-release data.


