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1 Introduction

The COVID-19 pandemic has wrought havoc on the global economy. To cope with this unprece-
dented economic shock, many large US corporations turned to the $10 trillion corporate bond
market. However, with the prospect of downgrades and possible defaults, along with widespread
outflows from corporate bond funds, reports of illiquidity began to surface: in mid-March, 2020,
former Federal Reserve chairs Bernanke and Yellen described the corporate bond market as “under
significant stress” (Bernanke and Yellen, 2020), while a report from Bank of America deemed the
market “basically broken” (Idzelis, 2020). In response, the Federal Reserve introduced several
facilities designed to bolster liquidity and reduce the costs and risks of intermediating corpo-
rate debt, including the Primary Dealer Credit Facility (PDCF) and the Primary and Secondary
Market Corporate Credit Facilities (PMCCF and SMCCF, respectively). The latter two facilities
represented a particularly bold intervention, in that they allowed the Fed, for the first time, to
make outright purchases of investment-grade corporate bonds issued by US companies, along with
exchange-traded funds (ETFs) that invested in similar assets.

The purpose of this paper is to study trading conditions in the US corporate bond market
in response to the large economic shock induced by the COVID-19 pandemic, as well as the
unprecedented interventions that followed. Given the nature of the shock, set against the backdrop
of a well-capitalized financial sector, this episode offers a unique opportunity to study how dealers
respond to a massive, exogenous surge in selling pressure, and the subsequent implications for
transaction costs, liquidity, consumer surplus, and dealer profits.

In assessing market conditions during this tumultuous period, we find that it is important to
consider both the cost and the quality of intermediation services being provided. More specifically,
we distinguish between two types of transactions offered by dealers: “risky-principal” trades, in
which a dealer offers a customer-seller immediacy by purchasing the asset directly and storing it
on his balance sheet until finding a customer-buyer; and “agency” trades, in which the customer-
seller retains the asset while waiting for a dealer to find a customer-buyer to take the other side of
the trade. We think of the former as a higher quality transaction service, since the customer is able
to sell immediately, and the latter as lower quality since the customer has to wait. Importantly, this
distinction not only offers a more complete assessment of market liquidity—one that incorporates
both the cost of trading and the time it takes to trade—but it also offers a window into the frictions
that can generate illiquidity during periods of high selling pressure, and the channels through
which interventions can ease these frictions. In particular, our analysis suggests that, at the height
of the COVID-19 panic, dealers were reluctant to absorb inventory onto their balance sheets via
risky-principal trades, and this was a key factor in the dissolution of market liquidity. As dealers
shied away from traditional market-making activity, we find that the Federal Reserve’s decision to
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intervene as a “market-maker of last resort” played a significant role in reducing transaction costs
and increasing the quality of intermediation services.

While the main contribution of our analysis is empirical, we start, in Section 3, by developing
a simple theoretical framework that guides our exploration of the data. More specifically, we
consider a model in which customers with fixed-size demand purchase transaction services from
dealers. These transaction services come in two varieties: low-quality, meant to capture agency
trades; and high-quality, meant to capture risky-principal trades. Customers prefer high-quality
transaction services, but they are more costly for dealers to produce. Within this framework, we
derive a number of testable predictions regarding the impact of a surge in demand for transaction
services—as experienced during the COVID-induced crisis—on the equilibrium prices and quanti-
ties of low- and high-quality trades. In particular, in response to an increase in demand, the model
predicts that the price of all transaction services will rise, but that the price of high-quality, risky-
principal trades will increase more than the price of lower-quality, agency trades. As a result, in
equilibrium customers will shift their consumption bundle from the former to the latter.

With these predictions in mind, in Section 4 we turn to our empirical analysis of trading
conditions in the corporate bond market in response to the panic of mid-March and the Fed’s
interventions that followed. As a first step, using data from the Trade Reporting Compliance
Engine (TRACE), we construct time series to measure the costs of risky-principal and agency
trades in the corporate bond market.1 As the theory predicts, we find that the cost of risky-principal
trades increased significantly during the COVID-induced panic, reaching a peak of more than 200
basis points (bps), while the cost of agency trades increased much more modestly. Hence, when
selling pressure surged, it appears that dealers were highly reluctant to absorb inventory onto their
own balance sheet, or to “lean against the wind” (Weill, 2007).

As the premium paid for risky-principal trades increased, we document that the fraction of
total volume executed as agency trades increased by as much as 15% at the height of the sell-off.
This implies that the average trade was not only more expensive, but also more likely to be slower,
hence of lower quality. Taken together, these results highlight the importance of studying both the
cost and quality of intermediation services: simply measuring the behavior of average transaction
costs during this period would underestimate the deterioration in market liquidity. We return to this
point later when we use our theoretical framework to quantify the impact of shocks on consumer
surplus.

As trading shifted from risky-principal to agency transactions, we show that, somewhat aston-
ishingly, the dealer sector as a whole absorbed no inventory, on net, during the most tumultuous
period of trading. Hence, when the demand for transaction services surged, it was customers
themselves that ultimately stepped up to provide additional liquidity. In fact, it was only after the

1The TRACE data is made available by the Financial Industry Regulation Authority (FINRA).
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announcement of the Federal Reserve’s interventions that dealers began to absorb inventory onto
their balance sheets, and trading conditions started to improve. Indeed, after the announcement of
the Fed’s credit facilities, the quantity of corporate debt held by dealers more than doubled, relative
to pre-COVID levels. At the same time, the cost of risky-principal trades decreased significantly,
to approximately double the levels observed before the pandemic.

While these observations establish the coincidence of key interventions and improvements
in market liquidity, they do not establish a causal relationship. To further explore the effect
of interventions on market liquidity, we exploit restrictions on the types of bonds that could be
purchased through the Fed’s corporate credit facilities. In particular, using a standard difference-
in-differences approach, we use restrictions on bond ratings and time-to-maturity to identify the
change in trading cost induced by the announcement of the SMCCF. We find that, immediately after
the announcement of the SMCCF, the cost of trading bonds that were eligible for purchase by the
Fed decreased substantially, while the cost of trading ineligible bonds was essentially unchanged.
For example, our results suggest that the initial announcement of the SMCCF reduced the cost of
risky-principal trades for eligible bonds by approximately 50 bps. Later, when the program was
expanded in both size and scope, we show that the trading costs of all bonds fell. Hence, our
results suggest that the initial announcement induced dealers to purchase eligible bonds at a lower
cost, while the expansion of the corporate credit facility appears to have relaxed balance sheet
constraints more generally, making dealers less reluctant to purchase any bond.

Finally, in Section 5, we combine derivations from our parsimonious theoretical framework
with the empirical results described above to assess consumer surplus and dealer profits during the
March panic and the recovery that followed. To the best of our knowledge, despite the explosion
of research on financial markets during the COVID-19 crisis, this is the first attempt to quantify
the impact of these events on the payoffs of consumers and dealers.

Again, we find that considering both the cost and the quality of trades—i.e., the distinction
between risky-principal and agency trades—reveals new insights. On the consumer side, our
estimates suggest that the large drop in consumer surplus early in the crisis was largely due to
increased transaction costs. However, as the crisis evolved and consumers shifted towards low-
quality agency trades, we find that increased transaction costs only account for about half of the loss
in consumer surplus; the remaining decline in consumer surplus can be attributed to lower quality,
slower trades. This exercise highlights the value of interpreting our empirical results through the
lens of a model, in that we are able to quantify the extent to which studying average transaction
costs alone would lead one to underestimate the impact of the COVID-19 pandemic on consumers.

On the dealer side, our estimates suggest that profits spiked during the height of the crisis,
reflecting the large increase in transaction costs (i.e., bid-ask spreads). However, despite transac-
tion costs (and thus revenue) remaining elevated throughout the recovery, our estimates suggest
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that profits returned to pre-crisis levels, as dealers’ cost of providing more intermediation services
remained elevated as well. We also study how our results would change if the large increase in the
price of transaction services was driven by a supply shock, such as a rise in dealers’ funding costs,
instead of a surge in demand. Under this scenario, the model infers that profits increased less during
the height of the panic, relative to the demand-driven benchmark, but remained elevated during the
recovery stage. Intuitively, the model now rationalizes the observed decline in post-intervention
trading costs as a positive supply shock, which increases dealers’ profits.

1.1 Related literature

Given the size of the COVID-19 shock, and the historic nature of the Federal Reserve’s response,
it is not surprising that a number of recent papers have emerged to study financial market activity
since the onset of the pandemic. Our paper belongs to the literature focused on the corporate
bond market, which we discuss in greater detail below, but shares much in common with studies
of other markets, including the market for Treasuries and other government debt (Duffie, 2020;
He, Nagel, and Song, 2020; Fleming and Ruela, 2020; Schrimpf, Shin, and Sushko, 2020), as
well as the market for asset-backed securities (Foley-Fisher, Gorton, and Verani, 2020; Chen, Liu,
Sarkar, and Song, 2020). For example, like our analysis, He, Nagel, and Song (2020) emphasize
the importance of dealers’ balance sheet constraints on their willingness to absorb selling pressure,
and the subsequent effects on prices and trading activity.

In the corporate bond market, Falato, Goldstein, and Hortaçsu (2020) focus on the effects of
the pandemic on outflows from bond mutual funds, and the role that the Fed’s corporate credit
facilities played in reversing these outflows. Ma, Xiao, and Zeng (2020) also explore outflows in
fixed-income mutual funds, including those that invest in corporate bonds and Treasuries. They
derive a pecking order theory of liquidation, which helps to explain why selling pressure was
strongest in the most liquid sectors of these markets. More closely related to our paper is work
by Haddad, Moreira, and Muir (2020), Nozawa and Qiu (2020), and D’Amico, Kurakula, and Lee
(2020), who focus primarily on the behavior of credit spreads throughout the crisis, and attempt
to identify the mechanism through which the Fed’s interventions appear to have improved market
conditions.

However, our paper is most closely related to contemporaneous work by O’Hara and Zhou
(2020) and Boyarchenko, Kovner, and Shachar (2020), who also investigate liquidity conditions in
the corporate bond market during the COVID-19 crisis, and the effects of the Fed’s interventions.
Despite some overlap, the three papers differ (and complement one another) in several important
ways. For example, using the regulatory version of TRACE with dealer identities, O’Hara and
Zhou (2020) document the heterogeneous response of different dealers to the Fed’s interventions.
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This allows them to control for dealer fixed effects, and to distentangle the effects of the PDCF and
the SMCCF, among other things. Boyarchenko, Kovner, and Shachar (2020) also use the regulatory
version of TRACE, along with data on the volume of bonds (or shares of ETFs) purchased by
the Fed’s corporate credit facilities. This allows them to decompose the effects of the Fed’s
interventions into direct “purchase effects” and indirect “announcement effects.”

While our paper makes a number of distinct contributions relative to these contemporaneous
studies, we highlight two aspects of our methodology that are particularly important. First, our ap-
proach to measuring trading conditions takes into account that there are multiple channels through
which market liquidity can deteriorate: customers can face higher transaction costs or longer
waiting times for executing a trade. Hence, by measuring the cost and the frequency of risky-
principal and agency trades separately, our analysis provides a multi-dimensional assessment of
market liquidity, and offers new insights into the frictions that dealers face and the effects of the
Fed’s interventions on dealers’ behavior. Second, exploiting our empirical results in conjunction
with our theoretical framework, we are able to construct quantitative estimates of the effects of
the COVID-19 crisis (and ensuing interventions) on consumer surplus and profits. Crucially, this
allows us to map easily quantifiable objects, such as trading costs and the fraction of risky-principal
vs. agency trades, into the (harder to measure) objects of primary concern to policymakers—
namely, the surplus of customers and the profits of dealers.

2 Background

The COVID-19 Shock. Despite reports of a potentially lethal virus spreading in China, US
equity markets reached all-time highs on February 19, 2020. Just two weeks later, as the scope
of the COVID-19 coronavirus and the duration of its effects became apparent, financial markets
around the world entered a period of turmoil. For example, between March 5 and March 23, the
S&P 500 fell more than 25%. In the corporate bond market, the ICE Bank of America AAA US
Corporate Index Option-Adjusted spread increased by about 150 bps over this same period, while
the corresponding spread for high-yield (HY) corporate debt increased by more than 500 bps.2

As the price of equities and debt plummeted, reports of illiquidity in key financial markets
emerged.3 Such reports were especially troubling in the corporate bond market, as many large US
firms would almost surely need access to capital in light of the impending shocks to their balance

2See Ebsim, Faria-e Castro, and Kozlowski (2020) for a more comprehensive analysis of credit spreads during
this time period.

