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1 Introduction

By April 8, 2020, 80% of US counties were covered by stay-at-home orders issued in response to the

COVID-19 pandemic. Yet 50% of US counties had experienced �ve or fewer documented cases of the

disease, and 72% of counties had experienced no deaths attributable to COVID-19. What is the source

of heterogeneity in cases and deaths across US counties? Should policies be sensitive to such spatial

variation? There are, we think, two legitimate views on these questions.

Under the �rst view, spatial variation in disease severity only re�ects di¤erences in timing. As the

disease spreads, ultimately every location in the US will have similar infection rates, similar death

rates, and similar rates of hospitalization. This view would justify uniform lockdown policies applied

to the whole country, irrespective of spatial variation in cumulative cases and deaths. Such policies

would slow down disease spread to allow the health care infrastructure to cope with the disease burden.

Under the second view, spatial variation in cases and deaths re�ects underlying fundamental dif-

ferences across locations - population density, modes of transportation, housing arrangements, the age

distribution, health conditions, weather, etc. At any point in time, locations will continue to di¤er

according to these characteristics. They will di¤er no matter the number of days since onset, and the

di¤erences will persist, perhaps even increase over time. This provides a foundation for policies that

are sensitive to local speci�cities, where less a¤ected places can have less stringent lockdowns or earlier

reopenings because their healthcare systems are less likely to become overwhelmed.

In this paper, we pinpoint the determinants of heterogeneity in COVID-19 cases and deaths,

and provide evidence strongly consistent with the second view. We document substantial spatial

heterogeneity across US counties, and identify novel and interesting correlates of variation in the

number of cases and the number of deaths across US counties. We also analyze the persistence of

these e¤ects over time, �nding that many of them have stable or even increasing e¤ects as the disease

spreads and the spatial pattern of variation in disease severity starts to settle.

We examine a broad set of correlates of disease severity. We pay particular attention to population

density, using a variety of approaches to carefully measure dimensions of population density that have

been hypothesized to a¤ect the spread and severity of COVID-19. For instance, we look at the role

of public transportation, living arrangements, housing density, and the distribution of the population

at a high level of spatial resolution. We also consider the age distribution, racial composition, under-

lying health conditions, inequality and poverty, political orientation, among many other variables. A

strength of our approach, unlike others that study putative determinants of COVID severity one at a

time, is that we consider many potential correlates all at once.

Our analysis examines the role of these factors at various points in time, starting on March 15,

2020 and ending on May 26, 2020. We examine variation in COVID-19 cases and deaths on a daily

basis using two approaches. The �rst approach looks at the cross-section of US counties at a given

date, providing snapshots of the correlates of disease severity at particular moments in time. The

second approach looks at the cross-section putting all counties at the same stage in terms of days since

cases and deaths reached a certain threshold per capita. This allows us to correct for di¤erences in the

timing of disease onset, to better assess if spatial variation re�ects variation in the timing of disease

onset or fundamental di¤erences between locations.
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Our paper documents four major sets of facts. First, there is substantial variation in cases and

deaths across counties. Second, this variation is associated with di¤erences in a range of variables that

capture population density, modes of transportation, urbanicity, the age structure of the population,

the proportion of the population living in nursing homes, distance to major airports with direct �ights

to countries where COVID-19 was prevalent early on, as well as social capital. Third, the e¤ects of

these variables persist through time, especially for variables that capture density and the presence

of elderly individuals. Fourth, a deeper analysis uncovers additional correlates of disease severity:

counties with many members of minority groups (especially African-Americans and Hispanics) are

disproportionately impacted, as are counties with many poor people, higher inequality and a higher

proportion of people with a bachelor�s degree or more. Counties that imposed stay-at-home orders

early on tend to have fewer deaths (but not fewer cases). We also �nd that the severity of the disease

is politically patterned: even when controlling for density, counties with a high proportion of Trump

voters in the 2016 general election have lower cases and deaths. These results may help explain the

growing political divide over policies to ease stay-at-home orders.

2 The Correlates of COVID-19 Severity

In this section, we relate our empirical speci�cation to standard epidemiological models, provide a

brief overview of the data, and report our �ndings on the correlates of COVID-19 cases and deaths

across U.S. counties.

2.1 Speci�cation

Speci�cation consistent with the SIRD model. Standard epidemiological models, such as the

SIRD model, posit laws of motion of the number of susceptible people, infectious people, recovered

people and deceased people for a given population and a given infectious disease. These laws of

motion are governed by a few key parameters: the rate of infection, the rate of recovery and the rate

of mortality. Together, they determine, for a given population, the evolution of the number of cases

and deaths over time.

To �x ideas, denote by Cit the cumulative number of cases and by Dit the cumulative number of

deaths from COVID-19 in county i at time t. The rate of infection, �i, and the rate of death, �i,

are likely to be, to an extent, county-speci�c.1 For example, we would expect counties with higher

population density, where individuals are more likely to run into each other, to have a higher rate of

infection �i. Similarly, we would expect counties with a larger share of elderly to experience higher

death rates �i. Di¤erences in these parameter values across counties imply di¤erences in the paths

of Cit and Dit across counties. For example, a county with a higher �i will have higher cumulative

cases and deaths at any point time, compared to a similar county with a lower �i. This is related

to the well-known result that a higher expected number of infections from an infected individual

(i.e., a higher basic reproduction number R0) generates in the limit more cumulative cases and more

cumulative deaths. Some of these insights are illustrated with simulations in the recent work by

1 In principle, these rates could also be time-speci�c, an issue we will return to later.
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Fernández-Villaverde and Jones (2020).

The objective of this paper is to explore the importance of county-speci�c factors that a¤ect �i and

�i. These parameters a¤ect the dynamic paths of Cit and Dit, and therefore their levels at every point

in time. We are interested in accounting for di¤erences in levels of cumulative cases and deaths at a

given point in time in the cross-section of counties. Hence we run, for each time period t, county-level

regressions of the logarithm of cases or deaths on a set of potential determinants of �i and �i:

log(Ci) = �0 +
kX
j=1

�jxij + "i (1)

and

log(Di) = 0 +
kX
j=1

jxij + �i (2)

where xij are county-level regressors that potentially a¤ect �i and �i (and hence Cit and Dit) and "i
and �i are county-level disturbance terms. These k regressors, indexed by j, include variables such as

a county�s density, age structure and health conditions.

Note that these period-by-period regressions are able to capture any functional form for the path of

the number of cumulative cases and deaths over time. As such, they are consistent with the functional

forms generated by standard epidemiological models. Indeed, to allow for maximum �exibility in

the changing relation between the county-level determinants and the disease severity, we choose a

parsimonious period-by-period cross-sectional regression framework over a more structural empirical

model that explicitly estimates the SIRD model.

Timing and the de�nition of cross-sectional samples. We take two approaches to de�ne the

sample used in the cross-county analysis. The �rst approach is to carry out the analysis date by date.

In this case, a time period t refers to a calendar date d, and we simply run regressions (1) and (2) day

by day, from March 15, 2020 to May 26, 2020. A potential issue with this approach is that part of the

cross-county variation in disease severity may be related to timing factors. To address this concern,

we control for certain factors that could a¤ect the timing of the arrival of COVID-19 to a particular

county. For instance, we control for the distance to an airport with direct international �ights to

high-severity countries.

The second approach more directly addresses di¤erential timing of onset by considering each county

at the same time elapsed since onset. Here we refer to onset as the day when a county reached a certain

threshold, either in terms of cases per capita or deaths per capita. To formally de�ne days elapsed

since onset, start by denoting, for each county i, an indicator variable ICid that takes a value of 1 if

county i has reached at least 1 case per 100; 000 population on day d. For each county i and day d,

the number of days since it reached that threshold is then:

sCid =

dX
v=1

ICiv :
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For the choice of each cross-county sample, we then set sCid to a �xed number t.
2 That is, the �rst

sample consists of all counties one day after reaching the threshold, the second sample consists of all

counties two days after reaching the threshold, and so on. Since each regression compares counties

that all have passed the same threshold of per capita cases a �xed number of days before, this limits

the e¤ect of di¤erential timing of onset across locations.

