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1 Introduction
The rapid spread of COVID-19 at the beginning of 2020 was accompanied by a vigorous
debate over the costs and benefits of actions taken to mitigate the pandemic’s spread. This
debate occurred under significant uncertainty regarding key parameters relating to the threat
posed by the virus, including death rates and infection rates, as well as uncertainty about the
costs and effectiveness of mitigation efforts (Chater, 2020). Many policymakers, academics
and commentators in the media suggested that this uncertainty argued for a laxer quarantine
and lockdown response. We examine this claim by formally exploring how optimal pandemic
mitigation policies change when faced with significant uncertainty.

We account for two types of model uncertainty channels in our analysis. The first channel
is uncertainty around the epidemiological model. We focus on two epidemiological parame-
ters that characterize the severity of a contagious disease: the Case Fatality Rate (CFR), or
the fraction of individuals infected who die due to the disease, and the basic reproduction
number R0, or the number of people in an otherwise healthy population that a single disease
carrier is expected to infect. Early estimates of the CFR ranged from a flu-like .08% to a
catastrophic 13.04%. Estimating a CFR for a new disease while cases are ongoing is inher-
ently difficult, as cases must be closed through either recovery or death before a CFR can
be computed (Spychalski, Błażyńska-Spychalska, and Kobiela, 2020). Similar difficulties1 in
estimating R0 led to estimates ranging from 1.5 to 12 (Korolev, 2020). To highlight the wide
variation in these estimates, Figure 1 shows initial CFRs and R0 across many countries and
US states.2

The second channel is uncertainty around the impacts of the policy response. In par-
ticular, we focus on the effectiveness and costs of mitigation policies. Experience revealed
significant ex-ante uncertainty in how effective various measures would be and how strin-
gently households would follow them. Additionally, the unprecedented nature of global
stay-at-home orders in a modern economic setting led to vast uncertainty about how they
would limit productivity and disrupt supply chains. Acemoglu et al. (2020), for example,
state that “We hasten to emphasize that there is considerable uncertainty about... the exact

1Many academic papers, e.g., Stock (2020), note that R0 is difficult to estimate because the provision
of tests is not random, but rather targets those showing symptoms or those thought to be at higher risk.
Manski and Molinari (2020) discuss in detail the wide range of estimates and highlight how a lack of testing
and the presence of many asymptomatic carriers made measurement difficult. Atkeson, Kopecky, and Zha
(2021) provide a model explaining the range of estimates through behavioral responses.

2The insights of this model apply not only to new epidemic diseases, but also to new strains of existing
diseases. While we focus for exposition on the initial emergence of the new virus, throughout 2020 and
2021 new variants emerged. Like with the initial disease, there has been significant uncertainty about the
death rates and the rate of transmission of these new variants, resulting in persistent uncertainty about the
pandemic more generally. The introduction of vaccines led to a new source of uncertainty.
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Figure 1: Estimated CFR Rates and R0
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economic damages caused by lockdowns (in part because neither the extent to which work from
home can substitute for workplace interactions nor the knock-on effects of current measures
on supply chains and worker-firm relations are yet well understood).”

Knowledge of both epidemiological parameters and the effectiveness and costs of mit-
igation policies informs the central tradeoff of an optimal response: How to balance the
public health benefits (and the resultant downstream economic benefits) of mitigation poli-
cies against their economic costs. Confronted with this uncertainty yet facing a concrete
decision, policymakers and politicians speculated on the role that uncertainty should play in
their decision-making: New York Mayor De Blasio in a March 9 press conference said “I am
very resistant to take actions that we’re not certain would be helpful, but that would cause
people to lose their livelihoods.” Epidemiologist John Ioannidis remarked “In the absence
of data, prepare-for-the-worst reasoning leads to extreme measures of social distancing and
lockdowns. Unfortunately, we do not know if these measures work.... This has been the
perspective behind the different stance of the United Kingdom keeping schools open.”

Dynamic decision theory applied to economic models offers a rigorous way forward when
confronted with parameter uncertainty. In particular, Wald (1950), Gilboa and Schmeidler
(1989), and more recently Hansen and Sargent (2001) suggest a max-min criteria whereby
a policymaker selects the policy that would be optimal under a worst-case scenario. The
worst-case scenario under consideration must be disciplined by what is reasonably consistent
with the data. For example, an extremely contagious disease with an eventual 100% fatality
rate is indeed a worst-case scenario, but—parameter uncertainty notwithstanding—is not
consistent with even the most pessimistic estimates. A CFR of 5%, however, while towards
the upper end of estimates, may be a reasonable worst-case scenario to consider.

In our paper, we adopt a formalization of this idea through a smooth ambiguity ap-
proach, which provides a tractable framework to select a reasonable worst-case scenario.
There are two key distinguishing features of the uncertainty averse model. First, uncertainty
aversion tilts the policymaker’s model weighting towards parameters with more substantial
utility consequences. Therefore, the planner gives stronger consideration to worst-case sce-
narios, with the strongest tilts occurring for the most uncertain parameters. Second, this
tilting evolves endogenously as the pandemic unfolds. The planner observes the state of the
pandemic and, without learning about or knowing the true model parameters, adjusts the
worst-case prior towards new potential worst-case outcomes based on how the pandemic has
evolved over time.

We begin with a simple macroeconomic model with an epidemic without model uncer-
tainty. The epidemic spreads according to a standard Susceptible-Infectious-Recovered (SIR)
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process employed in epidemiology and more recently in macroeconomic models.3 Infected
individuals are less productive, spread the disease, and may die. A policymaker can impose
a quarantine of varying strictness. The quarantine slows the disease’s spread by removing
individuals from the working population at the cost of temporarily reducing output. The
optimal policy balances spread reduction against temporary economic losses, and depends
critically on the epidemiological parameters, the effectiveness of mitigation policies, and the
cost of mitigation policies. We first show the wide range of optimal responses across different
underlying parameters. These wildly varying comparative statics drive home the potential
costs of model ambiguity, yet by themselves do not offer a prescription for how a policymaker
facing this uncertainty might actually respond.

To provide an answer, we adopt a smooth ambiguity approach to explicitly introduce
parameter uncertainty into the policymaker’s decision problem. As a critical first step, we
differentiate risk from uncertainty. Following Knight (1921) and Arrow (1951), risk refers
to the range of possible outcomes in a model where the parameters are known. In contrast,
uncertainty refers to the possibility that the model’s parameters are unknown or that the
model itself is misspecified.4 In our context, we introduce risk by allowing the disease to
spread and kill non-deterministically. This risk gives rise to uncertainty by obscuring the
true parameters governing the disease’s spread and lethality, as well as the effectiveness
and costs of mitigation policies. Facing this uncertainty, the policymaker considers possible
outcomes across alternate parameter settings when making decisions. The set of parameters
under consideration is disciplined by how far these parameters lie from his prior beliefs.
We calibrate the model to match the US economy, and explore how uncertainty influences
optimal quarantine policy.

Our analysis shows that compared to a benchmark ambiguity-neutral planner, ambiguity
aversion leads the optimizing planner to adopt a stronger and more persistent quarantine. An
ambiguity-neutral planner with an equal-weighted prior across models5 adopts a relatively

3SIR models are standard tools in epidemiology used to model the spread of infectious diseases. The
epidemiological SIR model computes the theoretical number of people infected with a contagious disease in
a closed population over time. The models have three key elements: S is the number of susceptible, I is the
number of infectious, and R is the number of recovered, deceased, or immune individuals. A recent literature
in macroeconomics incorporates SIR models into macroeconomics models. Stanford Earth System Sciences
notes provide an introduction to the standard epidemiological SIR model.

4A large body of literature refers to Brownian shocks and time variation in exposure to Brownian shocks
as uncertainty, for example Bloom (2009) and Baker, Bloom, and Davis (2016). Our model does not directly
include a behavioral private agent response, and instead this is captured by the damage function, a modeling
simplification we make for tractability. If agents respond to policy, this could either mitigate the economic
damages or reduce the effectiveness of quarantine. Jones et al. (2021) provide a more complex model in
which households respond to policy.

5We also explore three additional sets of prior beliefs over the models in the SI Appendix: (i) underesti-
mating the pandemic, (ii) correctly estimating the pandemic, and (iii) overestimating the pandemic. These
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modest quarantine, with the quarantine isolating roughly 50% of the population around 8
weeks into the pandemic and ending after roughly 15 weeks. In contrast, an ambiguity averse
policymaker with the same prior immediately implements a quarantine policy of isolating
20% of the population, increasing it to 60% in 10 weeks, and maintaining some level of quar-
antine beyond 25 weeks. When simulating these policies under the true model parameters,
which match the values implied by the prior, the ambiguity-averse policies lead to fewer
deaths and a flatter infection curve.

Uncertainty about disease infectivity, fatality rates, and quarantine effectiveness push the
planner to adopt more stringent quarantines, while uncertainty about the economic costs
of quarantine push the planner to adopt less stringent measures. Our results make clear
that the former are (endogenously) the planner’s primary concern, while the latter are of
secondary concern. Intuitively, underestimating the disease’s severity or overestimating the
quarantine’s effectiveness can lead to the out-of-control spread of the virus and permanent
pandemic deaths. In contrast, underestimating the economic consequences of quarantine
leads to costs that are more transitory in nature. Thus, the planner is more willing to place
greater probability weights on model distortions where these convex and permanent costs
are potentially larger. While the model and probability distortions leading to these results
can be quite substantial, we show that the distortions are statistically reasonable based on
model detection error probabilities.

Our paper primarily links to a literature on ambiguity and robust control beginning
with Wald (1950) and Gilboa and Schmeidler (1989), and continued by Hansen and Sar-
gent (2001), Anderson, Hansen, and Sargent (2003), Maccheroni, Marinacci, and Rustichini
(2006), Hansen and Sargent (2011), Hansen and Miao (2018), and Gilboa, Minardi, and
Samuelson (2020).6 Recent work in finance and macroeconomics has emphasized the im-
portance of different forms of ambiguity and uncertainty, for example Maenhout (2004),
Garlappi, Uppal, and Wang (2007), Cogley, Colacito, Hansen, and Sargent (2008), Bloom
(2009), Baker, Bloom, and Davis (2016), Izhakian and Yermack (2017), Ai, Bansal, Guo, and
Yaron (2019), and Borovička (2020). Robust control methods have also been used to study
the economic impacts of climate change, as in Lemoine and Traeger (2012), Li, Nezami Nara-
jabad, and Temzelides (2014), Barnett, Brock, and Hansen (2020), and Barnett et al. (2021),
where climate damages can have both permanent growth effects and transitory level effects.

results reinforce the baseline model outcomes, while highlighting asymmetries that arise in these alternative
scenarios that are relevant for policymakers to consider. In particular, ambiguity aversion is the most rele-
vant when initially underestimating the pandemic because a larger fraction of the population gets the virus
quickly and thus potential spread under the worst-case scenario is much faster.