3In fact, reports of trading difficulties even reached the market for Treasuries, in what one journalist described as
a “stunning lack of liquidity in whats often billed as the worlds deepest and most liquid bond market.” (Chappatta,
2020)
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sheets. However, as investors pulled out of corporate bond funds in droves,4 and selling pressure
surged, market participants reported that dealers were unwilling to absorb corporate debt onto
their balance sheet. In a Wall Street Journal article titled “The Day Coronavirus Nearly Broke the
Financial Markets,” Baer (2020) writes:

[W]hen Mr. Rao called senior executives for an explanation on why [broker-dealers]
wouldnt trade, they had the same refrain: There was no room to buy bonds and other
assets and still remain in compliance with tougher guidelines imposed by regulators
after the previous financial crisis [...] One senior bank executive leveled with him: We
cant bid on anything that adds to the balance sheet right now.”

Assessing Liquidity Conditions in the Corporate Bond Market. The sentiment expressed in
the quote above was not an anomaly; even before the COVID-induced crisis, both market partici-
pants and academics alike had argued that dealers’ balance sheet concerns posed a threat to market
liquidity. According to this argument, the implementation of post-2008 banking regulations—
including the Basel III capital requirements and the ban on proprietary trading codified in the
Dodd-Frank Act—increased dealers’ cost of holding inventory on their balance sheets, and hence
made them less willing to provide liquidity directly to their customers, especially in times of
stress.5 These concerns seemed to be validated by the fact that the share of outstanding corporate
bonds held by the dealer sector as a whole declined significantly in the post-2008 period, from
approximately 3% to less than 1%.6

Yet, despite this evidence, detecting and measuring illiquidity in the corporate bond market
proved to be a challenge, as common metrics that are easily available in equity markets, like bid-
ask spreads, are difficult to construct for corporate debt. However, several recent studies have
offered guidance on “where to look” for signs of illiquidity in this crucial market. In particular,
these studies have highlighted the important distinction between risky-principal trades, in which
dealers offer immediacy by using their own balance sheet space, and agency trades, in which
dealers simply locate other customers to provide liquidity, usually at a delay. For example, Bao
et al. (2018) document that dealer-banks subject to the Volcker rule shifted a considerable amount
of trades from fast, risky-principal trades to slower, agency trades after the implementation of

4 For example, according to Scaggs (2020), funds investing in investment-grade corporate bonds faced withdrawals
of almost $100 billion alone in mid-March. In a more comprehensive analysis, Falato et al. (2020) report that, between
the months of February and March, the average corporate bond fund experienced cumulative outflows of approximately
9% of net asset value, which constitutes by far the largest outflows in the last decade.

5See, e.g., Duffie (2012) and Thakor (2012) for discussions of how post-2008 financial regulation could hurt
market liquidity. Bao, O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018), Dick-
Nielsen and Rossi (2019), and Choi and Huh (2018) provide empirical evidence to support the erosion of liquidity,
particularly during episodes of sudden, increased selling pressure.

6See Kargar, Lester, and Weill (2020), who document this fact using data from Table L.213 of the federal Reserve’s
Flow of Funds.
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post-2008 banking regulations. Choi and Huh (2018), meanwhile, document that the cost of risky-
principal trades increased substantially during this time period, while the cost of agency trades
did not. Taken together, these observations suggest that conventional measures of trading costs
provide an incomplete assessment of market liquidity; as the composition of trades shift from more
expensive, faster risky-principal trades to less expensive, slower agency trades, average trading
costs can appear essentially unchanged despite significant deterioration in the time it takes for
customers to trade. This is why, as we explore the effects of the COVID-19 crisis, we are careful
to distinguish between the price of these two different types of transaction services.

Federal Reserve Interventions. Given reports that dealers were unwilling to absorb assets onto
their own balance sheet, the Federal Reserve introduced several new facilities designed to bolster
liquidity and reduce trading costs. On the evening of March 17, the Federal Reserve introduced the
aforementioned PDCF, offering collateralized overnight and term lending to primary dealers. By
allowing dealers to borrow against a variety of assets on their balance sheets, including investment-
grade corporate debt, this facility intended to reduce the costs associated with holding inventory
and intermediating transactions between customers.7

On March 23, the Federal Reserve proposed even more direct interventions in the corporate
bond market through the PMCCF and SMCCF. These facilities were designed to make outright
purchases of corporate bonds issued by investment-grade US companies with remaining maturity
of five years or less. The facilities were also allowed to purchase shares in US-listed exchange-
traded funds (ETFs) that invested in US investment-grade corporate bonds. On April 9, these
corporate credit facilities were expanded in size and extended to allow for purchases of ETFs
that invested in high-yield corporate bonds.8 Interestingly, though many of the effects of these
corporate credit facilities were observed immediately after they were announced (and expanded),
the Federal Reserve did not actually begin purchasing bonds until May 12. We provide a more
detailed description of this timeline, and of the Federal Reserve’s facilities, in Appendix C.

7In addition to the facilities that we highlight in our analysis here, it is also noteworthy that the Federal Reserve
temporarily relaxed the supplementary leverage ratio (SLR) rule—first on April 1 and again on May 15, 2020—to ease
balance sheet constraints and increase banks’ ability to lend to households and businesses. By excluding US Treasury
securities and reserves from the calculation of the SLR rule for holding companies, the rule change was primarily
intended to increase liquidity in the Treasury market. However, to the extent that it relaxed dealers’ balance sheet
constraints, the effects could clearly extend to the corporate bond market as well, as we discuss later in the text. To
read more about the rule change, see the April 1, 2020 and the May 15, 2020 press releases.

8The April 9 update also allowed the SMCCF to make direct purchases of bonds that had been downgraded from
investment-grade to high-yield status (so-called ”fallen angels”) after March 22. The facility also allowed purchasing
of high-yield ETFs.
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3 A simple theoretical framework

In this section, we develop a parsimonious theoretical framework to study equilibrium prices and
quantities for two distinct types of transaction services, meant to capture risky-principal and agency
trades. To guide and interpret our exploration of the data, we use the model to analyze the effects of
an exogenous shock to the aggregate demand for transaction services, which we think captures the
key feature of the COVID-19 crisis in the corporate bond market, i.e., the surge in selling pressure.
At this stage, we do not consider contemporaneous supply shocks to dealers’ cost of providing
transaction services; that is, we assume these costs derive from factors put in place before the
COVID-19 crisis, such as banking regulations, and do not change significantly during the crisis
itself.9 Later, in Section 5, we also use our framework to offer empirical measures of consumers’
surplus and the dealer sector’s extra profits during the first two quarters of 2020, relative to an early
January baseline. When we do so, we also extend our analysis to consider the effects of shocks to
the supply of intermediation services.

3.1 The model

There are two types of agents: a measureN of customers and a measure one of dealers, all of whom
are price takers. Each customer seeks to trade one share of an asset, and we do not distinguish
between purchases and sales; this simplification allows us to study the determinants of transaction
costs, though it is worth noting that our model is silent on the determinants of the asset’s price.
Since there areN customers with unit demand, the aggregate demand for transactions is exogenous
and equal to N . However, while the total number of transactions is exogenous, the composition
is not. Namely, we assume that customers demand vertically differentiated transaction services
supplied by dealers at a convex cost: low-quality transaction services, interpreted as agency trades,
and high-quality transaction services, interpreted as risky-principal trades.

Customers have quasi-linear utility for transaction services and for cash. Specifically, the
problem of a customer is to choose how much low- and high-quality transaction services to demand
from dealers in order to maximize

u(xl, xh)− plxl − phxh,

subject to the constraint that the total number of transactions (per customer) adds up to the ex-
ogenously desired level, xl + xh = 1. We assume that u(xl, xh) is increasing, concave, twice
continuously differentiable, and satisfies uh(xl, xh)− ul(xl, xh) ≥ 0, where the h and l subscripts

9Notice that, during the COVID-19 crisis, the price (transaction cost) and quantity (trading volume) of transaction
services increased at the same time, which is suggestive of demand, not supply, shocks.
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denote first partial derivatives with respect to xh and xl, respectively. This condition simply
means that the customer values high-quality transaction services more than low-quality transaction
services.

Assuming interior solutions, the first-order optimality condition of the customer is

uh(xl, xh)− ul(xl, xh) = ph − pl, where xl + xh = 1.

On the other side of the market, dealers choose their supply of transaction services, Xl and Xh, in
order to maximize profits,

plXl + phXh − C(Xl, Xh),

where C(Xl, Xh) is some continuous, convex, and twice continuously differentiable cost function.
This leads to the first-order optimality conditions

pl = Cl(Xl, Xh) and ph = Ch(Xl, Xh).

Finally, the market clearing conditions for transaction services are simply

Xl = Nxl and Xh = Nxh.

Given some level of aggregate transaction demand,N , an equilibrium is thus a tuple (xl, xh, Xl, Xh, pl, ph)

solving the first-order optimality conditions of customers and dealers, and the market clearing
conditions.

3.2 The impact of a shock to aggregate transaction demand

The immediate consequence of the COVID-19 crisis in the corporate bond market was a surge in
selling pressure, as investors withdrew money from bond funds en masse and financial institutions
made a “dash for cash.”10 In fact, according to TRACE, customer trading volume rose sharply
during the crisis, by about 50%.11 In our model, we represent this large, sudden increase in the
demand for transaction services by an increase in N , the measure of customers who arrive to the
market. The following proposition characterizes the impact of this shock on the equilibrium prices
and quantities of low- and high-quality transaction services. The proof is in Appendix A.

10See Ma et al. (2020), along with the references cited in Footnote 4.
11See TRACE Market Aggregate Information from FINRA.
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Proposition 1 Let (x?l , x
?
h, X

?
l , X

?
h, p

?
l , p

?
h) be an equilibrium for a given N . If

∂

∂N
[Ch (Nx?l , Nx

?
h)] ≥ ∂

∂N
[Cl (Nx?l , Nx

?
h)] ≥ 0, (1)

then, in response to a marginal increase in N :

• The cost of all transaction services go up: both p?h and p?l increase;

• The cost of high-quality transaction services go up by more: p?h − p?l increases;

• Customers substitute towards low-quality transaction services: x?h decreases.

The sufficient condition in (1) has a natural interpretation: it means that, holding the compo-
sition of low- and high-quality transaction services fixed, an increase in N increases the marginal
cost of all transaction services, but more so for the marginal cost of high-quality transaction
services. Of course, one may be concerned about whether this condition is likely to be satisfied, so
it is worth noting that condition (1) is true for all (xl, xh) and N under a number of standard cost
functions. For example, this condition is always satisfied if C(Xl, Xh) = (αXl + βXh)k for some
k > 1 and any β > α > 0.

To understand the impact of an increase in N on equilibrium prices and allocations, we can
combine the first-order conditions of the customers and the dealers, together with the market-
clearing condition, to get

uh(1− xh, xh)− ul(1− xh, xh) = ph − pl = Ch(N(1− xh), Nxh)− Cl(N(1− xh), Nxh).

The left-hand side of this equation, represented by the orange solid curve in the left panel of
Figure 1, defines a downward-sloping schedule for the per-customer demand of high-quality in-
termediation services, xh, as a function of the difference in prices, ph − pl. The right-hand
side, represented by the blue solid curve, defines an upward-slopping supply schedule.12 The
intersection of the two curves determines the equilibrium quantities of high- and low-quality
transaction services, along with the premium paid for high-quality services, given some level of
aggregate transaction demand, N .

