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1 Introduction

The starting point for much of asset pricing is a set of signals, Si,t, that proxy for the

conditional expected return for a security i at time t. In the context of an equilibrium asset

pricing model Si,t may represent a conditional beta on compensated risk factors. Or it may

be a predictor that is agnostic of equilibrium considerations, such as an asset’s recent price

momentum. Standard analyses, such as evaluating characteristic-sorted portfolios or asset

pricing tests in the spirit of Gibbons et al. (1989), focus on own-asset predictive signals; that

is, the association between Si,t and the return on only asset i, Ri,t+1.

We propose a new approach to analyzing asset prices through the lens of what we call

the “prediction matrix.” The prediction matrix, defined as Π = E(Rt+1S
′
t), not only tracks

the own-signal prediction effects (Πi,i) but also all cross-predictability phenomena (Πi,j) in

which asset j’s signal predicts asset i’s return. Cross-predictability exists very generally

in conditional asset pricing models, be they equilibrium in nature or purely statistical.

Knowledge of the entire prediction matrix, as opposed to the typical focus on diagonal

elements alone, is critical to devising optimal portfolios and understanding their risk-return

tradeoff.

Our main contribution is to develop an extensive theoretical understanding of the pre-

diction matrix and the asset pricing information it carries. The main tools of our analysis

are singular value decompositions, analogous to using principal components analysis (PCA)

to study variance-covariance matrices. The leading components (singular vectors) of Π are

defined as those responsible for the lion’s share of covariation between signals and future

returns. This is where cross-predictability information becomes valuable. Like the diagonal

elements, off-diagonal elements of Π are informative about the joint dynamics in signals and

returns.

We refer to Π’s singular vectors as “principal portfolios.” They are a set of normalized

portfolios ordered from those most predictable by S to those least predictable. The top
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principal portfolios are thus the most “timeable” portfolios, and as such they offer the highest

unconditional expected returns for an investor that faces a leverage constraint (one who

cannot hold infinitely large positions).

A key insight of our approach is that applying a singular value decomposition directly to

Π conflates two different and opposing economic phenomena. We propose first splitting Π

into a symmetric part (which is equal to its transpose and denoted Πs) and an antisymmetric

part (which is equal to minus its transpose and denoted Πa), and applying separate matrix

decompositions to Πs and Πa. The symmetry separation of Π,

Π =
1

2
(Π + Π′)︸ ︷︷ ︸

Πs

+
1

2
(Π− Π′)︸ ︷︷ ︸

Πa

, (1)

is a powerful device. With eigenvalue decompositions of each part, we can take a complicated

collection of predictive associations in the Π matrix and decode them into a set of well-

organized facts about expected returns. These facts describe i) the nature of each predictive

pattern represented in Π and ii) the strength of these patterns.

The nature of a predictive pattern is described by its classification as either symmetric or

antisymmetric, which, amazingly, translate into beta and alpha. In particular, we show that

eigenvectors of the symmetric matrix Πs are optimal ways to achieve factor exposure (beta),

while eigenvectors of the antisymmetric matrix Πa are optimal factor-neutralized strategies

(alpha). We refer to strategies arising from eigenvectors of the symmetric component as

“principal exposure portfolios” (PEPs) and the strategies arising from the antisymmetric

part as “principal alpha portfolios” (PAPs). Once classified as “exposure” versus “alpha,”

prediction patterns (principal portfolios) are then ordered from strongest to weakest and

based on the size of their associated eigenvalues. In particular, we prove that the uncon-

ditional average returns of PEPs and PAPs are exactly proportional to their respective

eigenvalues.
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This decomposition has a close connection to equilibrium asset pricing. When signals are

betas to the pricing kernel and there is no-arbitrage, all PAPs must deliver zero expected

excess returns (because they have zero factor exposure) and all PEPs must deliver non-

negative average returns (because they have positive exposure to the pricing kernel). These

insights are the groundwork for a new asset pricing test based on eigenvalues of the symmetric

and antisymmetric components of the prediction matrix. In rational asset pricing models,

there should not be any alpha relative to the pricing kernel. When we pick signals that are

supposed to be proportional to covariances with the pricing kernel (e.g., market betas), then

the corresponding prediction matrix should have a zero antisymmetric part—meaning that

Π should be symmetric and there should be no pure alpha portfolios. Moreover, negative

eigenvalues of the symmetric part of Π correspond to strategies with negative factor exposure

and positive expected returns, another form of alpha. Since rational asset pricing also rule

out both forms of alpha, we get the asset pricing test that Π should be symmetric and

positive definite. In other words, when signals capture exposure to the pricing kernel, all

PEPs should deliver non-negative returns and all PAPs should deliver zero returns.

We also develop theoretical underpinnings for practical empirical usage of the prediction

matrix from the perspective of robust statistics and machine learning. Our main theoretical

results characterize the properties of principal portfolios and their role in optimal portfolios

are developed in population, where Π is known. With N assets, this requires estimating

N2 parameters. Such rich parameterization can lead to noisy estimates and overfit that

deteriorate the out-of-sample performance of principal portfolios. In the literature and

financial practice, signals are often analyzed or traded in the form
∑

i Si,tRi,t+1, which

essentially restricts the signal-based analysis to testing a single parameter equal to av-

erage own-predictability,
∑

iE(Si,tRi,t+1). While this may benefit from some robustness,

restricting the analysis to a one-parameter problem is harsh—it forfeits any and all useful

information about heterogeneity in own-predictability or cross-predictability in the estimated
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Π matrix. Principal portfolios are ideally suited to balance the joint considerations of

exploiting potentially rich information from throughout Π while controlling parameterization

to reduce noise and overfit. We show that low-rank approximations of Π and its symmetry-

based components Πs and Πa offer a means of balancing both considerations in a data-driven

way in order achieve robust out-of-sample portfolio performance.

We implement the methodology empirically using three samples of U.S. equities, three

samples of international equities, and a sample of futures contracts on equity indices, bonds,

commodities, and currencies. As an example of a trading signal that can be used for all

securities, we analyze momentum (i.e., past returns). We conduct out-of-sample analyses

that, at each time period t, estimates the prediction matrix from past signals and returns (i.e.,

only information that is available through time t). Estimating the prediction matrix is easy:

Π̂t = 1
120

∑t−1
τ=t−120Rτ+1S

′
τ , where we use a backward looking window of 120 time periods.

Having estimated the prediction matrix, the singular value and eigenvalue decompositions

of Π as well as its symmetric and antisymmetric parts immediately yield PPs, PEPs, and

PAPs, and we track their out-of-sample performance. We find that the leading principal

portfolios tend to deliver positive returns across all samples and large number of robustness

checks, with highly significant risk-adjusted returns in a number of specifications. In the

base case specification, the combination of leading PEPs and PAPs delivers more than twice

the Sharpe ratio of a standard factor constructed based on the same signal.

Our paper is related to several literatures. Our asset pricing test complements other such

tests, including Gibbons et al. (1989) and Hansen and Jagannathan (1991) (see Cochrane

(2009) for an overview). Our method to uncover new forms of predictability complements

existing methods based on regressions (see Welch and Goyal (2008) and references therein),

portfolio sorts (a recent example is Fama and French (2015)), and machine learning (Gu

et al. (2018)). We use momentum signals, which have been used extensively in equities

(Jegadeesh and Titman (1993)), global asset markets (Asness et al. (2013), Moskowitz et
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al. (2012)), and, more recently, on factor returns (Arnott et al. (2019), Gupta and Kelly

(2019)). Finally, we consider linear trading strategies, which have also been studied in the

context of dynamic trading with transaction costs by Gârleanu and Pedersen (2013, 2016),

Collin-Dufresne et al. (2015), Collin-Dufresne et al. (2019), and others. While this literature

focuses on linear-quadratic programming, we instead consider eigenvalue methods.

In summary, we present a new way to uncover return predictability and test asset pricing

models. We illustrate how the method works empirically with a wide range of encouraging

results for out-of-sample principal portfolio performance.

2 Principal Portfolio Analysis

In this section, we lay of our principal portfolio analysis (PPA) framework. We describe the

concept of linear strategies of predictive signals, show how linear strategies are intimately

linked to the prediction matrix, derive optimal strategies, and introduce the notion of

principal portfolios that implement optimal strategies.

Let us first introduce the setting and notation that we use throughout. The economy

has N securities traded at discrete times. At each time t, each security i delivers a return

in excess of the risk-free rate, Ri,t. All excess returns at time t are collected in a vector,

Rt = (Ri,t)
N
i=1 and their conditional variance-covariance matrix is ΣR,t = Vart(Rt+1).

For each time and security, we have a “signal” or “characteristic” Si,t, and all signals

are collected in a vector, St = (Si,t)
N
i=1. We can think of these predictive characteristics as

market betas, valuation ratios, momentum scores, or other observable signals that proxy for

conditional expected returns.

2.1 Linear Trading Strategies

How can an investor best exploit predictive information in an asset characteristic S? To

answer this question, we work in the context of general linear trading strategies based on
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S. Then, we derive an optimal linear strategy subject to leverage constraints and show the

intimate connection between the optimal linear strategy and the prediction matrix Π.

A linear strategy based on S has portfolio weights of the form w′t = S ′tL. We refer to

L ∈ RN×N as the position matrix because each column of L translates signals into a portfolio

position in each asset. For example, the first column L1 = (Li,1)Ni=1 of L translates all the

signals into a position in asset 1, S ′tL1. The return of a linear strategy is naturally the

positions times the returns, that is,

Rwt
t+1 = w′tRt+1 =

∑
j

(S ′tLj)︸ ︷︷ ︸
position in j

Rj,t+1︸ ︷︷ ︸
return of j

= S ′tLRt+1 . (2)

We see that a linear strategy generally allows the position S ′tLj in any asset j to depend on the

signals of all assets. Interestingly, these strategies can potentially exploit both predictability

using each asset’s own signal as well as cross-predictability using other signals.

The large majority of return prediction patterns in the empirical literature focus on strate-

gies that are agnostic of cross-predictability. The literature’s default portfolio construction

based on a characteristic S builds a simple tradable factor of the form:

F̃t+1 =
∑
j

Sj,tRj,t+1 (3)

We refer to F̃t+1 as the “simple factor” henceforth. We note that the simple factor is a linear

strategy with identity position matrix (L = Id):

F̃t+1 =
∑
i

Si,tRi,t+1 = S ′tRt+1 = S ′tIdRt+1. (4)

Hence, our framework nests the standard framework, and allows more general strategies.

The simplicity of the simple factor-mimicking strategy makes it a helpful reference point

for the strategies we advocate in this paper. It is a portfolio that relies only on own-signal
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predictions with no cross-prediction. Moreover, it imposes that own-signal predictions enter

into the portfolio uniformly, with no regard for heterogeneity in predictive effects across

assets. When a researcher reports that this type of simple factor has a positive average

return, E(F̃t+1) > 0, it is the same as saying that the signal positively predicts own-asset

returns on average.

2.2 The Prediction Matrix

A central part of our analysis makes use of what we call the prediction matrix:

Π = E(Rt+1S
′
t). (5)

Π encodes predictive information for how the signals predict all returns, based on assets’ own

signals as well as cross-predictability. A strategy that literally chooses an asset’s position

equal to its own signal Si,t earns a return of Ri,t+1Si,t, and Πi,i is the expected value of this

return. Likewise, a strategy that take a position in asset i based on the signal of another

asset j earns average returns of Πi,j.

If Sj,t predicts Rj,t+1 on average across securities, then this is the same as saying that

the prediction matrix has a positive trace (tr, the sum of its diagonal elements):

E

(∑
j

Sj,tRj,t+1

)
= tr(Π) > 0 . (6)

This notion of positive own-predictability on average across securities has emerged as the

standard criterion by which predictive signals are measured in the empirical finance literature

and is typically evaluated based on the sample average of the strategy in (3).

Average own-predictability not only abstracts from information in off-diagonal elements

of Π, but also from heterogeneity in own-effects on the main diagonal. In short, strategies

predicated on average own-predictability are highly constrained in the information they
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consider regarding the predictive content of S. Proposition 1 shows that the entire Π matrix

is necessary (and sufficient!) for understanding the returns of more general linear strategies.

Proposition 1 (Return of Linear Strategies) The expected excess return of a linear trad-

ing strategy w′t = S ′tL is

E
(
Rwt
t+1

)
= E (S ′tLRt+1) = tr(LΠ). (7)

An interesting linear strategy in its own right is to take positions in every asset based

on the magnitude of its predictability by the signal S, whether that information comes from

its own signal or from another asset’s signal. This amounts to using Π itself as the position

matrix (L = Π′) or using a positive multiple of Π:

Proposition 2 (Trading the Prediction Matrix) Let M be an arbitrary positive semi-

definite matrix. Then, the linear strategy with position matrix L = MΠ′ has positive expected

excess return:

E(S ′tLRt+1) = tr(M Π′Π) = tr((ΠM1/2)′ (ΠM1/2)) ≥ 0 . (8)

Moreover, the inequality is strict if and only if M1/2Π′ is not identically zero.

We see that the prediction matrix plays two important roles: First, Π tells us the return

of any linear strategy as seen in Proposition 1. Second, Π′ is itself a return-generating linear

strategy as seen in Proposition 2.

