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1 Introduction

The COVID-19 pandemic induced an unprecedented shock to the global economy. As the im-

plications of this shock began to crystalize in mid-March, 2020, financial markets plummeted

and reports of illiquidity began to surface. One particularly important market that was “under

significant stress” (Bernanke and Yellen, 2020) was the $10 trillion corporate bond market, which a

March 18 report from Bank of America deemed “basically broken” (Idzelis, 2020). In response, the

Federal Reserve introduced several facilities designed to bolster liquidity and reduce the costs and

risks of intermediating corporate debt, including the Primary Dealer Credit Facility (PDCF) and the

Primary and Secondary Market Corporate Credit Facilities (PMCCF and SMCCF, respectively).

The latter two facilities represented a particularly bold intervention, in that they allowed the Fed,

for the first time, to make outright purchases of investment-grade corporate bonds issued by US

companies, along with exchange-traded funds (ETFs) that invested in similar assets.

The purpose of this paper is to study trading conditions in the US corporate bond market

in response to the large economic shock induced by COVID-19, as well as the unprecedented

interventions that followed. Given the exogenous nature of the pandemic, set against the backdrop

of a well-capitalized financial sector, this episode offers a unique opportunity to identify the nature

of shocks that precipitate illiquidity in financial markets, the consequences for market participants,

and the efficacy of various policy responses designed to restore liquidity in times of distress.

A central feature of our analysis is the distinction between two types of transactions offered

by dealers: “risky-principal” trades, in which a dealer offers a customer-seller immediacy by

purchasing the asset directly and storing it on his balance sheet until finding a customer-buyer;

and “agency” trades, in which the customer-seller retains the asset while waiting for a dealer to

find a customer-buyer to take the other side of the trade. This distinction, which has been studied
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recently using pre-pandemic data, is crucial in generating several new insights.1 We highlight

three.

First, distinguishing between risky-principal and agency trades provides a more complete as-

sessment of market liquidity by accounting for both the cost of trading and the time it takes to trade.

Indeed, we show that focusing on transaction costs alone—ignoring changes in the composition of

risky-principal and agency trades—understates the deterioration in liquidity after the COVID-19

shock. Second, studying the cost and quantity of these distinct types of trades in concert with a

structural model allows us to disentangle two widely cited (but not mutually exclusive) sources of

illiquidity: a large, unexpected increase in customers’ demand for immediacy, sometimes called a

“dash for cash”; and a decrease in dealers’ willingness to supply immediacy by absorbing assets

onto their balance sheets, either because of rising costs or binding regulatory constraints. A key

finding is that matching the data requires large shocks to both demand and supply at the onset of

the crisis. Finally, studying the evolution of demand and supply factors against the timeline of

the Fed’s interventions offers new insights into the efficacy of various policies. In particular, we

show that the surge in customers’ demand for immediacy receded almost immediately, and fully,

after the announcement of the Fed’s interventions, whereas the negative shock to dealers’ supply

of immediacy responded more gradually, and only partially.

After providing some background information in Section 2, we begin our analysis in Section 3

by documenting trading conditions in the corporate bond market in response to the panic of mid-

March and the Fed’s interventions that followed. Using data from the Trade Reporting Compliance

Engine (TRACE), we first construct time series to measure the costs of risky-principal and agency

trades in the corporate bond market. We find that the cost of risky-principal trades increased

significantly during the COVID-induced panic, reaching a peak of more than 250 basis points

(bps), while the cost of agency trades increased much more modestly. As the premium paid for

risky-principal trades increased, we show that customers substituted towards agency trades: the

1For recent work that studies the distinction between risky-principal and agency trades, see Schultz (2017), Bao,
O’Hara, and Zhou (2018) , Choi and Huh (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), and
Goldstein and Hotchkiss (2020). To the best of our knowledge, we are the first (and only) paper to employ this
distinction to study liquidity conditions during the COVID-19 pandemic.
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fraction of total volume executed as agency trades increased by as much as 15% at the height of

the sell-off, and remained elevated even months after the initial panic subsided. Hence, the average

trade was not only more expensive, but also more likely to be slower or of “lower quality.”

As trading shifted from risky-principal to agency transactions, we show that the dealer sector

as a whole absorbed no inventory, on net, during the most tumultuous period of trading. Therefore,

when the demand for transaction services surged, it was customers themselves who ultimately

stepped up to provide additional liquidity. In fact, it was only after the announcement of the

Federal Reserve’s interventions that dealers began to absorb inventory onto their balance sheets,

and trading conditions started to improve. Indeed, after the announcement of the Fed’s credit

facilities, the quantity of corporate debt held by dealers more than doubled relative to pre-COVID

levels. At the same time, the cost of risky-principal trades decreased significantly, but remained

approximately twice the levels observed before the pandemic.

While these observations establish the coincidence of key interventions and improvements

in market liquidity, they do not establish a causal relationship. To further explore the effects

of interventions on market liquidity, we exploit restrictions on the types of bonds that could

be purchased through the Fed’s corporate credit facilities. In particular, using a difference-in-

differences approach, we use restrictions on bond ratings and time-to-maturity to identify the

change in trading costs induced by the announcement of the SMCCF. We find that, immediately

after the announcement of the SMCCF, the cost of trading bonds that were eligible for purchase

by the Fed decreased substantially relative to the cost of trading ineligible bonds. Later, when the

program was expanded in both size and scope, we show that the trading costs of all bonds fell.

Hence, our findings suggest that the Fed’s interventions had significant effects on transaction

costs and trading activity in the corporate bond market. However, the observations described

above also lead to several important questions. Why did the Fed’s interventions improve trading

conditions so quickly, but not fully? Did the announcement and implementation of these policies

(at least partially) restore liquidity by easing investors’ concerns and halting the “dash for cash”?

Or should the efficacy of these interventions be attributed to easing dealers’ balance sheet concerns,
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thus increasing their willingness to “lean against the wind” (Weill, 2007)? Given the deterioration

of both the cost and quality of intermediation services during the COVID-19 crisis, what was the

effect on the surplus of customers in the US corporate bond market during this period?

To confront these questions, and interpret our empirical findings more generally, in Section 4

we construct a parsimonious equilibrium model of a market for vertically differentiated transaction

services: low-quality, meant to capture agency trades; and high-quality, meant to capture risky-

principal trades. We assume that customers prefer high-quality transaction services, but they are

more costly for dealers to produce. Within this framework, we characterize the differential impact

of two types of shocks—to customers’ relative demand for high-quality risky-principal trades and

to dealers’ cost of supplying these transaction services—on equilibrium prices and allocations.

Then, using our estimates of relative prices and quantities in concert with our theoretical

framework, we estimate key parameters of the model, which allows us to identify shocks to

customers’ demand for immediacy, at the height of the crisis and during the interventions that

followed. We confirm that a large, sudden increase in the demand for immediacy was a crucial

source of illiquidity early in the crisis. In fact, we estimate that customers’ willingness to pay

for each inframarginal unit of risky-principal trade (rather than an agency trade) increased by

approximately 200 bps at the height of the crisis. However, we also find that this shock alone

cannot explain what we observe in the data: to rationalize the observation that customers ultimately

substituted towards agency trades, we show that there must have also been a significant shock to

dealers’ marginal cost of supplying immediacy. Hence, understanding the market turmoil of March

2020 requires studying both the origins of the “dash for cash” and the factors that dissuaded dealers

from absorbing selling pressure onto their balance sheets.

Studying the behavior of shocks to customers’ demand for immediacy, and dealers’ cost of

supplying it, against the timeline of policy announcements and implementation also reveals new in-

sights regarding the channels through which the Fed’s interventions operated. In particular, we find

that the demand shock receded quickly, and fully, soon after the announcement of the PDCF and

SMCCF—that is, the announcement alone seems to have effectively reversed the initial “dash for
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cash.” The increase in dealers’ cost of supplying risky-principal trades, however, appears to have

lingered even after the Fed began purchasing bonds. While there are multiple explanations for this,

we document one plausible candidate: the total volume of customer-dealer transactions remained

elevated through June which—when combined with binding balance sheets constraints—could

explain why the relative cost (fraction) of risky-principal trades remained elevated (depressed)

months after markets appear to have calmed.

Finally, we leverage our theoretical framework—along with our empirical estimates of prefer-

ence shocks, prices, and quantities—to construct a measure of customers’ well-being. In particular,

we define consumers’ surplus from immediacy as the net utility per unit of transaction that a

customer receives from upgrading from slower, agency trades to faster, risky-principal trades.

Relative to the pre-crisis period, we find that the loss in consumers’ surplus from immediacy

was less pronounced than the increase in the relative price premium for immediacy, but remained

suppressed well after markets had calmed. In fact, we find customers’ net utility from upgrading to

faster, risky-principal trades per unit of transaction declined by only about 20 bps during the height

of the market turmoil, but remained approximately 10 bps below pre-crisis levels even at the end

of June, 2020. We argue that these results highlight the importance of accounting for changes

in customers’ preferences for immediate trades, along with changes in the relative quantities of

risky-principal and agency trades, when assessing the effects of shocks and the interventions that

follow.

1.1 Related literature

Given the size of the COVID-19 shock, and the historic nature of the Fed’s response, it is not

surprising that a number of recent papers have emerged to study financial markets since the onset of

the pandemic. Our paper belongs to the literature focused on the corporate bond market, which we

discuss in more detail below, but shares much in common with studies of other markets, including

the market for Treasuries and other government debt (Duffie, 2020; He, Nagel, and Song, 2020;
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Fleming and Ruela, 2020; Schrimpf, Shin, and Sushko, 2020), as well as the market for asset-

backed securities (Foley-Fisher, Gorton, and Verani, 2020; Chen, Liu, Sarkar, and Song, 2020).

In the corporate bond market, Falato, Goldstein, and Hortaçsu (2020) study the effect of the

pandemic on outflows from bond mutual funds, and the role that the Fed’s corporate credit facilities

played in reversing these outflows. Ma, Xiao, and Zeng (2020) also explore outflows in fixed-

income mutual funds, including those that invest in corporate bonds and Treasuries. They derive a

pecking order theory of liquidation, which explains why selling pressure was strongest in the most

liquid sectors of these markets. Haddad, Moreira, and Muir (2020) focus primarily on the behavior

of credit spreads during the crisis, and attempt to identify the mechanism through which the Fed’s

interventions improved market conditions.2 Though different along many dimensions, these three

papers all argue that a large, sudden increase in customers’ demand for immediacy played a crucial

role in the deterioration of market liquidity in March, 2020. We, too, identify such a shock, but find

that matching the data also requires a significant shock to the dealers’ cost of supplying immediacy.

Our paper is most closely related to contemporaneous work by O’Hara and Zhou (2020)

and Boyarchenko, Kovner, and Shachar (2020), who also investigate liquidity conditions in the

corporate bond market during the COVID-19 crisis, and the effects of the Fed’s interventions.3

Despite some overlap, the three papers differ (and complement one another) in several important

ways. For example, using the regulatory version of TRACE—which contains dealer identities—

O’Hara and Zhou (2020) document the heterogeneous response of different dealers to the Fed’s

interventions. This allows them to control for dealer fixed effects and to disentangle the effects of

the PDCF and the SMCCF, among other things. Boyarchenko et al. (2020) also use the regulatory

version of TRACE, along with data on the volume of bonds (or shares of ETFs) purchased by

2For related work on the behavior of credit risk/spreads throughout the crisis, and the effects of the Fed’s
interventions, see Nozawa and Qiu (2020) and D’Amico, Kurakula, and Lee (2020).

3In more recent work, Gilchrist, Wei, Yue, and Zakrajšek (2020) quantify the effects of the SMCCF on credit
spreads and transaction costs using a regression discontinuity approach. Using a different methodology to construct
their sample, they find qualitatively similar results regarding the effects of the SMCCF on transaction costs for eligible
and ineligible bonds, though their quantitative magnitudes differ from ours. We discuss this further in Section 3.
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the Fed’s corporate credit facilities. This allows them to decompose the effects of the Fed’s

interventions into direct “purchase effects” and indirect “announcement effects.”4

While our paper makes a number of distinct contributions relative to these contemporaneous

studies, we highlight several aspects of our analysis that are particularly important. First, our ap-

proach to measuring trading conditions accounts for two channels through which market liquidity

can deteriorate—customers can face higher transaction costs or longer waiting times for executing

a trade—and hence provides a multi-dimensional assessment of market conditions during the crisis.

Second, in contrast with the papers cited above, we develop a theoretical framework that, when

combined with our empirical estimates, allows us to construct quantitative estimates of the shocks

that precipitated the COVID-19 crisis.5 Finally, we use these estimates of shocks to demand, along

with bounds on shocks to supply, to study the efficacy of various policy interventions, and the

implications for consumer surplus, at the height of the crisis and beyond.

2 Background

The COVID-19 Shock. Despite reports of a potentially lethal virus spreading in China, US

equity markets reached all-time highs on February 19, 2020. Just two weeks later, as the scope

of the COVID-19 coronavirus and the duration of its effects became apparent, financial markets

around the world entered a period of turmoil. For example, between March 5 and March 23, the

S&P 500 fell more than 25%. In the corporate bond market, the ICE Bank of America AAA US

Corporate Index Option-Adjusted spread increased by about 150 bps over this same period, while

the corresponding spread for high-yield (HY) corporate debt increased by more than 500 bps.6 As

the price of equities and debt plummeted, reports of illiquidity in key financial markets emerged.

4For more on the purchase effects of the SMCCF, see Flanagan and Purnanandam (2020).
5Along this dimension, our paper is related to Goldberg and Nozawa (2020), who use a structural VAR approach

to identify demand and supply shocks in the corporate bond market during (and after) the 2007-2009 financial crisis.
However, our identification strategy is different from theirs, as is our focus: their primary concern is the asset pricing
implications of liquidity supply shocks.

6See Ebsim, Faria-e Castro, and Kozlowski (2020) for a more comprehensive analysis of credit spreads during
this time period.

7



Such reports were especially troubling in the corporate bond market, as many large US firms would

almost surely need access to capital in light of the impending shocks to their balance sheets.7

Two complementary factors were cited as the root of the panic in the corporate bond market.

The first was a surge in the demand for immediacy, or so-called “dash for cash,” as investors pulled

out of corporate bond funds in droves. For example, Falato et al. (2020) report that, between the

months of February and March, the average corporate bond fund experienced cumulative outflows

of approximately 9% of net asset value—by far the largest outflows in the last decade. At the

same time, market participants reported that dealers were either unable or unwilling to supply

customers with immediacy by absorbing corporate debt onto their balance sheet. In a Wall Street

Journal article titled “The Day Coronavirus Nearly Broke the Financial Markets,” Baer (2020)

writes about the experience of Vikram Rao, the head bond trader of Capital Group, after calling

senior executives for an explanation on why broker-dealers wouldn’t trade:

[T]hey had the same refrain: There was no room to buy bonds and other assets and
still remain in compliance with tougher guidelines imposed by regulators after the
previous financial crisis [...] One senior bank executive leveled with him: “We can’t
bid on anything that adds to the balance sheet right now.”

Federal Reserve Interventions. In response to signs of illiquidity in several key financial mar-

kets, the Federal Reserve introduced a number of new facilities designed to bolster liquidity and

reduce trading costs. On the evening of March 17, the Federal Reserve revived the aforementioned

PDCF, offering collateralized overnight and term lending to primary dealers. By allowing dealers

to borrow against a variety of assets on their balance sheets, including investment-grade corporate

debt, this facility intended to reduce the costs associated with holding inventory and intermediating

transactions between customers.8

7Indeed, Darmouni and Siani (2020) document that corporate bond issuance reached historic levels in the Spring
of 2020, after the Fed’s interventions, despite a relatively healthy banking sector.

