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1 Introduction

In this paper, we construct and estimate a model of endogenous technical change with random inter-
actions where firms are subject to distortions. The goal of the paper is to quantify the dynamic effects
of misallocation on the investments firms make to improve their productivity growth.

In the theory, the evolution of the total factor productivity (TFP) distribution hinges on profit-
maximizing firms seeking to upgrade their technology. To this end, firms face a binary choice: they can
either adopt better technologies used by other firms (imitation) or break new ground and search for
new technologies (innovation). Focusing on innovation requires an investment and entails some oppor-
tunity cost of foregoing learning through random interactions. The firms’ relative TFP determines the
comparative advantage of the two alternative strategies. Firms that are farther from the technology
frontier can gain more from random interactions. Conversely, for firms closer to the technology fron-
tier, the scope for imitating other firms is limited, and they must innovate in order to improve their
technology. The investment decision is affected by firm-specific labor and capital market distortions
(wedges). These wedges affect the investments in innovation because a positive wedge reduces the gains
associated with a future TFP increase.

We structurally estimate the theory exploiting the stationary equilibrium of the dynamic model.
We use the Simulated Method of Moments (SMM), targeting moments of the empirical distribution
of R&D and TFP growth that are salient in the theory. We use data from manufacturing firms in
mainland China (henceforth, China) in the period 2007–12. We are motivated by the observation
that in recent years, the rapid economic growth in China has been accompanied by a boom in R&D
expenditure and growing emphasis by the government on innovation (see, e.g., Ding and Li (2015),
Zilibotti (2017)).1 However, where is all this R&D going? A common concern is that these investment
decisions are distorted by policies and frictions (e.g., credit constraints) that are pervasive in China.
Our methodology allows us to assess the contribution of these investments to aggregate growth.

We proxy the choice between imitation and innovation by the firms’ R&D investment behavior on
the extensive margin. We classify firms making R&D investments as innovators and firms not making
R&D investments as imitators. We study the robustness of the results to the choice of the proxy. We
measure distortions using the methodology proposed by Hsieh and Klenow (2009). In our theory, the
presence of heterogeneous output wedges lowers the correlation between TFP and propensity to pursue
innovation—when the decision to invest in R&D is distorted, the firm’s size matters more than its
TFP. We document that in our data the propensity of firms to invest in R&D is positively correlated
with TFP and size—the latter correlation being stronger. Moreover, conditional on TFP, TFP growth
is higher for R&D firms than for nonR&D firms. All these observations are in line with the predictions
of the theory. We estimate the model. The estimated model matches well the target moments from
a quantitative perspective. The benchmark model predicts an annual aggregate TFP growth rate of
3.6%, which is close to the empirical counterpart for China for 2007–12. This moment is not targeted
in the estimation.

Next, we extend the model to allow for heterogeneous R&D costs across firms. To this aim, we
introduce “innovation wedges” that are distinct distortions from the standard output wedges and allow
them to be correlated with firm-level TFP. The estimated pattern is suggestive of an active industrial

1The transition toward innovation-based growth is a central theme in the government’s strategy. The 13th Five-Year
Plan (2016–20) emphasizes the promotion of research in strategic and frontier fields. The National Innovation-Driven
Development Strategy Outline issued in June 2016 states that China should become an innovation-oriented economy by
2020 and a technological innovation powerhouse by 2050. While China invested barely 1% of its GDP in the 1990s, R&D
investments increased to 2.4% of GDP by 2020.
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policy, which is arguably a salient feature of China. Finally, motivated by the findings of Chen et al.
(2021), we explore an extension in which some Chinese firms may respond to fiscal incentives by fudging
R&D expenditure, that is, relabeling part of their operational expenditure as R&D, in order to cash in
on public subsidies.

For contrast, we estimate the model using plant-level data from Taiwan, for which census data
on R&D investments are also available. Taiwan is a natural comparison for China, not only for its
geographic and cultural proximity, but also for the structural similarities between the two economies
in which the manufacturing sector plays a central role. The results for Taiwan are qualitatively similar
to those obtained for China, albeit with one notable difference: the productivity of R&D is higher.
In particular, both the TFP growth of R&D firms and the rate of technology diffusion are larger for
Taiwanese firms. We find that if China had the same R&D technology as Taiwan, TFP growth would
be significantly higher even with the Chinese level of misallocation.

We use the estimated model to perform a set of counterfactual policy experiments. In one of them,
we reduce the variance of wedges by 50%. The reduction in misallocation triggers a dynamic adjustment
towards a new stationary equilibrium with higher growth. Because the reduction in misallocation
strengthens the comparative advantage of high-TFP firms, the transition is associated with an increase
in TFP dispersion across firms and an acceleration of growth. Another set of counterfactuals studies
the effect of nontargeted R&D subsidies. We find a nonmonotonic effect on growth: a subsidy inducing
a moderate increase in R&D investments speeds up TFP growth. However, very large subsidies slow
down TFP growth. The reason is that in our model productivity growth hinges on both innovation and
imitation. Inducing too many firms to innovate has an opportunity cost in terms of foregone technology
diffusion that outweighs the benefits of innovation. Therefore, our theory provides a novel insight to
the debate on innovation policy: it is important to induce the “right firms” to pursue an innovation
strategy.

Finally, we embed our theory in a model of technology catch-up through international spillovers
where reducing misallocation has effects on the transition but not on the steady-state growth of non-
frontier economies. Even in this model, an exogenous change in misallocation has a large effect on both
transitional growth and the long-run GDP level relative to the frontier.

Related literature: Our study is related to various streams of the growth and development literature.
First, it contributes to the debate on the determinants of success and failure in technological convergence
(e.g., Hall and Jones (1999), Klenow and Rodriguez-Clare (1997), Acemoglu and Zilibotti (2001), Hsieh
and Klenow (2010)). The importance of technology diffusion stretches back to the seminal work of
Griliches (1957). R&D investments and spillovers are core elements of the neo-Schumpeterian theory
à la Aghion and Howitt (1992); see also Griliches (1998). While this literature highlights a process of
creative destruction where new firms are carriers of innovation, recent research by Garcia-Macia et al.
(2019) finds that the lion’s share of aggregate growth stems from TFP growth by incumbent firms.
This evidence is consistent with the tenets of our theory.

The dichotomy between innovation and imitation in the process of development is emphasized
by Acemoglu et al. (2006). The important role of misallocation as a determinant of aggregate TFP
differences is related to the influential work of Hsieh and Klenow (2009). Our study builds on their
methodology, although it attempts to endogenize the distribution of TFP across firms, which is instead
exogenous in their work. The importance of misallocation in China is also emphasized, among others,
by Song et al. (2011), Hsieh and Song (2015), Cheremukhin et al. (2017), Brandt et al. (2016), and
Tombe and Zhu (2019).

Our paper also contributes to the recent literature describing the endogenous evolution of the
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distribution of firm size and TFP. This includes, among others, Jovanovic and Rob (1989), Luttmer
(2007, 2012), Ghiglino (2012), Perla and Tonetti (2014), Acemoglu and Cao (2015), Lucas and Moll
(2014), König et al. (2016), Benhabib et al. (2014, 2021), Akcigit et al. (2018). While a number of
these studies emphasize random interactions, the theoretical paper by König et al. (2016) is the only
one highlighting a trade-off between innovation and imitation. Our theoretical model builds on that
paper.

Finally, our paper is related to the burgeoning theoretical and empirical literature on firm dynamics
with R&D investments and creative destruction. These studies include, among others, Bloom et al.
(2002), Klette and Kortum (2004), Lentz and Mortensen (2008), Acemoglu and Cao (2015), Akcigit
and Kerr (2018), Acemoglu et al. (2018), and Akcigit et al. (2021). Our paper contributes to this
literature by providing a new method for structurally estimating the effects of R&D on growth. A
common problem in the empirical literature is the selection of firms into R&D. Our theory provides an
endogenous selection mechanism that we incorporate when we estimate the model.

Related literature on R&D in China: Our paper is also related to the empirical literature studying
R&D policy in China. Ding and Li (2015) provide a comprehensive overview of the instruments adopted
by the Chinese government intervention to foster R&D. The systematic policy intervention to stimulate
innovation had its first impetus in 1999 and accelerated in 2006 with the adoption of the Medium–
and Long–term National Plan for Science and Technology Development. The policy instruments are
manifold. The first is direct government funding of research through the establishment of tech parks,
research centers, and a series of mission-oriented programs. The most important among such programs
is Torch, a program intended to kick-start innovation and start-ups through the creation of innovation
clusters, technology business incubators, and the promotion of venture capital. Another important
part of the government strategy is tax incentives for innovation. This takes the form of tax bonuses
applicable to wages, bonus and allowances of R&D personnel, corporate tax rate cuts, and R&D
subsidies. For instance, firms are granted a 150% tax allowance against taxable profits on the level of
R&D expenditure and 100% tax allowance against taxable profits on donations to R&D foundations.
In addition, firms that qualify as innovative can obtain exemptions from import duties and VAT on
imported items for R&D purposes. Firms that are invited to join science and technology parks are often
exempted from property taxes and urban land use taxes. Finally, “innovative firms” receive subsidies
on investments.

The policy interventions leave ample margins for discretion. For instance, central and local gov-
ernments can decide which firms to invite to be part of science and technology parks, which firms
receive priority in High-Tech Special Economic Zones, etc. In short, incentives can be heterogenous
across provinces, local communities, sectors, and even at the firm level, often as a function of political
connections (Bai et al., 2016).

Some empirical studies evaluate the effects of R&D investment and R&D policy in China. Hu and
Jefferson (2009) use data for Chinese large and medium–size enterprises for the period 1995–2001. The
authors estimate the patents–R&D elasticity is 0.3 when evaluated at the sample mean of the real R&D
expenditure (and even lower at the median). This is smaller than similar estimates for the U.S. and
European firms which find elasticities in the range of 0.6–1. While their study is based on data from
the 1990s, Dang and Motohashi (2015) find similar results using data for the period 1998–2012.

Jia and Ma (2017) use a panel dataset of Chinese listed companies covering 2007–13 to assess the
effects of tax incentives on firm R&D expenditures and analyze how institutional conditions shape
these effects. They show that tax incentives have significant effects on the R&D expenditure reported
by firms. A 10% reduction in R&D user costs leads firms to increase R&D expenditures by 4% in the
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short run. They also document considerable effect heterogeneity: tax incentives significantly stimulate
R&D in private firms but have less influence on state-owned enterprises’ R&D expenditures.

Chen et al. (2021) analyze InnoCom, a large–scale program providing incentive for R&D investment
through corporate income tax cuts. They exploit variation over time in discontinuous tax incentives to
R&D and find that there is significant bunching at the various R&D policy notches. Moreover, many
firms appear to respond to the tax incentive by relabeling nonR&D expenditures as R&D expenses.

Finally, Holmes et al. (2015) study the role of multinational firms as a vehicle of technology transfer
to China. We consider international knowledge spillover in an extension.

Road Map: The paper is structured as follows; Section 2 presents the theory. Section 3 discusses
the data and some descriptive evidence. Section 4 presents the econometric methodology. Sections
5–8 discuss the estimation results, robustness analysis, and counterfactual experiments. Section 9
concludes. The supplementary appendix contains technical results and additional tables and figures.
Further technical details are deferred to a web appendix.

2 Theory

Consider a dynamic economy populated by a unit measure of monopolistically competitive firms.
Firms produce differentiated goods that are combined into a homogeneous final good by a Dixit-
Stiglitz aggregator with a constant elasticity of substitution η > 1 between goods, implying Y =(∫ 1

0 Y
(η−1)/η
i di

)η/(η−1)
.

Firms are owned by overlapping generations of two-period–lived manager-entrepreneurs as in Song
et al. (2011). In each period, the firm is owned by an old entrepreneur who is residual claimant on
the firms’ profits, but run by a young manager. In the first period of her life, the manager decides the
strategy to improve the firm’s TFP in the next period having access to frictionless credit markets. In
the following period, she turns into an old entrepreneur, hires a young manager to run the firm, and
appropriates and consumes the firm’s profits.

In this environment, we can break down the firm’s problem into two steps. First, there is a static
maximization problem: the firm’s manager hires a composite production input to maximize profits
given the firm’s current TFP. Second, there is an intertemporal investment problem: the firm makes
an investment decision that affects the next period’s TFP and profits. The OLG structure simplifies
the dynamic problem by turning it into a sequence of two-period decisions. This allows us to retain
analytical tractability and avoid complications that would make the structural estimation problem
infeasible.

Static production efficiency: The firm’s technology is represented by a constant returns to scale
Cobb Douglas production function:

Yi (t) = Ai (t)Ki (t)α Li (t)1−α ,

where α ∈ (0, 1), Ki (t) is capital, Li (t) is labor, and Ai (t) is TFP. As in Hsieh and Klenow (2009), firms
have heterogeneous Ai (t) and rent capital and labor from competitive markets subject to distortions.
We summarize all distortions into a single output wedge that we view as a catch-all for a variety of
firm-specific distortions on labor and credit markets—the latter being especially important in China as
documented by Song et al. (2011) and Hsieh and Song (2015). More formally, firms maximize profits
taking factor prices as given, but their decisions are distorted by a set of output wedges τi. Note that

4



τi < 0 indicates a negative wedge, or an implicit output subsidy.2 We assume a small open economy
where firms rent capital at an exogenous rental rate r.

Because the characterization of the static equilibrium is as in Hsieh and Klenow (2009), we omit
details. Here, we summarize the two equilibrium conditions that are sufficient to derive the dynamic
equilibrium and that we use in the empirical analysis. Firm i’s current (period t) profits are given by

πi (t) ∝ (Ai (t) (1− τi (t)))η−1 . (1)

Profits increase in TFP and decrease in the wedge. Moreover, the firm’s value added satisfies

Pi (t)Yi (t) ∝ (Ai (t) (1− τi (t)))η−1 . (2)

Intuitively, the firm’s value added—or its size—is increasing in TFP and decreasing in the wedge.
Equations (1)–(2) then imply that TFP satisfies

Ai(t) ∝
[Yi(t)Pi(t)]

η
η−1

[Ki(t)]
α [Ni(t)]

1−α . (3)

In the theoretical section, we assume that τ takes on only two values, τ ∈ {τh, τl} where τl < τh.
The stochastic realizations of τ follow a persistent Markov process. Namely, the probability that τ
remains constant exceeds 50% in each state. In the empirical analysis, τ has a continuous support.

Dynamics of TFP: The endogenous evolution of the productivity distribution is determined by
the strategy firms adopt to increase their productivity. We assume that advancements occur over a
productivity ladder where each successful attempt to move up the ladder results in a constant accrual
of log TFP: log(Ai,t+1) = log(Ai,t) + ã, where ã > 0 is a constant (thus, log(A) ∈ {ã, 2ã, ...}). We
define a ≡ log(A)/ã and denote the ranking in the productivity ladder by a ∈ N+. Moreover, A
denotes the TFP distribution, A1,A2, ... denotes the proportion of firms at each rung of the ladder,
and Fa =

∑a
j=1Aj denotes the associated cumulative distribution. We model innovation as a step-by-

step process: in each period, TFP can either increase by one step or stay constant.3 We abstract from
entry and exit—a limitation to which we return below.

Firms can increase their TFP through either innovation or imitation. We model imitation as an
attempt to acquire knowledge through random interactions with other firms (e.g., by adopting better
managerial practices). This strategy hinges on the existing TFP distribution because firms only learn
when they meet more productive firms. Innovation is modeled as an exploration of new avenues and is
independent of other firms’ TFP. Although both strategies could in principle require investments, the
crux of the choice is the cost difference. Therefore, we normalize the cost of imitation to zero, and let
the innovation cost be nonnegative.

Imitation: A firm pursuing the imitation strategy is randomly matched with another firm in the
empirical distribution. If the firm meets a more productive firm, its TFP increases by one notch with
probability q > 0. Otherwise, it retains its initial TFP.

Innovation: An innovating firm can improve its TFP via two channels. First, it can make a discovery
unrelated to the knowledge set of other firms. The probability of success through this channel is p,

2The wedge τi can alternatively be interpreted as a geometric average of capital and labor wedges. More formally, let
τKi and τLi denote firm-specific “taxes” on capital and labor, respectively. The output wedge τi is then defined by the
following equation: 1− τi ≡ (1 + τKi)

−α (1 + τLi)
−(1−α).

3König et al. (2016) allow for more general stochastic processes, where a successful firm can make improvements of
different magnitudes. For simplicity, we abstract from this possibility.
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where p is drawn from an i.i.d. distribution with cumulative distribution function G : [0, p] → [0, 1]
where p ≤ 1. Firms observe the realization of p before deciding whether to innovate or imitate. The
heterogeneity in p avoids the stark implication that the position of the firm in the TFP distribution
fully determines the innovation-imitation choice that would be rejected by the data.

