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1. Introduction

In the past several decades interest rates have been on a steady decline, reaching all-time

low levels around the world. As an illustration, consider the 100-year Austrian government

bond that was issued on September 20th 2017. This bond was issued at par at a 2.1%

coupon rate with a duration of 42 years. Since that issuance, the bond has exhibited very

large price volatility and its price has more than doubled (as of October 22nd 2020). Its

yield-to-maturity has fallen below 1% increasing its duration to over 50 years. Given that

interest rates of even these extended durations have dropped to levels this low, the valuation

and realized returns of other long duration assets are likely affected as well. This raises the

question what part of the increase in the prices of stocks, including the recent COVID-19

recovery, is driven by this downward path of long-term interest rates. After all, stocks have a

comparable duration and cashflow-to-price ratio as the 100-year Austrian government bond

described above, and so one may have expected similar performance.1

Answering this question is also important given potential concerns that central banks

have been inflating asset values, including stocks, through accommodating monetary policy.

As the corresponding decline in discount rates cannot continue much longer due to a lower

bound on nominal interest rates, the associated valuation windfalls are unlikely to repeat

themselves.2 This makes historical (average) realized returns less informative about future

expected returns for all long duration assets. One may thus also wonder how useful these

backward-looking data moments are to fit stationary macro and asset pricing models.

To quantitatively evaluate the importance of interest rate dynamics for stock markets,

I compute several counterfactual fixed income portfolios to address the following question.

What would the returns of an investor have been, if instead of investing in the local stock

market index (e.g. the S&P500 index), that investor had invested in a portfolio of government

bond strips whose duration matches the dividend strips that make up the index? This

investor would have avoided dividend risk altogether (in nominal terms) and would thus not

have earned the risk premium (if any) associated with such risk.

Starting with U.S. data between 1996 and 2020, when inflation expectations were low

and stable, I show that this fixed income investor would have achieved at least similar and

likely substantially better return performance than an investor who invested in the stock

1Over the same sample period, the Austrian stock market has fallen by about 30%.
2While recently observed nominal interest rates suggest that the lower bound is not actually at zero, the

existence of physical currency should enforce at least some bound on how negative nominal interest rates
can go.
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market index. Put differently, without the decline in interest rates, ceteris paribus (keeping

growth rates and dividend risk premia unaffected), the stock market would have lost value.3

I then show that these results also hold for Europe and Japan. We can conclude that over

this sample period, global investors have received little to no additional return compensation

for taking long-duration dividend risk compared to nominally risk free government bonds.

In addition to these surprising results for the first moment of returns, the results for

second moments also seem puzzling. The return volatility of the duration-matched fixed in-

come portfolios, which have fixed cash flows in nominal terms, is comparable to (if not higher

than) that of the stock market indices, which have time-varying cash flows. This challenges

the often-held belief that dividend risk premium variation is required to obtain the observed

“excess” volatility in stock returns, a notion introduced by Shiller (1981). If anything, stock

returns seem too little volatile, not excessively volatile, once compared to duration-matched

bond counterfactuals. Dividend growth variation (expected and unexpected) as well as risk

premium variation (if any) affect stocks but not bonds, and seem to have an offsetting effect

on the stock price volatility induced by long-duration risk free rate variation.

When expanding the sample to 1970-2020, which includes the turbulent inflationary

period of the late seventies and early eighties, I find similar results in that (1) the realized

average compensation for dividend risk is no more than about 1% per year and arguably sub-

stantially less (negative), and (2) the volatility of the counterfactual fixed income portfolios

is higher than that of the corresponding stock markets. I then discuss several explanations

for this seeming stock market underperformance and low volatility including (1) a secular

decline in long-term expected nominal and real growth rates (e.g. Gordon (2016)), (2) an

increase in the dividend risk premium going forward (Farhi and Gourio (2018)), (3) the

diversification of dividend risk across maturities (Barro, Nakamura, Steinsson, and Ursua

(2011)), and (4) the inflation-hedging properties of long-term dividends. Given that (a) the

results hold for the 1996-2020 period when inflation expectations and realizations were low

and stable, and (b) the literature has argued that the equity risk premium has been declining

(not increasing) in the past few decades (e.g. Lettau, Ludvigson, and Wachter (2004) and

Jagannathan, McGrattan, and Scherbina (2000)), explanations (1) and (3) seem particularly

interesting to explore further.

The results presented in this paper have several implications for theoretical macroeco-

nomic and asset pricing models. The literature has spent a considerable amount of time and

effort studying four major puzzles. First, the average return on stocks has been substantially

3Of course, in equilibrium, growth rates and interest rates are tied, as further discussed in Section 9.
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higher than that of a short-duration fixed income instrument, the so-called equity premium

puzzle (Hansen and Singleton (1983), Mehra and Prescott (1985)). Second, the variation in

stock prices is larger than the variation in dividends, the so-called excess volatility puzzle

(Shiller (1981)). Third (and related to the second puzzle), risk premia are believed to vary

a lot over time leading to the predictability of excess returns (Campbell and Shiller (1988)).

Fourth, the Capital Asset Pricing Model (Sharpe (1964)) seems to do a poor job explaining

the average return differentials between stocks in the cross-section.

The recent literature on dividend strips argues that all these four puzzles occur when

pricing short duration dividend claims with maturities up to 7 years.4 Using data starting

in 1996, this literature finds that (1) the average returns on short-term dividend strips

are higher than their corresponding government bond strips, and higher than what existing

models predicted (an equity premium type puzzle), (2) dividend strip prices are more volatile

than their corresponding dividend realizations at maturity (excess volatility) and (3) the

excess returns on dividend strips are predictable. Finally, given that the CAPM beta of

short duration strips is low, that literature finds that (4) the average returns on short-term

strips are higher than what the CAPM predicts. These results on short-term dividend claims

were important particularly in the context of the theoretical advances that rely on the long

duration nature of the aggregate dividend claim to explain the four puzzles above.5 That

is, if in the data dividend strips exhibit the same puzzling behavior as the stock index, but

the models can only explain that behavior for the index (the long-duration claim), the key

mechanism that resolves the puzzles may not be right.

This paper adds to the literature on the term structure of equity by showing that long

duration dividend risk has received little to no compensation over the past half century

and that duration-matched fixed income portfolios already exhibit similar (if not higher)

volatility as the aggregate stock market. Taken all these results together, it could be fruitful

to more closely examine the forces that drive the excess volatility/return predictability and

risk premium puzzles for short duration equity claims, which are not affected by the secular

trend and fluctuations in long-term interest rates. Duration-related explorations of the cross-

section of stock returns, as further discussed in Section 9.2, are another important avenue

to make progress on these questions.6

4See Brennan (1998), Binsbergen, Brandt, and Koijen (2012), Binsbergen, Hueskes, Koijen, and Vrugt
(2014) and Binsbergen and Koijen (2017).

5See for instance Campbell and Cochrane (1999), Bansal and Yaron (2004) and Bansal, Kiku, and Yaron
(2006).

6See Goncalves (2020) and Gormsen and Lazarus (2020) for recent contributions in this area.
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The results presented in this paper also have implications for the literature on defined

benefit pension plans. These plans have been in an underfunding crisis for the past decades

around the world.7 Defined benefit plans make long duration, often risk free, promises

(liabilities) to pension holders. They have been trying to invest their way out of their

underfunded status through high exposure to equities. This exposure was motivated by the

idea that the return differential implied by the equity risk premium would help them make

up for their asset shortfalls. The results in this paper show that this strategy has not worked

for the past 50 years. After all, under the assumption that the duration of the risk free

promises (bonds) is the same as the duration of the equity market, the return differential

these pension plans were betting on is exactly the long duration dividend risk premium I

compute in this paper. This compensation for dividend risk has failed to materialize in the

past five decades.