8In addition to the facilities that we highlight in our analysis here, it is also noteworthy that the Federal Reserve
temporarily relaxed the supplementary leverage ratio (SLR) rule—first on April 1 and again on May 15, 2020—
to ease balance sheet constraints and increase banks’ ability to lend to households and businesses. By excluding
US Treasury securities and reserves from the calculation of the SLR rule for holding companies, the rule change
was primarily intended to increase liquidity in the Treasury market. However, to the extent that it relaxed dealers’
balance sheet constraints, the effects could clearly extend to the corporate bond market as well, as we discuss later
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On March 23, the Federal Reserve proposed even more direct interventions in the corporate

bond market through the PMCCF and SMCCF. These facilities were designed to make outright

purchases of corporate bonds issued by investment-grade US companies with remaining maturity

of five years or less. The facilities were also allowed to purchase shares in US-listed exchange-

traded funds (ETFs) that invested in US investment-grade corporate bonds. On April 9, these

corporate credit facilities were expanded in size and extended to allow for purchases of ETFs that

invested in high-yield corporate bonds.9 Interestingly, though many of the effects of these corporate

credit facilities were observed immediately after they were announced (and expanded), the Federal

Reserve did not actually begin purchasing bonds until May 12. We provide a more detailed

description of this timeline, and of the Federal Reserve’s corporate facilities, in Appendix B.

3 Trading Conditions During the Pandemic

In this section, we describe how market conditions evolved from the sanguine conditions of mid-

February through the freefall of mid-March to the post-intervention recovery of April and May.

As a first step, we construct time series for several variables of interest: the cost of risky-principal

trades, the cost of agency trades, and the fraction of each type of transaction services. We document

that, at the height of the selling pressure, the cost of risky-principal trades surged and the fraction of

such trades dropped significantly. Conditions improved immediately after the Fed’s announcement

of the corporate credit facilities, with dealers providing liquidity directly, via risky-principal trades,

at significantly lower prices. To test the causal relationship between the Fed’s interventions and

market liquidity, we exploit the eligibility requirements for bond purchases by the SMCCF. We

find that, after the initial announcement, trading costs for eligible bonds fell substantially more

in the text. To read more about the rule change, see press releases on April 1, 2020 (https://www.federalreserve.
gov/newsevents/pressreleases/bcreg20200401a.htm) and May 15, 2020 (https://www.federalreserve.gov/newsevents/
pressreleases/bcreg20200515a.htm).

9The April 9 update also allowed the SMCCF to make direct purchases of bonds that had been downgraded from
investment-grade to high-yield status (so-called “fallen angels”) after March 22. The facility also allowed purchasing
of high-yield ETFs.
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than trading costs for ineligible bonds. Later, after the program was expanded in both size and

scope, we document more significant declines in trading costs for all bonds.

3.1 Data

We combine the standard TRACE data set (for 2020Q1) with the End-of-Day version (for 2020Q2).

We first filter the report data following the standard procedure laid out in Dick-Nielsen (2014). We

merge the resulting data set with the TRACE master file, which contains bond grade informa-

tion, and with the Mergent Fixed Income Securities Database (FISD) to obtain bond fundamental

characteristics. Following the bulk of the academic literature, we exclude variable-coupon, con-

vertible, exchangeable, and puttable bonds, as well as asset-backed securities, and private placed

instruments. We also exclude newly-issued and foreign securities.

For most of our analysis, we use the (filtered) data covering the period from January 2 to June

30, 2020, which contains 7.2 million trades and 30,748 unique bonds. Approximately 60% of the

transactions are identified as customer-dealer and 40% as interdealer trades. The average trade

size is $218,104 across all transactions, with average total daily volumes for customer-dealer and

interdealer trades of $7.25 billion and $3.13 billion respectively. It is worth noting that, in both the

standard and End-of-Day versions of TRACE, the trade size for investment-grade and high-yield

bonds is top-coded at $5 million and $1 million, respectively.10

In all of our plots below, we include vertical dashed lines to highlight several key dates:

February 19, when stock markets reached their all-time peaks; March 5, which marks the beginning

of the extended fall in equity prices and rise in corporate credit spreads; March 18, the first day

of trading after the announcement of the PDCF; March 23, the day that the PMCCF and SMCCF

were announced; April 9, the day that the size and scope of the corporate credit facilities were

expanded; May 12, the date that the SMCCF started buying bond ETFs; June 16, the day that the

SMCCF began purchasing individual bonds; and June 29, the date the PMCCF began operating.

10Table A1 in Appendix A presents additional summary statistics for our sample.

10



3.2 The cost of trading, fast and slow

To capture the average transaction cost for risky-principal trades, we use the measure of bid-ask

spreads proposed by Choi and Huh (2018), CH hereafter. To construct this measure, we first

calculate, for each customer trade, the spread

2Q× traded price− reference price
reference price

,

where Q is equal to +1 (−1) when a customer buys from (sells to) a dealer, and the reference

price is taken to be the volume-weighted average price of interdealer trades larger than $100,000

in the same bond-day. Importantly, we restrict our sample so that it only includes trades in which

the dealer who buys the bond from a customer holds it for more than 15 minutes. In doing so,

we leave out those trades where the dealer had pre-arranged for another party (either a customer

or another dealer) to buy the bond immediately.11 The measure of risky-principal trading costs is

aggregated at the bond-day level by taking the volume-weighted average of trade level spreads,

and then at the daily level by taking the average in each day across all bonds, weighted by bonds’

daily total volume of customer trades where the CH measure is available.

To capture the average transaction cost of agency trades, we calculate a modified version of

the Imputed Roundtrip Cost measure described in Feldhütter (2012). To construct this modified

imputed roundtrip cost (or “MIRC”), we first identify imputed roundtrip trades (IRT) by matching

a customer-sell trade with a customer-buy trade of the same size that takes place within 15 minutes

of each other.12 We exclude interdealer trades in constructing IRTs, so that each IRT only includes

one customer-buy trade and one customer-sell trade. Then, to compute the MIRC, we calculate

Pmax − Pmin
Pmax

,

11Likewise, in calculating reference prices, we follow CH and exclude interdealer trades executed within 15
minutes of a customer-dealer trade.

12In other words, as in earlier papers, we assume that customer-buys and customer-sells that occur in rapid
succession are likely to be agency trades. Indeed, in an agency trade, dealers search for counterparties on behalf
of customers. When counterparties are found, the two customers are matched by dealers, and two customer-to-dealer
trades are recorded in a short time window.
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where Pmax (Pmin) is the largest (smallest) price in the IRT. Within each bond and day, we calculate

the daily average roundtrip cost as the average of the bond’s MIRC on that day, weighted by trade

size. Finally, a daily estimate of average roundtrip cost is the average of roundtrip costs on that

day across all bonds, weighted by bonds’ total daily trading volumes in the matched IRTs.

Figure 1 plots the two time series, along with the difference between the two. The two

measures of transaction costs are relatively stable through February 19, with risky-principal trades

approximately twice as expensive as agency trades. Upon realization of the COVID-induced shock,

the cost of risky-principal trades rises dramatically, while the cost of agency trades is more muted.

In particular, between Thursday, March 5, and Monday, March 9, the cost of risky-principal

trades roughly triples, to approximately 100 bps; over these three trading days, the S&P 500

Index declined more than 12%. A week later, during the most tumultuous period of March 16-

18, this series continues to rise, reaching a peak of more than 250 bps, before beginning a steady

decline after the announcement of the SMCCF on March 23. The MIRC measure of agency trading

costs, in contrast, increases from a baseline around 8 bps to approximately 28 bps, before receding

slightly after the Fed’s intervention.

One can see that the cost of risky-principal trades, which we interpret as the cost of trading

immediately, was considerably more responsive to both the heightened selling pressure induced

by the pandemic in mid-March and the Fed’s interventions which followed. Moreover, despite

considerable improvement in both metrics during the month of April, the cost of risky-principal

trades remained elevated through June, which suggests that liquidity conditions remained some-

what strained well after markets appear to have calmed.

Of course, the change in spreads could be driven by a change in the composition of bonds that

were traded during this period of distress. For example, perhaps trading volume was unusually

high for retail-size trades of illiquid bonds, which typically involve higher transaction costs. Thus,

to further clarify the impact of the crisis and ensuing interventions on the cost of risky-principal

and agency trades, we turn to formal regressions that allow us to control for bond- and trade-level
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Figure 1. Transaction costs: Risky-principal vs. agency trades. This figure shows the time-series of trading costs
for risky-principal trades in red and agency trades in blue, and their difference in green.

fixed effects. We consider the following specification

yijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt. (1)

The dependent variable, yijt, represents the transaction cost for a type j ∈ {risky-principal, agency}

trade of bond i on day t. The dummy variables Crisist and Interventiont allow us to distinguish

between three sub-periods: (i) Pre-crisis, which corresponds to dates before March 5, 2020; (ii)

Crisis, which covers the period March 5–23, 2020; and (iii) Intervention, which covers the period

after March 23. Hence, the coefficients β1 and β2 measure transactions costs relative to the pre-

crisis period. Finally, αi and αs represent bond and trade size fixed effects, respectively. Bond fixed

effects capture bond characteristics that are fixed over time such as industry, par amount, etc.13 For

13We do not have access to the latest credit rating data for all bonds in our sample, just the binary IG/HY
classification provided by TRACE. For the sub-sample of bonds where the credit rating is available, we include a
credit rating fixed effect in specification (1) to control for potentially time-invariant nature of bond credit ratings.
From Table A2 in Appendix C, we see that controlling for bond credit rating leads to very similar results to those in
Table 1.
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trade size fixed effects we consider three categories: less than $100,000, between $100,000 and $1

million, and larger than $1 million.

Table 1 presents results for all bonds, as well as the sub-sample of bonds issued by US firms.14

We include bond and size category fixed effects and cluster standard errors at the bond and day

levels in all regressions to account for correlation over time within a bond and across bonds in a

given day. Columns (1) and (3) reveal that, during the crisis period of March 5-23, average bond-

level trading costs for risky-principal and agency trades increased by approximately 105 bps and

9 bps, respectively, relative to the pre-crisis period. After the Fed’s interventions on March 23,

trading costs for risky-principal trades fell by approximately 64 bps—more than half the initial

spike—while transaction costs for agency trades declined much more modestly. These results are

consistent with the aggregate results in Figure 1. Columns (2) and (4) show that the sub-sample of

US-issued bonds exhibits roughly the same behavior as the sample of all bonds, though the cost of

agency trades for US-issued bonds increased slightly more during the crisis period.

3.3 Substituting agency trades for risky-principal trades

We now establish that, as the premium for risky-principal trades increased, customers responded

by substituting towards agency trades. Figure 2 plots the proportion of agency trades by number

(left axis) and volume (right axis).15 During the most tumultuous weeks of trading, between March

5 and March 23, the fraction of agency trades (measured by both number and volume) increased by

as much as 15 percentage points, trough to peak, before receding after the March 23 announcement

of the corporate credit facilities. Again, this shift toward agency trades has important implications

for assessing market liquidity. In particular, if one were simply to measure trading costs across all

trades, they would underestimate the erosion in liquidity as the composition of trades shifted from

faster, more expensive risky-principal trades to less costly, but slower agency trades.

To study the substitution from risky-principal to agency trades more carefully, we consider a

14One reason we include the results for the US sub-sample is to demonstrate that the trading cost patterns are
similar to the full sample. This is helpful later, in Section 3.5, when we focus on the US sub-sample exclusively.

15We discuss how we identify agency trades in depth in Appendix A.
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Figure 2. Proportion of agency trades. This figure plots the fraction of agency trades by volume in red (right axis)
and by number in blue (left axis).

regression with the following specification:

Agencyijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt, (2)

where Agencyijt is an indicator variable that takes the value one if trade j for bond i on day t is

an agency trade and zero otherwise. The variables on the right-hand side of specification (2) are

the same as in (1). Under this specification, the coefficients β1 and β2 measure the change in the

probability of an agency trade during the crisis and intervention periods, respectively, relative to

the pre-crisis period. Table 2 presents results using a linear probability model (OLS), along with

logit and probit specifications for robustness.

Column (1) reveals that, during the crisis period of March 5–23, the probability of an agency

trade for a given bond, on average, rose by 4.3 percentage points relative to the pre-crisis period.

After the Fed interventions on March 23, this probability decreased from the crisis period (by 160

bps) to 2.7 percentage points higher than the pre-crisis period. For the sake of completeness, we
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report marginal effects calculated at the sample means for logit and probit models in columns (2)

and (3); the results are very similar to the linear probability model (OLS) in column (1).16

3.4 Dealers’ inventory accumulation

As the relative price of risky-principal trades spiked in mid-March, and customers substituted

towards agency trades, one might naturally wonder: who was providing liquidity in the corporate

bond market? Were dealers “leaning against the wind” and absorbing some of the inventory during

the selloff? Or was the shift to agency trades sufficiently large that other customers were ultimately

providing liquidity? To answer this question, we construct a measure of the (cumulative) value of

bonds that were absorbed over time by the dealer sector. In particular, using the daily Market

Sentiment data from FINRA, we subtract the value of bonds that dealers sell to customers from the

value of bonds that they buy from customers each day, and then calculate the cumulative sum of

the net changes.17 Figure 3 plots the cumulative net change in inventory held in the dealer sector,

both in levels (left axis) and as a fraction of pre-crisis outstanding supply (right axis).

Several aspects of Figure 3 are striking. First, during the most tumultuous period of trading,

the dealer sector absorbed, on net, no additional inventory despite the considerable selling pressure

from customers. In fact, dealers actually reduced inventory holdings and became net sellers.

Hence, during this period, it was indeed other customers that were supplying liquidity to the

market. Second, dealers’ reluctance to absorb inventory appears to have changed substantially

around the dates corresponding to the Fed’s announcement of the Primary Dealer Credit Facility

(March 18) and the Primary and Secondary Market Corporate Credit Facilities (March 23). Lastly,

dealers continued to accumulate inventory through April and May. Indeed, from March 18, the

16For the interested reader, we also report results from a linear probability model that distinguishes between eligible
and ineligible bonds for the SMCCF in Appendix C. We find that the shift towards agency trades was more pronounced
among bonds that were eligible for the Fed’s purchasing program.

17The Market Sentiment data is available through FINRA TRACE Market Aggregate Information from https:
//finra-markets.morningstar.com/BondCenter/TRACEMarketAggregateStats.jsp. We use this data, as opposed to the
standard or End-of-Day TRACE data, because it is not top-coded and hence allows for a more accurate assessment of
the inflow and outflow of bonds in the dealer sector.
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Figure 3. Cumulative inventory change in the dealer sector. This figure plots the cumulative inventory change
in the dealer sector in billions of USD (left axis) and as a fraction of total supply in % (right axis). Source: FINRA
market sentiment tables.

data indicates that dealers absorbed more than $50 billion in corporate debt, or roughly doubled

their inventory holdings relative to pre-pandemic levels.18

3.5 The effects of the Fed’s intervention

The results above suggest that the Fed’s interventions—in particular, the March 23 announcement

of the SMCCF—had a significant effect on dealers’ willingness to absorb inventory onto their bal-

ance sheets, and hence on market liquidity. In this section, we exploit the eligibility requirements

specified in the SMCCF to test this hypothesis more formally.

According to the original term sheet, a bond is eligible to be purchased through the SMCCF

if it has an investment-grade rating on March 23, 2020; if it has a time-to-maturity of five years

or less; and if its issuer is domiciled in the US.19 However, the Fed has a considerable degree

18From Table L.130 of the Flow of Funds, at the end of 2019Q4, security brokers and dealers held $54 billion in
corporate and foreign bonds on the asset side of their balance sheets.

19The original March 23 term sheet can be found at https://www.federalreserve.gov/monetarypolicy/smccf.htm.
Initially, there was an additional eligibility criterion for the SMCCF on March 23: eligible issuers excluded firms that
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of discretion to determine whether a foreign issuer is domiciled in the US. Indeed, in the Fed’s

SMCCF transaction-level disclosures, we found many cases in which the holding firm of the

security is a non-US entity.20 Given this lack of clarity, we chose to focus on US firms exclusively,

and classify a bond as eligible based on credit rating and time-to-maturity alone.21

To start, we repeat the regression specified in (1) with two modifications. First, we separate

the sample of bonds into those that were eligible for purchase through the SMCCF and those that

were not. Second, we separate the intervention period into two sub-periods. The first sub-period,

which we call the “SMCCF,” covers from March 23-April 8, 2020. During this period, it appeared

that only investment-grade bonds would be eligible for purchase. The second sub-period, which

we call the “SMCCF expansion,” starts on April 9, when the Fed announced that it was increasing

the size of the program and expanding the set of eligible bonds to include high-yield debt.

Table 3 reports the results. Column (2) reveals that the initial decline in trading costs was

largely driven by bonds that were eligible for the SMCCF: the price of risky-principal trades for

ineligible bonds declined much more modestly immediately after the March 23 announcement,

relative to the crisis period, while the price of agency trades for ineligible bonds actually increased

during this time period. After the program was expanded on April 9, in both scope and size, the

price of risky-principal trades for all bonds declined significantly.