If innovation fails, the firm gets a second chance to improve its technology via (passive) imitation.
However, in this case the probability of success is different from that of a firm actively pursuing
imitation, being equal to δq (1− Fa) ≥ 0. Thus, the total probability of success of a firm pursuing
innovation is pi + (1− pi) δq (1− Fa) . We impose no restriction on the second-chance parameter δ. If
δ > 1, the innovation investment facilitates the absorption of new ideas through random interactions,
whereas if δ < 1, focusing on innovation reduces the imitation potential.

2.1 Equilibrium dynamics with costless innovation

Consider first the case studied by König et al. (2016) in which innovation entails no investment cost and
δ < 1. Then, the manager chooses the strategy that maximizes TFP growth, as this also maximizes
expected profit. In particular, firm i chooses the innovation strategy if and only if

pi ≥ Q (a, τ ;A) ≡ q (1− δ) (1− Fa)
1− δq (1− Fa)

, (4)

where, recall, A denotes the TFP distribution. Since ∂Q/∂a < 0, the proportion of innovating firms
will be nondecreasing in the initial TFP. Intuitively, imitation is less effective for high-TFP firms
because they are less likely to meet a more productive firm. Although thus far τ has no bearing on
the innovation-imitation decision, we specify it as an argument of the function to prepare the analysis
of the more general case where τ matters. Note that the ex-post TFP growth gap between innovating
and imitating firms is increasing in the TFP level.4

The law of motion of TFP: We can now write the law of motion of the distribution of log TFP,
Aa(t). Define the indicator function

χim (a, p, τ ;A) = 1− χin (a, p, τ ;A) =


1 if p ≤ Q (a, τ ;A) ,

0 if p > Q (a, τ ;A) .
(5)

In plain words, χim is unity when the firm finds it optimal to imitate, while χin (a, p, τ ;A) is unity
when it finds it optimal to innovate. The law of motion for the TFP distribution is characterized by
the following system of integro-difference equations:

4A larger a has two opposite effects on next period’s (expected) TFP gap between innovating and imitating firms.
On the one hand, it reduces the potential growth through imitation, thereby increasing the gap. On the other hand, it
lowers Q (a, τ ;A), inducing firms with lower p to innovate. This negative selection is a second-order effect which is always
dominated by the former effect.
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Aa(t+ 1)−Aa(t)

=

∫ p

0


χin (a− 1, p, τ ;A)× (p+ (1− p) δq (1− Fa−1(t)))Aa−1(t)+

+χim (a− 1, p, τ ;A)× q (1− Fa−1(t))Aa−1(t)
−χin (a, p, τ ;A)× (p+ (1− p) δq (1− Fa(t)))Aa (t)

−χim (a, p, τ ;A)× q(1− Fa(t))Aa (t)

 dG (p) (6)

=

∫ p

Q(a−1,τ ;A)
(p+ (1− p) δq (1− Fa−1(t)))Aa−1(t) dG (p)

+G (min{Q (a− 1, τ ;A) , p})× q (1− Fa−1(t))Aa−1(t)

−
∫ p

Q(a,τ ;A)
× (p+ (1− p) δq (1− Fa(t)))Aa (t) dG (p)

−G (min{Q (a, τ ;A) , p})× q(1− Fa(t))Aa (t) .

The first and second lines inside the first integral sign capture the inflow into TFP a of, respectively,
successful innovating and imitating firms whose TFP was a− 1 in period t. The third and fourth lines
inside the integral capture the outflow of TFP a of, respectively, successful innovating and imitating
firms whose TFP was a in period t. Note that for sufficiently low a, all firms imitate. In that case,
G = 1 and the integrals in the expression vanish. Conversely, the share of imitating firms vanishes as
a→∞.

Stationary distribution: Next, we characterize the stationary distribution associated with the sys-
tem of difference equations. For ease of exposition, we first consider the special case of zero innovation
cost for which a sharper analytical characterization is available.

Proposition 1 Consider the model of innovation-imitation described in the text whose equilibrium
law of motion satisfies equation (6), where each firm draws p from a distribution G : [0, p] → [0, 1].
Assume that q > p̂, where p̂ ≡

∫ p̄
0 p dG (p). Assume the cost of both imitation and innovation is

equal to zero. Then, there exists a traveling wave solution of the form Aa(t) = f(a− νt) with velocity
ν = ν (q, δ, g (p)) > 0, with left and right Pareto tails. For a given t, Aa is characterized as follows: (i)
for a sufficiently large, Aa(t) = O

(
e−ρ(a−νt)) , where the exponent ρ is the solution to the transcendental

equation ρν = p̂ (eρ − 1); (ii) for a sufficiently small, Aa(t) = O
(
eλ(a−νt)), where the exponent λ is the

solution to the transcendental equation λν = q(1− e−λ).

Intuitively, a traveling wave is a TFP distribution that is stationary after removing the (endogenous)
constant growth trend. In particular, if we denote by a∗(p, t) the threshold TFP such that, at time t and
conditional on drawing p, all firms with TFP a ≤ a∗(p, t) imitate and all firms with TFP a > a∗(p, t)
innovate, then, a∗ (p, t+ ∆t) = a∗ (p, t) + ν∆t. Thus, the function a∗ is the inverse of the threshold
function Q along the balanced growth path, a∗(p, t) ≡ Q−1 (p, τ,A(t)) where A(t) is the stationary
distribution at time t. The proof in the appendix generalizes the result that random growth with
a lower reflecting barrier generates a Pareto tail–a result formalized by Kesten (1973) and applied
in economics by Gabaix (1999 and 2009). Strictly speaking, our model does not feature a reflecting
barrier. However, low-TFP firms have a comparative advantage in imitation because they have a higher
probability of meeting a more productive firm and are therefore more likely to successfully imitate. In
fact, firms with very low TFP imitate irrespective of their realization of p. Thus, the subdistribution
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Figure 1: Equilibrium Dynamics with a Stationary Distribution
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Note: Panel A displays the threshold a∗ and the stationary TFP distribution. Panel B plots a traveling wave.

of imitating firms catches up, which prevents the upper end of the distribution from diverging provided
that q is sufficiently large.

A distinctive feature that distinguishes our model from earlier contributions is that the stationary
distribution features a Pareto tail of low-TFP firms. The left tail originates from the fact that, although
the probability of matching with a better firm tends to unity at very low TFP levels, the probability of
successful adoption is q < 1. This prevents the convergence of the subdistribution of imitating firms to
a mass point. Figure 1 illustrates the equilibrium dynamics of the stationary distribution in a simplified
version of the model in which all firms draw the same p. Panel A displays the threshold and the force
implying convergence.5 Panel B illustrates the traveling wave.

Proposition 1 yields no algebraic representation of the velocity of the traveling wave. In fact, ν can
only be defined implicitly and solved for numerically. Numerical analysis shows that the growth rate
is increasing in the parameters q, δ, and p̄, implying that both the TFP of innovation and the rate at
which ideas diffuse affect aggregate TFP growth.6

2.2 Equilibrium dynamics with costly innovation

Next, we generalize the analysis to an environment in which innovation requires a costly investment,
which we label the R&D cost. The complete expression for the discounted value of profits—cf. equation
(1)—is given by

πi(t) =
1

1 + r
× ((1− τi(t))Ai(t))η−1 × Π̃(t). (7)

Profits are increasing in the firm-specific TFP and decreasing in the wedge. Moreover, profits have a

secular trend Π̃(t) ≡ (αα(1−α)1−α(η−1))η−1η−η×Y (t)/
(
rαw(t)1−α)(η−1)

, where w is the equilibrium

5The solutions for ρ and λ are in an implicit form and involve transcendental equations. Standard methods allow one
to show that the equations ρν = q (eρ − 1) and λν = p̄

(
1− e−λ

)
admit closed-form solutions for ρ and λ if, respectively,

q/ν ·e−q/ν/ν ≤ e−1 and p̄/ν ·e−q/ν ≤ e−1. In particular, λ = W (−q/ν ·e−q/ν)+q/ν and ρ = W (−p̄/(2ν)·e−p̄/(2ν))+p̄/(2ν),
where W denotes the Lambert-W function.

6Analytical comparative statics can be obtained under a triangular approximation of the stationary distribution in
a simpler version of the model with no heterogeneity in p. The analytical results under this approximation, which are
consistent with the numerical results of the full model, are in the web appendix.
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wage rate. The expression for w is provided in appendix equation (A11). Holding constant firm-specific
productivity and wedge, each firm’s profit changes over time via two channels. On the one hand, the
demand for all varieties increases over time as income grows. This market size effect increases profits.
On the other hand, the progress of competitors erodes the market share of firms with a stagnating
productivity as long as η > 1. In a stationary equilibrium, wages and aggregate output grow at the
same rate. Moreover, the average growth of A(i) equals the growth rate of w1−α. Thus, in steady state
the average growth of profits is the same as the growth rate of aggregate output and wages.

Consider, next, the R&D cost for innovating firms. We assume that

ci (t) =
(
Ai (t)θ Ā(t)1−θ

)η−1
× c̄× Π̃(t), (8)

where c̄ > 0 and θ ∈ [0, 1] are parameters. The choice of the functional form for the R&D cost is guided
by our desire to ensure that the model features a stationary equilibrium. This requires that costs be
higher when profits are larger. In particular, since profits are proportional to Aη−1

i , by analogy, the
first term in equation (8) is raised to the power of η − 1. The specification ensures that the relative
level of the firm TFP—but not its absolute value—matters for the R&D decision. More specifically,
the first term in the cost function (8) is a geometric combination of Ai and Ā, where Ā(t) ≡

∫ 1
0 Ai di

denotes the cross-sectional average TFP at time t. The assumption that the R&D cost is increasing in
Ai captures the idea that pursuing an innovation strategy requires managerial time whose opportunity
cost is increasing in the firm’s TFP.7 In addition, the R&D cost follows the trend Π̃(t). In a balanced
growth environment, the average R&D cost grows at the same rate as profits, wages, and output. The
trend in R&D costs reflects the growing cost of inputs such as lab equipment and researchers.

Firms pursue an innovation strategy if and only if the R&D cost ci is smaller than the expected
increase in the present value of profits associated with pursuing innovation rather than imitation. As
in the model without R&D costs, the solution has threshold properties. In particular, firm i uses the
innovation strategy if and only if pi ≥ Q (a1, τj ;A). In a stationary equilibrium with positive R&D
costs, the function Q is given by:

Q (a, τj ;A) =
q (1− δ) (1− Fa)
1− δq (1− Fa)

+
e(1−θ)(η−1)(a−a)

(eη−1 − 1)E
[
(1− τ ′)η−1 |τj

] c̄(1 + r)(1 + g)η−2

1− δq (1− Fa)
, (9)

where g is the (endogenous) steady-state growth rate, a ≡ log Ā and E [τ ′|τ ] denotes the conditional
expectation of next-period wedge. The expression in equation (9) is the same as that in equation
(4) except for the new second term. Note that although ā trends over time, the second term in the
right-hand side expression depends on (a− a), which is consistent with a stationary equilibrium.

There are two key differences relative to equation (4). First, the R&D cost makes imitation more
attractive ceteris paribus. Therefore, conditional on the realization of p, the threshold Q will be larger
than in equation (4). Second, the wedge affects the choice: a larger wedge τi deters innovation by
reducing the future profit proportionally to TFP without affecting the R&D cost. More formally,
∂Q/∂τi > 0: firms with larger wedges are less likely to engage in R&D.

7If θ = 0, the R&D investment is independent of firm-specific TFP (e.g., it only consists of general inputs like lab
equipment or hired researchers). Yet, the model delivers balanced growth because in a stationary equilibrium the entire
distribution of TFP grows at a common rate. In the polar opposite case of θ = 1, the R&D cost only depends on the
firm’s TFP, related to managerial time. The flexible specification with θ ∈ (0, 1) is useful for our quantitative analysis
because it improves the model’s ability to account for how R&D expenditure relative to value added varies with TFP in
the data, as discussed below.

9



The law of motion of the TFP distribution (cf. equation (6)) must then take into account the
heterogeneity in wedges:

Aa(t+ 1)−Aa(t)

=
∑

j∈{l,h}

ωτj (t)×
∫ p

0


χin (a− 1, p, τj ;A)× (p+ (1− p) δq (1− Fa−1(t)))Aa−1(t)+

+χim (a− 1, p, τj ;A)× q (1− Fa−1(t))Aa−1(t)
−χin (a, p, τj ;A)× (p+ (1− p) δq (1− Fa(t)))Aa (t)

−χim (a, p, τj ;A)× q(1− Fa(t))Aa (t)

 dG (p) , (10)

where ωτl , ωτh denote the proportion of low- and high-wedge firms, respectively. The model is closed by
the law of motion for ωτl . Let ρh and ρl denote the arrival rate of movements to τh and τl, respectively.
The law of motion is then given by ωτl(t + 1) − ωτl(t) = (1− ρh) (1− ωτl (t)) − (1− ρl)ωτl (t) , where
ωτl converges in the long run to ω̄τl ≡ (1− ρh) / [(1− ρh) + (1− ρl)] .

The next proposition characterizes the stationary equilibrium. The proof is an extension of the
proof of Proposition 1 and is available in the web appendix.

Proposition 2 The characterization of Proposition 1 carries over to a model with costly R&D invest-
ments where c̄ > 0. More formally, there exists a traveling wave solution of the form Aa(t) = f(a− νt)
with velocity ν = ν (q, δ,G (p) , c̄, τh, τl, ω̄τl) > 0, with left and right Pareto tails. Conditional on ν, the
characterization of the tails is the same as in Proposition 1.

Predictions of the theory: In summary, the model has four testable implications:

1. ceteris paribus, the proportion of firms engaged in R&D is increasing in TFP;

2. ceteris paribus, firms with higher wedges are less likely to engage in R&D. Then, equation (2)
implies that, conditional on TFP, larger firms are more likely to engage in R&D;

3. expected TFP growth is falling in current TFP, especially for nonR&D firms;

4. the gap in average TFP growth between R&D firms and nonR&D firms is increasing in TFP.

3 Data and descriptive evidence

We consider firm-level data for China and, in an extension, Taiwan. The Chinese data are from the
Annual Survey of Industries conducted by China’s National Bureau of Statistics for 1998–2007 and
2011–13. This survey is a census of all state-owned firms and the private firms with more than five
million RMB (20 million RMB since 2010) in revenue in the industrial sector. To estimate firm-level
TFP growth, we focus on a balanced panel for all manufacturing firms in 2007–12 including all firms
that are in our sample in both 2007 and 2012. The data for R&D expenditure at the firm level are
for the year 2007.8 Although this is a firm-level survey, most of the Chinese firms were single-plant
firms during this period. The Taiwanese data is at the plant level, collected by Taiwan’s Ministry of
Economic Affairs, for the years 1999–2004.9 To make the Taiwanese sample more comparable to its
Chinese counterpart, we drop firms with annual sales below 18 million Taiwan dollars.

8We do not use the 2013 firm data because China’s National Bureau of Statistics adjusted the definition of firm
employment in 2013, making the 2013 employment data inconsistent with those in the earlier years.

9More than 90% of Taiwanese and Chinese manufacturing plants are owned by single-plant firms in the time periods
we study. Following Aw et al. (2011), we ignore the distinction between plants and firms.

10



Table 1: Summary Statistics

Year
Number
of Firms

Number of
R&D
Firms

Median
Value Added
(million
USD)

Mean
Value Added
(million
USD)

Median
R&D
Intensity
(%)

Aggregate
R&D
Intensity
(%)

Balanced Panel of Chinese Firms
2007 123368 18140 1.48 5.81 1.73 1.86
2012 123368 N.A. 3.33 11.45 N.A. N.A.

Private Chinese Firms in the Balanced Panel
2007 117983 15828 1.43 4.67 1.65 1.54
2012 117771 N.A. 3.26 9.57 N.A. N.A.

Balanced Panel of Taiwanese Firms
1999 11229 1487 0.16 2.91 8.50 3.14
2004 11229 1144 0.17 4.78 6.42 2.93

Note: R&D intensity is the ratio of R&D expenditure to value added. Median R&D
intensity is the median R&D intensity among firms performing some R&D. Aggregate
R&D intensity is the ratio of aggregate R&D expenditure to aggregate value added for
all firms. Missing information is due to the lack of R&D data in 2012.