2.3 Optimal Linear Strategies

We next show that strategies based on Π not only deliver positive expected return, they

actually yield optimal linear strategies. Our precise statement of optimality is derived from
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the following objective function.

max
L:‖L‖≤1

E (S ′tLRt+1) . (9)

The objective is to maximize the expected return of a linear strategy subject to a portfolio

constraint on the position matrix L. (We naturally need a portfolio constraint, since

otherwise we can increase the expected return by simply increasing position sizes, e.g., the

strategy 2L doubles the expected return of the strategy L).

To understand the constraint that we use in (9), note first that ‖x‖ ≡ (
∑

i x
2
i )

1/2
is the

standard Euclidean norm of a vector x ∈ RN . Second, we define the standard matrix norm

as ‖L‖ = sup{‖Lx‖ : x ∈ Rm with ‖x‖ = 1}. It is possible to show that ‖L‖ = ‖L′‖. In

other words, in (9) we maximize the expected return over the set of all position matrices

with matrix norm of at most one.

The economic meaning of this constraint is that we consider strategies with a bounded

portfolio size. Specifically, the linear strategy has portfolio weight S ′tL, which has a size

of ‖L′St‖ ≤ ‖L′‖ ‖St‖ ≤ ‖St‖ when ‖L‖ ≤ 1. So we consider linear strategies where the

position size is always bounded by the position size of the simple strategy. Further, if St is

normalized such that ‖St‖ = 1 for all signals, then the linear strategy has a position size

that is similarly bounded, ‖L′St‖ ≤ 1.1

We can also interpret the objective function as a robust mean-variance problem. For

example, when the return variance-covariance matrix is given by ΣR,t = σ2Id for some

σ ∈ R, the objective function (9) is identical to the following:

max
L

E(S ′tLRt+1) subject to max
S:Vart(S′Rt+1)≤1

Vart(S
′LRt+1) ≤ 1 . (10)

1Here we discuss “position size” in terms of the Euclidian norm, while the notional leverage of a position x
is normally calculated as ‖x‖1 =

∑
k |xk|. However, the portfolio constraint ‖L‖ ≤ 1 also implies a constraint

on notional leverage. Indeed, since ‖x‖1 ≤ ‖x‖n1/2, notional leverage is bounded: ‖L′St‖1 ≤ ‖L′St‖n1/2 ≤
n1/2.
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In words, we maximize expected return subject to a risk constraint. This risk constraint

is robust in the sense that we require that the variance is bounded regardless of the signal

realization S. This robust objective where we maximize risk with respect to S, rather than

considering the risk conditional on S, is natural for a linear strategy — since the position

matrix L is constant over time and should “work” for all signals. To see the equivalence of

(9) and (10), note that

max
S:Vart(S′Rt+1)≤1

Vart(S
′LRt+1) = max

S:S 6=0

Vart(S
′LRt+1)

Vart(S ′Rt+1)
= max

S:S 6=0

σ2‖LS‖2

σ2‖S‖2
= ‖L‖2 . (11)

The risk constraint says that the risk of the linear strategy should be at most as high as that

of the simple factor. Another way to get the same result is to require that the risk is limited

when the signals are limited, maxS:‖S‖≤1 Vart(S
′LRt+1) ≤ σ2.

The assumption ΣR,t = σ2Id is appropriate if volatilities are similar in the cross section

(or has been made similar, as we do our empirical study of futures) and if the correlation

matrix is close to, or has been shrunk to, the identity—and such shrinkage can be useful in

an optimization setting (Pedersen et al. (2020)). In any event, when we are have general

variance-covariance matrix ΣR,t, then our portfolio constraint ‖L‖ ≤ 1 still serves to control

both risk, leverage, and the portfolio norm.2 Further, we show how to solve a robust mean-

variance problem for general ΣR,t in Appendix A. The appendix also shows how to solve

the mean-variance problem with a risk penalty driven by risk aversion (instead of the risk

constraint used here).

Given the objective (9), the solution for the optimal strategy is as follows.

2The portfolio constraint ‖L‖ ≤ 1 implies a limit on the portfolio norm by definition, a leverage limit
described in Footnote 1, and the following risk limit:

max
S:‖S‖≤1

√
Vart(S′LRt+1) = ‖Σ1/2

R,tL
′‖ ≤ ‖Σ1/2

R,t‖‖L‖ ≤ ‖Σ̄‖

when the variance-covariance matrix is bounded, ΣR,t ≤ Σ̄.
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Proposition 3 The solution to (9) is given by L = MΠ′ with M = (Π′Π)−1/2, and

max
L:‖L‖≤1

E (S ′tLRt+1) =
N∑
i=1

λ̄i ,

where λ̄1 ≥ · · · ≥ λ̄N are the singular values of Π, i.e., the eigenvalues of (Π′Π)1/2.

Proposition 3 shows that the full Π matrix is integral to optimal linear strategies based

on the signal St.
3 Indeed, maximum return depends on the singular values of Π, which in

general depend on all its elements.

2.4 Principal Portfolios

We next decompose the optimal solution into a collection of linear strategies that we refer to

as principal portfolios (PP) of the signal S. Principal portfolios are the building blocks

that sum to form the optimal linear strategy in Proposition 3.

The construction of PPs uses the singular value decomposition of Π. Namely, let

Π = U Λ̄V ′, (12)

where Λ̄ = diag(λ̄1, · · · , λ̄N) is the diagonal matrix of singular values, and U, V are

orthogonal matrices with column denoted uk and vk, respectively. Now, the optimal L from

Proposition 3 can be rewritten as

(Π′Π)−1/2Π′ = V Λ̄−1V ′V Λ̄U ′ = V U ′ =
N∑
k=1

vku
′
k .

We define the kth principal portfolio as the linear strategy with position matrix Lk = vk (uk)
′,

3In particular, the optimal strategy is of the form described in Proposition 2.
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which has a return of

PP k
t+1 = S ′t vk u

′
k︸︷︷︸

Lk

Rt+1 = S ′tvk︸︷︷︸
S
vk
t

u′kRt+1︸ ︷︷ ︸
R

uk
t

. (13)

We see that there are two interpretation of a principal portfolio. First, it is a simple linear

strategy with a position matrix L of rank 1. Second, it is a strategy that trades the portfolio

uk (with return Ruk
t ) based on the signal coming from the portfolio v (i.e., with signal Svkt ).

This latter interpretation plays a key role when we discuss the beta components in the next

section.

The construction of principal portfolios is actually very simple. All you need to do is use

your favorite program to compute the singular value decomposition of Π (a standard feature

of most computing programs), take the column vectors of U and V , and you are done.

Decomposing the optimal strategy into its principal portfolios is similar to decomposing

the variance into the principal components. The difference is that principal component analy-

sis decomposes the variance, but principal portfolio analysis decomposes the expected return.

Just like the variance of each principal component equals its corresponding eigenvalue, the

expected return of each principal portfolio is its singular value:æ

E(PP k
t+1) = tr(Π vku

′
k) = tr(U Λ̄V ′vku

′
k) = tr(U Λ̄ eku

′
k) = tr(λ̄kuku

′
k) = λ̄k . (14)

The following proposition summarizes the results of this section.

Proposition 4 The expected return of each principal portfolio is given by its corresponding

singular value,

E(PP i
t+1) = λ̄i, (15)
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and the sum of principal portfolios is the optimal linear strategy:

max
‖L‖≤1

E(S ′tLRt+1) = E

(
N∑
i=1

PP i
t+1

)
=

N∑
i=1

λ̄i. (16)

The following example provides some intuition for this result.

Example (Signals are Expected Returns). If signals are equal to conditional expected

returns, Si,t = Et(Ri,t+1), one might question the usefulness of principal portfolios. But even

in this simple setting principal portfolios are insightful about the optimal strategy. In this

case, the prediction matrix reduces to the unconditional second moment of St, denoted ΣS,

Π = E(Rt+1S
′
t) = E(Et(Rt+1)S ′t) = E(StS

′
t) = ΣS. (17)

Therefore, principal portfolios are given by the principal components of ΣS. The matrix

ΣS describes the joint dynamics in conditional expected returns. Its leading principal

component describes the portfolio of assets with the most variable expected return. In

other words, the first principal component of ΣS is the most “timeable” portfolio. It is the

most attractive portfolio to trade for an investor facing a position size constraint and delivers

the highest unconditional average profitability. The second principal component is the next

most attractive, and so on. Singular values of Π relate to variability of expected returns,

which explains why unconditional expected returns on principal portfolios are pinned down

by the size of singular values in (15). And in this example, all principal portfolios have

positive expected excess returns (assuming that ΣS is non-degenerate), so the optimizing

investor holds them all, as in (16). However, if the prediction matrix is estimated with error,

it may be more robust to focus on the top PPs, as discussed in Section 5.
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3 Optimal Alpha and Beta Strategies

We next derive the return of the optimal alpha and beta strategies, and show how these can

be decomposed into principal portfolios, just as in the general solution in Propositions 3–4.

3.1 Alpha-Beta Symmetry Decomposition

To decompose the return into its alpha and beta components, we must first specify the beta-

factor. In other words, how do we characterize the riskiness of linear strategies? To address

this question, Lemma 1 introduces a factor having the special property that Si,t exactly

describes asset i’s conditional exposure to the factor.

Lemma 1 (Characteristics as Covariances) Define the factor Ft+1 as

Ft+1 =

(
1

S ′t (ΣR,t)−1St
(ΣR,t)

−1St

)′
Rt+1. (18)

Ft+1 is the unique tradable factor with the property that

Si,t =
Covt(Ri,t+1, Ft+1)

Vart(Ft+1)
. (19)

This factor (referred to as the “latent factor” henceforth) is an economically important

reference point.4 It has a natural risk factor interpretation—it is the factor that unifies the

expected return interpretation of Si,t and the risk exposure interpretation of Si,t. No other

factor based on S shares this property (including the literature’s standard “simple factor,”

F̃ ).

4Kelly et al. (2020a,b) propose a modeling approach and extensive empirical study of this point. Lemma
1 shows that we can always think of any signals as exposures to a factor, but it does not necessarily imply
that the return predictability embodied by S is “rational” in the sense that the factor F covaries with risks
that investors care about, namely the pricing kernel, and that certain eigenvalue bounds are satisfied, as
discussed later.
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To interpret this result, it is again helpful to consider the example in which St = Et(Rt+1).

In this case, Ft+1 is the conditional tangency portfolio, and is thus the tradable representation

of the pricing kernel. As a result, the expected returns and the factor exposures are equal

up to a constant positive scale factor. And, being the tangency portfolio, all assets have

zero alpha versus this factor in the absence of arbitrage. Importantly, while this factor is

useful for interpreting some of our results, none of our results rely on actually observing

F—since we don’t observe it. We don’t observe F because it depends on the conditional

variance-covariance matrix ΣR,t , which can only be estimated with noise. Instead, we

develop methods that can beat the simple factor F̃ without relying on observing, much less

inverting, ΣR,t.

The risk factor interpretation of the latent factor F positions it as the key benchmark

for evaluating the performance of principal portfolios. With it, we can characterize the risk

and return of signal-based linear strategies.

To state the next result, recall that any square matrix B ∈ RN×N is decomposable into

its symmetric part, Bs = 1
2
(B + B′), and its antisymmetric part, Ba = 1

2
(B − B′), where

B = Bs + Ba. The symmetric part equals its own transpose while the antisymmetric part

equals minus its own transpose, and both parts have a number of interesting properties. For

example, with Ba = −Ba′, it has zeros along the main diagonal.

Hence, any linear strategy can be seen as a sum of a symmetric and antisymmetric part,

L = Ls + La. As we now show, this decomposition has a deep economic interpretation.

Proposition 5 (Alpha-Beta Symmetry Decomposition) The conditional latent factor

exposure and expected return of the strategy Rwt
t+1 = S ′tLRt+1 = S ′tL

sRt+1 + S ′tL
aRt+1 is

Covt(R
wt
t+1, Ft+1)

Vart(Ft+1)︸ ︷︷ ︸
factor beta

= S ′tL
sSt (20)

E(Rwt
t+1) = tr(LsΠs) + tr(LaΠa) . (21)

16



This proposition shows that the risk (beta to the latent factor) of a linear strategy S ′tL is

purely determined by its symmetric part; while the expected return is determined by both

the symmetric or anti-symmetric parts via their interaction with the respective components

of the prediction matrix, Πs and Πa.

This proposition has wide-ranging implications. First, an antisymmetric strategy is

always factor neutral. Second, an antisymmetric strategy can nevertheless deliver positive

returns as long as Πa 6= 0. In this case, an antisymmetric strategy can deliver positive

expected return with zero factor exposure, that is, pure alpha! The fact that factor exposures

depend only on the symmetric component, Ls, regardless of the symmetry of Π is a direct

implication of Lemma 2.

Lemma 2 For any symmetric matrix B ∈ RN×N and any anti-symmetric matrix A ∈

RN×N , we have tr(BA) = tr(AB) = 0 and x′Ax = 0 for all vectors x ∈ RN .

In other words, antisymmetric matrices nullify certain matrix multiplications, which trans-

lates into factor-neutrality of trading strategies.