To further explore the causal effect of the SMCCF on bond market liquidity during the crisis,

we consider a difference-in-differences regression over a sub-sample of our data from March 6 to

April 9, 2020. These dates are chosen to exclude the pre-crisis period, when spreads were very low,

and the post-expansion period, when the set of bonds available for purchase through the SMCCF

was widened to include high-yield bonds. In particular, we use the specification

yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt, (3)

were expected to receive direct financial assistance from the then-pending CARES Act. This criterion (and others)
were later added to the SMCCF term sheet on April 9. See Appendix B for more details.

20SMCCF transaction-level disclosures are available at https://www.federalreserve.gov/monetarypolicy/smccf.htm.
We provide additional details of this issue, including examples, in Appendix A.

21Recall from Table 1 that transaction costs for US firms behaved very similarly to all bonds in our sample.
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where, as before, yijt represents our measures of transaction costs; Eligiblet takes the value of 1

if the bond in trade j has an investment-grade rating and time-to-maturity of five years or less on

March 23, 2020; SMCCFt takes the value of 1 if the trade occurs between March 23 and April 9,

2020; and αs controls for size fixed effects.22

Unlike specification (1), we do not include bond fixed effects in the baseline specification (3),

but instead control for industry fixed effects (αk) and bond-specific characteristics such as bond

age, amount outstanding, and time-to-maturity (Xi,t). However, for robustness, we also include

results allowing for bond fixed effects, as well as credit rating fixed effects. To ensure that treatment

and control groups do not overlap, we remove all trades in bonds that were downgraded from IG

to HY. Finally, we drop all foreign bonds and focus only on bonds issued by US firms.

Table 4 contains our results. As is standard in difference-in-differences regressions, β1 is the

primary coefficient of interest. The first key takeaway is that the SMCCF had a significant effect

on the cost of risky-principal trades for eligible bonds relative to ineligible bonds. The quantitative

magnitude of this effect is approximately 50 bps, and is robust to a variety of alternative speci-

fications. For example, in column (2) we include a credit rating fixed effect, which allows us to

control for differences in average transaction costs using finer definitions of credit rating than IG

or HY (e.g., AAA, AA, and so on), but has relatively minor effects on β1. In columns (3) and (4),

we allow for bond-specific fixed effects, which increases the explanatory power of the regressions

(i.e., R2) but does not significantly change the estimates of β1.

The second noteworthy result is that, for risky-principal trades, β2 is not statistically different

from zero under any of our specifications. Hence, it appears that the announcement of the initial

SMCCF did not have significant spillover effects on the cost of risky-principal trades for ineligible

bonds. However, this does not rule out the potential for spillover effects from the actual purchase

22One potential complication in distinguishing between eligible and ineligible bonds based on maturity is that the
criteria for eligibility are determined at the Fed’s time of purchase. Therefore, for example, a bond that would be
characterized as ineligible when the SMCCF was announced on March 23, 2020, might, in fact, be purchased by
the Fed in November 2020 (since the program remained active until December 31, 2020). To make sure that this
complication does not affect our main results, in Tables A9–A12 in Appendix C.4, we recreate Tables 1–4, leaving out
all trades involving bonds with maturity 5-6 years on March 23, 2020. Since these bonds represent a small fraction of
our transactions, it turns out that our results are largely unaffected.
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of eligible bonds, which began on May 12, 2020. In particular, by purchasing bonds and relaxing

dealers’ balance sheet constraints, the SMCCF could potentially increase dealers’ willingness to

purchase any bond. If this is true, then some of the post-expansion decline in the costs of risky-

principle trades for ineligible bonds (reported in Table 3) could be attributed to spillover effects

from the Fed’s bond purchases.

Columns (5)–(8) indicate that the announcement of the SMCCF on March 23 also reduced the

cost of agency trades for eligible bonds.23 One possible explanation is that, by establishing itself

as a buyer of last resort, the Federal Reserve reduced the risk to private investors from purchasing

eligible corporate bonds. According to this logic, it is possible that the announcement of the

SMCCF made it easier for dealers to locate customer-buyers, hence reducing the spreads they

charged on agency trades for eligible bonds. Note that this mechanism could also explain why

the cost of agency trades for ineligible bonds went up in the immediate aftermath of the SMCCF

announcement: if budget-constrained customers substituted from ineligible to eligible bonds, it

would become more difficult for dealers to locate customer-buyers for ineligible bonds, driving

spreads up.

In Appendix C, we provide several additional robustness checks for the results discussed above.

In particular, in Tables A4 and A5, we show that the impact of the SMCCF on the trading cost of

eligible bonds is even more pronounced if we limit our sample to those bonds that are just above

and below the eligibility thresholds for and credit rating, respectively. In addition, in Tables A6–

A8, we show that small and large trades are responsible for the entire liquidity improvement

documented in Table 4: small trades (with par volume of $100,000 or less) become much more

liquid after the SMCCF announcements, while large trades (with volume larger than $1 million)

also exhibit a significant decline in trading costs. Odd-lot trades (with volume between $100,000

and $1 million), however, are essentially unaffected by the Fed’s intervention.

23Note that, looking at the overall effect (β1+β2+β3), column (6) indicates that, after controlling for credit rating,
the cost of agency trades for eligible bonds decreased after SMCCF announcement.
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4 A structural analysis

The empirical analysis above highlights that the US corporate bond market experienced a signif-

icant decline in liquidity at the onset of the COVID-19 crisis, which was partially reversed by

the Fed’s interventions. Though informative, the facts we document leave several key questions

unanswered. What was the nature of the shocks that led to a lack of liquidity? Why did the

policies that were implemented appear to restore liquidity relatively quickly, but only partially?

And how did these shocks and the ensuing interventions affect the well-being of the customers in

this market?

To confront these questions, we now construct a parsimonious equilibrium model of the market

for immediacy and use it to conduct a structural analysis of our empirical observations. Our

analysis reveals that, at the onset of the crisis, the market was hit by large shocks to both customers’

demand for immediacy (the “dash for cash”) and dealers’ willingness to supply it. After the

announcement of the Fed’s key policy interventions, the demand shock subsided relatively quickly,

and fully, while the supply shock recovered more gradually, and only partially. Relative to the pre-

crisis period, we find that the loss in consumers’ surplus from immediacy was less pronounced than

the increase in the relative price of immediacy, pht−plt, but remained suppressed well after markets

had calmed. In fact, we find customers’ net utility from upgrading to faster, risky-principal trades

remained approximately 10 basis points below pre-crisis levels even at the end of June, 2020.

4.1 A theoretical framework

There are two types of agents: a measure N of customers and a measure one of dealers, all of

whom are price takers. Each customer seeks to trade one share of an asset. We do not distinguish

between purchases and sales; this simplification allows us to study the determinants of transaction

costs, though it is worth noting that our model is silent on the determinants of the asset’s price.

Since there areN customers with unit demand, the aggregate demand for transactions is exogenous

and equal to N . However, while the total number of transactions is exogenous, the composition
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is not. Namely, we assume that customers demand vertically differentiated transaction services

supplied by dealers at a convex cost: low-quality (l) transaction services, interpreted as agency

trades, and high-quality (h) transaction services, interpreted as risky-principal trades.

Customers have quasi-linear utility for transaction services and for cash. Specifically, the

problem of a customer is to choose how much low- and high-quality transaction services to demand

from dealers at each time t in order to solve

max
xlt,xht

u(xlt, xht) + θtxht − pltxlt − phtxht

sub. to xlt + xht = 1. (4)

We assume that u(xlt, xht) is increasing, concave, twice continuously differentiable, and satisfies

uh(xlt, xht) − ul(xlt, xht) ≥ 0, where the h and l subscripts denote first partial derivatives with

respect to xht and xlt, respectively. This condition simply means that the customer values high-

quality transaction services more than low-quality transaction services. The shock θt in the objec-

tive captures time variation in customer’s utility for upgrading agency trades into risky-principal

trades, or what we call their demand for immediacy.24

Assuming interior solutions, the first-order optimality conditions can be written

pjt = uj(xlt, xht)− λt + 1{j=h}θt, j ∈ {l, h}, (5)

for some multiplier λt on the constraint xlt + xht = 1.

On the other side of the market, dealers choose their supply of transaction services, Xlt and

Xht, in order to maximize profits,

pltXlt + phtXht − C(Xlt, Xht),

24One could also add a time varying constant to the objective, capturing time variation in the utility for all
transaction services, agency or risky principal. But since this constant would not appear in the first-order conditions,
it would not change the demand analysis below.
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where C(Xlt, Xht) is some continuous, convex, and twice continuously differentiable cost func-

tion. This leads to the first-order optimality conditions

pjt = Cj(Xlt, Xht), j ∈ {l, h}. (6)

Finally, the market clearing conditions for transaction services are simply

Xjt = Ntxjt, j ∈ {l, h}. (7)

An equilibrium is thus described by a sequence {x?lt, x?ht, X?
lt, X

?
ht, p

?
lt, p

?
ht} satisfying equations

(4)–(7) at each time t.

4.2 Comparative statics

Combining the assumption of fixed-size demand, (4), with the customers’ first-order optimality

conditions in (5), we can express customers’ demand for immediacy as a single equation in two

unknowns, (pht − plt) and xht:

pht − plt = uh(1− xht, xht)− ul(1− xht, xht) + θt. (8)

This equation defines the inverse demand for immediacy: the relationship between the price

premium for risky-principal trades and customers’ marginal utility for upgrading from slow, agency

trades to fast, risky-principal trades. As anticipated above, θt is a demand shock that generates a

parallel shift of this inverse demand curve.

Exploiting the market clearing conditions in (7), in conjunction with (4) and (6), similar steps

reveal an equation that captures the dealers’ willingness to supply immediacy:

pht − plt = Ch (Nt(1− xht), Ntxht)− Cl (Nt(1− xht), Ntxht) .
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Hence, the equilibrium characterization reduces to a price premium, pht − plt, and a fraction of

risky-principal trades, xht, that lies at the intersection of these demand and supply schedules.

This simple representation offers a parsimonious, transparent framework to analyze the effects

of various types of shocks. First, shocks to consumers’ relative preference for immediate, risky-

principal trades, as captured by θt, shift the demand for immediacy but not the supply. As is evident

from Figure 4a, a positive innovation to θt induces an increase in the relative price of risky-principal

trades, along with an increase in the equilibrium fraction of such trades.

Alternatively, under natural conditions,25 a surge in customer-to-dealer trading volume, as

captured by an increase in Nt, has no effect on each customer’s demand for immediacy, but causes

an upward shift in the supply curve, as providing risky-principal transaction services becomes

more costly as the total volume of transaction services grows. Of course, any shock to the cost

function C(·, ·)—perhaps due to an increase in intermediaries’ risk aversion or cost of funding—

would engender a similar shift in the supply curve. As is evident from Figure 4b, an upward shift

in dealers’ supply curve causes an increase in the price premium paid for risky-principal trades,

but a decrease in the equilibrium fraction of such trades.

ph − pl

xh

D

D′

S

θ

(a) Shock to customers’ preferences

ph − pl

xh

D

S

S ′

N

(b) Shock to dealers’ cost

Figure 4. Demand and supply shocks.

25For the interested reader, we spell out these conditions in Appendix D.
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4.3 Estimating the model

In the data, we observed, simultaneously, an increase in the price premium pht − plt (Figure 1)

and a decrease in the fraction of risky-principal trade xht (Figure 2). According to the model, this

is indicative of a supply shock. As noted above, a supply shock could have been generated by an

increase in the total volume of transaction services which, when combined with binding balance

sheet constraints, would make it more costly for dealers to supply risky-principal trades. Indeed,

Figure 5 illustrates that customer-to-dealer volume was about 50 percent higher during the crisis,

relative to the (average in the) same months in 2016-2019. The figure also shows that the increase

in volume was quite persistent, remaining above normal levels through the summer.
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Figure 5. Customer-to-dealer volume. This figure plots the monthly volume of customer-to-dealer trades for 2020
and the 2016–2019 average in billions of USD.

However, the data does not rule out shocks to the demand for immediacy (θt), as it is entirely

possible that both the inverse supply and demand curves shifted in the same direction. To separately

identify demand from supply shocks, we proceed in two steps. In this section, after imposing a

specific functional form on customers’ preferences, we estimate the parameter that determines the

shape of the inverse demand curve by exploiting shifts to the supply curve that occurred during

periods outside of the crisis, i.e., in “normal” times. Then, in Section 4.4, we use our estimated
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inverse demand curve to decompose movements in the price premium and the fraction of risky-

principal trades during the crisis into movements that occur along the demand curve—caused by

shocks to the cost function, including innovations to Nt—and movements caused by innovations

to θt, which shift the demand curve.

We plot this basic intuition in Figure 6. Note that this strategy is, by construction, largely

independent of the shape of the supply curve and the nature of the shocks that shift it. However, by

separately identifying shocks to the demand for immediacy from shocks to supply, we can study

how the two responded differently to policy, and the quantitative implications for consumer surplus

from immediacy throughout the pandemic, which we do in Sections 4.4 and 4.5, respectively.

ph − pl

xh

Dnormal

Dcrisispost-crisis

pre-crisis

crisis

θ

Figure 6. Identifying relative preference shocks, θ.

Parametric specification. Since xh and xl represent the market shares of high- and low-quality

transactions in a vertically differentiated market, respectively, a natural choice for the demand

curve is a logit specification.26 In particular, we assume that, for each dollar of transaction service,

the utility function of a consumer is given by

θtxht − σ [xlt log(xlt) + xht log(xht)] . (9)

26Classic references for this specification include McFadden (1973), Anderson, De Palma, and Thisse (1992), and
Berry (1994).
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It is well known (see, e.g., page 77 of Anderson et al., 1992) that this specification is equivalent

to assuming that, for each dollar of transaction services, a consumer chooses between agency and

risky-principal trades with net utilities 1−plt+εlt and 1+θt−pht+εht, respectively, where εlt and

εht are independently and identically distributed (IID) over time and across consumers according

to Gumbel distribution with location parameter zero and scale parameter σ.27

Given this parametric assumption, the inverse demand for immediacy takes a log-linear form:

pht − plt = −σ log (xht/xlt) + θt. (10)

As one would expect, a larger price premium, pht − plt, results in a lower demand for risky-

principal trades, xht. In addition, one sees that the shape of the demand curve depends on just one

semi-elasticity parameter, σ.

As is well known, a simple OLS regression of the price premium pht − plt on log quantities,

log(xht/xlt), would yield a biased estimate of σ, since relative quantities are, in general, correlated

with the relative demand shock θt. Hence, we use an instrumental variable (IV) approach to

estimate the parameter of interest, σ.

To do so, consider an arbitrary instrument Zt for the log relative quantities log(xht/xlt). Using

the inverse demand specification in (10), one easily sees that

βIV = − Cov (Zt, pht − plt)
Cov (Zt, log(xht/xlt))

= σ − Cov (Zt, θt)

Cov (Zt, log(xht/xlt))
.

Hence, as is well known, βIV is an unbiased estimator of σ when the instrument Zt is uncorrelated

with the demand shock θt.

A binary IV approach. Consider observations about prices and relative quantities in two peri-

ods: a pre-crisis period, such as January 2020; and a post-crisis period, such as June 2020. Suppose

27In Appendix E, we provide a more detailed derivation of the logit demand function in a discrete choice
framework.
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the instrument Zt takes the value zero in the pre-crisis period and 1 in the post-crisis period. Since

Cov(Zt, θt) = Pr(Zt = 1)(1− Pr(Zt = 1)) (E [θt | Zt = 1]− E [θt | Zt = 0]) ,

it follows that an IV estimate based on Zt is consistent if E [θt | Zt = 1] = E [θt | Zt = 0]. In

other words, as long as the relative demand shock in the post-crisis period has returned to its

pre-crisis average, then it is uncorrelated with the binary instrument, Zt. Of course we also need

the binary instrument to be relevant, i.e., correlated with the relative quantities. However, this is

verified empirically because, as shown in Figure 2, relative quantities in the post-crisis period are

lower than in the pre-crisis period. We interpret this observation as follows: as shown in Figure 5,

trading volume in June remained elevated relative to pre-pandemic levels, which, in our model,

shifts the marginal cost of providing transaction services, creating a supply shock. In equilibrium,

the relative quantities demanded by consumers are reduced along a fixed demand curve.