6There is an important and extensive body of theoretical study on uncertainty of various forms dating to
Knight (1921), Ellsberg (1961), Anscombe and Aumann (1963), and Savage (1972).
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However, in the pandemic context, policy decisions trade-off temporary (through quarantine
and temporary illness) and permanent (through death) implications based on how model
uncertainty amplifies concerns about the worst case outcome.

A key contribution of our paper is to introduce uncertainty to the discussion on eco-
nomic responses to the COVID-19 epidemic. A number of studies have built macroeconomic
frameworks, combining SIR models from epidemiology with macroeconomic models, such
as Abel and Panageas (2020), Kaplan, Moll, and Violante (2020), Jones, Philippon, and
Venkateswaran (2021), Baker, Bloom, Davis, and Terry (2020), Kozlowski, Veldkamp, and
Venkateswaran (2020), Eichenbaum, Rebelo, and Trabandt (2020), and Alvarez, Argente,
and Lippi (2020). These studies rely on calibrated parameters, which are often unknown.
Parameter uncertainty is widely noted in this literature, and authors typically use a range
of values. For example, Acemoglu, Chernozhukov, Werning, and Whinston (2020) note that:
“We stress that there is much uncertainty about many of the key parameters for COVID-
19 (Manski and Molinari, 2020) and any optimal policy, whether uniform or not, will be
highly sensitive to these parameters (e.g., Atkeson (2020), Avery et al. (2020), Stock (2020)).
So our quantitative results are mainly illustrative and should be interpreted with caution.”
Berger et al. (2020) is one important paper that has considered the issues and importance
of incorporating model uncertainty for decision makers confronting COVID-19. Our paper
complements this work by solving a theoretical model that explicitly evaluates the implica-
tions of multiple sources of ambiguity.

The remainder of this paper is organized as follows. Section 2 presents our model. Section
3 describes how to account for uncertainty. Section 4 presents simulation results and Section
5 concludes.

2 A Simple Economic Model of an Epidemic
We introduce a simple economic model of an epidemic without model uncertainty before
incorporating uncertainty in subsequent sections. Our model embeds a simple SIR framework
into an economic model that allows us to speak to the costs of the disease as well as the
costs and benefits of mitigation efforts.

2.1 Epidemic Model

A standard SIR model is characterized by three state variables: the number of susceptible
individuals St, the number of infected individuals It, and the number of recovered individuals
Rt. In addition, we include a state variable for the total population Nt, to account for
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Figure 2: Expected Transition Rates Between States in the Augmented SIR
Model.

deaths from the pandemic. To simplify the model solution, we use in our analysis the SIR
state variables defined as fractions of the total population, i.e., st “ St

Nt
, it “ It

Nt
, rt “ Rt

Nt
.

Transitions between the different states in the model depend on βt, the rate at which a
susceptible becomes infected, ρt, the rate at which an infected recovers, and δt, the rate
at which an infected dies. We have abstracted from births and deaths not related to the
epidemic for simplicity, which can be easily incorporated into our framework but has no
qualitative impact on our results.

Figure 2 illustrates the transition rates between states in our model. Under our speci-
fication, the transition rates βt, ρt, and δt are directly linked to the key structural disease
parameters mentioned previously, the CFR and R0, as follows

R0 “
βt
γt
, CFR “

δt
γt
, γt “ ρt ` δt

We assume constant values, conditional on a given model, for the expected time of
infection and rate of infection, i.e., γt “ γ and βt “ β. For the death rate of infected
individuals δt, a critical issue that has been at the forefront during the COVID-19 pandemic
is the fact increased infections have led to increased death rate due to limited resources
for treatment resulting from increased hospitalizations. Similar to the frameworks used by
Alvarez et al. (2020) and Eichenbaum et al. (2020), we specify δt as an increasing function
of it given by δt “ δ ` δ`it. By definition, the recovery rate of infected individuals ρt will
depend on this specification as well.

Departing from the standard model we introduce Brownian shocks through Wt
7. Two

7Formally, W .
“ tWt : t ě 0u is a multi-dimensional Brownian motion where the corresponding filtration
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dimensions of Wt, which we denote Wi and Wd, are incorporated as parameter perturbations
for βt and δt with volatilities σi, σd, respectively. These shocks capture, for example, vari-
ability in exposure, co-morbidities, mismeasurement, and random fluctuations in the number
of susceptible, infected, recovered, and population size.

The state evolution equations we use in our analysis are given as follows:

dst “ ´ βstitdt ` stitδtdt

´ stitσidWi ` stitσddWd

dit “βstitdt ´ γitdt ` i2t δtdt

` σistitdWi ´ itσddWd ` i2tσddWd

rt “1 ´ st ´ it

dNt

Nt

“ ´ itδtdt ´ itσddWd

While we specify these state evolution equations directly here, the SI Appendix provides
the evolution processes St, It, and Rt, as well as the derivation of the evolution processes for
st, it, rt by way of Ito’s lemma.

2.1.1 Pandemic Mitigation

We allow for pandemic mitigation through quarantine measures. Let qt be the fraction of the
population in quarantine at any period of time, where “quarantine” captures a wide range
of policies such as school closures, business closures and shelter-in-place orders. Quarantine
prevents susceptible individuals from becoming infected. Given the mitigation policy qt, the
population laws of motion for the susceptible and infected become as follows:

dst “ ´ βstitp1 ´ ζqtq
2dt ` stitδtdt

´ stitσidWi ` stitσddWd

dit “βstitp1 ´ ζqtq
2dt ´ γitdt ` i2t δtdt

` σistitdWi ´ itσddWd ` i2tσddWd

This specification mirrors that in Alvarez, Argente, and Lippi (2020) in terms of the impact
of the quarantine. stp1 ´ ζqtq and itp1 ´ ζqtq are the masses of susceptible and infected that
meet. ζ P r0, 1s captures the incomplete effectiveness of quarantine measures, e.g., meeting
with family, shopping, or ignoring the policy altogether.

is denoted by F .
“ tFt : t ě 0u and Ft is generated by the Brownian motion between dates zero and t.
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2.2 Economic and Public Health Model

2.2.1 Preferences, Production, and Consumption

We focus our analysis on a social planner’s problem, highlighting the optimal quarantine
policy choice of a benevolent government or policymaker who internalizes any externalities
and seeks to maximize social welfare while confronting uncertainty. The planner has flow
utility that depends on consumption Ct and a subjective discount rate κ, and is given by8

Ut “ κ logCt

Log utility allows us to incorporate risk aversion in the simplest way into our framework,
a relevant feature given the inclusion of Brownian shocks for our state variables. A linear
production technology produces output Yt with labor Lt and labor productivity At. Here,
At includes the capital stock, which we hold fixed. Households consume everything that is
produced so that

Ct “ Yt “ AtLt

The labor supply is determined by the total population, which varies with shocks and deaths
from the pandemic, and the magnitude of the quarantine measures put in place to mitigate
spread of the pandemic. The effective supply is therefore defined by:

Lt “ Nt rp1 ´ qtqpst ` ϕit ` rtqs

“ Nt rp1 ´ qtqp1 ´ p1 ´ ϕqitqs

where st ` ϕit ` rt is the effective available labor force, ϕ P p0, 1q represents the amount by
which an infected worker’s productivity is reduced, and 1´qt is the non-quarantined fraction
of the available labor force.9

2.2.2 Productivity Costs of Mitigation

Beyond the clear costs of mitigation in reducing the available labor force, economic costs
in the form of reduced productivity have also been of first-order concern. That is, even

8We discuss the impact of including nonpecuniary losses for deaths from the pandemic as in Alvarez et al.
(2020), Abel and Panageas (2020), and Jones et al. (2021) in the SI Appendix. Such costs, and uncertainty
about these costs, should serve to enhance the results we find in our main analysis.

9An alternate specification could target only infected or susceptible and infected workers for quarantine.
Because most quarantine policies in practice have been untargeted, we adopt the untargeted specification.
The results are easily extended to the targeted quarantine setting and qualitatively similar.
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individuals who are not locked down may become less productive due to economic disruptions
caused by lockdowns. To incorporate this additional channel, we assume mitigation efforts
can lead to economic costs in the form of reduced productivity. We model this formally by
expanding our expression of productivity to follow a modified Ornstein-Uhlenbeck process
as follows:

At “Ā exppztq

dzt “p´αqt ´ ztqdt ` σzdWz

where Wz is the third dimension of the vector Brownian motion Wt. This process is mean-
reverting and so shocks to productivity are transitory. Without quarantine, the long-term
mean of zt is zero. When quarantine measures are introduced, the new-long term mean is
given by ´αqt. The productivity impact persists while quarantine measures are in place, and
as soon as they are ended the process mean-reverts back to the long-term mean of zero. Thus
mitigation can have significant costs to economic productivity, but those costs are transitory
as long as mitigation efforts are not permanent. This additional channel of economic costs
to mitigation will interact with the existing forces of reduced labor force from mitigation
and concerns about the costs of the pandemic, adding to the key trade-offs that the social
planner must consider when determining optimal policy responses.

2.2.3 Arrival of a Vaccine and Cure

We assume that there is a constant arrival rate λ of a resolution of the epidemic arriving
at some unknown time in the future T . Our specification, consistent with others in this
literature such as Alvarez et al. (2020) and Abel and Panageas (2020), assumes that upon
the realization of the resolution shock taking place, a cure and a vaccine are found so that
all susceptible individuals are immune and all infected individuals recover. The arrival rate
is set so that this resolution is expected to occur in about 1.0 years. The main impact of this
assumption is that expectations about a resolution of the pandemic lead to amplification
of the subjective discount rate of the planner, providing quantitatively more realistic policy
responses. We provide the full details for the derivation of the model under this assumption
in the SI Appendix.