Similarly, we de�ne the time elapsed since reaching the threshold of 0:5 deaths per 100; 000 popula-

tion. For each county i and day d, the number of days since it reached that threshold is sDid =
Pd
v=1 I

D
iv ,

where IDid is an indicator variable taking a value of 1 if county i has reached at least 0:5 deaths per

100; 000 population on day d. Here as well, each regression compares counties that have passed the

deaths per capita threshold a �xed number of days before.

Treatment of zeros. Counties with zero cases and zero deaths are particularly prevalent early in

the sample period. Taking logs of cases and deaths amounts to ignoring the extensive margin.3 To

address this shortcoming, we consider both the log of one plus cases or deaths (resulting in a balanced

sample of 3; 137 counties), or we consider the log of cases or deaths, resulting in an unbalanced sample

of counties across time. For May 26, for instance, there were 2; 942 counties with strictly positive

cases, and 1; 701 counties with strictly positive deaths. Including the extensive margin gives us two

additional speci�cations:

log(1 + Ci) = �0 +

kX
j=1

�jxij + "i (3)

log(1 +Di) = �0 +

kX
j=1

�jxij + "i (4)

State �xed e¤ects. Other policy choices and certain omitted variables may a¤ect cumulative cases

and deaths. To partly address this concern, in some speci�cations we include state �xed e¤ects. In

addition to picking up di¤erences across states that go beyond the other variables we are already

controlling for, we are also interested in the magnitude of these e¤ects per se. However, we do not

include state �xed e¤ects in all speci�cations, as they absorb a lot of variation that we would prefer

to explicitly capture.

Summary of speci�cations. To summarize, we have twelve speci�cations. There are two outcomes:

cases and deaths. There are three ways to construct the sample: including counties with zero deaths

and cases by considering the log of one plus cases/deaths as dependent variables; excluding counties

with zero deaths and cases by considering log cases and log deaths as dependent variables; and placing

each county at the same time since onset for both deaths and cases (the latter by de�nition excludes

counties with zero deaths and cases by construction, and additionally excludes counties where the

2For instance, when �xing t = 5, the sample consists of each county on the speci�c calendar date d when it reached

sCid = 5.
3Of course, in the speci�cation where we look at days since onset, we cannot make any inference about the extensive

margin, since by de�nition the sample includes only counties with positive cases/deaths..
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threshold de�ning onset has not been crossed). Finally, there is another speci�cation choice: whether

we include state �xed-e¤ects or not.

2.2 Data

We use daily data on COVID-19 reported cases and deaths collected at the county level by the

New York Times.4 Appendix Table A1 (Panel A) contains summary statistics for various metrics of

cases and deaths constructed from these data, revealing substantial variation across counties. To our

knowledge these are the best data available at the county level, yet it is important to acknowledge

several possible data challenges. These are particularly acute for cases, since reported cases depend

on testing, and testing is far from uniformly and widely prevalent. Data issues are not absent from

deaths data either, as reporting standards vary across jurisdictions and adjudicating whether a death

was caused by COVID-19 involves an element of judgment. An alternative would be to use data based

on excess mortality, but these are not available at the county level on a daily basis.5

Regarding measurement error, we note the following: First, if errors are random, they will raise the

standard error of the regression without creating bias. However, if both testing and the reporting of

deaths are systematically correlated with the included explanatory variables, we will need to interpret

the corresponding estimates carefully as re�ecting e¤ects on both underlying severity and on reporting

of cases and deaths. Second, to the extent that testing capacity varies at the state level, including

state �xed e¤ects may in part correct for systematic measurement error due to uneven testing intensity.

Third, early in the spread of the disease, testing may also be more strongly targeted toward individuals

showing symptoms, resulting is arti�cially high case fatality rates (CFR =deaths/cases). To address

this possibility we reran our baseline regressions removing from the sample observations with CFR >

0:1 - the upper tail of the distribution of CFR, most likely to be severely a¤ected by selection in testing

(Section 2.3 discusses the results). Fourth, testing and reporting regimes improve through time, so the

passage of time should make measurement error in cases and deaths less relevant, as locations ramp

up testing and �ne tune the reporting of deaths.

We also gathered a wide range of county-level indicators to be used as independent variables. Vari-

able de�nitions and sources are provided in the Data Appendix, summary statistics are in Appendix

Table A1 (Panel B) and most of the variables are displayed in map form in Appendix Figure A1.

2.3 The Correlates of Spatial Variation in COVID-19 Severity

Tables 1 through 3 report estimates of all twelve speci�cations outlined above. Tables 1 and 2 include

a cross-section of counties as of May 26, 2020 (the last date in our sample). Table 3 reports estimates

synchronizing the sample in terms of days since onset. For cases, we use 40 days since onset as the

baseline and for deaths we choose 30 days since onset. These choices are motivated by a tradeo¤: by

4The data are updated daily and available at https://github.com/nytimes/covid-19-data.
5The National Vital Statistics System of the National Center for Health Statistics reports weekly excess deaths at the

state level: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm. For other examples of excess deaths

estimates, see New York City Department of Health and Mental Hygiene COVID-19 Response Team (2020) and Banerjee

et al. (2020).
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choosing a small number of days since onset, we would obtain a large cross-section of counties, less

likely to be selected, but we would consider counties very close to onset, where the e¤ect of fundamental

determinants may not yet have emerged. Instead, by choosing a larger number of days since onset

we would limit the number of counties in the sample in ways that are potentially selected, since only

early onset counties are likely to appear. Our choice re�ects this tradeo¤, and leads to a relatively

large sample for both cases and deaths (respectively 2,716 and 1,384 counties).

We consider a set of eleven baseline correlates. The �rst is log population, which acts as a scaling

variable. Its inclusion implies that the other estimates can be interpreted as the determinants of cases

and deaths in per capita terms.

Density measures. A �rst group of regressors relates to population density, since living in closer

proximity is likely to imply a higher infection rate �. Given the potential importance of density, we use

several variables. One is simply population density as measured by the county�s population divided

by its land area. This may not adequately capture e¤ective density, since some counties may have

extensive land areas, in spite of most people living in fairly dense areas. We therefore complement

simple density with variables that indicate whether a county is classi�ed by the National Center for

Health Statistics as a large metro area or as a medium or small metro area. In addition, we also

include the share of the population that commutes by public transit, a factor that has been argued to

be an important spreader of the virus (Harris, 2020).6

Results are consistent across all twelve speci�cations in showing the importance of density as

a determinant of severity: all four density measures are jointly statistically highly signi�cant and

positively associated with the number of cases in all speci�cations. Looking at variables individually,

we �nd that counties with a higher proportions of individuals using public transit have signi�cantly

higher severity, with large standardized magnitudes particularly for deaths (14 � 20%). Magnitudes
are sometimes reduced when including state �xed e¤ects, but remain broadly consistent. Both deaths

and cases are higher in large metro counties than in medium or small metro counties, which in turn

tend to be higher than in the excluded category of non-urban counties. The e¤ect of log population

density itself tends to be positive, but is not consistently signi�cant across speci�cations. This �nding

highlights the importance of properly measuring e¤ective density using a variety of metrics, a task we

further pursue in Section 4.1.

Age and nursing homes. A second group of regressors relates to the age structure of the pop-

ulation. Given the much higher mortality rate among the elderly, we control for the share of the

population aged 75 and above. It is important to note that the age gradients of cases and deaths may

be quite di¤erent from each other (Hay et al., 2020, report data on the age gradient of infections rather

than deaths). As is often observed, the elderly living in nursing home may be particularly susceptible

(Barnett and Grabowski, 2020). We therefore also include a county-level measure of nursery home

residents divided by population.