The binary IV approach leads to the following candidate estimate

σ̂ = −

1

T1

∑
t :Zt=1

(pht − plt)−
1

T0

∑
t :Zt=0

(pht − plt)

1

T1

∑
t :Zt=1

log(xht/xlt)−
1

T0

∑
t :Zt=0

log(xht/xlt)
,

where T0 and T1 are the lengths of pre- and post-crisis periods in days, respectively. For the

estimation, we set the pre-crisis period to run between January 15, 2020 and February 14, 2020,

and the post-crisis period to run between June 1, 2020 and June 30, 2020. We obtain an estimate

of σ̂ = 100.09 with a standard deviation of 15.40.28

28Our assumption that θt returned to pre-crisis levels by June 2020 is supported by a variety of empirical evidence.
For example, consistent with our own findings, Haddad et al. (2020) document that the severe dislocations in the
corporate bond market disappeared soon after the Fed’s interventions. Falato et al. (2020) and Ma et al. (2020) offer
further evidence, establishing that bond mutual funds and ETFs experienced record inflows in April and May after
massive outflows in March 2020. However, for robustness, we perform a second binary IV estimation that does not
rely on the assumption that EJan [θt] = EJun [θt], but rather that θt had settled down to some (arbitrary) level by May
2020. In particular, we assume that the average value of θt in the first half of May is equal to the average value in the
second half of June, and repeat a similar estimation procedure to the one described above. We arrive at an estimate
of σ̂ = 80.06, within 1.3 standard deviations of our initial binary IV approach. We provide more details about both
binary IV estimations in Appendix F.
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A high-frequency IV approach. An alternative approach to estimating σ is to use high fre-

quency variation in trading conditions that affect prices and quantities but are unlikely to be

attributable to aggregate shocks to customers’ preferences for risky-principal trades. According

to our theory, changes in Nt—which could equivalently represent the total volume of trade or the

total number of trades (since trade size is fixed)—change the dealers’ cost of supplying transaction

services, but do not change individual consumers’ relative demand for risky-principal trades.29

Hence, we consider two instruments to measure deviations in the quantity of customer-dealer

trading: one based on trading volume and the other based on the number of trades in each day.

Importantly, we exclude the crisis period March 1, 2020 to April 15, 2020, as shocks to relative

demand during this period are likely significant and correlated with changes in both measures of

Nt. We seasonally-adjust and detrend (by adding month dummies) log(Nt) for both measures, so

that shocks represent the residual deviation. After constructing these series, the formal exclusion

restriction for the IV estimate to be consistent is Cov (log(Nt), θt) = 0. Relative to the first binary

IV, this approach has one advantage: it does not assume that the relative demand shock θt has

returned to normal in June.

Table 5 presents the estimates of σ that emerge from our high frequency IV. The estimates

range from 70 to 73 depending on the instrument, falling near the lower bound of the confidence

interval of the binary-IV estimates.30

29Intuitively, one could imagine that dealers cannot fully adjust the size of their balance sheets or their trading
infrastructure in the short term (our time period is a day). Thus, in the short run, an increase in the number of market
participants or trading volume could put upward pressure on dealers’ cost of providing immediacy, changing the
relative prices of risky-principal and agency trades without shifting relative demand. Importantly, note that we are
assuming that innovations to Nt are uncorrelated with customers’ relative demand for risky-principal trades, and not
with customers’ aggregate demand for transaction services.

30As a robustness check, in Appendix F, we combine both our instruments and estimate the overidentified system
using two-stage least square (2SLS). We also provide first-stage results for each IV regression verifying that each one
is a valid instrument. For our 2SLS where we use both number and volume as instruments, we provide test statistics
for the Sargan-Hansen test of overidentifying restrictions.
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4.4 Demand Shocks, Supply Shocks, and Policy Implications

In this section, we discuss our model’s (qualitative and quantitative) implications for the relative

importance of shocks to customers’ demand for immediacy and dealers’ willingness to supply it

over the course of the COVID-19 crisis and the interventions that followed.

To start, given an estimate of the semi-elasticity parameter σ, along with the time series for the

price premium (pht − plt) and the ratio of agency trades to risky-principal trades (xlt/xht), we can

infer the sequence of shocks to customers’ relative demand for risky-principal trades (θt). Using

our estimate of σ from the binary IV described above, σ̂ = 100.09, Figure 7 plots the time series

relative to a pre-crisis benchmark, θt− θ0, where θ0 is the inferred value of θ on January 2, 2020.31

st
oc

k
m

ar
ke

tp
ea

k

st
oc

k
m

ar
ke

tt
ro

ug
h

PD
C

F

P/
SM

C
C

F
an

no
un

ce
d

P/
SM

C
C

F
ex

pa
nd

ed

SM
C

C
F

be
ga

n
bu

yi
ng

E
T

Fs

SM
C

C
F

be
ga

n
bu

yi
ng

bo
nd

s

PM
C

C
F

be
ga

n
op

er
at

in
g

0

50

100

150

200

Feb
-19

M
ar-

05

M
ar-

18

M
ar-

23

Apr-
09

M
ay

-12

Ju
n-1

6

Ju
n-2

9

C
ha

ng
e

in
re

al
tiv

e
de

m
an

d
sh

oc
ks

,θ
t
−
θ 0

(b
ps

)

Figure 7. The change in the estimated relative demand shocks for risky-principal trades. This figure plots the
time-series of the change in the estimated relative demand shocks for risky-principal trades relative to a pre-crisis
benchmark on January 2, 2020, θt − θ0, implied from Equation (10). Plus/minus two standard deviation bands are
shown in gray. The shaded areas correspond to the early and late periods used to estimate the semi-elasticity parameter
σ.

Not surprisingly, the figure reveals that θt experiences a dramatic increase during the most

tumultuous weeks of March. In fact, our estimates suggest that customers’ willingness to pay
31Our results are largely independent of which estimate we use, as is clear from the error bands in the plots. This

is because the estimate of σ̂ from the high-frequency IV estimation lies within two standard deviations of the estimate
from the binary IV, and because log quantities vary less than the price premium.
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for each inframarginal unit of risky-principal trade (rather than an agency trade) increased by

approximately 200 bps at the height of the crisis, before receding quickly after the announcements

of the Fed’s interventions. To give a sense of the effect of this shock, note that we can decompose

the change in the price premium if we assume that supply is perfectly inelastic:

pht − plt − (ph0 − pl0) = θt − θ0 + σ [log (xlt/xht)− log (xl0/xh0)] .

In general, this decomposition depends on the relative elasticity of demand and supply. However,

we believe that the case of a perfectly inelastic supply is a natural benchmark, for two reasons.

First, it delivers an upper (lower) bound for the contribution of demand (supply) shocks to the

price premium. Second, the assumption of an inelastic supply accords with reports of binding

balance-sheet constraint at the height of the crisis, and is seemingly confirmed by our evidence on

dealers’ inventory accumulation from Figure 3.

According to this decomposition, a large portion of the spike in the cost of risky-principal

trades (relative to agency trades) at the height of the crisis can be explained by relative demand

shocks. For example, the average value of pht − plt over the time period March 5-April 9 was

75 bps higher than the value on January 2. The portion of this increase in the price premium that

can be explained by the demand shifter was 58 bps, or approximately 75%. Hence, our results are

consistent with other studies that highlight the “dash for cash” as an important driver of the turmoil

in the corporate bond market (such as Falato et al., 2020; Ma et al., 2020; Haddad et al., 2020).

However, an increase in the demand for immediacy alone would generate an increase in xh, as

in Figure 4a, which is opposite of what we observe in the data. Therefore, a second key takeaway

from our analysis is that the onset of the pandemic must have also induced a negative shock to

dealers’ willingness to use their balance sheet space to accommodate the surge in selling pressure.

Indeed, within the context of Figure 6, our results suggest that the relative supply of risky-principal

trades would have to experience a significant shift to the left in order to induce a drop in xh.

Thus, in addition to a surge in customers’ demand for immediacy, our analysis reveals an equally
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important shock to dealers’ costs of supplying immediacy; simply put, matching the data on prices

and quantities requires an increase in the expected cost of dealers adding inventory to their balance

sheets, as documented in the Treasury market by He et al. (2020).32

Finally, studying the behavior of the series {θt, pht − plt, xht} against the timeline of the Fed’s

interventions reveals important, new insights into the channels through which various policies

impacted market liquidity. To start, the time path of relative preference shocks suggests that the

announcement of the Fed’s interventions was enough to halt and reverse the “dash for cash” that

began in the second week of March. To explore the relationship between customers’ preferences

and the Fed’s interventions in greater depth, we can estimate the time path of θt separately for

those bonds that were eligible vs. ineligible for purchase according to the March 23 announcement

of the corporate credit facilities; Figure 8 plots the results.33 The figure reveals that the Fed’s

announcement had a more immediate impact on the relative demand for risky-principal trades of

eligible bonds, relative to ineligible bonds. Taken together with the results in Table 4, it appears that

the expectation of price support from the Fed played an important role in halting the rush among

customers to liquidate corporate debt immediately, and thus helped to reduce bid-ask spreads for

risky-principal trades.

After the dash for cash subsided, and the demand curve shifted down, we observe that xh does

not decrease, but rather increases slightly. Hence, it must be that the announced interventions also

reduced dealers’ perceived cost of supplying risky-principal trades, shifting their supply curve to

the right and inducing them to absorb inventory onto their balance sheet, as documented in Figure

3. However, the fact that the price premium and the fraction of agency trades remained elevated,

even months after the initial shock appears to have passed, suggests that the supply curve did not

return to its original location, i.e., that balance sheet costs remained higher than pre-crisis levels

despite calmer markets and the Fed’s interventions. These costs could derive from persistently

32Studying the market for mortgage-backed securities (MBS), Chen et al. (2020) also find that the combined
liquidity constraints of customers and dealers are responsible for the severe price dislocations observed during the
COVID-19 pandemic.

33We provide more details about estimated preference shocks for eligible and ineligible bonds in Appendix G.
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Figure 8. The change in the estimated relative demand shocks for risky-principal trades for eligible and
ineligible bonds. This figure plots the time-series of the change in the estimated relative demand shocks for risky-
principal trades relative to a pre-crisis benchmark on January 2, 2020, θt−θ0, implied from Equation (10), for eligible
and ineligible bonds. The shaded areas correspond to the early and late periods used to estimate the semi-elasticity
parameter σ.

high trading volume (as documented in Figure 5), from expectations of future price declines or

volatility, or from losses incurred on other parts of the dealers’ balance sheets.

4.5 The Surplus from Immediacy

The analysis above highlights the important distinction between risky-principal and agency trades

during the COVID-19 crisis: we have shown that customers’ demand for immediacy increased

drastically at the height of the crisis, while dealers’ willingness to supply immediacy by accumu-

lating inventory on their balance sheets simultaneously declined. In this section, we attempt to

quantify the effects of these pandemic-induced shocks—and the interventions that followed—on

the net utility that customers derived from immediacy.34

34Note that we are intentionally not making any statements about optimal policy interventions or design. As
we describe in greater detail below, our definition of consumer surplus from immediacy does not account for possible
aggregate shocks to customers’ demand for transaction services, nor does it capture any effects of prices and allocations
in the corporate bond market on real investment decisions, possible linkages between corporate bond market liquidity
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Theory. Given equilibrium prices and allocations, we define the consumer surplus from imme-

diacy, per dollar of transaction, as

sht = θtx
?
ht + u(x?lt, x

?
ht)− (p?ht − p?lt)x?ht.

For each dollar of transaction, sht measures the customers’ extra value of upgrading a fraction xht

of agency trades into risky-principal trades, at a cost (pht − plt)xht.35

Namely, based on (4) and (8), one obtains:

sht = u(1− x?ht, x?ht)− x?ht [uh(1− x?ht, x?ht)− ul(1− x?ht, x?ht)]

=

∫ x?ht

0

[uh(1− y, y)− ul(1− y, y)] dy − x?ht [uh(1− x?ht, x?ht)− ul(1− x?ht, x?ht)]

= −
∫ x?ht

0

[uhh(1− y, y)− 2ulh(1− y, y) + ull(1− y, y)] y dy, (11)

where the final equality follows from integration by parts. The term − [uhh − 2ulh + ull] in the

integral represents the slope of the inverse demand curve. Hence, the integral measures the area

between the price premium and the inverse demand curve and so captures the surplus from upgrad-

ing from low-quality to high-quality transaction services.

Notice that the demand shock θt does not appear in the surplus from immediacy (11). Indeed,

for any fixed x?ht, the surplus from immediacy is the same regardless of the location of demand.

This is because a parallel shift to the inverse demand curve increases the willingness to pay for all

infra-marginal units by the same amount, θt. Put differently, when θt increases but x?ht stays the

same, customers derive more utility from immediacy but pay more for it, with zero net effect on

and other funding markets, and so on. While certainly interesting, these extensions are beyond the scope of the current
paper.

35We could also study the total surplus from all transaction, sht−plt. However, this measure could be biased, since
our analysis of customer demand only identifies shocks to the demand for upgrading from risky-principal to agency
trades, and not shocks to the overall demand for transaction services. There are at least two reasons to analyze the
surplus from immediacy, as opposed to the total surplus. First, the bulk of the variation in transaction costs during
the crisis, pltxlt + phtxht, is accounted for by the cost of immediacy, (pht − plt)xht. Second, much of the policy
discussion surrounding the crisis was focused on the demand and supply for immediacy: customers’ need to trade
quickly and dealers’ willingness to accommodate their demand with risky-principal trades that would have used their
balance sheet space.
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their surplus. Of course, in equilibrium, x?ht does not stay the same: hence the change in surplus

from immediacy between time zero and time t is the consequence of customers substituting from

risky-principal to agency trades:

sht − sh0 = −
∫ x?ht

x?h0

[uhh(1− y, y)− 2ulh(1− y, y) + ull(1− y, y)] y dy.

In other words, what ultimately makes consumers worse or better off is the net effect that the

supply and demand shocks have on the quantity of risky-principal trades consumed in equilibrium.

With the logit specification, − (uhh − 2ulh + ull) = 1/[y(1 − y)] and so we obtain a simple,

closed-form expression for the change in the surplus from immediacy between time zero and time

t:

sht − sh0 = −σ log
(
1− x?ht
1− x?h0

)
. (12)

Estimate of surplus from immediacy. Using equation (12) together with our estimate of σ,

Figure 9 plots the change in consumer surplus from immediacy, per unit of transaction, over time.

The figure reveals, not surprisingly, that there was a sharp, significant decline at the height of

the market turmoil in mid-March, 2020. However, the figure also reveals that this decline was

persistent: consumer surplus from immediacy per unit of transaction remained approximately 10

bps below pre-crisis levels even at the end June.

Comparing the dynamics of the surplus from immediacy to the expenditures on immediacy,

(pht−plt)xht, reveals two important differences. First, one can easily confirm that the decline in the

surplus from immediacy is much smaller than the increase in expenditures. Second, the recovery

takes longer to materialize and is less dramatic. As explained above, these differences arise because

the surplus from immediacy accounts for two additional effects that matter for evaluating consumer

well-being. First, customers’ preference for immediacy change: this implies that the surplus loss

induced by the increase in immediacy expenditure is partly offset by the additional value derived

from immediacy. Second, the composition of transaction services changes as well: consumers

substitute towards agency trades, so that the average quality of transaction services they enjoy

35



-20

-10

0

Feb
-19

M
ar-

05

M
ar-

18

M
ar-

23

Apr-
09

M
ay

-12

Ju
n-1

6

Ju
n-2

9

ch
an

ge
in

su
rp

lu
s

fr
om

im
m

ed
ia

cy
,s

h
t
−
s h

0
(b

ps
)

Figure 9. The change in consumer surplus from immediacy in the logit demand specification. This figure shows
the change in surplus for immediacy relative to a pre-crisis benchmark on January 2, 2020, sht − sh0, according to
Equation (12). Plus/minus two standard deviation bands are shown in gray. The shaded areas correspond to the early
and late periods used to estimate the semi-elasticity parameter σ.

falls. We believe these observations serve as an important reminder that changes in consumers’

well-being is often not well-approximated by changes in prices.