The sufficient condition in (1) ensures that the supply schedule shifts up in response to an
increase in N , i.e., from the blue solid supply curve to the green dashed supply curve. Since per-
customer demand is independent of N , the demand curve is unchanged. Using a loose, dynamic
interpretation of the model, the “short run” effect of an increase in N is a rise in the premium

12Notice that both schedules are defined by differences in marginal values and marginal costs; this is because each
customer has a fixed total demand for intermediation services, so a marginal increase in the demand for high-quality
services induces a corresponding decrease in the demand for low-quality services.
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ph − pl along the vertical red arrow. In response to this change in relative prices, of course,
customers substitute towards low-quality transaction services and x?h falls (the third bullet point in
Proposition 1). The premium ph − pl decreases along the diagonal red arrow, but remains elevated
relative to its pre-shock level (the second bullet point).
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Figure 1. Equilibrium prices and quantities of high- and low-quality transaction services.

The right panel of Figure 1 illustrates the effect of an increase in N on pl and ph separately.
Drawing on the dealers’ first-order conditions, the prices pl and ph must equal the marginal cost
of providing low- and high-quality transaction services (represented by the solid-blue and solid-
green curves, respectively), evaluated at the equilibrium quantities implied by xh. In response to
an increase in N , when (1) is satisfied, the marginal cost curves shift up and xh declines, leading
to an increase in both prices (the first bullet point in Proposition 1).

To summarize, the comparative statics derived from this reduced-form theoretical framework
provide straightforward, testable predictions. In particular, drawing the analogy that pl and ph

represent the cost of agency and risky-principal trades, respectively, our model predicts that pl <
ph before the shock to aggregate demand. Upon impact, both pl and ph should spike, but the
magnitude of the ph spike should be larger. In the new equilibrium, pl should remain only slightly
elevated, while the increase in ph should be more pronounced. Finally, these price movements
should coincide with a decrease in risky-principal trades.
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4 Trading conditions during the pandemic

In this section, we describe how market conditions evolved from the sanguine conditions of mid-
February through the freefall of mid-March to the post-intervention recovery of April and May.
Guided by the theoretical results derived above, we first construct time series for several variables
of interest: the cost of risky-principal trades, the cost of agency trades, and the fraction of each type
of transaction services. We document that, at the height of the selling pressure, dealers appeared
unwilling to absorb assets onto their balance sheets, as the cost of risky-principal trades surged
and the fraction of such trades dropped significantly. Conditions improved immediately after the
Fed’s announcement of the corporate credit facilities, with dealers providing liquidity directly,
via risky-principal trades, at significantly lower prices. To test the causal relationship between the
Fed’s interventions and market liquidity, we exploit the eligibility requirements for bond purchases
by the SMCCF. We find that, after the initial announcement, trading costs for eligible bonds fell
substantially, while trading costs for ineligible bonds were little changed. Later, after the program
was expanded in both size and scope, we document more significant declines in trading costs for
all bonds.

4.1 Data and key dates

To construct our sample, we combine the standard TRACE data set (for 2020Q1) with the End-
of-Day version (for 2020Q2). We first filter the report data following the standard procedure laid
out in Dick-Nielsen (2014). We merge the resulting data set with the TRACE master file, which
contains bond grade information, and with the Mergent Fixed Income Securities Database (FISD)
to obtain bond fundamental characteristics. Following the bulk of the academic literature, we
exclude variable-coupon, convertible, exchangeable, and puttable bonds, as well as asset-backed
securities, and private placed instruments. We also exclude newly-issued and foreign securities.

The filtered dataset covers the period from January 2 to June 5, 2020, and contains 7.4 million
trades and 40,279 unique bonds. Approximately 61% of the transactions are identified as customer-
dealer and 39% as interdealer trades. The average trade size is $225,727 across all transactions,
with average total daily volumes for customer-dealer and interdealer trades of $8.26 billion and
$3.52 billion, respectively. It is worth noting that, in both the standard and End-of-Day versions
of TRACE, the trade size for investment-grade and high-yield bonds is top-coded at $5 million
and $1 million, respectively. For a typical bond, the median time-to-maturity is 4.95 years and the
mean (median) number of daily trades is 7.2 (4) across all dates.

In all of our plots below, we include vertical dashed lines to highlight several key dates men-
tioned above: February 19, when stock markets reached their all-time peaks; March 5, which marks
the beginning of the extended fall in equity prices and rise in corporate credit spreads; March 18,

12



the first day of trading after the announcement of the PDCF; March 23, the day that the PMCCF
and SMCCF were announced; April 9, the day that the size and scope of the corporate credit
facilities were expanded; and May 12, the date that bond purchases commenced.13

4.2 The cost of trading, fast and slow

To capture the average transaction cost for risky-principal trades, we use the measure of bid-ask
spreads proposed by Choi and Huh (2018), CH hereafter. To construct this measure, we first
calculate, for each customer trade, the spread

2Q× traded price− reference price
reference price

,

where Q is equal to +1 for a customer buy from and −1 for a customer sell to a dealer, and the
reference price is taken to be the volume-weighted average price of interdealer trades larger than
$100,000 in the same bond-day. Importantly, we restrict our sample so that it only includes trades
in which the dealer who buys the bond from a customer holds it for more than 15 minutes. In doing
so, we leave out those trades where the dealer had pre-arranged for another party (either a customer
or another dealer) to buy the bond immediately.14 The measure of risky-principal trading costs is
then calculated at the trade level, and at the bond-day level by taking the volume-weighted average
of trade level spreads. Finally, this measure is calculated at the daily level by taking the average in
each day across all bonds, weighted by bonds daily total volume of customer trades where the CH
measure is available.

To capture the average transaction cost of agency trades, we calculate a modified version of
the Imputed Roundtrip Cost measure described in Feldhütter (2012). To construct this modified
imputed roundtrip cost (or “MIRC”), we first identify imputed roundtrip trades (IRT) by matching
a customer-sell trade with a customer-buy trade of the same size that takes place within 15 minutes
of each other.15 We do not include interdealer trades in constructing IRTs, so that each IRT only
includes one customer-buy trade and one customer-sell trade. Then, to compute the MIRC, we
calculate

Pmax − Pmin

Pmax

,

13To start, the SMCCF purchased shares of ETFs that held a portfolio of corporate bonds. The first purchases of
individual bonds did not occur until June 16.

14Likewise, in calculating reference prices, we follow CH and exclude interdealer trades executed within 15
minutes of a customer-dealer trade.

15In other words, as in earlier papers, we assume that customer-buys and customer-sells that occur in rapid
succession are likely to be agency trades. Indeed, in an agency trade, dealers search for counterparties on behalf
of customers. When counterparties are found, the two customers are matched by dealers, and two customer-to-dealer
trades are recorded in a short time window.
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where Pmax is the largest price in the IRT and Pmin is the smallest price in the IRT. Within each
bond and day, we calculate the daily average roundtrip cost as the average of the bond’s MIRC on
that day, weighted by trade size. Finally, a daily estimate of average roundtrip cost is the average
of roundtrip costs on that day across all bonds, weighted by bonds’ total daily trading volumes in
the matched IRTs.

Figure 2 plots the two time series. The two measures of transaction costs are relatively stable
through February 19, with risky-principal trades approximately twice as expensive as agency
trades. Upon realization of the COVID-induced shock, as our theory predicts, the cost of risky-
principal trades rises dramatically, while the cost of agency trades is more muted. In particular,
between Thursday, March 5, and Monday, March 9, the cost of risky-principal trades roughly
triples, to approximately 100 bps; over these three trading days, the S&P 500 Index declined
more than 12%. A week later, during the most tumultuous period of March 16-18, this series
continues to rise, reaching a peak of more than 250 bps, before beginning a steady decline after
the announcement of the SMCCF on March 23. The MIRC measure of agency trading costs, in
contrast, increases from a baseline around 8 bps to approximately 28 bps, before receding slightly
after the Fed’s intervention.
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Figure 2. Transaction costs: Risky-principal vs. agency trades.

To highlight the relative costs of risky-principal and agency trades, we plot the difference between
the two series in Figure 3. One can see that the cost of trading immediately was considerably
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more responsive to both the heightened selling pressure induced by the pandemic in mid-March
and the Fed’s interventions which followed. Moreover, despite considerable improvement in both
metrics during the month of April, note that the price of trading immediately remained elevated
through early June, which suggests that liquidity conditions remained somewhat strained well after
the markets appear to have calmed.
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Figure 3. Difference between transaction costs for risky-principal and agency trades.

Of course, the change in spreads could be driven by a change in the composition of bonds that
were traded during this period of distress. For example, perhaps trading volume was unusually
high for retail-size trades of illiquid bonds, which typically involve higher transaction costs. Thus,
to further clarify the impact of the crisis and ensuing interventions on the cost of risky-principal
and agency trades, we turn to formal regressions that allow us to control for bond- and trade-level
fixed effects. We consider the following specification

yijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt. (2)

The dependent variable, yijt, represents the transaction cost for a type j ∈ {risky-principal, agency}
trade of bond i on day t. The dummy variables Crisist and Interventiont allow us to distinguish
between three sub-periods: (i) Pre-crisis, which corresponds to dates before March 5, 2020; (ii)
Crisis, which covers the period March 5–23, 2020; and (iii) Intervention, which covers the period
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after March 23. Hence, the coefficients β1 and β2 measure transactions costs relative to the pre-
crisis period. Finally, αi and αs represent bond and trade size fixed effects, respectively. Bond fixed
effects capture bond characteristics that are fixed over time such as industry, par amount, etc.16 For
trade size fixed effects we consider three categories: less than $100,000, between $100,000 and $1
million, and larger than $1 million.17

Table 1 presents the results for all bonds, as well as the sub-sample of bonds issued by US
firms.18 We include bond and size category fixed effects and cluster standard errors at the bond and
day levels in all regressions to account for correlation over time within a bond and across bonds
in a given day. From columns (1) and (3), we observe that during the crisis period of March 5-23,
average bond-level trading costs for risky-principal and agency trades increased by approximately
107 bps and 10 bps, respectively, relative to the pre-crisis period. After the Fed’s interventions on
March 23, trading costs for risky-principal trades fell by approximately 55 bps—more than half
the initial spike—while transaction costs for agency trades declined much more modestly. These
results are consistent with the aggregate results we present in Figure 2. From columns (2) and
(4), we see that the sub-sample of US-issued bonds was roughly the same as the behavior of all
bonds, though the cost of agency trades for US-issued bonds increased slightly more during the
crisis period.

4.3 Substituting agency trades for risky-principal trades

As the premium for risky-principal trades increased, our theory predicts that customers respond by
substituting towards agency trades. Figure 4 confirms that this was indeed the case during the most
tumultuous weeks of trading in mid-March.19 For example, between March 5 and March 23, the
fraction of agency trades measured by both number (left axis) and volume (right axis) increased by
as much as 15 percentage points, trough to peak, before receding after the March 23 announcement
of the corporate credit facilities. Again, this shift toward agency trades has important implications
for assessing market liquidity. In particular, if one were simply to measure trading costs across all

16We do not have access to the latest credit rating data for all bonds in our sample, just the binary IG/HY
classification provided by TRACE. For the sub-sample of bonds where the credit rating is available, we include a
credit rating fixed effect in specification (2) to control for potentially time-invariant nature of bond credit ratings.
From Table 6 in Appendix D, we see that controlling for bond credit rating leads to very similar results to the ones
from Table 1.

17Bao et al. (2018) show that trades with dealers that are affected by more stringent regulation following the global
financial crisis (GFC), such as the Volcker rule, can exhibit higher trading costs after the GFC. Hence, one would
ideally include dealer fixed effects in specification (2) as well. Unfortunately, the standard and end-of-day versions of
TRACE data that we use do not include dealer identities available in the regulatory and academic versions.

18One reason we include the results for the US sub-sample is to demonstrate that the trading cost patterns are
similar to the full sample. This is helpful later, in Section 4.5, when we focus on the US sub-sample exclusively.