The paper proceeds as follows. In Section 2 I lay out the theoretical foundation for

the empirical measurement. I describe the data sources in Section 3 and explore a set of

constant maturity zero coupon bonds of varying maturities as counterfactuals for the stock

market in Section 4 focusing on the sample period 1996-2020 when inflation realizations and

expectations were low and stable. I then explore bond portfolios whose portfolio weights

are determined by the weights of dividend strips in the index in Section 5. I study the

sample from 1970 through 2020 in Section 6 and explore international data from Europe

and Japan in Section 7. I discuss excess volatility in Section 8 and present several potential

explanations in Section 9. I discuss the importance for the cross-section of stock returns and

the implications for capital structure research in Section 9.2. I verify the accuracy of the

bond data against tradable bond portfolio data from Vanguard in Section 10. In that section

I also show that the results are not particularly dependent on government bond portfolios

and are also obtained using corporate debt portfolios. I conclude in Section 11 with a stock

market outlook based on the Japanese experience of the last 25 years.

2. Duration Matching

Let Pt,n denote the present value at time t of the expected dividend paid out at time

t+ n. That is:

Pt,n =
Et [Dt+n]

exp (n (yt,n + θt,n))
, (1)

7See for example Novy-Marx and Rauh (2011) and Binsbergen and Brandt (2015).
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where yt,n denotes the continuously compounded risk free spot interest rate at time t for

maturity n, and θt,n denotes the normalized (by n) dividend risk term premium for a dividend

of that maturity (Binsbergen, Koijen, Hueskes and Vrugt (2015)). The stock index St is a

portfolio that includes one unit of each dividend strip:

St =
∞∑
n=1

Pt,n. (2)

Define wt,n as the weight that each strip has in this index portfolio:

wt,n =
Pt,n
St

. (3)

The one-period return on a dividend strip with maturity n is given by:

Rd
t+1,n =

Pt+1,n−1

Pt,n
− 1, for n > 1, (4)

Rd
t+1,n =

Dt+1

Pt,n
− 1, for n = 1. (5)

The one-period return on the n-year bond is given by:

Rb
t+1,n =

exp (−(n− 1)yt+1,n−1)

exp (−nyt,n)
− 1, (6)

for which the conditional expectation is given by:

µbt,n = Et
[
Rb
t+1,n

]
. (7)

The additional expected holding period return ψt,n that an investor who takes dividend risk

earns in excess of the return on the corresponding risk free bond is defined as:

ψt,n ≡ Et
[
Rd
t+1,n

]
− µbt,n. (8)

The premium ψt,n is different from θt,n, as the latter fits the usual yield-to-maturity definition,

whereas ψt,n is the one-period expected return over and above the one-period expected return

on the maturity-matched risk free bond.

The one-period return on the index is given by:

Rs
t+1 =

St+1 +Dt+1

St
− 1. (9)
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Because the return on the index is a weighted average of the returns on the strips, the

expected return on holding the index for one period can be written as the weighted average

of expected returns on the strips:

µst = Et
[
Rs
t+1

]
=
∞∑
n=1

wt,nEt
[
Rd
t+1,n

]
. (10)

Given these definitions, we can now define the main object of interest in this paper. It is

the unconditional average returns that the index-implied portfolio of risky dividends of all

maturities earn over and above their government bond counterparts:

Ψ0 = E

[
Et

∞∑
n=1

wt,nψt,n

]
= E

[
µst − Et

∞∑
n=1

wt,nµ
b
t,n

]
. (11)

I estimate this quantity through:

Ψ̂0 ≈
1

T

T∑
t=1

[
St+1 +Dt+1

St
−

N∑
n=1

wt,nR
b
t+1,n

]
. (12)

There are only two inputs to this calculation that are not obvious from the data. First

there is the weighting scheme wt,n which is not observable beyond the available dividend

strip data. However, it is not hard to make informed choices on this weighting schemes for

longer maturities given the available short-maturity data in combination with standard stock

valuation formulas. To allay any concerns about this input I will conduct a large number of

sensitivity analyses regarding these weights.

Second, there is the cutoff (CO) point N . Choosing N involves an important tradeoff.

On the one hand, high quality term structure data is not available for the U.S. beyond 30

years of maturity and such yields are mainly based on extrapolation. On the other hand, a

substantial fraction of a stock index’s value is represented by strips beyond 30 years. One

way to resolve this issue is to simply assign all the remaining weights beyond 30 years to this

30-year government bond strip. Alternatively, one could allow for positive weights beyond

30 years at the risk of using Nelson Siegel extrapolated term structure data. While I will

conduct both analyses in this paper, to be conservative, I will use the former approach as

the baseline analysis. As longer and longer maturity bonds are included in the calculation,

the estimated long duration dividend risk premium Ψ̂0 becomes increasingly negative.

The usual stationarity assumption in asset pricing would imply that Ψ̂0 is informative

about the expected value outside this estimation window. Later, I will discuss further the
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conditions under which this is true and under which this is likely not true. If the secular trend

in risk free interest rates affects both stock returns and fixed-income instruments equally, the

implied non-stationarities could at least partially cancel in the computation of Ψ̂0. However,

this is potentially not true if there are also secular trends in long-term dividend growth rates

and/or risk premia, as discussed in Section 9. One way to alleviate concerns related to the

external validity of results for the U.S. and Europe is to study Japanese data spanning the

period 1996-2020 as interest rates were already at very low levels in Japan in 1996. This

analysis is presented in Section 7.

3. Data

Data on the S&P500 index are obtained from Global Financial Data. I use both the total

return index and the price index. Monthly dividends are computed in the standard way by

taking the difference between the monthly total return on the index and the monthly price

appreciation of the index, multiplied by the lagged index level. To construct zero coupon

bond strips, I use the updated term structure data provided by the Federal Reserve following

the approach by Gurkaynak, Sack, and Wright (2006). I also use monthly return data for

tradable long duration bond index funds from Vanguard as an additional source for long-

term bond return data. I use these returns to verify (where possible) the high accuracy of

the implied bond returns that follow from the yield data provided by Gurkaynak, Sack, and

Wright (2006), as illustrated in Section 10.1. Data on zero coupon bond yields for Germany

(Nelson-Siegel-Svenson parameters) and Japan are from the Bundesbank and the Bank of

Japan, respectively. Dividend strip data uses the same data sources and procedures as in

Binsbergen and Koijen (2017) and exchange traded data from Bloomberg since 2015.

4. Constant Duration Counterfactuals

To get a first sense of stock versus bond performance, I compare in this section the

performance of the stock market to a set of constant maturity bond portfolios. To facilitate

the comparison it is helpful to compute a reasonable range for the duration of the stock

market, which I present in section 4.1. Section 4.2 then presents the comparison of returns.

In the next section (5) I then compute strip-matched counterfactuals.
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4.1. Duration of the Stock Market

The duration (Dur) of an asset is commonly computed as the ceteris paribus percentage

change of the value of the asset for a 1 percentage point decrease in its discount rate. This

is approximately equal to the weighted average time it takes for the asset to return the

discounted cash flows to its owner:

Dur =
∞∑
n=1

wt,nn. (13)

Equation 13 shows that data on the weighting scheme wt,n is sufficient to compute the

duration of the stock market in each period.

Alternatively, we can use the static Gordon growth equation to compute the duration.

This equation expresses the value of the stock market index St as a function of the dividend

Dt, the expected return on the index µs and the expected growth rate g:

St =
Dt+1

µs − g
. (14)

If we take the natural logarithm of both sides of Equation 14 and compute the derivative

with respect to µs, we obtain:

Dur ≈ −∂lnSt
∂µs

=
∂ln(µs − g)

∂µs
=

1

µs − g
=

St
Dt+1

. (15)

The equation shows that the duration equals the inverse of the dividend yield. In the U.S. in

the past few decades this dividend yield has varied between 2% and 3% corresponding to a

duration between 33.3 and 50 years. For a dividend yield of 6%, which briefly occurred several

decades ago, the duration is 16.7 years. For the samples that I study, durations between 20

and 50 years seem reasonable. I will provide further empirical evidence to support this claim

in Section 5.2.

One could wonder why the duration of the stock claim is so high, given that the duration

of the physical capital stock of firms appears to be much lower. After all, particularly in

recent years, the depreciation rate on capital has been substantial (e.g. IT equipment),

lowering the overall duration of the capital stock.8 The answer is twofold. First, owning

equity on a firm entitles the owner not just to the current capital stock, but to all its future

incarnations as well (growth options). Second, the duration of the whole firm is a weighted

8I thank Larry Summers for this suggestion.
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average of the duration of corporate debt and equity. As such, for a given maturity of the

assets of the firm (the left-hand side of the balance sheet) issuing short-term debt, increases

the duration of the equity of the firm.