6We conduct a further investigation of density in Section 4, where we include additional measures of e¤ective density,

based on housing arrangements and on the density experienced by an average individual in the square kilometer grid cell

where they live.
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We �nd interesting results. Cases are negatively associated with the percentage of people aged

75 and older. This may re�ect di¤erences in lifestyles between counties with di¤erent age structures.

For instance, places with a large share of retired individuals may feature fewer places (bars, stadiums)

where the disease spreads rapidly. As expected, we �nd a positive association between the share of the

elderly and deaths, though the e¤ect is not statistically signi�cant in several speci�cations. When it

comes to the share of the population in nursing homes, we �nd positive and economically large partial

correlations especially for deaths, and especially when isolating the intensive margins of the disease.

For instance in column (3) of Tables 2 and 3, the standardized beta on the share of nursing home

residents is equal to about 14%. This �nding is consistent with the idea that once a county is a¤ected

by the pandemic, its nursing homes can quickly become powderkegs, and account for large shares of

countywide deaths.

Other correlates. A third group of regressors include other factors that have been hypothesized to

a¤ect the onset and severity of the pandemic. Early reports suggested that temperature may play a

role in the spread of the disease, so we include a county-level measure of the average temperature in

February, March and April (using data from China, Qi et al., 2020, suggested that higher temperatures

slowed the disease, but Xie and Zhu, 2020, �nd a �atter temperature gradient). We �nd some evidence

that locations with higher temperatures in those months experienced higher numbers of cases and

deaths, with sometimes large standardized magnitudes especially for cases. The implications for the

evolution of the disease in the summer months are unclear, since both the absolute level of temperature

and its spatial distribution will change a lot.

The onset of the pandemic in speci�c locations in the US may have been related to connectivity

with high-severity countries (Wells et al., 2020). We construct a measure of the distance to any airport

with direct �ights to one of the top-5 countries with coronavirus cases on March 15, 2020 (China, South

Korea, Iran, Italy and Spain). This variable bears a generally negative relationship with cases and

deaths, as expected, and this relationship is stronger in Tables 1 and 2, i.e. when we do not condition

on each county being observed at the same time interval from onset, also as expected.

Among the remaining correlates, we �rst include median household income, a standard metric

to capture di¤erences in economic well-being across counties. We do not �nd a robust e¤ect of

median income across speci�cations. Second, a measure of social capital from Rupasingha, Goetz

and Freshwater (2006), bears a positive relationship with cases (less so for deaths, especially along

the intensive margin). This is consistent with places with high social capital involving more social

interactions, facilitating the spread of the disease. It is also consistent with social capital capturing

some unobserved dimensions of e¤ective population density.

State �xed-e¤ects. Tables 1-3 report results with or without state �xed e¤ects. Appendix Figures

A2 and A3 graphically display estimates on the state �xed e¤ects, ordered by size, for the speci�cations

of columns (2) and (4) of Table 1. These plots reveal that, after controlling for the eleven baseline

set of correlates of disease severity, some states have lower or higher cases or deaths. We �nd that

counties in Hawaii and California, for instance, have lower severity than expected, while counties in

Louisiana, Connecticut or New Jersey have higher severity than expected. These di¤erences could
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reveal idiosyncracies that are hard to capture using additional regressors varying at the county level

(for instance the fact that Hawaii is an island, or that New Jersey is close and tightly integrated with

New York, a major center of the disease in the US). They could also capture some omitted factors

excluded from our parsimonious speci�cation.7

Incidence of high CFR counties. Some counties in our sample exhibit very high case fatality rates

(CFR), especially early in the period. This is perhaps because testing was limited, and selected to apply

mostly to individuals showing severe COVID-19 symptoms. As testing became more widespread, this

source of bias was likely reduced. To examine the robustness of the results to the inclusion of counties

where testing was biased in this manner, we rerun our baseline regressions removing observations with

CFR > 10%. This also implies removing counties with zero cases. Comparing Tables 2 and 3 to

Tables A2 and A3 (the sample restriction applies to the latter), we �nd only very minor di¤erences in

the estimates. These results mitigate the concern that bias in testing only symptomatic individuals

drives our results. Moreover, as time goes by and testing becomes less and less selected, the concern

should also be alleviated.

3 Persistence in the Determinants of COVID-19 Heterogeneity

The foregoing discussion concerned the cross-section of disease severity at a speci�c date (May 26) or

at a constant time since onset. These e¤ects o¤er a snapshot of spatial variation, but do not describe

how the partial correlations that we calculated evolve over time. As the disease progresses, do these

sources of heterogeneity in severity persist?

To examine this question, we estimate our model daily and plot estimated coe¢ cients and their

con�dence bounds through time. It is important to emphasize that this also represents a time-slice

of the e¤ects. Indeed, we do not know how they will further change past the last date in our dataset

(currently May 26) but we will update the results as more data becomes available.

Evolution between March and May 2020. Figures 1 and 2 display coe¢ cient estimates from

the speci�cations of equations (3) and (4), with 95% con�dence intervals. The sample of counties is

the same over time (3; 137 counties) and the dates run from March 15 to May 26, 2020. In most cases,

we see an initial period where coe¢ cient magnitudes move away from zero. This is natural since there

is not much variation to explain early on, and there is randomness in locations that got the virus early.

One important exception is the variable capturing distance to international airports with connections

to the top-5 COVID incidence countries as of March 15, 2020. This variable predicts the cross-section

of cases from the get-go, as we would expect.

Many of the 11 regressors display increasing absolute e¤ects over time. When focusing on density,

its coe¢ cient is growing over time when considering COVID-19 cases. Other density measures, such

7We note that the increae in the total R2 when adding state �xed-e¤ects is not very large. Take Table 1 for instance.

For the regression with log(1+cases), R2 is 0:74 and rises to 0:80 with state �xed e¤ects. For log(1+deaths), the R2 goes

from 0:61 to 0:70. Thus, state �xed e¤ects do not capture the bulk of the variation in disease severity, once relevant

determinants are controlled for.
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as public transit usage or being classi�ed as a large metro area, display increasing coe¢ cients when

considering coronavirus-related deaths. As the pandemic runs its course, there is so far no indication

that density is disappearing as a predictor of the cumulative number of cases and deaths.

Turning to the elderly population, our results echo what we found previously: the share of the

population aged 75 and above is negatively correlated with cases, and positively correlated with deaths.

Both correlations are becoming stronger over time. As for the share of the population living in nursing

homes, its impact is positive and increasing over time, both for cases and for deaths. Once again,

these correlates show no sign of abating as the disease progresses.

Other correlates deserve a brief mention. The distance to international airport with direct �ight

connections to high-incidence countries is negatively correlated with both cases and deaths, and those

correlations are stable over time, showing the persistent e¤ect of initial conditions. Median household

income bears a slight positive correlation with cases, but it is uncorrelated with deaths. A last correlate

worth discussing is log population. We observe that the elasticity of cases to population rises over

time but does not reach one for either cases or deaths, suggesting that there exists a negative scale

e¤ect on per capita cases and deaths.

Overall, many of the location-speci�c characteristics that a¤ect the rate of infection and the rate

of death, such as population density and age composition, display persistent and sometimes increasing

correlations with cumulative cases and deaths. As such, the evidence so far suggests that the severity

of COVID-19 is unlikely to equalize across space. Whether these �ndings hold up as the pandemic

further unfolds remains an open question.

Evolution since onset. One possible issue with Figures 1 and 2 is that the coe¢ cients may partly

pick up the di¤erential timing of onset across di¤erent types of counties. For example, if low-density

counties are hit later by COVID-19 than high-density counties, then their cumulative cases or deaths

will tend to be lower on any given date. Of course, if timing were the main di¤erence between low and

high density counties, then the coe¢ cient on density should be declining over time, as disease severity

in low density counties catches up with high density counties. Since many of the regressors display

increasing absolute e¤ects over time, it is unlikely that di¤erential timing is an important driver of

our results.