19We discuss how we identify agency trades in depth in Appendix B.
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Table 1. Trading costs during the COVID-19 crisis. This table presents regression results for the following
specification: yijt = αi +αs + β1×Crisist + β2× Interventiont + εijt. The dependent variables are our measures of
transactions costs for risky-principal and agency trades. Crisist and Interventiont are dummies which take the value
of 1 if day t falls into the Crisis and Intervention sub-periods defined above. There are three trade size categories: less
than $100,000, between $100,000 and $1 million, and larger than $1 million. Clustered standard errors at the day and
bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All US Only All US Only

(1) (2) (3) (4)

Crisis 106.57∗∗∗ 105.63∗∗∗ 10.43∗∗∗ 12.03∗∗∗

(14.17) (14.93) (1.83) (2.16)

Intervention 51.28∗∗∗ 52.09∗∗∗ 9.39∗∗∗ 10.16∗∗∗

(5.62) (5.92) (0.74) (1.03)

Bond FE Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes
Observations 769,809 581,217 245,670 147,042
Adjusted R2 0.17 0.18 0.26 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

trades, they would underestimate the erosion in liquidity as the composition of trades shifted from
faster, more expensive risky-principal trades to less costly, but slower agency trades.

To study the substitution from risky-principal to agency trades more carefully, we consider a
regression with the following specification:

Agencyijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt, (3)

where Agencyijt is an indicator variable that takes the value one if trade j for bond i on day t is
an agency trade and zero otherwise. The variables on the right-hand side of specification (3) are
the same as in (2). Under this specification, the coefficients β1 and β2 measure the change in the
probability of an agency trade during the crisis and intervention periods, respectively, relative to
the pre-crisis period. For robustness, we present results using linear probability (OLS), logit, and
probit models.

Table 2 presents the results. As shown in column (1), during the crisis period of March 5–
23, the probability of an agency trade for a given bond, on average, rose by approximately 3.8
percentage points relative to the pre-crisis period. After the Fed interventions on March 23, this
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Figure 4. Proportion of agency trades, all bonds.

probability decreased slightly from the crisis period (by 70 bps) to 3.1 percentage points higher
than the pre-crisis period. For the sake of completeness, we report marginal effects calculated at
the sample means for logit and probit models in columns (2) and (3); the results are very similar to
the linear probability model (OLS) in column (1).20

4.4 Dealers’ inventory accumulation

To summarize our results thus far, at the height of massive selling pressure in mid-March, the price
of trading immediately through risky-principal trades increased substantially and, in response,
customers substituted towards slower, less costly agency trades. In light of these observations,
one might naturally wonder: who was providing liquidity in the corporate bond market? Were
dealers “leaning against the wind” and absorbing some of the inventory during the selloff? Or
was the shift to agency trades sufficiently large that other customers were ultimately providing
liquidity?

To answer this question, we construct a measure of the (cumulative) value of bonds that were

20For the interested reader, we also report results from a linear probability model that distinguishes between eligible
and ineligible bonds for the SMCCF in Appendix D. We find that the shift towards agency trades was more pronounced
among bonds that were eligible for the Fed’s purchasing program.
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Table 2. Probability of an agency trade for all bonds. This table presents regression results for the following
specification from: Agencyijt = αi+αs+β1×Crisist+β2×Interventiont+εijt. The dependent variable, Agencyijt, is
an indicator variable that takes the value 1 if trade j for bond i on day t is an agency trade and 0 otherwise. Columns (1),
(2), and (3) report result for the linear probability (OLS), logit, and probit models, respectively. We report marginals
effects calculated at the sample means for logit and probit models in columns (2) and (3). Crisist and Interventiont
are dummies which take the value of 1 if day t falls into Crisis and Intervention sub-periods defined above. There are
three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. In logit
and probit specifications, the pseudo-R2 is defined as 1−L1/L0, where L0 is the log likelihood for the constant-only
model and L1 is the log likelihood for the full model with constant and predictors. The sample starts on January 3 and
ends on June 5, 2020. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Probability of agency trade

OLS Logit Probit

(1) (2) (3)

Crisis 0.038∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.010) (0.010) (0.009)

Intervention 0.031∗∗∗ 0.030∗∗∗ 0.030∗∗∗

(0.004) (0.004) (0.004)

Bond FE Yes Yes Yes
Trade size category FE Yes Yes Yes
Observations 7,052,589 7,052,589 7,052,589
Adjusted R2 0.113
Pseudo R2 0.085 0.085
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

absorbed over time by the dealer sector. In particular, using the daily Market Sentiment data from
FINRA, we subtract the value of bonds that dealers sell to customers from the value of bonds that
they buy from customers each day, and then calculate the cumulative sum of the net changes.21

Figure 5 plots the cumulative net change in inventory held in the dealer sector, both in levels (left
axis) and as a fraction of pre-crisis outstanding supply (right axis), starting on February 19, 2020.

Several aspects of Figure 5 are striking. First, during the most tumultuous period of trading,
the dealer sector absorbed, on net, no additional inventory despite the considerable selling pressure
from customers. In fact, dealers actually reduced inventory holdings and became net sellers.
Hence, during this period, it was indeed other customers that were supplying liquidity to the
market. Second, dealers’ reluctance to absorb inventory appears to have changed substantially

21The Market Sentiment data is available through FINRA TRACE Market Aggregate Information. We use this
data, as opposed to the standard or End-of-Day TRACE data, because it is not top-coded and hence allows for a more
accurate assessment of the inflow and outflow of bonds in the dealer sector.
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Figure 5. Cumulative inventory change (USD billions) in the dealer sector and as a fraction of total supply (%),
according to FINRA market sentiment tables.

around the dates corresponding to the Fed’s announcement of the Primary Dealer Credit Facility
(March 18) and the Primary and Secondary Market Corporate Credit Facilities (March 23). Lastly,
dealers continued to accumulate inventory through April and May. Indeed, from March 18, the
data indicates that dealers absorbed more than $50 billion in corporate debt, or roughly doubled
their inventory holdings relative to pre-pandemic levels.22

4.5 Effects of the Fed’s intervention

The results above suggest that the Fed’s interventions—in particular, the March 23 announcement
of the SMCCF—had a significant effect on dealers’ willingness to absorb inventory onto their bal-
ance sheets, and hence on market liquidity. In this section, we exploit the eligibility requirements
specified in the SMCCF to test this hypothesis more formally.

According to the original term sheet, a bond is eligible to be purchased through the SMCCF
if it has an investment-grade rating on March 23, 2020; if it has a time-to-maturity of five years
or less; and if its issuer is domiciled in the US.23 However, the Fed has a considerable degree of

22From Table L.130 of the Flow of Funds, at the end of 2019Q4, security brokers and dealers held $54 billion in
corporate and foreign bonds on the asset side of their balance sheets.

23The original March 23rd term sheet can be found here. Initially, there was an additional eligibility criterion for

20

https://www.federalreserve.gov/monetarypolicy/smccf.htm


discretion to determine whether a foreign issuer is domiciled in the US. Indeed, in the Feds SMCCF
transaction-level disclosures, we found many cases in which the holding firm of the security is a
non-US entity.24 Given this lack of clarity, we chose to focus on US firms exclusively, and classify
a bond as eligible based on credit rating and time-to-maturity alone.25

To start, we repeat the regression specified in (2) with two modifications. First, we separate
the sample of bonds into those that were eligible for purchase through the SMCCF and those that
were not. Second, we separate the intervention period into two sub-periods. The first sub-period,
which we call the “SMCCF,” covers from March 23-April 8, 2020. During this period, it appeared
that only investment-grade bonds would be eligible for purchase. The second sub-period, which
we call the “SMCCF expansion,” starts on April 9, when the Fed announced that it was increasing
the size of the program and expanding the set of eligible bonds to include high-yield debt.

Table 3 reports the results. Interestingly, the initial decline in trading costs was entirely driven
by bonds that were eligible for the SMCCF: the price of risky-principal trades for ineligible bonds
was unchanged during the initial expansion, relative to the crisis period, while the price of agency
trades for ineligible bonds actually increased during this time period. After the program was
expanded on April 9, in both scope and size, the price of all bonds declined significantly.

To further explore the causal effect of the SMCCF on bond market liquidity during the crisis,
we consider a difference-in-differences regression over a sub-sample of our data from March 6 to
April 9, 2020. These dates are chosen to exclude the pre-crisis period, when spreads were very low,
and the post-expansion period, when the set of bonds available for purchase through the SMCCF
was widened to include high-yield bonds. In particular, we use the specification

yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt, (4)

where, as before, yijt represents our measures of transactions costs; Eligiblet takes the value of 1
if the bond in trade j has an investment-grade rating and time-to-maturity of five years or less on
March 23, 2020; SMCCFt takes the value of 1 if the trade occurs between March 23 and April 9,
2020; and αs controls for size fixed effects.

Unlike specification (2), we do not include bond fixed effects in the baseline specification (4),
but instead control for industry fixed effects (αk) and bond-specific characteristics such as bond
age, amount outstanding, and time-to-maturity (Xi,t). However, for robustness, we also include
results allowing for bond fixed effects, as well as credit rating fixed effects. To ensure that treatment

the SMCCF on March 23: eligible issuers excluded firms that were expected to receive direct financial assistance from
the then-pending CARES act. This criterion (and others) were later added to the SMCCF term sheet on April 9. See
Appendix C for more details.

24SMCCF transaction-level disclosures are available here. We provide additional details of this issue, including
examples, in Appendix B.

25Recall from Table 1 that transaction costs for US firms behaved very similarly to all bonds in our sample.
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Table 3. Trading costs across eligible and ineligible bonds during the initial and expanded interventions. This
table presents regression results for the following specification: yijt = αi +αs +β1×Crisist +β2×SMCCFt +β3×
SMCCF Expansiont + εijt. The dependent variables are measures of transactions costs for risky-principal and agency
trades. Crisist is a dummy which takes the value of 1 if day t falls into the Crisis sub-periods defined above. SMCCF
and SMCCF Expansiont are dummies that take the value of 1 if the trading day t is between March 23 and April 9,
and after April 9, 2020, respectively. The SMCCF eligibility criteria were expanded to include fallen angels on April
9, 2020. There are three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than
$1 million. A bond is considered eligible if it has an investment-grade rating and time-to-maturity of five years or less
on March 23, 2020. The sample begins on January 3 and ends on June 5, 2020, when the SMCCF expanded eligibility
criterion to fallen angels. Only US firms are included in the regressions. Clustered standard errors at the day and bond
levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All Eligible Ineligible All Eligible Ineligible

(1) (2) (3) (4) (5) (6)

Crisis 105.64∗∗∗ 111.67∗∗∗ 102.16∗∗∗ 11.92∗∗∗ 16.32∗∗∗ 9.64∗∗∗

(14.96) (15.62) (15.65) (2.16) (3.52) (1.80)

SMCCF 88.96∗∗∗ 62.14∗∗∗ 104.30∗∗∗ 14.35∗∗∗ 11.78∗∗∗ 15.98∗∗∗

(8.38) (8.68) (9.42) (1.15) (1.26) (1.49)

SMCCF Expansion 31.15∗∗∗ 15.35∗∗∗ 40.16∗∗∗ 7.20∗∗∗ 4.56∗∗∗ 9.08∗∗∗

(3.14) (3.08) (4.28) (1.01) (0.98) (1.44)

Bond FE Yes Yes Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes Yes Yes
Observations 580,698 200,761 379,937 146,864 50,192 96,672
Adjusted R2 0.18 0.19 0.18 0.27 0.21 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

and control groups do not overlap, we remove from our sample all trades in bonds that were
downgraded from IG to HY. Finally, we drop all foreign bonds and focus only on bonds issued by
US firms.

Table 4 contains our results. As is standard in difference-in-differences regressions, β1 is the
primary coefficient of interest. The first key takeaway is that the SMCCF had a significant effect
on the cost of risky-principal trades for eligible bonds, relative to ineligible bonds (which were es-
sentially unaffected during this period). The quantitative magnitude of this effect is approximately
50 bps, and is robust to a variety of alternative specifications. For example, in column (2) we
include a credit rating fixed effect, which absorbs some of the effects of eligibility related to the
ratings restriction, leaving (roughly speaking) the effects of eligibility based on time-to-maturity.
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In columns (3) and (4), we allow for bond-specific fixed effects, which increase the explanatory
power of the regressions (i.e., the R2) but do not significantly change the estimates of β1.