Another consideration is whether the present value formula should be based on cash

dividends alone, or on total payout that includes issuances and repurchases. The present-

value relationship for the S&P500 index should hold both on a per-share basis (i.e. a buy-

and-hold investor who invests in the index and collects its dividends), as well as on a total

equity value (not per share) basis that takes into account both issuances and repurchases.

Repeating the calculations in this paper for the total equity value of the U.S. stock market

that includes the net of repurchases and issuances is an interesting avenue for future research.

That said, equity ownership stakes entitle the holder to a long stream of cash flows. Even

if the owner wishes to sell this stake, the new owner will value the remaining stream of

cash flows taking into account its duration. As such, the appropriate counterfactual bond

portfolio will necessarily include longer duration claims that have performed substantially

better than their short-duration counterparts. It seems unlikely that the counterfactual

bond portfolio should have a duration shorter than 16 years or alternatively have weights

corresponding to a payout yield of more than 6%, though future research in this direction

may prove otherwise.
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Maturity in years FF 1 1.5 2 3 4 5 10 15 20 25 30 S&P500

Mean 0.0018 0.0023 0.0026 0.0029 0.0034 0.0039 0.0044 0.0062 0.0075 0.0086 0.0096 0.0109 0.0079
St. Dev. 0.0017 0.0026 0.0036 0.0048 0.0076 0.0104 0.0131 0.0260 0.0373 0.0469 0.0561 0.0676 0.0439
Mean log 0.0018 0.0023 0.0026 0.0028 0.0034 0.0038 0.0043 0.0059 0.0069 0.0075 0.0081 0.0086 0.0068

Table 1
Monthly Returns on Constant Maturity Zero Coupon Bonds. The second row in the table lists the average monthly bond returns
(µ̂b

n) on constant maturity zero coupon bond strategies for maturities ranging between 1 year and 30 years using monthly data between Jan-
uary 1996 and April 2020. The third row reports the monthly standard deviation. The second column lists of the table lists the corre-
sponding statistics for the risk free return as used in the Fama French model and the last column lists those statistics for the S&P500 index.
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FIGURE I
Annualized Average Monthly Returns: Bonds vs Stocks The graph plots the annualized
(×12) average monthly bond returns (µ̂b

n) on constant maturity zero coupon bond strategies for ma-
turities ranging between 1 year and 30 years using monthly data between January 1996 and April
2020. The maturity (duration) of the bonds is on the x-axis and the average return is on the
y-axis. The dashed line represents the annualized average monthly return on the S&P500 index.

4.2. Empirical Results on Constant Duration Counterfactuals

To get a first sense of how well the index has performed relative to long duration bonds,

I first present the average returns of constant maturity bond strategies of maturities varying

between 1 and 30 years. The results are reported in Table 1 and plotted in Figures I and

II. The second row in the table lists the average monthly bond returns (µ̂bn) on constant

maturity zero coupon bond strategies for maturities ranging between 1 year and 30 years

using monthly data between January 1996 and April 2020. The third row reports the monthly

standard deviation. The second column of the table lists the corresponding statistics for the

risk free return as used in the Fama French model (from Ken French’s website) and the

last column lists the corresponding statistics for the S&P500 index. The annualized mean

returns are plotted in Figure I and the annualized volatilities are plotted in Figure II.

The table and the figures show that both the average return and the volatility of the

stock index equals that of a constant maturity zero coupon bond strategy with a duration

of about 17 years. Constant maturity bond strategies with higher durations than 17 years

have higher returns and volatilities than the stock market. Therefore, compared to these
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FIGURE II
Annualized Volatility Monthly Returns: Bonds vs Stocks The graph plots the annualized
(×
√

12) volatility of monthly bond returns on constant maturity zero coupon bond strategies for ma-
turities ranging between 1 year and 30 years using monthly data between January 1996 and April
2020. The maturity (duration) of the bonds is on the x-axis and the volatility is on the y-axis. The
dashed line represents the annualized monthly return volatility on the S&P500 index over the sample.

constant maturity zero coupon bond strategies, over this sample period, stocks only have

puzzlingly high returns and volatilities (the equity premium and excess volatility puzzles) if

one believes that the duration of the stock market is substantially less than 16 years. As

argued in the previous subsection, a stock market duration of less than 16 years corresponds

to a dividend yield larger than 6%, which was not observed over this sample period.

In Table 2 I compute the difference between the average monthly returns on the S&P500

index (µ̂s) and those of the corresponding long-term bond portfolios (µ̂bn). The table shows

that the average annual realized compensation for dividend risk between 1996 and 2020 is

low. If we take the 10-year government portfolio as the counterfactual, the estimated return

differential is +2% per year. If we use the 15-year constant maturity bond as the coun-

terfactual the average return differential shrinks to +47b.p. per year. For longer maturity

counterfactuals, the difference turns negative and drops to -3.55% per year for the 30-year

duration counterfactual bond portfolio. None of these return differentials are statistically

significant. For completeness, the last row shows the annualized difference in log returns,

which exhibits a similar pattern. However, it should be noted that average simple returns

are the preferred measure to estimate expected returns, not mean log returns.
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Duration in years 10 15 20 25 30

µ̂s − µ̂b 0.0017 0.0004 -0.0007 -0.0017 -0.0030
t-stat on difference 0.51 0.11 -0.16 -0.37 -0.56
12(µ̂s − µ̂b) 0.0200 0.0047 -0.0079 -0.0204 -0.0355
Annualized difference in mean log returns 0.0110 -0.0005 -0.0085 -0.0153 -0.0216

Table 2
Monthly Return Differences between the S&P500 and Constant Maturity Zero Coupon
Bonds. The the second row in the table lists the difference between the monthly returns on
the S&P500 index and the monthly returns on constant maturity zero coupon bonds (µ̂b

n) for ma-
turities ranging between 10 year and 30 years using monthly data between January 1996 and
April 2020. The third row reports the t-statistic on the difference. For ease of interpreta-
tion, the third row reports the annualized difference (by multiplying by 12). The last row re-
ports the annualized difference in the means of the monthly log returns (instead of simply returns).

5. Strip-Matched Counterfactuals

In this section I discuss several weighting schemes as defined in Equation 3. In particular,

I compute several Gordon-growth-model-implied weighting schemes and compare them to

the available dividend strip data.

5.1. Weighting Schemes

The previous section contained several comparisons of stock returns with constant ma-

turity bond returns of varying maturities. In this section, I construct several simple strip

replicating fixed income portfolios. I focus on eight main cases. As a first simple weight-

generating model, consider the static Gordon growth model:

St =
Dt(1 + g)

µs − g
(16)

where g is the dividends’ growth rate. The n-th strip value is given by:

Pt,n = Dt

(
1 + g

1 + µs

)n
, (17)
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which implies a weight equal to:

wt,n = (µs − g)
(1 + g)n−1

(1 + µs)n
. (18)

As the length of the holding period return converges to 0 (i.e., going from annual, to monthly

to daily returns), this weighting scheme is only a function of µs − g (the difference), and

not of µs and g separately. As I employ a monthly holding period return, this property

effectively holds already. A second important choice is the point of the cutoff. I consider two

cutoff levels, one at CO = 360 months (30 years) and one at CO = 480 months (40 years).

I set the portfolio weight of this cutoff point to the sum of the remaining weights:

wCOt =
∞∑

n=CO

wt,n (19)

The three graphs below plot the weighting schemes aggregated up to annual weights

for µs − g = 0.06 (in Figure III), µs − g = 0.03 (in Figure IV) and µs − g = 0.02 (in

Figure V) for these two cutoff levels. The available data on dividend strips (when available)

produces an average weighting scheme between (µs−g = 0.02) and (µs−g = 0.03) as further

explored later. The first weighting scheme (µs − g = 0.06) applies too much weight to the

short duration assets relative to the available dividend data. The final points on each curve

represent the cutoff weights described in Equation 19.