Table 1 reports summary statistics for the Chinese and Taiwanese balanced panels. Chinese firms
are on average larger than Taiwanese firms. Part of the difference is accounted for by the Chinese state-
owned enterprises (SOE). The fraction of firms reporting positive R&D expenditure in 2007 is 15%
(data are not available after 2007). The corresponding fraction of R&D firms in the Taiwanese sample
is 13% in 1999 and 10% in 2004. We restrict attention to balanced samples of firms for consistency with
the theory, whose focal point is the difference in TFP growth between firms pursuing an innovation
strategy and firms pursuing an imitation strategy. This comparison is only feasible for firms that are
in the sample in both years. For completeness, Appendix Table A2 provides descriptive statistics for
the full sample of Chinese firms in 2007, which also includes firms exiting the sample between 2008 and
2012. Exiters are on average smaller, less productive, and have a lower propensity to invest in R&D, as
one might expect. In addition, throughout our analysis, we ignore firms in the bottom 10% the TFP
distribution for which measurement error is likely to be very pronounced. These firms are on average
very small accounting altogether for a mere 1.14% of the total value added of Chinese manufacturing
firms in 2007.

We take investment in R&D as a proxy for the pursuit of an innovation strategy. We classify
firms reporting positive R&D expenditure as innovators and all other firms as imitators. We test the
robustness of the results to alternative classifications. We focus on the extensive margin of R&D for
three reasons. First, it is consistent with the discrete-choice model we estimate. Second, there are
important fixed costs of setting up an R&D lab, and only a small fraction of firms perform any R&D.
Third, the intensive margin is subject to a more severe measurement error.10

10This issue has been noted in the literature that studies firm-level R&D expenditure in Western countries (see, e.g.,
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Figure 2 shows the distribution of R&D and TFP growth conditional on TFP in the initial year
and conditional on firm size (measured by value added). We estimate TFP following the methodology
proposed by Hsieh and Klenow (2009). This requires a calibration of the production parameter α and
the demand elasticity η. We allow α to vary across industries and set αj in (two-digit) industry j equal to
the measured industry-specific labor income share. Following Hsieh and Song (2015), we set η = 5. To
control for observable sources of heterogeneity, we regress TFP on province, industry, and age dummies
and take the residual as the measure of firm TFP. As a robustness analysis, we have also estimated
TFP using the methodology of Ackerberg et al. (2015), who follow the implementation proposed by
Brandt et al. (2017) for estimating production functions for Chinese manufacturing industries. The
empirical moments we target are very similar when we use this alternative procedure—see Appendix
Figure A1.

The industry classification refers to 30 two-digit manufacturing industries. We normalize firm-level
value added by the median value in the industry to which each firm belongs. We do not explicitly
separate R&D expenditure when estimating TFP. This could potentially bias the TFP estimates for
R&D firms. The problem has no perfect solution because we do not have R&D data after 2007. To
assess the importance of this potential problem, we use data for the period 2001–07, when R&D data
is available, to adjust TFP by subtracting R&D expenditure from labor costs. Then, we plotted a
version of Figure 2 based on the adjusted data. The empirical moments are almost indistinguishable
from the original figure. We conclude that the problem is likely quantitatively small.

Panel A shows the share of R&D firms by TFP percentile. The positive correlation is in line with the
prediction of our theory that more productive firms do more R&D. The share of R&D firms increases
from 11.6% in the lowest decile to 20% in the top percentile of the TFP distribution. Panel B shows
that firm size is also positively correlated with the share of R&D firms. The relationship is significantly
steeper than in Panel A: almost 50% of the firms in the top percentile of the size distribution invest
in R&D. Since larger firms are on average more productive, TFP is a driver of both panels. However,
the steeper profile in Panel B indicates that factors other than TFP must matter. In our model, a
firms’ size is determined by the product of its TFP and one minus its wedge. Thus, firms subject to
positive (negative) wedges are smaller (larger) than what their TFP alone would predict. The wedge
also affects the profit and, hence, the incentive to pursue an innovation strategy. Note that, in the
absence of wedges, Panels A and B would be identical. In the presence of wedges, we expect Panel B
to be steeper than Panel A which is consistent with the empirical observation.

Panels C and D show relationships between TFP growth and the distribution of initial TFP. Panel
C shows that the TFP growth rate is decreasing in TFP among nonR&D firms. In other words, there is
strong convergence in TFP across nonR&D firms. This is consistent with the main tenet of our theory
that learning through random interactions and imitation is easier for less productive firms. A concern
is that the negative relationship might partly be due to measurement error in TFP. If measurement
error is classic, firms with a negative (positive) measurement error at t are overrepresented among
low- (high-)TFP firms at t. Reversion to the mean would then exaggerate the convergence pattern.
In the estimation section below, we model measurement error explicitly and allow it to influence the
graph in Panel C. In addition, to mitigate concerns with survivor’s bias, we trim the lower tail of the
distribution, which comprises mostly very small firms, as discussed above.

Finally, Panel D compares the TFP growth for R&D firms and nonR&D firms at different percentiles
of the TFP distribution. In line with the prediction of our theory, TFP growth is higher for R&D firms

Lichtenberg 1992, Acemoglu et al., 2010). The problem is especially severe in China because R&D expenditure is vaguely
defined in China’s industrial survey. For instance, the survey does not distinguish between R&D performed and R&D
paid for by the firm.
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Figure 2: Chinese Firms in the Balanced Panel 2007–12
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Note: The X-axis in Panels A, C, and D is the 2007 TFP percentile. The X-axis in Panel B is the 2007 value added
percentile. The solid lines in Panel A and B plot the 2007 fraction of R&D firms in each TFP and value added percentile,
respectively. The solid line in Panel C plots the median annualized 2007–12 TFP growth among nonR&D firms in each
TFP percentile. The solid line in Panel D plots the difference between the median 2007–12 TFP growth R&D and
nonR&D firms within each percentile. A firm’s TFP growth is the residual of the regression of TFP growth on industry,
age, and province fixed effects. All the solid lines are smoothed by a fifth-order polynomial. The dotted lines plot the
95% confidence intervals by bootstrap.

than for nonR&D firms at most percentiles.
The same patterns emerge from a set of multiple regressions whose results are reported in Table

2. Panels A and B of Table 2 are related to Panels A–B and Panels C–D of Figure 2, respectively.
Panel A shows the results for a linear probability model whose dependent variable is a dummy for
R&D firms. All regressions use annual data and include industry fixed effects and year dummies, with
standard errors clustered at the industry level. We also include provincial dummies. The table shows
that the fraction of R&D firms is robustly correlated with the log of TFP. The estimated coefficient
increases significantly when we include an estimated output wedge among the regressors.11 Both the
positive correlation with TFP and the negative correlation with the output wedge line up with the
predictions of the theory. A large output wedge discourages firms from investing in R&D by reducing
profits. Columns (3)–(4) show that the results are not driven by exporting firms nor SOEs.

We cannot include firm fixed effects in this regression analysis because we do not have data on R&D
investments after 2007. However, we have performed the same analysis on an earlier sample (2001–07)

11The measurement of output wedges—which follows Hsieh and Klenow (2009)—is discussed in Section 4. Here, we
note that measurement error might exaggerate the negative correlation between the estimated TFP and the output wedge,
driving part of the strong opposite-sign pattern for the estimated coefficients in Table 2. We address this issue in our
structural estimation below.
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Table 2: Balanced Panel of Chinese firms, 2007–2012.

PANEL A

Dependent variable: R&D decision in 2007.

(1)
R&Dd

(2)
R&Dd

(3)
R&Dd

(4)
R&Dd

log(TFP) 0.062*** 0.368*** 0.343*** 0.305***
(0.0074) (0.0284) (0.0259) (0.0232)

wedge -0.410*** -0.378*** -0.332***
(0.0357) (0.0323) (0.0296)

exportd 0.053*** 0.054***
(0.0134) (0.0132)

SOEd 0.205***
(0.0232)

R-squared 0.143 0.208 0.211 0.224

PANEL B
Dependent variable: TFP growth.

(1)
TFP growth

(2)
TFP growth

(3)
TFP growth

(4)
TFP growth

(5)
TFP growth

log(TFP) -0.062*** -0.062*** -0.062*** -0.062*** -0.062***
(0.0035) (0.0036) (0.0035) (0.0036) (0.0036)

R&Dd 0.036*** 0.037*** 0.034***
(0.0042) (0.0040) (0.0035)

exportd -0.006 -0.006* -0.006 -0.007*
(0.0038) (0.0035) (0.0037) (0.0035)

SOEd 0.029** 0.029**
(0.0115) (0.0113)

R&D intensityh 0.044*** 0.041***
(0.0060) (0.0058)

R&D intensitym 0.042*** 0.038***
(0.0069) (0.0056)

R&D intensityl 0.025*** 0.023***
(0.0035) (0.0033)

R-squared 0.122 0.122 0.123 0.122 0.123

Note: Panel A: the dependent variable R&Dd is a dummy variable switching on for firms that report positive R&D
expenditure. Panel B: the dependent variable is annualized TFP growth 2007–12. Explanatory variables: log(TFP) is
the logarithm of TFP; Wedge indicates the firm’s output wedge − log(1 − τi) and is calculated as described in Section
2; exportd is a dummy variable for exporters; SOEd is a dummy variable for state-owned firms; R&D intensityh is a
dummy variable for high R&D intensity switching on if the firm R&D expenditure over sales is in the 67th percentile
and above (among all R&D firms); R&D intensitym is the analogue dummy for medium R&D intensity (between 33rd
and 66th percentiles); R&D intensityl is the analogue dummy for low R&D intensity (below the 33rd percentile.) All the
explanatory variables are from 2007. Standard errors are reported in parentheses. The number of observations is 109,799.
Observations are weighted by employment and standard errors are clustered by industry. All regressions include industry,
age, and province fixed effects. We drop firms with TFP in the bottom 10 percentiles.
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Figure 3: Taiwanese Firms in the Balanced Panel 1999–2004
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Note: This figure is the analogue of Figure 2 for the sample of Taiwanese firms.

for which R&D information is available in both the initial and final year. Including firm fixed effect
implies that the effect of R&D are identified by firms adopting (or dropping) R&D over time. The
results for the 2001–07 panel—see Appendix Table A1—are qualitatively similar to those in Table 2:
as firms become more productive over time they become more likely to perform R&D.

Panel B reports the results of regressions with average TFP growth during 2007–12 as the dependent
variable. TFP growth is regressed on the initial log-TFP level and on an R&D dummy in 2007.
The tables show a robust negative correlation between TFP growth and initial TFP (consistent with
Panel C of Figure 2) and a robust positive correlation between TFP growth and an R&D dummy
(consistent with Panel D of Figure 2). The results are robust to controlling for SOE and export firm
dummies. Columns (4) and (5) focus on the intensive margin of R&D by breaking the R&D dummy
into three separate dummies, one per each tercile of R&D expenditure. All three dummies are both
statistically and economically significant. A higher (lower) investment in R&D is associated with a
higher (lower) future TFP growth. The growth difference between the upper and lower terciles is
statistically significant.12

Appendix Figure A2 shows that the patterns in Figure 2 are robust to a more stringent classification
counting only those firms with R&D-to-value added ratio exceeding 1.73% (median among R&D firms)
as innovative. While this criterion by construction reduces the share of innovative firms, the four panels
are qualitatively similar. The same is true for a version of the multiple regressions in Table 2 where
we apply the more stringent classification of R&D firms. The sign of the coefficients of interest is the

12We have also run separate regressions similar to those of Panel A to detect whether the selection into high versus low
R&D intensity is driven by the TFP level. However, the data show no clear pattern.
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same as in Table 2 and all coefficients are highly significant. Details are available upon request.
Another potential concern is that the results might be driven by a subset of industries (e.g., semi-

conductors) for which R&D is especially salient. However, we find that the patterns do not change
significantly if we exclude the top five R&D-intensive industries. We also find that the results are sim-
ilar when partitioning the sample into subgroups: exporting versus nonexporting firms, SOEs versus
non-SOEs, and sorting firms by regions.

Finally, we study how Panels A and B in Figure 2 change if we use the full sample of firms in 2007,
including firms exiting the sample before 2012, instead of restring attention to the balanced panel. In
both panels, we observe an approximately parallel downward shift of the schedule, namely, exiters have
a lower propensity to engage in R&D than surviving firms—see Appendix Figure A3. However, the
selection into R&D by TFP and size—which is the focal point of our analysis—is almost unchanged.
This finding is confirmed by running the multiple regressions in Panel A of Table 2 on the full sample.
The estimated coefficients of interest are all very similar—see Appendix Table A3. Note that we cannot
produce Panels C and D in Figure 2 for the full sample because we can only calculate TFP growth for
firms that are present in the data both in 2007 and in 2012.

The empirical patterns are similar in Taiwan for both the intensive and the extensive margin—see
Figure 3 and Appendix Table A4—with two noteworthy quantitative differences. First, the R&D-TFP
profile in Panel A is steeper in Taiwan than in China. Moving from the 60th to the 99th TFP percentile
the share of Taiwanese R&D firms increases from 10% to over 35%. Second, Panel D has very large
standard errors. However, the regression analysis in Table A4 confirms a robust and highly significant
positive correlation between R&D and future TFP growth, similar to the empirical patterns for China.

4 Estimation

The estimation targets two sets of moments: moments that are informative about the economic mech-
anism of the model and moments that are informative about measurement error. For the former, we
focus on a set of selected quantiles in Figure 2. We consider four intervals of the distribution of TFP
and size in each of the four panels: the 10th to 49th percentile, the 50th to 79th percentile, the 80th
to 94th percentile, and the top five percentiles.13 This choice yields sixteen empirical target moments.
Appendix Figure A4 plots the confidence intervals around these moments.

We calibrate the parameters α, η, θ, and ã, and structurally estimate the remaining parameters
using simulated method of moments. The calibration of α and η, discussed above, is external to the
model. Throughout the analysis, we classify firms performing R&D as pursuing an innovation strategy.

4.1 Measurement error and wedges

Measurement error: Measurement error (m.e.) is a common concern in models of misallocation à
la Hsieh and Klenow (2009) because it potentially affects both the measured moments of TFP and the
imputed wedges. In our model, m.e. affects the target moments in Appendix Figure A4. On the one
hand, it generates an attenuation bias in the relationships between the propensity to engage in R&D
and both TFP (Panel A) and size (Panel B), flattening both profiles. On the other hand, it exaggerates
TFP convergence in Panel C, steepening the profile. We now propose an explicit model of m.e. and
discuss its estimation.

13We zoom on the upper tail of the distribution because large and high-TFP firms are more likely to engage in R&D.
As discussed above, we ignore the lowest decile of the TFP distribution to mitigate concerns about survivors’ bias.
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We assume that value added and inputs (capital and labor) are measured with classical m.e.:

ln
(
P̂iYi

)
= ln (PiYi) + µy,

ln

(
̂Kα
i N

1−α
i

)
= ln

(
Kα
i N

1−α
i

)
+ µI ,

where µy and µI are i.i.d. measurement errors with variances v̂y and v̂I . The notation with hats
denotes observed variables, while no hat denotes true variables.

We make the key identifying assumption that the firm-specific wedges τi are constant over the unit
of time we consider, that is, the 2007–12 period.14 Under this assumption, the time series variation
(2007–12) in value added and input measures at the firm level can be used to infer the extent of m.e.
Equations (2) and (3) imply that inputs are proportional to value added times the output wedge, i.e.,
(1− τi) (PitYit) ∝ (rt)

α (wt)
1−α (Kit)

α (Lit)
1−α. Then, a constant τi implies that

∆ ln
[
(Kit)

α (Lit)
1−α
]

= ∆ ln (PitYit)−∆ ln
[
(rt)

α (wt)
1−α
]
,

where ∆ lnXt ≡ lnXt − lnXt−1. The variance of (true) value added growth can then be identified as
follows:
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(
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)
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))

= cov
(
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[
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]

+ ∆µIt

)
= var (∆ ln (PitYit)) . (11)

The second equality follows from the assumptions that m.e. is classical—implying that ∆µyt and ∆µIt
are white noise—and that the input price (r)α (wt)

1−α is identical across firms. Therefore, the cross-
sectional covariance is not affected by the aggregate input price growth. The variance of m.e. in value
added and inputs can then be identified as
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(

∆ ln
(
P̂itYit

))
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= 2v̂µI . (13)

We measure the empirical covariances in equations (12) and (13) using data on growth rates in revenue
and inputs between 2007 and 2012—see Appendix Table A5. M.e. in revenue and inputs translates into
m.e. in TFP. Equation (3) implies that m.e. in TFP is â − a = [η/ (η − 1)]µy − µI , where a ≡ logA.
The variance of m.e. in TFP is, then, v̂µa = [η/(η − 1)]2 v̂µy + v̂µI . We set η = 5 and use the empirical
v̂µa as a target moment in the joint estimation of the parameters of the model. In the appendix we
characterize analytically the effect of m.e. on the moments of the model.15 This analytical mapping

14In the balanced sample, the variance of ln(1− τi) is approximately constant, increasing slightly from 0.724 in 2007 to
0.769 in 2012. In the full sample, the dispersion declines slightly, from 0.806 to 0.794.

