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1 Introduction

One of the key questions coming out of the financial crisis of 2008 surrounds the way

by which shocks can spread across financial institutions (for short, banks) and bring

down the system as a whole. A key challenge going forward is understanding how the

financial system should be designed to make it more resilient and less prone to fragility.

Of particular concern is the issue of homogeneity. On the one hand, various regulations

push towards greater homogeneity across banks, e.g., by encouraging banks to diversify

their assets and be less exposed to local shocks. On the other hand, there is a growing

recognition that homogeneity might synchronize fragility across institutions making its

overall impact on the system greater (e.g. Haldane, 2009, Haldane and May, 2011, Yellen,

2013).

In this paper, we provide theoretical analysis on this particular issue: how bank asset

heterogeneity affects financial stability. We model a banking sector in which assets of an

individual bank are subject to both aggregate and idiosyncratic shocks. Banks finance

themselves with short-term demandable debt, and so are exposed to the risk of a run a

la Diamond and Dybvig (1983). Banks are indirectly interconnected due to the fact that,

in the face of a run, they liquidate their assets in a common asset market, which leads

them to impose negative fire-sale externalities on one another.

This structure leads to two layers of coordination problems. First, typical to a bank-run

model, there is a within-bank strategic complementarity. Investors withdrawing money

from the bank impose a negative externality on those who stay, because withdrawals lead

to costly liquidations and reduce the amount available to those who do not withdraw.

Hence, investors’ inclination to withdraw increases when they expect that more of the

other investors in their bank will do so. Second, there is a cross-bank strategic comple-

mentarity. Because of the liquidation fire-sale externality among different banks in the

asset market, an individual bank needing to pay its own investors has to bear a higher

liquidation cost when more banks in the economy liquidate their long-term assets to repay

their investors. This implies that the inclination of investors to withdraw increases also

when they expect that more investors in other banks will do so.

Crucially for our results, it turns out that these two types of strategic complementarities

amplify each other. Investors are more affected by the expected behavior of investors in

other banks when they think that more investors in their own bank are likely to run.

This is intuitive: the fire-sale externality matters only when the bank needs to liquidate
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significant amounts in the asset market, which is the case only when the bank is under a

run. We think that this framework, where investors are concerned about the behavior of

their own bank’s investors and about the behavior of other banks’ investors, and where

the two concerns feed into each other, is a natural and realistic description of the financial

system. As far as we know, our paper is the first one to capture it in a tractable analytical

framework.

With this framework in place, we turn to analyze our main research question about the

effect of homogeneity on fragility. We consider a system where the fundamentals of all

banks are affected by the same aggregate shock, and in addition by idiosyncratic shocks

with a zero mean across the system. The idiosyncratic shocks separate banks ex post

into two types: strong banks who receive a positive shock and weak banks who receive a

negative shock. An increase in heterogeneity in this framework amounts to an increase

in the ex-post difference between the fundamentals of the weak banks and those of the

strong banks without changing the average fundamentals of the financial system.

In this framework, we show a striking result: an increase in heterogeneity makes all banks

more stable and is thus Pareto improving, as long as cross-bank strategic uncertainties are

in place, that is, as long as investors are uncertain about the run behaviours of investors

in other types of banks. An increase in heterogeneity enlarges the wedge between weak

and strong banks, making the former relatively more fragile than the latter. But, it pulls

all banks to an equilibrium of greater stability in absolute terms due to its effect on the

indirect interactions across banks in the asset market where assets are being sold. In the

face of greater heterogeneity, strong banks’ stability is challenged by the greater pressure

that weak banks impose on liquidation prices, and weak banks’ fragility is alleviated by the

lower pressure that strong banks impose. The key behind the decrease in overall fragility

is that the effect on weak banks dominates the one on strong banks. This is a direct

result of the fact that within-bank complementarities and cross-bank complementarities

feed and amplify each other. In particular, given that weak banks are more internally

fragile, their investors are more strongly affected by the lower fire-sale pressure from

strong banks than strong bank investors are affected by the higher fire-sale pressure

from weak banks. Hence, heterogeneity leads to overall lower fragility. Importantly, in

the absence of the interaction between the within- and cross-bank complementarities,

increasing heterogeneity would produce zero net effect on the overall fragility. With this

interaction in place, the way that lower fragility in strong banks helps calming the fragility

in weak banks becomes the dominant force, making heterogeneity a stabilizing force for
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all.

As mentioned above, this benefit of heterogeneity dominates only as long as cross-bank

strategic uncertainties are in place, which is true when heterogeneity is not too large,

or when banks are not too different from each other. Providing a full characterization

of the relationship between heterogeneity and fragility, we show that when the level of

heterogeneity becomes sufficiently large to cross this threshold, a further increase in it

starts to make weak banks more fragile in absolute levels (while continuing to make

strong banks less fragile). As banks become so different from each other, strong banks’

fire-sale pressure on weak banks is negligible, since weak banks’ investors are certain

that when their banks are on the margin of experiencing runs, strong banks are still

sound and are not going to liquidate prematurely. As a result, a further increase in

heterogeneity no longer alleviates the fire-sale pressure on weak banks and only makes

them more fragile by reducing their bank-specific fundamentals. Hence, our paper calls

for restricting homogeneity in the banking sector from growing above the point where

cross-bank strategic uncertainties emerge.

While the main analysis is carried out in a framework with two types of banks ex post,

where heterogeneity is easily defined, we also provide an extension demonstrating how the

spirit of the results translates more generally to a model with many types. In addition, we

explore a more general information structure with noisy signals on both idiosyncratic and

aggregate fundamentals, which nests our information structure in the main framework.

The main result in our paper—that homogeneity in the financial system is destabilizing—

has several implications related to financial regulation and policy. First, as mentioned

in the beginning, the frequent calls, e.g., in Europe, for greater diversification and lower

dependence on local shocks are missing the potential destabilizing effects that will come

as a result of the greater homogeneity that diversification brings. We show that having

banks exposed to different local shocks helps stabilize the system, as the reduced fragility

in banks experiencing positive shocks helps reduce the fragility in those experiencing

negative shocks. Second, as we explore in more detail, our model sheds light on “ring-

fencing” policies that received a lot of attention since the 2008 crisis. Such policies aim

to split a bank into several independent subsidiaries with separate business focuses or

geographical locations.1 We show that the key benefit in such policies comes from the

1For instance, the UK Financial Services Act 2012 requires large banks to isolate its core retail banking
business from trading and riskier activities. The Volcker rule also aims to split retail and investment
banking activities by prohibiting banks from conducting proprietary trading.
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resulting heterogeneity across different subsidiaries. Third, as we also explore in more

detail, our model can help guide resolution mechanisms for distressed banks. Forcing

strong banks to cover weak banks, which is arguably appealing to policy makers as it

requires no taxpayer money, can create unintended consequences due to the reduced

heterogeneity. Similarly, when the government decides to inject cash into the system, our

model suggests a benefit to boosting strong banks, which can indirectly stabilize weak

banks more effectively.

To the best of our knowledge, our result that creating heterogeneity across banks is Pareto

improving is novel to the literature. Existing papers studying downsides of strong asset

commonality emphasize a trade-off between risk sharing and systemic risk: Institutions

within a homogeneous financial system are less likely to collapse in isolation but, on the

other hand, might occasionally become insolvent together.2 In such settings, banks are hit

by exogenous shocks; in our model, the severity of initial “shocks” hitting banks—bank

runs—depends on the cross-bank interaction on the asset market. Without a feedback

loop between asset prices and run decisions of banks’ investors, whether heterogeneity is

beneficial for financial stability crucially depends on relative costs of systemic and indi-

vidual crashes and frequency of these events (i.e., distribution of shocks). For example,

in Cabrales, Gottardi and Vega-Redondo (2017), segmented financial system is socially

optimal only when shocks are sufficiently fat-tailed while full integration is optimal for

thin-tailed shocks.3 Relatedly, a few papers argue that the optimal degree of hetero-

geneity is state dependent, i.e. in good times it is better to pool banks not to expose

the weaker ones to runs while in bad times it is better to differentiate banks to save the

stronger ones (e.g. Bouvard, Chaigneau and Motta, 2015 and Liu, 2018). In our setting,

in contrast, a certain degree of heterogeneity is beneficial for all banks irrespective of

distributional assumptions on shocks.

The interaction between heterogeneity and financial fragility has also been analyzed in

a very different context by Geanakoplos (2009) and Simsek (2013). They investigate

how belief heterogeneity among investors affects aggregate borrowing and then transmit

into economic fluctuations. Their focus is on whether the overall level of borrowing is

2See, among others, Shaffer (1994), Stiglitz (2010), Ibragimov, Jaffee and Walden (2011), Wagner (2010
and 2011), and Kopytov (2019). There is also a large empirical literature studying systemic risk in the
interconnected financial systems, e.g. Billio, Getmansky, Lo and Pelizzon (2012), Adrian and Brunner-
meier (2016), Acharya, Pedersen, Philippon and Richardson (2017), Brownlees and Engle (2017), Cai,
Eidam, Saunders and Steffen (2018), and Baum, Grazzini and Schäfer (2019).

3An analogous result arises in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), who consider banks con-
nected through interbank liabilities.
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excessive while ours is about the fragility of demandable debt given the leverage. We also

emphasize a different type of heterogeneity, i.e. that among bank asset returns, which

can simply result from random realizations of idiosyncratic productivities.

Our paper contributes to the vast literature on financial fragility created by bank runs

going back to Diamond and Dybvig (1983). Our model utilizes the global-games method-

ology, where investors observe noisy signals about the fundamentals when they decide

whether to run or not. This allows us to define the probability of runs and the level

of financial fragility, as in Rochet and Vives (2004) and Goldstein and Pauzner (2005).4

We use this to study how the heterogeneity in the financial system affects the level of

fragility. An important feature of our model is the two types of interacting strategic

complementarities. This is related to Goldstein (2005), who highlights how bank runs

and currency attacks can reinforce each other and generate twin crises, and Liu (2016),

who demonstrates the feedback between bank runs and liquidity dry-up on the interbank

market.5 In our model, runs in different banks can amplify and feedback into one another

through fire-sale externality in the common asset market. Our main conclusion builds on

the fact that in a heterogeneous financial system, strong banks have a larger impact on

weak banks than vice versa. This is related to Sákovics and Steiner (2012), who argue

that, in a single-complementarity coordination game with heterogeneous agents, optimal

subsidies should target agents imposing high externalities on others.6 However, increas-

ing heterogeneity does not matter in their framework because there are no interactions

between different types of strategic complementarities.

Two papers in the global-games literature address questions more closely related to us.

Choi (2014) builds a model of regime-switching game to ask whether it is better to

bolster strong or weak banks that are subject to cross-bank complementarity. His model

does not feature within-bank complementarity and only features a particular asymmetric

configuration of cross-bank complementarity. Hence, the mechanism behind his results is

4See also Frankel, Morris and Pauzner (2003), Corsetti, Dasgupta, Morris and Shin (2004), Guimaraes
and Morris (2007), and Sákovics and Steiner (2012), among others.

5Another related paper is Uhlig (2010), who presents a model where runs on individual banks are
interrelated due to fire sales.

6Also related is Cong, Grenadier and Hu (2019) who argue that the regulator should allocate more
resource to save small financial institutions, because saving small ones generate greater informational
externalities on large ones. Shen and Zou (2018) show that it is cost-efficient to design intervention
policies that screen agents based on their heterogeneous information in global games. Dai and Yang
(2017) look into organizational design when heterogeneous agents face coordination problems. In their
setting, organizations facilitate coordinated actions at the cost of agents with extreme preferences, which
limits the sustainability and the size of organizations.
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different from the one described above. Liu (2018) analyzes a setting where heterogeneous

banks face run risk and interact in the asset market but there is no uncertainty about

the liquidation price or the aggregate fundamental (see also Eisenbach, 2017). Hence,

his conclusions about fragility are driven by equilibrium multiplicity. We show that

incorporating aggregate uncertainty—a salient feature of economy-wide crises (Bloom,

2009)—not only resolves the multiplicity issue but also yields sharp predictions about

how fragility depends on bank heterogeneity.

The remainder of this paper is organized as follows. In Section 2 we lay out our model.

Section 3 presents our results about the relationship between heterogeneity and stability

in a setting with two types of banks. Section 4 generalizes our baseline model to the cases

of multiple bank types and imperfect signals about bank-specific productivities. Section

5 considers two applications of our model to financial regulation. Section 6 concludes.

2 Model

The economy is populated by three types of agents: banks, bank investors, and deep-

pocketed outside investors. There are three periods, t = 0, 1, 2. The agents and events

are described in detail below.