The second noteworthy result is that, for risky-principal trades, β2 is not statistically different
from zero under any of our specifications. Hence, it appears that the announcement of the initial
SMCCF did not have significant spillover effects on the cost of risky-principal trades for ineligible
bonds. However, this does not rule out the potential for spillover effects from the actual purchase

of eligible bonds, which began on May 12, 2020. In particular, by purchasing bonds and relaxing
dealers’ balance sheet constraints, the SMCCF could potentially increase dealers’ willingness to
purchase any bond. If this is true, then some of the post-expansion decline in the costs of risky-
principle trades for ineligible bonds (reported in Table 3) could be attributed to spillover effects
from the Fed’s bond purchases.

Columns (5)–(8) indicate that the announcement of the SMCCF on March 23 also reduced the
cost of agency trades for eligible bonds.26 One possible explanation is that, by establishing itself
as a buyer of last resort, the Federal Reserve reduced the risk to private investors from purchasing
eligible corporate bonds. According to this logic, it is possible that the announcement of the
SMCCF made it easier for dealers to locate customer-buyers, hence reducing the spreads they
charged on agency trades for eligible bonds. Note that this mechanism could also explain why
the cost of agency trades for ineligible bonds went up in the immediate aftermath of the SMCCF
announcement, if budget-constrained customers substituted from ineligible to eligible bonds, it
would become more difficult for dealers to locate consumer-buyers for ineligible bonds, driving
spreads up.

In Appendix D, we provide several additional robustness checks for the results discussed
above. In particular, in Tables 8 and 9, we show that the impact of the SMCCF on the trading
cost of eligible bonds is even more pronounced if we limit our sample to those bonds that are
just above and below the eligibility thresholds for and credit rating, respectively. In addition,
in Tables 10–12, we show that small and large trades are responsible for the entire liquidity
improvement documented in Table 4: small trades (with par volume of $100,000 or less) become
much more liquid after the SMCCF announcements, while large trades (with volume larger than
$1 million) also exhibit a significant decline in trading costs. Odd-lot trades (with volume between
$100,000 and $1 million), however, are essentially unaffected by the Fed’s intervention. This
complements the evidence of Feldhütter (2012), who showed that trades are affected differently by
market turmoil depending on their size.

26Note that, looking at the overall effect (β1+β2+β3), column (6) indicates that, after controlling for credit rating,
the cost of agency trades for eligible bonds decreased after SMCCF announcement.
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Table 4. The Effects of Fed Intervention: difference-in-differences. This table presents regression results for the following difference-in-differences specification
from equation (4): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent variables are measures of
transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23 and April 9, and 0 otherwise.
Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of five years or less on March 23, 2020. Xit controls for log(Amt
outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity, respectively. There are
three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample begins on March 6 and ends on April 9,
2020. Only US firms are included and bonds that change credit grade are excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −57.70∗∗∗ −41.72∗∗∗ −47.24∗∗∗ −41.45∗∗∗ −10.25∗∗∗ −12.85∗∗∗ −9.59∗∗ −9.85∗∗∗

(11.80) (12.27) (10.21) (10.34) (2.99) (3.11) (3.44) (3.47)

SMCCF −1.89 −21.75 −14.30 −20.03 6.33∗∗∗ 8.10∗∗∗ 4.56∗∗ 4.72∗∗

(14.58) (14.64) (14.65) (14.43) (2.00) (2.11) (1.97) (2.02)

Eligible 2.86 −14.81 0.37 9.93∗∗∗

(14.24) (11.36) (3.15) (3.69)

log(Amt outstanding) −30.33∗∗∗ −31.88∗∗∗ −3.62∗∗∗ −1.87∗∗∗

(7.25) (9.19) (0.64) (0.65)

log(Time-to-maturity) 15.40∗∗∗ 16.77∗∗∗ 4.00∗∗∗ 5.53∗∗∗

(4.96) (4.99) (0.85) (1.26)

log(Age) 27.61∗∗∗ 28.84∗∗∗ 4.93∗∗∗ 5.24∗∗∗

(7.54) (6.40) (1.10) (1.14)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 158,647 146,143 158,649 146,143 47,628 45,324 47,630 45,324
Adjusted R2 0.04 0.05 0.20 0.20 0.08 0.10 0.25 0.26
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Consumer surplus and dealer profits

The analysis above provides a detailed account of liquidity conditions in the corporate bond market
during the COVID-19 crisis. However, our analysis thus far—and, to the best of our knowledge,
other related studies—have little to say about the effects of these recent events on consumers’
surplus and dealers’ profits. Absent such analysis, it’s impossible to even consider whether such
interventions were warranted, whether they were too big or small, and which parties ultimately
benefited. In this section, we attempt to shed light on these important questions by combining
our empirical estimates of prices and trading volume (for risky-principal and agency trades) with
simple calculations derived from our theoretical framework.

Again, the distinction between risky-principal and agency trades is important. On the consumer
side, we find that the large drop in consumer surplus during the panic of mid-March was largely
due to increased transaction costs but, as the crisis evolved and consumers shifted towards low-
quality agency trades, we find that transaction costs only explain about half of the loss in consumer
surplus. On the dealer side, our estimates confirm existing news and earning reports that profits
from market-making spiked during the height of the selling pressure, reflecting the large increase
in bid-ask spreads. However, while spreads and volume remained elevated through the recovery,
our estimates suggest that profits returned to pre-crisis levels, as dealers’ cost of providing more
intermediation services remained elevated as well. Finally, we consider the possibility that (at
least some of) the deterioration in trading conditions was due to a supply shock, i.e., an increase
in dealers’ cost of intermediating. We find that, by attributing the rise in trading costs to supply
shocks, the model infers a smaller spike in profits in mid-March, but elevated profits through the
recovery.

5.1 Consumer surplus

We adopt the convention that one unit of transaction services is being provided for each dollar
of transaction. This means that the proportional trading costs we measured can be interpreted as
prices per unit of transaction services. With this in mind, we use our theoretical framework from
Section 3 to write the consumer surplus per dollar unit of transaction as

st = u(xt)− pt · xt,

where xt = (xlt, xht) and pt = (plt, pht). Then, under appropriate regularity conditions, the
Envelope Theorem implies that the instantaneous change in surplus is given by

dst = −dpt · xt. (5)
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Interpreting plt and pht as the cost of agency and risky-principal trades, respectively, and xht =

1 − xlt as the proportion of aggregate trading volume (in dollar amounts) executed as risky-
principal trades, the solid red line in Figure 6 plots the change in consumer surplus per dollar
unit of transaction,

st − s0 =

∫ t

0

dsu,

by adding up the instantaneous changes measured according to (5), from a January 1st time-zero
baseline,27 up to time t, as a function of t.28 One sees that the consumer surplus per dollar of
transaction declined by about 150 bps during the crisis, then recovered slowly and partially.
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Figure 6. Change in daily consumer surplus and portion of change in due to increasing transaction costs.

While the solid red line in Figure 6 appears like the mirror image of the transaction costs
plotted in Figure 2, it is both conceptually and quantitatively different from a calculation of the
average transaction cost. More specifically, letting the average transaction cost be at = pt · xt, the

27Given the relatively stable conditions before the pandemic, the quantitative results are robust to changing the
baseline to other dates in January.

28Of course, in discrete time, the Envelope Theorem does not apply exactly. Instead, the first few steps of the proof
of the Envelope Theorem deliver an upper and a lower bound for the day-to-day change in surplus, − (pt − pt−1) ·
xt−1 ≤ st − st−1 ≤ − (pt − pt−1) · xt. The figure reports the upper bound. Since the change is negative, this is a
conservative estimate. In any case, for this calculation, there is no much difference between the two bounds.
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instantaneous change in average transaction cost can be written

dat = dpt · xt + pt · dxt = −dst + (pht − plt) dxht,

where we make use of the maintained assumption that dxht = −dxlt. One sees that if pht >
plt > 0 and if dxht < 0, as we observed during the crisis, the effects of an increase in average
transaction costs alone underestimate the decrease in consumer surplus. This is because the change
in average transaction cost does not capture the utility loss associated with customers substituting
from high-quality risky-principal trades to lower-quality agency trades. To illustrate this point, the
blue dashed line in Figure 6 plots the (negative of the) total change in average transaction costs.
This represents the change in surplus that is induced by the change in transaction costs alone. As
expected, the blue curve lies above the red curve. The difference is minimal at the beginning of
the time period under consideration, but it widens around the end of March by about 10 bps. This
decomposition illustrates that the change in transaction costs alone fails to capture the total decline
in consumer surplus, especially after the crisis peaks: during this period, while transaction costs
have recovered, the proportion of agency trades remain elevated, and transaction costs only explain
about half of the loss in consumer surplus.

5.2 Dealer profits

Within the context of our theoretical framework, dealers’ profits are

Πt = pt ·Xt − C(Xt),

where Xt = Ntxt is the total dollar value of low- and high-quality transaction services. Again,
using the Envelope Theorem, we obtain the instantaneous change in profits:

dΠt = dpt ·Xt = −Nt dst.

In words, the instantaneous change in profits is equal to the negative of the instantaneous change
in consumer surplus, per dollar of transaction, multiplied by the total dollar value of transactions.
The plain red line in Figure 7 plots the total change in daily profits, Πt −Π0 =

∫ u

0
dΠu, relative to

a January 1st time-zero baseline.29

One can see that daily profits were large during the most tumultuous trading days, but have
since returned to normal. This is perhaps puzzling in light of the observation that average trans-
action costs remain elevated. The reason for the difference is that transaction costs represent

29We calculate the day-to-day changes in profit using the formula (pt − pt−1) · Xt. As noted above, in discrete
time, this should be viewed as an upper bound for the true total change in profits Πt −Πt−1.
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Figure 7. Change in daily dealer profits vs. revenue, relative to a January 1st baseline.

revenues, while profits account for the dealers’ cost, C(X). Namely, since the change in total
revenues is

dRt = d(Nt at) = dNt at +Nt dat = dNt at + dΠt +Nt(pht − plt) dxht,

we can rearrange the terms to express profits as

dΠt = dRt − dNt at −Nt(pht − plt) dxht. (6)

The formula reveals that the change in profits differ from the change in revenues for two reasons,
captured by the second and third terms in equation (6). Namely the second term,

−dNt at = −dNt [xlCl(Xl, Xh) + xhCh(Xl, Xh)] ,

implies that the change in profits will be lower than the corresponding change in revenue when
trading volume goes up, or dNt > 0. This is because dealers’ marginal cost is increasing: holding
the composition of low- and high-quality transaction services the same, dealers find it more costly
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to provide these services as trading volume increases. The third term,

−Nt(pht − plt) dxht = −Cl(Xlt, Xht)Ntdxlt − Ch(Xlt, Xht)Ntdxht,

implies that the change in profit tends to be larger than the corresponding change in revenue when
customers substitute towards low-quality transaction services, or dxht = −dxlt < 0. This is
because a shift towards low-quality services reduces the dealers’ total costs.

The blue dashed line in Figure 7 plots the total change in daily revenue, Rt − R0, relative to
a January 1st time-zero baseline. Profits increased considerably in March, consistent with reports
that some broker-dealers have generated large market-making revenues. For example, the earning
reports of Goldman Sachs indicates that quarterly market-making revenues in March 2020 were 35
percent larger than in March 2019. The figure also reveals that, while revenues were still somewhat
elevated in May, profits had returned to the baseline. In Appendix D, we plot the second and third
components of (6) separately to establish that the (negative) effect of the second term dominates
the (positive) effect of the third term since the interventions of March 23. Hence, while dealers
appeared to have earned significant extra profits at the height of the crisis, our data suggests that
since early May the increased cost of providing transaction services have neutralized the added
revenue from elevated prices.30

5.3 Supply vs. demand shock

Finally, let us stress an important caveat in our profit calculation: it assumes that the cost function,
C(X), remained stable over the time period. If it did not remain stable, e.g., because of supply
shocks, then the calculation of profits would be impacted.31 For example, one could imagine that,
due to risk aversion and high volatility, the marginal cost of providing intermediation services went
up, holding everything else constant. Under this scenario, our calculation of profits would fail to
capture the true risk-adjusted cost of providing intermediation services.32

30One may be concerned that, on some days, the change in profits exceeds the change in revenues. This is feasible
because the series do not measure levels but changes in profits and extra revenues, relative to a January 1st baseline.
Hence, it is theoretically possible that profits on a particular day increase by more than revenue. For example, if trading
volume fell (dNt < 0) and dxh ' 0, changes in profit can be larger than corresponding changes in revenue because
the cost of providing intermediation services falls.