2.3 Parameter Uncertainty

We motivated our paper with uncertainty over the pandemic model parameters, as well
as the quarantine policy model parameters. We incorporate uncertainty into our setting

10



by assuming a discrete set Θ of possible models θ. Each θ P Θ corresponds to a set of
parameters tβpθq, δtpθq, ζpθq, αpθqu. The interpretation is that each model θ comes from an
existing estimate for the true pandemic model and the true impacts of quarantine policy
inferred from historical data, real-time information, or other sources. Each θ characterizes
the state evolution equations as follows

dst “ ´ βpθqstitp1 ´ ζpθqqtpθqq2dt ` stitδtpθqdt

´ stitσidWi ` stitσddWd

dit “βpθqstitp1 ´ ζpθqqtpθqq2dt ´ γitdt ` i2t δtpθqdt

` σistitdWi ´ itσddWd ` i2tσddWd

dzt “ ´ αpθqqtpθqdt ´ ztdt ` σzdWz

dNt

Nt

“ ´ itδtpθqdt ´ itσddWd

Crucially, the Brownian shocks we introduce into the dynamic evolution equations used in
our analysis prevent the policymaker from immediately inferring the fundamental transition
rates of the disease and the effectiveness and cost of quarantine measures as we explore the
impacts of uncertainty and ambiguity in the model. How the planner confronts this uncer-
tainty depends upon the decision framework implemented by the planner to determine social
optimality. In what follows, we derive the model solutions for the planner’s problem with
and without aversion to model uncertainty as captured by the smooth ambiguity framework
from the dynamic decision theory toolkit.

3 Model Solutions
We solve the social planner’s problem with and without ambiguity-based model uncertainty.
From this we are able to make a direct comparison of the impact of uncertainty on the opti-
mum quarantine choice to highlight the key forces behind the planner’s uncertainty-adjusted
policy decisions and the difference it has on the economic and pandemic outcomes in the
model. In each case, the solution to the infinitely-lived social planner’s problem is a recur-
sive equilibrium defined by a socially optimal quarantine policy q˚

t that maximizes the social
welfare or expected lifetime utility of the planner subject to the evolution of the stochastic
process for the state variables st, it, Nt, zt, as well as the pandemic and economic adding
up constraints.10 The equilibrium solution has a Markovian structure such that the value

10We can omit the state variable rt from our framework because the explicit adding up constraint of the
SIR model means rt is the residual after accounting for st, it, and Nt, and is therefore redundant.
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function that characterizes the solution and the optimal quarantine policy are functions of
the state variables st, it, Nt, zt. To derive the model’s socially optimal outcomes, we solve
for the social planner’s value function from the Hamilton-Jacobi-Bellman (HJB) equation
representing their optimization problem in a recursive format. First order conditions char-
acterizing the optimal policies are derived from this HJB equation and used to solve for the
value function and the optimal quarantine choice.

We first solve the planner’s problem conditional on a given model θ, deriving an opti-
mal policy qtpθq without reference to ambiguity. The typical analysis would end here with
a comparison of policies across θ P Θ. This “outside-the-model uncertainty” or sensitivity
analysis exercise often undertaken in economics and other fields does not account for the so-
cial planner making decisions while confronting this uncertainty explicitly. In our numerical
results we show how disperse the optimal quarantine policy and pandemic outcomes can be
across the set of models we consider.

The ambiguity averse planner’s solution incorporates concerns about uncertainty directly
into the social planner’s decision problem, building on the continuous-time smooth ambigu-
ity framework developed in Hansen and Miao (2018), and applied in the analysis of Barnett,
Brock, and Hansen (2020). The result is a min-max problem where the planner optimizes
over constrained worst-case model distortions (minimization) and optimal mitigation policy
(maximization). In contrast to a simple model averaging framework, this form of uncertainty
for the decision maker incorporates the fact that the planner does not know what weights
to place on the different potential models of the pandemic and explicitly incorporates this
ambiguity into the planner’s decision problem. The decision maker chooses an initial distri-
bution of prior weights to place on the models and then distorts these baseline weights based
on endogenously determined optimal adjustments arising from their aversion to uncertainty
in the form of model ambiguity. As a result, uncertainty is explicitly incorporated into the
planner’s optimal policy choice through probability adjustments used to weigh the different
models θ, providing an uncertainty-adjusted optimal policy that arises from the min-max
problem optimization.

3.1 Optimal Policy without Uncertainty

We first solve the social planner’s problem conditional on a given model θ P Θ. The social
planner’s problem is to maximize lifetime expected utility by choosing the optimal mitigation
or quarantine policy qtpθq. The planner’s problem can be expressed as

V pst, it, Nt, zt; θq “ max
qt

E0re
´κpT´tqV̂ pNT , zT q `

ż T

0

e´pκ`λqtκ logC pqtq dt|θs
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subject to economic and pandemic constraints. Note that Cpqtq “ At ˆLpqtq and V̂ pNT , zT q

is the continuation value post-pandemic. We represent the social planner’s problem using
a Hamilton-Jacobi-Bellman (HJB) equation for the value function resulting from the social
planner’s optimization. There is an analytical solution for V̂ pNT , zT q and an analytical
simplification for the value function given by

V pst, it, Nt, zt; θq “ logpĀq ` logNt `
κ

κ ` 1
zt ` vpst, it; θq

After incorporating these simplifications, the simplified PDE we solve for the planner’s prob-
lem is given by

pκ ` λqvpst, itq “ max
qt

κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq

´ δtit ´
1

2
i2tσ

2
d ´

κ

κ ` 1
αqt ` vsstitδt ´ viitrγ ´ δtits

` viβstitp1 ´ ζqtq
2 ´ vsβstitp1 ´ ζqtq

2

`
1

2
rvsspσ

2
d ` σ2

i qs2t i
2
t ` viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs

´ vsirσ
2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s

where we drop the θ notation for brevity. See the SI Appendix for full details on the
derivation and analytical simplification of the HJB equation. The optimal choice of mitiga-
tion qt is the solution to a quadratic equation resulting from the first-order condition and is
given by

qtpθq “
´B ´

?
B2 ´ 4C

2

B “ ´
1 ` ζpθq

ζpθq
´

κ
κ`1

αpθq

2βpθqζpθq2pvi ´ vsqstit

C “
κ ` κ

κ`1
αpθq

2βpθqζpθq2pvi ´ vsqstit
`

1

ζpθq

The policy function depends on the parameters associated with θ, tβpθq, δtpθq, ζpθq, αpθqu.
We discuss these optimal policies without uncertainty in subsequent sections.
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3.2 Optimal Policy with Uncertainty

To analyze the impact of model uncertainty, we implement a smooth ambiguity framework.11

To do this, we return to the full discrete set Θ of possible models θ for the pandemic as noted
above. We first specify prior probability weights for the set of models θ P Θ, by assigning a
probability weight πpθq to each model θ, satisfying

πpθq ě 0 @θ P Θ,
ÿ

θPΘ

πpθq “ 1.

Like the alternative models in our set, the prior probability weights are assumed to come
from historical data or real-time observational inference.

We then allow for uncertainty aversion by using a penalization framework based on
conditional relative entropy. This framework allows the planner to consider alternative
distributions or sets of weights π̃pθq across the set of conditional models in a way that is
statistically and quantitatively reasonable in order to derive optimal policy that is robust to
possible worst-case models that the planner is concerned with due to the model uncertainty.
In essence, the social planner considers worst-case distributions but penalizes probability
weights that are far from the planner’s prior beliefs. This penalization is based on an am-
biguity aversion parameter, which penalizes the magnitude of the deviation of the distorted
probability weights from the prior weights. The parameter ξa is the ambiguity parameter
that determines the magnitude of this penalization, calibrated to ensure that worst-case
models considered by our decision maker are statistically and quantitatively reasonable.
Large values of ξa imply low aversion to ambiguity, while small values of ξa imply strong
aversion to ambiguity. Relative entropy, defined as the expected value of the log-likelihood
ratio between two models or the expected value of the log of the Radon-Nikodym derivative
between models, is the measure used to determine the magnitude of the deviation of the
distorted probability weights from the prior weights. See Hansen and Miao (2018) for details
about relative entropy in this setting. Using relative entropy means we are only considering
relatively small distortions from the baseline model, but even small distortions can have sig-

11The most common alternative to a smooth ambiguity approach is a robust preference approach as in
Anderson, Hansen, and Sargent (2003). A key advantage of our approach is that the uncertainty here is
structured into alternative models as characterized by explicit sets of key parameters and distorted probabili-
ties. This type of structured uncertainty analysis allows us to examine explicitly how prior model weights are
distorted and therefore determine which models are of most interest to the uncertain planner when making
optimal policy choices that are robust to the existing ambiguity. In the SI Appendix we provide an exten-
sion of the model where we apply the continuous-time robustness framework studied in Hansen and Sargent
(2001), Anderson, Hansen, and Sargent (2003), Maccheroni, Marinacci, and Rustichini (2006), and others.
While we are able to demonstrate the theoretical differences in how the different types of decision theoretic
frameworks impact the structure of the planner’s problem, there are potentially interesting quantitative
differences that we leave for future research.
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nificant impacts on optimal policy. To give a concrete example in the context of COVID-19,
it may be relatively easy to observe the number of people who died from the pandemic but
difficult to observe the number of people who were infected. On the basis of this data, it is
difficult to tell whether the disease has a very high spread rate (R0) and a low death rate
(CFR), or a low spread rate and a very high death rate, yet the optimal response is likely
to be very different under these scenarios.

While we have incorporated additional structure and complexity to the model to account
for model uncertainty, the resulting household or social planner problem remains tractable
and similar to the previous, no uncertainty problem, and is given by

V pst, it, Nt, ztq “ max
qt

min
π̃pθq

E0re´κpT´tqV̂ pNT , zT q

`

ż T

0

ÿ

θPΘ

π̃pθqte´pκ`λqt

ˆ

κ logCpqtq ` ξa log
π̃pθq

πpθq

˙

udts

subject to the economic and pandemic constraints and the dynamics of the state variables
relevant to the model. Note that the planner problem now has two layers of expectation
and optimization. The outer expectation is over unknown outcomes of the Brownian shocks,
while the inner expectation is over the possible models and is denoted by the sum over
θ P Θ for probabilities π̃pθq. The inner minimization represents the planner considering the
worst-case outcomes across possible models given the policy qt, while the outer maximization
represents the planner choosing the optimal quarantine policy qt, understanding that it will
be evaluated against the worst-case probability distribution. The term ξa log

π̃pθq

πpθq
is the

relative entropy penalization term with uncertainty parameter ξa, prior probability πpθq,
and distorted probability π̃pθq.