2.1 Banks

There is a continuum of banks indexed by i ∈ [0, 1]. Banks are ex ante homogeneous and

have an investment capacity of one. At t = 0, each bank i collects one unit of capital from

a unit mass of investors in the form of demandable debt, and makes long-term investment

that generates a return of θi at t = 2. We call zi the fundamental of bank i, and it takes

the following form,

zi = θ + ηi,

where θ is the aggregate component shared by all banks, and ηi is the bank-specific

component. The aggregate fundamental θ ∼ Fθ(·) with a bounded support [θ, θ̄], where

θ̄ > θ > 0. For simplicity, we assume two groups of banks: the strong with a mass of

w and the weak with a mass of 1 − w.7 Hence, the bank-specific shock ηi follows the

7In Section 4.1, we show that our main results hold in a setting with N ≥ 2 types of banks.
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distribution below,

ηi =

{
∆s with probability w,

∆w with probability 1− w.

Without loss of generality, we assume ∆s = ∆ ≥ 0 and ∆w = − w
1−w∆ ≤ 0 so that

the bank-specific fundamental ηi has a zero mean. The size of bank-specific shocks is

restricted to be such that the overall productivity is always positive for all banks, θ+∆w >

0.

Both aggregate and bank-specific productivities are realized at t = 1 and bank investors

then may choose to withdraw their funds early. Under such circumstances, bank i needs

to repay one unit of capital to each runner and thus is forced to liquidate its long-term

investment early in the asset market to fulfill the needs. The liquidation process and the

investors’ early withdraw decisions will be specified in the next two subsections.

2.2 Outside investors and the asset market

At t = 1, if a mass of mi investors withdraw their funds early from bank i, bank i needs to

raise funds of amount mi by liquidating its long-term investment. This means that bank

i has to liquidate mi
pi

fraction of its long-term investment position given the liquidation

price pi. Below we specify the asset market and characterize the market-clearing prices

p ≡ {pi}i∈[0,1].

The asset market is competitive and populated with a unit mass of deep-pocketed outside

investors. In line with classic works featuring fire sales (e.g. Shleifer and Vishny, 1992

and Kiyotaki and Moore, 1997), we assume that outside investors are less efficient in

managing assets than banks. In particular, under banks’ management, in the absence of

premature liquidations, a portfolio {ki}i∈[0,1] generates y ≡
∫
zikidi at t = 2. In contrast,

if the same portfolio is managed by outside investors, the return is subject to a discount:

instead of receiving y, outside investors only get f(y), where f(y) < y for all y > 0

and f(0) = 0. In addition, we assume that f ′(·) > 0 and f ′′(·) < 0 so that outsiders’

inefficiency in production increases in the amount of assets they absorb. Furthermore,

we assume that yf ′(y) is increasing in y to guarantee equilibrium uniqueness in the asset

market at t = 1. These assumptions on f(·) are typical in the literature on fire sales

(Lorenzoni, 2008).

Definition 1. Given masses of early withdrawers m = {mi}i∈[0,1] and bank fundamentals

z = {zi}i∈[0,1], an equilibrium in the asset market consists of outside investors’ demand
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functions {ki(p, z)}i∈[0,1] and market-clearing liquidation prices p = {pi(m, z)}i∈[0,1] such

that:

1. Given the liquidation prices p, outside investors’ demand functions {ki(p, z)}i∈[0,1]

maximize their expected payoffs:

max
{ki}i∈[0,1]

f

(∫
zikidi

)
−
∫
pikidi.

2. The liquidation prices satisfy the market-clearing conditions:

ki =
mi

pi
∀i ∈ [0, 1].

The key feature of the asset market is that fire-sale externalities can spill over across

banks with heterogeneous fundamentals. The direct interpretation of the feature is that

banks face the same group of buyers of their assets (e.g., hedge funds). Even if the

asset markets for different banks are separated, arbitrage capital might flow across these

markets, leading to comoving fire-sale discounts.

The following lemma summarizes key properties of liquidation prices p.

Lemma 1. Given masses of early withdrawers m and bank fundamentals z, the equilib-

rium liquidation price for bank i’s assets is

pi = p(zi,m) =
zi

λ(m)
, ∀i ∈ [0, 1],

where m ≡
∫
midi is the total mass of early withdrawers in the economy, and λ(m) is a

strictly increasing function.

Proof. See Appendix A.1.

The liquidation prices of banks’ assets are proportional to their productivities zi’s and

are subject to a common discount factor λ(m). The discount factor λ(m) increases in the

total mass of early withdrawers in the financial system. Intuitively, if more bank investors

withdraw their funds early, outsiders have to absorb more assets. Since the inefficiency in

outsiders’ asset management increases in the amount assets they manage, i.e., f ′′(·) < 0,

the price discount factor λ(m) becomes larger when more bank investors withdraw early.

8



Such a property of the liquidation prices reflects a simple idea that banks impose fire-sale

pressure on others when liquidating their own assets.

2.3 Bank investors and runs

This section describes the behavior of bank investors. For each bank i, there is a unit

mass of infinitesimal investors indexed by j ∈ [0, 1]. At t = 0, each investor j contributes

one unit of capital to its bank. Note that banks are ex-ante homogeneous, therefore,

investors are indifferent about which bank to invest in.

At t = 1, after the realization of bank i’s fundamental zi, each investor j of bank i

observes the bank-specific fundamental ηi
8 and receives a noisy private signal sij about

the aggregate fundamental θ,9

sij = θ + σεij, εij ∼ Φ(·).

The signal noise has a cumulative distribution function Φ(·), which is differentiable and

strictly increasing on its support [ε, ε̄]. A corresponding probability density function is

denoted by φ(·). Such an information structure follows a conventional global games setup,

which allows us to pin down a unique equilibrium.

With probability m̄ ∈ (0, 1), investor j is “non-sleepy” and may withdraw her funds

from her bank. With probability 1 − m̄, investor j is “sleepy” and neglects the option

to withdraw early. Therefore, bank i needs to liquidate at most m̄
pi

fraction of its assets

to fulfill the maximum amount of early withdrawal m̄. For tractability, we rule out bank

failures by assuming that m̄
pi
≤ 1.10

As mentioned previously, early withdrawers are guaranteed to get their funds back at t =

1. At t = 2, the investment return of bank i is equally distributed among investors who

8In Section 4.2, we show that our analyses remain valid as long as investors receive partially informative
signals about bank-specific components ηi’s.

9This assumption allows us to highlight the strategic uncertainties both within and across banks, i.e.
investors of bank i are not sure about mass of early withdrawals in their bank mi and in the whole
financial system m. In Appendix C, we analyze an alternative setup with perfect information about
the aggregate fundamental θ. In that case, multiple equilibria are possible and policy implications are
blurred.

10Goldstein and Pauzner (2005) show that bank failure at t = 1 creates a region of strategic substitution.
Incorporating this substitution region brings technical complications while not necessarily new insights.
Therefore, following Frankel, Morris and Pauzner (2003) and Chen, Goldstein and Jiang (2010), we
assume investors pay limited attention, and the amount of runners is capped by m̄.
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have not liquidate their funds early a la Diamond and Dybvig (1983). Let ui(aij) denote a

“non-sleepy” investor j’s payoff conditional on her withdraw decision aij ∈ {run, stay}.

ui(aij) =


1 if aij = run

zi

(
1− mi

pi

)
1−mi

if aij = stay.
(1)

Plugging in the market-clearing liquidation price pi derived in Lemma 1, we can express

the incremental payoff from staying as

π(zi,mi,m) ≡ ui (stay)− ui (run) =
zi −miλ(m)

1−mi

− 1.

The incremental payoff represents an investor’s incentive to run on her bank, and a “non-

sleepy” investor j of bank i runs at t = 1 if and only if expected incremental payoff given

her signal sij is negative,

E[π(zi,mi, pi)|sij] < 0.

The expression above tells us that the model features two types of strategic complemen-

tarities. First, there is a standard within-bank strategic complementarity that an investor

has more incentive to run if more investors in her own bank do so. On top of that, the

fire-sale externalities in the asset market give rise to a cross-bank strategic complemen-

tarity that an investor has more incentive to run if more investors in other banks do so.

Formally,
∂π(zi,mi,m)

∂mi

< 0 and
∂π(zi,mi,m)

∂m
< 0.

More importantly, the two complementarities—within- and cross-bank—feed and amplify

each other,

∂2π(zi,mi,m)

∂mi∂m
< 0. (2)

Banks that encounter more early withdrawals (higher mi’s) have to liquidate more assets

to repay runners. That naturally makes the long-term payoffs of staying investors more

sensitive to fluctuations in the liquidation prices, which depend on the total mass of

runners in the financial system m. Later in Section 3.2, we will discuss this feature in

more details and explain its importance for our results.
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2.4 Timeline and equilibrium definition

Figure 1 depicts the timeline of our model.

Banks receive
funding

and invest

t = 0

θ and ηi’s
realize

t = 1

Investors receive
private signals

“Non-sleepy”
investors decide
whether to run

Banks liquidate
assets to repay

runners
Investors who
stay get repaid

t = 2

Figure 1: Timeline

Denote the strategy of a “non-sleepy” investor j in bank i as Aij that maps bank-specific

fundamental ηi and her private signal about aggregate fundamental sij to her action space

aij ∈ {run, stay}; Outside investors’ demand for bank i’s assets {ki(p, z)}i∈[0,1] as func-

tions of liquidation prices and bank fundamentals; Liquidation prices p = {pi(m, z)}i∈[0,1]

as functions of banks’ fundamentals and masses of runners; Masses of runners m =

{mi(θ, ηi)}i∈[0,1] as functions of aggregate and bank-specific fundamentals.

Definition 2. Bank investors’ strategies, outside investors’ demand, liquidation prices

and total mass of runners constitute an equilibrium if

1. Given m and z, {ki(p, z)}i∈[0,1] and {pi(m, z)}i∈[0,1] constitute a sub-game equilib-

rium in the asset market as in Definition 1;

2. Given {pi(m, z)}i∈[0,1], other investors’ strategies resulting in {mi(θ, ηi)}i∈[0,1], each

investor maximizes her expected payoff defined in Equation (1) conditional on her

private signal and the bank-specific fundamental of her bank;

3. mi(θ, ηi) =
∫
I {aij(sij, ηi) = run} dj.

2.5 Global games and threshold equilibrium

In what follows, we focus on the limiting case of infinitely precise signals, σ → 0. As we

show in Appendix D, there exists a unique equilibrium, in which all bank investors follow

threshold strategies. In particular, investor j of bank i run when sij < θ∗i and stay when

sij > θ∗i . An investor with signal sij = θ∗i is indifferent between the two actions:∫ 1

0

θ∗i + ηi − λ (m(x)) m̄x

1− m̄x
dx = 1. (3)
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As in standard global-games models, a marginal investor receiving a threshold signal θ∗i

has a Laplacian belief. That is she perceives that the mass of runners within her own bank,

m̄x = m̄Φ
(
θ∗i−θ
σ

)
, is uniformly distributed (Morris and Shin, 2001). Crucially, because

her signal is informative about the aggregate productivity, she also makes inference about

actions of investors of other banks. From her perspectives, the total mass of runners in

the economy is

m(x) = m̄

∫
Φ

(
θ∗j − θ
σ

)
dj = m̄

∫
Φ

(
θ∗j − θ∗i
σ

+ Φ−1(x)

)
dj, (4)

where Φ−1(0) = ε and Φ−1(1) = ε̄.

A set of equations (3) together with (4) deliver equilibrium thresholds θ∗i for investors of

all banks in the economy. Given the structure of idiosyncratic shocks, equations (3) and

(4) can be rewritten as

θ∗s + ∆ =
1∫ 1

0
1

1−m̄xdx
(1 + Is(t)) , (5)

θ∗w −
w

1− w
∆ =

1∫ 1

0
1

1−m̄xdx
(1 + Iw(t)) , (6)

where Is(t) and Iw(t) represent the fire-sale pressures on strong bank and weak bank

investors, respectively:

Is(t) ≡
∫ 1

0

λ
(
wm̄x+ (1− w)m̄Φ

(
t+ Φ−1(x)

)) m̄x

1− m̄x
dx, (7)

Iw(t) ≡
∫ 1

0

λ
(
(1− w)m̄x+ wm̄Φ

(
−t+ Φ−1(x)

)) m̄x

1− m̄x
dx, (8)

and t ≡ limσ→0
θ∗w−θ∗s
σ

is the limiting distance between the two thresholds, which either

takes a non-negative finite value or goes to infinity. If t + Φ−1(x) ≥ ε̄ then threshold

investors of strong banks assign probability one to the event that weak banks are going

to experience runs and, thus, will have to liquidate assets prematurely. In this case,

the fire-sale pressure exerted by weak banks on strong banks reaches its maximal level.

Similarly, if −t+ Φ−1(x) ≤ ε then the fire-sale pressure on weak banks from strong banks

is minimized. At this point, threshold investors of weak banks consider runs on strong

banks to be impossible.

12



2.6 Discussions

Standard bank-run models (e.g. Diamond and Dybvig, 1983 and Goldstein and Pauzner,

2005) normally focus on fragilities of individual banks and assume that the cost of pre-

mature liquidation of banks’ assets is exogenous. The key distinction of our model is that

the liquidation cost is set endogenously and is affected by the run behaviors of all bank

investors in the economy. Our model, therefore, features mutually reinforcing within-

and cross-bank complementarities (Equation 2). We argue that the interaction between

the complementarities is detrimental to the stability of the banking system, and it is im-

portant to recognize the interaction when characterizing the fragility of individual banks

as well as the whole banking system.