5 Conclusion

It often takes a bad shock to discover whether or not a market is liquid, and to expose any

sources of illiquidity. Unfortunately, many shocks to financial markets originate inside financial

intermediaries, and hence the aggregate shock is a liquidity shock. In this sense, the COVID-19

pandemic—a truly exogenous, large shock that did not originate in the banking sector—offers a

unique opportunity to study market conditions, the shocks that precipitate episodes of illiquidity,

and the implications for transaction costs, policy, and consumer surplus.

In this paper, we study trading conditions in the US corporate bond market from many angles as
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the COVID-19 pandemic unraveled. However, a key insight is that distinguishing between risky-

principal and agency trades offers not only a more complete assessment of market conditions, but

also a unique window into the sources of illiquidity and the efficacy of policy interventions in this

large, important market. In particular, we find that the initial panic was caused by shocks to both

customers’ demand for immediacy and dealers’ willingness to supply it. The former shock receded

quickly, and almost fully, after the mere announcement of the Fed’s intention to enter the market

and purchase bonds. The latter shock, however, lingered months after markets appeared to calm,

indicating that elevated trading volume in conjunction with balance sheet constraints remain a risk

in times of crisis.

While this is an important first step, much work remains to be done. Perhaps most importantly,

further examination of dealers’ balance sheets and changes (or heterogeneity) in regulatory re-

quirements could allow us to pinpoint the precise source of dealers’ unwillingness to “lean against

the wind” during times of crisis. Identifying and understanding these constraints would allow us to

design better policies to balance the crucial trade-off between risk-taking and liquidity provision

often at the heart of liquidity provision in financial markets. We leave this work for the future.
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Table 1. Trading costs during the COVID-19 crisis. This table presents regression results for the following
specification: yijt = αi +αs + β1×Crisist + β2× Interventiont + εijt. The dependent variables are our measures of
transactions costs for risky-principal and agency trades. Crisist and Interventiont are dummies which take the value
of 1 if day t falls into the Crisis and Intervention sub-periods defined above. There are three trade size categories: less
than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample starts on January 3 and ends
on June 30, 2020. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All US Only All US Only

(1) (2) (3) (4)

Crisis 105.19∗∗∗ 104.76∗∗∗ 8.70∗∗∗ 9.99∗∗∗

(13.08) (13.78) (1.71) (2.06)

Intervention 41.54∗∗∗ 40.34∗∗∗ 8.04∗∗∗ 8.26∗∗∗

(4.06) (4.32) (0.76) (1.06)

Bond FE Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes
Observations 741,579 603,913 249,392 160,539
Adjusted R2 0.18 0.19 0.28 0.28
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2. Probability of an agency trade for all bonds. This table presents regression results for the following
specification from: Agencyijt = αi+αs+β1×Crisist+β2×Interventiont+εijt. The dependent variable, Agencyijt, is
an indicator variable that takes the value 1 if trade j for bond i on day t is an agency trade and 0 otherwise. Columns (1),
(2), and (3) report result for the linear probability (OLS), logit, and probit models, respectively. We report marginals
effects calculated at the sample means for logit and probit models in columns (2) and (3). Crisist and Interventiont
are dummies which take the value of 1 if day t falls into Crisis and Intervention sub-periods defined above. There are
three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. In logit
and probit specifications, the pseudo-R2 is defined as 1−L1/L0, where L0 is the log likelihood for the constant-only
model and L1 is the log likelihood for the full model with constant and predictors. The sample starts on January 3 and
ends on June 30, 2020. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Probability of agency trade

OLS Logit Probit

(1) (2) (3)

Crisis 0.043∗∗∗ 0.043∗∗∗ 0.042∗∗∗

(0.010) (0.010) (0.010)

Intervention 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.003) (0.003) (0.003)

Bond FE Yes Yes Yes
Trade size category FE Yes Yes Yes
Observations 7,095,617 7,095,617 7,095,617
Adjusted R2 0.104
Pseudo R2 0.079 0.079
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3. Trading costs across eligible and ineligible bonds during the initial and expanded interventions. This
table presents regression results for the following specification: yijt = αi+αs+β1×Crisist+β2×SMCCFt+β3×
SMCCF Expansiont + εijt. The dependent variables are measures of transaction costs for risky-principal and agency
trades. Crisist is a dummy which takes the value of 1 if day t falls into the Crisis sub-periods defined above. SMCCFt

and SMCCF Expansiont are dummies that take the value of 1 if the trading day t is between March 23 and April 9,
and after April 9, 2020, respectively. The SMCCF eligibility criteria were expanded to include fallen angels on April
9, 2020. There are three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than
$1 million. A bond is considered eligible if it has an investment-grade rating and time-to-maturity of five years or less
on March 23, 2020. The sample begins on January 3 and ends on June 30, 2020. Only US firms are included in the
regressions. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All Eligible Ineligible All Eligible Ineligible

(1) (2) (3) (4) (5) (6)

Crisis 107.97∗∗∗ 108.88∗∗∗ 106.67∗∗∗ 10.55∗∗∗ 15.94∗∗∗ 7.39∗∗∗

(14.77) (15.14) (16.60) (2.30) (3.35) (1.91)

SMCCF 83.17∗∗∗ 61.94∗∗∗ 96.63∗∗∗ 13.43∗∗∗ 11.97∗∗∗ 14.43∗∗∗

(7.99) (8.37) (9.82) (0.96) (1.22) (1.36)

SMCCF Expansion 26.55∗∗∗ 14.15∗∗∗ 33.05∗∗∗ 6.09∗∗∗ 4.25∗∗∗ 7.31∗∗∗

(2.69) (2.60) (3.63) (0.88) (0.92) (1.21)

Bond FE Yes Yes Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes Yes Yes
Observations 602,430 219,624 382,806 159,653 56,264 103,389
Adjusted R2 0.19 0.18 0.19 0.29 0.21 0.29
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4. The Effects of Fed Intervention: difference-in-differences. This table presents regression results for the
following difference-in-differences specification from Equation (3): yijt = αs + αk + β1 × SMCCFt × Eligiblet +
β2 × SMCCFt + β3 × Eligiblet + γ × Xi,t + εijt. The dependent variables are measures of transaction costs for
risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23 and
April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity
of five years or less on March 23, 2020. Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity):
logs of bond’s amount outstanding, years since bond issuance, and years to maturity, respectively. There are three
trade size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample
begins on March 6 and ends on April 9, 2020. Only US firms are included and bonds that change credit grade are
excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −57.70∗∗∗ −41.72∗∗∗ −47.24∗∗∗ −41.45∗∗∗ −10.25∗∗∗ −12.85∗∗∗ −9.59∗∗ −9.85∗∗∗

(11.80) (12.27) (10.21) (10.34) (2.99) (3.11) (3.44) (3.47)

SMCCF −1.89 −21.75 −14.30 −20.03 6.33∗∗∗ 8.10∗∗∗ 4.56∗∗ 4.72∗∗

(14.58) (14.64) (14.65) (14.43) (2.00) (2.11) (1.97) (2.02)

Eligible 2.86 −14.81 0.37 9.93∗∗∗

(14.24) (11.36) (3.15) (3.69)

log(Amt outstanding) −30.33∗∗∗ −31.88∗∗∗ −3.62∗∗∗ −1.87∗∗∗

(7.25) (9.19) (0.64) (0.65)

log(Time-to-maturity) 15.40∗∗∗ 16.77∗∗∗ 4.00∗∗∗ 5.53∗∗∗

(4.96) (4.99) (0.85) (1.26)

log(Age) 27.61∗∗∗ 28.84∗∗∗ 4.93∗∗∗ 5.24∗∗∗

(7.54) (6.40) (1.10) (1.14)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 158,647 146,143 158,649 146,143 47,628 45,324 47,630 45,324
Adjusted R2 0.04 0.05 0.20 0.20 0.08 0.10 0.25 0.26
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5. Estimating the logit demand parameter σ using high-frequency IV approach. This table presents the
IV estimates of the logit demand parameter σ. In column (1), the seasonally-adjusted log volume of trades is used as
an instrument. In column (3), the seasonally-adjusted log number of trades is used as an instrument. Standard error
are the maximum of robust and the usual standard errors. The pre-crisis runs from January 3, 2020 until February 29,
2020. The post-crisis data begins on April 15, 2020 and runs until July 31, 2020. We exclude holidays, weekends and
half trading days. Our estimates and standard errors are transformed using the delta-method where appropriate.

Dependent variable:

(ph − pl)
IV (vol) IV (num)

(1) (2)

log(xh/xl) 70.17∗∗ 73.31∗∗

(33.63) (31.02)

Post-crisis 8.25 7.75
(5.75) (5.14)

Constant 75.55∗∗∗ 78.15∗∗∗

(27.94) (25.79)

Observations 113 113
Adjusted R2 0.41 0.39
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix

A Data and Definitions

A.1 Data description

We use data from the Trade Reporting Compliance Engine (TRACE), made available by the Finan-

cial Industry Regulation Authority (FINRA). The raw TRACE data provides detailed information

on all secondary market transactions self-reported by FINRA member dealers. These include

bond’s CUSIP, trade execution time and date, transaction price ($100 = par), the volume traded

(in dollars of par), a buy/sell indicator, and flags for dealer-to-customer and inter-dealer trades. To

construct our sample, we combine two versions of TRACE: the standard version (2020Q1), and

the End-Of-Day version (2020Q2).

We first filter the report data following the procedure laid out in Dick-Nielsen (2014). We merge

the resulting data set with the TRACE master file, which contains bond grade information, and with

the Mergent Fixed Income Securities Database (FISD) to obtain bond fundamental characteristics.

Following the bulk of the academic literature, we exclude bonds with optional characteristics, such

as variable coupon, convertible, exchangeable, and puttable, as well as, asset-backed securities,

and private placed instruments. Table A1 provides summary statistics for our sample.

In our empirical specifications, we exclude newly-issued securities (with age less than 90 days),

as on-the-run bonds tend to trade differently than off-the-run securities. Since our sample only

contains about 130 days, the age and time-to-maturity of a particular bond will vary little over

time. Thus, we do not include the standard cross-sectional controls related to the bond’s age or

time-to-maturity. Furthermore, since we exclude newly-issued bonds, over time, the age (maturity)

of any bond will increase (decrease) by one day each day. Thus, the average age (maturity) of our

bonds will increase (decrease) monotonically over time, meaning these controls will also correlate

with the time trends we are documenting.

We also distinguish between bonds that are eligible for the SMCCF and ineligible bonds. In
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Appendix B, we present a detailed description of eligibility criteria for the SMCCF. We define

a bond as eligible if it has investment-grade rating and time-to-maturity of five years or less on

March 23, 2020, when the SMCCF was first announced. The eligibility criteria also state that the

firm must be a US-domiciled corporation. Specifically, the Fed restricts its purchases to bonds

where

The issuer is a business that is created or organized in the United States or under the
laws of the United States with significant operations in and a majority of its employees
based in the United States.

This criterion leaves the Fed with a considerable degree of discretion. For instance, if a foreign-

domiciled corporation uses a US subsidiary to issue dollar-dominated debt, our firm-level data

identify the firm as non-US. We would then classify its bonds as foreign, making them ineligible

for the SMCCF. However, under the Fed’s definition of a US issuer, the bonds may be eligible for

purchase. Using the Fed’s SMCCF transaction-level disclosures, we find that in many cases, the

holding firm of the security is a non-US entity.36 One such example is British American Tobacco

(BAT), a firm listed on the London Stock Exchange and domiciled in the UK. Our firm-level data

correctly identifies this firm as foreign; however, its bonds were purchased by the Fed.37 These

bonds were issued by a US wholly-owned subsidiary of BAT, BAT Capital Corporation. Since

this subsidiary is guaranteed and wholly-owned by BAT, it is very challenging to correctly classify

these bonds as US-domiciled. We, therefore, do not use US vs. non-US as an SMCCF eligibility

criterion in our regressions discussed below and focus only on US firms.

Moreover, we do not have access to the latest credit rating data for all bonds in our sample. For

the sub-sample of bonds where the credit rating is available, we include a credit rating fixed effect

to control for potentially time-invariant nature of bond credit ratings.

36SMCCF transaction-specific disclosures are provided by the Federal Reserve, available at https://www.
federalreserve.gov/monetarypolicy/smccf.htm.

37On July 10, 2020, the Fed reported that BAT’s bonds were purchased as part of the SMCCF (CUSIP 05526DAZ8).
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A.2 Dates highlighted in the figures

We choose the following dates to highlight in the figures with vertical, dashed lines:

January 19: beginning of the series, chosen to start the sample period one month before the
stock market peak.

February 19 stock market peak.

March 5: beginning of extended fall in equity prices and rise in corporate credit spreads.

March 18: first day of trading after announcement of Primary Dealer Credit Facility (an-
nounced evening of March 17).

March 23: announcement of Primary and Secondary Market Corporate Credit Facilities.

April 9: expansion of PMCCF and SMCCF (in both size and scope).

May 12: the SMCCF began purchasing eligible ETFs.

June 16: the SMCCF began purchasing individual corporate bonds.

June 29: the PMCCF began operating.

A.3 Identifying agency trades

We define agency trades as two trades in a given bond with the same trade size that take place

within 15 minutes of each other. For each bond, we divide its trading sample into three groups:

customer-sell-to-dealer (C2D), dealer-sell-to-customer (D2C), and interdealer (D2D) trades. Our

identification of agency trades includes the following steps:

1. We match each trade X in group C2D with a trade Y in group D2C that has the same trade

size and happens within 15 minutes of X . If there are several trades in D2C satisfying these

conditions, we choose the trade that takes place closest in time to X . The identified pair of

agency trades is then (X, Y ). After this step, we denote the collection of unmatched trades

in C2D as u-C2D and that in D2C as u-D2C.
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2. We match each trade in u-C2D with a trade in group D2D by the same algorithm. We then

obtain a collection of unmatched trades in D2D, denoted by u-D2D.

3. We match each trade in u-D2D with one in u-D2C following the same algorithm.

4. We repeat steps 1–3 using all remaining unmatched trades in the three groups while relaxing

the matching criteria. In each agency trade pair, we require the second trade to happen within

15 minutes of the first trade, but it can have a smaller trade size than the first one. By doing

so, we consider the situation in which dealers split the trade volumes when they behave as

matchmakers.

5. Finally, within all the remaining unmatched trades after steps 1–4, we identify trades with

field remuneration == "C" in TRACE (commission is included in the price) as agency

trades, because, by FINRA’s definition, broker-dealers receive commissions only when they

intermediate agency trades.

B Corporate Credit Facilities

In March 23, 2020, the Federal Reserve Bank of New York established the Primary Market Corpo-

rate Credit Facility (PMCCF) and the secondary Market Corporate Credit Facility (SMCCF). The

purpose of the PMCCF was to sustain funding for corporate debt while the SMCCF was meant to

support liquidity in the corporate bond market. These corporate credit facilities were funded by a

75 billion dollars investment, to be leveraged up to 750 billion. The SMCCF started its purchases

of ETFs on May 12 and of corporate bonds on June 16. The PMCCF started its operations on June

29. On December 31, 2020, the corporate credit facilities stopped their purchases.38

38For more details, see the Frequently Asked Questions for PMCCF and SMCCF from the New York Fed, available
at https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/corporate-credit-facility-faq.

48

https://www.newyorkfed.org/markets/primary-and-secondary-market-faq/corporate-credit-facility-faq


B.1 Bond eligibility criteria for the SMCCF

The Federal Reserve established eligibility criteria for the purchases of corporate bonds. We

provide excerpts from the Fed’s own communications that detail these conditions.39

Eligible individual corporate bonds: The Facility may purchase individual corporate

bonds that, at the time of purchase by the Facility: (i) were issued by an eligible issuer;

(ii) have a remaining maturity of 5 years or less; and (iii) were sold to the Facility by

an eligible seller.

Eligible issuers for individual corporate bonds: To qualify as an eligible issuer of

an eligible individual corporate bond, the issuer must satisfy the following conditions:

1. The issuer is a business that is created or organized in the United States or under

the laws of the United States with significant operations in and a majority of its

employees based in the United States.

2. The issuer was rated at least BBB−/Baa3 as of March 22, 2020, by a major

nationally recognized statistical rating organization (“NRSRO”). If rated by mul-

tiple major NRSROs, the issuer must be rated at least BBB−/Baa3 by two or

more NRSROs as of March 22, 2020.