As before, the social planner’s solution is characterized by a recursive Markov equilibrium
for which an equilibrium solution is defined as before. The HJB equation resulting from this
modified household or social planner optimization problem which characterizes the socially
optimal solution is now given by

pκ ` λqvpst, itq “ max
qt

min
π̃pθq

κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq

`
ÿ

θPΘ

π̃pθqt´
ακ

κ ` 1
qt ` δt r´it ` pviit ` vsstq its

` pvi ´ vsq βstitp1 ´ ζqtq
2 ´ viitγu ´

1

2
i2tσ

2
d

`
1

2
rvsspσ

2
d ` σ2

i qs2t i
2
t ` viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs
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´ vsirσ
2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s ` ξa

ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

where again, except for the π’s and π̃’s, we have suppressed the notation for θ for brevity.
Taking the first order condition for this problem, and imposing

ř

π̃pθq “ 1, we find the
optimally distorted probability weights are given by

π̃pst, it; θq 9 πpθq expp´
1

ξa
t´

αpθqκ

κ ` 1
qt

`δtpθqp´it ` vsstit ` vii
2
t q

`βpθqstitp1 ´ ζpθqqtq
2pvi ´ vsquq

As the π̃pst, it; θq in the model are optimally determined and state dependent, the magnitude
of the ambiguity considered by the social planner when making optimal policy decisions will
depend on the current state of the pandemic and evolves dynamically.

The optimal choice of mitigation qt has a similar functional form, given by

qt “
´B ´

?
B2 ´ 4C

2

B “ ´
Ăβζ ` Ąβζ2

Ăβζ
´

α̃κ
κ`1

2Ąβζ2pvi ´ vsqstit

C “
κ ` α̃κ

κ`1

2Ąβζ2pvi ´ vsqstit
`

Ăβζ

Ąβζ2

where the terms Ăβζ, Ąβζ2, and α̃ are given as before by

Ăβζ “
ÿ

θ

π̃pst, it; θqβpθqζpθq,

Ąβζ2 “
ÿ

θ

π̃pst, it; θqβpθqζpθq2,

α̃ “
ÿ

θ

π̃pst, it; θqαpθq

Now that ambiguity is incorporated into the optimal policy choice, the planner tilts the
probability weights towards certain models based on potential worst-case outcomes so that
the planner can respond in a robustly optimal way in the face of uncertainty. Importantly,
the policy function depends on the parameters associated with the various θ models. But
rather than solving for an optimal policy for each model and choosing either our preferred
specification or taking a weighted average across model solutions based on a prior weighting,
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the optimally uncertainty-adjusted parameters are incorporated directly into the solution for
the value function and the optimal policy choice.

We note that this analysis abstracts from any form of Bayesian learning. While learning
is certainly an interesting consideration when thinking about the planner’s optimal response
to a pandemic, we find our setting valuable to consider for a number of reasons. First, the
tractability of the smooth ambiguity framework in our analysis is particularly valuable for
providing intuition about the implications of uncertainty. The characterization of ambigu-
ity is condensed to a single dimensional parameter for uncertainty aversion rather than the
potentially high-dimensional complexities or additional state variables than can arise from
models of learning. Second, the rapid development of the COVID-19 pandemic and extreme
difficulty in determining the true model for policymakers responding in real-time based on
imperfect data, numerous virus variants, and an incomplete understanding of the effective-
ness of certain factors influencing infections and deaths, make this assumption a reasonable
and realistic starting point. Recent work by Baek et al. (2021) shows that, even with fixed
parameter values, one can only hope to predict SIR model outcomes once a pandemic has
nearly reached its peak infection rate due to limited testing and asymptomatic individuals.
Finally, the arrival of new variants after the initial spread, each with unknown infectiousness
and lethality, highlights the point that uncertainty over the parameters of the disease overall
may remain even as epidemiologists learn about individual variants.

4 Numerical Results
We now provide numerical results from simulations based on the theoretical solutions pro-
vided. Calibration of parameters is discussed first, then solutions for the models without
uncertainty or “Outside the Model Uncertainty” sensitivity analysis, and then solutions for
the model with uncertainty or “Inside the Model Uncertainty” sensitivity analysis.

4.1 Parameter Values

This section discusses the parameter values used in the main calibration. These parameters
are shown in the table below, and we discuss the parameter choices now. For the economic
side of the model, we normalize the working population so that L0 “ 1 and set initial
productivity to A0 “ 20{12 “ 1.667 so that output in the non-pandemic version of the
model (A0 ˆ L0) matches recent, pre-pandemic data on US GDP of $20 trillion dollars
annually or $1.667 trillion dollars monthly. We choose an annual discount rate of 3%, and so
the subjective discount rate κ is given by κ “ 0.0025 for the baseline analysis. We assume
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the expected arrival time for a vaccine is 1.0 years, so that the value of the arrival rate is
given by λ “ 1

1.0
ˆ 1

12
“ 0.083.

For values of the mitigation effectiveness ζ and productivity costs of mitigation α pa-
rameters, we rely on estimates from the literature. Yamamoto et al. (2021) estimate the
effectiveness of quarantine measures for US states over time using an SIRD model and data
on infections and stay-at-home orders. We choose our set of ζ values to be t0.35, 0.65u,
which are close to their estimated upper and lower bounds. Barrot, Grassi, and Sauvagnat
(2020) estimate the GDP losses for numerous European countries based on 6-weeks of social
distancing measures. We choose values for α in order to match GDP impacts of mitigation
close to the average (« 6%) and near the upper end (« 8%) of the Barrot et al. (2020) esti-
mates based on a fixed value of qt “ 0.5 over 6 weeks. The GDP impact of social distancing
measures in our model when there are no productivity impacts, and so α “ 0, is 6.25%.
The GDP impact of social distancing measures in our model when α “ 0.8 is approximately
9.0%. Thus, we choose our set of values for α to be t0, 0.8u.

Table 1: Parameter Values

Parameter Variable Value
Subjective Discount Rate κ 0.0025
Non-Pandemic Output A ˆ L̄ 1.667
Productivity Costs of Mitigation α t0, 0.8u

Infection Severity ϕ 0.4
Quarantine Effectiveness ζ t0.35, 0.65u

Arrival Rate of Vaccine λ 0.0833
Reproduction Number R0 t1.5, 4.5u

Initial Case Fatality Rate CFR t0.005, 0.020u

Infection Half Life γ 30{18
Death Rate Convexity δ` 5 ˆ CFR

γ

Volatility σi, σd, σz t0.075, 0.030, 0.005u

Ambiguity Parameter ξa t8, 0.0032u

For the pandemic model parameters, we use values from various studies (including Ko-
rolev (2020), Atkeson (2020), Wang, Wang, Dong, Chang, Xu, Yu, Zhang, Tsamlag, Shang,
Huang, et al. (2020), Abel and Panageas (2020), and estimates from the European Centre
for Disease Prevention and Control) to set the expected time infected γ, the case fatality
rate CFR, and basic reproduction number R0, which allows us to pin down the infection rate
β, the death rate δ, and the recovery rate ρ. The value of γ is held fixed at γ “ 30

18
, or an ex-

pected duration of infection of 2.5 weeks. The set of underlying models used in our analysis
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use initial values of CFR in the set t0.005, 0.02u and values of R0 in the set t1.5, 4.5u. For
the state dependent death rate, rather than add an additional set of parameters we choose to
scale the initial CFR values so that δ` “ 5ˆδˆ it. This means that if 20% of the population
were to become infected, i.e., if it “ 0.2, then the CFR would be double the initial value.
These values are well within the range of values across these different studies. The value
of ϕ is 0.4, consistent with estimated values for the fraction of infected individuals who are
asymptomatic given by the CDC COVID-19 Pandemic Planning Scenarios website.

For σi, which is the volatility associated with β, we use the estimated reproductive
number values Rt of Arroyo-Marioli et al. (2021), available through the Tracking R website,
to calculate a monthly time series standard deviation. This is done by taking the standard
deviation calculated from the first 7 days of the COVID outbreak for countries with outbreaks
that occurred before global lockdown orders were implemented in order to capture the value
for R0, converting those values to a monthly frequency, and then averaging across these
values to get a global value12. For the volatility σd, which is the volatility associated with
δt, we use data from the Center for Systems Science and Engineering in the Whiting School
of Engineering at Johns Hopkins University, available through the CSSE GitHub repo. To
derive the global CFR, calculate the time series standard deviation using daily data from
March 1, 2020 to March 31, 2020, and then convert this value to a monthly frequency.13 For
σz, we use a value that matches Barnett et al. (2020), who calculate time series standard
deviations of output from aggregate data.

Finally, we must also specify values for the uncertainty parameter in our model ξa for
smooth ambiguity. Our main value of the uncertainty parameter, ξa “ 0.0032, imposes what
we view and aim to show is a reasonable amount of uncertainty aversion to demonstrate the
potential magnitude of uncertainty impacts. This value can be difficult to interpret on its
own, and is best interpreted by way of model detection error probabilities implied by these
parameter choices and the distorted model probabilities provided in the analysis. Further-
more, anecdotal evidence on model spreads implied by the recent estimates of COVID-19
parameter values which guide the values we use verify that our distorted values remain within
a reasonable region for the given choice of ξa.

12We further constrain the list of countries to only those with daily volatility less than 0.25 to remove
outliers, and those with R0 to remove countries who implemented preemptive lock-down orders.

13While there is likely to be substantial measurement error impacting these volatility calibration calcu-
lations, the values of σi and σd have no qualitative impact and essentially no quantitative impact on qt.
The values do matter when we calculate the detection error probabilities, as they determine how large of
a model distortion can be masked by the Brownian shocks. We therefore choose values of σi and σd that
are conservative in order to avoid overstating what is a statistically reasonable amount of uncertainty to
consider based on our choice of ξa.
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4.2 Outside-the-Model Uncertainty: Sensitivity Analysis

We first provide simulated outcomes of the model based on different pandemic models with-
out the planner accounting for uncertainty in their optimal decision. This corresponds to
what is typically termed as a sensitivity analysis and illustrates the wide range of optimal
responses that depend on the underlying model parameters. Figure 3 shows the spread
of outcomes for dt, and qt across the different model cases. The spreads are across all
model outcomes for R0 P t1.5, 4.5u, initial CFR P t0.005, 0.02u, quarantine effectiveness
ζ P t0.35, 0.65u, and quarantine productivity cost parameter α P t0, 0.8u.

Figure 3 indicates very different policies q and outcomes d depending on parameters.
Generally speaking, a higher reproduction rate, a higher death rate, a lower cost of quar-
antine, and a higher effectiveness of quarantine measures leads to more quarantine, all else
being equal. Thus, we can anticipate that these models represent the worst-case from the
planner’s perspective when making optimal policy choices. In terms of the differences in pol-
icy choices across models, optimal quarantine policies are anywhere between no quarantine
at all up to 80% of the population under quarantine, with the duration of policy measures
lasting between zero weeks to approaching one year. The fraction of dead in the popula-
tion resulting from these policies varies by an order of magnitude, running between nearly
0.0025% to almost 4%. Observe that these quarantine choices and resulting death rates are
made by a policy maker who knows the true parameters and is reacting optimally, and in
that sense they are best-case outcomes under each scenario. However, the dramatic vari-
ation in the magnitude and duration of quarantine policies suggests that an inappropriate
response could lead to even more dramatically different outcomes. These differences high-
light the likely significant role that accounting for model uncertainty will play in determining
an optimal quarantine policy when the social planner incorporates ambiguity aversion.