To clearly see how the interaction affects fragility, assume that the banking system is

homogeneous, i.e. ∆ = 0. The indifference condition for threshold investors (3) is then∫ 1

0

θ∗0 − λ(m̄x)m̄x

1− m̄x
dx = 1,

where θ∗0 denotes the common threshold of all bank investors. In this case, the run

behaviors of bank investors are synchronized. Therefore, a threshold investor expects

many runs on her bank, i.e., large m̄x, precisely at times when the fire-sale discount

λ(m̄x) is high. This positive correlation between runs and fire sales exacerbates run

problems within individual banks and makes the financial system more fragile.

Consider now a standard individual bank-run model where there is no such interaction,

and an individual investor takes the level the fire-sale cost as given. When receiving a

signal, she only updates her beliefs about the severity of the run problem within her own

bank but not about the fire-sale discount. As a result, there is no correlation between

runs and fire sales. The indifference condition is given by∫ 1

0

θ̂0 − λ̄m̄x
1− m̄x

dx = 1,

where the threshold is θ̂0, and the average fire-sale cost is the same as in the previous

example, λ̄ =
∫ 1

0
λ(m̄x)dx. Despite the fact that the average fire-sale cost is the same in

13



both cases, banks are more fragile in the model with the interacting complementarities,11

θ∗0 − θ̂0 =

∫ 1

0

(
λ (m̄x)− λ̄

)
m̄x

1− m̄x
dx > 0.

Informally speaking, a homogeneous financial system is fragile because bank investors

expect problems within their own banks and other banks to synchronize. Making banks

heterogeneous is beneficial for the stability because it breaks down the simultaneity and

alleviates the reinforcement between the within- and cross-bank complementarities. In

the next section, we proceed to a formal analysis.

3 Analyses

In this section, we analyze our model presented in the last section. In this baseline

setting, bank-specific fundamentals take only two values. In addition to making our

analyses transparent, an advantage of having only two types is that we can map an

increase in the degree of bank heterogeneity directly into an increase in ∆. In Section

3.1, we present our main result on the relation between bank heterogeneity and financial

stability when investors of strong and weak banks exhibit nontrivial strategic interaction.

In Section 3.2, we discuss the key economic force behind this result. In Section 3.3, we

provide a full characterization of the relationship between heterogeneity and stability.

3.1 Bank heterogeneity and financial stability

In this section, we investigate how changes in bank asset heterogeneity affect financial

stability, captured in the model by the two run thresholds θ∗s and θ∗w. Changes in het-

erogeneity affect bank investors through two channels. First, there is a direct impact on

productivity of bank assets. Fixing the total amount of fire sales in the economy (i.e.,

total mass of runners m), an increase in ∆ makes strong banks stronger and weak banks

weaker. If the fire-sale terms Is(t) and Iw(t) in Equations (5) and (6) were fixed, an

increase in ∆ undoubtedly increases the stability of strong banks (θ∗s goes down) and

reduces that of weak banks (θ∗w goes up).

11To see the inequality, let x0 be such that λ(m̄x0) = λ̄. Then, λ (m̄x)−λ̄ < 0 for x ∈ [0, x0), and λ (m̄x)−
λ̄ > 0 for x ∈ (x0, 1]. Since m̄x

1−m̄x increases in x,
∫ 1

0

(λ(m̄x)−λ̄)m̄x
1−m̄x dx > m̄x0

1−m̄x0

∫ 1

0

(
λ (m̄x)− λ̄

)
dx = 0.
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However, the total amount of fire sales is not fixed. When banks interact with each other

in the asset market, the behavior of an individual investor will be affected not only by

peers in her own bank but also by investors in other banks. When the increase in ∆ shifts

the two thresholds θ∗s and θ∗w away from each other, the distance between the thresholds

t goes up. As a result, strong banks have to face a larger fire-sale pressure triggered by

weak banks’ higher likelihood to liquidate assets prematurely. In contrast, the fire-sale

pressure on weak banks is alleviated. Therefore, the overall impact of heterogeneity on

banks’ stability becomes unclear: on the one hand, higher ∆ directly improves strong

banks’ fundamentals, but on the other hand, it also lowers expectations of strong bank

investors regarding the liquidation prices. Conversely, weak banks suffer from worse

fundamentals but benefit from an alleviated fire-sale pressure.

Taking into account both within- and cross-bank strategic complementarities, the follow-

ing proposition shows the key result of the paper: An increase in asset heterogeneity ∆ is

Pareto improving as long as investors of weak and strong banks remain uncertain about

run behavior of each other.

Proposition 1. Define

∆min = (1− w)
1∫ 1

0
dx

1−m̄x

[Is(ε̄− ε)− Iw(ε̄− ε)] .

∀∆ ∈ (0,∆min), we have

(i) θ∗w(∆) = θ∗s(∆) ≡ θ∗(∆);

(ii) θ∗(∆) decreases in ∆.

Proof. See Appendix A.2.

∆min represents the critical level of asset heterogeneity above which there is a trivial

strategic interaction between investors of strong and weak banks. If ∆ > ∆min, the

difference between the two types is so large that marginal investors in the weak banks

know for sure that no one runs in strong banks (mi = 0). Similarly, marginal investors

in the strong banks know for sure that every “non-sleepy” investors runs in weak banks

(mi = m̄). Therefore, when investors make their run decisions, they only need to make

inference about investors in the same type of banks based on their private signals. As a

result, θ∗s < θ∗w and the limiting distance between the thresholds t becomes infinite. If
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∆ < ∆min, investors need to evaluate the run situations in both types of banks to make

their run decisions. Since we have assumed that signals’ noise is infinitesimal, this is

possible only if the thresholds θ∗s and θ∗w are trivially different from each other—as what

we have as result (i).12

Result (ii) of Proposition 1 states that when ∆ < ∆min and thus strategic interactions

across banks are nontrivial, the run thresholds not only stay together but also move

downward as heterogeneity increases. Financial system with more heterogeneous banks

is thus unambiguously more stable. This means, somewhat strikingly, that heterogeneity

is beneficial even for weak banks, despite a worsening of their bank-specific fundamentals.

By setting θ∗ = θ∗s = θ∗w and then substituting equation (6) into (5), we obtain:

θ∗(∆) =
1∫ 1

0
dx

1−m̄x

[wIs(t(∆)) + (1− w)Iw(t(∆))] , (9)

where t(∆) is implicitly defined by

∆ = (1− w)
1∫ 1

0
dx

1−m̄x

[Is(t(∆))− Iw(t(∆))] . (10)

Recall that Is(t) and Iw(t) represent the strengths of the fire-sale pressure in the asset

market faced by strong and weak banks, respectively. These two terms, multiplied by

the relative weights of strong and weak banks, determine the common run threshold, as

shown in Equation (9). From (10), a marginal increase in ∆ is associated with a positive

change in the limiting distance t between the run thresholds. It also boosts the fire-sale

pressure faced by strong banks Is(t) and alleviates that faced by weak banks Iw(t). Result

(ii) of Proposition 1 implies that θ∗(∆) declines, i.e., weak banks benefit more than strong

banks suffer. The next section discusses economic forced behind this result.

12That the bank-type-specific thresholds cluster around the same value is a typical feature of global
games with heterogeneous players and infinitely precise signals (e.g. Frankel, Morris and Pauzner,
2003). While we do rely on the assumption that σ → 0 in order to analytically characterize the
equilibrium, the main result of Proposition 1 does not require such an assumption. In Appendix B.3,
we show via numerical examples that increasing heterogeneity ∆ tends to make both weak and strong
banks less fragile, albeit θ∗s and θ∗w are no longer infinitely close to each other anymore.
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3.2 Role of two complementarities

The key force that lies behind result (ii) of Proposition 1 is that within- and cross-bank

complementarities are mutually reinforcing, which in the model is captured by inequality

(2). Weak banks are more sensitive to the cross-bank fire-sale externalities because they

experience more severe bank runs and need to liquidate more assets. When ∆ < ∆min, the

strategic interaction across different banks is nontrivial, and an increase in heterogeneity

∆ alleviates cross-bank fire-sale externalities for the weak banks, and worsens those for

the strong banks. However, since weak banks are more sensitive to the change, the benefit

for weak banks outweighs the loss for strong banks, and the overall stability increases.

To see this point formally, we need to compare the (weighted) changes in the fire-sale

pressures Iw(t(∆)) and Is(t(∆)) due to an increase in heterogeneity ∆, as suggested by

Equation (9). Recall that the limiting distance between the thresholds t is an increasing

function of ∆: larger heterogeneity pushes the thresholds away from each other. Below,

we describe how the expressions under integral terms in Iw(t) and Is(t) change when t is

increased by dt > 0.

First, consider a strong bank’s marginal investor receiving a threshold signal θ∗s . She

knows that if her noise realization is εs, all strong bank investors whose noise realizations

are below εs are going to run (hatched area in Figure 2(a)). Therefore, the mass of runners

in strong banks is wm̄Φ(εs).
13 At the same time, she expects a larger mass (1−w)m̄Φ(t+

εs) of weak bank investors to run (filled area in 2(a)). Under the uniform prior about

the mass of runners in her bank m̄Φ(εs) ∼ U [0, m̄], she assigns probability φ(εs)dε to

this event. Increasing the limiting distance between the run thresholds t by dt uniformly

shifts her belief about weak investors’ behavior and thus raises the perceived fraction of

weak banks’ runners by (1− w)m̄φ(t + εs)dt. The increase in fragility, contributed by a

larger fire-sale pressure faced by strong banks in this state, is given by:

w︸︷︷︸
Weight of strong banks

×λ′ (wm̄Φ(εs) + (1− w)m̄Φ(t+ εs))×
m̄Φ(εs)

1− m̄Φ(εs)︸ ︷︷ ︸
Sensitivity of payoff to the amount of fire sales

× (11)

φ(εs)dε︸ ︷︷ ︸
Probability of state εs

× (1− w)m̄φ (t+ εs) dt.︸ ︷︷ ︸
Change in the mass of runners in weak banks

13In the expression for Is(t) (7), we change the variable of integration from x to ε, where x = Φ(ε).
Below, we do the same change of variable for Iw(t) given in (8).
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(a) Strong bank

(b) Weak bank

Figure 2: Impact of change in heterogeneity on the amount of fire sales

Integrating (11) over all possible realizations of noise ε, we obtain the full impact of

elevated fire-sale pressure faced by strong banks on the overall financial fragility (i.e. the

common run threshold θ∗).

Consider now a weak bank’s investor receiving a threshold signal θ∗w. From her per-

spective, probability of the state with the mass wm̄Φ(εs) of strong investors running is

φ(εw)dε=φ(t+ εs)dε, where εw ≡ t+ εs. In panel (b) of Figure 2, this mass is depicted by

a filled area. In this state of the world, she believes that the fraction (1−w)m̄Φ(t+ εs) of

weak banks’ investors liquidate prematurely (hatched area in the same plot). A marginal

increases in heterogeneity reduces the mass of strong banks’ runners by wm̄φ(εs)dt. The

decrease of fragility, contributed by a smaller fire-sale pressure faced by weak banks in
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this state, is given by:

1− w︸ ︷︷ ︸
Weight of weak banks

×λ′ (wm̄Φ(εs) + (1− w)m̄Φ(t+ εs))×
m̄Φ(t+ εs)

1− m̄Φ(t+ εs)︸ ︷︷ ︸
Sensitivity of payoff to the amount of fire sales

× (12)

φ(t+ εs)dε︸ ︷︷ ︸
Probability of state εs + t

× wm̄φ (εs) dt.︸ ︷︷ ︸
Change in the mass of runners in strong banks

By comparing (11) and (12), one can observe that there is only one difference between

strong and weak bank investors sharing the same belief about the total amount of early

liquidations. Compared to weak bank investors, investors of strong banks experience

a weaker within-bank complementarity problem because the mass of runners on their

own bank is smaller, m̄Φ(εs) < m̄Φ(t + εs) (hatched area is smaller in panel (a)). From

condition (2), weak bank investors are therefore more sensitive to changes in t: for them,

a change in the total amount of fire sales has a stronger impact on their payoff function.

Because (12) is larger than (11) state by state, i.e. for all possible realizations of noise,

we have |∂Iw(t)/∂t| > |∂Is(t)/∂t|. Therefore, an increase in the limiting distance t due

to higher heterogeneity ∆ leads to a decline in the common run threshold θ∗.

Again, this result is due to the fact that the within- and cross-bank complementarities

reinforce each other. For our model, this property is a natural implication of the existence

of asset fire sales at t = 1 and a standard Diamond and Dybvig (1983) payoff structure.

The following proposition formally establishes, with a more general payoff function, the

importance of the mutually reinforcing complementarities for our results in Proposition

1.