15In principle, we could estimate two of three empirical variances v̂µa, v̂µy, and v̂µI , (the third being a combination of
the other two) in the estimation. However, the variances must be constrained to be non-negative. In the estimation of
the benchmark model the constraint v̂µI ≥ 0 turns out to be binding. This holds true for all data samples we consider.
To keep the number of estimated parameters low, we impose v̂µI = 0 and set v̂µy = [(η − 1)/η]2 v̂µa when adding m.e. to
the empirical moments. We retain v̂µI = 0 for all models we estimate.
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speeds up computations significantly so that estimation becomes feasible. Adding m.e. by way of
simulations would be time-consuming and turn into a computational curse for the estimation.

Distribution of output wedges: The estimated output wedges and TFP are correlated. To keep
the simulated model consistent with the data, we assume a distribution of output wedges that has the
same correlation between output wedges and TFP as in the empirical distribution. This correlation
affects the size of aggregate distortions as discussed by Restuccia and Rogerson (2008). More formally,
we assume the following relationship:

− ln (1− τi) = b · (ait − at) + ετit, (14)

where at is the mean of ait, and we assume that ετit ∼ N (0, var(ετit)). We are interested in the coefficient
b in equation (14) and var(ετit). Estimating b by OLS yields a biased estimate because of m.e. However,
the m.e. model above implies the following unbiased estimate of b,

b =
cov (ait,− ln (1− τi))

var (ait)
=
cov (âit,− ln (1− τ̂i))−

(
η
η−1

)
· v̂µy − v̂µI

var (âit)−
(

η
η−1

)2
v̂µy − v̂µI

. (15)

Then, equation (14) implies var (ετit) = var (ln (1− τi))−b2var (ait), where var (ln (1− τi)) = var (log (1− τ̂i))−
v̂µy−v̂µI and, by construction, var (âit) = var(ait)+v̂µa. The resulting unbiased estimates are b = 0.779
and var (ετit) = 0.042 (compared to biased OLS estimates of 0.802 and 0.047, respectively).16 Moreover,
one third of the variance of measured wedges is due to m.e.

4.2 The technology of R&D

Cost function. The parameter θ in equation (8) captures the elasticity of a firm’s innovation cost to
its TFP. We calibrate this parameter by targeting the relative cross-sectional distribution of the R&D
cost-to-value added ratio. Formally, we target the ratio E [ψj |aj ] /E [ψi|ai], where ψ denotes the ratio
of innovation costs to value added and ai and aj denote TFP in the i’th and j’th percentile. This ratio
can be expressed analytically as

E [ψj |aj ]
E [ψi|ai]

= exp

(
1− η
η

(1− θ + b) (ai − aj)
)
. (16)

We use data on R&D costs, and more specifically the R&D-to-value added ratio for firms in the top
five percent of the TFP distribution relative to firms in the 10th-49th percentile. Empirically, this
ratio declines with TFP, being 37% higher for low-TFP R&D firms (10-49th percentile) than for larger
high-TFP firms (top five percentiles). The parameter b is adjusted for m.e. in line with equation
(15). Equation (16) then implies an elasticity of θ ≈ 0.25. Appendix Figure A5 shows that this model
accurately fits the slope of the relationship between R&D intensity and TFP percentiles in the data.

Step size. In the model, firms that are successful in either innovating or imitating increase their
log TFP by a step size ã. The choice of ã has no appreciable effect on the model’s ability to fit the
cross-sectional data of Figure 2. However, it affects the estimate of the parameters c̄ and p̄. The reason

16Note that the distribution of τi is by construction consistent with equation (14). Hence the variance of τi depends
on both b, ετi , and the variance of A—something we return to in Section 8. When we simulate the model, the firm-
specific wedge τ is drawn each period in line with (14) and with an i.i.d. draw of ετit. Since firm-specific TFP is highly
autocorrelated and b 6= 0, the output wedges are positively autocorrelated.
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is that, in the theory, profits are an increasing convex function of ã—see equation (1). Because the
fraction of R&D firms is a target of the estimation, a larger ã induces a larger estimated value of c̄ and
a lower estimate of p̄.

Ideally, one could estimate ã jointly with the other parameters of the model. However, this is
computationally infeasible. Instead, we set ã so as to target a realistic average cost of innovation as
a share of value added. In particular, we set ã = 0.78 which implies—conditional on the estimated
parameters—an average cost of innovation of 3.7% of the industrial value added in the benchmark
economy.17 This ratio is about twice the aggregate R&D-to-value added ratio in the Chinese data. We
view this as a realistic target in light of the innovation management literature documenting that formal
R&D is only a part of the costs incurred by firms pursuing innovation. The purchase of new equipment
often reflects the introduction of new technologies although it is recorded as capital investment. Hiring
STEM workers is another facet of an innovation-oriented strategy. Finally, in an innovative firm,
managers divert more of their attention to the introduction of new products or more efficient processes.18

Productivity of innovation. We assume that firms draw p from an i.i.d. uniform probability
distribution with support [0, p̄], where p̄ is structurally estimated.

4.3 Simulated method of moments (SMM)

We estimate the remaining parameters using SMM (McFadden 1989). The estimated parameters mini-
mize the distance between the target moments and the stationary distribution of the model. Analytical
tractability is key for our procedure. We simulate the model under a parameter configuration, add m.e.
to the moments, and calculate the distance from the targeted empirical moments. Then, we iterate on
the parameter vector. The system of ordinary difference equations allows us to calculate the stationary
distribution efficiently. We could in principle have simulated the distribution of a large number of
firms for every trial of a parameter configuration. However, such an alternative approach would be
computationally too demanding.

In all our trials, the numerical simulations converge to a unique stationary distribution irrespective
of initial conditions, provided that the learning parameter q is not too small. When this parameter is
sufficiently close to zero, there exists no ergodic distribution. The web appendix provides details of the
numerical implementation.

The sample is randomly generated by bootstrapping for K = 500 times. Denote by gm,k the mth
moment in the kth sample and by gm (φ) the vector of the corresponding moments in the model, where
φ is the vector of parameters that we estimate. We minimize the weighted sum of the distance between
the empirical and simulated moments:

φ̂ = arg min
φ
h (φ)′ W h (φ) ,

whereW is the moment weighting matrix and hm (φ) =
[
gm (φ)− 1

K

∑K
k gm,k

]
/gm (φ) is the percentage

deviation between the theoretical and empirical moments, averaged across K samples. We use the

17This calculation assumes a risk-adjusted discount rate of 10% which we view as reasonable given pervasive financial
and contractual imperfections in China and the high systematic risk of innovative activities.

18Colarelli O’Connor (2019) summarizes the findings of a study of 40 companies over 25 years by Colarelli O’Connor et al.
(2018) as follows: “Innovation is much bigger than R&D. It involves three distinct capabilities: Discovery, Incubation, and
Acceleration (DIA). R&D is just one part of the Discovery capability—invention.” The other activities “often require[s]
as much time and resources and deserves as much emphasis, as inventing the technologies themselves.”
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identity matrix as the benchmark weighting matrix to avoid the potential small-sample bias—see
Altonji and Segal (1996).

5 Results

We first estimate a benchmark parsimonious model that reproduces the theoretical model without any
added new features. Then, we consider some extensions. We keep the parameters θ and ã constant
across specifications at the level calibrated to the benchmark economy.

5.1 Parsimonious model

In the benchmark model—which we label the Parsimonious model, henceforth, PAM—we estimate
five parameters: q, c̄, p̄, δ, and vµa.

19 Before turning to the results, we summarize the sources of
identification of the structural parameters.

Identification. The parameter q is the probability of successful imitation conditional on meeting a
more productive firm. It is mostly pinned down by the TFP convergence rate across imitating firms
(Panel C of Figure 2) conditional on m.e. The parameter δ (passive imitation) is identified by the TFP
convergence rate across both imitating and innovating firms (Panels C and D of Figure 2). Lack of
convergence within the set of innovating firms would imply δ close to zero, while strong convergence
would imply a large δ. The parameter p̄ is pinned down by the extent to which, conditional on TFP,
innovating firms grow faster than imitating firms (Panel D of Figure 2). Given the other parameters,
the innovation cost parameter c̄ is disciplined by the total share of innovating firms. Finally, the
standard deviation of m.e. affects Panels A, B, and C in Figure 2. Measurement error flattens the
schedules in Panels A and B while steepening the schedule in Panel C. In other words, m.e. creates
the impression of a stronger convergence in the data than there is in reality. Thus, a larger estimate of
vµa implies a lower estimate of q.

Results. The estimation results are displayed in column (1) of Table 3. The estimated coefficient
q = 0.175 implies that there is significant convergence in TFP even after removing m.e. The estimated
δ is close to zero indicating that R&D has a high opportunity cost in terms of foregoing learning through
random interactions. The estimated average probability of p is about 4.8% (i.e., p̄/2 = 0.096/2.) Given
the costs and benefits of the two strategies, the model predicts that about 12% of the firms invest in
R&D compared to 15% in the data. The estimated variance of m.e. in TFP is σ2

µa = 0.3. This implies
that m.e. accounts for 30% of the variance of log TFP and 92% of the variance of TFP growth.

Figure 4 shows that the PAM fits the data fairly accurately, matching well the convergence pattern
in Panel C and the differential growth between R&D and nonR&D firms in Panel D.20 However, the
model overpredicts the steepness of the profiles in Panels A and B.

19Recall that the innovation cost is ci (t) ∝ c̄(1 + r) ·
(
Ai (t)θ Ā(t)1−θ

)η−1

. With slight abuse of notation, we always

report the estimate of c̄ inclusive of the gross interest rate.
20M.e. has a significant effect on the estimates. Ignoring it would increase the estimates for q and δ to q = 0.702 and

δ = 0.500, implying a faster convergence. The reason is that in the absence of m.e., Panel C—TFP growth conditional
on TFP for nonR&D firms—dictates a fast catching up rate for low-TFP firms, as discussed above.
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Table 3: Estimation, Chinese Firm Balanced Panel 2007–2012.

(1) (2) (3) (4) (5) (6)
Higher R&D cutoff

PAM FLM IPM FRM PAM IPM

Imitation prob. q 0.175 0.271 0.361 0.275 0.294 0.546
(0.031) (0.019) (0.019) (0.051) (0.058) (0.052)

Second chance δ 0.008 0.020 0.001 0.019 0.141 0.001
(0.011) (0.021) (0.027) (0.024) (0.106) (0.080)

Innov. prod. p̄ 0.096 0.114 0.113 0.237 0.107 0.111
(0.008) (0.006) (0.006) (0.016) (0.013) (0.010)

Innov. cost c̄ 1.627 3.374 2.318 10.486 3.601 9.393
(0.136) (0.174) (0.177) (1.363) (0.448) (2.403)

Std.dev. m.e. σµa 0.549 0.472 0.431 0.459 0.476 0.391
(0.014) (0.008) (0.005) (0.025) (0.022) (0.011)

Std.dev.innov. subs. σc 1.243 1.092 0.011 1.969
(0.038) (0.037) (0.036) (0.213)

Policy inter. ca 1.888 -10.46 2.499
(0.159) (1.042) (0.356)

Fake share Υ 0.099
(0.005)

J-Statistic 1.518 0.507 0.368 0.362 2.690 0.516

Note: The table shows the estimated parameters for the different models discussed in the text. Columns (1)–(4) are for the
Parsimonious (PAM), Flexible (FLM), Industrial Policy (IPM), and Fake R&D (FRM) model, respectively. Columns (5)–
(6) presents the results for the models estimated on moments applying a more stringent definition of R&D. Bootstrapped
standard errors in parentheses.

5.2 Heterogeneous innovation costs

In this section, we allow for heterogeneity in the innovation cost parameter c̄. Heterogeneity could
arise from technological factors or from additional wedges that directly distort the imitation-innovation
decision. These include R&D subsidies, government investments in local infrastructure, science parks,
and credit constraints, which have particularly severe effects on R&D investments.

Figure 4 shows that the models with heterogeneous innovation fit more accurately the target mo-
ments, especially Panel B. Intuitively, the imitation-innovation decision now depends also on the real-
ization of ci, thereby reducing the importance of TFP and size. This flattens the schedules in Panels
A and B that were too steep in the PAM.

We consider three specifications. In the first—which we label the Flexible model, henceforth, FLM—
innovation wedges are i.i.d. across firms. In the second, we allow the wedges to be correlated with
observable firm characteristics, capturing the idea that local and central governments may target their
support to firms with certain characteristics. We label this specification the Industrial Policy model,
henceforth, IPM. Finally, we consider a specification where some firms can strategically misreport
innovation expenditures in order to attract subsidies without actually distorting their optimal imitation-
innovation decisions. We label this model the Fake R&D model, henceforth, FRM.

Flexible model: In the FLM, the effective innovation cost is given by

ci (t) ∝
[
c̄− exp

(
ξi(t)−

σc
2

)
+ 1
]
·
(
Ai (t)θ Ā(t)1−θ

)η−1
,
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Figure 4: Parsimonious Model (PAM)

10-49 50-79 80-94 95-99

TFP Percentiles

0

0.1

0.2

0.3

0.4

0.5
 Panel A: Fraction of R&D Firms by TFP

data
fitted PAM

10-49 50-79 80-94 95-99

Revenue Percentiles

0

0.1

0.2

0.3

0.4

0.5

 Panel B: Fraction of R&D Firms
by Value Added

10-49 50-79 80-94 95-99

TFP Percentiles

-0.2

-0.1

0

0.1
 Panel C: TFP Growth of Non-R&D Firms

10-49 50-79 80-94 95-99

TFP Percentiles

-0.05

0

0.05

0.1

0.15

 Panel D: TFP Growth Difference between
 R&D and Non-R&D Firms

Note: The figure shows the fit of the PAM. It plots the moments predicted by the model against their empirical
counterparts for China 2007–12. The X-axis in Panel A, C and D is the first-period TFP percentiles defined on four
intervals: the 10th to 49th, the 50st to 79th, the 80th to 94th and the 95th to 99th. The X-axis in Panel B is the first-
period value added percentiles defined on the same four intervals. The solid lines in Panel A and B plot the first-period
fraction of R&D firms in each TFP and value added interval, respectively. Panel C plots the median annualized TFP
growth among nonR&D firms in each TFP interval in the data against the corresponding expected growth rate for firms
in the model. Panel D plots the difference between the median TFP growth between R&D and nonR&D firms in the
data against the corresponding difference in expected growth in the model. A firm’s TFP growth is the residual of the
regression of TFP growth on industry, age and province fixed effects.

where ξi ∼ N
(
0, σ2

c

)
. Note that E [c̄− exp (ξi(t)− σc/2) + 1] = c̄, so σc is a mean-preserving spread.

Figure 5 shows that the fit of the FLM improves upon that of the PAM. This is reflected in a lower
residual sum of squares, mostly attained in Panel B. The estimated parameters are in the ballpark
of the PAM estimates with two noteworthy differences. First, the estimate of c̄ is larger than in the
PAM. The reason is selection: ceteris paribus, subsidized firms (some of them facing a negative effective
innovation cost) have a stronger incentive to pursue an innovation strategy. With an unchanged c̄ too
many firms want to do R&D. To match the empirical share of R&D firms, the model requires a larger
average innovation cost. Second, the estimate of m.e. is now lower because the R&D cost dispersion
flattens the TFP-size profile in Panel D, mitigating the need for large m.e. The implied lower observed
TFP convergence is offset by a larger estimate of the q parameter. The ratio between innovation
expenditure and value added is 1.1% in the FLM. This calculation excludes both positive and negative
wedges from the cost paid by the firm.

Industrial Policy: Next, we allow the innovation wedges to be correlated with TFP. This captures
the possibility that the government engages in some form of industrial policy targeting firms with
particular characteristics (e.g., location) that are correlated with TFP. In the estimation, we do not
impose any sign on this correlation. We assume the effective innovation cost ci to be of the form
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Figure 5: Flexible (FLM) and Industrial Policy (IPM) models
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Note: The figure shows the fit of the FLM and IPM. See Figure 4 for additional information.

ci (t) ∝
[
c̄− exp

(
ξi(t)−

σc
2

)
+ 1 + ca (G(ai)− 1/2)

]
·
(
Ai (t)θ Ā(t)1−θ

)η−1
,

where G is the cumulative density of ai. ca > 0 means the industrial policy favors low-TFP firms, while
ca < 0 means the opposite. This specification ensures that the dispersion in innovation costs is again
a mean-preserving spread over c̄ so the parameter c̄ is comparable across specifications.21

Column (3) in Table 3 reports the estimation result for the IPM. The fit of the model further
improves relative to the FLM—the J-Statistic declines by 30%. Figure 5 shows the fit of the targeted
moments for the IPM along with the FLM. The estimated value of the new parameter ca is positive,
indicating a negative correlation between TFP and innovation wedges. In other words, more productive
firms are “taxed.” To understand the source of identification of this parameter, compare the results for
the two models in Panel A in Figure 5. In the estimated FLM, the schedule of Panel A is too steep. A
positive correlation between TFP and innovation wedges reduces the propensity of high-TFP firms to
innovate thereby flattening the schedule in Panel A. While increasing σc would attain the same result,
it would also flatten the schedule in Panel B (which is already flatter in the FLM than in the data)
compromising the fit of the relationship between size and TFP.