31Another caveat is that it assumes price-taking. Perhaps the rise in the bid-ask spread could be attributed to an
increase in concentration during turbulent times, e.g., because only a few dealers are willing and able to use balance-
sheet capacity. Unfortunately, because our data does not include dealer identifiers, we are not able to address this
hypothesis.

32In recent work, Goldberg and Nozawa (2020) propose a methodology for measuring the relative contribution
of shocks to supply vs. demand, and apply this methodology to the corporate bond market after the implementation
of post-2008 regulations. Hence, one could potentially extend their estimates to the COVID-19 time period and, in
conjunction with our framework, construct estimates of dealer profits. However, this is beyond the scope of the current
paper.
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To illustrate this point formally and quantitatively, suppose that the cost function is:

C(Xl, Xh) = Ψ(Xl, γXh)

for some increasing and convex function Ψ, where γ > 1 is a cost shifter for risky-principal trades.
The Envelope Theorem then implies that the instantaneous change in profits is

dΠt = dpt ·Xt − phtXht
dγt
γt
,

where we used that ph = Ch = γΨh. The second term, which is new, accounts for shifts in the
cost of providing risky-principal trades.

To gain insight into the size of this adjustment, notice that

ph
pl

=
Ch

Cl

= γ
Ψh

Ψl

. (7)

The ratio Ch/Cl has the interpretation of a marginal rate of substitution (MRS) between agency
and risky-principal trades, i.e., it is the number of extra agency trades a dealer can supply if she
reduces the number of risky-principal trades by one unit, keeping the total cost constant. Figure 8
shows that, during the crisis, the marginal rate of substitution increased dramatically. According to
the MRS equation, (7), this could have happened for two reasons. First, holding the cost shifter, γ,
constant, the increase in the demand for transaction services, N , could have led to an increase in
the marginal rate of substitution. Second, holding the demand side fixed, the increase in the MRS
could have been generated by an increase in the cost shifter.33

The relative importance of both effects matters a great deal for the calculation of profits.
Assuming that changes in Ψh/Ψl and γ always have the same sign, equation (7) implies that
changes in γ are bounded by changes in the MRS. To get a quantitative sense of the relationship
between dealers’ profits and the source of the shock (supply or demand), suppose that

γ = (ph/pl)
z.

This assumption states that, at any time, the log changes in the cost shifter are equal to a fraction
z of the log changes in MRS. In the z = 0 case, there are no change in the cost shifter: this
corresponds to our benchmark model with no role for supply shocks. Correspondingly, the z = 1

33Notice that we could also introduce a cost shifter for agency trade, in which case the increase in MRS could
indicate that agency trades have become much cheaper to provide, in absolute terms. We view this scenario as less
plausible in light of the commonly held view that balance sheet costs mostly apply to risky-principal trades.
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case corresponds to the case in which all changes in the MRS are accounted for by supply shocks.
Naturally, z ∈ (0, 1) corresponds to intermediate cases, where both shocks are active.
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Figure 8. The marginal rate of substitution.

Figure 9 reveals that shocks to the cost of providing risky-principal transaction services can
have significant quantitative effects on the profit calculations. There are two reasons for this result.
First, as expected, when the MRS increased at the end of March, the model with z ≈ 1 infers
a large upward shift in dealers’ costs of providing risky-principal trades, dγ/γ > 0 and so it
adjusts profits downward. Second, and perhaps more surprisingly, when the MRS decreased after
the Fed’s intervention, the model infers the opposite—that the cost shifted down—so that profits
are adjusted upward. Of course, it’s possible that the relative contribution of supply and demand
shocks is time-varying so that, for example, cost shifters played an important role at the height of
the crisis but have since abated.

6 Conclusion

Since the introduction of stricter banking regulations after the 2008 financial crisis, academics
and policymakers alike have wondered whether dealers would (or could) absorb a surge in selling
pressure and maintain a liquid market if participants experienced a large, negative shock. Given
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Figure 9. Changes in daily profits relative to a January 1st baseline (millions USD, per day).

the exogenous nature of the COVID-19 pandemic, the events of March 2020 provide a unique
opportunity to study liquidity provision during a crisis, and the effects of the historic response by
the Federal Reserve. We find that, to provide a comprehensive assessment of trading conditions, it
is important to consider both the cost and the quality (or speed) of transaction services.

We document that, at the height of the crisis, corporate bond dealers appeared unwilling
to use their own balance sheets to “lean against the wind”: the price of risky-principal trades
surged, and trading shifted towards slower, agency trades. In fact, during the most tumultuous
trading days, the dealer sector absorbed no net inventory. However, these trends reversed after
the Federal Reserve announced corporate credit facilities designed to purchase corporate debt. In
the immediate aftermath of these announcements, we establish that liquidity conditions improved
significantly for bonds that were eligible to be purchased, but not for ineligible bonds, suggesting
that Fed interventions improved trading conditions.

Importantly, we go beyond documenting a collection of new facts from this important market
during the pandemic-induced crisis and recovery. In particular, we employ a reduced-form model
that allows us to interpret our results and, crucially, to derive estimates of the impact of these
shocks on what policymakers ultimately care about: the well-being of market participants. We find
that consumers’ surplus and dealers’ profits behave qualitatively similar to our estimates of trading
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costs, but capturing the true quantitative effects of the crisis and subsequent interventions requires
accounting for the deterioration in the quality of trades, too.

While the analysis here provides a detailed look into trading conditions during this extraordi-
nary episode, much work remains to be done. For example, one would like to further understand
the microfoundations of customers’ demand for risky-principal and agency trades and, perhaps
even more importantly, the costs associated with dealers supplying these two types of transaction
services. Doing so would be particularly helpful in identifying the precise constraints behind
dealers’ unwillingness to absorb inventory, along with the exact channel through which the Fed’s
interventions relaxed these constraints. We leave this challenge, along with other potential exten-
sions, for future work.
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Falato, Antonio, Itay Goldstein, and Ali Hortaçsu, 2020, Financial fragility in the COVID-19
crisis: The case of investment funds in corporate bond markets, Working paper, FRB, Wharton,
and University of Chicago.

Feldhütter, Peter, 2012, The same bond at different prices: Identifying search frictions and selling
pressures, Review of Financial Studies 25, 1155–1206.

Fleming, Michael J., and Francisco Ruela, 2020, Treasury market liquidity during the COVID-19
crisis, Working paper, FRB New York.
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Appendix
A Proof of Proposition 1

Assuming interior solutions, the first-order condition of the customers’ problem writes:

uh(xl, xh)− ul(xl, xh) = ph − pl.

Likewise, the first-order condition for the dealers’ problem writes:

pl = Cl(Xl, Xh) and ph = Ch(Xl, Xh).

Together the equilibrium conditionsN xl = Xl andN xh = Xh, we obtain that pl, ph, and xh solve
the following system of equations

ph − pl = uh(1− xh, xh)− ul(1− xh, xh) (8)

pl = Cl(N(1− xh), Nxh) (9)

ph = Ch(N(1− xh), Nxh).

Combining the three equations lead an implicit function for xh:

uh(1− xh, xh)− ul(1− xh, xh) = Ch(N(1− xh), Nxh)− Cl(N(1− xh), Nxh). (10)

Since the functions x 7→ u(1 − x, x) is concave, and the function x 7→ C(N(1 − x), Nx) is
convex, it follows that the left-hand side of the equation is decreasing in x, while the right-hand
side is increasing in x. The condition stated in the Proposition implies that, locally, the right-hand
side is increasing in N . Therefore, the solution xh to this equation is, locally, decreasing in N . See
Figure 1. It then follows from equation (8) that ph − pl is increasing as well.

The only result that remained to be shown is that pl is, locally, increasing in N . To do so, we
totally differentiate equation (9) with respect to N :

dpl
dN

= Cll ×
(

1− xh −N
dxh
dN

)
+ Clh ×

(
xh +N

dxh
dN

)
,

where we use double subscript for second derivatives, and we omit the arguments of Cll and Clh to
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simplify notations. Let

ε ≡ N

xh

dxh
dN

,

denote the elasticity of high-quality transaction services, xh, with respect to total transaction
demand, N . Plugging back, we obtain:

dpl
dN

= Cll × (1− xh(1 + ε)) + Clh × xh (1 + ε) .

Next, applying the Implicit Function Theorem to equation (10), we obtain the following explicit
expression for the elasticity ε:

ε =
N

xh

(1− xh) (Clh − Cll) + xh (Chh − Clh)

∂2u−N (Chh − 2Clh + Cll)
.

where ∂2u ≡ ull − 2ulh + uhh ≤ 0 by concavity. Plugging back into the equation for dpl/dN , we
obtain after some algebra that:

dpl
dN
≥ 0⇔ N

(
CllChh − C2

lh

)
≥ ∂2u ((1− xh)Cll + xhClh) .

The left-hand side, N (CllChh − C2
lh) is positive because C is convex.

As for the right-hand side, recall our maintained assumption that, holding (xl, xh) fixed,Cl(Nxl, Nxh)

is increasing. Taking derivatives, and replacing xl by 1−xh, this means that (1−xh)Cll +xhClh ≥
0. Keeping in mind that ∂2u ≤ 0, we obtain that the right-hand side is negative, concluding the
proof.

B Data and definitions

B.1 Data description

We use data from the Trade Reporting Compliance Engine (TRACE), made available by the Finan-
cial Industry Regulation Authority (FINRA). The raw TRACE data provides detailed information
on all secondary market transactions self-reported by FINRA member dealers. These include
bonds CUSIP, trade execution time and date, transaction price ($100 = par), the volume traded (in
dollars of par), a buy/sell indicator, and flags for dealer-to-customer and inter-dealer trades. To
construct our sample, we combine two versions of TRACE: the standard version (2020Q1), and
the End-Of-Day version (2020Q2).

We first filter the report data following the procedure laid out in Dick-Nielsen (2014). We merge
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the resulting data set with the TRACE master file, which contains bond grade information, and with
the Mergent Fixed Income Securities Database (FISD) to obtain bond fundamental characteristics.
Following the bulk of the academic literature, we exclude bonds with optional characteristics, such
as variable coupon, convertible, exchangeable, and puttable, as well as, asset-backed securities,
and private placed instruments. Table 5 provides summary statistics for our sample.

Table 5. Summary statistics. This table provides mean, standard deviation, median, 5th and 95th percentiles of the
average daily number of trades and volume by counterparty type, proportion of agency trades, proportion of trades
on IG bonds, proportion of trades on the bonds eligible for SMCCF, and daily average trading cost for risky-principal
(CH) and agency trades (MIRC) for eligible and ineligible bonds respectively. “num” refers to number of trades,
and the “vol” refers to volume of trades in par value. A bond is considered eligible for the SMCCF if it has an
investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. Source: TRACE and FISD.