Proposition 2. Consider an investor of bank i whose net benefit of staying at t = 1 is

π(zi,mi,m) = zig1(mi)− g2(mi,m),

where g1(mi) is increasing in mi; g2(mi,m) is increasing in both mi and m; and ηi follows

the same binary structure as in our model. If ∂2π
∂m∂mi

= − ∂2g2

∂m∂mi
< 0, then ∃ ∆min > 0

such that ∀ ∆ ∈ (0,∆min), θ∗s(∆) = θ∗w(∆) = θ∗(∆),and θ∗(∆) is a decreasing function.

Corollary 1. Under the assumptions of Proposition 2, heterogeneity does not affect the

common threshold θ∗ if ∂2π
∂m∂mi

= ∂2g2

∂m∂mi
= 0.

Proof. See Appendix A.3.
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In the baseline setting, g1(mi) = 1
1−mi and g2(mi,m) = λ(m)mi

1−mi , so ∂2g2

∂m∂mi
= λ′(m)

1−m2
i
> 0.

Notice that if the cross-derivative ∂2g2

∂m∂mi
= 0 then heterogeneity does not affect the

common threshold θ∗ (Corollary 1). This result echoes Sákovics and Steiner (2012). They

show that in global games with heterogeneous agents, the weighted average strategic belief

about the aggregate action (total amount of runs in the economy) is uniform. Moreover,

in the absence of the interaction between the within- and cross-bank complementarities,

only the weighted average belief about the aggregate action matters for the common

threshold θ∗. Under the uniform average belief, the degree of heterogeneity across types

does not affect θ∗.

When the two complementarities do interact, however, θ∗ depends on the bank-type-

specific interaction terms between the amounts of runs in the whole economy and within

a particular bank. The powerful result of Sákovics and Steiner (2012) does not hold in

this case, making the analysis much more cumbersome.

3.3 Heterogeneity and stability: a full characterization

In our baseline model with a binary structure of bank-specific fundamentals, we are able

to analytically characterize the relation between financial stability (captured by the run

thresholds θ∗s and θ∗w) and the degree of bank asset heterogeneity (∆) when ∆ goes beyond

∆min. The following proposition, which nests Proposition 1 as case 1, characterizes fully

the run thresholds as functions of bank heterogeneity ∆.

Proposition 3. ∃ ∆max > ∆min > 0 such that

1. If ∆ ∈ (0,∆min) then θ∗s = θ∗w < θ∗(0). θ∗s(∆) = θ∗w(∆) are decreasing functions.

2. If ∆ ∈ [∆min,∆max) then θ∗s < θ∗w < θ∗(0). θ∗s(∆) and θ∗w(∆) are decreasing and

increasing functions, respectively.

3. If ∆ ≥ ∆max then θ∗s < θ∗(0) ≤ θ∗w, where the equality holds for ∆ = ∆max. θ∗s(∆)

and θ∗w(∆) are decreasing and increasing functions, respectively.

Proof. See Appendix A.2.

Figure 3 depicts the results of Proposition 3. Case 1, in which ∆ ∈ (0,∆min) and θ∗s = θ∗w,

has been discussed in previous sections. Again, here the difference in fundamentals across
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Figure 3: Run thresholds as functions of heterogeneity ∆

banks allows investors of strong and weak banks to have nontrivial strategic interactions.

As bank heterogeneity increases, all banks become more stable.

In Case 2, when ∆ goes beyond ∆min, banks become sufficiently different. There is no

strategic uncertainty across investors of different banks anymore: strong bank investors

receiving a threshold signal θ∗s are now certain that all weak bank investors are going to run

and thus weak banks are going to liquidate their assets prematurely, and vice versa. θ∗s and

θ∗w are no longer infinitely close to each other in equilibrium. A further increase in ∆ does

not affect the strength of the cross-bank complementarity but only further strengthens

(weakens) fundamentals of strong (weak) banks. As a result, θ∗s keeps declining while

θ∗w starts to rise. Therefore, a marginal increase in heterogeneity is no longer Pareto

improving as weak banks become more fragile. However, when ∆ ∈ [∆min,∆max), we

still have a more stable banking sector compared to one with homogeneous banks.

In Case 3, when ∆ > ∆max, heterogeneity becomes so large that θ∗w exceeds the no-

heterogeneity threshold θ∗(0). It is not clear whether the overall financial system is still

more stable than in the case of full homogeneity: while strong banks are more stable,

weak banks are more fragile.

Moving from stability to welfare is straightforward in our model. Since all agents are risk

neutral, welfare can be measured as the expected output. Formally, consider a regulator

who chooses the degree of heterogeneity to maximize

max
∆

Eθ + [f (m̄λ(m̄))− m̄λ(m̄)]Fθ (θ∗s) + (13)

[f ((1− w)m̄λ ((1− w)m̄)))− (1− w)m̄λ ((1− w)m̄)] (Fθ (θ∗w)− Fθ (θ∗s)) ,
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where the first term captures the overall economy’s production before subtracting any

fire-sale losses; the second term represents losses due to fire sales when θ < θ∗s and

investors of strong and weak banks run; the third term represents losses due to fire sales

when θ∗s ≤ θ < θ∗w and only weak bank investors run.

The following corollary comes directly from Proposition 3:

Corollary 2. It is never optimal to have a banking sector with asset heterogeneity ∆ <

∆min.

Proof. Consider a banking sector with ∆ < ∆min. In this system, θ∗s = θ∗w ≡ θ∗ and thus

the regulator’s objective is to minimize Fθ(θ
∗). When ∆ < ∆min, θ∗(∆) is a decreasing

function. Therefore, it is never optimal to set ∆ below ∆min.

Under the current criterion, it is less clear how welfare changes when ∆ moves beyond

∆min. On the one hand, strong banks keep becoming stronger and, thus, it is less likely to

encounter systemic financial crises when all investors run. On the other hand, weak bank

investors are more likely to run, and the probability of nonzero inefficient liquidations goes

up. If the regulator’s objective is to prevent as many runs from happening as possible,

then the optimal level of heterogeneity should be set exactly to ∆min. In that case, the

regulator’s objective boils down to min∆ Fθ(θ
∗
w).

4 Robustness

In this section, we consider two extensions of our baseline model. We show that our

main results are robustness to more than two types of banks and noisy information about

bank-specific fundamentals.

4.1 Many types of banks

We consider a more general version of the model with N ≥ 2 types of banks. When the

number of types exceeds two, there are in principle many ways to adjust heterogeneity.

Nevertheless, we are able establish two propositions that echo our results from Section

3. In particular, we first show that a homogeneous banking system is fragile, and any
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sufficiently weak heterogeneity is beneficial for all banks. We then show that when het-

erogeneity becomes too strong, a further increase in heterogeneity is not unequivocally

stabilizing and makes some banks more fragile.

The structure of the economy stays the same as in Section 2. The only difference is

that now there are N ≥ 2 groups of banks, where banks within the same group share

idiosyncratic productivity ηi = ∆i. To fix notation, ∆1 ≤ ∆2 ≤ · · · ≤ ∆N , so that banks

of group 1 have the weakest fundamentals and banks of group N have the strongest

fundamentals. Weight of group i is wi ∈ (0, 1), and by definition
∑N

i=1wi = 1. Without

loss of generality, we set the average ηi to zero:
∑N

i=1 wi∆i = 0.

Bank investors follow threshold strategies, i.e. investors of bank i withdraw early if their

signals are below θ∗i and do not do so otherwise. An indifference condition for an investor

receiving a threshold signal θ∗i is

θ∗i + ∆i =
1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

λ

(
m̄

N∑
j=1

wjΦ
(
tij + Φ−1(x)

)) m̄x

1− m̄x
dx

)
, (14)

where tij = limσ→0
θ∗j−θ∗i
σ

is the limiting distance between the thresholds θ∗i and θ∗j . A

system of N equations (14) is a generalized version of equations (5)-(6) of the baseline

model with two types of banks.

When the banking system is fully homogeneous, ∆i = 0, ∀i ∈ {1, . . . , N}. Naturally, all

thresholds are then the same and tij = 0 for all (i, j) pairs. By continuity, all thresholds

stays infinitely close to each other for any marginal change in the vector of idiosyncratic

productivities. The limiting distances, however, adjust. In particular, if ∆i > ∆k then

tik > 0. Similarly to our discussion in Section 3.1, when heterogeneity is sufficiently

weak, banks’ behaviors on the asset market are not fully decoupled. For infinitely precise

signals, it means that the distances between the thresholds have to be trivially small. The

following proposition states that a homogeneous financial system is fragile: a common

threshold θ∗ (∆1, . . . ,∆N) reaches its (local) maximum when ∆i = 0 ∀i ∈ {1, . . . , N}.

Proposition 4. There exists a positive constant ∆̄ > 0 and a non-empty set U∆̄ ∈
RN =

{
x|x1 ≤ x2 ≤ · · · ≤ xN ;

∑N
i=1 wixi = 0; |xi| < ∆̄

}
such that ∀∆ ∈ U∆̄, investors of

all banks share the same threshold θ∗(∆). Moreover, θ∗(∆) reaches maximum at 0.

Proof. See Appendix B.1.
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This result is an analogue of Proposition 1, and the intuition behind is the same. Differ-

entiation of banks makes some of them relatively stronger (if ∆i > 0) and others relatively

weaker (if ∆i < 0) ex post from the perspectives of asset performance. At the same time,

the fire-sale pressure on weaker banks is alleviated, and that benefits them more than a

higher fire-sale pressure hurts stronger banks. Again, this result hinges crucially on the

fact that within- and cross-bank complementarities are mutually reinforcing.

Similarly to Proposition 3, increasing heterogeneity is not always unequivocally beneficial.

In particular, when heterogeneity becomes sufficiently strong—in the sense that banks’

behaviors on the asset market are fully decoupled and there is no strategic interactions

across banks—further differentiation hurts banks with smaller ∆i’s.

Proposition 5. There exists a positive constant Λ > 0 such that if |∆i − ∆k| > Λ

∀i 6= k ∈ {1, . . . , N} then all thresholds are different, θ∗1 < θ∗2 < · · · < θ∗N . In this

region, the threshold of bank i’s investors θ∗i depends only on bank i’s productivity ∆i.

Moreover, θ∗i (∆i) is a decreasing function, and any change in bank heterogeneity increases

the fragility of banks whose bank-specific fundamentals go down.

Proof. See Appendix B.1.

4.2 Noisy information about bank-specific fundamentals

In the baseline model, we assume that investors have perfect information about their

banks’ idiosyncratic fundamentals ηi. We now show that this assumption can be relaxed.

As long as investors receive some useful information about ηi, the results of Proposition

1 go through.

Below, we consider an extension with noisy information about bank-specific fundamentals.

In particular, investor j in bank i receives two distinct noisy signals. The first signal sij

about the aggregate fundamental θ is the same as in the baseline model, i.e.,

sij = θ + σεij.

In addition, each bank i discloses bank-specific information, captured by a signal di about

its bank-specific fundamental ηi, to its investors. di takes two values: G and B, with the
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probability mass function below.

P(di = G|ηi = ∆) = P
(
di = B

∣∣∣∣ηi = − w

1− w
∆

)
= α,

where α ∈
[

1
2
, 1
]
.

Denote the posterior belief about the probability of bank i being strong as pG if di = G

and pB if di = B. Then

pG =
wα

wα + (1− w)(1− α)
≥ w ≥ pB =

w(1− α)

w(1− α) + (1− w)α
.

The equality holds if and only if α = 1
2
, i.e., the signal di is uninformative about bank-

specific fundamentals. Another special case is α = 1, which is the setting in our baseline

model. The proposition below generalizes Proposition 1.

Proposition 6. The model with imperfect information about bank-specific fundamentals

is equivalent to the benchmark model where bank-specific shocks take values ∆eff (α) with

probability weff (α) and −∆eff (α) weff (α)
1−weff (α)

with probability 1− weff (α), where

weff (α) = wα + (1− w)(1− α),

∆eff (α) =
2α− 1

wα + (1− w)(1− α)
w∆.

Corollary 3. (i) If signals about bank-specific fundamentals are uninformative, α = 1
2
,

the banking system is effectively homogeneous, and θ∗G(∆) = θ∗B(∆) = θ∗(0) for any

∆.

(ii) If signals about bank-specific fundamentals are informative, α ∈ (1
2
, 1], there exists a

∆min(α) > 0 such that θ∗G(∆) = θ∗B(∆) < θ∗(0) and θ∗G(∆) is a decreasing function

on ∆ ∈ (0,∆min(α)).

Proof. See Appendix B.2.

The key result following Proposition 6 is that investors’ perception of bank heterogeneity—

rather than physical heterogeneity per se—matters for financial stability. As we show in

Corollary 3, if signals about bank-specific fundamentals are not informative, then bank

investors may perceive banks with very different asset holdings as homogeneous. In the

extreme case of completely uninformative signals, α = 1
2
, the effective heterogeneity
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is zero, ∆eff
(

1
2

)
= 0. Run decisions of investors of strong and weak banks are then

completely synchronized, and any changes in physical heterogeneity ∆ do not affect run

thresholds. If signals are informative, α > 1
2
, investors are able to differentiate between

banks. In that case, run decisions of investors are not perfectly synchronized.