Proposition 5 also shows how symmetric strategies can deliver returns via the interaction

with Πs. Symmetric strategies have a beta to the factor given by S ′tL
sSt, which can be

positive or negative. A symmetric strategy has positive factor beta for all possible realizations

of the signal vector St if and only if L is positive definite. So, as we analyze in more detail

in the next section, eigenvalues are key to understanding both risk and return. Finally, a

symmetric strategy that always has negative factor beta corresponds to a negative definite

L.

As an example application of Proposition 5, consider the riskiness of the simple factor F̃

in (3), which is a linear strategy with identity position matrix (L = Id) as seen in Equation 4.

Hence, this simple factor has expected return tr(LsΠs) = tr(Πs) = tr(Π) and it always has

a positive exposure to the latent factor, Covt(F̃t+1, Ft+1) = Vart(Ft+1)S ′tSt > 0.

The optimal linear strategy in Proposition 3 and the corresponding principal portfolios
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do not distinguish whether expected returns originate from factor exposure or alpha. In the

remainder of this section, we show that Πs and Πa lie at the heart of optimal symmetric

and antisymmetric trading strategies. We derive symmetric and antisymmetric analogues

of principal portfolios, and show that these are the building blocks to optimal symmetry-

decomposed strategies with either pure factor exposure and no alpha, or pure alpha and no

factor exposure.

Said simply, symmetry is beta, and antisymmetry is alpha. We next derive the optimal

beta and alpha, respectively.

3.2 Symmetric Strategies: Principal Exposure Portfolios

As shown in equation (4), the simple factor is a simple symmetric linear strategy that trades

each asset based on its own signal. The idea that symmetric strategies trade based on

their own signals holds more generally. In particular, any strategy that scales the portfolio

position in proportion to the signal aggregated to the portfolio level—that is, any portfolio

that trades on the portfolio’s own signal—is a symmetric strategy.

To see this, consider a portfolio w ∈ RN . The portfolio w has excess return Rw
t+1 =∑

iwiRi,t+1. Aggregating the underlying signals based on these weights means that the

portfolio-level own signal is Swt =
∑

iwiSi,t. Trading the portfolio based on its own signal

means using its signal as portfolio weight, which generates a return of

Swt R
w
t+1 = S ′tww

′Rt+1. (22)

We see that trading the portfolio based on its own signal is a linear strategy with a symmetric,

positive semi-definite position matrix L = ww′. It’s expected return is therefore

E
(
Swt R

w
t+1

)
= E

(
w′StR

′
t+1w

)
= w′Πw = w′Πsw, (23)
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which shows, in a different way from (21), that the return depends only on the symmetric

part of the prediction matrix (the last equality uses Lemma 2).

All symmetric linear strategies can be represented as combinations of portfolios traded

based on their own signals. This is achieved through the eigendecomposition of any sym-

metric position matrix L based on its eigenvalues λk and orthonormal eigenvectors wk:

L =
K∑
k=1

λk wk (wk)
′ . (24)

Furthermore, the position matrix satisfies our portfolio constraint ‖L‖ ≤ 1 if |λk| ≤ 1 for all

k.

This result provides intuition for why symmetric linear strategies have factor exposure.

They trade portfolios based on the portfolio’s own signal. In this sense, they do what the

signal prescribes, which anchors their behavior to that of the factor F . For example, if the

signal Si,t is each security’s momentum, then a symmetric linear strategy consists of trading

different portfolios based on their own momentum—in the same spirit as the factor.

We next consider optimal symmetric linear strategies. We know from (21) that a optimal

symmetric strategy maximizes tr(LΠs), so we can use Proposition 3 with Π replaced by Πs.

The solution can be written simplæy based on the eigenvalue-decomposition

Πs = WΛsW ′ =
N∑
k=1

λsk w
s
k (wsk)

′ , (25)

where W = (ws1, ..., w
s
N) is the matrix of eigenvectors corresponding to the eigenvalues λs1 ≥

... ≥ λsN . We see that the optimal symmetric strategy is:

(ΠsΠs)−1/2Πs = W |Λs|−1W ′ WΛsW ′ = W sign(Λs)W ′ =
N∑
k=1

sign(λsk)w
s
k (wsk)

′ . (26)

We see that the optimal strategy naturally decomposes into N components, which we call

19



principal exposure portfolios (PEPs). That is, the kth PEP is a linear strategy with

position matrix wsk(w
s
k)
′ and a return of

PEP k
t+1 = S

ws
k

t R
ws

k
t+1 = S ′tw

s
k(w

s
k)
′Rt+1. (27)

The next result characterizes the returns of PEPs:

Proposition 6 The expected return of each PEP is equal to its corresponding eigenvalue

E(PEP k
t+1) = E

(
S
ws

k
t R

ws
k

t+1

)
= E (S ′tw

s
k(w

s
k)
′Rt+1) = λsk, (28)

Going long PEPs with positive eigenvalues and short those with negative is the optimal

symmetric linear strategy:

max
‖L‖≤1, L=L′

E(S ′tLRt+1) =
N∑
k=1

sign(λsk)E(PEP k
t+1) =

N∑
k=1

|λsk|. (29)

The first result shows that returns of PEPs equal their eigenvalues. The second result shows

that the collection of PEPs yield the symmetric linear strategy with the highest unconditional

expected return, subject to leverage constraint ‖L‖ ≤ 1. This optimal performance is

achieved by trading PEPs while accounting for the direction of their predictability. The

optimal strategy takes long positions of size 1 in all PEPs with positive expected returns

(i.e., positive eigenvalues) and short positions of size −1 in PEPs with negative expected

returns.

We next consider how the PEPs relate to the simple factor F̃ .

Proposition 7 (Beating the Factor) The simple factor, F̃ , can be decomposed as

F̃t+1 =
N∑
i=1

Si,tRi,t+1 =
N∑
k=1

S
ws

k
t R

ws
k

t+1 =
N∑
k=1

PEP k
t+1. (30)
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If all eigenvalues are non-negative, λsk ≥ 0, then F̃ the optimal symmetric strategy. Other-

wise, F̃ has a lower expected return than buying the subset of PEPs with positive eigenvalues,

which is lower than that the optimal strategy from Proposition 6:

E
(
F̃t+1

)
=

N∑
k=1

λsk ≤
∑
k:λsk>0

λsk ≤
N∑
k=1

|λsk| . (31)

Interestingly, the simple factor actually equals the sum of all PEPs as seen in (30). In

fact, F̃ can be viewed as the sum of all possible returns of symmetric strategies, not just the

PEPs. Namely, for any orthonormal basis of portfolios B = {bk}Nk=1, we have that BB′ = Id

and, hence,

N∑
i=1

Si,tRi,t+1 = S ′tRt+1 = S ′tBB
′Rt+1 =

N∑
k=1

Sbkt Rbk
t+1 . (32)

That is, trading the simple factor on stocks is equivalent to trading it on portfolios.

The fact F̃ equals the sum of PEPs together with Equation (28) imply that the expected

excess return of the simple factor equals the sum of the eigenvalues, E(F̃t+1) =
∑N

k=1 λ
s
k .

Therefore, when a researcher documents that a simple strategy F̃t+1 has significantly positive

average returns, we learn that the sum of eigenvalues of Πs is positive.

When all eigenvalues are non-negative, the simple factor is in fact optimal among all

symmetric strategies. So, in this case, the simple strategy is not just simple — our analysis

sheds new light on why it is a natural starting point.

When E(F̃t+1) =
∑N

k=1 λ
s
k > 0, the smallest eigenvalues can nevertheless be negative.

Negative eigenvalues correspond to those surprising PEPs that are negatively predicted by

their own signals.

When there exist PEPs with negative eigenvalues, we can beat the simple factor by

leaving these PEPs out, buying only the PEPs that “work”. Trading all the PEPs with
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positive eigenvalues is the optimal strategy among all linear strategies that always have

positive factor exposure (i.e., among strategies with positive semi-definite L).

If we are willing to have a factor exposure that may switch sign, we can achieve an ever

higher return. Indeed, negative eigenvalues also describe useful prediction patterns, just in

the opposite direction. Therefore, an investor can do even better by also shorting the PEPs

with negative eigenvalues, as shown in equation (31).

The between principal portfolio analysis and principal component analysis is remarkably

close when we focus on the symmetric part of the prediction matrix as highlighted in Table 1.

As seen in the table, PCA and PPA share five key properties. While PCA decomposes the

variance into its components, PPA decomposes the expected excess return. Both have similar

connections to eigenvalues, orthogonality, the trace, and optimality across orthonormal

portfolios.

Example (Diagonal Prediction Matrix). Suppose there is no cross-predictability and

signals are mean zero (E(Sj,t) = 0). Then Πij = E(Ri,t+1Sj,t) = 0 for all i 6= j. Hence, Π is

symmetric, so there are no antisymmetric (zero exposure) strategies within Π. Furthermore,

the PEPs are simply the unit vectors, wsk = ek.
5 The optimal strategy is long assets with

positive own-predictability and short those with negative own-predictability.

3.3 Antisymmetric Strategies: Principal Alpha Portfolios

We now turn to antisymmetric linear trading strategies. Our analysis relies on the eigende-

composition of an antisymmetric matrix, described in the next lemma.

Lemma 3 Any antisymmetric matrix A has an even number 2K of non-zero eigenvalues.

The non-zero eigenvalues are purely imaginary and come in complex-conjugate pairs: iλk and

−iλk. The corresponding orthonormal eigenvectors are zk = 1√
2
(xk + iyk) and the complex

5Here, ek = (0, . . . , 1, 0, . . . , 0)′, where 1 is in the k’th position.
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conjugate z̄k = 1√
2
(xk − iyk), where xk, yk ∈ RN with ‖xk‖ = ‖yk‖ = 1, x′kyk = 0, and

x′kxl = x′kyl = y′kyl = 0 for all k 6= l, k, l ≤ K ≤ N/2. The corresponding eigendecomposition

is given by

A =
K∑
k=1

λk(xky
′
k − ykx′k). (33)

In other words, general antisymmetric matrices can be represented as a sum of building

blocks that are each simple antisymmetric matrices with rank equal to two and having the

form xy′ − yx′. We refer to building blocks with form xy′ − yx′ as rank-2 antisymmetric

strategies.6

Each rank-2 building block generates a return of

S ′t(xjy
′
j − yjx′j)Rt+1 = S

xj
t R

yj
t+1 − S

yj
t R

xj
t+1. (34)

The first part of this portfolio is the return to trading the portfolio yj based on the signal

coming from the portfolio xj. In other words, a strong signal for xj (S ′txj), recommends

scaling up the position in yj (y′jRt+1), and this generates a return of S
xj
t R

yj
t+1. The second

part is similar but flips the roles xj and yj and shorts the associated strategy (due to the

minus sign). Thus, antisymmetric strategies are understandable as long-short strategies that

trade two portfolios against each other based on the strength of each other’s signal. But

why does this result in zero conditional factor exposure, as guaranteed by Proposition 5?

The next example helps develop intuition for the absence of factor risk in antisymmetric

strategies.

6These are analogous to the rank-1 symmetric trading strategies, L = ww′, that are the basic building
blocks of all symmetric trading strategies, as described in Section 3.2. An antisymmetric strategy satisfies
the portfolio constraint, ‖A‖ ≤ 1 as long as |λk| ≤ 1 in (33).
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Example (Beta-neutral Strategy). Consider an economy of N assets that satisfies the

CAPM, save for asset 1, which has a positive alpha. That is, Et(Ri,t+1) = α1i=1 + βi,tθt,

where θt ≥ 0 is the market risk premium, βi,t is the conditional CAPM beta of stock i, and

α > 0. Suppose further that signals are defined to be the conditional betas, Si,t = βi,t. A

standard beta-neutral strategy to exploit this scenario takes a long position in asset 1 having

size equal to 1 (i.e., the size is set equal to the factor’s beta on itself). The conditional beta

from the long position is equal to β1,t, so beta-neutrality is achieved with a position of −β1,t =

−S1,t in the factor. This strategy is a rank-2 antisymmetric strategy with L = yx′ − xy′.

The long position in asset 1 corresponds to x = (1, 0, · · · , 0)′, and the short position in the

factor corresponds to y = (1, 1, ..., 1)′. In other words, the beta-neutral strategy has zero

symmetric component, non-zero antisymmetric component, and positive expected return,

rendering it a pure alpha strategy:

E(S ′tLRt+1) = E(β′t(yx
′−xy′)Rt+1) = E

(∑
i

βi,tR1,t+1 − β1,t

∑
i

Ri,t+1

)
= αE

(
N∑
i=2

βi,t

)
,

which is positive as long as betas are positive on average. This is not the only pure alpha

strategy, as a long position in asset 1 can be hedged with any other asset or combination of

assets. Below, we show how to construct optimal pure alpha strategies using the eigende-

composition of Πa.

The example illustrates that the fundamental yx′ − xy′ structure underlying all anti-

symmetric strategies is closely related to the familiar approach to factor neutralization. To

eliminate factor exposures, the position size in each must be equal to the factor exposure of

the other, and with appropriately opposing signs.

Next, we derive optimal antisymmetric strategies. The first step is to apply the eigen-

decomposition in (33) to the antisymmetric part of the transposed prediction matrix, (Πa)′.