Fake R&D: Chen et al. (2021) suggests that many Chinese firms respond to subsidies by reclassifying
operational expenditure as R&D. To explore this hypothesis, we augment our theory with a simple
model of moral hazard. We assume that a positive proportion of firms can falsely report to be investing

21To see this, note that
∫ a
−∞G(a)g(a)da = [G(a)]2 /2, implying that E [G(ai)− 1/2] = 0.
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in R&D in order to collect subsidies without suffering any punishment. Misreporting firms are then
incorrectly classified as R&D firms. More precisely, we assume that a share Υ of firms can collect
subsidies by just claiming to invest in R&D. After collecting the subsidy, each firm in this group
decides whether it is optimal for them to actually engage in R&D. Since the econometrician cannot
see which firms fudge R&D expenditure, misreporting biases the estimated productivity of innovation
investments toward zero. The share Υ of privileged firms is the only additional parameter in the
structural model.

Column (4) in Table 3 reports the results. According to our estimate, about 10% of firms can
fudge R&D. While the fit of the two models is very similar, the two specifications paint a somewhat
different picture.22 In the FRM, two thirds of the R&D firms in the data are fakers. This flattens the
schedules in Panels A and B. Moreover, in the FRM, high-TFP firms are subsidized rather than taxed
as shown by the change in the sign of the parameter ca. This indicates that the truthful R&D firms
are highly positively selected. Related to that, the productivity of R&D investments is substantially
higher: p̄ = 0.24 instead of p̄ = 0.11. After taking selection into account, TFP growth in truthful
R&D exceeds that of nonR&D firms by almost 12 percentage points in the highest TFP percentile we
target. This insight is consistent with the casual observation that China has a number of innovative
and internationally successful firms such as Lenovo or Tencent. Appendix Figure A6 illustrates the
quantitative results in detail. The figure highlights that high-TFP firms have a stronger comparative
advantage in pursuing innovation. Conversely, many low-TFP firms reporting spending on R&D are
fudgers.

Intensive margin: In Section 3, we noted a positive correlation between R&D expenditure and
future TFP growth among the R&D firms. Motivated by this empirical observation, we now perform
robustness analysis on the R&D intensity. We pursue two alternative exercises.

First, we classify as innovative only those firms with R&D intensity above the empirical median for
R&D firms. We recalculate the target moments based on this alternative classification. The results
for the PAM and IPM are reported in columns (5)-(6) of Table 3. Treating firms that make small
investments in R&D as imitators does not alter the broad picture. The estimated cost of R&D is larger
in order to match the smaller proportion of R&D firms. The estimated diffusion parameters q and δ
are also larger. The findings are similar in the IPM. Appendix Figure A7 shows the fit of the targeted
moments for both the PAM and IPM.

Second, we introduce a distinction between high- and low-R&D firms. In the data, we assign a
firm to the high-R&D group if its R&D expenditure-to-value added ratio is higher than the median
1.73% ratio. Appendix Figure A8 displays the data moments. In line with the regressions in Panel
B of Table 2, future TFP growth is higher for high-R&D firms. In the appendix, we lay out and
estimate a generalized version of our theory in which firms are assigned to two distinct technologies
entailing different costs and success probabilities. To estimate this version of the model, we add two
additional target moments, namely the ratios of R&D expenditure to value added for high- relative to
low-R&D firms We must also estimate the proportion of high-R&D firms as one additional parameter.
The results are summarized in Appendix Table A6. The estimated model can accurately reproduce

22Note that the FRM nests the IPM as a particular case when the proportion of fudging firms is Υ = 0. Because the
estimate of σc collapses to zero, both the IPM and FRM fit the data very accurately with the same number of parameters.
However, the data cannot discriminate between the two models. Technically, the estimation finds two local minima. One
corresponds to column (4) in Table 3. The other is a corner solution where no firms can fake R&D and the estimated
parameters are as in column (3) of Table 3. In the calculation of bootstrapped standard errors, some simulations yield a
lower J-Statistic in the former model, while others yields the opposite result. When calculating the bootstrapped standard
errors of the estimates in column (4), we only consider draws where the minimum is interior.
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the empirical relationship between R&D intensity and TFP growth in the data. The main limitation
of the extension is that it does not allow firms to choose the project size. This would require a more
significant departure from our discrete-choice model and is left to future research.

6 Nontargeted moments

In this section, we discuss predictions of the model for empirical moments we do not target in the
estimation.

6.1 Indirect inference

The estimation targets pairwise empirical correlations but not the joint correlation structure between
the variables. We now use indirect inference methods to investigate whether the model is consistent
with the empirical conditional correlations. To this aim, we consider a set of multiple linear regressions.
In the first ones, the dependent variable is the discrete choice of pursuing an innovation strategy, while
the right hand-side variables are TFP levels (in logarithms) and the wedges. Panel A of Table 4 shows
the results. Column (1) restates the empirical relationship in Panel A of Table 2: the probability for
a firm to invest in R&D is increasing in both TFP and output subsidies (i.e., a negative coefficient on
the output wedge τ). Running the same regression on the simulated model (including m.e.) yields the
same qualitative results for all models. In the PAM, the R&D decision is more elastic to TFP and
wedges than in the data, while the heterogeneous cost models provide a better quantitative match to
the data.23

Next, in Panel B of Table 4 we run linear regressions where the firms’ TFP growth is the dependent
variable while the initial TFP level and R&D decision (in the initial year) are the explanatory variables.
Column (1) restates the empirical relationship from Table 2 that TFP growth is falling in initial TFP
and that TFP growth is larger for R&D firms. Running the same regression on the simulated models
replicates the empirical correlations. Moreover, all models yield elasticities that are in the ballpark of
the empirical estimates. In conclusion, the indirect inference analysis shows that the model fits well the
(nontargeted) joint correlation structure between TFP growth, the R&D decision, initial TFP level,
and size (wedges).

6.2 TFP distribution

In our model, the stationary TFP distribution is a traveling wave that evolves at a constant endogenous
speed. The distribution is tent-shaped with two Pareto tails—cf. Proposition 2. In this section, we
compare the stationary TFP distribution and the growth rate predicted by the theory with their
empirical counterparts.

TFP dispersion: Figure 6 compares the predicted and empirical TFP distributions for the PAM,
FLM, IPM, and FRM. The estimated model has a lower dispersion than TFP in the data: the PAM
accounts for 72% of the empirical variance, while the three heterogeneous cost models account for
between 44% and 62% of the empirical variance. The inability of the model to account for the full
empirical dispersion can be attributed to factors that are omitted in our stylized theory. For instance,
firms could be subject to exogenous i.i.d. shocks to TFP that do not affect the cost of innovation. These

23The standard errors of the structurally estimated parameters are based on simulating a sample of the same size as
the empirical one and estimating the regression in the same way as on the empirical sample.
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Table 4: Indirect Inference, Balanced Panel of Chinese Firms, 2007–2012.

PANEL A

Dependent Variable: R&D decision in 2007

(1) (2) (3) (4) (5)
Data PAM FLM IPM FRM

log(TFP) 0.368*** 0.712*** 0.287*** 0.298*** 0.322***
(0.0284) (0.0145) (0.0167) (0.0181) (0.0167)

wedge -0.410*** -0.824*** -0.274*** -0.327*** -0.357***
(0.0357) (0.0177) (0.0202) (0.0214) (0.0203)

PANEL B

Dependent Variable: TFP Growth

(1) (2) (3) (4) (5)
Data PAM FLM IPM FRM

log(TFP) -0.062*** -0.094*** -0.104*** -0.112*** -0.081***
(0.0035) (0.0002) (0.0003) (0.0003) (0.0004)

R&Dd 0.036*** 0.034*** 0.033*** 0.028*** 0.053***
(0.0042) (0.0005) (0.0005) (0.0005) (0.0008)

Note: The first column reports the regression results from the data. All regressions include industry, age, and province
fixed effects. Columns (2)-(5) report the results from the simulated data. See Table 2 for variable definitions.

shocks would increase the TFP dispersion without significantly altering firms’ imitation-innovation
choice. We also note that the dispersion of TFP is sensitive to the step-size parameter ã. A larger ã
yields a higher dispersion. In Panel A, we show that estimating the model under the assumption of
ã = 1.12 allows us to match the empirical distribution well. However, such a model overpredicts the
empirical average R&D-to-value added ratio.24

The model matches the upper tail better than the lower tail of the empirical distribution, whose
measurement is notoriously noisy. Nevertheless, our model makes some progress on understanding the
lower tail because most existing theories of random interactions between firms do not feature any lower
Pareto tail.

TFP growth: The model yields predictions about the speed of growth of the traveling wave. The
aggregate TFP growth in the data is 3%.25 The PAM implies a steady-state annualized aggregate TFP
growth rate of 3.6%. The corresponding figure in the IPM is 5.1%.

In our model, the aggregate growth rate is determined by both innovation and knowledge diffusion.
To quantify the role of each channel we evaluate what aggregate growth would be if only one channel
were operating for one period while holding fixed the firms’ R&D decisions. In the PAM, innovation

24The step size ã does not affect the fit of the targeted moments. In particular, Figure 4 would look essentially identical
for ã = 1.12.

25We calculate the aggregate growth rate in the data using the methodology of Hsieh and Klenow (2009). We first
calculate TFP growth at the two-digit industry level and then aggregate up using industry deflators and value added
shares.
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Figure 6: TFP Distribution

-8 -6 -4 -2 0 2 4 6

log TFP

-10

-8

-6

-4

-2

0

lo
g 

de
ns

ity

Panel A: PAM

 data

 PAM step size 0.78

 PAM step size 1.12

-8 -6 -4 -2 0 2 4 6

log TFP

-10

-8

-6

-4

-2

0

lo
g 

de
ns

ity

Panel B: FLM

 data
 FLM

-8 -6 -4 -2 0 2 4 6

log TFP

-10

-8

-6

-4

-2

0

lo
g 

de
ns

ity

Panel C: IPM

 data
 IPM

-8 -6 -4 -2 0 2 4 6

log TFP

-10

-8

-6

-4

-2

0

lo
g 

de
ns

ity

Panel D: FRM

 data
 FRM

Note: The dotted lines represent the log density of log TFP in the data. The solid and dashed lines are the steady-state
log density of log TFP for various models. Panel A shows two versions of the PAM–the benchmark model and the one
with smaller step size. Panel B: FLM, Panel C: IPM, and Panel D: FRM.

and imitation account for 20% and 80% of TFP growth, respectively. The share accounted for by
passive imitation from innovating firms is negligible. Note that the decomposition would yield very
different results if innovation were shut down permanently. Absent innovation, the long-run growth
would be zero as long as the initial TFP distribution is bounded.

6.3 Patents

Our theory predicts that firms that are larger and more productive invest more in attempting to inno-
vate and should therefore innovate more. Moreover, among those trying, firms that are successful at
innovating should grow faster than those that are failing. In Section 3 we measured innovation invest-
ments by R&D expenditures. Alternatively, we could try to measure the outcome of this investment
activity. A common empirical measure of successful innovation is patents. In this section, we show
that the predictions of our theory are broadly consistent with data on patents.

To this end, we collect data for all the patents approved by China’s State Intellectual Property
Office (SIPO). We match the SIPO data with the 2012 NBS data. In the 2007–12 balanced panel of
matched firms, there are 14,492 firms (out of ca. 123,000) that were granted one or more patents for
which they applied for during 2007–12. The total number of patents these firms applied for during
that period is 146,896. This implies that on average each NBS firm with a positive number of patents
applied for 10.1 patents.26 Note that, since the average time for granting a patent is about three years,

26In the unbalanced panel, 28,081 NBS firms (out of a total of ca. 275,000) have one or more patent for which they
applied for during 2007–12. The total number of patents these NBS firms applied for during that period is 228,634. This
implies that on average each NBS firm with a positive number of patents applied for 8.1 patents.
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a lot of patents sought during 2007–12 were granted after 2016. The magnitudes above are therefore a
lower bound to the actual number of patents.

Figure 7: Patents of Chinese Firms, Balanced Panel 2007–12
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Note: All patents in the figure refer to invention patents applied for during 2007–12. We group all firms in the 2007–12
balanced panel into percentiles by their initial TFP. Panel A plots the proportion of firms with patents in each percentile.
Panel B plots the average number of patents among R&D firms (solid line) and among nonR&D firms (dotted line) in
each percentile. Panel C plots the proportion of R&D firms with one or more patents (solid line) and the proportion for
nonR&D firms (solid line). The solid line in Panel D plots the TFP growth difference between R&D firms with patents
and nonR&D firms. The dotted line plots the TFP growth difference between R&D firms without patents and nonR&D
firms.

Panel A of Figure 7 shows that the propensity for patenting innovations is increasing in the TFP
level, consistent with Panel A of Figure 2. Panel B plots the average number of patents as a function of
TFP broken down by R&D and nonR&D firms. Essentially all patents are sourced from firms reporting
some R&D activity. The same pattern emerges from Panel C, which plots the proportion of R&D firms
and the proportion for nonR&D firms with one or more patent. Clearly, R&D is strongly correlated
with patenting. This evidence shows that the data on R&D expenditures well captures innovation
investments. Panel D displays the most interesting finding. Firms with a positive number of patents
experience larger TFP growth than R&D firms without a patent. The gap increases with TFP, being
largest for the top two deciles of the TFP distribution. This is consistent with our model, where R&D
firms that are successful at innovation grow faster than those that are not able to innovate, and this
difference is increasing in TFP.

This evidence is also suggestive of the hypothesis that some firms that report R&D but do not patent
innovations may be fudgers–consistent with the FRM we estimated. This evidence is only suggestive.
Non-patenting R&D firms could simply be firms that invested in R&D but had bad luck. However,
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it is interesting to observe that the number of patents per firm increases sharply from the second-
highest TFP quantile to the highest quantile (top five percent) in Panel B, precisely consistent with
the prediction of the FRM that it is mostly low-TFP firms that have an incentive to opportunistically
report R&D expenditure without actually engaging in it.

7 Estimating the model on alternative samples: the case of Taiwan

In this section we reestimate the model using data for Taiwanese firms for the years 1999-2004. The goal
of this analysis is twofold. First, we would like to compare the productivity of Chinese R&D investments
to those of other economies. We focus on Taiwan both because similar data are available and because
it is an export-oriented economy with an important manufacturing sector that has commonalities with
China.27 Second, we would like to assess the robustness of our results across different samples.

The results are summarized in Table 5. Appendix Figure A9 displays the fit of the targeted moments
for the PAM and IPM. The model fits well for the empirical moments—the J-Statistic of the PAM is
lower for Taiwan than for China while that of the IPM is about the same.

Table 5: Estimation for Taiwan, 1999–2004.

PAM FLM IPM

Imitation prob. q 0.286 0.501 0.371
(0.086) (0.129) (0.120)

Second chance δ 0.027 0.002 0.001
(0.023) (0.058) (0.047)

Innov. prod. p̄ 0.184 0.207 0.206
(0.026) (0.031) (0.032)

Innov. cost c̄ 3.301 4.669 5.247
(0.475) (0.717) (0.809)

Std.dev. m.e. σµa 0.722 0.538 0.622
(0.074) (0.073) (0.112)

Std.dev. innov. subs. σc 1.371 1.378
(0.146) (0.108)

Policy inter. ca -2.385
(0.792)

J-Statistic 0.861 0.570 0.503

Note: Estimated parameters of various models using the Taiwanese 1999-2004 balanced panel sample. Bootstrapped
standard errors in parentheses.

The estimated parameters are qualitatively in line with those for China. However, there are some
noteworthy quantitative differences. First, the productivity of innovation is larger in Taiwan: the
estimated average probability of success in innovation is around 9% (i.e., p̄/2 = 0.184/2), while it was
just 5% in the China sample. However, the cost parameter c̄ is also larger in the Taiwanese sample.
Second, the estimate for q is higher, implying faster technological diffusion and convergence among
Taiwanese firms than among Chinese firms. The estimated parameters are stable across different
specifications. Interestingly, the parameter estimates for the R&D technology in Taiwan are in the
ballpark of the estimates of p̄ and q in the FRM for China.

27To ensure that the estimates are comparable across data samples, we estimate all models with the same step size on
the TFP ladder as in the benchmark model, 0.78.

29



In conclusion, our theory can account for the R&D behavior and TFP growth for both Taiwanese
and Chinese firms. However, both innovation and technology diffusion are faster in Taiwan.