4.3 Inside-the-Model Uncertainty: Smooth Ambiguity

The previous section highlighted drastically different responses and outcomes given different
parameters, as well as the likely worst-case outcomes for the model from the social planner’s
perspective. In this section we examine how a policymaker explicitly accounting for these
differences might respond. We assume the true values match the simple averages of the
possible parameters, with R0 “ 3.0, initial CFR “ 0.0109, costs of quarantine measures
α “ 0.4, and quarantine effectiveness ζ “ 0.5. We then examine the optimal quarantine
and resulting deaths from an “uncertainty neutral” solution where the policymaker simply
applies the assumed prior weights to the models and the “uncertainty averse” policy where
the planner starts from the same prior parameters but adjusts these weights due to concerns
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Figure 3: Outside the Model Uncertainty

Notes: These figures show the range of outcomes and policy responses across 16 potential models of the
pandemic that vary by R0, CFR, α, and ζ. The left column shows optimal quarantine policies by model and
the right column shows the fraction of the population that dies by model. The top row shows model results
where R0 “ 1.5, CFR “ 0.005, α P t0.0, 0.8u, and ζ P t0.35, 0.65u. The second row shows model results
where R0 “ 4.5, CFR “ 0.005, α P t0.0, 0.8u, and ζ P t0.35, 0.65u. The third row shows model results where
R0 “ 1.5, CFR “ 0.02, α P t0.0, 0.8u, and ζ P t0.35, 0.65u. The bottom row shows model results where
R0 “ 4.5, CFR “ 0.02, α P t0.0, 0.8u, and ζ P t0.35, 0.65u.
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about ambiguity to derive the optimal solution. The assumed prior belief we consider in
our main results is for the case where the planner gives equal weight to each possible model.
In the SI Appendix, we compare three additional sets of prior beliefs over the models: (i)
underestimating the pandemic, (ii) split-estimating the pandemic, and (iii) overestimating
the pandemic. Each case highlights important scenarios the planner may face, and how
uncertainty influences policy choices and model outcomes in those different scenarios.

Figure 4: Outcomes With and Without Uncertainty, Equal Weighted Prior

Notes: These figures show the fraction of the population quarantined (top), infected (bottom left), and dead
(bottom right) under (i) the uncertainty neutral model response (red) and the uncertainty averse model
response (blue).

Figure 4 shows the infected, dead, and quarantine outcomes for the uncertainty neutral
and uncertainty averse cases of the equal-weighted prior scenario. Figure 5 shows how the
uncertainty averse planner’s prior probabilities over each model are adjusted and distorted
over time. Figure 6 shows how the planner’s beliefs over R0, the CFR, the mitigation policy
costs α, and the mitigation policy effectiveness ζ evolve correspondingly.

Starting with the uncertainty neutral results in red in Figure 4, we see that quarantine
policy starts at 0, then quickly moves up to around 50% near week 8, and then quickly drops
back to 0 by week 15. The underlying pandemic peaks at around 15% infected near week
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8 and results in about 1.5% dead overall. The impact of uncertainty aversion in blue is an
emphatic increase in quarantine measures in terms of initial mitigation (around 25%), overall
magnitude (above 60%), and in persistence of mitigation measures (just under 25 weeks).
The resulting impact on the pandemic is that infections never go above 10%, and deaths are
reduced by between a quarter to a half a percentage point.

Figure 5: Uncertainty Aversion Distorted Model Probabilities

Notes: This figure shows the distorted probability weights for the uncertainty averse planner. The dashed
lines are the probability weights on the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5) with
the least effective pandemic mitigation scenario (ζ “ 0.35). The red dashed line is the model with the lowest
economic cost of quarantine (α “ 0.0) and the yellow dashed line is the model with the highest economic
cost of quarantine (α “ 0.8). The red shaded area shows the range of distorted probability weights for the
remaining models.

These results demonstrate clearly that the concerns related to uncertainty that prompt
the planner to implement stronger mitigation (lower quarantine effectiveness, higher death
and infection rates) dominate the concerns related to uncertainty that motivate the planner
to reduce mitigation efforts (concerns about the cost of mitigation measures). Examining
the distorted probabilities in Figure 5 and the distorted model parameters of the uncertainty
averse planner in Figure 6 highlights why this is the case. The two models in Figure 5 that
receive the largest increase in their prior probability weight are precisely those models with
high R0, high CFR, and low mitigation effectiveness ζ (the yellow and red dashed lines). And
while the model of these two that also assumes the highest economic costs of quarantine (the
yellow dashed line) receives the highest weight distortion, and is therefore the clear worst-
case model in the planner’s mind, the model from these two with the lowest economic costs of
quarantine (the red dashed line) is not too far behind. This result suggests that the economic
costs are secondary to the other worst-case model concerns. It is also clear that the effects of
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model uncertainty are dynamically evolving and amplified as infections and deaths increase.
The remaining model probabilities (the red shaded region) remain relatively low throughout,
with some dropping to allow for a shift in probability to the worst-case models.

Figure 6: Distorted Model Parameters: R0, CFR, α, ζ

Notes: The figures show the implied R0 (top left), CFR (top right), α (bottom left), and ζ (bottom right)
for the uncertainty neutral case (red lines) and the uncertainty averse case (blue lines). Each case uses the
simulation path resulting from its own optimal policy.

Figure 6 shows the distorted model parameters implied by the planner’s aversion to model
ambiguity (the blues lines) compared with the true model parameters (the red lines). First,
the uncertainty averse planner responds as if the infection rate is persistently higher, with the
distortion amplified as infections spike and deaths increase. The dynamics of the death rate
distortion are similarly influenced by the severity of the pandemic, though the spike in CFR
is not as high as the uncertainty neutral case where the elevated number of infections has
a more pronounced effect. The quarantine effectiveness parameter is distorted downward,
with the effect again amplified by the pandemic severity. However, this distortion quickly
dissipates once the planner stops implementing quarantine measures around week 25. The
distortions for the infection and death rates also distinctly drop off at this same time when
mitigation measures are stopped and infections are quickly declining, however these distor-
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tions persist longer than the quarantine effectiveness parameter distortion. The parameter
for the economic costs of quarantine measures is persistently distorted up, but lacks dynamic
variation as the pandemic progresses. These results reemphasize what was highlighted by
the distorted probability weights shown in Figure 5, that the dominating concerns about
model uncertainty, and therefore the model dimensions where the most probability weight
is shifted to create the most prominent model distortions as the epidemic evolves, are the
infection and death rates, followed by the quarantine effectiveness, and then the costs of
quarantine measures. Because the equal-weighted prior on the possible models used in this
setting avoids persistent biases created by alternative assumed priors, such as those used in
the cases examined in the appendix, the effects of model uncertainty are demonstrated quite
sharply here.

A useful diagnostic is to examine whether the optimal probability distortions are rea-
sonable in the sense that they could not be rejected by observed data. We utilize the tool
of detection error probabilities, shown in Figure 7, for this. These probabilities, now com-
monly used in the literature on model uncertainty, are based on the model discrimination
methods proposed by Chernoff (1952) and Newman and Stuck (1979). The bound quantifies
the probability of making a type I or type II error when choosing between two models where
the prior between the two models is 50-50. Under a standard heuristic, a value below 10%
or 5% would indicate that a policymaker should reject the distorted model in light of data
generated by the baseline model.14 Figure 7 shows clear dynamic shifts in the detection error
probabilities for the uncertainty averse, with the probability starting just above 10% and
then converging towards 50% after 52 weeks as infections converge towards zero. At that
point, when the pandemic has largely run its course and the distorted weights are converging
back towards the equal-weighted prior, the two models are nearly indistinguishable and the
weighting on the worst-case and true models is close to the original 50% values. We find that
the detection error probability never drops below a standard statistical significance value of
10%, let alone the often used 5% or 1% values, and thus we interpret this magnitude of
uncertainty distortion as statistically reasonable.

The central driving force in determining optimal policy choices under uncertainty aver-
sion in our model setting is the trade-off between permanent and transitory costs in the
model. The costs of a more severe pandemic are additional deaths, as well as additional
infections that can lead to more deaths, which has a permanent negative economic cost,
whereas the economic costs of quarantine measures in the model are transitory. As a result,

14Following Anderson et al. (2003), the detection error probabilities are calculated using a log-likelihood
ratio based model selection criteria that compares model outcomes for repeated simulations using the baseline
and worst-case models.
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Figure 7: Detection Error Probability Comparison

Notes: The figure shows the detection error probability for model discrimination between the worst-case
and baseline models in the uncertainty averse (blue line) setting, as well as the assumed prior weight on the
baseline and worst-case models (dashed black line).

the uncertainty averse social planner places more emphasis on the worst-case epidemiological
models which have the highest permanent costs, while still accounting to some degree for
the transitory economic costs of increased quarantine measures. The result of the planner’s
optimal uncertainty adjustment is quarantine policy that is amplified and more persistent
than in the uncertainty neutral setting in order to limit the number of infections and min-
imize the permanent cost of deaths. This amplification effect of uncertainty aversion on
optimal quarantine measures is restrained by increasing marginal costs of additional quaran-
tine measures, as well as the uncertainty about how severe those costs could be. Eventually,
as the pandemic winds down enough that the planner no longer entertains the most severe
potential worst-case epidemiological outcomes that seemed plausible during the peak of the
pandemic, enhanced quarantine measures drop as well.

5 Concluding Remarks
In this paper, we embrace the admonition of Box (1976), that “[s]ince all models are wrong,
the scientist must be alert to what is importantly wrong,” by studying optimal quarantine
policy when allowing for uncertainty in models of epidemics or pandemics. Our main results
focus on the role of uncertainty aversion in a smooth ambiguity-based decision problem.
With new diseases, or diseases that have only had small outbreaks, there is often significant
uncertainty about key parameters which determine the overall consequences of an epidemic.
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The uncertainty averse planner tilts the prior towards deviations with more substantial
utility consequences, and this tilting evolves endogenously as the pandemic unfolds. The
planner consequently emphasizes the worst-case scenarios in their decision problem by using
the distorted prior to determine the optimal quarantine response when confronting aversion
to uncertainty about the possible realization of worst-case outcomes.