By Lemma 3, the matrix (Πa)′ has 2Na non-zero and purely imaginary eigenvalues, iλak and
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−iλak, for some Na ≤ N/2,. Their imaginary parts, λak ∈ R, can be ordered as

λa1 ≥ · · · ≥ λaNa ≥ 0 ≥ −λaNa ≥ · · · ≥ −λa1 . (35)

For each eigenvalue λaj , we denote the corresponding real and imaginary parts of the eigen-

vectors by xj and yj, respectively.

We define the jth principal alpha portfolio (PAP) as the linear strategy based on

the jth eigenvector: Lj = xjy
′
j − yjx′j. Equivalently, it has weights (waj,t)

′ = S ′t(xjy
′
j − yjx′j)

for j = 1, ..., Na. We note that, since Na ≤ N/2, there exist at most N/2 principal alpha

strategies. Moreover, Lemma 3 implies that PAPs are orthonormal.

The return of a principal alpha portfolio, like any rank-2 antisymmetric strategy, consists

of two parts:

PAP j
t+1 = S ′t(xjy

′
j − yjx′j)Rt+1 = S

xj
t R

yj
t+1 − S

yj
t R

xj
t+1 . (36)

The PAP buys portfolio yj based on the signal coming from the portfolio xj and simultane-

ously shorts portfolio xj based on the signal from yj.

Similar to the result for PEPs, we find that PAP expected returns are proportional to

their eigenvalues and that the sum of PAPs is in fact the optimal antisymmetric linear

trading strategy.

Proposition 8 A principal alpha strategy has expected return E(PAP j
t+1) = 2λaj and zero

factor exposure. The sum of PAPs is the optimal antisymmetric linear strategy:

max
‖L‖≤1, L=−L′

E(S ′tLRt+1) =
Na∑
k=1

E(PAP k
t+1) =

Na∑
k=1

2λaj . (37)

The next example helps illustrate the properties of PEPs and PAPs.
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Example (Constant Signals). Suppose that signals are constant over time, St = S.7 In

this case, the prediction matrix is especially simple, Π = E(Rt+1S
′
t) = RS ′, where we use

the short-hand notation R := E(Rt+1). We can now compute the PEPs and PAPs explicitly.

First, consider a case in which returns align with signals exactly, R = S. In this case,

we have Π = SS ′. This matrix is symmetric and has a rank of one. Hence, there is a single

principal exposure portfolio with a non-zero eigenvalue, namely the eigenvector S, and no

principal alpha portfolios. Therefore, this PEP is the only meaningful portfolio, and it is the

same as the simple factor, S, with expected return S ′R = R′R > 0.

Next, consider the case in which expected returns do not line up perfectly with the signal.

Then Π = RS ′ is no longer symmetric. The symmetric part is Πs = 0.5(RS ′ + SR′), which

has a rank of 2. Hence, Πs has at most two non-zero eigenvalues, λs1 = 0.5(R′S+‖R‖ ‖S‖) >

0 ≥ λsN = 0.5(R′S − ‖R‖ ‖S‖) and the corresponding PEPs are8

ws1 = cs1

(
R

‖R‖
+

S

‖S‖

)
, wsN = csN

(
R

‖R‖
− S

‖S‖

)
,

where cs1, c
s
N are constants chosen such that ‖ws1‖ = ‖wsN‖ = 1. We see that the first

principal exposure portfolio bets on securities with high average returns and high signals,

while the last PEP bets on securities with high average returns and low signals. The negative

eigenvalue PEP isolates losses due to the erroneous component of S and exploits them with

a short position.

In this example, the prediction matrix also has an antisymmetric part. The strategy

that trades this is L = Πa′ = 0.5(SR′ − RS ′). To derive the PAP, note that Πa′ has at

most two non-zero eigenvalues with purely imaginary parts λa1 = 0.5(‖R‖ ‖S‖ − R′S)1/2 ≥
7As a concrete example, consider sorting stocks into value (book-to-market) deciles, using the decile

portfolios as the baseline assets, and using a value signal defined as the decile number of each asset as the
predictive signal. This is in contrast to, for example, forming assets as value-sorted portfolios, but using
portfolio momentum as the trading signal. In this case signals are far from constant over time, and this is
what we do empirically.

8These eigenvalues and eigenvectors can be verified by checking that Πswsk = λskw
s
k for k = 1, N .
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0 ≥ λaN = − λa1 and the corresponding PAP is the linear strategy with position matrix

L = xy′ − yx′, where9

y = ca
(
R‖S‖2 − S(R′S)

)
, x = S/‖S‖.

The short part of the portfolio (x) is exactly the factor hedge. It is in place to ensure that

the constraint (zero factor exposure) is satisfied. The remaining part of the problem is to

find the highest average return subject to the constraint. Since the factor uses all (and only)

the information in S, the remaining information that the PAP has at its disposal comes from

the unconditional mean of returns. Thus the long side of the PAP (y) is determined by the

information in R that is missed by S, hence the emergence in y of the difference between R

and S.

Example (Betting Against Beta: PAP is the new BAB). Proceeding from the prior

example, suppose that the erroneous signals S are chosen to be the expected returns in an

asset pricing model, i.e. Sj = Cov(−Mt, Rj,t) where M denotes the model’s pricing kernel.

Suppose further that there is less dispersion in true expected returns than predicted by the

model—for simplicity, suppose that 1′S/N = 1 and suppose that R = 1. Then the alpha

portfolio arising from the antisymmetric part of the prediction matrix has portfolio weight

w′ = S ′(SR′ − RS ′) = (S ′S)1′ −NS ′. This strategy goes long the equal-weighted portfolio

(given by R = 1), while shorting the beta-weighted portfolio, S. To keep the portfolio

beta-neutral, the equal-weighted portfolio (which is lower beta) is scaled up relative to the

beta-weighted portfolio,10 S ′S > N . Hence, this strategy resembles the betting-against-beta

(BAB) strategy of Frazzini and Pedersen (2014). This strategy has expected excess return

of w′R = NS ′S −N2 > 0 and a beta of w′S = NS ′S −NS ′S = 0.

9ca is determined such that ‖y‖ = 1
10This result follows from Cauchy-Schwarz, which yields that N2 = (1′S)2 ≤ (1′1)(S′S) = NS′S, and the

inequality is strict since we assume that betas vary across stocks.
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In the preceding examples, signals are constant, which makes the math particularly

tractable to illustrate intuitive aspects of principal portfolios. But constant signals imply

that there are only static trading opportunities. In general, signals fluctuate over time, and

principal portfolios use information about both static and dynamic trading opportunities.

The prediction matrix can be written as a sum of its static and dynamic components:

Π = E(Rt+1S
′
t) = E(Rt+1)E(S ′t) + Cov(Rt+1, S

′
t). (38)

Suppose that signals do not predict future returns in the sense that Cov(Si,t, Rj,t+1) = 0 for

all i, j. In this case, Π simplifies to the constant signal example, Π = E(R)E(S ′), and

we have up to two PEPs and one PAP with strictly positive expected return, but these are

purely based on the signals’ time series average. The first term on the right side of equation

(38) thus embodies information in the prediction matrix regarding “static bets.”

The second term summarizes information in the prediction matrix regarding “dynamic

bets.” To focus purely on dynamic bets, then we can demean signals in the time series,

looking at S̃i,t = Si,t−E(Si,t). This redacts static information from Π and concentrates only

on dynamic opportunities:

E(Rt+1S̃
′
t) = Cov(Rt+1, S̃

′
t) = Cov(Rt+1, S

′
t). (39)

Our approach allows both static and dynamic bets since both may be useful. Static bets are

useful if they pick up that certain assets generally have higher returns, and if it’s possible

to time one’s portfolio positions, then dynamic bets are profitable. We find in our empirical

analysis that most of the effects we see are driven by dynamic bets.

To summarize, as the above examples illustrate, there are potentially two ways to earn

alpha relative to the factor. The first stems from the observation that if Πs has any negative

eigenvalues, then shorting the corresponding PEPs yields a positive expected return with a
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negative factor exposure, which is alpha with respect to the factor. The second is to identify

antisymmetric strategies with positive expected returns. Because an antisymmetric strategy

is guaranteed to have zero factor exposure, it is also alpha to the factor.

4 Asset Pricing Tests: Positivity Bounds

We next propose a test for whether our signal S is an exposure (i.e., beta) to the true

pricing kernel. Said differently, we wish to test whether the factor F corresponding to S is

proportional to the true pricing kernel, Ft+1 ∝ −Mt+1 (or M ’s projection on the tradable

space; recall that Lemma 1 shows how F is related to S). For example, we can consider

signals given by betas to the market return, Rm
t+1, which corresponds to testing that the

pricing kernel is of the form Mt+1 = at − btRm
t+1 for at, bt ∈ R (i.e., the CAPM). Or, we can

consider signals based on exposure to consumption, corresponding to testing that the pricing

kernel is of the form Mt+1 = βu′(ct+1)/u′(ct) (consumption CAPM).

Specifically, suppose that our signal Si,t is proportional to the exposure to the pricing

kernel, Covt(Rj,t+1,−Mt+1), where we only assume proportionality (rather than equality)

since we may not know the equity premium in the CAPM or the risk aversion in CCAPM.

Then, signals should be closely related to expected returns. Indeed, the definition of a pricing

kernel is a process M with Et((1 + Rf
t + Rj,t+1)Mt+1) = 1 for all assets, where Rf

t is the

risk-free rate, which implies11

Et(Rj,t+1) = (1 +Rf
t )Covt(Rj,t+1,−Mt+1) = θt Sj,t , (40)

where θt > 0 is a factor of proportionality due to the risk-free rate and to our assumption

that the signal S is proportional to (but not necessarily equal to) the covariance.

11To see this result, note that the definition of a pricing kernel applied for the risk-free asset (which has

0 excess return) yields (1 + Rft )Et(Mt+1) = 1, which implies that Et(Rj,t+1Mt+1) = 0 for excess returns.

Therefore, Et(Rj,t+1) = (1 + Rft )Et(Mt+1)Et(Rj,t+1) = (1 + Rft )(Et(Rj,t+1Mt+1) − Covt(Rj,t+1,Mt+1)) =

(1 +Rft )Covt(Rj,t+1,−Mt+1).
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For example, if we are testing the CAPM, then the signal Sj,t is typically the market beta,

βj,t = Covt(Rj,t+1, R
m
t+1)/Vart(R

m
t+1). In this case, the expected excess return is Et(Rj,t+1) =

Et(R
m
t+1)βj,t, so here θt is the market risk premium, Et(R

m
t+1). We would like to develop a test

that does not require knowledge of θt because we may not know Et(R
m
t+1) (or the coefficients

at, bt in Mt+1 = at − btRm
t+1).

The key insight is that, when the signal is proportional to the beta to the pricing kernel,

the prediction matrix must be symmetric and positive definite—regardless of the factor of

proportionality, θ. To see that, note that any off-diagonal element of the prediction matrix

is

Πj,i = E(Si,tRj,t+1) = E(Si,tEt(Rj,t+1)) = E(θtSi,tSj,t) = Πi,j . (41)

which shows that Π is symmetric. Further, we see that the prediction matrix is positive

semi-definite since, for any w ∈ RN :

w′Πw = w′E(θtStS
′
t)w = E(θt[w

′St]
2) > 0 (42)

This finding provides new asset pricing tests as summarized here:

Proposition 9 (Positivity of Prediction Matrix) If there exists θt ≥ 0 such that

E(Ri,t+1|θt, St) = θtSi,t (43)

for all i, then the corresponding prediction matrix Π is symmetric and positive semi-definite,

and, equivalently, all the corresponding PEPs have non-negative expected returns and all

PAPs have zero expected returns. The premise (43) holds, for example, if there is no arbitrage

so a pricing kernel exists, and the signal Si,t is proportional to exposures to the pricing kernel.

The intuition behind this result follows from our earlier portfolio theory: We know that
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negative eigenvalues of Πs and a non-zero Πa give rise to alpha strategies (Sections 3.2 and

3.3, respectively). Since alpha strategies cannot exist in a rational asset pricing model,

all eigenvalues of Πs must be positive and Πa must be zero. In other words, Π must be

symmetric and positive semi-definite.

One benefit of this approach is that we do not need to know θt, we just need to observe

signals and returns, and then consider the positivity of the corresponding prediction matrix.

Another helpful feature is that the test is unconditional, i.e., it relies on an unconditional

expected value, Π = E(Rt+1S
′
t), even if the underlying asset pricing model in conditional.

Hence, while some tests require an understanding of how the risk premium varies over time

or make assumptions to get from a conditional CAPM to an unconditional test, we have

a test of the conditional CAPM (and other conditional models) based on an unconditional

moment condition. Further, this restriction also tests cross-asset effects.

5 Robust Strategies: Shrinkage via Principal Portfolios

Our theoretical analysis up to now has taken place in population with the prediction matrix,

Π = E(Rt+1S
′
t), known. In reality, Π is unknown and must be estimated. Unfortunately, this

is a highly parameterized framework; it requires estimating N2 parameters. The standard

tradable factor approach from the literature (3) essentially restricts the set of linear strate-

gies to a single parameter problem—i.e., signals are typically assessed based only on their

average own-predictability
∑

iE(Si,tRi,t+1). This approach can be viewed as a regularization

device that exploits a signal while imposing many restrictions to minimize the number of

parameters. But these restrictions may be unnecessarily severe. They sacrifice any and

all useful information about heterogeneity in own-predictability (differences among diagonal

elements of Π) or cross-predictability (off-diagonal elements).