The graphs show important differences between the curves. The duration of the low

dividend yield scenario (µs− g = 0.02) is substantially higher than that of the high dividend

yield scenario (µs−g = 0.06), though the duration of both is capped through the imposition

of the cutoff at 30 or 40 years. Even higher cutoff points (and thus durations) could certainly

be justified from a stock pricing perspective, though I am limited by the available bond term

structure data. It is important to keep in mind though that because of these cutoff points,

the estimates I present will be conservative in that the true dividend risk premium is arguably

even lower than what my estimates suggest.

The combination of two dividend yield levels and two cutoffs provides 6 counterfactual

scenarios, labeled I-VI. In addition, I explore a time-varying weighting scheme that uses

the real-time dividend yield on the index as the value for µs − g. That is, in each month,

I take the ratio of the sum of the past twelve monthly dividends and divide them by the

index level. I then generate in each month Gordon growth model-implied weights that are

consistent with that months dividend yield and apply those portfolio weights to the next
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FIGURE III
Strip Weights by Year: High Dividend Yield The graph plots the weights implied by the Gor-
don growth formula for µs − g = 0.06. The values for µs and g used are 0.12 and 0.06 (both scaled
by 12 to arrive at monthly numbers), though up to a first order approximation, the weights are only de-
pendent on the difference between the two. Two cutoffs are considered: 30 years and 40 years. That
is, the weight at 30 years (40 years) equals the sum of all weights with maturity 30 (40) or higher.
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FIGURE IV
Strip Weights by Year: Medium Dividend Yield The graph plots the weights implied by the Gor-
don growth formula for µs − g = 0.03. The values for µs and g used are 0.09 and 0.06 (both scaled
by 12 to arrive at monthly numbers), though up to a first order approximation, the weights are only de-
pendent on the difference between the two. Two cutoffs are considered: 30 years and 40 years. That
is, the weight at 30 years (40 years) equals the sum of all weights with maturity 30 (40) or higher.
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FIGURE V
Strip Weights by Year: Low Dividend Yield The graph plots the weights implied by the Gor-
don growth formula for µs − g = 0.02. Two cutoffs are considered: 30 years and 40 years. That
is, the weight at 30 years (40 years) equals the sum of all weights with maturity 30 (40) or higher.

month’s returns. As before, I use two cutoff levels: 30 years (Counterfactual VII) and 40

years (Counterfactual VIII).

The results are presented in Table 3. The first row reports the model inputs to the

Gordon growth formula to obtain the strip weights. The second row reports the cutoff

month, which either happens after 30 years or after 40 years. The third row reports the

monthly average returns of the counterfactual bond portfolio. The last row reports the

implied realized annualized long-term dividend premium (12Ψ̂0) as defined in Equation 12.

Perhaps unsurprisingly, the results are in line with the constant maturity bond portfolios

formed in the previous section. As the cutoff is picked later and the dividend yield (µs − g)

set to lower values, the longer duration bonds receive more weight in the calculation, thereby

increasing the average return of the counterfactual bond portfolio and lowering the implied

realized long-term dividend premium. When µs − g (i.e., the long-term dividend yield) is

set to 0.06 and the cutoff is set to 360 months, the estimated compensation that investors

have received for dividend risk equals 1.4% (in line with 10-15 year constant maturity bond

counterfactuals). For all the other counterfactuals, the larger duration of the counterfactual

bond portfolio implies an annual implied dividend premium that is less than a percent and

often even negative. Because the dividend yield was on average about 2% during the 1996-

2020 time period, the results of counterfactuals VII and VIII are very similar to those of
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counterfactuals V and VI. This suggests that the time variation in the dividend yield over this

sample period, and the corresponding time-varying weights this induces, does not have much

effect on the results. The standard deviation of the monthly index returns over this sample

period equals 4.39% which is somewhat higher than those generated by counterfactuals I

and II, somewhat lower than those generated by counterfactuals III and IV and quite a bit

lower than those generated by counterfactuals V-VIII.

Counterfactual I II III IV V VI VII VIII

µs − g 0.06 0.06 0.03 0.03 0.02 0.02 Dt/St Dt/St

Cutoff month 360 480 360 480 360 480 360 480∑
wt,nµ

b
t,n 0.0068 0.0073 0.0083 0.0099 0.0090 0.0113 0.0090 0.0114

Std. Dev. 0.0316 0.0348 0.0444 0.0558 0.0508 0.0691 0.0507 0.0697

12Ψ̂0 (Annual) 0.0135 0.0066 -0.0048 -0.0234 -0.0131 -0.0410 -0.0135 -0.0417

Annual diff in mean log rets 0.0063 0.0014 -0.0062 -0.0175 -0.0109 -0.0252 -0.0113 -0.0254

Table 3
Strip-Replicating Portfolios. The table reports the average monthly returns on the strip-replicating
bond portfolios using a variety of different weighting schemes using data between January 1996 and April
2020. Columns 2 through 7 use a constant Gordon growth model to generate the weights, whereas the
last two columns use the real-time dividend yield on the S&P500 to construct Gordon growth model
weights. The first row reports the model inputs to the Gordon growth formula to obtain the strip
weights. The second row reports the cutoff month, which either happens after 30 years or after 40
years. The third row reports the average of the monthly returns of the counterfactual bond portfolio,
and the fourth row reports its standard deviation. The second-to-last row reports the implied realized
annualized long-term dividend premium (12Ψ̂0) as defined in Equation 12 and the last row reports the
difference in the annualized log return between the index return and the counterfactual bond portfolio.

5.2. Weighting Schemes: Dividend Strip Data

In the previous section I have explored 8 different counterfactuals based on model-implied

weighting schemes. In this section I compare those weighting schemes with the available

dividend strip data. Dividend strips are now directly traded on futures markets. A long

position in a dividend futures contract implies that in exchange for a known payment due

in n years from now, one receives the dividends paid on the underlying index over the year

leading up to the settlement. Because the prices are listed as futures and not as spot prices,
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I first convert them to spot prices using the usual no-arbitrage relationship:

Pt,n = exp (−nyt,n)Ft,n. (20)

I then compute for each time t (annual) the cumulative weights of the first N years of

dividend spot prices:
N∑
n=1

wn =
Pt,1 + ...+ Pt,N

St
. (21)

I then compute the minimum, the maximum, and the average of these cumulative weights

and plot them in Figure VI. As a comparison, I also plot the implied cumulative weights of

the Gordon growth model for values of µs − g equal to 0.02, 0.03 and 0.06.
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FIGURE VI
Cumulative Strip Weights by Maturity: Data vs Models The graph plots the cumulative weights∑N

n=1 wn, where N is on the x-axis, implied by the Gordon growth formula for µs− g = 0.02, 0.03, and 0.06
and compares them to the available annual dividend strip data between December 2004 and December 2019.

The figure shows that for the available 16 years of annual dividend strip data (Dec 2004-

Dec 2019), Gordon growth weights for a value of µs − g between 0.02 and 0.03 correspond

to the average of the data. Gordon growth weights for µs − g = 0.03 are close to the upper

bound of the data and thus lead to an upper bound on the realized dividend premium.

Recall further that setting the cutoff point at 360 or 480 months already lowers the duration

of the counterfactual portfolios relative to the actual stock market. Gordon growth weights

for µs − g = 0.06 give too much weight to the early maturities. To be conservative in my

estimates, I have still included these as possible counterfactuals in the computations.
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6. Expanded Sample: 1970-2020

I now double the sample from 25 years to 50 years, which includes the high inflationary

period between 1979 and 1983.9 In Table 4 I report the long sample (1970-2020) results

corresponding to Table 1. The patterns are very similar to those presented for the 1996-

2020 sample. The average returns on the S&P500 index are roughly equivalent to those of

constant maturity zero coupon bonds with a 17 year duration.

In Table 5 I repeat the analysis from Table 2 for the long sample. Once again a similar

pattern emerges. As we choose larger duration bond portfolios as the counterfactual, the

average return differential shrinks. Note that in this case there is a difference between mean

log returns and mean simple returns. The long-duration bond portfolios are substantially

more volatile in this expanded sample, particularly during the 1979-1983 period, and the

difference between mean simple returns and mean log returns is 1
2
σ2, assuming normality.