Earlier China Sample: As a further robustness check, we have also estimated the model using data
for Chinese firms from the earlier period 2001–07, see Appendix Table A7 and Appendix Figure A10.
The results are qualitatively similar and in all cases statistically significant, although R&D investments
are a less important driver of TFP growth than in the period 2007–12. This finding accords with the
argument of Acemoglu et al. (2006) that innovation becomes more important as an economy approaches
the world technology frontier.

8 Counterfactuals

In this section, we report the results of some counterfactual policy experiments we performed based on
the estimated model. We focus our discussion on the PAM and IPM.

Figure 8: Transition after Lowering Wedges
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Note: The graph displays the transition following a 50% reduction in the variance of wedges. Panel A plots the growth
rate of cross-sectional average TFP. Panel B plots the growth rate of aggregate TFP. Panel C plots the share of R&D
firms, and Panel D plots the cross-sectional variance of log TFP.

Reducing misallocation: Our main counterfactual experiment is an exogenous reduction in misal-
location. Hsieh and Klenow (2009) document large static efficiency gains from reducing misallocation
in China. In our model there are additional dynamic effects through the R&D investments. Output
wedges make R&D decisions depend more on firm size and less on TFP, flattening the schedule of Panel
A in Figure 4 relative to Panel B in the same figure. If misallocation were removed altogether, the
correlation between size and R&D would be driven by TFP differences only, in which case the schedules
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Figure 9: Steady-State Moments in the Counterfactual Model
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Note: The dashed lines display the moments in steady state for the counterfactual experiment where we reduce the
variance of wedges by 50%. The dotted line displays the moments predicted by the benchmark estimated PAM.

in Panels A and B would be identical.
We study the dynamic effects of an unanticipated instant reduction in the variance of the logarithm

of output wedges log (1− τi). We engineer this reduction by halving both b2 and var (ετi ).28 Figures 8
and A11 display the transition of the economy from the initial to the counterfactual steady state for
the PAM and IPM, respectively.29 The two upper panels show the evolution of the growth rates in the
cross-sectional average TFP and in aggregate TFP, respectively.30 To ease the visualization, Panel B
does not display the initial jump in aggregate TFP arising from the static effect of improved resource
allocation following the reduction in the dispersion of wedges.

When we lower the dispersion in wedges (and the correlation of wedges with TFP), more high-TFP
firms and fewer low-TFP firms invest in R&D. This has two effects on the TFP distribution. First, the

28To see why this achieves a 50% lower dispersion in wedges on impact, recall that var (log (1− τ)) = b2 ·var (log (A))+
var (ετi ). The correlation parameter b, which we inferred from the data, is quantitatively important, especially for the
dynamic effects: in our counterfactual, the decrease in the parameter b is actually the main source of dynamic gains.
The reason is that the wedge on high-TFP firms—that efficiency considerations would require investing in R&D—is the
main distortion on R&D decisions. Note that our experiment is not directly comparable with that performed by Hsieh
and Klenow (2009) because they assume wedges and TFP follow a bivariate lognormal distribution, implying that the
variance of log TFPR is a sufficient statistic for the static effect of distortions on aggregate TFP.

29It would be a formidable task to calculate numeric transitions in which the cost of R&D changes with the growth rate
every period in line with equation 8. For this reason, we approximate the path of the innovation cost using the constant
growth rate in the future steady state.

30Recall that the cross-sectional average TFP is the (unweighted) average TFP across firms, Ā ≡
∫ 1

0
Ai di. Aggregate

TFP in our economy is calculated as Z ≡ Y/
(
KαL1−α), where K and L denote aggregate capital and labor, respectively.
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wave travels at a faster speed because more of the firms with a comparative advantage in innovation
(i.e., high-TFP firms) pursue the innovation strategy. The growth rate of cross-sectional average TFP
(Panel A) reflects the speed of the traveling wave of the TFP distribution. Note that this is a state
variable that does not jump upon the reduction of misallocation. Instead, the speed of the traveling
wave (hence, the growth rate of cross-sectional average TFP) increases gradually.

The second salient effect is an increase over time in TFP dispersion. Intuitively, as we lower
misallocation, more high-TFP firms invest in R&D and grow faster, pulling away from the median.
Panel D in Figure 8 shows that the cross-sectional variance of TFP increases over time to more than
three times its initial magnitude. The increase in the TFP dispersion increases aggregate value added
because more inputs are allocated to the firms with the highest TFP, thereby increasing the covariance
between inputs and TFP. This effect gives aggregate TFP growth an additional kick that lasts for as
long as the TFP dispersion grows. It is largest in the early stage of the transition and is dampened
over time as the growth in the TFP dispersion declines.

The evolution of aggregate TFP growth in Panel B of Figure 8 stems from a combination of the
two effects. In the long run, we observe an increase in aggregate TFP growth from the initial 3.6%
to 4.7% (see column (1) in Table 6). The transition is long and hump shaped: after an initial spike,
aggregate TFP growth slowly declines to the new steady state. The hump reflects the dynamics of
the two components. In the initial phase of the transition, the main driver for aggregate TFP growth
is the increasing TFP dispersion. In the long run, the dispersion of the distribution settles down to
a constant level and the aggregate TFP growth coincides with the growth rate of the cross-sectional
average TFP.

Panel C in Figure 8 shows that R&D investments shoot up by almost 50% upon impact and then
decline smoothly. The sharp initial increase is partly driven by a change in income distribution between
labor and profits. As the dispersion of wedges is curtailed, both aggregate TFP and the share of value
added accruing to profits grow. This strengthens the incentives for firms to invest in R&D. The initial
increase in R&D investments is dampened over time because the increase in TFP dispersion increases
misallocation after the shock.31 In the new steady state, the share of R&D firms (16%) is significantly
higher than in the initial steady state (12%).

Figures 9 and A12 show how the counterfactual reduction in misallocation affects the predictions
for the targeted moments in the PAM and the IPM, respectively.32 There are large changes in Panels A
and B. The schedule in Panel A becomes significantly steeper, reflecting the larger correlation between
R&D and TFP. In the counterfactual PAM economy, 95% of the firms in the top five TFP percentiles
and 54% of the firms in the 80th–94th TFP percentiles invest in R&D—the corresponding numbers
for the IPM are 66% and 30%. In contrast, hardly any firms with TFP below the median invests in
R&D. Moreover, the size-R&D profile in Panel B is now much more similar to the TFP-R&D profile—
reflecting the higher correlation between size and TFP. Panel D shows that the TFP growth difference
between R&D and nonR&D firms is slightly smaller in the counterfactual. This is due to a selection
effect: wedges deter firms from investing in R&D, except for those drawing a very high p. This implies
positive selection on p. Lowering distortions reduces the positive selection.

The main lesson of this counterfactual experiment is that misallocation has significant quantitative
effects on TFP growth both in the short and in the long run. Moreover, reducing misallocation widens

31To see this, recall that given the relationship we assumed between wedges and TFP in equation (14), the variance of
log(1 − τi) is b2var(ai) + var (ετi ). Therefore, a larger var(ai) will imply a larger dispersion in τi. This effect partially
offsets the initial decline in wedges.

32Since these figures show simulated results, we do not add m.e. This is different from Figure 4 where we add m.e. to
the simulations in order to make the results comparable with the data.
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the dispersion in the stationary TFP distribution. In our model, firms’ heterogeneity has no effect
on wage inequality because the labor market is competitive. However, in models with realistic labor
market frictions (e.g., search and ex-post rent sharing) and assortative matching between workers and
firms (Lindenlaub (2017)), reducing wedges and misallocation would also increase wage inequality.

International spillovers: Our model predicts that a reduction in misallocation yields a permanent
growth effect of a reduction of misallocation. Arguably, this is too optimistic. Many economists believe
that the fast growth of China stems, at least in part, from technological convergence due to international
spillovers. As China approaches the world economic frontier, this source of growth is destined to dry
up.

In this section, we embed our theory in a model of technological convergence where growth arises
from both random interactions and international spillovers, which we assume to increase with the
distance to the world frontier as in Acemoglu et al. (2006). More formally, we assume that aggregate
TFP growth in the nonfrontier economy j equals gjt = Γ(MISj ,Ajt) + ∆(TFPft/TFPjt), where Γ
is the outcome of our benchmark model, A stands for the TFP distribution, and ∆ captures learning
from the frontier economy. Γ is a decreasing function of the level of misallocation MISj which is
parameterized by b2 and var (ετi ), following our theory.33

We assume ∆(x) = ζ × log(x) − d, where ζ is a convergence parameter and d captures knowledge
depreciation. In the long run, all countries grow at the same constant rate g which is set by the frontier
economy, while the TFP gap between the frontier and nonfrontier economies is determined by the
relative misallocation.34

We calibrate ζ = 2% consistent with standard estimates of the cross-country convergence rate. We
set d = 0.0312 so that the model matches the aggregate growth rate of TFP in Chinese manufacturing
in our sample (3%). Finally, we set the TFP growth rate for the frontier economy (i.e., Γ̃(MISf )− x)
to 2%.35 Under this calibration, the current level of misallocation of China implies that its GDP per
capita converges in the long run to 46% of the frontier economy’s level.

Next, we counterfactually reduce misallocation by 50%. We assume an initial TFP gap between
China and the frontier economy of 3.6 in line with the China-US gap estimated by Shen et al. (2015).
Figure 10 shows the results for the PAM (the IPM yields similar results). The TFP gap relative to
the frontier economy falls on impact and keeps shrinking thereafter, both because of the declining
international spillovers and the transitional dynamics of the random interaction model. In the long
run, TFP converges to 81% of the frontier level (as opposed to 46% in the status quo). While part of
this gain accrues from the static effect of reducing misallocation, Figure 10 shows that the additional
dynamic gains arising from the mechanism of our model are quantitatively large: the static effect
instantaneously cuts the gap from 3.68 to 2.13 while the ensuing dynamic effect further decreases it to
1.23. Throughout transition, growth is hump-shaped, being faster than in the benchmark economy for
decades.36

33Recall also that while during transition growth depends on the evolving TFP distributionAjt, the long-run distribution
is pinned down by the level of misallocation, i.e., Aj = A(MISj).

34More formally, if we denote the steady state expression of Γj by Γ̃(MISj) ≡ Γ (MISj ,A(MISj)), the steady-
state TFP difference between a generic economy k and the frontier economy f is given by: log(TFPf/TFPk) =(

Γ̃(MISf )− Γ̃(MISk)
)
/ζ.

35We acknowledge that this TFP growth rate is higher than one observes in frontier economies like the US in recent
history. If we assumed lower growth rates, the calibrated model would predict that China becomes the world leader in
the long run. While we are agnostic in this regard, such a scenario would defeat the purpose of an extension aiming to
quantify the effects of misallocation in a model where changes in misallocation only affects the speed of transition.

36China temporarily becomes the world leader during the transition. The simulation takes into full account the conse-
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Figure 10: TFP Gap During Transition with International Spillovers
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Note: Evolution over time of the ratio between the TFP of the frontier economy and that of the benchmark economy
(China) in the model with international spillovers. The dotted and solid lines display simulated transitions in the estimated
model and in the counterfactual where output wedges are reduced by 50%, respectively.

The take-home message of this section is that in a model with international spillovers, a reduction
in misallocation has a significant effect on the speed of transition and on the long-run GDP level even
in a scenario in which the catching-up economy does not become the world technology leader in the
long run.

The innovation technology: In this section, we study the effect of counterfactual changes in the
parameters of the technology of innovation. Table 6 and Appendix Table A8 summarize the results for
the PAM and IPM, respectively, focusing on the fraction of R&D firms and the growth rate in steady
state. Column (1) reports the result of the estimated model for comparison. Column (2) summarizes
the long-run effect of the reduction in misallocation discussed above. In columns (3), (4), and (5),
we change the structural parameters q , p̄, and c̄ to the estimated level in Taiwan while keeping the
other parameters and the wedges at the estimated level for China. In all three scenarios, we observe
a significant increase in steady-state TFP growth, driven by the faster rate of both innovation and
imitation. When we set only the parameter q to the Taiwanese level, the proportion of R&D firms
falls by one and half percentage point. When we change both p̄ and c̄, the proportion of R&D firms
increases. Finally, when we set q, c̄, and p̄ to their respective Taiwanese estimated levels, the share of
R&D firms is about the same as in the estimated model. However, the steady-state TFP growth rate
is significantly higher (+1.5%).

The results are similar for the IPM—see columns (2)–(4) of Appendix Table A8. For instance,
simultaneously setting q, c̄, and p̄ to the respective Taiwanese levels increases TFP growth from 5.1%
to 5.8%, albeit reducing the share of R&D firms.

In columns (6) and (7) of Table 6, we consider uniform taxes or subsidies on R&D that change
the baseline cost of innovation c̄ so that, respectively, 5% and 20% of the Chinese firms invest in
R&D. Taxing R&D reduces TFP growth while subsidizing R&D increases it relative to the baseline
economy. However, the effect of subsidies is not monotonic. This is shown in column (8), where we
consider a drastic policy inducing (e.g., through arbitrarily large R&D subsidies) all firms to pursue

quences of this shift back and forth.
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the innovation strategy.37 The growth rate is lower than in the intermediate case of column (7). The
result is even starker in the IPM, where the growth rate of the economy where a large subsidy induces
all firms pursue innovation is lower than in the baseline estimated economy—see columns (1) and (8)
in Appendix Table A8.

Taking stock, the counterfactual analysis in this section provides two key insights. First, the
technology of innovation is more productive in Taiwan than in China. Given misallocation, China
would grow faster if it had access to the same innovation technology as Taiwan. Second, a moderate
increase in R&D subsidies across the board relative to its current level increases TFP growth. This is
in line with the predictions of models of endogenous technical change (e.g., Aghion and Howitt (1992)).
However, the effect is nonmonotonic and turns around for sufficiently large subsidies. This “too much
of a good thing” result stems from the opportunity cost of forgoing the benefit of random interactions.

Our counterfactual analysis ignores the cost of R&D subsidies. In an economy plagued by large
misallocation, a significant portion of the R&D subsidies would induce the wrong firms to pursue
innovation. Therefore, reducing misallocation entails a double dividend: it improves overall efficiency
and increases the effectiveness of R&D subsidies.

Table 6: Counterfactuals, Parsimonious model

(1) (2) (3) (4) (5) (6) (7) (8)

PAM
estim.
model

50%
lower

output
wedges

Taiwan’s
q

Taiwan’s
p̄ and c̄

Taiwan’s
p̄, c̄,

and q

Increase
c̄ so share
R&D firms

= 5%

Decrease
c̄ so share
R&D firms

= 20%

All firms
do R&D

Fraction of
R&D Firms (%)

12.2 15.8 10.7 14.1 12.2 5 20 100

Steady State
TFP Growth (%)

3.56 4.70 4.49 4.92 6.03 2.41 4.42 3.80

Note: The table reports statistics for the counterfactual experiments for the PAM discussed in the text. Column (1)
reports the predicted moments of the estimated PAM for comparison.

9 Conclusion

In this paper, we construct and structurally estimate a theory of TFP growth driven by innovation
and technology diffusion through random interactions. In the theory, both the TFP level and firm-
specific distortions are sources of comparative advantages: firms with high TFP and firms with negative
output wedges have a stronger incentive to invest in R&D. The theory bears testable predictions
about the evolution of the TFP distribution. We estimate the model to earn new insights about the
nature and effects of the R&D expenditure boom in China in recent years. In spite of the numerous
distortions emphasized by earlier studies, R&D investments appear to have contributed significantly
to the productivity growth of China. However, the return to productivity of R&D investments is
lower in China than in Taiwan. Moreover, pervasive output wedges often induce the wrong firms (and,

37Although this case features no stationary distribution (namely, the variance of TFP increases perpetually) it is possible
to calculate analytically the (approximate) growth rate when setting δ ≈ 0 (recall that the estimates of δ are always very
small).
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conversely, deter the right ones) from investing in R&D, thereby reducing the productivity of R&D
investments.

Relative to earlier Schumpeterian growth theory, our study incorporates both innovation and tech-
nology diffusion into a common framework. Moreover, it shifts the focus from the overall investment
in innovation to the efficient assignment of firms to innovation and imitation activities. While inno-
vation is the ultimate engine of growth, an excessive (or ill-targeted) policy emphasis on innovation
can actually backfire. The reason is that less productive firms have a high growth potential through
imitation which they forgo when they focus on innovation. Similar to innovation, successful imitation
carries positive externalities to less productive firms. Another important message of the paper is that
misallocation has significant dynamic effects. To the extent that larger firms have stronger incentives
(and fewer constraints) to pursue R&D investments, misallocation distorts the natural comparative
advantage of firms in leading the innovation process, and ultimately slows down economic growth.