Principal portfolios are ideally suited to balance two considerations: 1) exploiting po-

tentially rich information from throughout the predictability matrix, and 2) controlling
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parameterization to reduce overfit and ensure robust out-of-sample portfolio performance.

In this section, we develop robust principal portfolio trading strategies by shrinking the

predictability matrix.

The analysis in Sections 2 and 3 shows that a singular value decomposition of Π (or

of its symmetric and antisymmetric parts) finds orthonormal portfolios and orders them

from highest expected return to lowest. This eigendecomposition has another great benefit

in that it lends itself naturally to a convenient form of regularization. In particular, if we

reconstitute the Π matrix by retaining only the K largest singular values and zeroing out

the rest, we obtain the matrix of rank K that is as close as possible to the original Π. This

idea is familiar from principal components analysis, which finds low-rank approximations to

a variance-covariance matrix by zeroing out all but its largest eigenvalues.

The following proposition operationalizes the idea of robust optimal trading strategies

by constraining the parameter space to position matrices with rank(L) ≤ K. Here, K is a

tuning parameter that can be chosen empirically.

To add further generality and another convenient tuning parameter, we introduce the

Schatten p-norm for a matrix L (see, Horn and Johnson (1991)):

‖L‖p =

(
N∑
k=1

|λ̄k(L)|p
)1/p

,

where λ̄k(L) is the k-th singular value of L and p ∈ [1,∞]. The limiting case p = ∞

corresponds to the standard matrix norm ‖L‖ = ‖L‖∞, whereas p = 2 corresponds to the

sum of squares of all elements ‖L‖2 = (
∑

k,l L
2
l,k)

1/2 (Frobenius norm). Interestingly, we

show that different matrix norms correspond to different ways of weighting the principal

portfolios.

We are ready to state a result that generalizes all the optimization problems that we

considered so far (Propositions 3, 6, and 8).
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Proposition 10 (General Solution) Optimal portfolios subject to rank(L) = K and ||L||p ≤

1, where p = [1,∞] and q is defined by 1/p+ 1/q = 1, satisfy:

1. The solution with no symmetry constraints depends on the top K singular values, λ̄k,

of Π:

max
‖L‖p≤1, rank(L)≤K

E(S ′tLRt+1) =

(
K∑
k=1

λ̄qk

)1/q

. (44)

The optimal L is S ′tLRt+1 = c
∑K

k=1 λ̄
q−1
k PP k

t+1, where c =
(∑K

k=1 λ̄
q
k

)−1/p

.

2. The solution when restricting to symmetric strategies depends on the set K of the K

largest absolute eigenvalues |λsk| of Πs:

max
‖L‖p≤1, rank(L)≤K, L=L′

E(S ′tLRt+1) =

(∑
k∈K

|λsk|q
)1/q

. (45)

The optimal L is S ′tLRt+1 = c
∑
K |λsk|q−1 sign(λsk)PEP

k
t+1, where c = (

∑
K |λsk|q)

−1/p.

3. The solution when restricting to antisymmetric strategies depends on the eigenvalues

λak of Πa:

max
‖L‖p≤1, rank(L)≤2K, L=−L′

E(S ′tLRt+1) =

(
2

K∑
k=1

(λak)
q

)1/q

. (46)

The optimal L is S ′tLRt+1 = c
∑K

k=1(λak)
q−1PAP k

t+1, where c =
(

2
∑K

k=1(λak)
q−1
)−1/p

.

Proposition 10 shows that optimal low-dimensional trading strategies are the same as the

general optimality results proven earlier, with the exception that the strategies use only the

leading principal portfolios. This is true regardless of whether one considers general linear

strategies (L), symmetric and hence factor-exposed strategies (L = L′), or antisymmetric

pure alpha strategies (L = −L′). By truncating the strategy at the topK principal portfolios,
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these robust strategies replace the lesser singular values with zeros.12 The lesser components

may be dominated by noise, and are therefore likely to have poor out-of-sample performance.

Zeroing them out regularizes the optimal strategy to controls overfit and its adverse out-

of-sample impact. The number of principal portfolios included in a robust strategy, K,

determines the extent of regularization. It serves as a hyperparameter that can be controlled

by the researcher or tuned via cross-validation.

What are the implications of the more general norm ‖ · ‖p in this proposition, and what

economic role does it play? Proposition 10 shows that the optimal strategy is a weighted sum

of principal portfolios for any norm. This result shows that PPs are very general building

blocks. The choice of norm simply affects how the principal portfolios are weighted, which

also illustrates the connection between the tuning parameters p and K: The less important

PPs can be “zeroed out” by the choice of K and down-weighted by the choice of p.

At that same time, the norm constraint captures the idea of constraining trading strategy

leverage in the optimization problem has a natural economic motivation—risk and institu-

tional frictions impose leverage considerations on every real-world investor. The way real-

world investors try to manage their leverage concerns is dictated in part by the performance

of strategies in their opportunity set. This raises an interesting practical implication of

Proposition 10. The norm exponent p can be treated as a hyperparameter that can be tuned

via cross-validation. An investor that tunes p along with K in essence chooses the form of

leverage constraint that lends itself to robust out-of-sample trading performance.

Interestingly, when p = 2, part 1. of the proposition is similar to trading a version of

the Π matrix that has been estimated via a reduced rank regression (see, e.g., Velu and

Reinsel (1998)).13 Further, when p = 2 and we do not impose a rank restrictions (i.e., we

12Note that singular values of a symmetric or an anti-symmetric matrix coincide with the absolute values
of its eigenvalues.

13Reduced rank regression (RRR) seeks to minimize the mean squared error E(‖Rt+1 − L′St‖2) =
E(‖Rt+1‖2)− E(S′tLRt+1) + E(S′tLL

′St) under a rank constraint on the matrix L. By direct calculation,
this objective is equivalent to maximizing tr(LΠ) − tr(LL′ΣS). Thus, reduced rank regression amounts
to maximizing the expected return, tr(LΠ), with a punishment term for signal variance. If ΣS = Id, the
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let K = N), then the solution is L = Π′/‖Π‖2. So, in this case, we uncover the prediction

matrix itself as the optimal strategy. For p =∞, i.e. q = 1, the solution selects components

that are large in absolute value, in the spirit of lasso applied to singular values, and with no

rank restriction we recover Proposition 4.

The results in Sections 2 through 4 lay out a theoretical basis for principal portfolios, and

Proposition 10 prescribes a machine learning approach to implementing principal portfolios

in practice. Data-driven choices for hyperparameters K and p can allow the researcher to

select the level of principal portfolio model complexity best suited for constructing optimal

out-of-sample strategies.

6 Empirical Results

We next present a simple empirical implementation of our method using some of the most

standard data sets in finance.

6.1 Data, Signals, and Methodology

We must make a number choices to empirically implement our framework. We present a

“base-case” set of choices using relatively standard methods and consider several variations

around the base case for robustness. The base-case data is the 25 Fama-French portfolios, a

standard data set in finance. These portfolios are constructed by double-sorting U.S. stocks

by their size (measured by market capitalization) and valuation ratio (book-to-market).14

We compute alphas based on the 5-factor model of Fama and French (2015). We use daily

data from July 1963 until the end of 2019.

For robustness, we also implement our model for several other data sets. In particular,

we also run the model for 25 U.S. size and operating profitability portfolios, 25 U.S. size

punishment term coincides with ‖L‖22, and hence RRR is a modification of the problem solved in Proposition
10 for p = 2.

14https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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and investment portfolios, the international counterparts of the three sets of Fama-French

portfolios (i.e., developed countries excluding the U.S.), and a sample of 52 futures contracts

starting in 1985. This includes contracts for 21 commodities, 17 equity indices, 5 sovereign

bonds, and 9 currencies.

For each data set, we need signals and returns. Starting with signals, the base case signal

is each asset’s 20-day momentum (approximately one month). That is, for each asset in each

sample, we compute its past 20-day cumulative return, then standardize the signal each

period by converting it to a cross-sectional rank and dividing by the number of assets and

subtracting the mean (mapping the signal into the [-0.5,0.5] interval).15 We also consider

other momentum signals for robustness, namely based on 40, 60, 90, 120, and 250 day past

returns, following on the standard practice of considering momentum signals up to 1 year

(approximately the same as 250 trading days).

Turning to returns, the base-case measure of returns is each asset’s 20-day return (again,

one month). Specifically, we divide the sample into non-overlapping 20-day time periods,

denoted by t, and, in each time period t, we seek to predict the future 20-day returns based

on the momentum signals. We cross-sectionally demean returns to focus prediction on cross

section differences in returns rather than time series fluctuations in the common market

component of returns. We also consider other forecast horizons, namely 1-day, 5-day, and

10-day returns. Similarly to the base case, each of the other forecast horizons correspond to

a sample of non-overlapping time periods t of the same length. As advocated by Moskowitz

et al. (2012), in the case of futures contracts we time-series de-volatize returns (both in

the forecast target and in the momentum signal construction) using trailing 20-day return

15All of our theoretical results apply to cross-sectionally demeaned signals. If we start with any signal S,
we can work with the cross-sectionally demeaned signal: S̃j,t = Sj,t − 1

N

∑N
k=1 Sk,t. The corresponding

simple factor F̃ is dollar neutral. The eigenvalues of the prediction matrix with respect to S̃ and S have the
same signs, except for at most two eigenvalues (see Proposition 11 in the Appendix). Further, demeaning
means that we only exploit cross-sectional predictability, not time series predictability, which essentially
leads to the “loss” of one eigenvalue (Proposition 12 in the Appendix).
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volatility, which helps avoid a situation in which results are unduly driven by the large

cross-sectional differences in volatility of raw futures contract returns.16

We estimate the prediction matrix as the sample counterpart of the definition Π =

E(Rt+1S
′
t) using a rolling “training window.” The training window is the past 120 time

periods. For example for the base case, the training period consists of the past 120 non-

overlapping 20-day time periods. The estimated prediction matrix at time period t is

Π̂t =
1

120

t−1∑
τ=t−120

Rτ+1S
′
τ . (47)

Based on this empirical prediction matrix, we compute its singular vectors to form principal

portfolios (PPs) and we compute and the eigenvectors of its symmetric and antisymmetric

parts, giving rise to the empirical principal exposure portfolios (PEPs) and principal alpha

portfolios (PAPs). We compare these to the simple factor F̃t defined in (3). To limit the

undue effects of illiquidity on our conclusions, we always add an extra 1-day buffer between

the last day in the training sample and the first day in the forecast window.

6.2 The Prediction Matrix and Principal Portfolios

We first consider the PPs, PEPs, and PAPs for the base-case sample of 20-day returns using

20-day momentum signals for the 25 Fama-French size-value portfolios. Figure 1.A shows the

singular values of the prediction matrix, averaged over time. Recall that, according to the

theory, these singular values correspond to the expected returns of the corresponding PPs.

The realized next-month returns (i.e., out of sample) of the PPs are plotted in Figure 1.D,

along with their confidence bands. We find that the realized returns roughly match the shape

of the ex ante singular values, with the low-numbered PPs having large eigenvalues and high

realized returns. However, while this relation would be perfect on an in-sample basis (not

16This adjustment has tiny effects in our equity asset analysis so, in the interest of simplicity, we do not
de-volatilize equity returns.
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shown), we naturally see some degradation of realized returns relative to the eigenvalues

when looking out of sample.

In a similar vein, Figures 1.B and 1.C show the eigenvalues of the symmetric and

antisymmetric parts of the prediction matrix, respectively. Figures 1.E and 1.F report the

realized returns of the corresponding PEPs and PAPs, respectively. Again we see a close

relation between the ex ante predicted returns, and the out-of-sample realized ones. In this

sample, only the first two PPs and first two PEPs appear to have a significant out-of-sample

return, and only the first PAP return is significant.

One might wonder what these portfolios look like? We explore this in the case of PEPs

and PAPs. Figure 2.A plots the weights of the eigenvector w1 underlying the first PEP.

Interestingly, this eigenvector tends to be long value versus shorting growth stocks, and

simultaneously tends to be long larger stocks versus short smaller ones. Recall that PEP1

trades w1 based its on signal, that is, PEP1 is going long or short a size-value bet based

on its own momentum. Said differently, when large-value has recently outperformed, then

PEP1 buys large-value, and, otherwise, it buys small-growth. To illustrate this strategy

further, Figure 2.B plots the momentum, S ′w1, of the eigenvector. Lastly, Figure 2.C show

the overall portfolio weight, S ′w1w
′
1, averaged over time. Similarly, Figure 2, Panels D–E

illustrate the PAP1 trading strategy.

6.3 PP, PEP, and PAP Returns across Forecast Horizons

Figure 3 plots the performance of the PPs, PEPs, and PAPs across several forecast horizons.

In addition to the base-case specification with 20-day return periods considered above, we

also consider 1-day, 5-day, and 10-day forecast horizons. In all cases, the signal is the past

20-day momentum. For simplicity, we only report the return of the sum of the top three

principal portfolios (among each the PPs, PEPs, and PAPs), and the combination of the
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top 3 PEPs plus top 3 PAPs.17 In each case, we compare their performance to that of

the simple factor, which is just the sum-product of signals and returns. When analyzing

factor performance, we use the exact same signal construction for the factor and PPs and

evaluate both over the same forecast horizons, so each group of bars is an apples-to-apples

comparison.