9The full sample of bond returns provided by Gurkaynak, Sack, and Wright (2006) goes back a few more
years but has some outliers in the data that I wish to avoid as they have an outsized influence on the volatility
estimates.
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Maturity in years FF 1 1.5 2 3 4 5 10 15 20 25 30 S&P500

Mean 0.0038 0.0046 0.0049 0.0051 0.0055 0.0059 0.0062 0.0075 0.0086 0.0096 0.0113 0.0147 0.0093
St. Dev. 0.0028 0.0054 0.0073 0.0090 0.0123 0.0153 0.0182 0.0327 0.0478 0.0646 0.0874 0.1216 0.0440
Mean log 0.0038 0.0046 0.0048 0.0050 0.0054 0.0057 0.0060 0.0070 0.0074 0.0076 0.0076 0.0075 0.0083

Table 4
Monthly Returns on Constant Maturity Zero Coupon Bonds. The second row in the table lists the average monthly bond returns
(µ̂b

n) on constant maturity zero coupon bond strategies for maturities ranging between 1 year and 30 years using monthly data between Jan-
uary 1970 and April 2020. The third row reports the monthly standard deviation. The second column lists of the table lists the corre-
sponding statistics for the risk free return as used in the Fama French model and the last column lists those statistics for the S&P500 index.
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Duration in years 10 15 20 25 30

µ̂s − µ̂b 0.0018 0.0007 -0.0003 -0.0020 -0.0054
t-stat on difference 0.83 0.30 -0.12 -0.55 -1.07
12(µ̂s − µ̂b) 0.0211 0.0088 -0.0041 -0.0245 -0.0648
Annualized difference in mean log returns 0.0156 0.0104 0.0085 0.0082 0.0090

Table 5
Monthly Return Differences between the S&P500 and Constant Maturity Zero Coupon
Bonds. The second row in the table lists the difference between the monthly returns on the
S&P500 index and the monthly returns on constant maturity zero coupon bonds (µ̂b

n) for ma-
turities ranging between 10 year and 30 years using monthly data between January 1970 and
April 2020. The third row reports the t-statistic on the difference. For ease of interpreta-
tion, the fourth row reports the annualized difference (by multiplying by 12). The last row re-
ports the annualized difference in the means of the monthly log returns (instead of simply returns).

The long-sample results corresponding to Table 3 are presented in Table 6. As before,

the first row reports the model inputs to the Gordon growth formula to obtain the strip

weights. The second row reports the cutoff month, which either happens after 30 years or

after 40 years. The third row reports the monthly average returns of the counterfactual bond

portfolio. The last row reports the implied realized annualized long-term dividend premium

(12Ψ̂0) as defined in Equation 12.

As the average dividend yield of the S&P500 over the 1970-2020 sample was 2.8% (com-

pared to 1.9% over the 1996-2020 sample), the results for counterfactuals VII and VIII (the

time-varying weighting schemes based on the current dividend yield) are closer to counterfac-

tuals III and IV instead of V and VI. The results from counterfactuals V and VI are therefore

less relevant for this sample period. We can conclude that, as before, the results are largely in

line with the constant maturity bond portfolios: bonds have generally outperformed stocks

with similar or even higher volatility.

Finally, in VII I plot the cumulative performance between January 1970 and April 2020

of the S&P500 index and compare it to a fixed income counterfactual where the portfolio

weights are based on the Gordon growth formula for µs − g = 0.03, using a cutoff point of

360 months (counterfactual III). Interestingly, the graph reveals that there seems to be a

low or even negative low-frequency correlation between the stock market and the replicating

bond portfolio. This is consistent with long-term expected growth rates being positively

correlated with interest rates, and/or dividend risk premia being negatively correlated, as

further discussed in Section 8.
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Counterfactual I II III IV V VI VII VIII

µs − g 0.06 0.06 0.03 0.03 0.02 0.02 Dt/St Dt/St

Cutoff month 360 480 360 480 360 480 360 480∑
wt,nµ

b
t,n 0.0089 0.0109 0.0108 0.0169 0.0121 0.0212 0.0109 0.0158

Std. Dev. 0.0473 0.0580 0.0716 0.1112 0.0868 0.1508 0.0644 0.0938

12Ψ̂0 (Annual) 0.0053 -0.0109 -0.0184 -0.0911 -0.0332 -0.1431 -0.0192 -0.0789

Annual diff in mean log rets 0.0066 -0.0116 -0.0006 -0.0378 -0.0018 -0.0442 -0.0069 -0.0420

Table 6
Strip-Replicating Portfolios. The table reports the average monthly returns on the strip-replicating
bond portfolios using a variety of different weighting schemes using data between January 1970 and April
2020. Columns 2 through 7 use a constant Gordon growth model to generate the weights, whereas the
last two columns use the real-time dividend yield on the S&P500 to construct Gordon growth model
weights. The first row reports the model inputs to the Gordon growth formula to obtain the strip
weights. The second row reports the cutoff month, which either happens after 30 years or after 40
years. The third row reports the average of the monthly returns of the counterfactual bond portfolio,
and the fourth row reports its standard deviation. The second-to-last row reports the implied realized
annualized long-term dividend premium (12Ψ̂0) as defined in Equation 12 and the last row reports the
difference in the annualized log return between the index return and the counterfactual bond portfolio.

7. International Evidence

In this section I repeat the computations from the previous section for Europe and Japan.

7.1. Europe

For European government bonds, I use data between October 1972 (the start date of the

Bundesbank yield curve data) and April 2020. I once again study two samples: 1996-2020

and the full sample 1972-2020. I use returns on the Eurostoxx index as the stock market

proxy. All returns are computed in local currency. Further, the average dividend yield on

the Eurostoxx index over these two sample periods is 0.024 (short sample) and 0.031 (long

sample) corresponding to durations of 32-42 years. The results for the constant maturity

bond portfolio are reported in Table 7 and are even starker than for the United States. Even

the 15-year constant maturity zero coupon bonds have outperformed the index over this

sample period.

In the top panel of Table 8 I repeat the analysis from Table 2 using data between 1996 and
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FIGURE VII
Cumulative Return Performance of the S&P500 Index Relative to Fixed Income Matched
Portfolio The graph plots the cumulative performance between January 1970 and April 2020 of
the S&P500 index and compares it to a fixed income counterfactual where the portfolio weights
are based on the Gordon growth formula for µs − g = 0.03, using a cutoff point of 360 months.

Mat. in years 1 2 5 10 15 20 25 30 Eurostoxx

Sample: 1996-2020
Mean 0.0017 0.0022 0.0038 0.0060 0.0078 0.0094 0.0110 0.0129 0.0060
St. Dev. 0.0023 0.0041 0.0099 0.0190 0.0288 0.0391 0.0500 0.0625 0.0525
Mean log 0.0017 0.0022 0.0037 0.0058 0.0072 0.0085 0.0096 0.0108 0.0046

Sample: 1972-2020
Mean 0.0038 0.0043 0.0055 0.0069 0.0083 0.0106 - - 0.0079
St. Dev. 0.0043 0.0064 0.0126 0.0236 0.0417 0.0719 - - 0.0484
Mean log 0.0037 0.0043 0.0054 0.0066 0.0074 0.0081 - - 0.0067

Table 7
Monthly Returns on Constant Maturity Zero Coupon Bonds: Germany. The second row of the
first panel lists the average monthly bond returns (µ̂b

n) on constant maturity zero coupon bond strategies
for maturities ranging between 1 year and 30 years using monthly data between January 1996 and April
2020. The third row reports the monthly standard deviation. The last two columns list those statistics
for the Eurostoxx index. The second panel repeats all statistics but now for the longer sample 1972-2020.