Our study has some limitations that should be addressed in future research. First, we infer wedges
by exploiting the variation in size and TFP across firms, following Hsieh and Klenow (2009). The
assumptions underlying this methodology have been subject to debate and dispute in the literature.
Future work could aim to infer wedges more directly from observable policy distortions. Second, we
focus on the balanced panel of firms that are in the sample both in 2007 and 2012, abstracting from
entry and exit. While churning and the formation of new firms are important features of the Chinese
data, we believe that a study focusing on the R&D investments of incumbent firms is no less important.
In 2007, our balanced sample captures 71% of the R&D investments (which is the focal point of our
study) and 63% of the value added of firms in the total sample. Finally, future work should explore in
more depth firm dynamics and the role of an intensive margin of R&D.
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Supplementary Appendix

A Theory

In this section, we provide the proof of Proposition 1 and an expression for the equilibrium profits
(Equation (7)) and wage rate.

Proof of Proposition 1. From the monotonicity of Q (a, τ ;A) in a it follows that there exists a
threshold function a∗ (τ ;A) such that38

Q (a, τ ;A) ≥ p if a ≤ a∗ (τ ;A) ,

Q (a, τ ;A) < p if a > a∗ (τ ;A) . (A1)

All firms with a ≤ a∗ (τ ;A) imitate, while some firms with a > a∗ (τ ;A) (i.e., those with a sufficiently
large p) innovate. To simplify notation, we write a∗ (t) = a∗ (τ ;A) and Q (a) = Q (a, τ ;A) when this is
no source of confusion.

The difference equation governing the evolution of the log-TFP distribution can then be broken
down as follows:

Aa(t+ 1)−Aa(t)

=



q [(1− Fa−1(t))Aa−1(t)− (1− Fa(t))Aa (t)] if a < a∗ (t) , q (1− Fa−1(t))Aa−1(t)
−G (Q (a)) [q(1− Fa(t))Aa (t)]

−
∫ p
Q(a) [(p+ (1− p) δq (1− Fa(t)))Aa (t)] dG (p)

 if a = a∗ (t) + 1,


G (Q (a− 1))× q (1− Fa−1(t))Aa−1(t)

+
∫ p
Q(a−1) [(p+ (1− p) δq (1− Fa−1(t)))Aa−1(t)] dG (p)

−G (Q (a))× q (1− Fa(t))Aa (t)

−
∫ p
Q(a) [(p+ (1− p) δq (1− Fa(t)))Aa (t)] dG (p)

 if a > a∗ (t) + 1.

(A2)

To understand this law of motion, note that (i) if a < a∗ (t) , all firms with TFP a and a− 1 imitate;
(ii) if a > a∗ (t) + 1, all firms with TFP a facing a realization p > Q (a) and all firms with TFP a− 1
facing a realization p > Q (a− 1) innovate, while all other firms with TFP a and a− 1 imitate; (iii) if
a = a∗ (t) + 1, all firms with TFP a facing a realization p > Q (a) innovate, and all other firms with
TFP a and a− 1 imitate. Going from the p.m.f to the corresponding c.d.f. yields:

Fa(t+ 1)− Fa(t) =

a∑
b=1

Ab(t+ 1)−Ab(t)

=


−q (1− Fa (t)) (Fa (t)− Fa−1 (t)) if a ≤ a∗ (t) −G (Q (a)) q (1− Fa (t)) (Fa (t)− Fa−1 (t))

−
∫ p
Q(a)

[
(p+ (1− p) δq (1− Fa(t)))×

(Fa (t)− Fa−1 (t))

]
dG (p)

 if a > a∗ (t)
(A3)

38Note that this notation involves a slight abuse of notation relative to the function a∗ in the text.
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Define the complementary cumulative distribution function Ha (t) = 1−Fa (t) . Equation (A3) can
be rewritten as:

Ha(t+ 1)−Ha(t) = −
a∑
b=1

(Ab(t+ 1)−Ab(t))

=


qHa(t) (Ha−1 (t)−Ha (t)) if a ≤ a∗(t) G (Q (a)) qHa (t) (Ha−1 (t)−Ha (t))

+
∫ p
Q(a)

[
(p+ (1− p) δqHa (t))×

(Ha−1 (t)−Ha (t))

]
dG (p)

 if a > a∗(t)
(A4)

Note that Fa(t+1) ≤ Fa(t) (and conversely, Ha(t+1) ≥ Ha(t).) Since the probability mass is conserved
to one (and lima→+∞ Fa = 1), the fact that Fa is decreasing over time t for every a implies that the
distribution must shift to the right (i.e. towards higher values of a). A distribution that is shifted in
this way is called a traveling wave (Bramson, 1983). We now prove that there exists a traveling wave
solution of the form Fa(t) = f̃(a − νt) (or, equivalently Ha(t) = h̃(a − νt)) with velocity ν > 0. The
formal argument follows Bramson (1983) and König et al. (2016) . The traveling wave solution above
implies that Fa(t + 1) − Fa(t) = f̃(x − ν) − f̃(x), where x ≡ a − νt. For ν ≈ 0, we can take the first
order approximation f̃(x− ν)− f̃(x) ≈ −νf̃ ′(x), and thus Fa(t+ 1)− Fa(t) ≈ −νf̃ ′(x). Therefore, we
can rewrite (A3) as:

− νf̃ ′ (x) =



−q
(

1− f̃(x)
)(

f̃(x)− f̃(x− 1)
)

if x ≤ x∗


−G (Q (x))

[
q(1− f̃(x))

(
f̃(x)− f̃(x− 1)

)]
−
∫ p
Q(x)

 (p+ (1− p) δq
(

1− f̃(x)
))
×(

f̃(x)− f̃(x− 1)
)  dG (p)

 if x > x∗
(A5)

or, identically,

− νh̃′ (x) =



qh̃ (x)
(
h̃ (x− 1)− h̃(x)

)
if x ≤ x∗


G (Q (x))

[
qh̃ (x)

(
h̃ (x− 1)− h̃(x)

)]
+
∫ p
Q(x)

 (p+ (1− p) δqh̃ (x)
)
×(

h̃ (x− 1)− h̃ (x)
)  dG (p)

 if x > x∗
(A6)

Consider, first, the range x ≤ x∗. Using the upper part of (A5) yields the following Delay Differential
Equation (DDE):39

− νf̃ ′ (x) = −q
(

1− f̃ (x)
)(

f̃ (x)− f̃ (x− 1)
)
. (A7)

This equation allows us to characterize the (asymptotic) left tail of the distribution. Taking the limit
for x→ −∞, we can take the following first-order (i.e., linear) approximation:

νf̃ ′ (x) ' q
(
f̃ (x)− f̃ (x− 1)

)
.

39See also Asl and Ulsoy (2003), Bellman and Cooke (1963), and Smith (2011).
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Next, we guess that this linear DDE has a solution of the form f̃(x) = c1e
λx for x → −∞. Replacing

f̃ (x) by its guess and f̃ ′ (x) by its derivative, and simplifying terms, allows us to verify the guess as
long as the following transcendental equation in λ is satisfied:

λν ' q(1− e−λ). (A8)

The solution to this transcendental equation is given by

λ =

νW

(
− qe−

q
ν

ν

)
+ q

ν
,

where W denotes the Lambert W-function, and we require that qe−
q
ν

ν ≤ 1
e .

Consider, next, the range of large x where the solution for x > x∗ applies in (A6). Then, we can
write the following DDE

− νh̃′ (x) =


G (Q (x))

[
qh̃ (x)

(
h̃ (x− 1)− h̃(x)

)]
+
∫ p
Q(x)

 (p+ (1− p) δqh̃ (x)
)
×(

h̃ (x− 1)− h̃ (x)
)  dG (p)

 . (A9)

We use this DDE to characterize the right tail of the distribution as x→ +∞. Again, we take a linear
approximation:

νh̃′ (x) ' p̂
(
h̃ (x)− h̃ (x− 1)

)
,

where p̂ =
∫ p

0 p dG (p). For the latter, note that limx→∞Q (x) = 0 since as we take x to be arbitrarily
large, imitation becomes totally ineffective and firms choose to innovate almost surely. We guess a
solution of the DDE of the form h̃(x) = c2e

−ρx for x → +∞. The guess is verified as long as the
following transcendental equation holds:

ρν ' p̂(eρ − 1).

The solution to the transcendental equation satisfies

ρ =

−νW
(
− p̂e−

p̂
ν

ν

)
− p̂

ν
, (A10)

where W denotes the Lambert W-function, and we require that p̂e−
ρ
ν

ν ≤ 1
e . This concludes the proof.

Equilibrium expression for profits and wage rate: We provide the equilibrium expression for
profits and for the wage rate, given an aggregate labor supply of L = 1, exogenous distributions of
wedges and TFP, and the assumption of a small open economy.

The CES production function implies that each firm faces an isoelastic demand Yi = P−ηi Y , whence,

PiYi = Y
1
η
(
AiK

α
i L

1−α
i

)1− 1
η .
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Each firms chooses capital and labor to maximize profits subject to wedges and demand equation:

max
{Ki,Li}

πi = (1− τi)PiYi − wLi − rKi.

Solving the maximization problem by standard methods, substituting in the optimal values of Li and
Ki, using the expression for PiYi above, and rearranging terms yields:

πi =
1

η
PiYi = Π (Ai (1− τi))(η−1) ,

where Π ≡
(

(1− α)(1−α) αα(η − 1)
)η−1

η−η Y
(w1−αrα)η−1 . This is Equation (7) in the text.

The equilibrium expression for the wage rate is:

w1−α =

(
1− 1

η

)
αα(1− α)1−α

rα

(∫ 1

0
(1− τi)η−1Aη−1

i

) 1
η−1

. (A11)

B Data and descriptive statics

In this section we provide some details of the analysis in Section 3.

Alternative methodology for estimating TFP, based on Brandt et al. (2017)

We estimate firm-level TFP using the methodology of Hsieh and Klenow (2009). This is consistent
with our theoretical model and allows us to directly compare our results with those in the literature
on misallocation. However, this approach has been criticized in the empirical industrial organization
literature. If firms optimally choose the inputs in the production process to solve a dynamic maxi-
mization problem, then the estimation may suffer from an endogeneity problem. The error term of the
model can contain determinants of production decisions that are observed by the firm but not by the
econometrician, leading to inconsistent estimates of TFP.

In this section, we show that the target moments of our estimation are essentially unchanged if
we estimate TFP using the methodology of Ackerberg et al. (2015) that addresses an endogeneity
problem in the estimation of production functions. We follow the implementation of Ackerberg et al.
(2015) proposed by Brandt et al. (2017), which is also related to De Loecker and Warzynski (2012).
Because Brandt et al. (2017) postulate a gross production function while we estimate TFP using a
value added approach, we perform an adjustment for the two methods to be consistent. The details
of the estimation are deferred to the web appendix. The results are shown in Figure A1. The data
moments are indistinguishable from those used targets in our estimation. We conclude that our results
are robust to using this alternative estimation method for TFP.

Regression with firm fixed effects 2001–07

In this section, we present the result of regressions similar to those in Table 2, although for an earlier
sample in China, 2001-2007. Since this sample has R&D data for more than one year, this sample
allows us to also run regressions with firm fixed effects. Note that the regressions in Table A1 are
all on annual data, the reason being that we only have R&D data for 2001-2003 and 2005-2007. The
regressions in columns (1)-(3) are pooled regressions, while columns (4)-(5) are firm fixed effects (FE)
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Figure A1: China 2007–12 Sample with Alternative TFP Measurement
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Note: The figure shows the equivalent moments to Appendix Figure A4 when TFP is estimated using the methodology
of Brandt et al. (2017) based on Ackerberg et al. (2015).

regressions. All pooled regressions include dummies for year, province, industry, and age effects while
the FE regressions have year and firm effects. In the FE regressions, the dummies for province, industry,
and age, as well as the dummies for export firms and state ownership, are all subsumed in the firm
fixed effects.

The results in Table A1 show that, first, all the results from our main sample (2007-2012) in Table 2
hold up for the earlier sample (see the pooled regressions in Table A1). Second, the qualitative results
hold up (significantly so) even when controlling for firm fixed effects. When comparing columns (2) and
(5), we observe that the coefficients in the FE regressions are about half the size in magnitude but still
highly significant. Moreover, the coefficients have always the same sign as in the pooled regressions.
We conclude that our main empirical findings on the drivers of firms doing R&D—namely that R&D is
positively associated with TFP and negatively associated with output wedges—hold true both in the
cross section and within firms over time.

Alternative classification of innovative firms

In our main analysis, we classify all firms that report doing some R&D as innovative. However, many
firms invest a very small amount of resources in R&D, raising questions of whether innovation is truly
a salient strategy for these firms. In this appendix, we propose an alternative classification where firms
are deemed innovative only if they invest more than 1.73% of their value added. This threshold is the
median R&D intensity among R&D firms in our balanced sample. Conversely, firms investing less than
1.73% are regarded as imitators. Figure A2 shows the data moments corresponding to Figure 2 when
applying this more stringent definition of innovators. As one would expect, the percentage of R&D
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Table A1: Regressions with Firm Fixed Effects, 2001–07.

Dependent variable: R&D dummy

(1) (2) (3) (4) (5)

Pooled regressions FE regressions
R&Dd R&Dd R&Dd R&Dd R&Dd

log(TFP)t 0.059*** 0.377*** 0.323*** 0.003*** 0.186***
(0.0049) (0.0235) (0.0191) (0.0007) (0.0054)

wedge -0.432*** -0.361*** -0.225***
(0.0297) (0.0240) (0.0066)

exportd 0.045***
(0.0118)

SOEd 0.124***
(0.0148)

Firm effects - - - + +
Year effects + + + + +
Industry effects + + + - -
Age effects + + + - -
Province effects + + + - -

R-squared 0.396 0.449 0.456 0.581 0.582

Note: The table shows regressions of an indicator of R&D on annual data for China 2001-2007. The independent variable
is R&Dd, a dummy variable for R&D that equals one if firm R&D expenditure is positive and zero otherwise. log(TFP)
is the logarithm of TFP. Wedge refers to the calibrated firm output wedge (see Section 2 for details). exportd is a dummy
variable for exports. SOEd is a dummy variable for state-owned firms. Standard errors are reported in parenthesis.
The number of observations are 441,039 in columns (1)-(3) and 70,273 in columns (4)-(5). Observations are weighted by
employment and standard errors are clustered by industry. Regressions in columns (4)-(5) include firm and year fixed
effects. Regressions in columns (1)-(3) include year, industry, age, and province fixed effects. We drop firms with TFP in
the bottom 10 percentiles.
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firms is now lower. Moreover, the elasticity of R&D to TFP and size is lower than for the main sample.
However, the qualitative patterns are the same in Figures 2 and A2.

Figure A2: More stringent classification of innovative firms.
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Note: The figure shows the equivalent moments to Figure 2 if only firms with R&D expenditure above 1.73% are classified
as R&D firms.

Full sample of Chinese firms in 2007

A2 provides a comparison between the descriptive statistics in 2007 for the balanced sample of Chinese
firms we use in our analysis (survivors) and those that exited the sample before 2012. We ignore which
of these firms literally ceased to exist, which ones shrank and fell below the survey threshold in later
years, and which ones disappeared because of mergers and acquisitions.40 Surviving firms account for
ca. 63% of the total manufacturing value added. The median surviving firms is more than twice as
large as the median exiting firm. Exiting firms are less likely to perform R&D and, conditional on
performing it, they invest less.

Figure A3 displays the analogue of Panels A and B in Figure 2 for the full sample of firms in
2007, including exiters. Both panels show that exiters have a lower propensity to engage in R&D than
surviving firms. Note that in both panels A and B the schedules for the full sample are almost parallel
to the sample of survivors which we use. Namely, there is no major difference between survivors and
exiters in the selection into R&D by TFP and size.

40Note that the threshold for being in the NBS data in 2007 is that sales exceeds 5 million Yuan, or about 1 million
USD. This threshold increased to 20 million Yuan in 2011 and afterwards and some of the exiters are therefore firms with
sales below 20 million Yuan in 2012.
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This finding is confirmed by the multiple regressions in Table A3 that are very similar to those in
Panel A of Table 2.

Table A2: Summary statistics for China 2007, survivors vs. exiters.

(1) (2) (3)
Survivors Exiters Full sample

Number of firms 123368 172704 296072
Median value added (million USD) 1.48 0.62 0.91
Share of R&D firms (in %) 14.7 8.5 11.1
Aggregate value added of R&D firms
as share of total v.a. (in %) 42.7 34.4 39.6
Aggregate R&D expenditure
as share of total v.a. (in %) 42.7 34.4 39.6
Median R&D Intensity for R&D firms (in %) 1.86 1.26 1.63

Note: Summary statistics for China 2007 for the full sample (including exiters) versus the balanced panel (survivors
only). Survivors refers to firms present both in 2007 and 2012. Exiters refers to firms present in 2007 that exit the data
before 2012.