The five bars on the right in Figure 3.A show performance for the base case with 20-day

returns. We see that the PEP has a similar Sharpe ratio (SR) to that of the simple factor,

where SR is the average excess return divided by volatility. The PAP has a higher SR, and

the combination of PEP and PAP is higher yet, more than double the SR of the simple

factor. The PP strategy performs similarly to PAP, handily beating the simple factor. The

best overall performance is achieved by the combination of PEPs and PAPs.

Figure 3.B plots the information ratio (IR) and its confidence interval as a measure of the

risk-adjusted return of the principal portfolios. Specifically, the IR is computed by regressing

the return of the PP (or PEP, PAP, or their combination) on the simple factor (F̃ ) and the

five Fama-French factors (the market MKT , the size factor SMB, the value factor HML,

the profitability factor RMW , and the investment factor CMA):

PEPt = α + β0F̃t + β1MKTt + β2SMBt + β3HMLt + β4RMWt + β5CMAt + εt (48)

The IR is the alpha divided by residual volatility, IR= α/σ(εt), which can be interpreted as

the Sharpe ratio when all the factors on the right hand side are hedged out (i.e., the alpha

expressed as a Sharpe ratio).

Table 2 reports the details of this regression. As seen from Table 2 (and the confidence

intervals in Figure 3.B), the PEP does not have a significant alpha (or, equivalently, a

significant IR), but the PAP is highly significant (t-statistic of 4.42) and so is the PP strategy

17When combining PEPs and PAPs, we rescale the PAP component to have the same volatility as the
PEP component, then take a 50/50 combination.
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and the combination of PEP and PAP. Interestingly, Table 2 also shows that PEP has a

highly significant loading on the simple factor with a high R2, while, in contrast, PAP has

small and insignificant factor loadings and low R2. These findings are consistent with the

idea that PEP provides factor exposure while PAP provides uncorrelated alpha.

Finally, Figure 3 shows that the principal portfolios perform even better at shorter

forecast horizons, especially the PP and PEP strategies. Indeed, at the shorter forecast

horizons, even PEP earns a higher SR than the simple factor, and the risk-adjusted return

as measured by the IR becomes highly significant at 1-, 5-, and 10-day forecast horizons.

6.4 Other Samples and Markets

We next implement the model in other samples. In particular, we consider three samples of

U.S. stocks (the base case from before, plus two other sets of Fama-French portfolios), three

sets of international stocks (i.e., global stocks outside the U.S. sorted into similar portfolios),

and a set of 52 futures contracts (consisting of equity index futures, bond futures, commodity

futures, and currency forwards).

Figure 4.A and B show the Sharpe ratios and information ratios for these seven data

sets. In support of the model’s predictive power, we see that all of the SRs and IRs are

positive, and several, but not all, are statistically significant. In further support of the

model, Figure 4.C shows that the ex ante eigenvalues are highly correlated to the ex post

realized returns in each sample.

6.5 Robustness across Momentum Horizons and Sub-samples

Finally, we analyze the robustness of our method across momentum horizons and sub-

samples. Figure 5 shows the performance of the leading PPs, PEPs, and PAPs for different

look-back periods in the specification of the momentum signal. Panel A shows that the

PEP performs similarly to the simple factor for all momentum horizons. However, PP,
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PAP, and the PEP/PAP combination deliver higher SR across all horizons. Turning to the

information ratios in Panel B, we see the these are more statistically significant for the short-

and medium-term momentum periods, and less significant for the longer-term momentum

horizons.

Finally, Figure 6 reports the performance of the base-case strategy for each decade in the

sample. We see that the performance tends to be positive across decades — so the strong

overall performance is not being driven by a single decade — but, naturally, the statistical

significance in each decade is reduced due to the short time window.

7 Conclusion: The Power of Principal Portfolio Analysis

We present a new method to analyze return predictability and asset pricing tests. The

method provides novel intuitive portfolios that can generate effective factor exposures and

alpha strategies relative to the factor. We implement our method empirically using a range

of standard data sets and find significant evidence consistent with our predictions.
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A On Mean-Variance Optimization of Linear Strategies

A.1 Robust Mean-Variance Framework of Linear Strategies

Consider the following robust mean-variance objective function:

max
L

E(S ′tLRt+1) subject to max
S:‖S‖≤1

Vart(S
′LRt+1) ≤ 1 (49)

This objective is a robust in the sense that we require that the variance is bounded regardless

of the signal S. The variance term can be written as

max
S:‖S‖≤1

Vart(S
′LRt+1) = max

S:‖S‖≤1
S ′LΣR,tL

′S = max
S:‖S‖≤1

‖Σ1/2
R,tL

′S‖2 = ‖Σ1/2
R,tL

′‖2 (50)

So, if the assets are normalized and uncorrelated such that ΣR,t = Id, then the robust

variance constraint is the same as our matrix constraint ‖L‖ ≤ 1.

We also get a similar solution when ΣR,t = σ2Id for some σ ∈ R, since, in this case, the

portfolio constraint simply becomes ‖L‖σ ≤ 1. Hence, we just scale the position accordingly

(i.e., use L = L∗/σ, where L∗ is the standard solution with σ = 1). We note that, when

ΣR,t = σ2Id, an alternative constraint is to require that the risk of the linear strategy cannot

be greater than the risk of the simple factor as we do in (10), which is, again, equivalent to

‖L‖ ≤ 1.

We can also easily solve a version of the robust mean-variance problem for general ΣR,t.

Solving (10) directly is not convenient since it would lead us to impose ‖Σ1/2
R,tL

′‖ ≤ 1, which

is not consistent with choosing a constant position matrix L. (Recall that the idea of linear

strategies is to have a constant L, but rich portfolio dynamics, S ′tL, driven by the signals.)

Instead, we consider the transformed “synthetic assets” with returns

R̃t+1 = Σ
−1/2
R,t Rt+1 , (51)
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signals given by

S̃t = Σ
−1/2
R,t St , (52)

and the corresponding prediction matrix is Π̃ = E(R̃t+1S̃
′
t) = E(Σ

−1/2
R,t ΠΣ

−1/2
R,t ). For example,

if the original assets are uncorrelated (i.e., a diagonal ΣR,t), then creating these synthetic

assets simply means scaling the assets to have the same constant volatility (as we do in the

empirical analysis of futures).

Then we consider the robust mean-variance problem for the synthetic assets:

max
L̃

E
(
S̃ ′tL̃R̃t+1

)
subject to max

S̃t

Vart(S̃
′
tL̃R̃t+1) = ‖L̃‖ ≤ 1. (53)

So we see that this is our standard problem, expressed in terms of the synthetic assets. In

other words, all our results apply for the robust mean-variance problem of the synthetic

assets. For example, the optimal strategy for the synthetic assets is L̃ = (Π̃′Π̃)−1/2Π̃′, using

Proposition 3. Of course, this solution can be translated back to the original assets by noting

that

Lt = Σ
−1/2
R,t L̃Σ

−1/2
R,t , (54)

which holds since we must have that S̃ ′tL̃R̃t+1 = S ′tΣR
−1/2L̃ΣR

−1/2Rt+1 = S ′tLtRt+1.

A.2 Risk Aversion instead of Risk Constraint

We can also consider a robust mean-variance problem in which the investor has risk aversion

γ rather than a risk constraint:

max
L

(
E(S ′tLRt+1)− γ

2

[
max
S:‖S‖≤1

Vart(S
′LRt+1)

])
. (55)
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We can rewrite the objective using (50) as

max
L

(
E(S ′tLRt+1)− γ

2
‖Σ1/2

R,tL‖
2
)

(56)

Let us first solve this portfolio problem when ΣR,t = Id. To find the solution, we start by

finding the solution for each level of volatility:

L(c) = arg max
L:‖L‖=c

E (S ′tLRt+1) = c(Π′Π)−1/2Π′. (57)

where the last equality uses Proposition 3. Now we can solve the objective function (60) by

maximizing over all possible volatilities, c:

max
c

(
E (S ′tL(c)Rt+1)− γ

2
c2
)

= max
c

(
c

N∑
i=1

λ̄i −
γ

2
c2

)
=

(
∑N

i=1 λ̄i)
2

2γ
, (58)

where the optimum is achieved by c =
∑N

i=1 λ̄i
γ

, implying that the optimal strategy is

L =

∑N
i=1 λ̄i
γ

(Π′Π)−1/2Π′. (59)

We see that the optimal strategy is the same as in Proposition 3, except for a scaling factor.

The scaling factor naturally decreases in γ, reflecting that a more risk averse investor takes

a smaller position. Similarly, the scaling factor increases in the sum of the singular values,

since higher singular values imply stronger predictability, leading to a larger position.

Finally, consider the problem with a general variance-covariance matrix ΣR,t. Rather

than solving the objective function (60) (which could lead to a time-varying L), we consider

the similar objective function for the synthetic assets:

max
L̃

(
E(S̃ ′tL̃R̃t+1)− γ

2

[
max
S̃:‖S̃‖≤1

Vart(S̃
′L̃R̃t+1)

])
= max

L̃

(
E(S̃ ′tL̃R̃t+1)− γ

2
‖L̃‖2

)
(60)
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Since the synthetic assets have a variance-covariance matrix equal to the identity, their

optimal solution is

L̃ =

∑N
i=1 λ̄i(Π̃)

γ
(Π̃′Π̃)−1/2Π̃′ , (61)

which can be translated back to the original assets using (54).

A.3 Relation to the Standard Mean-Variance Framework

We next consider a standard mean-variance objective function, that is, we don’t use the

worst-case variance, but instead assume that conditional return variance is constant over

time, ΣR,t = ΣR. In this case, we naturally recover the standard Markowitz solution. To see

this, we use the notation ΣS = E(StS
′
t) as before and calculate:

max
L

E
(
Et(S

′
tLRt+1)− γ

2
Vart(S

′
tLRt+1)

)
= max

L
E
(
S ′tLRt+1 −

γ

2
S ′tLΣRL

′St

)
= max

L

(
tr(LΠ)− γ

2
tr(LΣRLΣS)

)
(62)

= max
L̃

(
tr(L̃Π̃)− γ

2
tr(L̃′L̃)

)
= max

L̃

(
tr(L̃Π̃)− γ

2
‖L̃‖2

2

)
,

where we use the change of variable L̃ = Σ
1/2
S LΣR

1/2 and Π̃ = ΣR
−1/2ΠΣ

−1/2
S . So we see

that this problem has the same form as our normal objective function, except that we have

another matrix norm, namely the Frobenius 2-norm, ‖·‖2. Since we solve the problem for all

p-norms in Proposition 10 (and in the proof of Propostion 3), we know that solution, which

is very simple: L̃ = cΠ̃′, where c is a constant that depends on the risk aversion γ. So the

solution to the mean-variance problem using the original variables is

L = Σ
−1/2
S L̃ΣR

−1/2 = cΣ
−1/2
S Π̃′ΣR

−1/2 = cΣ−1
S ΠΣR

−1 (63)
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In other words, the optimal portfolio is

wt = L′St = cΣR
−1ΠΣ−1

S St = c ΣR
−1E(Rt+1|St) (64)

which is the standard Markowitz tangency portfolio (scaled by c depending on risk aversion).

The last equality assumes that the conditional expected return can be computed using the

multivariate regression of Rt+1 on St, that is, Rt+1 = ASt+εt+1, and uses that the regression

coefficient is A = ΠΣ−1
S .

So while our framework can nest the standard Markowitz solution, we seek to add

robustness in several ways. First, we introduce the worst-case variance (captured by the

operator matrix norm). Second, we avoid having to invert two matrices. Indeed, the

Markowitz would first run a regression, requiring the matrix inversion Σ−1
S and then perform

a portfolio optimization, requiring the matrix inversion, ΣR
−1, which is known to be unstable

in practice. Instead, we formulate a simpler objective function, leading to a solution that is

simply a sum of singular vectors.

B Cross-Sectionally Demeaning the Signals

We start with a signal S, which is not cross-sectionally demeaned, and use the notation “∼”

(tilde) to indicate demeaning:

S̃j,t = Sj,t −
1

N

N∑
k=1

Sk,t

Similarly, the prediction matrix based on demeaned signals is

Π̃ = (Ri,t+1 S̃j,t)
N
i,j=1 .

and λ̃sk and λ̃ak are the eigenvalues of Π̃s and Π̃a, respectively.
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Proposition 11 The demeaned eigenvalues λ̃sk are interlacing with the non-demeaned ones

λsk in the sense that

λsk+1 ≤ λ̃sk ≤ λsk−1 (65)

for all k = 2, . . . , K − 1, λs2 ≤ λ̃s1, and λ̃sN ≤ λsN−1 and similarly for the antisymmetric

eigenvalues. Hence, if Πs has Np positive eigenvalues, then Π̃s has between Np−1 and Np+1

positive eigenvalues. Furthermore, the total performance of the cross-sectional factor

E

(
N∑
i=1

S̃i,tRi,t+1

)
=

N∑
i=1

λ̃si

satisfies

N∑
i=2

λsi ≤ E

(
N∑
i=1

S̃i,tRi,t+1

)
≤

N−1∑
i=1

λsi . (66)

In particular, if all eigenvalues λsi are positive, then cross-sectional factor performs worse

than the time series factor.