5 Discussions and policy implications

Our analysis so far has been focused on how financial fragility depends on the degree of

asset commonality in a comparative static fashion. We intentionally leave out banks’ asset

choices—that is, the distribution of bank-specific productivities ηi is exogenously given.

This is because, to maximize transparency and highlight our key mechanism, we choose

not to include some important incentives for banks to hold correlated assets, such as

diversification purposes when depositors are risk-averse, or expected ex post government

interventions (Acharya, 2009, Acharya and Yorulmazer, 2007 and 2008, Farhi and Tirole,

2012).14 In either case, banks as price takers will not take into account their impact on

asset prices when making individual portfolio choices. For example, while it is Pareto-

improving to boost strong banks at the expense of weak banks in our setting, weak banks

will not agree to support strong ones voluntarily. Existence of such pecuniary externality

calls for policy interventions.

Below we consider model implications for two policies widely discussed in the aftermath

of the recent global financial crisis—ring-fencing (Section 5.1) and resolution of distressed

banks (Section 5.2).

5.1 Ring-fencing

In response to the “too-big-to-fail” problem, the idea of “ring-fencing” has emerged in

the post-crisis policy discussions worldwide. “Ring-fencing” refers to separating a large

bank’s balance sheet and restricting fund reallocation across ring-fenced subsidiaries. The

separation can take place according to the service divisions. For example, in the US, the

Volcker Rule restricts proprietary trading by commercial banks, essentially spinning off

their investment banking activities. Similarly, starting from January 1, 2019, the largest

14Appendix A.3 considers a general setting where banks’ objective function is not linear in payoffs (e.g.
due to risk aversion of banks’ investors), and outlines sufficient conditions under which homogeneity is
detrimental for stability.
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UK banks are required to separate core businesses in retail banking from investment

banking.15 Besides service divisions, the separation can be carried out according to

geographic locations. For example, the Fed required foreign banking organizations with

more than $50 billion in US subsidiary assets to put all their US subsidiaries under an

intermediate holding company (Kreicher and McCauley, 2018). Geographic ring-fencing

has also been pursued by the European regulator through increased capital and liquidity

requirements on foreign-owned subsidiaries, legal restrictions on intragroup cross-border

asset transfers and limitations on the distribution of profits by foreign-owned subsidiaries

(Enria, 2018).

To illustrate the effect of ring-fencing using our framework, we compare two cases. In the

first case, the economy has only one large bank whose productivity equals to the aggregate

productivity θ. In the second case, the large bank is divided up into different ring-fenced

subsidiaries i ∈ [0, 1]. Each ring-fenced subsidiary has a productivity zi = θ + ηi, where

ηi ∈ {∆s,∆w}. This corresponds to our setup in Section 2.

The comparison of the two cases yields an immediate result that dividing up the single

bank into homogeneous subsidiaries has no effect. The corollary below formalizes the

result. In words, simply splitting big banks into identical clones cannot reduce fragility

in the financial system.16

Corollary 4. If ηi = 0 ∀i, the run thresholds for investors of all subsidiaries stay the

same, i.e., θ∗i = θ∗(0) ∀i.

Proof. Corollary follows directly from Propositions 1 and 3.

A typical argument for ring-fencing made by regulators is that it allows for balance sheet

separation of different subsidiaries and, therefore, limits the degree of contagion a bank’s

failure imposes on the remaining financial system. However, this argument neglects the

contagion through fire sales. Behaviors of homogeneous subsidiaries in the asset market

are still synchronized. Therefore, fire-sale externalities across these subsidiaries essentially

resemble the bank-run externalities across a large group of investors in the parent bank

in the absence ring-fencing. The goal of ring-fencing should not simply be to downsize

15Ring-fencing was first introduced through the Financial Services (Banking Reform) Act
2013, followed by details set in further legislation. See a summary on GOV.UK at
https://www.gov.uk/government/publications/ring-fencing-information/ring-fencing-information.

16In his public lecture, Brunnermeier (2010) makes an argument that echoes our result—“too big to fail”
is not the same as “too systemic to fail”.
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banks’ balance sheets but rather to achieve an optimal level of heterogeneity in the

financial system.

The analyses and comparison of the two cases directly follow Section 3.3. In particular,

following Corollary 2, the optimal degree of heterogeneity is ∆ ≥ ∆min, beyond which

cross-subsidiary strategic uncertainties vanish. To implement the optimal level of hetero-

geneity, the regulator could utilize different policy tools. In the example of ring-fencing

that separate commercial banks from investment banks, the regulator could alter ∆ with

different classifications of bank assets.17 In the example of geographic ring-fencing, the

regulator could control ∆ by varying the intensity of cross-region restrictions or changing

the boundary or granularity of geographic divisions. Our model implies that regulators

should utilize these policy tools to make sure that the ring-fenced subsidiaries are differ-

ent enough such that when the weak subsidiaries are on the margin of failure, the strong

ones are surviving with certainty. In this scenario, when the weak subsidiaries investors

decide whether to withdraw their funds prematurely, they expect relatively high liqui-

dation prices and, thus, are less likely to run. This, in turn, is beneficial for the overall

financial stability.

5.2 Crises resolution

Our results also shed light on the optimal structuring of bank resolution policies. Within

our framework, a cash injection by the regulator into bank i is equivalent to raising its

bank-specific productivity. Indeed, the net benefit of not running for investors of bank i

is

θ + ηi −miλ(m) + τi
1−mi

− 1,

where τi is the amount of cash the government injects in bank i at t = 2. It is straight-

forward to see that a uniform support for banks (i.e. τi = τ ∀i) might not be the most

efficient way to support the financial system. While such a uniform policy does make

all banks more sound fundamentally, the heterogeneity across different banks stays the

same. The regulator should also aim to achieve the optimal level of heterogeneity to alle-

viate negative externalities that banks impose on each other. When there exist nontrivial

17For example, legislation of the Volcker Rule went through several rounds of amendments, discussing
what type of investment activities that commercial banks are prohibited to conduct. Indeed, the final
version excluded some securities from the Rule.
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strategic interactions across investors in different types of banks, i.e. ∆ < ∆min, a more

active support for strong banks, even at the expense of reduced support for weak banks,

benefits all financial institutions and thus the overall financial stability. Appendix A.4

formalizes this point. It states the problem of a planner allocating a bailout fund T ≥ 0

across strong and weak banks so that T = wτs + (1 − w)τw. We show (see Proposition

7), in particular, that when the bailout fund is not too large and bank investors exhibit

nontrivial strategic interactions, the planner should support only strong banks.

In this regard, it is interesting to relate our results with the implementation of the Trou-

bled Asset Relief Program (TARP) in 2008. The US Treasury effectively forced all major

banks, irrespective of whether they were financially sound, to take the TARP money.18

While some argue that forcing strong banks to also take the money can reduce the stigma

around government intervention, our model provides a new dimension in which such ac-

tion might be socially more desirable than supporting only relatively weaker banks. In

the latter case, capital injections might lead to a reduction in effective heterogeneity and

exacerbate cross-bank externalities.

Choi (2014) also argues that it might be more efficient to bolster strong banks. His

results, however, rely on a specific model structure such that fragility of strong banks

affect weak banks on the margin but not vice versa. Such cases do not arise in our

model.19 In fact, we show that when investors’ payoffs follow a standard structure à la

Diamond and Dybvig (1983), either both types of banks affect each other on the margin

(∆ < ∆min) or neither of them do (∆ ≥ ∆min). When different types of banks do

interact nontrivially, their mutual impacts are not symmetric: strong banks impose more

pronounced externalities on weak banks due to the reinforcement between the within-

and cross-bank complementarities.

18For example, a former Wells Fargo CEO Dick Kovacevich discussed how the U.S. Treasury and the
Federal Reserve were threatening major banks to take TARP money even if they didn’t want it. See at
https://www.cnbc.com/2013/09/13/tarp-ruined-banks-former-wells-fargo-ceo-kovacevich-says.html.

19Choi (2014) considers a regime-switching game with a binary payoff structure. In his setting, what
matters for fragility is the total mass of runners in the economy when the value of the fundamental hits
the type-specific regime-switching point. In our case, there is no such regime-switching points; fragility
is shaped by investors’ expectations about all possible realizations of the fundamental. In addition,
Choi (2014) focuses on the case when bank heterogeneity ∆ is large but below ∆min. In his model, if
bank heterogeneity is smaller, it might be optimal to support either type of banks or only weak banks.
The policy prescriptions are, therefore, blurred.
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6 Conclusion

In this paper, we analyze a model where banks not only face conventional risks of early

withdrawals by their creditors, but also interact with one another in the asset market. We

show that a homogeneous banking system is fragile because it suffers from the mutual

reinforcement between two complementarities—runs on individual banks and fire-sale

externality in the asset market. One may think that increasing heterogeneity could

hurt some banks as their asset performances can become weaker. However, under fairly

general assumptions, we show that maintaining a certain level of heterogeneity enhances

the stability of all banks. By considering ring-fencing and distress resolution policies, we

highlight the importance of our mechanism for the design of regulatory tools.

To focus on the analysis of complex interactions between probabilities of panics and asset

prices in an interconnected financial system, we have left ex ante banks’ portfolio choices

out of consideration. In the future work, our setting can be incorporated into a richer

dynamic model, featuring nontrivial asset and leverage choices.
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A Proofs

A.1 Liquidation price

We prove Lemma 1 in this section.

Proof. The first order condition of the outside investors’ problem implies that liquidation

price of bank i’s assets pi is proportional to its fundamental zi, i.e.,

pi =
∂f(y)

∂y
zi ∀i ∈ [0, 1], (15)

where y ≡
∫
zikidi. After imposing the market clearing conditions, ki = mi

pi
∀i ∈ [0, 1],

we obtain

mi = ziki
∂f(y)

∂y
⇒ m ≡

∫
midi = y

∂f(y)

∂y
.

Since by assumption yf ′(y) is an increasing function of y, there is a unique solution y to

the equation above. We denote the unique solution as y = h(m), where h′(·) > 0. Plug

this into (15) and we obtain

pi(zi,m) = zi
m

h(m)
=

zi
λ(m)

,

where λ(m) ≡ h(m)
m

.

Notice that the liquidation price is a decreasing function of the total mass of early with-

drawers m. Indeed, using (15), we can write

pi(zi,m) = zi
∂f(y)

∂y

∣∣∣∣
y=h(m)

⇒ ∂pi
∂m

= zi
∂2f(y)

∂y2

∣∣∣∣
y=h(m)

×∂h(m)

∂m
< 0.

A.2 Main results on heterogeneity and stability

We prove Propositions 1 and 3 in this section.

Proof. The thresholds for investors of strong and weak banks are implicitly defined by
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Equations (5) and (6).∫ 1

0

θ∗s + ∆− λ (wm̄x+ (1− w)m̄Φ (t+ Φ−1(x))) m̄x

1− m̄x
dx = 1, (16)

∫ 1

0

θ∗w − w
1−w∆− λ ((1− w)m̄x+ wm̄Φ (−t+ Φ−1(x))) m̄x

1− m̄x
dx = 1, (17)

where t ≡ lim
σ→0

θ∗w−θ∗s
σ

.

Notice that t > 0 if ∆ > 0. If ∆ = 0 then t = 0 and θ∗s = θ∗w = θ∗(0), where θ∗(0) is a

common threshold shared by investors of all banks in the absence of any heterogeneity

across banks.

Case 1: Weak heterogeneity, 0 ≤ ∆ < ∆min.

First, consider the case that 0 ≤ t < ε̄ − ε. Then investors of strong banks receiving

threshold signal θ∗s assign nonzero probability to the event that investors of weak banks

will not withdraw funds early: ∃x ∈ (0, 1] : ∀x ∈ [0, x],Φ (t+ Φ−1(x)) < 1. Similarly,

investors of weak banks receiving threshold signal θ∗w assign nonzero probability to the

event that investors of strong banks will withdraw funds early: ∃x̄ ∈ [0, 1) : ∀x ∈
[x̄, 1],Φ (−t+ Φ−1(x)) > 0.

For finite values of t, it is true that thresholds θ∗s and θ∗w converge to the same value θ∗ in

the limit: θ∗ = lim
σ→0

θ∗w = lim
σ→0

θ∗s . Essentially, weak and strong banks are equally fragile.

Equate θ∗s and θ∗w and take the difference between Equations (5) and (6) to obtain

1

1− w
∆

∫ 1

0

dx

1− m̄x
= Is(t)− Iw(t), (18)

where

Is(t) =

∫ 1

0

λ
(
wm̄x+ (1− w)m̄Φ

(
t+ Φ−1(x)

)) m̄x

1− m̄x
dx, (19)

Iw(t) =

∫ 1

0

λ
(
(1− w)m̄x+ wm̄Φ

(
−t+ Φ−1(x)

)) m̄x

1− m̄x
dx. (20)

36



Define ∆min as

∆min =(1− w)
1∫ 1

0
dx

1−m̄x

(Is(ε̄− ε)− Iw(ε̄− ε)) =

(1− w)
1∫ 1

0
dx

1−m̄x

∫ 1

0

[λ (wm̄x+ (1− w)m̄)− λ ((1− w)m̄x)] m̄x

1− m̄x
dx.