Mean Std.dev Q05 Q50 Q95

daily num. interdealer 22,401 3,825 18,335 22,073 28,371
daily num. customer 32,729 54,69 26,183 32,587 40,506
daily num. customer-bought 16,989 30,26 12,860 17,376 21,515
daily num. customer-sold 15,740 31,55 11,914 15,336 20,292
daily vol. interdealer ($ billion) 3.35 0.58 2.44 3.43 4.16
daily vol. customer ($ billion) 7.60 1.48 5.39 7.66 9.93
daily vol. customer-bought ($ billion) 3.88 0.71 2.85 3.93 4.96
daily vol. customer-sold ($ billion) 3.72 0.85 2.43 3.76 5.08
prop. agency (num) 0.54 0.03 0.50 0.54 0.60
prop. agency (vol) 0.33 0.05 0.28 0.33 0.38
prop. IG (num) 0.74 0.03 0.70 0.74 0.79
prop. IG (vol) 0.83 0.03 0.79 0.83 0.87
prop. eligible (num) 0.33 0.05 0.30 0.33 0.42
prop. eligible (vol) 0.27 0.04 0.23 0.27 0.35
daily avg. CH (bps) 57.29 42.07 21.21 44.96 131.97
daily avg. CH for eligible bonds (bps) 32.25 31.66 9.77 21.86 102.01
daily avg. CH for ineligible bonds (bps) 68.17 49.73 25.00 53.46 157.26
daily avg. MIRC (bps) 11.29 3.91 6.98 10.39 18.80
daily avg. MIRC of eligible bonds (bps) 5.88 3.20 2.92 4.62 12.91
daily avg. MIRC of ineligible bonds (bps) 13.08 4.77 7.77 11.92 21.90

In our empirical specifications, we exclude newly-issued securities (with age less than 90 days),
as on-the-run bonds tend to trade differently than off-the-run securities. Since our sample only
contains about 130 days, the age and time-to-maturity of a particular bond will vary little over
time. Thus, we do not include the standard cross-sectional controls related to the bond’s age or
time-to-maturity. Furthermore, since we exclude newly-issued bonds, over time, the age (maturity)
of any bond will increase (decrease) by one day each day. Thus, the average age (maturity) of our
bonds will increase (decrease) monotonically over time, meaning these controls will also correlate
with the time trends we are documenting.
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We also distinguish between bonds that are eligible for the SMCCF and ineligible bonds. In
Appendix C, we present a detailed description of eligibility criteria for the SMCCF. We define
a bond as eligible if it has investment-grade rating and time-to-maturity of five years or less on
March 23, 2020, when the SMCCF was first announced. The eligibility criteria also state that the
firm must be a US-domiciled corporation. Specifically, the Fed restricts its purchases to bonds
where

The issuer is a business that is created or organized in the United States or under the
laws of the United States with significant operations in and a majority of its employees
based in the United States.

This criterion leaves the Fed with a considerable degree of discretion. For instance, if a foreign-
domiciled corporation uses a US subsidiary to issue dollar-dominated debt, our firm-level data
identify the firm as non-US. We would then classify its bonds as foreign, making them ineligible
for the SMCCF. However, under the Fed’s definition of a US issuer, the bonds may be eligible for
purchase. Using the Fed’s SMCCF transaction-level disclosures, we find that in many cases, the
holding firm of the security is a non-US entity.34 One such example is British American Tobacco
(BAT), a firm listed on the London Stock Exchange and domiciled in the UK. Our firm-level data
correctly identifies this firm as foreign; however, its bonds were purchased by the Fed.35 These
bonds were issued by a US wholly-owned subsidiary of BAT, BAT Capital Corporation. Since
this subsidiary is guaranteed and wholly-owned by BAT, it is very challenging to correctly classify
these bonds as US-domiciled. We, therefore, do not use US vs. non-US as an SMCCF eligibility
criterion in our regressions discussed below and focus only on US firms.

Moreover, we do not have access to the latest credit rating data for all bonds in our sample. For
the sub-sample of bonds where the credit rating is available, we include a credit rating fixed effect
to control for potentially time-invariant nature of bond credit ratings.

B.2 Dates highlighted in the figures

We choose the following dates to highlight in the figures with vertical, dashed lines:

January 19: beginning of the series, chosen to start the sample period one month before the
stock market peak.

February 19 stock market peak.

March 5: beginning of extended fall in equity prices and rise in corporate credit spreads.

34SMCCF transaction-specific disclosures are provided by the Federal Reserve, available here.
35On July 10, 2020, the Fed reported that BAT’s bonds were purchased as part of the SMCCF (CUSIP 05526DAZ8).
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March 18: first day of trading after announcement of Primary Dealer Credit Facility (an-
nounced evening of March 17).

March 23: announcement of Primary and Secondary Market Corporate Credit Facilities.

April 9: expansion of PMCCF and SMCCF (in both size and scope).

May 12: the SMCCF began purchasing eligible ETFs.

B.3 Identifying agency trades

We define agency trades as two trades in a given bond with the same trade size that take place
within 15 minutes of each other. For each bond, we divide its trading sample into three groups:
customer-sell-to-dealer (C2D), dealer-sell-to-customer (D2C), and interdealer (D2D) trades. Our
identification of agency trades includes the following steps:

1. We match each trade X in group C2D with a trade Y in group D2C that has the same trade
size and happens within 15 minutes of X . If there are several trades in D2C satisfying these
conditions, we choose the trade that takes place closest in time to X . The identified pair of
agency trades is then (X, Y ). After this step, we denote the collection of unmatched trades
in C2D as u-C2D and that in D2C as u-D2C.

2. We match each trade in u-C2D with a trade in group D2D by the same algorithm. We then
obtain a collection of unmatched trades in D2D, denoted by u-D2D.

3. We match each trade in u-D2D with one in u-D2C following the same algorithm.

4. We repeat steps 1–3 using all remaining unmatched trades in the three groups while relaxing
the matching criteria. In each agency trade pair, we require the second trade to happen within
15 minutes of the first trade, but it can have a smaller trade size than the first one. By doing
so, we consider the situation in which dealers split the trade volumes when they behave as
matchmakers.

5. Finally, within all the remaining unmatched trades after steps 1–4, we identify trades with
field remuneration == "C" in TRACE (commission is included in the price) as agency
trades, because, by FINRA’s definition, broker-dealers receive commissions only when they
intermediate agency trades.
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C Corporate credit facilities

The Primary Market Corporate Credit Facility (PMCCF) and the secondary Market Corporate
Credit Facility (SMCCF) were established in March 2020 by the Federal Reserve to support
liquidity conditions in the corporate bond market during the economic disruption caused by the
COVID-19 pandemic. The PMCCF provides a funding backstop for corporate debt issuance to
eligible issuers, and the SMCCF purchases individual corporate bonds of eligible issuers (see
below) and ETFs in the secondary market. The combined size of the PMCCF and SMCCF will be
up to $750 billion. The SMCCF began purchasing eligible ETFs and individual corporate bonds
on May 12 and June 16, 2020, respectively. The PMCCF became operational on June 29, 2020.

The New York Fed lends, on a recourse basis, to a special purpose vehicle (SPV) through which
the two facilities operate. The Treasury makes a $75 billion equity investment in the SPV, $50
billion toward the PMCCF, and $25 billion toward the SMCCF. Depending on bonds’ credit ratings
at the time of the acquisition, the PMCCF and SMCCF leverage up Treasury’s equity position at
different levels (10 to 1, 7 to 1, or 3 to 1) when purchasing them from eligible issuers. For more
details, see FAQs for PMCCF and SMCCF from the New York Fed, available here.

C.1 Bond eligibility criteria for the SMCCF

Eligible individual corporate bonds: The SMCCF may purchase individual corporate bonds
that, at the time of purchase: (i) were issued by an eligible issuer (mentioned below); (ii) have a
remaining maturity of five years or less; and (iii) were sold to the Facility by an eligible seller.

Eligible issuers for individual corporate bonds: As specified in the SMCCF term sheet as of
July 28, 2020, to qualify as an eligible issuer of an eligible individual corporate bond, the issuer
must satisfy the following conditions:36

1. The issuer is a business that is created or organized in the United States or under the laws of
the United States with significant operations in and a majority of its employees based in the
United States.

2. The issuer was rated at least BBB−/Baa3 as of March 22, 2020, by a major nationally
recognized statistical rating organization (“NRSRO”). If rated by multiple major NRSROs,
the issuer must be rated at least BBB−/Baa3 by two or more NRSROs as of March 22, 2020.

(a) An issuer that was rated at least BBB−/Baa3 as of March 22, 2020, but was sub-
sequently downgraded, must be rated at least BB−/Ba3 as of the date on which the

36Source: Term sheet for the SMCCF, available here.
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Facility makes a purchase. If rated by multiple major NRSROs, such an issuer must
be rated at least BB−/Ba3 by two or more NRSROs at the time the Facility makes a
purchase.

(b) In every case, issuer ratings are subject to review by the Federal Reserve.

3. The issuer is not an insured depository institution, depository institution holding company,
or subsidiary of a depository institution holding company, as such terms are defined in the
Dodd-Frank Act.

4. The issuer has not received specific support pursuant to the CARES Act or any subsequent
federal legislation.

5. The issuer must satisfy the conflicts of interest requirements of section 4019 of the CARES
Act.

D Additional empirical results

D.1 Transaction costs: impact of credit rating

We do not have access to the latest credit rating data for all bonds in our sample, just the binary
IG/HY classification provided by TRACE. For the sub-sample of bonds where the credit rating
is available, we include a credit rating fixed effect in specification (2) and run the following
regressions

yijt = αi + αs + αr + β1 × Crisist + β2 × Interventiont + εijt,

where αr represents credit rating fixed effects to control for potentially time-invariant nature of
bond credit ratings. In Table 6, we repeat the results in Table 1 for the sub-sample of bonds for
which we have credit rating data. We see that the results are very similar to the ones from Table 1.

D.2 The fraction of agency trades

In Table 7, we repeat the OLS regression in column (1) of Table 2 but focusing only on bonds
issued by US firms. In columns (2) and (3) we repeat the regression in column (1) restricting the
sample to eligible and ineligible bonds, respectively. As before, a bond is considered eligible if it
has an IG credit rating and remaining time-to-maturity of five years or less.

Results in column (1), for US bonds, are very similar to what shown in column (1) of Table 7
for all bonds. From columns (2) and (3), we observe that the shift towards agency trades was
much more pronounced among bonds that were eligible for the Fed’s purchasing program. The
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Table 6. Robustness: Trading costs during the COVID-19 crisis adding credit rating FEs. This table presents
regression results for the following specification: yijt = αi + αs + αr + β1 × Crisist + β2 × Interventiont + εijt.
The dependent variables are our measures of transactions costs for risky-principal and agency trades. Crisist and
Interventiont are dummies which take the value of 1 if day t falls into the Crisis and Intervention sub-periods defined
above. αr represents credit rating fixed effects. There are three trade size categories: less than $100,000, between
$100,000 and $1 million, and larger than $1 million. The sample starts on January 3 and ends on June 5, 2020.
Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

All US Only All US Only

(1) (2) (3) (4)

Crisis 107.78∗∗∗ 105.67∗∗∗ 10.74∗∗∗ 11.63∗∗∗

(14.35) (15.14) (2.06) (2.28)

Intervention 46.92∗∗∗ 48.32∗∗∗ 9.27∗∗∗ 9.85∗∗∗

(5.30) (5.28) (0.87) (1.02)

Bond FE Yes Yes Yes Yes
Trade size category FE Yes Yes Yes Yes
Credit Rating FE Yes Yes Yes Yes
Observations 659,605 545,436 188,121 140,184
Adjusted R2 0.18 0.18 0.26 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

probability of an agency trade for a given eligible bond, on average, rose by approximately seven
percentage points relative to the pre-crisis period. After the Fed interventions on March 23, this
probability decreased from the crisis period (by 200 bps) to five percentage points higher than the
pre-crisis period. For ineligible bonds, in contrast, the probability of an agency trade rose by only
1.9 percentage points relative to the pre-crisis period and remained relatively unchanged after the
Fed intervention.

D.3 Impact of Fed announcements

In this subsection, we present several robustness checks for the difference-in-differences (DID)
results in Section 4.5.

43



Table 7. Robustness: Probability of an agency trade for US bonds (OLS only). This table presents regression
results for the following specification from: Agencyijt = αi + αs + β1 × Crisist + β2 × Interventiont + εijt. The
dependent variable, Agencyijt, is an indicator variable that takes the value 1 if trade j for bond i on day t is an agency
trade and 0 otherwise. Only US firms are included in the regression. Crisist and Interventiont are dummies which take
the value of 1 if day t falls into Crisis and Intervention sub-periods defined above. There are three trade size categories:
less than $100,000, between $100,000 and $1 million, and larger than $1 million. A bond is considered eligible if it
has an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. The sample starts on
January 3 and ends on June 5, 2020. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Probability of agency trade

All Eligible Ineligible

(1) (2) (3)

Crisis 0.038∗∗∗ 0.070∗∗∗ 0.019∗∗

(0.010) (0.015) (0.008)

Intervention 0.030∗∗∗ 0.050∗∗∗ 0.018∗∗∗

(0.004) (0.005) (0.004)

Bond FE Yes Yes Yes
Trade size category FE Yes Yes Yes
Observations 5,383,618 2,114,474 3,269,144
Adjusted R2 0.109 0.078 0.126
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Bonds close to the eligibility threshold for rating and maturity

First, in Table 8, we repeat the regressions in Table 4 but focusing only on bonds just above and
below the SMCCF eligibility threshold for time-to-maturity (TTM): bonds with four to six years
left to maturity.