(a) An issuer that was rated at least BBB−/Baa3 as of March 22, 2020, but was

subsequently downgraded, must be rated at least BB−/Ba3 as of the date on

which the Facility makes a purchase. If rated by multiple major NRSROs,

such an issuer must be rated at least BB−/Ba3 by two or more NRSROs at

the time the Facility makes a purchase.

(b) In every case, issuer ratings are subject to review by the Federal Reserve.

39Source: Secondary Market Corporate Credit Facility Term Sheet available from https://www.federalreserve.gov/
newsevents/pressreleases/files/monetary20200728a1.pdf, last updated on July 28, 2020.
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3. The issuer is not an insured depository institution, depository institution holding

company, or subsidiary of a depository institution holding company, as such

terms are defined in the Dodd-Frank Act.

4. The issuer has not received specific support pursuant to the CARES Act or any

subsequent federal legislation.

5. The issuer must satisfy the conflicts of interest requirements of section 4019 of

the CARES Act.

C Additional Empirical Results

C.1 Transaction costs: impact of credit rating

We do not have access to the latest credit rating data for all bonds in our sample, just the binary

IG/HY classification provided by TRACE. For the sub-sample of bonds where the credit rating

is available, we include a credit rating fixed effect in specification (1) and run the following

regressions

yijt = αi + αs + αr + β1 × Crisist + β2 × Interventiont + εijt,

where αr represents credit rating fixed effects to control for potentially time-invariant nature of

bond credit ratings. In Table A2, we repeat the results in Table 1 for the sub-sample of bonds for

which we have credit rating data. We see that the results are very similar to the ones from Table 1.

C.2 The fraction of agency trades

In Table A3, we repeat the OLS regression in column (1) of Table 2 but focusing only on bonds

issued by US firms. In columns (2) and (3) we repeat the regression in column (1) restricting the

sample to eligible and ineligible bonds, respectively. As before, a bond is considered eligible if it

has an IG credit rating and remaining time-to-maturity of five years or less.
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Results in column (1), for US bonds, are very similar to what shown in column (1) of Table A3

for all bonds. From columns (2) and (3), we observe that the shift towards agency trades was

much more pronounced among bonds that were eligible for the Fed’s purchasing program. The

probability of an agency trade for a given eligible bond, on average, rose by approximately seven

percentage points relative to the pre-crisis period. After the Fed interventions on March 23, this

probability decreased from the crisis period (by 200 bps) to five percentage points higher than the

pre-crisis period. For ineligible bonds, in contrast, the probability of an agency trade rose by only

1.9 percentage points relative to the pre-crisis period and remained relatively unchanged after the

Fed intervention.

C.3 Impact of Fed announcements

In this subsection, we present several robustness checks for the difference-in-differences (DID)

results in Section 3.5.

C.3.1 Bonds close to the eligibility threshold for rating and maturity

First, in Table A4, we repeat the regressions in Table 4 but focusing only on bonds just above and

below the SMCCF eligibility threshold for time-to-maturity (TTM): bonds with four to six years

left to maturity.

Next, in Table A5, we repeat the regressions in Table A4 but adding the extra restriction that

the bonds should be close to the IG-HY threshold. In particular, we only include bonds that in

addition to having TTM of four, five and six years, are also rated at the bottom tier of investment-

grade (BBB+/Baa1, BBB/Baa2, and BBB−/Baa3) or the top tier of high-yield (BB+/Ba1, BB/Ba2,

and BB−/Ba3).

C.3.2 Trade costs for different trade size bins

Here we run the regressions in (4) but with the trades of a particular size category in a different

regression. In Tables A6-A8, we show that small and large trades are responsible for the entire
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liquidity improvement documented in Table 4: small trades (with par volume of $100,000 or less)

become much more liquid after the Fed’s CCF announcements followed by large trades (with

volume larger than $1 million). Liquidity of odd-lot trades (with volume between $100,000 and

$1 million) seem to be unaffected by the Fed’s intervention. Curiously we fail to find an affect for

Odd-lot trades. There is some empirical evidence, e.g., Feldhütter (2012), suggesting that trades

with different sizes are affected differently by market turmoil.

C.4 Excluding bonds with 5–6 years left to maturity

One potential complication in distinguishing between eligible and ineligible bonds based on ma-

turity is that the criteria for eligibility are determined at the Fed’s time of purchase. Therefore, for

example, a bond that would be characterized as ineligible when the SMCCF was announced on

March 23, 2020, might, in fact, be purchased by the Fed in November 2020 (since the program

remained active until December 31, 2020). To make sure that this complication does not affect our

main results, in Tables A9–A12 below, we recreate Tables 1–4 from the main text, leaving out all

trades involving bonds with maturity 5-6 years on March 23, 2020. Since these bonds represent a

small fraction of our transactions, it turns out that our results are largely unaffected.

D Natural Conditions for the Dealers’ Cost Function

The following proposition summarizes the conditions under which a surge in selling pressure, as

captured by an increase in Nt, has no effect on each customer’s relative demand for immediacy,

but causes an upward shift in the supply curve, as providing risky-principal transaction services

becomes more costly as the total volume of transaction services grows.

Proposition 1 Let (x?l , x
?
h, X

?
l , X

?
h, p

?
l , p

?
h) be an equilibrium for a given N . If

∂

∂N
[Ch (Nx

?
l , Nx

?
h)] ≥

∂

∂N
[Cl (Nx

?
l , Nx

?
h)] ≥ 0,
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then, in response to a marginal increase in N :

• The cost of all transaction services go up: both p?h and p?l increase;

• The cost of high-quality transaction services go up by more: p?h − p?l increases;

• Customers substitute towards low-quality transaction services: x?h decreases.

Proof. Assuming interior solutions, the first-order condition of the customers and dealers, along

with the market clearing condition, yields the following system of equations

ph − pl = uh(1− xh, xh)− ul(1− xh, xh) (D.1)

pl = Cl(N(1− xh), Nxh) (D.2)

ph = Ch(N(1− xh), Nxh).

Combining the three equations lead an implicit function for xh:

uh(1− xh, xh)− ul(1− xh, xh) = Ch(N(1− xh), Nxh)− Cl(N(1− xh), Nxh). (D.3)

Since the functions x 7→ u(1 − x, x) is concave, and the function x 7→ C(N(1 − x), Nx) is

convex, it follows that the left-hand side of the equation is decreasing in x, while the right-hand

side is increasing in x. The condition stated in the Proposition implies that, locally, the right-hand

side is increasing in N . Therefore, the solution xh to this equation is, locally, decreasing in N . It

then follows from Equation (D.1) that ph − pl is increasing as well.

The only result that remained to be shown is that pl is, locally, increasing in N . To do so, we

totally differentiate Equation (D.2) with respect to N :

dpl
dN

= Cll ×
(
1− xh −N

dxh
dN

)
+ Clh ×

(
xh +N

dxh
dN

)
,

where we use double subscript for second derivatives, and we omit the arguments of Cll and Clh to
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simplify notations. Let

ε ≡ N

xh

dxh
dN

,

denote the elasticity of high-quality transaction services, xh, with respect to total transaction

demand, N . Plugging back, we obtain:

dpl
dN

= Cll × (1− xh(1 + ε)) + Clh × xh (1 + ε) .

Next, applying the Implicit Function Theorem to Equation (D.3), we obtain the following explicit

expression for the elasticity ε:

ε =
N

xh

(1− xh) (Clh − Cll) + xh (Chh − Clh)
∂2u−N (Chh − 2Clh + Cll)

.

where ∂2u ≡ ull − 2ulh + uhh ≤ 0 by concavity. Plugging back into the equation for dpl/dN , we

obtain after some algebra that:

dpl
dN
≥ 0⇔ N

(
CllChh − C2

lh

)
≥ ∂2u ((1− xh)Cll + xhClh) .

The left-hand side, N (CllChh − C2
lh) is positive because C is convex. As for the right-hand side,

recall our maintained assumption that, holding (xl, xh) fixed, Cl(Nxl, Nxh) is increasing in N .

Taking derivatives, and replacing xl by 1− xh, this means that (1− xh)Cll + xhClh ≥ 0. Keeping

in mind that ∂2u ≤ 0, we obtain that the right-hand side is negative, concluding the proof.

E Microfoundations for the Logit Demand

In this section, we derive the utility function in Equation (9) for the logit demand specification from

a discrete choice model. We consider a model with a measure-one continuum of ex-ante identical

customers who each wish to fulfill a transaction. Each customer faces two choices, either an agency
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(low-quality) or a risky-principal (high-quality) transaction. The price of these transactions are pl

and ph, respectively.40 A customer’s utility of choosing each kind of transaction is either

1 + θ − ph + εh

if he chooses a risky-principal trade or

1− pl + εl

if he chooses an agency trade. The term θ ≥ 0 captures the idea that risky-principal trades

are more valuable. The terms εh and εl capture idiosyncratic preference shocks and we assume

that they are both independently and identically distributed across the population and drawn from

a Gumbel distribution with location parameter zero and scale parameter σ with CDF G(ε) =

exp(− exp(−ε/σ)). Each customer, after observing his own εh and εl, chooses the type of trade

he prefers.

Thus, the fraction of consumers that will choose risky-principal trades is

xh = Pr (1 + θ − ph + εh ≥ 1− pl + εl) = Pr (θ − ph + pl ≥ εl − εh) .

We can show that the CDF of εl − εh is Pr(εl − εh < z) = 1/ (1 + exp(−z/σ)) .

Pr(εl − εh < z) =

∫ ∞
−∞

exp
(
−e−εh/σe−z/σ

)
exp

(
−e−εh/σ

)
e−εh/σ (1/σ) dεh,

=
1

1 + e−z/σ

∫ ∞
−∞

exp
(
−e−(εh/σ)(1+e−z/σ)

) (
1 + e−z/σ

)
e−εh/σ(1/σ)dεh.

But the last integral is equal to exp(− exp(−εh/σ)(1 + exp(−z/σ))) which evaluates to 1.

Taking z = θ − ph + pl and since xl = 1− xh, we can write

xh/xl = exp

(
θ − ph + pl

σ

)
.

40In this section, subscript t is omitted for simplicity.
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The inverse demand specification in Equation (10) immediately follows:

pht − plt = θt − σ log (xht − xlt) .

The aggregate surplus over all customers is given by

s = xh (1 + θ − ph + E [εh | εh − εl ≥ θ − ph + pl]) + xl (1− pl + E [εl | εh − εl ≤ θ − ph + pl]) .

The term xhE [εh | εh − εl ≥ θ − ph + pl] can be written as

∫ ∞
−∞

εhG
′(εh)G(εh + z)dεh.

Taking the same steps as before and recalling that xh = 1/ (1 + exp(−z/σ)), this can be rewritten

as

xh

∫ ∞
−∞

εhe
−e−

εh
σ x−1

h e−
εh
σ x−1h (1/σ)dεh.

Here, it is useful to temporarily introduce a new variable α defined by eα/σ = x−1h and substitute

x−1h above to obtain

xh

∫ ∞
−∞

εhe
−e−

εh−α
σ e−

εh−α
σ (1/σ)dεh.

Notice that this integral is now the expected value of a Gumbel random variable with location α

and scale σ. That expected value is α + σγ where γ is the Euler-Mascheroni constant. Thus,

xhE [εh | εh − εl ≥ θ − ph + pl] = xh(α + σγ).

Using our definition of α, we can find that α = −σ log(xh) and therefore

xhE [εh | εh − εl ≥ θ − ph + pl] = xhσ (γ − log(xh)) .
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A symmetry argument readily shows that

xlE[εl | εh − εl ≤ θ − ph + pl]) = xlσ (γ − log(xl)) .

Finally, substituting this result in the original aggregate utility expression, we obtain an expression

for the logit surplus that is consistent with Equation (9) (up to an additive constant):

s = xh (1 + θ − ph − σ log(xh)) + xl (1− pl − σ log(xl)) + γ

= θxh − σ [xl log(xl) + xh log(xh)]− phxh − plxl + (1 + γ) .

F Estimation Details

F.1 Binary IV

In this section, we provide more details about the binary IV estimation method for σ discussed

in Section 4.3. Let’s consider a linear supply and demand system for transaction services. The

demand equation is:

log(xht/xlt) = 1/σ [θτ + εt − (pht − plt)] ,

where, with some abuse of notation, θτ is the average relative demand shifter in period τ ∈ {A,B},

and εt is a mean zero shock. The supply equation is assumed to have the following form

log(xht/xlt) = b0 + b1 (pht − plt) + b2 log(Nt) + ηt,

where ηt is a mean zero supply shock, and Nt is the customer-to-dealer volume. Consistent with

our model, Nt enters in the supply equation because it increases the marginal cost of providing

transaction services. It does not enter the demand equation because the total utility for transaction

services is linearly homogeneous: the utility of a given bundle of transaction service is the same

for each dollar of transaction. We assume, moreover, that volume is smaller in the earlier period
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(A) than in the later period (B).41 Formally, this can be written log(Nt) = log(N τ ) + ξt, where ξt

is a mean zero shock, τ ∈ {A,B} and NA > NB.

Solving the system of simultaneous equations gives

pht − plt =
θτ + εt − σ

(
b0 + b2 log(N τ ) + b2ξt + ηt

)
1 + b1σ

,

and

log(xht/xlt) =
b0 + b2 log(N τ ) + b2ξt + ηt

1 + b1σ
+
b1 (θτ + εt)

1 + b1σ

One sees that:

E [pht − plt | t ∈ τ ] =
θτ − σ

(
b0 + b2 log(N τ )

)
1 + b1σ

,

while

E [log(xht/xlt) | t ∈ τ ] =
b1θτ +

(
b0 + b2 log(N θ)

)
1 + b1σ

It thus follows that, if θA = θB:

σ = − E [pht − plt | t ∈ B]− E [pht − plt | t ∈ A]
E [log(xht/xlt) | t ∈ B]− E [log(xht/xlt) | t ∈ A]

.

Thus, an estimator of σ is obtained by replacing the conditional expectations by sample averages.

To be more precise, let

Yt =

(
pht − plt log(xht/xlt)

)′
denote the vector of observations at time t. Assume for now that all the vector of disturbances,

(ut, vt, wt)
′ are IID over time with finite covariance matrices. The estimate of the mean vector over

41Using an unpaired two-sample t-test, we test whether that the volume is smaller in the earlier period (A) than
in the later one (B).We first check whether the variance of log volume is similar in the two periods using an F -test.
The null hypothesis is that the variance of log volume is the same in both period. The value of the test statistic is
0.32, corresponding to a p-value of 0.012. Hence, we fail to reject the equality of variances for log volume (in level
variances seem different, which is why we did it in logs). Next, we do a one-sided t-test. The null hypothesis is that
volume is smaller in the period A than in period B. The value of the test statistic is −0.97 corresponding to a p-value
of 0.83. Again we fail to reject the null that volume is smaller in period A than in period B.
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periods A and B are:

Ŷτ =
1

Tτ

∑
t∈τ

Yt

where Tτ denotes the number of observations in period τ . Then, the weak Law of Large Numbers

implies that sample means converge in probability to their population counterpart, Y τ , as Tτ goes

to infinity. The Central Limit Theorem implies that
√
Tτ

(
Ŷτ − Y τ

)
is asymptotically normally

distributed with mean zero and covariance matrix S. Moreover, these two random variables are

also independent. Since
(
Yt − Y τ

)
, τ ∈ {A,B} are IID, an unbiased and consistent estimator of

S is

Ŝ =
TA − 1

TA + TB − 2

1

TA − 1

∑
t∈A

(
Yt − ŶA

)(
Yt − ŶA

)′
+

TB − 1

TA + TB − 2

1

TB − 1

∑
t∈B

(
Yt − ŶB

)(
Yt − ŶB

)′
=

1

T − 2

(∑
t∈A

(
Yt − ŶA

)(
Yt − ŶA

)′
+
∑
t∈B

(
Yt − ŶB

)(
Yt − ŶB

)′)

The estimate of σ can be written as

σ̂ = f
(
ŶA, ŶB

)
= − ŶA2 − ŶA1

ŶB2 − ŶB1

,

where the 1 and 2 subscripts denote the first and second coordinates of the Y vector. By standard

delta method, we thus have that

√
T (σ̂ − σ) =

√
T
(
f
(
ŶA, ŶB

)
− f

(
Y A, Y B

))
=
√
T

(
∂f

∂Y ′A

(
ŶA − Y A

)
+

∂f

∂Y ′B

(
ŶB − Y B

))
=

√
T

TA

√
TA

∂f

∂Y ′A

(
ŶA − Y A

)
+

√
T

TB

√
TB

∂f

∂Y ′B

(
ŶB − Y B

)
.