However, to limit any impact of di¤erential timing, we �x the sample in terms of days since onset.

Figures 3 and 4 display how coe¢ cient estimates evolve as a function of days since onset. To grasp

how to read these graphs, a concrete example may help. The public transit graph in Figure 3 plots the

coe¢ cients on public transportation from 60 di¤erent regressions, one for each of the di¤erent time

lags since a county reached the threshold of 1 case per 100; 000. Increasing the number of days since

onset decreases the sample size because fewer counties meet the criterion for passing the threshold

early on. We illustrate this changing sample size in the last graphs of Figures 3 and 4. As can be seen,

there are close to 3; 000 counties in the sample of counties one day after passing the case threshold,

but there are about 1; 800 in the sample of counties 50 days after onset.

As before, we �nd strong evidence of persistence regarding many determinants of cases and deaths.

For example, the importance of density for cases grows as the pandemic runs its course in a given
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location, and public transit shows a persistent e¤ect on both cases and deaths. As for nursing home

residents, its correlation with cases and deaths is also persistent and increasing in the days since onset.

The only determinants of both cases and deaths that seem to fade through time are median income (a

variable that did not bear a robust relationship with cases and deaths in Section 2) and social capital.

As we would expect, in the early days since onset coe¢ cients on the di¤erent regressors tend to be

close to zero.8 In sum, whether de�ning the sample by calendar dates or by days since onset, we �nd

substantial persistence in the determinants of spatial variation in disease severity.

4 Further Investigations of Speci�c Correlates

In this section, we go beyond our baseline speci�cation, and do an in-depth investigation of speci�c

correlates of COVID-19 incidence.

4.1 Density

Our baseline results indicate an important role for density in determining the severity of COVID-19.

This should come as no surprise: as with any other infectious disease, contact between susceptible and

infected individuals is a key determinant of the spread of the disease. However, the actual degree of

contact between people is not straightforward to measure. The four indicators already included in the

baseline speci�cation may not fully capture relevant dimensions of density.

In Table 4, we continue to control for the baseline set of 11 determinants, but add three additional

measures aimed at better capturing the likely intensity of contact between people. Two of these relate

to housing and living arrangements: the share of individuals living in multi-unit housing structures

and the number of people per household. A third measures the average density a random individual of

a county experiences in the square kilometer around him. We refer to this as a county�s "e¤ective local

density". Columns (1) and (4) of Table 4 report coe¢ cient estimates for speci�cations where we add

the controls for living arrangements. We see that multi-unit housing and the size of the households

are positively associated with both cases and deaths. Columns (2) and (5) add e¤ective local density:

its correlation with cases is statistically insigni�cant, whereas its correlation with deaths is negative

and signi�cant. For reasons of further comparison, columns (3) and (6) drop housing arrangements

and public transportation, and only maintain simple density and e¤ective density. As can be seen,

e¤ective local density now displays a positive and statistically very signi�cant relation with both cases

and deaths. Overall, this suggests that a county�s e¤ective density matters, but that its e¤ect may

operates through dense housing and public transit.

4.2 Race

Table 5 explores the possible role of race. It reports four di¤erent speci�cations: columns (1) and

(3) report regressions for cases and deaths, based on cross-section of counties as of May 26, whereas

8 In the limit, on the �rst day of reaching the threshold, we are comparing counties that are identical in terms of

the variable we are trying to explain. In the absence of any cross-sectional variation, we would not expect any of the

regressors to explain anything.
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columns (2) and (4) also report regressions for cases and deaths, but now based on a cross-section

of counties 40 days after onset (for cases) and 30 days after onset (for deaths). To the baseline

regressors, we add measures of the racial composition of a county by controlling for the shares of

African Americans, Hispanics, American Indians and Asians, with the excluded category being the

share of Whites and others. The results display a strong and consistent positive correlation between

the share of African Americans and the share of Hispanics with both the number of cases and the

number of deaths. The share of American Indians exhibits a positive correlation with deaths, but

not with cases, whereas the share of Asians shows a weaker correlation with COVID-19 incidence. In

terms of magnitudes, the share of African Americans stands out with large standardized � coe¢ cients

between 28% and 29%. Overall these results con�rm concerns that the COVID-19 pandemic has a

disparate e¤ect on various racial groups.

4.3 Education

Table 6 analyzes whether the level of education may be a source of heterogeneity in disease severity

across counties. We take the same four speci�cations as in the previous table with the same baseline

regressors, and add two controls for the level of education: the share of a county�s population that

has a high school degree or more and the share of a county�s population that has a bachelor�s degree

or more (the excluded variable is the share of people with less than a high school degree). We �nd

a non-monotonic relationship between average educational attainment, and disease severity. Counties

with large proportions of high school graduates fare best, followed by counties with a large share of

individuals without a high school degree. Places with many college graduates fare the worst. Hence,

we �nd little evidence that more disadvantaged locations (measured by education) fare worse. These

correlations, while informative, remain open for interpretation.

4.4 Health

Table 7 investigates whether underlying health conditions or the quality of health care have an impact

on outcomes. As measures of underlying health issues, we take the share of the population that

smokes and the share of the population that is obese. As measures of quality of health care, we take

the risk-adjusted 30-day mortality rates for heart attacks, heart failure and pneumonia. The share

of smokers and obese people does not seem to be a signi�cant driver of heterogeneity in COVID-19

incidence across counties. The same holds true for risk-adjusted mortality rates. In sum, we �nd

little evidence that often-hypothesized health drivers of COVID-19 severity - either the prevalence of

underlying health conditions or the quality of the healtcare infrastructure - are �rst-order determinants

of cross-county variation in cases and deaths.

4.5 Inequality and Poverty

Table 8 reports results of an in-depth investigation of the role of inequality and poverty. In the

baseline regressions we already included median household income. We add three measures that

capture inequality and poverty: the Gini index within the bottom 99%, the poverty rate, and the top

1% income share. The share of top incomes is insigni�cant, the Gini index among the lower 99% is

11



positive for cases but not signi�cantly so for deaths, and poverty positively predicts severity measured

both by deaths and cases. The results are quantitatively meaningful: for example, the poverty rate

shows standardized coe¢ cients in the range of 17% to 28% when considering its impact on deaths. In

sum, we �nd evidence that poverty (for deaths) and inequality (for cases) are signi�cant determinants

of disease severity.

4.6 Politics

Does severity vary according to local political orientation? In Sections 2.3 and 4.1, we already docu-

mented the strong positive association between e¤ective population density and disease severity. This

suggests that places more likely to vote for Democrats (high-density places) are more severely im-

pacted by COVID-19. Is there a partisan di¤erence in disease severity over and beyond the partial

association with density? Table 9 reports estimation results of our baseline speci�cations adding the

vote share for Donald Trump in the 2016 election as an additional regressor. In doing so, we are not

arguing that preferences for Donald Trump have a causal e¤ect on disease severity. Rather, we are

trying to establish whether the spatial pattern of disease severity is correlated with partisanship, over

and above its association with population density, the age distribution of the population, etc.

We �nd that a higher vote share for Donald Trump is negatively correlated with disease severity.