Proof. We use Weyl inequalities (Horn and Johnson (1991)): for any two symmetric or

Hermitian matrices A, B,

λj(A) + λk(B) ≤ λi(A+B) ≤ λr(A) + λs(B) (67)

whenever j + k −N ≥ i ≥ r + s− 1.

Then, we note that, by direct calculation,

Π̃s = Πs + X ,

where X = 0.5(π1′ + 1π′) , and where the vector π = (πi) = −(E(Ri,t+1
1
N

∑N
k=1 Sk,t)).
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The matrix X has rank two and at most two non-zero eigenvalues that always have opposite

signs: λ1(X) ≥ 0 ≥ λN(X). Thus, by the Weyl inequalities,

λi+1(Πs) ≤ λN(X) + λi+1(Πs) ≤ λi(Π̃
s) ≤ λi−1(Πs) + λ2(X) ≤ λi−1(Πs) .

The proof for the antisymmetric part is analogous.

To prove the last inequality, define the orthogonal projection P = Id− 1
N

1N×N Then, S̃t =

PSt and hence, by direct calculation, Π̃ = ΠP . Furthermore, since signals are demeaned,

N∑
i=1

S̃i,tRi,t+1 =
N∑
i=1

S̃i,t R̃i,t+1

where

R̃t+1 = PRt+1

and hence

E

(
N∑
i=1

S̃i,tRi,t+1

)
= E

(
N∑
i=1

S̃i,t R̃i,t+1

)
= tr(E(R̃t+1S̃

′
t))

= tr(PΠP ) = tr(PΠsP ) .

(68)

The eigenvalues of PΠsP coincide with the N − 1 eigenvalues {λ̂sk}N−1
k=1 of PΠsP dPRN re-

stricted onto the subspace PRN , plus a zero eigenvalue. By the interlacing inequalities Horn

and Johnson (1991), we have λsk+1 ≤ λ̂sk ≤ λsk, and therefore

tr(PΠsP ) =
N−1∑
k=1

λ̂sk

satisfies the required inequalities. �
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B.1 Cross-Sectionally Demeaning Portfolio Signals

Given any orthonormal tuple of portfolios {πk}Kk=1, we define the corresponding demeaned

signals as

S̃πkt = Sπkt − 1

K

K∑
i=1

Sπit .

Interestingly, we “lose” one eigenvalue when using demeaned factors rather than non-demeaned

ones as seen in the following proposition where λs1 ≥ · · · ≥ λsN are still the eigenvalues of Πs

(i.e., based on the original, non-demeaned signals).

Proposition 12 The expected excess return of demeaned portfolios based on any orthonor-

mal tuple of portfolios {πk}Kk=1 satisfies

K−1∑
i=1

λsk ≥ E(
K∑
k=1

S̃πkt R
πk
t+1) ≥

N∑
i=N−K+2

λsk

and the bounds are exact.

Proof of Proposition 12. Let

π̃k = πk −
1

K

K∑
i=1

πi .

Then,

S̃πkt = Sπ̃kt

and, since
∑

k S
π̃k
t = 0, we have

∑
k

Sπ̃kt R
πk
t+1 =

∑
k

Sπ̃kt R
π̃k
t+1 .
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Define the matrix

X = (π̃1, · · · , π̃K),

with the columns given by π̃i. Then,

E(
∑
k

Sπ̃kt R
π̃k
t+1) = tr(X ′ΠsX) = tr(ΠsXX ′)

Since, by assumption, πk are orthonormal, we have

π̃′kπ̃l = (πk −
1

K

K∑
i=1

πi)
′(πl −

1

K

K∑
i=1

πi) = δk,l − 1/K

and hence the matrix P = X ′X ∈ RK×K has rank K − 1 and eigenvalues 1 (of multiplicity

K − 1) and 0 and is therefore an orthogonal projection. Thus, we can write X = UP where

U ∈ RN×K is an orthogonal matrix satisfying U ′U = IdK . Thus,

tr(X ′ΠsX) = tr(PU ′ΠsUP ) .

Let V be the orthogonal matrix such that P̃ = V ′PV is the projection onto the span of the

first K − 1 standard basis vectors of RN . Then,

tr(PU ′ΠsUP ) = tr(PU ′ΠsUPV V ′) = tr(V ′PV V ′U ′ΠsUV V ′PV ) = tr(P̃ Ũ ′ΠsŨ P̃ )

where Ũ = UV. Then, Ũ is an arbitrary orthogonal matrix with columns u1, · · · , uk, and

tr(P̃ Ũ ′ΠsŨ P̃ ) =
K−1∑
i=1

u′kΠ
suk

and the claim follows from the Ky Fan inequality (Fan (1950)). �
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C Proofs

Proof of Proposition 1. Using the identity tr(AB) = tr(AB) for any two square matrices

A,B, we get

tr(E(S ′tLRt+1)) = tr(E(LRt+1S
′
t)) = tr(LE(Rt+1S

′
t)) = tr(LΠ) = tr(ΠL) .

�

Proof of Proposition 2. The proof follows directly from Proposition 1 and the fact that

tr(X ′X) ≥ 0 for any matrix X.

�

Proof of Proposition 3. We provide a proof in the case of a general Schatten p-norm

considered in Proposition 10, where p = [1,∞] and q is defined by 1/p+ 1/q = 1. First, the

trace of any square matrix A = UDV ′ is less than the sum of its singular values (dk):

| tr(A)| = | tr(UDV ′)| = | tr(V ′UD)| = |
∑
k

dk(V
′U)k,k| ≤

∑
k

dk = ‖A‖1 . (69)

since |(V ′U)k,k| = |V ′column kUcolumn k| ≤ ‖Vcolumn k‖ ‖Ucolumn k‖ = 1. Combining this inequal-

ity with Hölder’s inequality for Schatten norms (see, e.g., Bhatia (1997), Corollary IV.2.6;

or Tao (2012), p. 55, Exercise 1.3.9), we get:

| tr(LΠ)| ≤ ‖ΠL‖1 ≤ ‖Π‖q ‖L‖p , (70)

Finally, equality is achieved if L is proportional to (Π′Π)q/2−1Π′. Thus,

arg max
‖L‖p≤1

tr(LΠ) = (Π′Π)q/2−1Π′/‖(Π′Π)q/2−1Π′‖p . (71)
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�

Proof of Proposition 4. Follows from the calculations in the main text. �

Proof of Lemma 1. Suppose that there exists a tradable factor

Ft+1 = x′tRt+1

such that

Si,t =
Covt(Ri,t+1, Ft+1)

Vart(Ft+1)
.

We have

Covt(Ri,t+1, Ft+1) = Covt(Ri,t+1, x
′
tRt+1) = (ΣR

t xt)i

and, hence,

St = ΣR
t xt /y ,

where we have defined

y = Vart(Ft+1) .

Furthermore,

Vart(Ft+1) = x′tΣ
R
t xt
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Thus, we get

xt = y(ΣR
t )−1St ,

and we get a fixed point equation for y :

y = Vart(Ft+1) = x′tΣ
R
t xt = y2S ′t(Σ

R
t )−1St ⇔ y = 1/S ′t(Σ

R
t )−1St .

Reverting the arguments, we see that the converse is also true: the just computed portfolio

xt does satisfy Si,t =
Covt(Ri,t+1,Ft+1)

Vart(Ft+1)
. �

Proof of Proposition 5. By Lemma 2, we have

tr(LΠ) = tr((Ls + La)(Πs + Πa))

= tr(LsΠs) + tr(LsΠa) + tr(LaΠs) + tr( LaΠa) = tr(LsΠs) + tr(LaΠa) .
(72)

Finally,

Covt(R
wt
t+1, Ft+1) = Covt(w

′
tRt+1, Ft+1) = w′tCovt(Rt+1, Ft+1) (73)

= Vart(Ft+1)w′tSt = Vart(Ft+1)S ′tLSt = Vart(Ft+1)S ′tL
sSt ,

where the third identity uses the definition of F from Lemma 1 and the fact that Vart(Ft+1) =

1/(S ′t (ΣR,t)
−1St), and the last identity follows because, by Lemma 2,

S ′tLSt = S ′tL
sSt + S ′tL

aSt = S ′tL
sSt . (74)

�
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Proof of Lemma 2. Since the trace of a matrix equals the trace of its transpose, we have

tr(AB) = tr((AB)′) = tr(B′A′) = − tr(BA) = − tr(AB)

which shows that tr(AB) = tr(BA) = 0. Similarly, x′Ax = (x′Ax)′ = x′A′x = −x′Ax,

showing that x′Ax = 0. �

Proof of Proposition 6. To see the first result, note that the return equation (23) com-

bined with the eigendecomposition (25) yield

E
(
S
ws

k
t R

ws
k

t+1

)
= (wsk)

′Πswsk = (wsk)
′
K∑
j=1

λsjw
s
j(w

s
j)
′wsk = λsk . (75)

The last claim follows directly from (71) for Πs because, for L = L′, by Proposition 5 we

have that

max
‖L‖p≤1, L=L′

tr(LΠ) = max
‖L‖p≤1, L=L′

tr(LΠs)

is attained by the symmetric matrix c((Πs)′Πs)q/2−1(Πs)′ = (|Πs|)q−2Πs. For q = 1, we get

|Πs|−1Πs = sign(Πs). Here, we have used the standard functional calculus for symmetric

matrices (Horn and Johnson (1991)): for any function f(x) (such as |x| or sign(x)) we define

f(L) = W diag(f(λ(L)))W ′ where L = W diag(λ(L))W ′ is the eigen-decomposition of a

symmetric matrix L. �

Proof of Proposition 7. Next, since W = (ws1, ..., w
s
N) forms an orthonormal basis of RN ,

we have WW ′ = Id so

F̃t+1 = S ′tRt+1 = S ′tWW ′Rt+1 = (W ′St) · (W ′Rt+1) =
N∑
k=1

S
ws

k
t R

ws
k

t+1 (76)
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Hence, the result follows from the fact that including negative eigenvalues lowers the expected

return relative to the other options considered. �

Proof of Lemma 3. Equip CN with the standard inner product

x̂·y =
∑
i

xiȳi (77)

and recall that the Hermitian adjoint of a matrix B is defined as B∗ = B̄′, where B̄ is the

complex adjoint of B. Furthermore, for any matrix B, we have

x̂·(By) = (B∗x)̂·y . (78)

Let now A be a real anti-symmetric matrix. Consider the matrix iA. The first observation

is that iA is a Hermitian matrix. Indeed, iA
′

= −iA′ = iA. Thus, iA has real eigenvalues

and a basis of complex eigenvectors {wk}Nk=1. Let λ ∈ R be an eigenvalue of iA :

iAw = λw (79)

Then, taking a complex conjugate of this identity, we get

−iAw̄ = λ w̄ (80)

and hence w̄ is an eigenvector of iA with the eigenvalue −λ. Hence, all non-zero eigenvalues

come in pairs.

Furthermore, det(A) = det(A′) = det(−A) = (−1)N det(A) so, if N is odd, A is

degenerate and has a zero eigenvalue, whereas all non-zero eigenvalues come in pairs. Let us

take all nonnegative eigenvalues λ1 ≥ · · · ≥ λK of iA and let wk be the respective complex

eigenvectors. By the above, −λk is also an eigenvalue, and the respective eigenvectors are
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w̄k. By the spectral decomposition theorem, we have

iA =
K∑
k=1

(λkwkw̄
′
k − λkw̄kw

′
k) (81)

where we have used that the orthogonal projection onto wk is wkw̄
′
k, where w̄k is the complex

conjugate vector. Now, we have

λkwkw̄
′
k − λkw̄kw

′
k = 0.5λk( wk,1 + iwk,2)(wk,1 − iwk,2)′

− 0.5λk(wk,1 − iwk,2)(wk,1 + iwk,2)′ (82)

= iλk(wk,2w
′
k,1 − wk,1w′k,2)

and the claim follows.

For any Hermitian matrix (and, hence, also for iA), eigenvectors for different eigenvalues

are always orthogonal. Thus, wk,1 ± iwk,2 must be orthogonal to wj,1 ± iwj,2 and hence

wk,1, wk,2 are orthogonal to wj,1, wj,2. Furthermore, wk,1 ± iwk,2 correspond to different

eigenvalues ±λk and hence they also must be orthogonal:

0 = (wk,1 + iwk,2) · (wk,1 + iwk,2) = ‖wk,1‖2 − ‖wk,2‖2 + 2iwk,1 · wk,2 (83)

and hence ‖wk,1‖ = ‖wk,2‖ and wk,1 · wk,2 = 0. Thus, the two vectors are wk,1, wk,2 are also

orthogonal.

Note that

iA(wk,1 + iwk,2) = λk(wk,1 + iwk,2) (84)

is equivalent toAwk,1 = λkwk,2 andAwk,2 = −λkwk,1 implying that, in the basis {(wk,1, wk,2)}Kk=1
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the matrix A is block-diagonal, composed of diagonal blocks

 0 −λ1

λ1 0

 (85)

�

Proof of Proposition 8. By definition, (Πa)′(xj + iyj) = iλaj (xj + iyj), that is (Πa)′xj =

−λajyj, (Πa)′yj = λajxj. The expected return is

E(R
wa

j,t

t+1 ) =E(S ′t(xjy
′
j − yjx′j)Rt+1) = tr((xjy

′
j − yjx′j)Πa) = − tr((Πa)′(xjy

′
j − yjx′j))

= λaj tr(y′jyj + x′jxj) = 2λaj .