2020 and using the Eurostoxx as the stock market proxy. Once again, the results are similar

(if not stronger) as those for the United States. The bottom panel repeats the analysis for

the long sample (1972-2020), once again with similar results.
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Duration in years 10 15 20 30

Sample: 1996-2020
µ̂s − µ̂b 0.0001 -0.0016 -0.0032 -0.0067
t-stat on difference 0.0188 -0.4424 -0.7993 -1.3659
12(µ̂s − µ̂b) 0.0008 -0.0196 -0.0385 -0.0800
Annualized difference in mean log returns -0.0167 -0.0341 -0.0488 -0.0769

Sample: 1972-2020
µ̂s − µ̂b 0.0010 -0.0004 -0.0027 -
t-stat on difference 0.4634 -0.1401 -0.7551 -
12(µ̂s − µ̂b) 0.0123 -0.0043 -0.0319 -
Annualized difference in mean log returns 0.0013 -0.0082 -0.0164 -

Table 8
Monthly Return Differences between the Eurostoxx and Constant Maturity German Zero
Coupon Bonds. The second row in the table lists the average difference between the monthly re-
turns on the Eurostoxx 50 index (µ̂s) and the monthly returns on constant maturity zero coupon
bonds (µ̂b

n) for maturities ranging between 5 and 20 years using monthly data between January 1996
and April 2020. The third row reports the t-statistic on the difference. For ease of interpre-
tation, the third row reports the annualized difference (by multiplying by 12). The last row re-
ports the annualized difference in the means of the monthly log returns (instead of simply returns).

7.2. Japan

Next, I repeat the analysis for Japan. The results for the constant maturity bond portfolio

are reported in Table 9. All returns are once again in local currency. The results on average

returns are similar to (if not stronger than) those of the United States. This is particularly

interesting for the 1996-2020 subsample. After all, in Japan, bond yields of all maturities

already reached very low levels in 1996, comparable to the bond yields observed today in

the United States and Europe. This illustrates that such low levels of bond yields by no

means guarantee that stocks will outperform bonds over the next quarter century. Perhaps

unsurprisingly, the volatility generated by risk free rate variation is smaller compared to the

U.S. and Europe over this sample period.

In the top panel of Table 10 I repeat the analysis from Table 2 using data between 1996

and 2020 and using the Topix index as the Japanese stock market proxy. Once again, the

results are similar (if not stronger) as those for the United States. The bottom panel reports

results for the longer sample (1985-2020), with stronger results.
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Mat. in years 1 2 3 4 5 10 15 Topix Nikei225

Sample: 1996-2020
Mean 0.0002 0.0004 0.0007 0.0011 0.0014 0.0031 0.0043 0.0023 0.0028
St. Dev. 0.0007 0.0017 0.0030 0.0044 0.0059 0.0133 0.0205 0.0504 0.0553
Mean log 0.0002 0.0004 0.0007 0.0011 0.0014 0.0030 0.0041 0.0010 0.0011

Sample: 1985-2020
Mean 0.0014 0.0017 0.0021 0.0026 0.0030 0.0046 0.0059 0.0037 0.0038
St. Dev. 0.0025 0.0043 0.0063 0.0083 0.0102 0.0191 0.0288 0.0548 0.0590
Mean log 0.0014 0.0017 0.0021 0.0025 0.0029 0.0044 0.0054 0.0023 0.0023

Table 9
Monthly Returns on Constant Maturity Zero Coupon Bonds: Japan. The second row of the first
panel lists the average monthly bond returns (µ̂b

n) on constant maturity zero coupon bond strategies for
maturities ranging between 1 year and 30 years using monthly data between January 1996 and April 2020.
The third row reports the monthly standard deviation. The last two columns list those statistics for the Topix
index and the Nikkei 225. The second panel repeats all statistics but now for the longer sample 1985-2020.

Duration in years 10 15

Sample: 1996-2020
µ̂s − µ̂b -0.0008 -0.0020
t-stat on difference -0.2410 -0.5700
12(µ̂s − µ̂b) -0.0093 -0.0235
Annualized difference in mean log returns -0.0248 -0.0495

Sample: 1985-2020
µ̂s − µ̂b -0.0009 -0.0022
t-stat on difference -0.3324 -0.7278
12(µ̂s − µ̂b) -0.0114 -0.0267
Annualized difference in mean log returns -0.0272 -0.0527

Table 10
Monthly Return Differences between the Nikkei 225 and Constant Maturity German Zero
Coupon Bonds. The second row in the table lists the average difference between the monthly
returns on the Nikkei 225 index (µ̂s) and the monthly returns on constant maturity zero coupon
bonds (µ̂b

n) for maturities ranging between 10 and 15 years using monthly data between January
1996 and April 2020. The third row reports the t-statistic on the difference. For ease of inter-
pretation, the third row reports the annualized difference (by multiplying by 12). The last row re-
ports the annualized difference in the means of the monthly log returns (instead of simply returns).
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8. Excess Volatility and Variance Decomposition

One of the more surprising features of short-term dividend strip prices is that they seem

excessively volatile relative to their subsequent realizations.10 As such, dividend strips,

while relatively safe investments as measured by their CAPM beta, are risky investments

as measured by their volatility. An important open question is where this excess strip price

volatility is coming from, as this short duration price variation deepens the Shiller (1981)

excess volatility puzzle.

In fact, as this paper shows, generating large amounts of volatility for long duration claims

is relatively straightforward, as small changes in discount rates correspond to large changes

in prices. Government bond prices are clearly much more volatile than their subsequent

predetermined coupon and principal payments. In fact, without additional dividend risk

premium variation, the counterfactual bond portfolios I construct already have similar (if

not higher) volatility profiles as those of the index, despite the cash flows being fixed. This

questions the common notion that excess volatility is a puzzle for equities. If anything, the

stock market claim is too little volatile compared to what we should expect based on the fixed-

income calculations I present here. If dividend risk premia and interest rates are negatively

correlated, and growth expectations and long-term interest rates have a positive correlation

(as suggested by Figure VII), then variation in both the dividend risk premium (if any) and

dividend growth (expected and unexpected) have a tempering effect on the volatility of the

equity claim compared to those of the bond claim. This also puts into context the common

belief that stock markets are particularly prone to bubble-type episodes. At least compared

to long-term bonds, there seems to be little evidence for excessively volatile or bubble-like

stock price movements. Alternatively, it is of course possible that long-term bonds are even

more exposed to bubbles than stock markets are. Evidence on potential excess volatility in

bond markets is provided by Shiller (1979), Giglio and Kelly (2018) and Lustig, Brooks, and

Katz (2019).

Based on the duration-matched counterfactual (CF) fixed income portfolios we can de-

compose stock returns in excess of the short-duration fixed income instrument into two

components:

RS
t+1 −Rb

t+1,1 = RS
t+1 −Rb

t+1,CF︸ ︷︷ ︸
Dividend Risk Premium

+Rb
t+1,CF −Rb

t+1,1︸ ︷︷ ︸
Term Premium

, (22)

10See Binsbergen, Brandt, and Koijen (2012), Binsbergen, Hueskes, Koijen, and Vrugt (2014) and Bins-
bergen and Koijen (2017).

27



which leads to the following variance decomposition:

var
(
RS
t+1 −Rb

t+1,1

)
= var

(
RS
t+1 −Rb

t+1,CF

)
+ var

(
Rb
t+1,CF −Rb

t+1,1

)
+ 2cov

(
RS
t+1 −Rb

t+1,CF , R
b
t+1,CF −Rb

t+1,1

)
.

1970 - 2020 1996 - 2020

var
(
RS
t+1 −Rb

t+1,1

)
0.0020 100% 0.0019 100%

Decomposition
var
(
RS
t+1 −Rb

t+1,CF

)
0.0062 317% 0.0049 254%

var
(
Rb
t+1,CF −Rb

t+1,1

)
0.0052 264% 0.0020 102%

2cov
(
RS
t+1 −Rb

t+1,1

)
, -0.0094 -482% -0.0049 -256%

Table 11
Variance Decomposition U.S. Excess Stock Returns. The table provides a variance decomposition of
U.S. stock returns in excess of the short duration fixed income instrument (in this case the risk free rate used
in the Fama French factors) into the contribution of the realized term premium and the realized dividend risk
premium. The long-duration fixed income counterfactual (CF) uses Gordon growth weights corresponding
to µs − g = 0.03 and a cutoff of 360 months. In columns 2 and 4 the table reports the raw variance and
covariance numbers for both the full sample as well as the 1996-2020 subsample. Columns 3 and 5 report
the numbers scaled by the variance of RS

t+1 − Rb
t+1,1, so that the decomposition terms sum up to 100%.