Table A3: Regression Analysis for All Chinese Firms in 2007.

Dependent variable: R&D decision in 2007.

(1)
R&Dd

(2)
R&Dd

(3)
R&Dd

(4)
R&Dd

log(TFP) 0.592*** 0.353*** 0.329*** 0.299***
(0.0063) (0.0257) (0.0230) (0.0204)

wedge -0.393*** -0.364*** -0.327***
(0.0319) (0.0283) (0.0254)

exportd 0.051*** 0.053***
(0.0134) (0.0132)

SOEd 0.182***
(0.0202)

R-squared 0.134 0.206 0.209 0.221

Note: Panel A: the table reports regressions equivalent to those in Table A3 for the full sample of firms in 2007, i.e.,
including firms that exit the sample before 2012. All the explanatory variables are from 2007. Standard errors are reported
in parenthesis. The number of observations is 263,504. Observations are weighted by employment and standard errors
are clustered by industry. All regressions include industry, age, and province fixed effects. We drop firms with TFP in
the bottom 10 percentiles.

Regression results for Taiwan

In Table A4 we report the regression results discussed in the text for Taiwan. By comparing Table A4
with Table 2, it is clear that all qualitative results are the same for Taiwan as for our 2007-12 China
data. However, R&D in Taiwan is more highly correlated with TFP and more negatively correlated
with wedges, and TFP growth is more strongly related to R&D. In particular, the coefficients on TFP
and wedges in Panel A (explaining the R&D decision) of Table A4 are about twice as large in magnitude
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Figure A3: China 2007–12 Non-balanced Sample including Exiters
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Note: The dotted lines show the moments equivalent to those of panels A and B in Figure 2 for the full sample of firms in
2007, i.e., including firms that exit the sample before 2012. The solid lines reproduce the moments in Figure 2, calculated
for the balanced sample of surviving firms,

as in Table 2. Morever, the coefficient on R&D in Panel B (explaining TFP growth) of Table A4 are
about three times as large in magnitude as in Table 2.

Target moments of the empirical distribution

Figure A4 displays the empirical moments that we target in the estimation. Each observation represents
a quantile of the distribution based on Figure 2.

C Estimation

Measurement error: Mapping

This appendix describes how we incorporate measurement error when calculating the theoretical mo-
ments. We provide an analytical mapping from the theoretical distribution of a variable x to the
observed distribution of true x plus m.e. This analytical mapping is critical to speed up the structural
estimation, avoiding a computational curse that would arise if we had to rely on simulations.

The presentation focuses on TFP. The approach for adding m.e. to the theoretical (true) distribution
of value added is equivalent, replacing a and µ with y and µy below.

Denote by â and a the observed and true log TFP: â = a+µ, where µ is m.e. Consider the following
discrete state space: a ∈ {δ, · · · , Nδ}, â ∈ {δ, · · · , Nδ}, and µ ∈ {−Nµδ, · · · ,−δ, 0, δ, · · · , Nµδ}. We
set Nµ = 4.
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Figure A4: Chinese Firms in the Balanced Panel 2007–12
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Note: The figure shows the empirical moments of the balanced panel for China 2007–12. See also Figure 4. The dotted
lines represents standard errors.
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Table A4: Balanced Panel of Taiwanese Firms, 1999–2004.

PANEL A: Correlations between firm characteristics and R&D decision.

(1) (2) (3)
R&Dd R&Dd R&Dd

log(TFP) 0.087*** 0.614*** 0.573***
(0.0078) (0.0184) (0.0189)

wedge -0.720*** -0.673***
(0.0234) (0.0236)

exportd 0.088***
(0.0227)

Industry effects + + +
Age effects + + +
Year effects + + +

Observations 44,326 44,326 44,326
R-squared 0.219 0.396 0.404

PANEL B: Correlations between firm initial characteristics and TFP growth.

(1) (2) (3)
TFP growth TFP growth TFP growth

log(TFP) -0.064*** -0.066*** -0.066***
(0.0046) (0.0047) (0.0055)

R&Dd 0.103*** 0.093***
(0.0162) (0.0168)

exportd 0.039*** 0.039***
(0.0063) (0.0063)

R&D intensityh 0.072**
(0.0262)

R&D intensitym 0.106***
(0.0278)

R&D intensityl 0.097***
(0.0150)

Industry effects + + +
Age effects + + +

Observations 9,996 9,996 9,996
R-squared 0.081 0.083 0.084

Note: The table reports the analogues of the regression results in Table 2 for the Taiwanese firms. There are two
differences relative to Table 2: (1) Panel A reports pooled regressions with year fixed effects (for Taiwan, data for R&D
expenditure is available for multiple years); and (2) there is no province dummy for Taiwan.

Let the theoretical distribution of a be denoted by A (a). The first task is to convert A (a) to A (â)
– i.e., the distribution of observed TFP with m.e., which can be compared with the data. To this end,
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we first derive the transition matrix A (â|a). For j ∈ {2, · · · , N − 1}, we have

A (â = aj |a = ai) = A (µ = (j − i) δ) . (A12)

For j = 1 orN , we haveA (â = a1|a = ai) =
∑

k≥i−1A (µ = −kδ) andA (â = aN |a = ai) =
∑

k≥N−iA (µ = kδ).
So, the unconditional probability of â is

A (â = aj) =
∑
i

A (â = aj |a = ai)A (a = ai) . (A13)

Note that when A (â) is observable while A (a) is unknown, one can use A (â = aj |a = ai) in (A12) to
back out A (a) by solving the system of equations in (A13).

We now derive the conditional TFP growth. Let us start with observed TFP growth of imitating
firms.

EIM [∆â|â] = EIM [∆a+ ∆µ|â] (A14)

= E [q (1− F (a)) |â]− E [µ|â]

=
∑
i

q (1− F (a))A (a = ai|â = aj)−
∑
k

kδA (µ = kδ|â = aj) .

To go from the theoretical (conditional) distribution of true TFP growth conditional on true a to
TFP growth with m.e. conditional on â, we need conditional probabilities of A (a = ai|â = aj) and
A (µ = kδ|â = aj).

The posterior distribution of a follows

A (a = ai|â = aj) =
A (â = aj |a = ai)A (a = ai)

A (â = aj)
, (A15)

To obtain the posterior distribution of µ, first notice that

A (â = aj ∩ µ = kδ) = A (â = aj |µ = kδ)A (µ = kδ)

= A (a = aj−k)A (µ = kδ) .

for j ∈ {2, · · · , N − 1}. Note that for j = 1 or N , we have the following boundary cases:

A (â = a1|µ = −iδ)A (µ = −iδ) =
∑
k≤i+1

A (a = ak)A (µ = −iδ) ,

A (â = aN |µ = iδ)A (µ = iδ) =
∑

k≥N−i
A (a = ak)A (µ = iδ) .

Then, the posterior distribution of µ follows

A (µ = kδ|â = aj) =
A (â = aj |µ = kδ)A (µ = kδ)

A (â = aj)
(A16)

=
A (â = aj ∩ µ = kδ)

A (â = aj)
.

We can thus use (A14), together with (A15) and (A16), to generate TFP growth of imitating firms
with measurement errors.
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Table A5: Measurement Error Moments

Empirical variances
Implied m.e.

variance
var(∆Y ) var(∆I) cov(∆Y,∆I) var(TFP ) v̂µy v̂µI v̂µa

2007-2012
China

0.456 0.328 0.156 1.059 0.150 0.086 0.320

2001-2007
China

0.470 0.098 0.043 1.269 0.214 0.027 0.361

1999-2004
Taiwan

1.128 0.124 -0.005 2.363 0.567 0.065 0.950

Note: The first four columns refer to variances of growth in revenue, inputs, and TFP, respectively. Y , I and TFP
represent log(PitYit), log(Kα

itL
(1−α)
it ), and log(Ait), respectively. The fourth column is cross-sectional dispersion in TFP.

We use the full sample (i.e., keeping the firms with initial TFP in the bottom ten percentiles). The results in the trimmed
sample are similar. The implied variance of measurement error is derived from equations (12)-(13) and the expression for
m.e. in TFP.

Measurement error: Moments

Table A5 reports the empirical moments we use to derive the moments involving measurement error.

Calibration of θ

Figure A5 displays how the ratio of R&D intensity for R&D firms changes with TFP in the data (solid
line) and in the benchmark PAM model. The figure shows R&D intensity for each quantile relative to
the intensity for firms in the lowest quantile, normalized to unity. The technological parameter θ is
calibrated to match the slope between the first and last quantile in Figure A5.

Figure A5: Ratio of R&D to Value Added, PAM vs. Data
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Note: The figure shows the average ratio of R&D to value added for R&D firms in the data (solid line) and the
Parsimonious model (dotted line) for four quantiles of the TFP distribution.
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D Results

In this section we report robustness estimation results referred to in the text.

D.1 Estimation of the Fake R&D model

Figure A6 shows the fit of the Fake R&D model (FRM). The blue line in each panel represents moments
from simulated data based on firms claiming to do (or not to do) R&D. The corresponding moments
for a true classification of R&D investments are represented by red lines in the figure.

Figure A6: China: Fake R&D Model
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Note: Each panel of Figure A6 displays three schedules: (i) the dotted line shows the moments in the data, (ii) the
dashed line shows the fit of the model (which refers to measured R&D), and (iii) the solid line shows results restricted to
the firms which, according to the model predictions, truly perform R&D. See also Figure 4.

D.2 Intensive Margin

In this section, we lay out and document the fit of the two exercises discussed in Section 5.2 that deal
with an intensive margin and heterogeneity in R&D intensities.

High R&D threshold: Figure A7 is the analogue to Figure A4 and shows how the 16 target moments
are affected by applying the more stringent classification of innovation, based on Figure A2. Figure
A7 also shows the fit of the PAM and IPM when reestimated based on these adjusted moments. The
estimated coefficients for this estimation of the PAM and IPM are reported in columns (5)-(6) of Table
3.
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Figure A7: Models with Higher R&D Cutoff
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Note: The models are estimated to match empirical moments where only firms with R&D intensity exceeding (1.73% of
value added are classified as innovative firms. See Figure 4 for additional information.

High- and low-R&D firms: In this section, we introduce a distinction between high- and low-R&D
firms. In the data, we assign a firm to the high-R&D group if its R&D expenditure-to-value added ratio
is higher than the median 1.73% ratio. Figure A8 displays the data moments. Panels A1 and A2 are
the analogues of Panel A in Figure 4 broken down by high- and low-R&D firms. Two features of the
data are noteworthy: First, future TFP growth is higher for high-R&D firms. Second, the propensity
to engage in R&D conditional on TFP and size are similar for the two groups of firms.

Then, we augment the theory with the assumption that there exist two distinct technologies entailing
different costs and success probabilities. More formally, firms are randomly assigned to either of the
technologies with parameters {c̄l, p̄l} and {c̄, p̄}, respectively. Each firm draws a probability of success p
from the distribution to which it is assigned. The distribution of wedges is assumed to be independent
of the assignment.

The targets of our estimation are now the empirical moments in Figure A8. In addition, we target
the ratio of R&D expenditure to value added for high- relative to low-R&D firms, which is a factor of
8.6 in the data. The proportion of high-R&D firms is an additional parameter that we estimate.

The estimates for the PAM and IPM are reported in Columns (3)-(4) of Table A6. In the PAM,
firms assigned to the {c̄l, p̄l} group face both a lower cost and a lower average probability of success
if they choose the innovation strategy.41 In the IPM, the estimated productivities p̄l and p̄ are very

41The proportion of firms drawing from the {c̄l, p̄l} process is estimated to be 13%. Since the high-R&D firms are by
construction 50% of the total R&D firms, this implies that many firms assigned to the {c̄, p̄} process choose to imitate
because innovation is too costly. In contrast, a large proportion of firms assigned to the {c̄l, p̄l} process choose the
innovation strategy.
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similar (in fact, p̄l > p̄.) Still, selection guarantees that among the firms choosing the innovation
strategy TFP growth is significantly higher for high-R&D than for low-R&D firms, consistent with the
data. Intuitively, because of the high investment cost, only the very best firms (i.e., those drawing very
high p’s) assigned to the {c̄, p̄} process choose to innovate. Appendix Figure A8 shows that both the
PAM and IPM fit well the target moments.

Table A6: Estimation of Model with Two R&D Technologies.

(1) (2) (3) (4)
High & Low R&D

PAM IPM PAM IPM

Imitation prob. q 0.175 0.271 0.223 0.359
(0.031) (0.019) (0.026) (0.052)

Second chance δ 0.008 0.020 0.058 0.019
(0.011) (0.021) (0.027) (0.026)

Innov. prod. p̄ 0.096 0.114 0.103 0.107
(0.008) (0.006) (0.007) (0.012)

p̄l 0.076 0.115
(0.009) (0.010)

Innov. cost c̄ 1.627 3.374 3.015 3.085
(0.136) (0.174) (0.208) (0.791)

c̄l 0.094 1.612
(0.135) (0.979)

Std.dev. m.e. σµa 0.549 0.472 0.531 0.433
(0.014) (0.008) (0.015) (0.024)

Std.dev.innov. subs. σc 1.243 1.206
(0.038) (0.113)

Policy inter. ca 2.015
(0.316)

High p̄ share 0.872 0.682
(0.029) (0.047)

J-Statistic 1.518 0.507 3.310 0.882

Note: Columns (3)–(4) of the table shows the estimated parameters for the models with two R&D technologies For
convenience, columns (1)–(2) restate the estimates from Table 3 for PAM and IPM in the benchmark model. Sample:
Chinese Firm Balanced Panel 2007–2012.

Figure A8 shows the fit of the PAM with two R&D technologies (small and large R&D projects).
The estimated coefficients for the PAM model with two R&D technologies are reported in columns
(3)–(4) of Table A6. The empirical moments for the high- and low-intensive R&D firms are illustrated
by black dotted lines in Figure A8.

E Estimating the Model on Different Samples

Figures A9 and A10 show the fit of the PAM and IPM for Taiwan and for China in the earlier sample
(2001–07), respectively.

F Counterfactuals

This section provides robustness analysis for the counterfactuals.
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Figure A8: High- and low-R&D firms
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Note: The figure shows empirical and theoretical moments for the extension to two R&D technologies. Panels A1-A2
and B1-B2 correspond to Panels A and B in Figure 4, reported separately for firms with high- versus low-cost R&D
technology. Panels C and D correspond to their counterparts in Figure 4,

Models with heterogeneity in innovation costs

Figures A11–A12 are the analogues of Figures 8–9 in the manuscript for the IPM that we estimated
on the benchmark balanced sample for China, 2007–12. Table A8 is the analogue of Table 6 in the
manuscript for the IPM.
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Figure A9: Taiwan 1999–2004: PAM and IPM
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Note: See Figure 4.

Figure A10: China 2001–07: PAM and IPM
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Note: See Figure 4.

A18



Table A7: Estimation for China 2001–2007, balanced panel.

(1) (2) (3)
PAM FLM IPM

Imitation prob. q 0.036 0.090 0.093
(0.032) (0.046) (0.039)

Second chance δ 0.033 0.164 0.069
(0.071) (0.084) (0.117)

Innov. prod. p̄ 0.034 0.046 0.045
(0.011) (0.013) (0.012)

Innov. cost c̄ 0.530 1.174 0.906
(0.159) (0.325) (0.198)

Std.dev. m.e. σµa 0.682 0.575 0.580
(0.038) (0.025) (0.026)

Std.dev. innov. subs. σc 0.644 0.559
(0.145) (0.119)

Policy inter. ca 0.513
(0.163)

J-Statistic 1.085 0.703 0.371

Note: Estimated parameters of various models using the Chinese 2001–2007 sample. Bootstrapped standard errors in
parentheses.

Table A8: Counterfactuals, Industrial Policy Model

(1) (2) (3) (4) (5) (6) (7) (8)

IPM
estim.
model

50%
lower

output
wedges

Taiwan’s
q

Taiwan’s
p̄ and c̄

Taiwan’s
p̄, c̄,

and q

Increase
c̄ so share
R&D firms

= 5%

Decrease
c̄ so share
R&D firms

= 20%

All firms
do R&D

Fraction of
R&D Firms (%)

14.9 16.0 14.8 8.24 8.17 5 20 100

Steady State
TFP Growth (%)

5.05 6.20 5.11 5.71 5.78 3.64 5.39 4.41

Note: The table reports statistics for the counterfactual experiments for the IPM discussed in the text. Column (1)
reports the predicted moments of the estimated IPM for comparison.
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Figure A11: Transition: Lower Wedges in IPM
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Note: This figure is the IPM analogue of Figure 8.
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Figure A12: Steady-State: Lower Wedges in IPM
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 Panel D: TFP Growth Difference
 between R&D and Non-R&D Firms

Note: This figure is the IPM analogue of Figure 9.
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