Next, in Table 9, we repeat the regressions in Table 8 but adding the extra restriction that the
bonds should be close to the IG-HY threshold. In particular, we only include bonds that in addition
to having TTM of four, five and six years, are also rated at the bottom tier of investment-grade
(BBB+/Baa1, BBB/Baa2, and BBB−/Baa3) or the top tier of high-yield (BB+/Ba1, BB/Ba2, and
BB−/Ba3).
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Table 8. DID robustness: only include bonds with 4 to 6 years left to maturity. This table presents regression results for the following DID specification from
equation (4): yijt = αs +αk +β1×SMCCFt×Eligiblet +β2×SMCCFt +β3×Eligiblet +γ×Xi,t + εijt. The dependent variables are measures of transactions
costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23 and April 9, and 0 otherwise. Eligiblet
takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020. Xit controls for log(Amt outstanding),
log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity, respectively. There are three trade size
categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample begins on March 6 and ends on April 9, 2020. Only US
firms, bonds with 4, 5, or 6 years left to maturity on the intervention date are included. Bonds that change credit grade are excluded. Clustered standard errors at
the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −93.26∗∗ −76.08∗∗∗ −61.24∗∗∗ −61.42∗∗∗ −7.45∗ −9.13∗∗ −3.38 −3.79
(39.33) (27.87) (17.83) (17.89) (4.36) (4.22) (4.14) (4.09)

SMCCF 13.88 −0.46 −9.05 −9.14 2.82 5.15∗∗ 1.46 1.75
(35.04) (25.14) (16.58) (16.64) (2.37) (2.47) (2.14) (2.14)

Eligible 54.22 12.27 −0.77 11.87∗∗

(50.71) (33.55) (4.42) (5.46)

log(Amount outstanding) −3.86 −23.05∗∗ −4.06∗∗∗ −1.64
(16.73) (10.71) (1.03) (1.07)

log(Time-to-maturity) −66.38 −102.01 8.79 30.42∗

(134.08) (90.03) (17.08) (17.69)

log(Age) 28.46∗ 31.43∗∗ 0.99 2.55∗

(15.69) (12.45) (1.95) (1.45)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 30,743 30,430 30,744 30,430 9,182 9,004 9,183 9,004
Adjusted R2 0.03 0.07 0.20 0.20 0.11 0.14 0.29 0.30
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9. DID robustness: only include bonds with 4 to 6 years left to maturity and rating close to the IG/HY threshold. This table presents regression results
for the following DID specification from equation (4): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ × Xi,t + εijt. The
dependent variables are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between
March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5 years or less on the March
23 2020. Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to
maturity, respectively. There are three trade size categories: less than $100,000, between $100,000 and $1 million, and larger than $1 million. The sample begins
on March 6 and ends on April 9, 2020. Only US firms, bonds with 4, 5, or 6 years left to maturity that are rated at the bottom tier of IG (BBB+/Baa1, BBB/Baa2,
and BBB−/Baa3) or the top tier of HY (BB+/Ba1, BB/Ba2, and BB−/Ba3) are included. Bonds that change credit grade are excluded. Clustered standard errors at
the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −94.92∗∗ −86.46∗∗ −73.52∗∗ −73.52∗∗ −2.82 −5.38 −0.16 −0.16
(45.73) (43.93) (30.56) (30.56) (3.58) (3.80) (3.90) (3.90)

SMCCF 46.47 37.41 16.30 16.30 2.54 5.14∗∗ 2.41 2.41
(29.20) (24.24) (17.65) (17.65) (1.89) (2.04) (2.34) (2.34)

Eligible 63.68 46.64 −1.18 7.74
(46.38) (52.37) (4.19) (7.49)

log(Amount outstanding) −9.03 −18.19 −3.94∗∗∗ −2.58∗

(21.30) (16.18) (1.47) (1.45)

log(Time-to-maturity) −160.39 −129.63 40.68 45.95
(150.14) (130.02) (30.85) (30.34)

log(Age) 36.44 30.68∗ −3.29 −1.56
(22.44) (18.18) (3.10) (2.31)

Trade size category FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 14,124 14,124 14,124 14,124 4,595 4,595 4,595 4,595
Adjusted R2 0.04 0.05 0.16 0.16 0.12 0.13 0.28 0.28
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Trade costs for different trade size bins

Here we run the regressions in (4) but with the trades of a particular size category in a different
regression. In Tables 10-12, we show that small and large trades are responsible for the entire
liquidity improvement documented in Table 4: small trades (with par volume of $100,000 or less)
become much more liquid after the Fed’s CCF announcements followed by large trades (with
volume larger than $1 million). Liquidity of odd-lot trades (with volume between $100,000 and
$1 million) seem to be unaffected by the Fed’s intervention. Curiously we fail to find an affect for
Odd-lot trades. There is some empirical evidence, e.g., Feldhütter (2012), suggesting that trades
with different sizes are affected differently by market turmoil.
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Table 10. DID robustness: only include trades with par volume < $100,000, i.e., micro trades. This table presents regression results for US firms for the
following DID specification from equation (4): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent
variables are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23
and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020.
Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity,
respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are less than $100,000 in par volume, i.e., micro trades, are included.
Bonds that change credit grade are excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −77.67∗∗∗ −54.42∗∗∗ −58.51∗∗∗ −45.93∗∗∗ −16.21∗∗∗ −19.37∗∗∗ −14.86∗∗∗ −15.66∗∗∗

(19.69) (18.51) (12.66) (12.56) (4.45) (4.53) (5.24) (5.27)

SMCCF 3.05 −28.30 −18.24 −30.64 9.45∗∗∗ 11.48∗∗∗ 6.63∗∗∗ 7.26∗∗∗

(24.08) (23.12) (20.75) (21.29) (3.06) (2.97) (2.28) (2.36)

Eligible 0.94 −22.17 6.48 15.67∗∗∗

(23.80) (18.37) (4.66) (4.64)

log(Amt outstanding) −38.79∗∗∗ −32.77∗∗ −4.24∗∗∗ −2.03∗∗

(11.74) (13.90) (0.79) (0.79)

log(Time-to-maturity) 11.54∗ 7.93 4.26∗∗∗ 5.98∗∗∗

(6.90) (7.99) (1.08) (1.58)

log(Age) 39.02∗∗∗ 37.74∗∗∗ 7.44∗∗∗ 8.23∗∗∗

(13.24) (11.15) (1.85) (1.84)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 92,300 82,694 92,301 82,694 28,556 27,182 28,556 27,182
Adjusted R2 0.05 0.08 0.35 0.37 0.05 0.08 0.26 0.27
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11. DID robustness: only include trades with $100,000 ≤ par volume < $1 million, i.e., odd-lot trades. This table presents regression results for US
firms for the following DID specification from equation (4): yijt = αs +αk + β1× SMCCFt×Eligiblet + β2× SMCCFt + β3×Eligiblet + γ ×Xi,t + εijt. The
dependent variables are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between
March 23 and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5 years or less on the March
23 2020. Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to
maturity, respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are greater than $100,000 and less than $1 million in par volume,
i.e., odd-lot trades, are included. Bonds that change credit grade are excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −11.67 −8.28 −6.37 −5.44 −1.21 −1.66 −1.84 −1.01
(12.57) (13.87) (13.85) (14.15) (2.50) (2.35) (2.56) (2.34)

SMCCF −27.03∗ −31.91∗ −36.84∗∗ −37.76∗∗ 2.42 2.82∗ 2.58 1.74
(15.14) (16.45) (15.07) (15.25) (1.78) (1.51) (2.00) (1.82)

Eligible −0.33 −4.16 0.23 2.10
(12.17) (13.48) (1.99) (1.81)

log(Amt outstanding) −18.54∗∗∗ −25.29∗∗∗ −2.97∗∗∗ −2.40∗∗

(4.34) (3.84) (0.99) (1.02)

log(Time-to-maturity) 26.48∗∗∗ 33.45∗∗∗ 3.86∗∗∗ 3.00∗∗∗

(2.85) (3.26) (0.60) (0.54)

log(Age) 15.49∗∗∗ 17.94∗∗∗ 3.02∗∗∗ 2.43∗∗∗

(3.10) (3.08) (0.58) (0.76)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 36,406 34,457 36,407 34,457 10,089 9,775 10,089 9,775
Adjusted R2 0.03 0.03 0.07 0.07 0.04 0.03 0.20 0.22
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12. DID robustness: only include trades with par volume ≥ $1 million, i.e., large trades. This table presents regression results for US firms for the
following DID specification from equation (4): yijt = αs + αk + β1 × SMCCFt × Eligiblet + β2 × SMCCFt + β3 × Eligiblet + γ ×Xi,t + εijt. The dependent
variables are measures of transactions costs for risky-principal and agency trades. SMCCFt is a dummy that takes the value of 1 if day t falls between March 23
and April 9, and 0 otherwise. Eligiblet takes the value of 1 if the bond has an investment-grade rating and time-to-maturity of 5 years or less on the March 23 2020.
Xit controls for log(Amt outstanding), log(Age), and log(Time-to-maturity): logs of bond’s amount outstanding, years since bond issuance, and years to maturity,
respectively. The sample begins on March 6 and ends on April 9, 2020. Only trades that are greater than or equal to $1 million in par volume, i.e. large trades, are
included. Bonds that change credit grade are excluded. Clustered standard errors at the day and bond levels are shown in parentheses.

Dependent variable:

Risky-principal Agency

(1) (2) (3) (4) (5) (6) (7) (8)

SMCCF × Eligible −24.22∗∗∗ −22.17∗∗ −29.02∗∗∗ −30.56∗∗∗ −6.45∗∗∗ −7.96∗∗∗ −1.81 −2.08
(9.08) (8.78) (8.94) (8.90) (2.49) (2.85) (3.19) (3.19)

SMCCF 6.70 4.25 5.12 6.66 4.43 5.76∗ −0.83 −0.63
(9.27) (10.06) (9.91) (9.96) (2.82) (3.03) (3.16) (3.18)

Eligible −0.16 −9.19 −19.98∗∗∗ −7.83∗∗∗

(7.51) (10.00) (1.57) (2.75)

log(Amt outstanding) −19.14∗∗∗ −26.76∗∗∗ −1.10 0.31
(2.67) (3.17) (0.98) (0.94)

log(Time-to-maturity) 19.55∗∗∗ 22.15∗∗∗ 2.49∗∗∗ 4.99∗∗∗

(2.33) (2.99) (0.76) (0.90)

log(Age) 14.35∗∗∗ 15.53∗∗∗ 0.42 0.81
(2.43) (2.99) (1.28) (1.28)

Industry FE Yes Yes No No Yes Yes No No
Bond FE No No Yes Yes No No Yes Yes
Credit rating FE No Yes No Yes No Yes No Yes
Observations 29,941 28,992 29,941 28,992 8,983 8,367 8,985 8,367
Adjusted R2 0.02 0.02 0.02 0.02 0.13 0.18 0.28 0.28
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.4 A decomposition of the change in profits

As established in the text, the instantaneous changes in profit can be written. The first term is
the instantaneous change in revenue, while the second and the third term capture instantaneous
changes in costs.

dΠt = dRt − dNt at −Nt(pht − plt) dxht.

The plain blue line in Figure 10 shows the total change in the second term,
∫ t

0
dNuau, and the

dashed red line shows the total change in the third term,
∫ t

0
Nu (phu − plu) dxhu, from a January 1st

time-zero baseline, up to time t, for all t. The blue curve shows the extra cost, relative to baseline,
of handling a larger volume. This extra cost rose sharply during the crisis, but remains quite
elevated, reflecting the fact that trading volume remains elevated. The dashed red curve represents
the extra cost associated with substitution between different types of orders. This clearly mitigated
the increase in handling costs associated to the rise in volume, but only to a small extent.
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Figure 10. This figure plots the (negative of) the second and third terms in equation (6).
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