The numerical results highlight how the planner trades-off uncertainty concerns from
epidemic and economic channels. Concerns about higher infection rates, higher fatality
rates, and decreased effectiveness of quarantine measures increase the planner’s motivation to
implement quarantine measures, whereas uncertainty about the economic costs of quarantine
pushes the planner to reduce quarantine measures. Taken together, the uncertainty averse
planner pushes for quarantine measures that are higher initially, peak higher, and persist
longer than the planner who is uncertainty neutral. These effects are fairly substantial,
even for levels of uncertainty aversion that are statistically reasonable based on detection
error probabilities as a model selection criteria. The key to these results is that the planner
emphasizes the permanent negative costs of the pandemic that are manifested as increased
deaths over the more transitory economic costs of increased quarantine measures.

Our analysis provides a framework under which uncertainty and model misspecification
can be incorporated into macroeconomic models of epidemics. Our work emphasizes that
uncertainty can play a large role in determining the optimal policy response to a new dis-
ease. Economists and epidemiologists, rather than using a range of parameters, can use our
framework to explicitly model uncertainty. Future work can focus on making these models
more tractable for policymakers, who often have to make decisions in real time, and further
examine how economic agents modify their own behavior in response to uncertainty-averse
policymakers.
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Appendix A SIR Model Dynamics and Volatility
A traditional SIR model is defined by state variables for the number of susceptible individuals
St, the number of infected individuals It, and the number of recovered individuals Rt. In
addition, the total population is tracked by the state variable Nt. The evolution of these
state variables is typically determined by the deterministic differential equations

dSt “ ψtNtdt ´ ωtStdt ´ βtSt
It
Nt

dt

dIt “ βtSt
It
Nt

dt ´ ωtItdt ´ γtItdt

dRt “ ´ωtRtdt ` ρtItdt

dNt “ ψtNtdt ´ ωtpSt ` It ` Rtqdt ´ δtItdt

where βt is the pandemic infection rate, ρt is the pandemic recovery rate, δt is the
pandemic death rate, γt “ ρt ` δt is the expected duration of infection, ψt is the birth
rate, and ωt is the non-pandemic related death rate. In addition there is an adding up
constraint such that Nt “ St ` It ` Rt.

We then define new state variables, st “ St

Nt
, it “ It

Nt
, and rt “ Rt

Nt
as the susceptible,

infected, and recovered fractions of the total population. Applying Ito’s lemma to these new
state variables, given the original level state variables dynamics, we find the evolution of the
fraction of the total population state variables as

dst “ ψtdt ´ βtstitdt ´ stpψt ´ itδtqdt

dit “ βtstitdt ´ pρt ` δtqitdt ´ itpψt ´ itδtqdt

drt “ ρtitdt ´ rtpψt ´ itδtqdt

Finally to arrive at the evolution equations we use in our analysis we make two assump-
tions. First, we assume ωt “ ψt “ 0, allowing us to focus on the dynamics associated with the
pandemic. Second, we specify functional forms and add volatility in the form of parameter
perturbations so that we replace βtdt by βdt`σidWi and δtdt by δtdt`σddWd. This results in
the state variable evolution equations given in the beginning of the main text. Furthermore,
adding in quarantine impacts as discussed in the paper gives us the final version of the state
variable evolution equations used in our analysis.
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Appendix B Detection Error Probabilities
To quantify the magnitude of uncertainty allowed for in our analysis based on the choice of
ξa, we use detection error probabilities as proposed by Hansen et al. (2002) and Anderson
et al. (2003). These probabilities, now commonly used in the literature on model uncertainty,
are based on the model discrimination bounds proposed by Chernoff (1952) and Newman
and Stuck (1979). The bound quantifies the probability of making a type I or type II error
when choosing between two models. In our setting, the two models are the baseline model
where state dynamics depend on the prior probabilities and the worst-case model where state
dynamics depend on the distorted posterior.

We construct this probability bound in the smooth ambiguity setting by recasting the
density distortion from aversion to model ambiguity as a drift distortion. In the setting of
misspecification concerns and robust preferences, this drift distortion arises from the decision
theoretic structure because the Brownian motion dWt is replaced by htdt`dŴt in the model
of state dynamics. The distortions are disguised by the Brownian shocks dWt, making
them difficult to distinguish, and are without parametric form. The drift distortion in our
framework depends on the structured parameter uncertainty, as we show next.

Consider a general state vector xt where, under a baseline prior, the state evolves as

dxt “ µdt ` σdWt

and under the distorted prior, the evolution is given by

dxt “ µ̃dt ` σdWt

Note that σ is the matrix of volatilities for each state and shock and µ and µ̃ are the
vector of drifts for each state variable weighted by the prior weights πpθq and the uncertainty
adjusted weights π̃pθq across each model θ, respectively. Following Barnett et al. (2020), the
drift distortion implied by the structured ambiguity across model parameters is given by

ht “ pσ1σq´1σ1 pµ̃ ´ µq

Given the drift distortions, we solve for the detection error probability through simula-
tion methods as in Anderson et al. (2003), Hansen et al. (2002), and Hansen and Sargent
(2010). This provides us with a state-dependent, conditional model discrimination measure
to determine whether our choice of ξa is reasonable in that the detection error probability
would be small enough that we would be confident in a statistically significant sense of which
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model is the true model (i.e., ă 10%). To calculate the detection error probabilities, we use
discrete-time approximations of the state variables of interest. Define xt ” rst, it, Nt, zts

and x̃t ”

”

s̃t, ĩt, Ñt, z̃t

ı

, where xt evolves under the baseline prior and x̃t evolves under the
distorted distribution as follows:

xt`1 “ µdt ` σ
?
dtWt`1

x̃t`1 “ µ̃dt ` σ
?
dtW̃t`1

Wt`1 and W̃t`1 are matrices of shocks that follow a Standard Normal distribution. We then
implement the following algorithm to construct the detection error probabilities:

1. Simulate many pathways for xt`1 for a predetermined number of periods T.

2. Simulate many pathways for x̃t`1 for a predetermined number of periods T.

3. Calculate the log-likelihood ratios rA and rB as follows:

(a) Solve for W̌t`1 “ Wt`1 ´ ȟt where ȟt is derived as shown above based on the
pathways for xt`1.

(b) Solve for Ŵt`1 “ W̃t`1 ` ĥt where ĥt is derived as shown above based on the
pathways for x̃t`1.

(c) Calculate rA “ 1
2T

ř

tpWt`1 ´ ȟtq
1pWt`1 ´ ȟtq ´ W 1

t`1Wt`1u

(d) Calculate rB “ 1
2T

ř

tpW̃t`1 ` ĥtq
1pW̃t`1 ` ĥtq ´ W̃ 1

t`1W̃t`1u

4. Use the log-likelihood ratios to calculate pi “ freqpri ď 0q, i “ A,B.

5. Derive the detection error probability as ppθq “ 1
2
ppA ` pBq.

Note that we set T “ 12 months as mentioned previously, and we simulate 100,000
pathways for xt`1 and x̃t`1 at each point in time of our simulated model solution results.
Therefore, the detection error probability calculated at each point in time of our simulated
model results is based on information from 100,000 independent and uniquely calculated
pathways with equal sample length. The value of 1{2 in step 5 comes from choosing an
equal-weighted prior on each type of error pA and pB, where pA represents the probability
of choosing the distorted model as the model that generated the sample path when it is
actually the baseline model and pB represents the probability of choosing the baseline model
as the model that generated the sample path when it is actually the distorted model. Thus,
a detection error probability of 0.5 means that there is essentially no way to statistically
discriminate between the distorted model and the baseline model, while a detection error
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probability close to 0.0 means that one can statistically discriminate between the distorted
model and the baseline model with near certainty.

Appendix C Model Extensions
Preferences with Nonpecuniary Losses from Deaths

We can extend our model by adding an additional cost and uncertainty component from the
pandemic in the form of nonpecuniary losses from deaths due to the pandemic. To do this,
we now assume the representative household has flow utility that depends on consumption
Ct, a subjective discount rate κ, and nonpecuniary losses for deaths from the pandemic

Ut “ κ logCt ´ xt

The nonpecuniary losses for deaths from the pandemic xt account for losses beyond the
economic costs of a reduced labor force, and therefore reduced final output production,
from quarantine measures and death. Because these costs are determined by deaths from
the pandemic, there is a mapping between infections and nonpecuniary costs of the form
xt “ χpitq, where we assume a functional form similar to Alvarez et al. (2020), Abel and
Panageas (2020), and Jones et al. (2021):

χpιq “ φδtι

where δt “ δ` δ`ι as noted in the main text. The value of φ represents the valuation the
planner places on the deaths from the pandemic and δtit is the fraction of the population
who die in any given period because of the pandemic. Applying Ito’s lemma we derive the
evolution of nonpecuniary costs as

dxt “ χiµipst, it; qt, θqdt `
1

2
χii|σipst, itq|2dt ` χiσipst, itqdWt

where χi and χii are the first and second derivatives, respectively of χpitq and µipst, it; qt, θq

and σipst, itq are the drift and volatility, respectively, of the state variable for infections it.
Note optimal quarantine policy influences the drift of it which directly enters the evolution
of xt. Therefore, the optimal choice for qt will include an explicit adjustment for these non-
pecuniary costs. Also, we note that uncertainty will enter through the existing uncertainty
related to R0 and the CFR, which enter into the drift for xt. As such, this extension will
serve to amplify the existing channels related to uncertainty and its implications for the
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choice of optimal quarantine policy.

Uncertainty Through Robustness

Though our main analysis used the smooth ambiguity framework, where the social planner
optimally chose probability weights to place on competing parameterizations of the model,
an alternate approach to the problem is through applying the robust preferences methodol-
ogy established in the economics literature15. Accounting for uncertainty in this way allows
the social planner to make optimal mitigation policy choices while acknowledging that a
given baseline model may be misspecified. As with smooth ambiguity, the mathematical
tractability of the robust preferences decision problem allows us to characterize the implica-
tions of uncertainty for optimal policy decisions with clear intuition. We briefly outline here
how we incorporate robust preferences to account for model uncertainty, and direct readers
to the aforementioned references for complete mathematical details.

We define the approximating or baseline model using the evolution equations of the state
variables as previously given:

dst “ ´βstitp1 ´ ζqtq
2dt ` stitδtdt ´ stitσidWi ` stitσddWd

dit “ βstitp1 ´ ζqtq
2dt ´ γitdt ` i2t δtdt ` σistitdWi ´ itσddWd ` i2tσddWd

dzt “ ´αqtdt ´ ztdt ` σzdWz

dNt

Nt

“ ´itδtdt ´ itσddWd

As was the case in the smooth ambiguity setting, we assume the baseline model is the
result of historical data or previous information about coronavirus pandemics and acts as a
best-guess at what the true COVID-19 pandemic model is for policymakers. However, we
allow the social planner in our model to consider the likelihood that this model is misspecified,
or that there are possibly other models which are the true model for the COVID-19 pandemic.