For both cases and deaths, the standardized magnitude of the Trump general election vote share in

2016 is on the order of 12� 13%, and highly statistically signi�cant. In conjunction with our �ndings
on density, this result is strongly suggestive that disease severity is geographically patterned according

to political orientation. These results may help explain the emerging political fault lines over the

desirability of lockdown policies, with Republican-leaning locations seemingly much more eager to

reopen early and suspend the lockdowns as compared to Democratic-leaning locations.9

4.7 Stay-At-Home Orders

So far, we focused on time-invariant county determinants of the incidence of COVID-19. Some de-

terminants may change over time. The prime example here is stay-at-home orders. These are aimed

at reducing the rate of infection, and hence slowing down the increase in cases and deaths. Needless

to say, identifying the causal e¤ect of stay-at-home orders is fraught with di¢ culty, since the local

severity of the disease is likely to prompt earlier policy intervention. Arguably, such endogeneity con-

cerns are somewhat mitigated when �xing the sample in terms of days since onset.10 In that case,

we are comparing counties with identical initial conditions in terms of cases or deaths per capita,

but possibly di¤erent dates at which stay-at-home orders were imposed. Table 10 focuses only on

speci�cations where the sample is chosen based on reaching a speci�c threshold of cases and deaths,

as de�ned previously. We include a variable describing the number of days since the �rst stay-at-home

9Of course, preferences for lockdown policies are not solely determined by spatial patterns of disease severity. Ide-

ological predilections and media in�uence may also play a role in the emerging political divide over the response to

COVID-19. See for instance Bursztyn et al. (2020) and Allcott et al. (2020).
10Of course, the concern is not eliminated. For two counties with identical days since onset, some unobserved factor

may drive both disease severity and the decision to issue stay-at-home orders. Since the policy is not randomly assigned,

the endogeneity concern is hard to fully address.
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order applied to a particular county.11 We �nd no e¤ect of this variable on cases, but a statistically

signi�cant and economically meaningful negative e¤ect on deaths (Jinjarak et al., 2020).

Figure 5 and Figure 6 depict the coe¢ cient estimates of the stay-at-home orders, de�ned as the

number of days since the �rst stay-at-home order was implemented in a particular county. The

regression speci�cations are identical to the ones in Figure 3 and Figure 4, with the only di¤erence

that we control for one more variable: the stay-at-home orders. There is a slight positive correlation

between the length of stay-at-home orders and the number of cases, but it is only statistically signi�cant

during the �rst ten days after reaching the threshold of 1 case per 100; 000. In contrast, there is a

negative correlation between the duration of stay-at-home orders and the number of deaths, and it

remains statistically signi�cant during much of the time period. The correlation fades to zero past

day 45 or so, because the relatively small set of counties that had an early onset of deaths also tended

to adopt stay-at-home orders early on. Thus, there is not much variation in days since stay-at-home-

orders for that small and selected sample of counties.12

5 Conclusion

In this paper, we study heterogeneity in the severity of the COVID-19 pandemic across counties of

the United States. We explore a wide range of correlates of severity jointly, in a uni�ed estimation

framework that allows for the inclusion of state �xed e¤ects, controls for the di¤erential timing of

disease onset in various locations, and accommodates variation on both the intensive and extensive

margins of cases and deaths. We document a strong and persistent role for population density, captured

using a variety of metrics, as a correlate of cases and deaths. We argue that it is important to measure

density correctly, using indicators of urbanicity, prevalent modes of transportation, household size and

housing arrangements, etc. We also show that the age structure and the proportion of people living

in nursing homes are powerful and persistent predictors of disease severity, particularly the number

of deaths. We explore correlations with a wide range of additional variables, �nding for instance that

minorities are more severely a¤ected by the pandemic, and areas with a large share of Trump voters

are less severely a¤ected. Finally, we show that, controlling for the timing of disease onset, more days

spent under stay-at-home orders negatively predicts the number of deaths across counties. Many of

these e¤ects rise between March 15 and May 26, and remain statistically signi�cant as of the end of

our sample period. These estimates will be updated using new data that becomes available as the

disease continues to spread. Time will tell whether this persistence persists.

Our results suggest that policymakers should be sensitive to the speci�cities of di¤erent locations

when designing policy responses to the spread of COVID-19, and their unwinding.

11As of April 30, all but 631 counties were under stay-at-home orders. Among those, the average number of days since

the order was issued was 26, and extended up to 44 days.
12When the number of days since reaching 0:5 deaths per 100; 000 population is 50, there are only 775 counties in the

sample, only 78 of which have no stay-at-home orders in place.
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Table 1 - OLS Regressions for log 1+Cases and log 1+Deaths, May 26, 2020 
(Dependent variable listed in second row) 