The last statement follows from (71) for Πa because, for L = −L′, by Proposition 5 we have

that

max
‖L‖p≤1, L=−L′

tr(LΠ) = max
‖L‖p≤1, L=−L′

tr(LΠa)

is attained by the anti-symmetric matrix c((Πa)′Πa)q/2−1(Πa)′ = (|iΠa|)q−2(Πa)′. For q = 1,

we get |iΠa|−1(Πa)′ = sign(iΠa). Here, we have used the standard functional calculus

for Hermitian matrices (Horn and Johnson (1991)): for any function f(x) (such as |x| or

sign(x)) we define f(L) = W diag(f(λ(L)))W ′ where L = W diag(λ(L))W ′ is the eigen-

decomposition of a Hermitian matrix L. �

Proof of Proposition 9. Follows from calculations in the body of the paper. �

Proof of Proposition 10. Let X = LΠ. Then, by a result of Fan and Hoffman (1955), we

have λi(X
s) ≤ λ̄i(X). Furthermore, since rank(L) ≤ K, we also have rank(X) ≤ K and

rank(X ′X) = rank(X) ≤ K, and hence there are at most K non-zero singular values of X.
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Thus,

tr(LΠ) = tr(X) = tr(Xs) =
N∑
i=1

λi(X
s) ≤

K∑
i=1

λ̄i(X) .

Second, by known result about singular values of products of matrices (see, for example,

Marshall and Olkin (1979), p. 248), we have

K∑
i=1

λ̄i(LΠ) ≤
K∑
i=1

λ̄i(L) λ̄i(Π)

Third, by the Hölder inequality

K∑
i=1

λ̄i(L) λ̄i(Π) ≤

(
K∑
i=1

λ̄i(L)p

)1/p ( K∑
i=1

λ̄i(Π)q

)1/q

= ‖L‖p

(
K∑
i=1

λ̄i(Π)q

)1/q

.

Thus,

max
‖L‖p≤1, rank(L)≤K

tr(LΠ) ≤

(
K∑
i=1

λ̄i(Π)q

)1/q

.

Thus, it remains to verify that the equality holds with L = c
∑K

k=1 λ̄
q−1
k vk(uk)

′, where c =(∑K
k=1 λ̄

q
k

)−1/p

. This follows directly from the identity tr(Lvk(uk)
′), established in (15)

Items 2 and 3 of the Proposition are in fact special cases of item 1. Indeed, for item 2,

we have by Proposition 5 that

max
‖L‖p≤1, L=L′ rank(L)≤K

tr(LΠ) = max
‖L‖p≤1, L=L′, rank(L)≤K

tr(LΠs)

≤ max
‖L‖p≤1, rank(L)≤K

tr(LΠs) =

(
K∑
i=1

λ̄i(Π
s)q

)1/q

.

(86)

Furthermore, λ̄i(Π
s) is the i-th largest absolute eigenvalue of Πs and the equality is achieved

with L = c
∑
K |λsk|q−1 sign(λsk)w

s
k(w

s
k)
′
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Similarly, for the anti-symmetric part, we have

max
‖L‖p≤1, L=−L′ rank(L)≤K

tr(LΠ) = max
‖L‖p≤1, L=−L′, rank(L)≤K

tr(LΠa)

≤ max
‖L‖p≤1, rank(L)≤K

tr(LΠa) =

(
K∑
i=1

λ̄i(Π
a)q

)1/q

.

(87)

Top 2K singular value of Πa are just λai counted twice, and the equality is achieved with

L = c
∑K

k=1(λak)
q−1(wak(w̄

a
k)
′ − w̄ak(wak)′), where wak = xk + iyk are the complex eigenvectors

of Πa and come in complex conjugate pairs according to Lemma 3. �
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Table 1: Analogy between PCA and PPA

This table shows five analogies between principal component analysis (PCA) and principal portfolio analysis

(PPA) for the symmetric part of the prediction matrix. For PCA (PPA): (i) the variance (expected excess

returns) of each component equals its eigenvalue; (ii) different components k 6= l are orthogonal; (iii) the

sum variances (returns) of individual securities equals that of the components, and also equals the trace of

the variance-covariance matrix (prediction matrix); (iv) the top K components maximize variance (return)

for orthonormal portfolios; and (v) component k + 1 maximizes variance (return) among all portfolios that

are orthogonal to the first k ones.

Principal Component Analysis Principal Portfolio Analysis (Symmetric Part)

(i) Var(Rπk
t+1) = λk(ΣR) E(S

ws
k

t R
ws

k
t+1) = λk(Πs)

(ii) Cov(Rπk
t+1, R

πl
t+1) = 0 E(S

ws
k

t R
ws

l
t+1) + E(S

ws
l

t R
ws

k
t+1) = 0

(iii)
∑
k Var(Rk,t+1) =

∑
k Var(Rπk

t+1) = tr(ΣR)
∑
k E(Sk,tRk,t+1) =

∑
k E(S

ws
k

t R
ws

k
t+1) = tr(Πs)

(iv) (πk) = arg maxorthon.{xk}Kk=1

∑
k Var(Rxk

t+1) (wsk) = arg maxorthon.{xk}Kk=1

∑
k E(Sxk

t Rxk
t+1)

(v) πk+1 = arg maxx⊥{π1,··· ,πk}Var(Rxt+1) wsk+1 = arg maxx⊥{ws
1,··· ,ws

k}E(Sxt R
x
t+1)



Table 2: Principal Portfolio Factor Exposures

Statistics for regressions of out-of-sample principal portfolio returns on own-predictor strategy (“Factor”) and

the five Fama-French factors. Portfolios are constructed from the Fama-French 25 size and value portfolios

based on a 20-day momentum signal. The table reports regressions for the own-predictor strategy itself, the

equal-weighted average of the top three principal portfolios (“PP 1-3”), the equal-weighted average of the

top three principal exposure portfolios (“PEP 1-3”), the equal-weighted average of the top three principal

alpha portfolios (“PAP 1-3”), and the equal weighted average of the top three PEP’s and PAP’s combined

(“PEP and PAP 1-3”). In each regression, the left-hand-side portfolio is scaled to have the same full-sample

volatility as the excess market return. Results are shown for a 20-day forecast horizons, and each forecast

is made on an out-of-sample basis using a rolling training sample of the 120 most recent non-overlapping

return observations. Sample period is 1963-2019.

Portfolio Factor Mkt-Rf SMB HML RMW CMA Alpha R2

Factor -0.2 0.13 -0.28 -0.26 0.36 9.35 0.08

t-statistic -4.59 1.9 -3.43 -3.03 2.79 4.12

PP 1-3 0.82 0.03 0.02 0.15 -0.09 -0.02 4.69 0.67

t-statistic 32.69 1.09 0.53 3.05 -1.63 -0.29 3.38

PEP 1-3 0.94 0.01 -0.02 0.06 -0.13 -0.01 0.89 0.89

t-statistic 67.00 0.88 -0.76 1.95 -4.4 -0.16 1.14

PAP 1-3 -0.08 0.08 0.19 0.06 0.28 0.06 10.41 0.04

t-statistic -1.94 1.71 2.65 0.72 3.1 0.42 4.42

PEP and PAP 1-3 0.65 0.07 0.13 0.09 0.11 0.04 8.51 0.41

t-statistic 19.53 1.93 2.31 1.32 1.58 0.35 4.62



Figure 1: Prediction Matrix Eigenvalues

Panels A, B, and C show estimated eigenvalues of the prediction matrix and its symmetric and anti-symmetric

components, respectively, averaged over training samples. Panels D, E, and F show average out-of-sample

returns and ±2 standard error confidence bands for corresponding principal portfolios, principal exposure

portfolios, and principal alpha portfolios, respectively. Estimates are based on predictions of 20-day returns

of the Fama-French 25 size and value portfolios based on a 20-day momentum signal. Each training sample

consists of 120 non-overlapping 20-day return observations. Sample period is 1963-2019.
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Panel B: Πs eigenvalues Panel E: PEP average returns
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Panel C: Πa eigenvalues Panel F: PAP average returns
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Figure 2: Portfolio Weights for Leading Principal Portfolios

Weights of the first principal exposure portfolio (Panel A) and first principal alpha portfolio (Panel B) on

the 25 size and value portfolios, averaged over training samples. Portfolios are constructed based on a 20-

day momentum signal and for a 20-day forecast horizon/holding period. Portfolios and estimates are made

on an out-of-sample basis using a rolling training sample of the 120 most recent non-overlapping return

observations. Sample period is 1963-2019.
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Figure 3: Principal Portfolio Performance by Forecast Horizon

Out-of-sample performance of principal portfolios in terms of annualized Sharpe ratio (Panel A) and

annualized information ratio versus the own-predictor strategy and the Fama-French 5-factor model (Panel

B) along with ±2 standard error band around each estimate. Portfolios are constructed from the Fama-

French 25 size and value portfolios based on a 20-day momentum signal. The figure reports performance of

the own-predictor strategy (“Factor”), the equal-weighted average of the top three principal portfolios (“PP

1-3”), the equal-weighted average of the top three principal exposure portfolios (“PEP 1-3”), the equal-

weighted average of the top three principal alpha portfolios (“PAP 1-3”), and the equal weighted average of

the top three PEP’s and PAP’s combined (“PEP and PAP 1-3”). Results are shown for forecast horizons

(and, equivalently, holding periods) of 1, 5, 10, and 20 days. Each forecast is made on an out-of-sample basis

using a rolling training sample of the 120 most recent non-overlapping return observations. Sample period

is 1963-2019.
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Figure 4: Principal Portfolio Performance in Other Asset Universes

Out-of-sample performance of principal portfolios in terms of annualized Sharpe ratio (Panel A) and

annualized information ratio versus the own-predictor strategy and the Fama-French 5-factor model (Panel

B) along with ±2 standard error band around each estimate. Portfolios are constructed based on a 20-day

momentum signal from either the 25 U.S. size and value portfolios, 25 U.S. size and operating profitability

portfolios, 25 U.S. size and investment portfolios, their international counterparts (developed countries

excluding the U.S.), or 52 futures contracts. The figure reports performance of the own-predictor strategy

(“Factor”), the equal-weighted average of the top three principal portfolios (“PP 1-3”), the equal-weighted

average of the top three principal exposure portfolios (“PEP 1-3”), the equal-weighted average of the top three

principal alpha portfolios (“PAP 1-3”), and the equal weighted average of the top three PEP’s and PAP’s

combined (“PEP and PAP 1-3”). Panel C shows the correlation between out-of-sample average portfolio

returns and eigenvalues of the prediction matrix. Blue bars show the correlation between PP’s and singular

values from the total prediction matrix, red bars show the correlation between PEP’s and eigenvalues from

the symmetric component, and yellow bars show the correlation between PAP’s and eigenvalues from the

anti-symmetric component. Results are shown for a 20-day forecast horizon/holding period. Each forecast

is made on an out-of-sample basis using a rolling training sample of the 120 most recent non-overlapping

return observations. Sample period is 1963-2019 for U.S. equity portfolios, 1990-2019 for international equity

portfolios, and 1985-2019 for futures contracts.
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Panel C: Correlation between average portfolio returns and eigenvalues
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Figure 5: Principal Portfolio Performance by Momentum Lookback Window

Out-of-sample performance of principal portfolios in terms of annualized Sharpe ratio (Panel A) and

annualized information ratio versus the own-predictor strategy and the Fama-French 5-factor model (Panel

B) along with ±2 standard error band around each estimate. Portfolios are constructed based on a 20, 40,

60, 120 or 250-day momentum signal from 25 size and value portfolios. The figure reports performance of

the own-predictor strategy (“Factor”), the equal-weighted average of the top three principal portfolios (“PP

1-3”), the equal-weighted average of the top three principal exposure portfolios (“PEP 1-3”), the equal-

weighted average of the top three principal alpha portfolios (“PAP 1-3”), and the equal weighted average of

the top three PEP’s and PAP’s combined (“PEP and PAP 1-3”). Each forecast is made on an out-of-sample

basis using a rolling training sample of the 120 most recent non-overlapping return observations. Sample

period is 1963-2019.
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Figure 6: Principal Portfolio Performance in Subsamples

Out-of-sample performance of principal portfolios by decade in terms of annualized Sharpe ratio (Panel A)

and annualized information ratio versus the own-predictor strategy and the Fama-French 5-factor model

(Panel B) along with ±2 standard error band around each estimate. Portfolios are constructed based on

a 20-day momentum signal from 25 size and value portfolios. The figure reports performance of the own-

predictor strategy (“Factor”), the equal-weighted average of the top three principal portfolios (“PP 1-3”),

the equal-weighted average of the top three principal exposure portfolios (“PEP 1-3”), the equal-weighted

average of the top three principal alpha portfolios (“PAP 1-3”), and the equal weighted average of the

top three PEP’s and PAP’s combined (“PEP and PAP 1-3”). Results are shown for a 20-day forecast

horizon/holding period. Each forecast is made on an out-of-sample basis using a rolling training sample of

the 120 most recent non-overlapping return observations.
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