Possible alternative models are represented by a drift distortion that is added to the
approximating model by changing the Brownian motion Wt to Ŵt `

şt

0
hsds where hs and

Ŵt are processes adapted to the filtration generated by the Brownian motion Wt. Therefore,
alternative models under consideration by the social planner are of the form

dst “ ´βstitp1 ´ ζqtq
2dt ` stitδtdt ´ stitσipht ` dŴiq ` stitσdpht ` dŴdq

15Detailed explanations of robust preference problems and axiomatic treatment of such formulations us-
ing penalization methods are given by Cagetti, Hansen, Sargent, and Williams (2002), Anderson, Hansen,
and Sargent (2003), Hansen, Sargent, Turmuhambetova, and Williams (2006), Maccheroni, Marinacci, and
Rustichini (2006), Izhakian (2020) and Hansen and Sargent (2011).
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dit “ βstitp1 ´ ζqtq
2dt ´ γitdt ` i2t δtdt ` σistitpht ` dŴiq ´ itσdpht ` dŴdq ` i2tσdpht ` dŴdq

dzt “ ´αqtdt ´ ztdt ` σzpht ` dŴzq

dNt

Nt

“ ´itδtdt ´ itσdpht ` dŴdq

In this form, the alternative models are disguised by the Brownian motion and so are
hard to detect statistically using past data. In addition, the alternative models are given
without direct parametric form, which allows for a larger class of alternative models under
consideration by the planner. The ht in the model will be optimally determined and state
dependent, and so the magnitude of the parameter misspecification considered by the so-
cial planner when making optimal policy decisions will depend on the current state of the
pandemic and evolve dynamically.

For the uncertainty analysis to be reasonable, we restrict the set of alternative models
considered by the social planner to those that are difficult to distinguish from the baseline
model using statistical methods and past data. A penalization term based on the conditional
relative entropy measure of model distance is used to accomplish this. The parameter ξm is
chosen to determine the magnitude of this penalization. We have defined relative entropy
previously, and note that Hansen, Sargent, Turmuhambetova, and Williams (2006) provides
complete details about relative entropy use in a robust preferences setting. Again, rela-
tive entropy means we are only considering relatively small, though potentially significant,
distortions from the baseline model.

The time derivative of relative entropy or contribution of the current worst-case model
htdt to relative entropy is given by 1

2
|ht|

2. This term is added to the flow utility or preferences
of the household to account for model uncertainty. As was the case in the smooth ambiguity
setting, optimal decisions will be determined by considering alternative worst-case models as
a device to generate optimal policies that are robust to alternative models, and not as some
type of distorted beliefs setting. The household maximization problem is replaced with a
max-min set-up, where the minimization is made over possible model distortions h˚

t which
are constrained by ξm. This allows the planner to determine the relevant worst-case model
for given states of the world to help inform their optimal policy decisions.

While we have incorporated additional structure and complexity to the model to account
for model uncertainty, the resulting household or social planner problem remains tractable
and similar to the previous, no uncertainty problem, and is given by

V pst, it, Nt, ztq “ max
qt

min
ht

E0r

ż T

0

e´pκ`λqttκ logpCtpqtqq `
ξm
2

|ht|
2udt ` e´κpT´tqṼ pNT , zT qs
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subject to market clearing and labor supply constraints.
As before, the social planner’s solution is still characterized by a recursive Markov equi-

librium for which an equilibrium solution is defined as before. The HJB equation resulting
from this modified household or social planner optimization problem which characterizes the
socially optimal solution is now given by

pκ ` λqvpst, itq “ max
qt

κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ´ δtit ´
1

2
i2tσ

2
d ´

κ

κ ` 1
αqt `

ξm
2

|ht|
2

` viβstitp1 ´ ζqtq
2 ´ vsβstitp1 ´ ζqtq

2 ` vsstitδt ´ viitrγ ´ δtits

`

„

´stitσivs ` stitσdvs ` σistitvi ´ itp1 ´ itqσdvi ´ itσd `
κ

κ ` 1
σz

ȷ

ht

`
1

2
rvsspσ

2
d ` σ2

i qs2t i
2
t ` viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s

The first-order conditions for the optimal model distortions give us

|ht|
2 “

1

ξ2m
rpvi ´ vsq

2pstitσiq
2 ` pstvs ´ p1 ´ itqvi ´ 1q2pitσdq2 `

ˆ

κ

κ ` 1

˙2

σ2
z s

Plugging back in to the HJB equation, we are left with the following problem

pκ ` λqvpst, itq “ max
qt

κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ´ δtit ´
1

2
i2tσ

2
d ´

κ

κ ` 1
αqt

´
1

2ξm
rpvi ´ vsq

2pstitσiq
2 ` pstvs ´ p1 ´ itqvi ´ 1q2pitσdq2 `

ˆ

κ

κ ` 1

˙2

σ2
z s

` viβstitp1 ´ ζqtq
2 ´ vsβstitp1 ´ ζqtq

2 ` vsstitδt ´ viitrγ ´ δtits

`
1

2
rvsspσ

2
d ` σ2

i qs2t i
2
t ` viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s

The optimal choice of mitigation qt is of the same functional form as in the smooth
ambiguity analysis. Key differences to the social planner problem and HJB equation show
up through the adjustments to the flow utility as a result of the penalization term accounting
for model uncertainty concerns. The implications of model uncertainty for optimal mitigation
policy and social welfare in the face of a pandemic are not only the direct adjustments to the
key equations of interest, but also how these adjustments feed through the model solution
and alter the value function V and the marginal values of changes to the susceptible, infected,
total population, and productivity represented by Vs, Vi, VN , Vz. Though we do not report
results from this approach, they can easily be solved for numerically.
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Uncertainty Through Alternative Smooth Ambiguity Formulation

Here we incorporate uncertainty using the decision theoretic framework developed in Hansen
and Sargent (2011). Given an optimal policy qtpθq and value function vpst, it; θq for each
conditional model, we first specify a prior distribution to the set of models θ P Θ, by
assigning a probability weight πpθq to each model θ, satisfying

πpθq ě 0 @θ P Θ,
ÿ

θPΘ

πpθq “ 1.

Like the alternative models in our set, the prior probability weights are assumed to come
from historical data or real-time observational inference.

We then allow for uncertainty aversion by using a penalization framework based on con-
ditional relative entropy. This framework allows the planner to consider alternative distribu-
tions or sets of weights π̃pθq across the set of conditional models in a way that is statistically
reasonable. This works by restricting the set of alternative model weights considered by
the social planner to those that are difficult to distinguish from the prior model distribution
using statistical methods. The parameter ξa is chosen to determine the magnitude of this pe-
nalization. Large values of ξa imply low aversion to ambiguity, while small values of ξa imply
strong aversion to ambiguity. Relative entropy is defined as the expected value of the log-
likelihood ratio between two models or the expected value of the log of the Radon-Nikodym
derivative between two models.16

This new, second-stage problem for the planner is a minimization problem, where the
minimization is made over possible distorted probability weights π̃pθq which are constrained
by ξa based on the solutions to the θ conditional value function solutions found previously.
This allows the planner to determine the relevant worst-case model for given states of the
world to help inform their optimal policy decisions.17 Though optimal decisions will be de-
termined by considering alternative worst-case models, this setting should not be interpreted
as a distorted beliefs model. The worst-case model is used as a device to produce solutions

16See Hansen and Sargent (2011) for details about relative entropy in this setting. Using relative entropy
means we are only considering relatively small distortions from the baseline model, but even small distortions
can have significant impacts on optimal policy. In particular, we apply relative entropy penalization directly
to the set of conditional value functions.

17One can view the optimal policies choices as being made by a sequence of policymakers at each point
in time, which assumes limited commitment in our framework. Issues of dynamic consistency and limited
commitment are relevant for a broad class of optimal control problems solved under uncertainty. The limited
commitment assumed by this interpretation of our model creates a possible tension in terms of whether the
planner’s optimal choices are consistent with time zero choices made. However, given that our discount
factor is close to zero because of the weekly time-scale used for our analysis, the intertemporal differences
in social valuations will be quite small and so we suspect that the impact of limited commitment will be
quantitatively small.
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that are robust to alternative models. The second-stage minimization problem is given by
the solution to the following problem

Ṽt “ min
π̃pθq

ÿ

θPΘ

π̃pθqpV pθq ` ξarlogpπ̃pθqq ´ logpπpθqqsq

subject to
ÿ

θPΘ

πpθq “
ÿ

θPΘ

π̃pθq “ 1

Taking the first order condition for this problem, and imposing
ř

π̃pθq “ 1, we find the
optimally distorted probability weights are given by

π̃pθq “ πpθq
expp´ 1

ξa
V pθqq

ř

πpθq expp´ 1
ξa
V pθqq

As the π̃pθq in the model are optimally determined and state dependent, the magnitude
of the ambiguity adjustment considered by the social planner when making optimal policy
decisions will depend on the current state of the pandemic and evolve dynamically.

From the distorted probability weights, we see that while the prior probability weights
anchor the outcomes to a baseline expectation of the true model, smooth ambiguity leads
to an exponential tilting towards those θ conditional models that lead to the most negative
lifetime expected utility implications. In order to determine the ambiguity robust policy
for the social planner, we weight the θ conditional optimal mitigation policies qtpθq using
the distorted probability weights. The magnitude of the weight given to each θ conditional
model informs the planner on how to use the θ conditional mitigation policies to determine
an ambiguity robust optimal policy. This same re-weighting using the distorted probability
weights provides us with the distorted parameters which the social planner uses to make opti-
mal policy decisions in this setting. The adjusted mitigation policy and distorted parameters
are therefore given by

q̃t “
ÿ

θPΘ

π̃pθqqtpθq, β̃t “
ÿ

θPΘ

π̃pθqβpθq, δ̃t “
ÿ

θPΘ

π̃pθqδtpθq ζ̃t “
ÿ

θPΘ

π̃pθqζpθq α̃t “
ÿ

θPΘ

π̃pθqαpθq

As the planner tilts their value function and probability weights towards certain models, this
leads to the implied distorted model parameters which are adjusted by worst-case outcomes
which the planner uses as a lens to view and respond in a robustly optimal way in the face
of uncertainty.
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Appendix D Numerical Method
We solve numerically for a solution to the PDE representing the HJB equation for our social
planner’s problem. The numerical method we use to derive our solution is the Markov chain
approximation method developed by Kushner and Dupuis (2001), and the specific algorithm
given here builds on the publicly available code and algorithm provided by Alvarez, Argente,
and Lippi (2020). An online repository with the code, files, and results for our numerical
analysis can be found at https://github.com/mbarnet0/Covid.