 
 (1) (2) (3) (4) 
 Log 1+Cases Log 1+Cases, 

State FE 
Log 1+Deaths Log 1+Deaths, 

State FE 
Log population 0.881 0.957 0.641 0.689 
 (0.028)*** (0.033)*** (0.025)*** (0.030)*** 
 [0.612] [0.665] [0.616] [0.661] 
Log population density 0.197 0.087 -0.019 -0.081 
 (0.024)*** (0.032)*** (0.021) (0.028)*** 
 [0.163] [0.072] [-0.022] [-0.093] 
Large central metro county  0.227 0.188 0.688 0.634 
or large fringe metro county (0.080)*** (0.073)*** (0.072)*** (0.065)*** 
 [0.037] [0.030] [0.153] [0.141] 
Medium metro county or  0.119 0.082 0.188 0.178 
small metro county (0.056)** (0.051) (0.050)*** (0.046)*** 
 [0.023] [0.016] [0.051] [0.048] 
% people who commute by  0.040 0.033 0.094 0.080 
public transportation (0.007)*** (0.007)*** (0.006)*** (0.006)*** 
 [0.057] [0.046] [0.185] [0.157] 
Share of people aged 75 -9.283 -8.481 1.357 2.708 
& above (1.077)*** (1.069)*** (0.964) (0.958)*** 
 [-0.101] [-0.092] [0.020] [0.041] 
% nursing home residents  0.182 0.059 0.164 0.050 
in pop. (0.050)*** (0.048) (0.044)*** (0.043) 
 [0.038] [0.012] [0.047] [0.014] 
Log km to closest airport w/  -0.069 -0.068 -0.061 -0.092 
flights from top 5 COVID countries (0.021)*** (0.021)*** (0.019)*** (0.019)*** 
 [-0.037] [-0.036] [-0.045] [-0.068] 
Average temperature,  0.005 0.005 0.003 0.006 
Feb., Mar. & Apr. (0.001)*** (0.002)*** (0.001)*** (0.002)*** 
 [0.066] [0.077] [0.060] [0.122] 
Log household median  0.129 0.113 0.083 -0.012 
Income (0.109) (0.111) (0.098) (0.100) 
 [0.015] [0.013] [0.013] [-0.002] 
Social Capital Index, 2014 0.064 0.023 0.044 0.059 
 (0.021)*** (0.021) (0.019)** (0.019)*** 
 [0.037] [0.014] [0.036] [0.048] 
Constant -7.175 -6.774 -6.725 -6.258 
 (1.222)*** (1.282)*** (1.094)*** (1.149)*** 
R2 0.74 0.80 0.61 0.70 
N 3,137 3,137 3,137 3,137 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table 2 - OLS Regressions for log Cases and log Deaths, May 26, 2020 
(Dependent variable listed in second row) 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.926 1.022 0.778 0.893 
 (0.031)*** (0.036)*** (0.042)*** (0.051)*** 
 [0.616] [0.679] [0.587] [0.674] 
Log population density 0.192 0.072 0.069 -0.036 
 (0.026)*** (0.034)** (0.038)* (0.048) 
 [0.150] [0.056] [0.060] [-0.031] 
Large central metro county or  0.229 0.179 0.417 0.430 
large fringe metro county (0.085)*** (0.077)** (0.106)*** (0.097)*** 
 [0.039] [0.030] [0.100] [0.104] 
Medium metro county or  0.114 0.070 0.014 0.028 
small metro county (0.059)* (0.053) (0.077) (0.071) 
 [0.023] [0.014] [0.004] [0.008] 
% people who commute by  0.040 0.032 0.075 0.062 
public transportation (0.008)*** (0.007)*** (0.008)*** (0.008)*** 
 [0.060] [0.048] [0.177] [0.144] 
Share of people aged 75  -11.270 -10.136 0.931 2.506 
& above (1.200)*** (1.194)*** (1.613) (1.685) 
 [-0.118] [-0.106] [0.011] [0.029] 
% nursing home residents in pop. 0.287 0.114 0.771 0.470 
 (0.058)*** (0.057)** (0.105)*** (0.106)*** 
 [0.057] [0.022] [0.138] [0.084] 
Log km to closest airport w/ flights  -0.062 -0.059 -0.034 -0.054 
from top 5 COVID countries (0.022)*** (0.022)*** (0.024) (0.024)** 
 [-0.034] [-0.032] [-0.027] [-0.043] 
Average temperature,  0.004 0.006 0.002 0.006 
Feb., Mar. & Apr. (0.001)*** (0.002)*** (0.001) (0.003)** 
 [0.063] [0.084] [0.028] [0.103] 
Log household median income 0.038 0.003 -0.030 -0.195 
 (0.119) (0.121) (0.158) (0.162) 
 [0.004] [0.000] [-0.004] [-0.029] 
Social Capital Index, 2014 0.083 0.043 -0.049 -0.006 
 (0.024)*** (0.024)* (0.034) (0.034) 
 [0.046] [0.024] [-0.026] [-0.003] 
Constant -6.614 -6.281 -7.497 -7.140 
 (1.323)*** (1.382)*** (1.763)*** (1.880)*** 
R2 0.71 0.78 0.56 0.66 
N 2,942 2,942 1,701 1,701 
* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table 3 - OLS Regressions for log Cases and log Deaths, Synchronized Days from Onset at 40 days from 
Onset (for log cases) and 30 days from Onset (for deaths) 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.847 0.961 0.730 0.811 
 (0.030)*** (0.036)*** (0.040)*** (0.049)*** 
 [0.607] [0.689] [0.624] [0.694] 
Log population density 0.155 0.032 0.016 -0.044 
 (0.026)*** (0.035) (0.037) (0.047) 
 [0.130] [0.027] [0.016] [-0.042] 
Large central metro county or  0.256 0.238 0.401 0.406 
large fringe metro county (0.082)*** (0.075)*** (0.103)*** (0.095)*** 
 [0.050] [0.046] [0.111] [0.112] 
Medium metro county or  0.078 0.058 -0.027 -0.024 
small metro county (0.057) (0.052) (0.076) (0.070) 
 [0.018] [0.014] [-0.008] [-0.007] 
% people who commute by  0.052 0.043 0.070 0.059 
public transportation (0.007)*** (0.007)*** (0.007)*** (0.008)*** 
 [0.091] [0.075] [0.200] [0.169] 
Share of people aged 75  -7.383 -5.657 1.707 3.377 
& above (1.198)*** (1.209)*** (1.556) (1.675)** 
 [-0.083] [-0.064] [0.022] [0.043] 
% nursing home residents  0.285 0.130 0.698 0.450 
in pop. (0.063)*** (0.063)** (0.105)*** (0.108)*** 
 [0.058] [0.026] [0.135] [0.087] 
Log km to closest airport w/ flights  -0.047 -0.046 -0.041 -0.055 
from top 5 COVID countries (0.021)** (0.021)** (0.022)* (0.022)** 
 [-0.029] [-0.029] [-0.039] [-0.052] 
Average temperature,  0.005 0.007 0.001 0.007 
Feb., Mar. & Apr. (0.001)*** (0.002)*** (0.001) (0.003)** 
 [0.079] [0.113] [0.020] [0.145] 
Log household median income 0.071 0.019 -0.103 -0.228 
 (0.117) (0.121) (0.151) (0.155) 
 [0.009] [0.002] [-0.017] [-0.038] 
Social Capital Index, 2014 0.044 0.047 -0.044 -0.003 
 (0.024)* (0.025)* (0.032) (0.032) 
 [0.026] [0.028] [-0.027] [-0.002] 
Constant -6.924 -7.005 -6.003 -6.247 
 (1.309)*** (1.391)*** (1.687)*** (1.814)*** 
R2 0.68 0.75 0.58 0.68 
N 2,716 2,716 1,384 1,384 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 
per 100,000 (for deaths).  
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Table 5 - An Investigation of Race Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

May 26 
Log Cases, 40 

days since 
onset 

Log 1+Deaths, 
May 26 

Log Deaths, 
30 days since 

onset 
% Black or African American 0.041 0.036 0.030 0.026 
 (0.002)*** (0.002)*** (0.002)*** (0.002)*** 
 [0.277] [0.292] [0.280] [0.279] 
% Hispanic or Latino 0.016 0.012 0.010 0.008 
 (0.002)*** (0.002)*** (0.002)*** (0.003)*** 
 [0.101] [0.081] [0.083] [0.064] 
% American Indian  0.005 0.006 0.011 0.025 
and Alaska Native (0.003)* (0.003)* (0.003)*** (0.006)*** 
 [0.018] [0.019] [0.054] [0.077] 
% Asian -0.032 -0.022 0.009 -0.011 
 (0.008)*** (0.009)** (0.008) (0.011) 
 [-0.041] [-0.032] [0.016] [-0.025] 
R2 0.79 0.72 0.65 0.62 
N 3,137 2,716 3,137 1,384 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All specifications contain an intercept and controls for the baseline set of variables 
in Tables (1)-(3). 
 

 

Table 6 - An Investigation of Education Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

May 26 
Log Cases, 

40 days 
since onset 

Log 
1+Deaths, 

May 26 

Log Deaths, 
30 days 

since onset 
High school graduate or higher,  -0.046 -0.048 -0.031 -0.049 
percent of persons age 25+ (0.005)*** (0.005)*** (0.004)*** (0.008)*** 
 [-0.148] [-0.172] [-0.136] [-0.201] 
Bachelor's degree or higher,  0.005 0.009 0.018 0.019 
percent of persons age 25+ (0.004) (0.004)** (0.003)*** (0.005)*** 
 [0.021] [0.043] [0.100] [0.126] 
R2 0.75 0.69 0.62 0.60 
N 3,137 2,716 3,137 1,384 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables (1)-(3). 
 
  



21 
 

Table 7 - An Investigation of Health Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

May 26 
Log Cases, 40 

days since 
onset 

Log 1+Deaths, 
May 26 

Log Deaths, 30 
days since 

onset 
Percentage of the  -0.971 -0.656 -0.186 0.253 
population that smokes (0.393)** (0.394)* (0.372) (0.601) 
 [-0.030] [-0.021] [-0.007] [0.008] 
Percentage of the  0.502 0.592 0.508 -0.470 
population that is obese (0.331) (0.335)* (0.313) (0.505) 
 [0.019] [0.024] [0.023] [-0.020] 
30-day Mortality  -2.516 -1.284 -1.041 0.152 
for Heart Attacks (0.859)*** (0.905) (0.813) (1.363) 
 [-0.037] [-0.020] [-0.018] [0.002] 
30-day Mortality  -1.768 -1.380 -3.085 -6.422 
for Heart Failure (1.433) (1.471) (1.356)** (2.153)*** 
 [-0.016] [-0.013] [-0.033] [-0.064] 
30-day Mortality  2.071 3.044 1.638 2.309 
for Pneumonia (1.292) (1.321)** (1.223) (1.853) 
 [0.021] [0.033] [0.020] [0.027] 
R2 0.70 0.67 0.62 0.59 
N 2,334 2,236 2,334 1,279 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables (1)-(3). Note the smaller number of observations due to lack of availability of data on obesity and 
smoking. 30-day mortality measures are risk adjusted so are likely to capture mostly the quality of the 
health infrastructure / health care system in the county. 
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Table 8 - An Investigation of Inequality and Poverty Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

May 26 
Log Cases, 40 

days since 
onset 

Log 1+Deaths, 
May 26 

Log Deaths, 30 
days since 

onset 
Gini Index Within  0.937 1.438 0.773 1.085 
Bottom 99% (0.491)* (0.515)*** (0.428)* (0.664) 
 [0.039] [0.066] [0.043] [0.062] 
Poverty Rate 1.286 1.673 4.154 6.771 
 (0.621)** (0.661)** (0.541)*** (0.908)*** 
 [0.040] [0.057] [0.171] [0.280] 
Top 1% Income Share -0.443 -0.906 -0.061 -0.746 
 (0.659) (0.679) (0.574) (0.846) 
 [-0.011] [-0.025] [-0.002] [-0.026] 
Log household  0.434 0.554 0.864 1.290 
median income (0.160)*** (0.168)*** (0.140)*** (0.214)*** 
 [0.050] [0.073] [0.134] [0.216] 
R2 0.73 0.68 0.64 0.61 
N 3,026 2,690 3,026 1,379 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the remaining baseline set of 
variables in Tables (1)-(3). There is collinearity between poverty rate and median income (ρ= - 0.75). The 
coefficient on median income is robust but the coefficient on the poverty rate is sensitive to the 
inclusion of median income (it becomes zero without median income included). 
 