Since Is(t) increases in t, and Is(t) decreases in t, it is easy to verfity that t(∆) is a

continuous and increasing function on [0,∆min). Moreover, t(0) = 0 and lim
∆→∆−min

t(∆) =

ε̄− ε.

We now show that the common threshold θ∗ is decreasing in t if t ∈ (0, ε̄ − ε). In other

words, in the region of weak heterogeneity, additional heterogeneity—captured by an

increase in ∆—leads to a less fragile financial system. Eliminating ∆ from (16) and (17),

we obtain

θ∗(t) =
1∫ 1

0
dx

1−m̄x

[wIs(t) + (1− w)Iw(t)] ,

where Is(t) and Iw(t) are given by (19) and (20). Rewrite Is(t) as

Is(t) =

∫ ε̄−t

ε

λ (wm̄Φ(ε) + (1− w)m̄Φ (t+ ε))
m̄Φ(ε)

1− m̄Φ(ε)
dΦ(ε)+∫ ε̄

ε̄−t
λ (wm̄Φ(ε) + (1− w)m̄)

m̄Φ(ε)

1− m̄Φ(ε)
dΦ(ε),

where we change the variable of integration x = Φ(ε). Differentiating Is(t) with respect

to t, we obtain

∂Is
∂t

= (1− w)m̄

∫ ε̄−t

ε

λ′ (wm̄Φ(ε) + (1− w)m̄Φ (t+ ε))
m̄Φ(ε)

1− m̄Φ(ε)
φ(t+ ε)φ(ε)dε.

Similarly, derivative of Iw(t) with respect to t is

∂Iw
∂t

= −wm̄
∫ ε̄

ε+t

λ′ ((1− w)m̄Φ(ε) + wm̄Φ (−t+ ε))
m̄Φ(ε)

1− m̄Φ(ε)
φ(−t+ ε)φ(ε)dε

= −wm̄
∫ ε̄−t

ε

λ′ (wm̄Φ(ε) + (1− w)m̄Φ (t+ ε))
m̄Φ(t+ ε)

1− m̄Φ(t+ ε)
φ(t+ ε)φ(ε)dε.

The last equality is obtained by changing the variable of integration, ε→ ε+ t.
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It is now easy to see that

∂θ∗

∂t
=

1∫ 1

0
dx

1−m̄x

[
w
∂Is
∂t

+ (1− w)
∂Iw
∂t

]
< 0

whenever t ∈ (0, ε̄ − ε) because m̄x
1−m̄x is an increasing function of x. Moreover, for t = 0

∂θ∗

∂t
= 0.

We have shown that if ∆ ∈ (0,∆min) then t(∆) and θ∗(t) are increasing and decreasing

functions of their arguments, respectively. Therefore, θ∗(t(∆)) is decreasing in ∆ in the

weak-heterogeneity region.

Case 2: Medium heterogeneity, ∆min ≤ ∆ < ∆max.

If ∆ > ∆min then (18) does not have solutions. Therefore, thresholds θ∗s and θ∗w do not

converge to the same value when σ → 0. Equations (16) and (17) can be rewritten as∫ 1

0

θ∗s + ∆− λ (wm̄x+ (1− w)m̄) m̄x

1− m̄x
dx = 1,

∫ 1

0

θ∗w − w
1−w∆− λ ((1− w)m̄x) m̄x

1− m̄x
dx = 1,

Clearly, when ∆ > ∆min, θ∗s(∆) is decreasing in ∆ while θ∗w(∆) is increasing in ∆. How-

ever, both thresholds are below the common threshold in the absence of any heterogeneity,

θ∗(0), as long as ∆ < ∆max, where ∆max is defined as

∆max =
1− w
w

1∫ 1

0
dx

1−m̄x

[∫ 1

0

[λ(m̄x)− λ((1− w)m̄x)]
m̄x

1− m̄x
dx

]
.

Case 3: Strong heterogeneity, ∆ ≥ ∆max.

Finally, if ∆ > ∆max then θ∗w surpasses θ∗(0), and we have θ∗s < θ∗(0) < θ∗w.

A.3 Role of two complementarities

We prove Proposition 2 in this section.

Consider a generalized payoff function g(zi,mi,m) of an investor of bank i that chooses
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not to withdraw her funds early. It depends on her bank’s productivity zi, mass of

early withdrawers from her bank mi, and overall mass of early withdrawers in the whole

economy m. Somewhat abusing notation, in this appendix, we denote partial derivatives

of the g(·, ·, ·) function by subscripts. We assume that g1 ≡ ∂g
∂zi

> 0, g2 ≡ ∂g
∂mi

< 0,

g3 ≡ ∂g
∂m

< 0.

We focus on the case of weak heterogeneity, when t ≡ lim
σ→0

θ∗w−θ∗s
σ
∈ (0, ε̄ − ε) and θ∗ =

lim
σ→0

θ∗w = lim
σ→0

θ∗s . The analogues of Equations (5) and (6) from the main text are

η(θ∗,∆, t) =

(
η1(θ∗,∆, t)

η2(θ∗,∆, t)

)
≡( ∫ 1

0
g (θ∗ + ∆, m̄x, wm̄x+ (1− w)m̄Φ (t+ Φ−1(x))) dx− 1∫ 1

0
g
(
θ∗ − w

1−w∆, m̄x, (1− w)m̄x+ (1− w)m̄Φ (−t+ Φ−1(x))
)
dx− 1

)
= 0.

Define

mtot(x, t, w) = wm̄x+ (1− w)m̄Φ
(
t+ Φ−1(x)

)
,

and notice that

mtot(x, t, w) > m̄x > mtot(x,−t, 1− w). (21)

Compute Jacobian of η with respect to θ∗ and ∆:

J =( ∫ 1

0
g1 (θ∗ + ∆, m̄x,mtot(x, t, w)) dx

∫ 1

0
g1 (θ∗ + ∆, m̄x,mtot(x, t, w)) dx∫ 1

0
g1

(
θ∗ − w∆

1−w , m̄x,mtot(x,−t, 1− w)
)
dx −w

1−w

∫ 1

0
g1

(
θ∗ − w∆

1−w , m̄x,mtot(x,−t, 1− w)
)
dx

)
.

Notice that J = {Jij}2
i,j=1 is invertible, and its determinant D ≡ J11J22 − J12J21 < 0.

Moreover,

J−1 =
1

D

(
J22 −J12

−J21 J11

)
.

By the implicit function theorem there exists an interval U ∈ R containing t such that
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there exists unique h : U ∈ R2 such that h1(t) = θ∗, h2(t) = ∆, and η(θ∗(t),∆(t), t) = 0

∀t ∈ U . Moreover, partial derivatives of h can be computed as(
∂h1

∂t
∂h2

∂t

)
= −J−1

(
∂η1

∂t
∂η2

∂t

)
.

Partial derivatives of η with respect to t are computed in the same fashion as in Appendix

A.2:

∂η

∂t
=

(
(1− w)

∫ Φ(ε̄−t)
0

g3 (θ∗ + ∆, m̄x,mtot(x, t, w))φ (t+ Φ−1(x)) dx

−w
∫ 1

Φ(ε+t)
g3

(
θ∗ − w

1−w∆, m̄x,mtot(x,−t, 1− w)
)
φ (−t+ Φ−1(x)) dx

)
.

It is easy to see that ∂h2

∂t
> 0:

∂h2

∂t
= − 1

D︸︷︷︸
<0

− J21︸︷︷︸
>0

∂η1

∂t︸︷︷︸
<0

+ J11︸︷︷︸
>0

∂η2

∂t︸︷︷︸
>0

 > 0.

∆(t) = h2(t) is an increasing function. This result is natural: higher heterogeneity

corresponds to larger distance between the thresholds t = lim
σ→0

θ∗w−θ∗s
σ

.

The sign of ∂h1

∂t
is in principle unclear,

∂h1

∂t
= − 1

D︸︷︷︸
<0

 J22︸︷︷︸
<0

∂η1

∂t︸︷︷︸
<0

− J12︸︷︷︸
>0

∂η2

∂t︸︷︷︸
>0

 ,

The following lemma provides sufficient conditions for ∂h1

∂t
< 0.

Lemma 2. If cross-derivatives g23 ≤ 0, g13 ≥ 0, g11 ≥ 0, with one of the inequalities

holding strictly, then ∂h1

∂t
< 0.

Proof. Notice that

∂h1

∂t
∝ −J12

J22

∂η2

∂t
∂η1

∂t

+ 1,

where A ∝ B means that A and B are the same up to a positive multiplicative term.
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Write −J12

J22
as

−J12

J22

=

∫ 1

0
g1 (θ∗ + ∆, m̄x,mtot(x, t, w)) dx

w
1−w

∫ 1

0
g1

(
θ∗ − w

1−w∆, m̄x,mtot(x,−t, 1− w)
)
dx

g13≥0

≥∫ 1

0
g1 (θ∗ + ∆, m̄x,mtot(x,−t, 1− w)) dx

w
1−w

∫ 1

0
g1

(
θ∗ − w

1−w∆, m̄x,mtot(x,−t, 1− w)
)
dx

g11≥0

≥ 1− w
w

,

where the first inequality holds due to (21).

Next, consider
∂η2

∂t
∂η1

∂t

:

∂η2

∂t
∂η1

∂t

=
−w

∫ 1

Φ(ε+t)
g3

(
θ∗ − w

1−w∆, m̄x,mtot(x,−t, 1− w)
)
φ (−t+ Φ−1(x)) dx

(1− w)
∫ Φ(ε̄−t)

0
g3 (θ∗ + ∆, m̄x,mtot(x, t, w))φ (t+ Φ−1(x)) dx

=
−w

∫ 1

Φ(ε+t)
g3

(
θ∗ − w

1−w∆, m̄x,mtot(x,−t, 1− w)
)
φ (−t+ Φ−1(x)) dx

(1− w)
∫ 1

Φ(ε+t)
g3 (θ∗ + ∆, m̄Φ (−t+ Φ−1(x)) ,mtot(x,−t, 1− w))φ (−t+ Φ−1(x)) dx

g13≥0

≤
−w

∫ 1

Φ(ε+t)
g3 (θ∗ + ∆, m̄x,mtot(x,−t, 1− w))φ (−t+ Φ−1(x)) dx

(1− w)
∫ 1

Φ(ε+t)
g3 (θ∗ + ∆, m̄Φ (−t+ Φ−1(x)) ,mtot(x,−t, 1− w))φ (−t+ Φ−1(x)) dx

g23≤0

≤
−w

∫ 1

Φ(ε+t)
g3 (θ∗ + ∆, m̄x,mtot(x,−t, 1− w))φ (−t+ Φ−1(x)) dx

(1− w)
∫ 1

Φ(ε+t)
g3 (θ∗ + ∆, m̄x,mtot(x,−t, 1− w))φ (−t+ Φ−1(x)) dx

= − w

1− w
.

Therefore, −J12

J22

∂η2

∂t
∂η1

∂t

+ 1 ≤ −1−w
w

w
1−w + 1 ≤ 0 ⇒ ∂h1

∂t
≤ 0. It is easy to see that if one of

the inequalities {g23 ≤ 0, g13 ≥ 0, g11 ≥ 0} holds strictly, then ∂h1

∂t
< 0.

∂h1

∂t
= ∂θ∗(t)

∂t
< 0 and ∂h2

∂t
= ∂∆∗(t)

∂t
> 0 together imply that stronger heterogeneity reduces

fragility of all banks in the economy. As shown in Lemma 2, there are three sufficient

conditions that guarantee this result.

Intuitively, the direct impact of an increase in heterogeneity is that strong banks become

stronger and weak banks become weaker. If the payoff function is convex in productivity,

g11 > 0, then the increase in heterogeneity benefits strong banks disproportionately

more than it hurts weak banks. At the same time, higher heterogeneity implies that

investors of weak banks assign lower probability that strong banks will fire sale. Therefore,

expected payoffs of weak banks’ long-term technology increases due to g3 < 0. Conversely,

investors of strong banks assign higher probability that weak banks will have to liquidate

41



prematurely, which reduces expected payoffs of strong banks for the same reason. If g13 >

0 then benefit from reduction in the expected amount of fire sales from the perspective

of weak bank investors outweighs the cost faced by strong bank investors.

Finally, g23 < 0 means that within- and cross-bank complementarities reinforce each

other. As we discuss in the main text, an increase in heterogeneity simultaneously dimin-

ishes expected fire sales from the perspective of weak bank investors and rises expected fire

sales from the perspective of strong bank investors. Under g23 < 0 the former effect domi-

nates. Analogously to the baseline case, under the same beliefs about the total amount of

premature liquidations, weak bank investors expect more premature liquidations within

their banks than strong bank investors. Therefore, if g23 < 0 then the adjustment in

the amounts of premature liquidations due to stronger heterogeneity benefits weak banks

more than it hurts strong banks.