Table 11 summarizes this variance decomposition, where the long-duration fixed income

counterfactual uses Gordon growth weights corresponding to µs−g = 0.03 and a cutoff of 360

months. The table shows that the realized term premium and realized dividend risk premium

are strongly negatively correlated. Both in the full sample as in the 1996-2020 sample, this

correlation is -0.8. This suggests that shocks to long-term risk free discount rates are either

positively correlated with innovations in long term growth rates, or negatively correlated

with long-duration dividend risk premia (or both) as further explored in the next section.11

As a final comment, one important unexplored constraint on risk premia’s ability to

generate excess volatility imposed by most models is that they need to have a substantial

positive mean. After all, if risk premia are substantially volatile, but also need to always

remain positive (as suggested by many macro finance models), they need to be large on

average. Under these model constraints, for dividend strip excess volatility to be driven

by risk premium variation, the average risk premium on dividend strips has to be large.

11Note that over the full sample stock returns and the long-term bond returns are somewhat positively
correlated (0.15) whereas over the subsample 1996-2020 they are negatively correlated -0.25. See Campbell,
Pflueger, and Viceira (2020) for the economic drivers of this time-varying correlation.
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This logic also implies that if long-duration dividend risk premia are on average low (and

potentially even zero), they have less potential of generating or tempering volatility, though

obviously the duration still acts as a lever. There are two alternative views that challenge the

“risk premia always need to be positive” constraint. First, if dividends are a hedge against

other types of economic risks, they can in fact have a negative risk premium. Secondly,

it is possible that excess volatility in dividend strip and stock prices is truly excessive and

unrelated to risk premia variation. Rather, this volatility is a reflection of mismeasured or

overextrapolated expectations.12

9. Potential Explanations and Discussion

In this section I discuss four potential explanations for the findings as well as further

implications.

9.1. Four Potential Explanations

In addition to the recent literature that has proposed theoretical foundations for a down-

ward sloping equity term structure (see Binsbergen and Koijen (2017) for a review), there

are at least four other explanations to consider.

First, there is the possibility that dividends are less risky than nominal government bonds

as the latter offer fixed nominal payments that are not protected against inflation. Long-

term dividends can be increased with inflation. While this explanation could be important

for the first quarter century of the sample (1970-1995), it seems less important for the second

half of the sample (1996-2020) when inflation expectations were low and stable.13

Second, there is the possibility that while short-term dividends are exposed to large

disaster type risks, such as the government-imposed dividend cuts in the financial crisis and

COVID epidemic, long-term dividends will mean revert to trend levels and are therefore less

risky.14 This could also explain why short-term dividends, that do not have enough time

12For recent work in this area on the aggregate stock market see Bordalo, Gennaioli, LaPorta, and Shleifer
(2020) and the references therein. For a recent exploration of such mismeasured expectations for real invest-
ment, see Binsbergen and Opp (2013).

13See also Katz, Lustig, and Nielsen (2015) for a discussion on the degree to which stocks are real assets.
14See Barro, Nakamura, Steinsson, and Ursua (2011) for a model that features such dynamics, as well

as Cejnek, Randl, and Zechner (2020) who aptly relate dividend smoothing policies to the downside risk of
dividends.
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to recover after a disaster, command a risk premium over their corresponding zero coupon

bond.

Third, there is the possibility that while investors were expecting at least some return

compensation for long-duration dividend risk, they ended up not receiving it ex post. Be-

cause interest rates and (expected) growth are tied in equilibrium, the series of unexpected

downward shocks to interest rates was accompanied by a series of unexpected downward

shocks to long-term growth rates. This could explain why the stock market has not per-

formed too well relative to duration-matched fixed income portfolios whose fixed cash flows

are shielded from such growth shocks. This could imply that the U.S. and Europe are now

also stuck in a Japan-type scenario of long-term low growth and low interest rates, implying

that future dividend growth realizations will be low.

More formally, if we assume (1) log-normal consumption growth with average growth

rate g and variance of σ2
c , and (2) power utility preferences over aggregate consumption with

risk aversion coefficient γ and subjective discount factor β:

U = E0

[
∞∑
t=1

βt
C1−γ
t

1− γ

]
, (23)

the steady state interest rate is tied to long-term growth as follows:

y = −ln (β) + γg − 1

2
γ2σ2

c . (24)

Comparing steady states, there is a one-to-one relation between growth (g) and the interest

rate (y) when the risk aversion coefficient (or the inverse of the Intertemporal Elasticity of

Substitution) is 1. In that case the effect of lower interest rates and lower growth cancel

when computing realized returns. For a risk aversion close to, but different than 1, the two

effects partially cancel and, depending on the sign of the deviation, can contribute to either

a positive or negative correlation between bonds and stocks. This level of risk aversion also

implies that the precautionary savings effect (the last term in Equation 24) is small. In most

models, such a low risk aversion coefficient will imply low risk premia, though given the

findings in this paper, that may be less of a concern when matching the model to the data

of the past 50 years. It seems more of a concern when matching data from the earlier part

of the twentieth century. However, during that period investors were less insured and were

forced to hold less diversified portfolios, as the mutual fund sector was small, potentially

leading to larger risk premia.
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Finally, there is the possibility that stocks have not performed well due to a secular

increase in long-term future dividend risk premia (Farhi and Gourio (2018)), which occurs

when long-term risk free discount rates are negatively correlated with long duration dividend

risk premia. This increasing path of risk premia going forward has suppressed the value of the

equity claim relative to the fixed income claim. In that case, future excess return realizations

should be high. Given that dividend yields are currently low, the Gordon growth formula

prescribes that expected returns can only be high of future growth remains high. After

all, that formula states that the expected return is the sum of the dividend yield and the

expected growth rate.

9.2. Further Implications

The results presented above also have potentially important implications for the cross-

section of stock returns. To the extent that different stocks have different durations of cash

flows, the valuation of those stocks will be differentially affected by the secular decline in

long-term interest rates. For example, if value stocks have shorter duration cash flows than

growth stocks, it may be less surprising that the latter have outperformed the former in

recent years, though growth expectations may also have developed differently for these two

sets of firs. As argued in the introduction, the valuation windfalls for long duration assets

are not likely to repeat themselves given the lower bound on interest rates. Furthermore,

if assets that are exposed to cash flow risks have not outperformed their fixed cash flow

counterparts, this raises the question of what risk premium the CAPM is exactly supposed

to capture when estimating the slope of the Security Market Line (SML). Is it interest rate

risk, or inflation risk (or lack thereof)? This seems particularly pressing given that the

version of the CAPM that uses the stock market as a proxy for the wealth portfolio is not

known to price government bonds (of all maturities) well.15

Future research could construct counterfactual fixed income portfolios at the stock level

to evaluate duration-matched outperformance in the cross-section of stock returns. This

would better separate the differential returns that investors receive for investing in risky

earnings/dividends as opposed to those that result from interest rate changes. A similar

argument can be held for real estate assets that may differ in duration in important ways.16

Finally, the results are important for corporate finance studies. First, the secular down-

15See also Lustig, Verdelhan, and Nieuwerburgh (2013).
16See Giglio, Maggiori, and Stroebel (2014) for an exploration of the term structure of discount rates in

real estate markets.
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ward trend in interest rates in the past 50 years implies that the market value of corporate

debt (bonds) is higher than the book value. The results in this paper suggest that for firms

that rely on long term debt, this difference can be substantial. As such the amount of market

leverage for those firms is higher than what conventional measurement (which uses the book

value of debt as a proxy for the market value) would imply. Second, when studying capi-

tal structure, the common assumption is that as the leverage of the firm increases, ceteris

paribus, the required return on equity increases as the CAPM beta scales up the risk pre-

mium. The results in this paper suggest that the measured (realized) risk premium effects

from leverage increases are likely small or even negative in the past 50 years.