By symmetry it is clear that
√
TA

∂f
∂Y ′A

(
ŶA − Y A

)
and
√
TB

∂f
∂Y ′B

(
ŶB − Y B

)
have the same asymp-

totically normal distribution, with mean 0 and variance

∂f

∂Y ′A
S
∂f

∂YA
, where

∂f

∂Y ′A
≡
(

1
Y B2−Y A2

− Y B1−Y A1

(Y B2−Y A2)
2

)
.
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It thus follows that the estimate σ̂ is asymptotically normal with mean σ and standard deviation

(
1

TA
+

1

TB

)1/2(
∂f

∂Y ′A
S
∂f

∂YA

)1/2

A consistent estimate of the standard deviation is found by replacing S by Ŝ, and the population

means in ∂f/∂Y ′A by their sample counterparts.

For the estimation we set the early period A to run between 2020-01-15 and 2020-02-14, and

the late period B to run between 2020-06-01 and 2020-06-30. We use the raw series for xh and xl,

not their moving average, so as not to artificially reduce standard errors. We obtain an estimate of

σ̂ = 100.09 with a standard deviation of 15.4

F.2 A second binary IV

One may argue that the assumption underlying our IV estimation, EJan [θt] = EJun [θt], is too strong.

A key concern is that, by May 2020, θt has not returned to its pre-crisis level. Instead, it has

stabilized to a “new normal”: it is lower than at the height of the crisis, but higher than before the

crisis.

To address this concern, we re-estimate σ under this “new normal” assumption. We take the

initial period TA to be from May 1 to May 15, 2020 and the final period TB to be from June 15 to

June 30, 2020. Our assumption is that the average level of θt is the same in both periods. Figure

5 suggests that the volume of customer-to-dealer trades declined significantly between periods TA

and TB: following the same logic as in Section 4.3, we argue that this decline in volume shifted

the supply curve for risky-principal trade, leading to the estimate

σ̂ = −

1

TB

∑
t :Zt=1

(pht − plt)−
1

TA

∑
t :Zt=0

(pht − plt)

1

TB

∑
t :Zt=1

log(xht/xlt)−
1

TA

∑
t :Zt=0

log(xht/xlt)
,

This calculation leads to an estimate of σ̂ = 80.06 which is close to our other estimates. Given
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this value of the semi-elasticity of demand, we can infer a new series for the demand shock as we

did in Section 4.4.

θt − θ0 = σ̂ [log (xlt/xht)− log (xl0/xh0)]− (pht − plt − (ph0 − pl0)) .

As before, we take t = 0 to be January 2, 2020.

In Figure A1, we plot the implied demand shocks from the four different estimates of the semi-

elasticity parameter σ: two binary IVs (solid blue and dashed red line) and two high-frequency IVs

(green dotted and orange dashed-dotted lines). As we can see from Figure A1, the demand shock

is at a stable level between early May and late June. Notice that the “new normal” assumption only

implies that the average level in those sub-periods would be the same and does not imply stability

in between those periods. More importantly, we do not make an assumption on the level at which

the demand shock would stabilize, yet we find that it is remarkably close to the pre-crisis level.
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Figure A1. The change in the estimated relative demand shocks for risky-principal trades for different estimates
of the semi-elasticity parameter σ. This figure plots the time-series of the change in the estimated relative demand
shocks for risky-principal trades relative to a pre-crisis benchmark on January 2, 2020, θt − θ0, implied from the logit
demand, pht − plt = −σ log (xht/xlt) + θt, for four values for parameter σ.

The figure reveals that our estimates are quite robust: despite the fact that these estimation
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procedures derive from significantly different identification assumptions and strategies, the impli-

cations for our estimate of θt—and hence the discussion in Section 4.4—is essentially unchanged.

F.3 High-frequency IVs

In this section we provide additional details and robustness results for the high-frequency IV

method discussed in Section 4.3. Table A13 presents our estimates for σ from an overidentified IV.

All specifications contain a post-crisis dummy variable allowing for a one time shift in the demand

curve. This method gives us an estimate of σ of 73.10, that lies between the two individual IV

estimates in columns (1) and (2) from Table 5. The weak instrument test statistic is 11.172. Since

here we have an overidentified system, we obtain the Sargan’s J test statistics. The value of the test

statistic is 0.057 and the p-value of 0.81. So we fail to reject the validity of the overidentification

restrictions.

In Table A14, we present the first stage of our IV regressions for each instrument. We find that

both log number and volume of trades are valid instruments for log (xh/xl). The F -stat for the

weak instruments test is 16.731 in the case of volume and 22.509 for the number of trades. In both

cases we therefore reject the null that the instruments are weak at the 1% level. Both instruments

have a correlation of 0.88.

For robustness, in Table A15, we repeat the IV regressions in Table 5 using the full sample from

January to July, with indicators for the Crisis, SMCCF, and SMCCF expansion sub-periods defined

in the main text. The IV estimates are now larger than the ones in Table 5, due to the potentially

larger bias in the coefficients. As shown in Table A16, the first stage of the IV regression shows

the both instrument remains valid in the full sample.
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G Relative Preference Shocks for Eligible/Ineligible Bonds

To explore the relationship between customers’ preferences and the Fed’s interventions in greater

depth, we can estimate the time path of θt separately for those bonds that were eligible vs. ineligible

for purchase according to the March 23 announcement of the corporate credit facilities.

According to the eligibility requirements specified in the March 23, 2020 announcement of the

SMCCF, we divide the whole sample of transactions into two sub-samples, one for eligible bonds

and the other for ineligible bonds. We identify eligible bonds as the ones with an investment-grade

rating on March 23, a time-to-maturity of five years or less by March 23, and its issuer domiciled

in the U.S. In particular, we calculate each bond’s time-to-maturity by March 23 as the gap in

days between its maturity date and the date of March 23. We set all the other bonds as ineligible

ones. Then we use the two sub-samples of transactions to correspondingly generate two samples

of observations on prices and relative quantities, and separately estimate the time path of θt for

each sample.

Then given the estimate of the semi-elasticity parameter σ for all bonds, using the time series

of the price premium and the ratio of the risky-principal trades for eligible and ineligible bonds,

we can infer the sequence of shocks to customers’ relative demand shock for eligible and ineligible

risky-principal trades:

θjt − θ
j
0 = pjht−p

j
lt−
(
pjh0 − p

j
l0

)
−σ

[
log
(
xjlt/x

j
ht

)
− log

(
xjl0/x

j
h0

)]
, j ∈ {eligible, ineligible}.

Using the estimate σ̂ = 100.09 from our binary IV approach, Figure 8 plots the time-series of the

change in θ relative to a pre-crisis benchmark (on January 2, 2020) for eligible (solid blue line)

and ineligible bonds (dashed red line).
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Table A1. Summary statistics. This table provides mean, standard deviation, median, 5th and 95th percentiles of
the average daily number of trades and volume by counterparty type, proportion of agency trades, proportion of trades
on IG bonds, proportion of trades on the bonds eligible for SMCCF, and daily average trading cost for risky-principal
(CH) and agency trades (MIRC) for eligible and ineligible bonds respectively. “num” refers to number of trades, and
the “vol” refers to volume of trades in par value. A bond is considered eligible for the SMCCF if it has an investment-
grade rating and time-to-maturity of 5 years or less on the March 23 2020. Source: TRACE and FISD. The sample
starts on January 3 and ends on June 30, 2020.

Mean Std.dev Q05 Q50 Q95

daily num. all trades 51,908 8,871 39,642 52,237 67,005
daily num. interdealer 20,972 3,746 16,073 20,963 27,282
daily num. customer 30,936 5,278 23,622 31,137 38,949
daily num. customer-bought 16,114 2,859 12,187 16,239 20,630
daily num. customer-sold 14,822 2,952 11,202 14,497 19,752
daily vol. all trades ($b) 10.38 1.90 7.38 10.53 13.25
daily vol. interdealer ($b) 3.13 0.61 2.19 3.17 4.04
daily vol. customer ($b) 7.25 1.39 5.18 7.19 9.48
daily vol. customer-bought ($b) 3.75 0.66 2.83 3.75 4.79
daily vol. customer-sold ($b) 3.50 0.80 2.35 3.45 4.94
prop. agency (num) 0.54 0.03 0.50 0.53 0.59
prop. agency (vol) 0.33 0.04 0.29 0.33 0.38
prop. IG (num) 0.74 0.03 0.70 0.74 0.78
prop. IG (vol) 0.82 0.03 0.79 0.82 0.86
prop. eligible (num) 0.33 0.04 0.30 0.33 0.40
prop. eligible (vol) 0.27 0.04 0.23 0.27 0.34
daily avg. CH (bps) 51.30 35.21 22.38 40.66 123.29
daily avg. CH of Eligible bonds (bps) 28.11 26.34 10.71 20.85 65.86
daily avg. CH of ineligible bonds (bps) 61.32 41.78 27.50 47.67 147.32
daily avg. MIRC (bps) 10.57 3.38 7.31 9.62 17.43
daily avg. MIRC of Eligible bonds (bps) 5.35 2.78 2.91 4.43 11.45
daily avg. MIRC of ineligible bonds (bps) 12.33 4.12 8.19 11.18 20.51
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Table A2. Robustness: Trading costs during the COVID-19 crisis adding credit rating FEs. This table presents
regression results for the following specification: yijt = αi + αs + αr + β1 × Crisist + β2 × Interventiont + εijt.
The dependent variables are our measures of transactions costs for risky-principal and agency trades. Crisist and
Interventiont are dummies which take the value of 1 if day t falls into the Crisis and Intervention sub-periods defined
above. αr represents credit rating fixed effects. There are three trade size categories: less than $100,000, between
$100,000 and $1 million, and larger than $1 million. The sample starts on January 3 and ends on June 30, 2020.
Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All US Only All US Only

(1) (2) (3) (4)

Crisis 105.78∗∗∗ 103.96∗∗∗ 8.94∗∗∗ 9.40∗∗∗

(13.03) (13.57) (1.83) (1.98)

Intervention 37.68∗∗∗ 37.42∗∗∗ 6.10∗∗∗ 5.73∗∗∗

(4.35) (4.46) (0.72) (0.81)

Bond FE Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes
Credit Rating FE Yes Yes Yes Yes
Observations 677,728 598,887 197,450 158,730
Adjusted R2 0.19 0.19 0.29 0.30
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A3. Robustness: Probability of an agency trade for US bonds (OLS only). This table presents regression
results for the following specification from: Agencyijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt. The
dependent variable, Agencyijt, is an indicator variable that takes the value 1 if trade j for bond i on day t is an agency
trade and 0 otherwise. Only US firms are included in the regression. Crisist and Interventiont are dummies which take
the value of 1 if day t falls into Crisis and Intervention sub-periods defined above. There are three trade size categories:
less than $100,000, between $100,000 and $1 million, and larger than $1 million. A bond is considered eligible if it
has an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. The sample starts on
January 3 and ends on June 30, 2020. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Probability of agency trade

All Eligible Ineligible

(1) (2) (3)

Crisis 0.043∗∗∗ 0.068∗∗∗ 0.025∗∗∗

(0.010) (0.014) (0.008)

Intervention 0.027∗∗∗ 0.044∗∗∗ 0.016∗∗∗

(0.003) (0.004) (0.004)

Bond FE Yes Yes Yes
Trade size category FE Yes Yes Yes
Observations 5,770,765 2,337,519 3,433,246
Adjusted R2 0.104 0.071 0.123
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A4. DID robustness: only include bonds with 4 to 6 years left to maturity. This table presents regression
results for the following DID specification from Equation (3): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 ×
SMCCFt + β3 × Eligiblet + γ × Xi,t + εijt. The dependent variables are measures of transactions costs for risky-
principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23 and April
9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5
years or less on the March 23 2020. Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs
of bond’s amount outstanding, years since bond issuance, and years to maturity, respectively. There are three trade
size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample begins
on March 6 and ends on April 9, 2020. Only US firms, bonds with 4, 5, or 6 years left to maturity on the intervention
date are included. Bonds that change credit grade are excluded. Clustered standard errors at the day and bond levels
are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −93.26∗∗ −76.08∗∗∗ −61.24∗∗∗ −61.42∗∗∗ −7.45∗ −9.13∗∗ −3.38 −3.79
(39.33) (27.87) (17.83) (17.89) (4.36) (4.22) (4.14) (4.09)

SMCCF 13.88 −0.46 −9.05 −9.14 2.82 5.15∗∗ 1.46 1.75
(35.04) (25.14) (16.58) (16.64) (2.37) (2.47) (2.14) (2.14)

Eligible 54.22 12.27 −0.77 11.87∗∗

(50.71) (33.55) (4.42) (5.46)

log(Amount outstanding) −3.86 −23.05∗∗ −4.06∗∗∗ −1.64
(16.73) (10.71) (1.03) (1.07)

log(Time-to-maturity) −66.38 −102.01 8.79 30.42∗

(134.08) (90.03) (17.08) (17.69)

log(Age) 28.46∗ 31.43∗∗ 0.99 2.55∗

(15.69) (12.45) (1.95) (1.45)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 30,743 30,430 30,744 30,430 9,182 9,004 9,183 9,004
Adjusted R2 0.03 0.07 0.20 0.20 0.11 0.14 0.29 0.30
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A5. DID robustness: only include bonds with 4 to 6 years left to maturity and rating close to the IG/HY
threshold. This table presents regression results for the following DID specification from Equation (3): yijt =
αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent variables
are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value
of 1 if day t falls between March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has
an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. Xit controls for log(Amt
outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and
years to maturity, respectively. There are three trade size categories: less than $100,000, between $100,000 and $1
million, and larger than $1 million. The sample begins on March 6 and ends on April 9, 2020. Only US firms, bonds
with 4, 5, or 6 years left to maturity that are rated at the bottom tier of IG (BBB+/Baa1, BBB/Baa2, and BBB−/Baa3)
or the top tier of HY (BB+/Ba1, BB/Ba2, and BB−/Ba3) are included. Bonds that change credit grade are excluded.
Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −94.92∗∗ −86.46∗∗ −73.52∗∗ −73.52∗∗ −2.82 −5.38 −0.16 −0.16
(45.73) (43.93) (30.56) (30.56) (3.58) (3.80) (3.90) (3.90)

SMCCF 46.47 37.41 16.30 16.30 2.54 5.14∗∗ 2.41 2.41
(29.20) (24.24) (17.65) (17.65) (1.89) (2.04) (2.34) (2.34)

Eligible 63.68 46.64 −1.18 7.74
(46.38) (52.37) (4.19) (7.49)

log(Amount outstanding) −9.03 −18.19 −3.94∗∗∗ −2.58∗

(21.30) (16.18) (1.47) (1.45)

log(Time-to-maturity) −160.39 −129.63 40.68 45.95
(150.14) (130.02) (30.85) (30.34)

log(Age) 36.44 30.68∗ −3.29 −1.56
(22.44) (18.18) (3.10) (2.31)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 14,124 14,124 14,124 14,124 4,595 4,595 4,595 4,595
Adjusted R2 0.04 0.05 0.16 0.16 0.12 0.13 0.28 0.28
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6. DID robustness: only include trades with par volume < $100,000, i.e., micro trades. This table
presents regression results for US firms for the following DID specification from Equation (3): yijt = αs+αk +β1×
SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent variables are measures of
transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls
between March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade
rating and time-to-maturity of 5 years or less on the March 23 2020. Xit controls for log(Amt outstanding), log(Age),
and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity,
respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are less than $100,000 in par
volume, i.e., micro trades, are included. Bonds that change credit grade are excluded. Clustered standard errors at the
day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −77.67∗∗∗ −54.42∗∗∗ −58.51∗∗∗ −45.93∗∗∗ −16.21∗∗∗ −19.37∗∗∗ −14.86∗∗∗ −15.66∗∗∗

(19.69) (18.51) (12.66) (12.56) (4.45) (4.53) (5.24) (5.27)

SMCCF 3.05 −28.30 −18.24 −30.64 9.45∗∗∗ 11.48∗∗∗ 6.63∗∗∗ 7.26∗∗∗

(24.08) (23.12) (20.75) (21.29) (3.06) (2.97) (2.28) (2.36)