Notice that in the micro-founded case considered in the main text g11 = 0, g13 = 0, and

g23 < 0. Therefore, the crucial underlying economic mechanism behind Propositions 1

and 2 is mutually reinforcing within- and cross-bank complementarities.

A.4 Crises resolution

Consider a social planner who has access to a bailout fund of exogenous size T > 0.

At t = 0, the planner commits to a policy according to which bank of type i receives

a nonnegative cash injection τi ≥ 0. We assume that she can provide different support

to different types of banks but cannot discriminate banks within the same type. The

planner’s objective is to maximize expected output (or, equivalently, minimize fire-sale

losses as in (13)):

max
τs,τw

Eθ + [f (m̄λ(m̄))− m̄λ(m̄)]Fθ (θ∗s) +

[f ((1− w)m̄λ ((1− w)m̄)))− (1− w)m̄λ ((1− w)m̄)] (Fθ (θ∗w)− Fθ (θ∗s)) ,

s.t. τsw + τw(1− w) = T, τs ≥ 0, τw ≥ 0,

where the run thresholds θ∗s and θ∗w are given by∫ 1

0

θ∗s + ∆ + τs − λ (wm̄x+ (1− w)m̄Φ (t+ Φ−1(x))) m̄x

1− m̄x
dx = 1,
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∫ 1

0

θ∗w − w
1−w∆ + τw − λ ((1− w)m̄x+ wm̄Φ (−t+ Φ−1(x))) m̄x

1− m̄x
dx = 1.

Define τ̂i = τi − T ≥ −T . Then, using the planner’s budget constraint, τ̂w = −τ̂s w
1−w .

Clearly, wτ̂s + (1 − w)τ̂w = 0. Therefore, the planner provides a uniform support to

all banks of size T and, at the same time, changes the degree of bank heterogeneity by

simultaneously varying τ̂s and τ̂w. As a result of the intervention, the effective degree

of heterogeneity is ∆ + τ̂s. The maximum level of heterogeneity the planner is able to

achieve is, however, bounded above by ∆ + 1−w
w
T because she is not allowed to tax banks

(i.e., τw ≥ 0). Following the discussion in Section 3.3, the planner should aim to set it to

at least ∆min.

Proposition 7. Given the size of the bailout fund T and the degree of bank heterogeneity

∆, the planner’s optimal support policy is as follows.

(i) Small bailout fund and weak heterogeneity, ∆ + 1−w
w
T < ∆min: Only strong banks

receive support, τs = 1
w
T and τw = 0. Effective heterogeneity is ∆ + 1−w

w
T < ∆min.

(ii) Large bailout fund and/or strong heterogeneity, ∆min ≤ ∆ + 1−w
w
T : Strong banks

receive a support τs ≥ max {0,∆min −∆ + T}. Effective heterogeneity is at least

∆min.

Proposition 7 parallels with Corollary 2. As long as there is strategic uncertainty across

investors of different banks, it is beneficial to increase heterogeneity between them. The

planner is able to achieve it by a disproportionate support of strong banks. However,

bolstering strong banks too much (so that ∆ + τ̂s > ∆min) might be socially harmful

because it might result in excessively fragile weak banks.

B Robustness

B.1 Many types of banks

We start by proving Proposition 4.
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Proof. Denote by tij the limiting difference between banks’ thresholds:

tij = lim
σ→0

θ∗j − θ∗i
σ

.

In case of weak heterogeneity, tij < ε̄ − ε ∀i, j, so that banks share the same threshold

θ∗ in the limit of infinitely precise signals (σ → 0).

The existence of the weak heterogeneity region—i.e. the existence of ∆̄ > 0 and the set

U∆̄—follows from two facts. First, when ∆i = 0 ∀i ∈ {1, . . . , N}, all investors share the

same threshold θ∗i = θ∗(0) and tij = 0 ∀i, j ∈ {1, . . . , N}. Second, λ(·) and Φ(·) are

continuous functions.

From (14), we obtain the expression for the common threshold θ∗:

θ∗ = −∆i +
1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

λ

(
m̄
∑
j

wjΦ
(
tij + Φ−1(x)

))
× m̄x

1− m̄x
dx

)
.

Notice that tkj can be written as tkj = tij − tik, hence

∆i > ∆k ⇔ tik > 0 and ∆i = ∆k ⇔ tik = 0. (22)

Since
∑

i=1wi∆i = 0, the common threshold can be written as

θ∗ =

1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

{
m̄x

1− m̄x
×
∑
i

[
wiλ

(
m̄
∑
j

wjΦ
(
tij + Φ−1(x)

))]}
dx

)
.

Denote

I(t12, . . . , t1N) =

∫ 1

0

c(x)×
∑
i

wiλ

(
m̄
∑
j

wjΦ
(
tij + Φ−1(x)

))
dx,

where c(x) = m̄x
1−m̄x , c′(x) > 0. Notice that any tkj can be written using only {t12, . . . , t1N}

because tkj = t1j − t1k and tjj = 0. In what follows, we prove that I(t12, . . . , t1N) reaches

its maximum at zero by proving that zero is the only critical point and that the Hessian

is negative definite at zero.

Necessary conditions
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We first find critical points by equating all first-order partial derivatives to zero:

∂I

∂t1k
= m̄wk

∑
i

wiJik, where Jik =

∫ 1

0

[
c
(
Φ
(
−tik + Φ−1(x)

))
− c(x)

]
×

λ′

(
m̄
∑
j

wjΦ
(
tkj + Φ−1(x)

))
× φ

(
−tik + Φ−1(x)

)
dx.

It is easy to see that tjk = 0 ∀j, k ∈ {1, . . . , N} is a critical point. Notice that it is also

the only critical point. Assume not and banks are not fully homogeneous. Then consider

k = N , where by assumption ∆N ≥ ∆i ∀i. Because there is some heterogeneity and by

(22), tiN ≤ 0 ∀i and ∃j 6= N such that tjN < 0. Consequently, JiN ≥ 0 ∀i and JjN > 0.

Hence ∂I
∂t1N

> 0, which is a contradiction.

Sufficient conditions

The Hessian matrix of I(t12, . . . , t1N) at zero is

H = −B ×


w2(1− w2) −w2w3 . . . −w2wN

−w3w2 w3(1− w3) . . . −w3wN

. . . . . . . . . . . .

−wNw2 −wNw3 . . . wN(1− wN)

 ,

where B = m̄×
∫ 1

0
f ′ (x)× [φ (Φ−1(x))]

2×λ′ (m̄x) dx > 0. The Hessian matrix is negative

definite because

xTHx = −B


N∑
i=2

wix
2
i−1 −

(
N∑
i=2

wixi−1

)2
 < 0

for any x ∈ RN−1\{0}. Indeed, consider x̃ ∈ RN with x̃j = xj−1 ∀j ∈ {2, . . . , N} and

x̃1 = 0. Then

xTHx = −B


N∑
i=1

wix̃
2
i −

(
N∑
i=2

wix̃i

)2
 = −BVχ < 0,

where χ is a random variable that takes values {x̃i}Ni=1 with probabilities {wi}Ni=1. The

variance Vχ is strictly positive because x̃1 = 0 and ∃j ∈ {2, . . . , N} such that x̃j 6= 0.

Hence, we have established that zero is the only critical point of I(t12, . . . , t1N) and
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the function reaches maximum at it. By (22), t12 = · · · = t1N = 0 if and only if

∆1 = · · · = ∆N , so in the absence of any heterogeneity the threshold θ∗ is at its maximum.

Any heterogeneity that is sufficiently weak—so that banks share the same threshold in

the limit of infinitely precise signals—therefore reduces fragility of all banks.

We now prove Proposition 5.

Proof. Define Λ as

Λ ≡ 1∫ 1

0
1

1−m̄xdx

∫ 1

0

(λ(m̄)− λ(0))
m̄x

1− m̄x
dx

and assume that |∆i −∆k| > Λ ∀i 6= k ∈ {1, . . . , N}.

Rewrite (14) as

θ∗i − θ∗k = −∆i + ∆k +
1∫ 1

0
1

1−m̄xdx
×

∫ 1

0

[
λ

(
m̄

N∑
j=1

wjΦ
(
tij + Φ−1(x)

))
− λ

(
m̄

N∑
j=1

wjΦ
(
tkj + Φ−1(x)

))] m̄x

1− m̄x
dx.

Because |∆i −∆k| > Λ, the right hand side of this expression cannot be zero. Moreover,

if ∆i > ∆k then θ∗i < θ∗k. Therefore, (14) simplifies to

θ∗i + ∆i =
1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

λ

(
m̄wix+ m̄

∑
j>i

wj

)
m̄x

1− m̄x
dx

)
.

Clearly, in this region θ∗i only depends on ∆i. Moreover, θ∗i is a decreasing function of ∆i.

Any change in heterogeneity under the zero-mean constraint
∑N

i=1wi∆i = 0 necessarily

implies that there is a bank type i for which ∆i goes down and, hence, θ∗i goes up.

B.2 Noisy information about bank-specific fundamentals

We prove Proposition 6 in this section.
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Proof. Define t = lim
σ→0

θ∗B−θ
∗
G

σ
. The indifference conditions for investors receiving signals G

and B are respectively

θ∗G + pG∆− (1− pG)
w

1− w
∆ =

1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

λ(mG(x, t))m̄x

1− m̄x
dx

)
,

θ∗B + pB∆− (1− pB)
w

1− w
∆ =

1∫ 1

0
1

1−m̄xdx

(
1 +

∫ 1

0

λ(mB(x, t))m̄x

1− m̄x
dx

)
,

where mG(x, t) = (wα+ (1−w)(1− α))m̄x+ (w(1− α) + (1−w)α)m̄Φ(t+ Φ−1(x)) and

mB(x, t) = (wα + (1− w)(1− α))m̄Φ(−t+ Φ−1(x)) + (w(1− α) + (1− w)α)m̄x.

Define effective weight and heterogeneity as

weff (α) = wα + (1− w)(1− α),

∆eff (α) = pG∆− (1− pG)
w

1− w
∆ =

2α− 1

wα + (1− w)(1− α)
w∆.

It straightforward to see that the model described in Section 4.2 boils down to our baseline

setting with redefined type weights and the measure of heterogeneity. Therefore, the

results of Section 3.1 generalize to the case of noisy idiosyncratic signals.

B.3 Finite noise precision

In this section, we briefly describe how the run thresholds depend on heterogeneity when

banks’ investors signals are not infinitely precise. For concreteness, we assume that the

aggregate fundamental θ is drawn from a uniform distribution. Under this assumption,

investors of strong and weak banks follow threshold strategies and withdraw prematurely

if and only if their signals are below θ∗s and θ∗w.20 The run thresholds solve

θ∗s = −∆ +
1∫ 1

0
dx

1−m̄x

1 +

∫ 1

0

λ
(
wm̄x+ (1− w)m̄Φ

(
θ∗w−θ∗s
σ

+ Φ−1(x)
))

m̄x

1− m̄x
dx

 ,

20Under uniform distribution of θ, the proof that the threshold equilibrium is a unique equilibrium is
very similar to the one provided in Appendix D and is therefore omitted. For a general prior, it is
only possible to show that the threshold equilibrium is unique when signals are sufficiently (but not
necessarily infinitely) precise (see Morris and Shin, 2001).

47



θ∗w =
w

1− w
∆ +

1∫ 1

0
dx

1−m̄x

1 +

∫ 1

0

λ
(

(1− w)m̄x+ wm̄Φ
(
θ∗s−θ∗w
σ

+ Φ−1(x)
))

m̄x

1− m̄x
dx

 .

When σ is finite, θ∗s and θ∗w do not need to be infinitely close to each other for strong

and weak bank investors to have nontrivial strategic interaction. As a result, even for

∆ < ∆min, θ∗s 6= θ∗w. Although in this case analytical characterization of θ∗s(∆) and

θ∗w(∆) becomes cumbersome, we verify via numerical examples that the main results of

Proposition 1 hold even if signals have finite precision.

In particular, we assume that f(x) = log(1 + x), w = 0.5, m̄ = 0.5, and signals are

normally distributed. For these parameter values, ∆min = 0.075 and ∆max = 0.103.

Figure 4 shows θ∗s(∆) and θ∗w(∆) for the case of infinitely precise signals (σ → 0, panel

(a)) and finitely precise signals (σ = 0.01, panel (b)). Panel (b) shows that even when

signals have finite precision, both thresholds tend to decline when heterogeneity ∆ goes

up. In comparison with the case when σ → 0, the region of nontrivial strategic interaction

widens (when σ → 0, this region is 0 ≤ ∆ < ∆min). As a result, θ∗w(∆) keeps decreasing

even when ∆ crosses ∆min.