 

 

Table 9 - An Investigation of Donald Trump Effects 

 (1) (2) (3) (4) 
 Log 1+Cases, 

May 26 
Log Cases, 40 

days since 
onset 

Log 1+Deaths, 
May 26 

Log Deaths, 
30 days since 

onset 
Trump vote share,  -1.666 -1.506 -1.152 -1.298 
2016 general election (0.155)*** (0.163)*** (0.139)*** (0.215)*** 
 [-0.122] [-0.124] [-0.116] [-0.133] 
R2 0.75 0.69 0.62 0.59 
N 3,109 2,703 3,109 1,381 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables (1)-(3). 
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Table 10 - An Investigation of the Effects of Lockdowns 

 (1) (2) (3) (4) 
 Log 1+Cases, 

40 days since 
onset 

Log Cases,  
40 days since 

onset 

Log 1+Deaths, 
30 days since 

onset 

Log Deaths,  
30 days since 

onset 
Days since lockdown began  -0.001 -0.001 -0.007 -0.011 
(0 if no or before lockdown) (0.001) (0.003) (0.002)*** (0.003)*** 
 [-0.009] [-0.012] [-0.066] [-0.101] 
R2 0.68 0.75 0.59 0.68 
N 2,716 2,716 1,384 1,384 

* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 per 
100,000 (for deaths). All columns contain an intercept and controls for the baseline set of variables in 
Tables (1)-(3). 
 
 
 























Data Appendix

A1. Dependent Variables

COVID-19 cases and deaths. Daily county-level data on COVID-19 cases and deaths. Source: New
York Times, https://github.com/nytimes/covid-19-data. We adjusted the data in the following

ways:

1. The source reports data cumulated for New York City overall (all 5 burroughs/counties to-

gether). We apportioned cases and deaths to each of the 5 burroughs/counties by county population

shares.

2. The source reports data for all of Kansas City, which is made up of parts of several counties,

each independent entries with their own cases and deaths (exclusive of Kansas City). Most of Kansas

City is in Jackson County MO, so we added all Kansas City cases and deaths to that county�s tally.

3. We did not make any modi�cations regarding any of the additional geographic speci�cities

as described in the source data: "Counts for Alameda County (CA) include cases and deaths from

Berkeley and the Grand Princess cruise ship; counts for Douglas County (NE) include cases brought to

the state from the Diamond Princess cruise ship; all cases and deaths for Chicago are reported as part

of Cook County (IL); counts for Guam include cases reported from the USS Theodore Roosevelt."

4. The source reports non-monotonic evolutions of cumulative deaths for a very small set of

counties, at the very beginning of the pandemic, when there were very few deaths. The reason is

unknown. We recoded deaths that subsequently became lower to the level of the later lower number

to ensure monotonic cumulative death series for all counties.

A2. Independent Variables

Population and age. Age structure of population by county. Source: U.S. Census Bureau. 2018
American Community Survey 5-Year Estimates, https://data.census.gov/cedsci/.

Population density. Population divided by land in square miles. Source: U.S. Census Bureau.

Metro county. Classi�cation as large central metro county, large fringe metro country, medium metro
county or small metro county. Source: National Center for Health Statistics (NCHS). Urban-Rural

Classi�cation Scheme for Counties 2013, https://www.cdc.gov/nchs/data_access/urban_rural.

htm#Data_Files_and_Documentation

Public transportation. Share of population that goes to work by public transportation. Source:
U.S. Census Bureau. 2018 American Community Survey 5-Year Estimates, https://data.census.

gov/cedsci/.

Nursing home residents. Percentage of population who are residents in nursing homes. Source:
Centers for Medicare & Medicaid Services. Nursing Home Compare Datasets: Provider Info, https:

//data.medicare.gov/data/nursing-home-compare.

Temperature. Average temperature in February, March and April, 2009 to 2019. Source: National
Oceanic and Atmospheric Administration. NOAA�s Gridded Climate Divisional Dataset (CLIMDIV),

ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/.
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Distance to airport. Data of all international �ights into the U.S. in 2019 come from table T-100

from the Bureau of Transportation Statistics. For each one of the U.S. airports, we take the average

number of monthly passengers on direct �ights from the top-5 countries in terms of COVID-19 cases

on March 15, 2020 (China, Italy, Iran, South Korea and Spain). For each county in the U.S., we then

compute the geodesic distance to the closest airport that receives at least 250 passengers per month

on direct �ights from one of these 5 countries. https://www.transtats.bts.gov/

Household income. Log of median household income, 2009-2013. Source: U.S. Census Bureau.

Social capital. Social capital index created using principal component analysis using number of
associations and organizations (including non-pro�ts), voter turnout and census response rate in 2014

(variable sk14). Source: Rupasingha, A., S. J. Goetz and D. Freshwater (2006, with updates). https:

//aese.psu.edu/nercrd/community/social-capital-resources

Race. Black or African American alone, Hispanic or Latino, American Indian and Alaska Native
alone, percentage 2014. Source: U.S. Census Bureau.

Education. High school graduate or higher, percentage of persons age 25+, 2009-2013, and bachelor�s
degree or higher, percentage of persons age 25+, 2009-2013. Source: U.S. Census Bureau.

Housing arrangements. Percent of housing units in multi-unit structures, 2009-2013, and persons
per household, 2009-2013. Source: U.S. Census Bureau.

Smokers and obese. Percentage of the population that smokes and percentage of population that
is obese. Source: Bergeron, A., R. Chetty, D. Cutler, B. Scuderi, M. Stepner, N. Turner, 2016.https:

//opportunityinsights.org/data/.

Risk-adjusted mortality. 30-day risk adjusted mortality for heart attacks, heart failure and pneu-
monia. Source: Bergeron, A., R. Chetty, D. Cutler, B. Scuderi, M. Stepner, N. Turner, 2016.

https://opportunityinsights.org/data/.

E¤ective local density. Expected density in a one square kilometer around a randomly drawn indi-
vidual from each county. If all county inhabitants are uniformly distributed across space, this measure

is identical to standard population density. If the population is concentrated in a small subset of the

county territory, this leasure will be larger than standard population density. Own calculations based

on 2020 population data from GPW. Source: Center for International Earth Science Information Net-

work (CIESIN), 2018.https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11.

Trump vote share in the 2016 general election. Source: Dave Leip�s Atlas of U.S. Presidential
Elections. https://uselectionatlas.org/.

Stay-at-home orders. Days since �rst stay-at-home order. Source: https://commons.wikimedia.
org/wiki/Data:Stay-at-home_orders_in_the_United_States.map#/map/0.