10. Tradable Portfolios and Corporate Bonds

In this section I explore two robustness analysis. One that compares the returns im-

plied by the Gurkaynak, Sack, and Wright (2006) curves with those of a tradable long-term

government bond index portfolio provided by Vanguard, and one that compares realized

long-term government bond returns with a tradable corporate bond portfolio of the same

maturity.

10.1. Tradable Indices

The U.S. government bond portfolio returns presented so far are based on bootstrapped

zero curves (Gurkaynak, Sack, and Wright (2006)). One could therefore be concerned that

the returns are affected by these curve fitting methods. One straightforward way to address

this concern is to simply compare the implied returns from these yield curves to those of

traded bond funds. For example, the Vanguard Long-Term Treasury Fund Investor Shares

(VUSTX) holds a diversified portfolio of long duration government bonds. The fund adver-

tises that the average maturity of the bonds varies between 15 and 30 years. The duration

of the fund varies between 10 and 20 years. Figure IX plots the historical effective duration

of this fund between June 2002 and April 2020.17

I construct a set of long-term bond portfolios of varying maturities and price them using

the bootstrapped zero curves of Gurkaynak, Sack, and Wright (2006). Because of the down-

ward trend in interest rates, bonds that were issued at par are soon trading at a premium.

I use coupon rates that are 2% above the prevailing 10-year constant maturity yield. I then

17I thank John Ameriks for generously sharing this data with me.
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FIGURE VIII
Vanguard Long-Term Government Bond Index Fund The graph plots the ef-
fective duration of the Vanguard Long-Term Government Bond Index Fund (VUSTX).

compute monthly bond returns on these bonds and form a portfolios of the two closest bonds

in duration and take a weighted average of their returns to match the effective duration of

the VUSTX fund. The graph below compares the returns of this replicated portfolio to those

of the VUSTX fund. The graph shows that the returns are highly similar with an almost

identical standard deviation of monthly returns that equals 3.29% for the replicated portfolio

and 3.26% for the actual monthly returns of VUSTX to investors. The correlation between

the two monthly return series is 0.998. The returns on the replicated portfolio are 4.8b.p. per

month higher than the VUSTX returns, which corresponds to about 58 basis points per year.

The annual fees on the investor class VUSTX fund is 28b.p. in 2002 and drops to 20b.p. by

the end of the sample. So this explains a little under half the difference. This leaves about

3b.p. per month for replication errors in my approach (the cross-sectional variation in bond

maturities in the VUSTX fund is a bit larger than in my replication, somewhat suppressing

its performance) as well as trading costs. Overall, we can conclude that the implied returns

of the zero curves provided by Gurkaynak, Sack, and Wright (2006) over this sample period

lead to fairly accurate representations of the actual trading data.

10.2. Corporate Bonds

In the results presented above, I have compared strip-matched government bonds with

stocks. In this section, I explore whether similar results can be obtained using long-term
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FIGURE IX
Vanguard Long-Term Government Bond Returns (VUSTX) vs Replicated Re-
turns The graph plots the monthly returns to investors on Vanguard’s long-term gov-
ernment bond index fund (VUSTX) and plots it against replicated returns on duration-
matched portfolios based on the zero curves provided by Gurkaynak, Sack and Wright (2006).

corporate bond returns instead of government bond returns. This also helps address concerns

related to the potential specialness or mispricing of government debt, for example due to

convenience yields associated with the money-like features of government debt.18

To explore this question I study the returns on the Barclays Bloomberg long duration

corporate bond index. This index is designed to measure the value-weighted performance

of U.S. corporate bonds that have a maturity of greater than or equal to 10 years. The

duration of this portfolio, as provided by Bloomberg, is plotted in Figure X. Following the

same procedure as in the previous subsection (i.e. the Vanguard fund), I then construct

government bonds that best match the duration of this portfolio and compute their returns

using the zero coupon yield curves from Gurkaynak, Sack and Wright (2006). The cumulative

return of the Bloomberg Barclays portfolio as well as that of the replicating bond portfolio

is plotted in Figure XI. The graph shows that government bonds have done about as well

as corporate bonds over this sample period for these long duration bonds, suggesting that

the comparison with equity returns would have led to similar conclusions if 20 to 30-year

duration corporate bond returns had been available. Finally, the results suggest that there

is not much evidence for a corporate credit risk premium over this sample period either,

18See Krishnamurthy and Vissing-Jorgensen (2012), Nagel (2016), Lustig, Jiang, Nieuwerburgh, and Xi-
aolan (2019) and Binsbergen, Diamond, and Grotteria (2019) for recent contributions in this area.
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FIGURE X
Barclays Bloomberg Long Duration Corporate Bond Index: Duration The graph plots the ef-
fective duration of the Barclays Bloomberg long duration corporate bond index between 1990 and 2020.

consistent with the idea that all risk premia over this sample period have been low.
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FIGURE XI
Barclays Bloomberg Long Duration Corporate Bond Index: Cumulative Performance The
graph plots the performance of the Barclays Bloomberg long duration corporate bond index between 1990
and 2020 and compares it with the performance of a duration-matched U.S. government bond portfolio.
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11. Conclusion

In this paper I have constructed a set of plausible counterfactual fixed income portfolios

that span the plausible range for the duration profile of the aggregate stock market. I find

that over the past five decades stock market indices have exhibited no outperformance over

these fixed income counterfactuals with comparable volatility profiles. This implies that

investors have not received much compensation for taking long duration dividend risk. This

result holds across several world regions. Given that this result is obtained under conservative

assumptions regarding the duration of the stock market, the realized dividend risk premium

may very well be substantially negative (i.e. multiple percentage points) over this sample

period. One could argue that this simply means that the equity premium puzzle has resolved

itself.

However, the fact that investors have not received compensation for long duration div-

idend risk does not necessarily mean that investors were not expecting to receive at least

some compensation. It could mean that stocks had poor long-term performance compared

to their fixed income counterparts as a consequence of a secular decline in long-term ex-

pected dividend growth rates (and/or secular increase in long-term risk premia) over these

decades. While the expectations hypothesis for interest rates provides us with some infor-

mation regarding the unexpected downward shocks to the risk free discount rates, observing

unexpected shocks to long-term (30-50 year) expected growth rates is more challenging, as

very long-run expected growth measures are not in ample supply. Arguably, the stock market

itself is the best predictor of long-term growth, providing a potentially bleak outlook.

Even though the performance of stock and bond markets in the past 50 years are im-

portant in their own right, one may wonder whether the results on means and volatilities

presented in this paper have further external validity (in addition to the international evi-

dence provided), particularly going forward. Perhaps the Japanese results presented above

can give some guidance here. Interest rates already reached very low levels in Japan in

1996 for all maturities. In the 25 years since, the Nikkei 225 has not increased much in

value. Furthermore, long-term bond yields have decreased even further, leading once again

to bond outperformance over stocks. This suggests that the American and European results

presented in this paper could in fact repeat themselves. The Japanese data is therefore also

potentially informative about the level of stock and bond returns investors should expect in

the U.S. and Europe for the next 25 years. It seems at least possible that expected returns

on both stocks and bonds have reached all-time low levels. After all, the Gordon growth

math, where expected returns equal growth g plus dividend yield, should still hold. If both
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the dividend yield as well as growth (and inflation) expectations are very low, there is little

room for either nominal or real expected returns (and risk premia) going forward. This has

important implications for retirement savings, as it means that workers should save a sub-

stantially higher percentage of their annual incomes to achieve an acceptable living standard

in retirement.

To conclude, it seems important to adjust asset pricing moments for secular trends in

interest rates (and potentially growth rates) such that they can be meaningfully interpreted

in stationary environments. Alternatively, it could be helpful to explicitly model secular

trends, investors’ perceptions of them, and their underlying causes, in asset pricing theories.

Also, a further decomposition of asset valuations into the effects of the term structure of

interest rates and the term structure of dividend risk premiums (or other risk premiums)

seems an important avenue for future research.19 More generally, I would argue that orga-

nizing and comparing available assets by maturity instead of within traditional asset class

categorizations (i.e. stocks, bonds, real estate and commodities) can provide important and

interesting insights that have previously been ignored.

19See also recent work by Lettau and Wachter (2007) and Lettau and Wachter (2010) for a joint treatment
of the equity and bond term structure.
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