C Role of aggregate uncertainties

In the baseline model, we assume that the aggregate fundamental θ is not perfectly ob-

servable to investors. As a result, they are not certain about the total mass of early

withdrawers m and the liquidation costs. Arguably, aggregate uncertainties lie at the

heart of the 2007-2008 financial crisis. Financial institutions and investors limited their

market participation and reduced liquidity provision because of uncertainties about sys-

temic failure in the financial system.

From a theoretical standpoint, imperfect signals on θ help individual investors both within

and across banks to coordinate, which gives rise to a unique equilibrium and allows us to

conduct a sensible analysis of financial stability. If, on the contrary, investors perfectly

observe θ, the cross-bank complementarity might give rise to multiple equilibria. As we

argue below, a meaningful analysis of financial stability then become unachievable.

Consider an alternative information structure with no aggregate uncertainty. Specifically,

at t = 1, the aggregate fundamental θ is a common knowledge. In addition, we introduce
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(a) Infinitely precise signals

(b) Finitely precise signals

Figure 4: Run thresholds as function of heterogeneity ∆: infinitely precise signals (panel a) and finitely
precise signals (panel b)

noises to bank-specific information to show that idiosyncratic uncertainties alone are

insufficient to resolve equilibrium multiplicity. In particular, we assume that bank i’s

bank-specific fundamental ηi is characterized by its position xi, uniformly distributed on

[0, 1], as follows:

ηi =

{
∆ if xi > 1− w,
− w

1−w∆ otherwise.

This setting is consistent with our baseline model setup that ηi = ∆ with probability w

and ηi = − w
1−w∆ with probability 1− w. At t = 1, investor j in bank i receives a noisy

signal about its position xi,
21

sηij = xi + σεij,

21Under this information structure, there is no uncertainty about the distribution of bank-specific fun-
damentals. Investors know that bank-specific fundamental can only take two values, ∆ and − w

1−w∆,
but they do not know whether their bank is strong or weak.
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where εij has zero mean and follows an independent and identical distribution with a

strictly increasing on its support [ε, ε̄] cumulative distribution function Φ(·). Again, we

focus on the limit when information friction vanishes, i.e., σ → 0. Everything else in the

setup stays the same as in our baseline model presented in Section 2.

Under this alternative setup, we focus on threshold equilibria in which all investors follow

threshold strategies x∗(θ). For a given aggregate fundamental θ, a marginal investor who

receives signal sηij = x∗(θ) is indifferent between staying and withdrawing early:

∫ 1

0

θ + E(ηi|x∗)− λ(m(x∗))m̄x

1− m̄x
dx− 1 = 0, (23)

where

m(x∗) = m̄

∫ 1

0

Φ

(
x∗ − xi
σ

)
dxi.

As x∗ increases, two opposing forces are at play. On the one hand, the expected bank-

specific fundamental of the marginal investor E(ηi|x∗) increases, raising the expected

payoff from staying. Thus, if the total amount of runs in the system m was fixed then

Equation (23) would have a unique solution for x∗. With flexible m, on the other hand,

an increase in x∗ leads to more runs in the whole economy, which reduces the expected

return from staying for the marginal investor. As a result, the left-hand side of Equation

(23) is in principle nonmonotone, which might give rise to multiple solutions for the

threshold x∗.

Perfect information about the aggregate fundamental leaves investors with no uncertainty

about the cross-bank fire-sale externalities, captured by λ (m(x∗)). Common knowledge

about m(x∗) introduces a feedback loop resulting in multiple equilibria. If investors follow

a high (low) run threshold x∗, the mass of withdrawers m(x∗) is high (low), aggravating

(alleviating) the fire-sale externalities. Strong (weak) fire-sale externalities, in turn, give

more (less) incentive for investors to run on their banks, justifying a high (low) run

threshold x∗. Therefore, there can exist multiple run thresholds x∗(θ) for a given θ.

In particular, when the aggregate fundamental is sufficiently good, i.e., θ > θL, there

exists a “low-run threshold” x∗L(θ) < 1 − w. We say the threshold is low because runs

only occur in weak banks with xi < x∗L(θ). When θ < θH , there exists a “high-run

threshold” x∗H(θ) > 1 − w. In this case, runs occur in all weak banks as well as strong
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banks with xi < x∗H(θ). If θL < θH , both equilibria coexist when θ ∈ (θL, θH).22

Proposition 8. θL(∆) is an increasing function and θH(∆) is a decreasing function.

Proof. First, we show that a marginal investor believes that the mass of withdrawers in

its bank is uniformly distributed. Given the equilibrium run threshold x∗(θ), the mass of

withdrawers in bank i is

mi(x
∗) = m̄Φ

(
x∗ − xi
σ

)
.

Therefore, for a marginal investor in bank i, the cumulative distribution of the mass of

withdrawers in her bank can be expressed as follows,

P(mi(x
∗) ≤ m|x∗) = P

(
xi ≥ x∗ − σΦ−1

(m
m̄

) ∣∣∣∣x∗) = Φ

(
x∗ − x∗ + σΦ−1

(
m
m̄

)
σ

)
=
m

m̄
.

Hence, for a marginal investor, the mass of withdrawers in its bank is uniformly dis-

tributed on [0, m̄].

Next, we write out the expected payoff from staying for a marginal investor given the

aggregate fundamental θ as follows,

V (x∗, θ) =

∫ 1

0

θ + E(ηi|x∗)− λ(m(x∗))m̄x

1− m̄x
dx,

where

E(ηi|x∗) = ∆
1

1− w
Φ

(
x∗ − (1− w)

σ

)
− w

1− w
∆,

and

m(x∗) = m̄

∫ 1

0

Φ

(
x∗ − x
σ

)
dx.

We consider a limiting case of inifinitely precise signals, σ → 0. Below, we characterize

all possible x∗(θ).

Case 1: lim
σ→0

x∗−(1−w)
σ

= d ∈ (−∞,∞).

In this case, only investors of weak banks run. The indifference condition for a threshold

22There exists a third possible equilibrium where weak bank investors run and strong bank investors do
not, so that x∗ = 1− w. See the proof of Proposition 8 below.
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investor is ∫ 1

0

θ + ∆ 1
1−wΦ(d)− w

1−w∆− λ(m̄(1− w))m̄x

1− m̄x
dx = 1.

An equilibrium outcome featuring investors of only weak banks running can emerge when

θ ∈ (θ1; θ2), where θ1 = −∆+v1, θ2 = w
1−w∆+v1, and v1 = 1∫ 1

0
dx

1−m̄x

[
1 +

∫ 1

0
λ(m̄(1−w))m̄x

1−m̄x dx
]
.

Case 2: lim
σ→0

x∗−(1−w)
σ

=∞.

The indifference condition for a threshold investor is∫ 1

0

θ + ∆− λ(m̄x∗)m̄x

1− m̄x
dx = 1.

Define θH = −∆ + 1∫ 1
0

dx
1−m̄x

[
1 +

∫ 1

0
λ(m̄)m̄x
1−m̄x dx

]
. When θ < θH , a “high-run threshold”

exists. For these values of θ an equilibrium outcome with all weak bank investors and

at least some strong bank investors running is possible. Clearly, θH(∆) is a decreasing

function.

Case 3: lim
σ→0

x∗−(1−w)
σ

= −∞.

The indifference condition for a threshold investor is∫ 1

0

θ −∆ w
1−w − λ(m̄x∗)m̄x

1− m̄x
dx = 1.

Define θL = ∆ w
1−w + 1∫ 1

0
dx

1−m̄x

[
1 +

∫ 1

0
λ(0)m̄x
1−m̄x dx

]
. When θ > θL, a “low-run threshold”

exists. For these values of θ an equilibrium outcome with at least some weak bank

investors not running is possible. Clearly, θL(∆) is an increasing function.

With stronger heterogeneity, there are fewer states of the world where investors can

in principle follow strategies with a “low-run threshold” (θL goes up). This happens

because weak banks become weaker, and higher values of the aggregate fundamental θ

are required to prevent some weak bank investors from running. Similarly, a “high-run

threshold” moves upwards because strong banks are becoming stronger. Increase in ∆,

therefore, yields ambiguous implications about financial stability.
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D Global games proofs

In this section, we prove that our baseline model features a unique equilibrium. In the

unique equilibrium, investors of all banks follow threshold strategies, where the value of

thresholds are given by (5) and (6). Our proofs are based on Morris and Shin (2001) but

are modified to address bank heterogeneity and cross-bank interaction.

Consider the setting of Section 2. For investors of bank i, the net benefit of not with-

drawing funds early is g(θ + ηi,mi,m). Here mi is the total mass of runners on bank

i, and m =
∫
wimidi is the total mass of runners in the whole economy. Idiosyncratic

productivity ηi takes value of ∆ with probability ws = w and −∆ w
1−w with probability

ww = 1 − w. To reduce notational clutter, we assume that all banks are able to run at

t = 1, m̄ = 1.

Investor j of bank i receives a signal about the aggregate fundamental θ,

sij = θ + σεij,

where εij are identically and independently across investors distributed noise with cumu-

lative distribution function Φ(·) which is differentiable, has a finite first moment and is

strictly increasing on its support [ε, ε̄]. Fundamental θ follows a prior distribution with

cumulative distribution function Fθ(·) with support [θ, θ̄].

We make the following set of standard assumptions, all of which are satisfied in our

baseline model.

Assumption 1. g(θ,mi,m) is a continuous function that increases in θ, decreases in mi

and m.23

Assumption 2. Strict Laplacian State Monotonicity: There exists a unique pair (θ∗s ; θ
∗
w)

solving

∫ 1

0

g

θ∗i + ∆i,m,
∑

j∈{s,w}

wjΦ
(
tij + Φ−1(m)

) dm = 0,

where tij ≡ lim
σ→0

θ∗j−θ∗i
σ

.

23In principle, the equilibrium uniqueness result does not require strict monotonicity and continuity
assumptions on g. However, we make these assumptions because throughout the paper we work with
smooth payoff functions.

53



Assumption 3. There exists θLDR > θ, θUDR < θ̄, and δ > 0 such that g(θLDR+η, 0, 0) ≤
−δ and g(θUDR + η, 1, 1) ≥ δ for all viable realizations of idiosyncratic shock η.

In this appendix, we work with the uniform prior on θ. Moreover, we assume that the net

benefit function g depends on investors’ signals but not directly on θ. These assumptions

are innocuous when signals are infinitely precise σ → 0 (Proposition 2.2 of Morris and

Shin, 2001).

Proposition 9. Let θ∗i , i ∈ {s, w} be defined as in Assumption 2. The unique strategies

surviving iterated deletion of dominated strategies is such that investors of bank of type i

withdraw early if their signals are below θ∗i and do not withdraw early otherwise.

Proof. Define πs(s, ks, kw) as the expected payoff from not running on her bank for a

strong bank’s investor that observes signal s and knows that investors of strong/weak

banks run if they observe signals below ks/kw. Define πw(s, ks, kw) in an analogous way

but for a weak bank’s investor.

πi(s, ks, kw) = (24)∫ s−σε

s−σε̄
g

s+ ∆i,Φ

(
ki − θ
σ

)
,
∑

j∈{w,s}

wjΦ

(
kj − θ
σ

) 1

σ
φ

(
s− θ
σ

)
dθ,

where i ∈ {w, s}.

πi(s, ks, kw) is continuous, increasing in s, decreasing in ks and kw. Below, we describe

the process of iterated deletion of dominated strategies. Fix k0
s = k0

w ∈ (θ, θLDR) and

k̄0
s = k̄0

w ∈ (θUDR, θ̄). Define

kn+1
i = max{s : πi(s, kns , k

n
w) = 0},

k̄n+1
i = min{s : πi(s, k̄ns , k̄

n
w) = 0}.

Then for investor of bank i a strategy survives n rounds of iterated deletion of dominated

strategies if and only if she withdraws early when s < kni and does not withdraw early

when s > k̄ni .

Notice that kni and k̄ni are increasing and decreasing sequences, respectively, due to mono-

tonicity properties of πi(s, ks, kw). Hence, kni → ki and k̄ni → k̄i. By continuity of

πi(s, ks, kw), it must be that πi(k̄i, k̄s, k̄w) = πi(ki, ks, kw) = 0.
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Change variables in (24), m = Φ
(
ki−θ
σ

)
, to obtain

πs(θ∗s , θ
∗
s , θ
∗
w) =

∫ 1

0

g

(
θ∗s + ∆,m,wm+ (1− w)Φ

(
θ∗w − θ∗s
σ

+ Φ−1(m)

))
dm,

πw(θ∗w, θ
∗
s , θ
∗
w) =

∫ 1

0

g

(
θ∗w −∆

w

1− w
,m, (1− w)m+ wΦ

(
θ∗s − θ∗w
σ

+ Φ−1(m)

))
dm.

These are Equations (5) and (6) from the main text (when σ → 0). They have a unique

solution by the Laplacian monotonicity property.

It is worth mentioning here that this proof can be straightforwardly extended to the case

with N > 2 types banks. Finally, we omit the proof of the uniqueness result for non-

uniform prior on θ and fundamental-dependent payoff functions. This proof is standard

and follows Morris and Shin (2001) directly.
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