35

https://www.transtats.bts.gov/
https://aese.psu.edu/nercrd/community/social-capital-resources
https://aese.psu.edu/nercrd/community/social-capital-resources
https://opportunityinsights.org/data/
https://opportunityinsights.org/data/
https://opportunityinsights.org/data/
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11
https://uselectionatlas.org/
https://commons.wikimedia.org/wiki/Data:Stay-at-home_orders_in_the_United_States.map#/map/0
https://commons.wikimedia.org/wiki/Data:Stay-at-home_orders_in_the_United_States.map#/map/0


36 
 

Table A1 – Summary Statistics  

 
Panel A – Summary Statistics for Various Indicators of Disease Severity (May 26, 2020) 

Variable # Obs. Mean Std. Dev. Min Max 
Total cases 3,142 533.12 3041.08 0 73,819  
Cases per capita 3,142 288.10 579.56 0 14,541  
Indicator for any case 3,142 0.94 0.24 0 1.00  
Log 1 + Cases 3,142 3.70 2.15 0 11.21  
Log Cases 2,945 3.85 2.10 0 11.21  
Total Deaths 3,142 31.30 229.22 0 6,372  
Deaths per capita 3,142 11.78 26.84 0 293  
Indicator for any death 3,142 0.54 0.50 0 1.00  
Log 1 + deaths 3,142 1.17 1.55 0 8.76  
Log Deaths 1,701 1.88 1.73 0 8.76  

 
 

Panel B - Summary Statistics for the Baseline Set of 11 Regressors 

Variable # Obs. Mean Std. Dev. Min Max 
Log Population 
 3,142 10.275 1.494 4.317 16.129 

Log Density 
 3,140 3.786 1.784 -3.291 11.175 

Large central or fringe metro county 
 3,142 0.139 0.346 0 1 

Medium or small metro county 
 3,142 0.232 0.422 0 1 

% people who commute by public 
transportation 3,141 0.902 3.066 0 60.700 

Share of people aged 75 or older 
 3,142 0.079 0.023 0.013 0.241 

% nursing home residents in pop. 
 3,142 0.603 0.448 0 5.046729 

Log km to closest airport w/  
flights from top 5 COVID countries 3,142 5.562 1.144 -4.605 8.264 

Average temperature,  
Feb., Mar. & Apr. 3,141 45.126 10.453 -0.317 73.067 

Log household median  
Income 3,140 10.705 0.242 9.903 11.714 

Social Capital Index, 2014 
 3,139 0.001 1.260 -3.183 21.809 
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Table A2 - OLS Regressions for log Cases and log Deaths, May 26, 2020, CFR<0.1 
(Dependent variable listed in second row) 

 (1) (2) (3) (4) 
 Log Cases Log Deaths, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.933 1.030 0.839 0.973 
 (0.032)*** (0.038)*** (0.044)*** (0.053)*** 
 [0.623] [0.688] [0.625] [0.725] 
Log population density 0.184 0.064 0.050 -0.040 
 (0.027)*** (0.036)* (0.040) (0.050) 
 [0.144] [0.050] [0.041] [-0.033] 
Large central metro county or  0.217 0.172 0.413 0.410 
large fringe metro county (0.089)** (0.081)** (0.111)*** (0.101)*** 
 [0.036] [0.029] [0.103] [0.102] 
Medium metro county or  0.115 0.064 0.027 0.004 
small metro county (0.063)* (0.056) (0.082) (0.074) 
 [0.023] [0.013] [0.007] [0.001] 
% people who commute by  0.056 0.046 0.101 0.071 
public transportation (0.011)*** (0.011)*** (0.011)*** (0.012)*** 
 [0.063] [0.052] [0.183] [0.129] 
Share of people aged 75  -11.260 -10.795 -0.178 0.218 
& above (1.273)*** (1.264)*** (1.744) (1.799) 
 [-0.118] [-0.113] [-0.002] [0.002] 
% nursing home residents in pop. 0.254 0.086 0.761 0.440 
 (0.061)*** (0.060) (0.118)*** (0.118)*** 
 [0.051] [0.017] [0.131] [0.076] 
Log km to closest airport w/ flights  -0.046 -0.045 -0.010 -0.035 
from top 5 COVID countries (0.023)** (0.023)** (0.024) (0.024) 
 [-0.025] [-0.025] [-0.008] [-0.029] 
Average temperature, 0.004 0.006 0.002 0.007 
Feb., Mar. & Apr. (0.001)*** (0.002)*** (0.001)** (0.003)** 
 [0.060] [0.085] [0.043] [0.121] 
Log household median income 0.029 -0.024 -0.102 -0.314 
 (0.124) (0.125) (0.167) (0.167)* 
 [0.003] [-0.003] [-0.016] [-0.048] 
Social Capital Index, 2014 0.084 0.040 -0.044 -0.017 
 (0.024)*** (0.025) (0.035) (0.034) 
 [0.048] [0.023] [-0.025] [-0.009] 
Constant -6.623 -6.087 -7.610 -6.856 
 (1.383)*** (1.433)*** (1.861)*** (1.930)*** 
R2 0.71 0.78 0.58 0.68 
N 2,669 2,669 1,428 1,428 
* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets.  
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Table A3 - OLS Regressions for log Cases and log Deaths, Synchronized Days from Onset at 40 days 
from Onset (for log cases) and 30 days from Onset (for deaths), Sample with CFR<0.1 

 (1) (2) (3) (4) 
 Log Cases Log Cases, 

State FE 
Log Deaths Log Deaths, 

State FE 
Log population 0.858 0.958 0.789 0.881 
 (0.032)*** (0.037)*** (0.043)*** (0.052)*** 
 [0.615] [0.688] [0.649] [0.725] 
Log population density 0.157 0.047 0.005 -0.039 
 (0.027)*** (0.036) (0.039) (0.048) 
 [0.132] [0.039] [0.004] [-0.036] 
Large central metro county or  0.228 0.206 0.384 0.360 
large fringe metro county (0.086)*** (0.079)*** (0.111)*** (0.101)*** 
 [0.044] [0.040] [0.107] [0.101] 
Medium metro county or 0.056 0.025 -0.029 -0.050 
small metro county (0.060) (0.055) (0.084) (0.076) 
 [0.013] [0.006] [-0.009] [-0.015] 
% people who commute by  0.052 0.041 0.071 0.058 
public transportation (0.007)*** (0.007)*** (0.007)*** (0.007)*** 
 [0.093] [0.073] [0.215] [0.174] 
Share of people aged 75  -7.617 -6.254 0.711 1.998 
& above (1.263)*** (1.273)*** (1.734) (1.852) 
 [-0.084] [-0.069] [0.008] [0.024] 
% nursing home residents in pop. 0.266 0.105 0.744 0.486 
 (0.066)*** (0.066) (0.124)*** (0.124)*** 
 [0.053] [0.021] [0.132] [0.086] 
Log km to closest airport w/ flights  -0.038 -0.041 -0.034 -0.047 
from top 5 COVID countries (0.022)* (0.022)* (0.022) (0.022)** 
 [-0.024] [-0.025] [-0.034] [-0.046] 
Average temperature,  0.005 0.007 0.002 0.006 
Feb., Mar. & Apr. (0.001)*** (0.002)*** (0.001) (0.003)** 
 [0.076] [0.108] [0.030] [0.123] 
Log household median income 0.094 0.002 -0.084 -0.234 
 (0.123) (0.126) (0.160) (0.163) 
 [0.012] [0.000] [-0.014] [-0.039] 
Social Capital Index, 2014 0.044 0.041 -0.044 -0.018 
 (0.025)* (0.025) (0.033) (0.032) 
 [0.026] [0.024] [-0.027] [-0.011] 
Constant -7.288 -6.790 -6.976 -6.738 
 (1.369)*** (1.448)*** (1.805)*** (1.910)*** 
R2 0.69 0.76 0.62 0.71 
N 2,458 2,458 1,146 1,146 
* p<0.1; ** p<0.05; *** p<0.01. Standard errors in parentheses and standardized betas in brackets. 
Onset day is defined as the day at which the number of cases reaches 1 per 100,000 (for cases) and 0.5 
per 100,000 (for deaths).  
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Figure A1 – Maps of the Variables Used in the Analysis 
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