Eligible 0.94 −22.17 6.48 15.67∗∗∗

(23.80) (18.37) (4.66) (4.64)

log(Amt outstanding) −38.79∗∗∗ −32.77∗∗ −4.24∗∗∗ −2.03∗∗

(11.74) (13.90) (0.79) (0.79)

log(Time-to-maturity) 11.54∗ 7.93 4.26∗∗∗ 5.98∗∗∗

(6.90) (7.99) (1.08) (1.58)

log(Age) 39.02∗∗∗ 37.74∗∗∗ 7.44∗∗∗ 8.23∗∗∗

(13.24) (11.15) (1.85) (1.84)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 92,300 82,694 92,301 82,694 28,556 27,182 28,556 27,182
Adjusted R2 0.05 0.08 0.35 0.37 0.05 0.08 0.26 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A7. DID robustness: only include trades with $100,000 ≤ par volume < $1 million, i.e., odd-lot trades.
This table presents regression results for US firms for the following DID specification from Equation (3): yijt =
αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent variables
are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value
of 1 if day t falls between March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has
an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. Xit controls for log(Amt
outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and
years to maturity, respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are greater
than $100,000 and less than $1 million in par volume, i.e., odd-lot trades, are included. Bonds that change credit grade
are excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −11.67 −8.28 −6.37 −5.44 −1.21 −1.66 −1.84 −1.01
(12.57) (13.87) (13.85) (14.15) (2.50) (2.35) (2.56) (2.34)

SMCCF −27.03∗ −31.91∗ −36.84∗∗ −37.76∗∗ 2.42 2.82∗ 2.58 1.74
(15.14) (16.45) (15.07) (15.25) (1.78) (1.51) (2.00) (1.82)

Eligible −0.33 −4.16 0.23 2.10
(12.17) (13.48) (1.99) (1.81)

log(Amt outstanding) −18.54∗∗∗ −25.29∗∗∗ −2.97∗∗∗ −2.40∗∗

(4.34) (3.84) (0.99) (1.02)

log(Time-to-maturity) 26.48∗∗∗ 33.45∗∗∗ 3.86∗∗∗ 3.00∗∗∗

(2.85) (3.26) (0.60) (0.54)

log(Age) 15.49∗∗∗ 17.94∗∗∗ 3.02∗∗∗ 2.43∗∗∗

(3.10) (3.08) (0.58) (0.76)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 36,406 34,457 36,407 34,457 10,089 9,775 10,089 9,775
Adjusted R2 0.03 0.03 0.07 0.07 0.04 0.03 0.20 0.22
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A8. DID robustness: only include trades with par volume ≥ $1 million, i.e., large trades. This table
presents regression results for US firms for the following DID specification from Equation (3): yijt = αs+αk +β1×
SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent variables are measures of
transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls
between March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade
rating and time-to-maturity of 5 years or less on the March 23 2020. Xit controls for log(Amt outstanding), log(Age),
and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity,
respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are greater than or equal to $1
million in par volume, i.e. large trades, are included. Bonds that change credit grade are excluded. Clustered standard
errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −24.22∗∗∗ −22.17∗∗ −29.02∗∗∗ −30.56∗∗∗ −6.45∗∗∗ −7.96∗∗∗ −1.81 −2.08
(9.08) (8.78) (8.94) (8.90) (2.49) (2.85) (3.19) (3.19)

SMCCF 6.70 4.25 5.12 6.66 4.43 5.76∗ −0.83 −0.63
(9.27) (10.06) (9.91) (9.96) (2.82) (3.03) (3.16) (3.18)

Eligible −0.16 −9.19 −19.98∗∗∗ −7.83∗∗∗

(7.51) (10.00) (1.57) (2.75)

log(Amt outstanding) −19.14∗∗∗ −26.76∗∗∗ −1.10 0.31
(2.67) (3.17) (0.98) (0.94)

log(Time-to-maturity) 19.55∗∗∗ 22.15∗∗∗ 2.49∗∗∗ 4.99∗∗∗

(2.33) (2.99) (0.76) (0.90)

log(Age) 14.35∗∗∗ 15.53∗∗∗ 0.42 0.81
(2.43) (2.99) (1.28) (1.28)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 29,941 28,992 29,941 28,992 8,983 8,367 8,985 8,367
Adjusted R2 0.02 0.02 0.02 0.02 0.13 0.18 0.28 0.28
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A9. Trading costs during the COVID-19 crisis: excluding bonds with 5–6 years left to maturity. This table
presents regression results for the following specification: yijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt.
The dependent variables are our measures of transactions costs for risky-principal and agency trades. Crisist and
Interventiont are dummies which take the value of 1 if day t falls into the Crisis and Intervention sub-periods defined
above. There are three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than
$1 million. All trades for bonds with 5–6 years left to maturity are excluded from the regressions. Clustered standard
errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All US Only All US Only

(1) (2) (3) (4)

Crisis 106.28∗∗∗ 106.23∗∗∗ 9.88∗∗∗ 11.46∗∗∗

(13.25) (13.70) (1.62) (1.96)

Intervention 53.36∗∗∗ 55.36∗∗∗ 9.56∗∗∗ 10.59∗∗∗

(5.73) (6.17) (0.80) (1.18)

Bond FE Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes
Observations 699,232 522,452 225,238 133,248
Adjusted R2 0.18 0.19 0.26 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A10. Probability of an agency trade for all bonds: excluding bonds with 5–6 years left to maturity. This
table presents regression results for the following specification from: Agencyijt = αi + αs + β1 × Crisist + β2 ×
Interventiont + εijt. The dependent variable, Agencyijt, is an indicator variable that takes the value 1 if trade j for
bond i on day t is an agency trade and 0 otherwise. Columns (1), (2), and (3) report result for the linear probability
(OLS), logit, and probit models, respectively. We report marginals effects calculated at the sample means for logit and
probit models in columns (2) and (3). Crisist and Interventiont are dummies which take the value of 1 if day t falls into
Crisis and Intervention sub-periods defined above. There are three trade size categories: less than $100,000, between
$100,000 and $1 million, and larger than $1 million. In logit and probit specifications, the pseudo-R2 is defined as
1− L1/L0, where L0 is the log likelihood for the constant-only model and L1 is the log likelihood for the full model
with constant and predictors. The sample starts on January 3 and ends on June 5, 2020. All trades for bonds with
5–6 years left to maturity are excluded from the regressions. Clustered standard errors at the day and bond levels are
shown in parentheses.

Dependent variable:

Probability of agency trade

OLS Logit Probit

(1) (2) (3)

Crisis 0.036∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.009) (0.009) (0.009)

Intervention 0.032∗∗∗ 0.032∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003)

Bond FE Yes Yes Yes
Trade size category FE Yes Yes Yes
Observations 6,486,640 6,486,640 6,486,640
Adjusted R2 0.115
Pseudo R2 0.087 0.087
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A11. Trading costs across eligible and ineligible bonds during the initial and expanded interventions:
excluding bonds with 5–6 years left to maturity. This table presents regression results for the following specification:
yijt = αi+αs+β1×Crisist+β2×SMCCFt+β3×SMCCF Expansiont+εijt. The dependent variables are measures
of transaction costs for risky-principal and agency trades. Crisist is a dummy which takes the value of 1 if day t falls
into the Crisis sub-periods defined above. SMCCFt and SMCCF Expansiont are dummies that take the value of 1
if the trading day t is between March 23 and April 9, and after April 9, 2020, respectively. The SMCCF eligibility
criteria were expanded to include fallen angels on April 9, 2020. There are three trade size categories: less than
$100,000, between $100,000 and $1 million, and larger than $1 million. A bond is considered eligible if it has an
investment-grade rating and time-to-maturity of five years or less on March 23, 2020. The sample begins on January 3
and ends on June 5, 2020, when the SMCCF expanded eligibility criterion to fallen angels. Only US firms are included
in the regressions. All trades for bonds with 5–6 years left to maturity are excluded from the regressions. Clustered
standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

Crisis 110.82∗∗∗ 112.46∗∗∗ 109.09∗∗∗ 12.22∗∗∗ 16.52∗∗∗ 9.64∗∗∗

(14.81) (15.61) (15.78) (2.24) (3.53) (1.85)

SMCCF 95.35∗∗∗ 64.75∗∗∗ 116.42∗∗∗ 14.86∗∗∗ 12.26∗∗∗ 16.84∗∗∗

(8.53) (8.58) (9.62) (1.08) (1.26) (1.52)

SMCCF Expansion 34.37∗∗∗ 16.95∗∗∗ 45.95∗∗∗ 7.76∗∗∗ 5.05∗∗∗ 10.06∗∗∗

(3.26) (2.85) (4.84) (1.07) (0.97) (1.65)

Bond FE Yes Yes Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes Yes Yes
Observations 521,933 200,761 321,172 133,070 50,192 82,878
Adjusted R2 0.19 0.19 0.19 0.27 0.21 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A12. The Effects of Fed Intervention: difference-in-differences: excluding bonds with 5–6 years left
to maturity. This table presents regression results for the following difference-in-differences specification from
Equation (3): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ × Xi,t + εijt.
The dependent variables are measures of transaction costs for risky-principal and agency trades. SMCCFt is a dummy
that takes the value of 1 if day t falls between March 23 and April 9, and 0 otherwise. Eligiblet takes the value
of 1 if the bond has an investment-grade rating and time-to-maturity of five years or less on March 23, 2020. Xit

controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years
since bond issuance, and years to maturity, respectively. There are three trade size categories: less than $100,000,
between $100,000 and $1 million, and larger than $1 million. The sample begins on March 6 and ends on April 9,
2020. Only US firms are included and bonds that change credit grade are excluded. Only US firms are included in the
regressions. All trades for bonds with 5–6 years left to maturity are excluded from the regressions. Clustered standard
errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −60.29∗∗∗ −48.64∗∗∗ −45.86∗∗∗ −39.23∗∗∗ −11.06∗∗∗ −7.75∗∗∗ −9.60∗∗ −9.38∗∗

(11.54) (11.17) (10.85) (11.07) (2.48) (2.66) (3.48) (3.45)

SMCCF 1.29 −16.85 −11.11 −17.67 6.82∗∗∗ 5.91∗∗ 4.62∗∗ 4.49∗∗

(16.07) (13.39) (14.34) (14.16) (2.43) (2.56) (2.14) (2.09)

Eligible −35.43∗∗∗ −34.26∗∗∗ −3.48∗∗∗ −2.03∗∗∗

(7.80) (10.59) (0.63) (0.66)

log(Amt outstanding) 15.22∗∗∗ 20.28∗∗∗ 3.95∗∗∗ 4.26∗∗∗

(4.17) (4.21) (0.82) (1.17)

log(Time-to-maturity) 24.14∗∗∗ 25.14∗∗∗ 5.34∗∗∗ 6.03∗∗∗

(7.01) (6.10) (1.11) (1.22)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industy FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 142,584 130,103 142,585 130,103 43,211 40,964 40,964 43,212
Adjusted R2 0.04 0.05 0.20 0.20 0.08 0.10 0.25 0.24
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A13. Estimating the logit demand parameter σ: overidentified IV. This table presents the IV estimate of
the logit demand parameter σ. Both log volume and number of customer-to-dealer trades are used as instruments. The
pre-crisis runs from January 3, 2020 until February 29, 2020. The post-crisis data begins on April 15, 2020 and runs
until July 31, 2020. We exclude holidays, weekends and half trading days. Standard error are the maximum of robust
and the usual standard errors.

Dependent variable:

(ph − pl)
IV (num & vol)

(1)

log(xh/xl) 73.10∗∗

(31.04)

Post-crisis 7.78
(5.16)

Constant 77.97∗∗∗

(25.81)

Observations 113
Adjusted R2 0.39
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A14. The first stage of the IV regressions for estimating the logit demand parameter σ. We regress the
log ratio of fraction of risky-principal and agency trades on the log of the seasonally-adjusted daily aggregate number
and volume of trades in columns (1) and (2), respectively. The pre-crisis runs from January 3, 2020 until February 29,
2020. The post-crisis data begins on April 15, 2020 and runs until July 31, 2020. We exclude holidays, weekends and
half trading days. Standard errors are given by the maximum of robust and the usual standard errors.

Dependent variable:

log(xh/xl)

(1) (2)

log(Volume of trades) −0.22∗∗∗

(0.05)

log(Number of trades) −0.44∗∗∗

(0.09)

Post-crisis −0.12∗∗∗ −0.13∗∗∗

(0.02) (0.02)

Constant 0.82∗∗∗ 0.84∗∗∗

(0.01) (0.01)

Observations 113 113
Adjusted R2 0.45 0.47
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A15. IV robustness for estimating the logit demand parameter σ: full sample. This table presents OLS
and IV estimates of the logit demand parameter σ using the entire 2020 transactions from TRACE from January 3,
2020 until August 12, 2020. In column (2), the seasonally-adjusted log number of trades is used as the instrument. In
column (3), the seasonally-adjusted log volume of trades is used as the instrument. The full TRACE 2020 sample is
used. Crisist is a dummy which takes the value of 1 if day t falls into the Crisis sub-periods defined above. SMCCFt

and SMCCF Expansiont are dummies that take the value of 1 if the trading day t is between March 23 and April
9, and after April 9, 2020, respectively. We exclude holidays, weekends and half trading days. Standard error are
the maximum of robust and the usual standard errors. Our estimates and standard errors are transformed using the
delta-method where appropriate.

Dependent variable:

(ph − pl)
IV (vol) IV (num) IV (num & vol)

(1) (2) (3)

log(xh/xl) 107.73∗∗ 129.37∗∗∗ 129.79∗∗∗

(43.16) (42.95) (43.13)

Crisis 68.75∗∗∗ 64.06∗∗∗ 63.97∗∗∗

(17.05) (13.21) (13.17)

SMCCF 38.97∗∗∗ 33.05∗∗ 32.93∗∗

(14.15) (13.56) (13.59)

SMCCF expansion 1.80 −1.77 −1.84
(7.89) (7.44) (7.47)

Constant 107.34∗∗∗ 125.27∗∗∗ 125.63∗∗∗

(35.85) (35.70) (35.86)

Observations 143 143 143
Adjusted R2 0.70 0.68 0.68
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A16. The first stage of the IV regressions for estimating the logit demand parameter σ: full sample. We
regress the price difference between high and low cost trades on the log of the seasonally-adjusted number of trades
in that day. Standard errors are given by the maximum of robust and the usual standard errors. This uses the full 2020
TRACE sample. The sub-periods are defined in the text.

Dependent variable:

log(xh/xl)

(1) (2)

log(Volume of trades) −0.24∗∗∗

(0.05)

log(Number of trades) −0.48∗∗∗

(0.09)

Crisis −0.17∗∗∗ −0.18∗∗∗

(0.03) (0.03)

SMCCF −0.18∗∗∗ −0.19∗∗∗

(0.04) (0.04)

SMCCF expansion −0.12∗∗∗ −0.13∗∗∗

(0.02) (0.02)

Constant 0.83∗∗∗ 0.85∗∗∗

(0.02) (0.02)

Observations 143 143
Adjusted R2 0.48 0.51
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

79


	Introduction
	Related literature

	Background
	Trading Conditions During the Pandemic
	Data
	The cost of trading, fast and slow
	Substituting agency trades for risky-principal trades
	Dealers' inventory accumulation
	The effects of the Fed's intervention

	A structural analysis
	A theoretical framework
	Comparative statics
	Estimating the model
	Demand Shocks, Supply Shocks, and Policy Implications
	The Surplus from Immediacy

	Conclusion
	Data and Definitions
	Data description
	Dates highlighted in the figures
	Identifying agency trades

	Corporate Credit Facilities
	Bond eligibility criteria for the SMCCF

	Additional Empirical Results
	Transaction costs: impact of credit rating
	The fraction of agency trades
	Impact of Fed announcements
	Bonds close to the eligibility threshold for rating and maturity
	Trade costs for different trade size bins

	Excluding bonds with 5–6 years left to maturity

	Natural Conditions for the Dealers' Cost Function
	Microfoundations for the Logit Demand
	Estimation Details
	Binary IV
	A second binary IV
	High-frequency IVs

	Relative Preference Shocks for Eligible/Ineligible Bonds