We start by solving the planner’s problem for the post-resolution period. Once the
vaccine and cure are developed, all concerns about the pandemic drop out, labor is supplied
inelastically, and so the planner’s problem is present-discounted value of lifetime expected
utility given by

V̂ pNT , zT q “ E0r

ż 8

T

e´κpt´T qκ logpCtqdt|θs

From this, the HJB equation and its solution are trivially derived as

V̂ pNT , zT q “ logpĀq ` logNT `
κ

κ ` 1
zT

With this solution, we can construct the pre-resolution period planner’s problem and
corresponding HJB equation. The planner’s problem is given by

V “max
qt

min
π̃pθq

E0r

ż T

0

ÿ

θPΘ

π̃pθqte´pκ`λqt

ˆ

κ logCtpqtq ` ξa log
π̃pθq

πpθq

˙

udt ` e´κpT´tqV̂ pNT , zT qs

Incorporating the solution for V̂ pNT , zT q, the full HJB equation is given by

pκ ` λqV “ max
qt

min
π̃pθq

κ logpĀNtq ` κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ` ξa
ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

`
ÿ

θPΘ

π̃pθqtpVi ´ Vsqβstitp1 ´ ζqtq
2 ` Vsstitδt ´ Viitrγ ´ δtits ´ VNδtitNt ` Vzp´αqt ´ ztqu

`
1

2
i2tN

2
t σ

2
dVNN `

1

2
σ2
zVzz `

1

2
rVsspσ

2
d ` σ2

i qs2t i
2
t ` Viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs

´ Vsirσ
2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s ´ VsNsti

2
tσ

2
d ´ i2t pit ´ 1qσ2

dViN ` λ logpĀNtq ` λ
κ

κ ` 1
zt

Applying the analytical simplification for the value function described in the text, given
by V pst, it, Nt, zt; θq “ logpĀq ` logNt ` κ

κ`1
zt ` vpst, it; θq, allows us to simplify the HJB
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equation for the planner’s problem to

pκ ` λqvpst, itq “ max
qt

min
π̃pθq

κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ` ξa
ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

`
ÿ

θPΘ

π̃pθqt´
ακ

κ ` 1
qt ´ δtit ` viβstitp1 ´ ζqtq

2 ´ vsβstitp1 ´ ζqtq
2 ` vsstitδt ´ viitrγ ´ δtitsu

`
1

2
rvsspσ

2
d ` σ2

i qs2t i
2
t ` viipσ

2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dqs ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s ´

1

2
i2tσ

2
d

To solve the model computationally, we first solve the minimization component of the
model. Taking the FOC with respect to π̃pθq, we find that

π̃pst, it; θq “
πpθq expp´ 1

ξa
t´

αpθqκ
κ`1

qt ` δtpθqp´it ` vsstit ` vii
2
t q ` βpθqstitp1 ´ ζpθqqtq

2pvi ´ vsquq
ř

πpθq expp´ 1
ξa

t´
αpθqκ
κ`1

qt ` δtpθqp´it ` vsstit ` vii2t q ` βpθqstitp1 ´ ζpθqqtq2pvi ´ vsquq

Note that π̃pst, it; θq is a function of the optimal choice of qt, which we solve for from
the maximization component of the model. Conversely, the FOC for qt will result in an
optimal value that is a function of the optimal π̃pst, it; θq. However, rather than solve this
nonlinear system jointly with the PDE for the value function, we use a conditional linearity
approach as follows. First, we solve for π̃pst, it; θq as a function of qt, where we use a pre-
determined value for qt based on an initial guess or the previous value determined in our
iterative algorithm. Second, we solve for qt based on the π̃pst, it; θq we derived as a function
of a previous qt value. We then iterate by solving for π̃pst, it; θq as a function of this updated
qt. The iterative procedure continues until the solutions for π̃pst, it; θq and qt are consistent.

To derive the optimal quarantine choice qt from the maximization component, we define
Q as the terms involving quarantine in the HJB equation, which will depend on π̃pst, it; θq.
The equation Qpqt; st, itq is given by

Qpqt; st, itq “ κ logp1 ´ qtq ` pvi ´ vsqstitpβ̃ ´ 2Ăβζqt ` Ąβζ2q2t q ´
α̃κ

κ ` 1
qt

where the terms β̃, α̃, Ăβζ, and Ąβζ2 are given by

β̃ “
ÿ

θ

π̃pst, it; θqβpθq, α̃ “
ÿ

θ

π̃pst, it; θqαpθq,

Ăβζ “
ÿ

θ

π̃pst, it; θqβpθqζpθq, Ąβζ2 “
ÿ

θ

π̃pst, it; θqβpθqζpθq2
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Taking first and second derivatives of Q with respect to qt gives

Q1 “ ´κp1 ´ qtq
´1 ` pvi ´ vsqstitp´2Ăβζ ` 2Ąβζ2qtq ´

α̃κ

κ ` 1

Q2 “ ´κp1 ´ qtq
´2 ` pvi ´ vsqstit2Ąβζ2

Setting Q1 “ 0 we can derive the interior solution for the optimal choice of qt as

qtpθq “
´B ´

?
B2 ´ 4C

2

B “ ´
Ăβζ ` Ąβζ2

Ăβζ
´

α̃κ
κ`1

2Ąβζ2pvi ´ vsqstit

C “
κ ` α̃κ

κ`1

2Ąβζ2pvi ´ vsqstit
`

Ăβζ

Ąβζ2

Note that the complementary slackness condition for the first-order condition implies that
qmax ě qt ě 0. When Q2 ă 0, then the second-order condition is concave and guarantees
the optimal solution to qt is an interior solution satisfying the equation given above. When
Q2 ě 0 the second-order condition is convex and so the optimal solution to qt is a corner
solution. Because of the Inada conditions associated with the use of log utility, when Q2 ě 0

occurs the corner solution must be qt “ 0. Furthermore, for numerical stability we impose an
upper bound constraint qt ď 0.99 in the algorithm, though this constraint never binds in our
converged solution. As Q2 depends on qt, and we are simultaneously solving for the value
function V and the optimal quarantine policy qt, for each iteration of the algorithm that we
outline below, we use the previous guess for qt to determine whether Q2 ě 0 or Q2 ă 0, then
solve for the new optimal qt based on convexity or concavity, update our solution for V , and
then use that new value of qt to check Q2 in the following iteration of the algorithm.

To solve the HJB equation, we separate the state space into the relevant cases over which
we need to impose distinct and necessary conditions for the Markov chain approximation
method to solve the HJB equation. We only solve the model for combinations of the state
variables such that st ` it ď 1, thereby ensuring the adding up constraint st ` it ` rt “ 1 can
be satisfied. We begin by first discretizing the values of the continuous-valued state variables
in the model as follows:

ss P t0,∆s, ..., 1 ´ ∆s, 1u

ii P t0,∆i, ..., 1 ´ ∆i, 1u

There is an analytical solution for the boundary of the state space where it “ 0. Note
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that because it “ 0 there is no possibility of susceptible becoming infected, therefore the
optimal choice of qt “ 0, and the analytical solution is given by

vpst, it|it “ 0q “ 0

The remaining state-space regions for which we need to solve for a numerical solution to
the PDE are given as follows. We first loop over values of ss, and check whether ss “ 0 or
0 ă ss ă 1. For each of these cases, we check whether 0 ă ii ă imax or ii “ imax where imax

is the largest value of ii in our discretized state space such that ss ` ii ď 1. Depending on
which case we are in, we use a different set of Markov chain Approximation conditions. A
visual construction of these conditions in an If-Then code structure is given as follows:

Table A.1: If-Then State-Variable Conditions

s state-variable condition i state-variable condition
if ss “ 0 if 0 ă ii ă imax

else if ii “ imax

else if 0 ă ss ă 1 if 0 ă ii ă imax

else if ii “ imax

The Markov chain approximation is based on an upwind finite difference scheme to de-
termine transition probabilities for each state at a given point in the state space. Starting
from the general HJB equation and replacing value function derivatives with the relevant
finite differences, subtracting κv from each side, multiplying by dt, and adding V to each
side, we are able to rearrange to get common terms so that our expression to use in our
numerical algorithm is given by

pκ ` λqvpst, itq “ κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ´
1

2
i2tσ

2
d ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s

` ξa
ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

`
ÿ

θPΘ

π̃pθqt
vps, i ` ∆iq ´ vps, iq

∆i

βstitp1 ´ ζqtq
2 ´

vps, iq ´ vps ´ ∆s, iq

∆s

βstitp1 ´ ζqtq
2

`
vps ` ∆s, iq ´ vps, iq

∆s

stitδt ´
vps, iq ´ vps, i ´ ∆iq

∆i

itrγ ´ δtits ´
ακ

κ ` 1
qt ´ δtitu

`
1

2

vps ` ∆s, iq ` vps ´ ∆s, iq ´ 2vps, iq

∆2
s

pσ2
d ` σ2

i qs2t i
2
t

`
1

2

vps, i ` ∆iq ` vps, i ´ ∆iq ´ 2vps, iq

∆2
i

pσ2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dq
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Note that we “hold constant” the cross-partial term ´vsirσ
2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s by

including it in the flow utility at any given iteration in the algorithm and update each
of these values with each iteration to find a consistent solution. In addition, we use the
conditional linearity approach discussed earlier to solve for π̃pθ; st, itq and qt.

According to the method of Kushner and Dupuis (2001), the condition we need to satisfy
for convergence of our algorithm is that

dt ă pκ ` λ `
βstitp1 ´ ζqtq

2 ` stitδt
∆s

`
βstitp1 ´ ζqtq

2 ` pγ ´ δtitqit
∆i

`
pσ2

d ` σ2
i qs2t i

2
t

∆s2
`

pσ2
i s

2
t i

2
t ` p1 ´ i2t qi2tσ

2
dq

∆i2
q´1

Therefore, we impose

dt “ 0.95 ˆ min
sPS,iPI

pκ ` λ `
βstit ` stitδt

∆s
`
βstit ` pγ ´ δtitqit

∆i

`
pσ2

d ` σ2
i qs2t i

2
t

∆s2
`

pσ2
i s

2
t i

2
t ` p1 ´ i2t qi2tσ

2
dq

∆i2
q´1

where the min operator is applied over the entire two-dimensional state space for our model.
As the above approximation only holds for certain parts of the state-space because of the
triangularity imposed by the adding up condition st ` it ď 1, we consider case-by-case the
alternative finite-difference approximations imposed in each relevant scenario to adapt this
general approximation expression to work in each region of the state-space.

When ss “ 0, 0 ă ii ă imax:

vpst, itq “ κ logp1 ´ p1 ´ ϕqitq ´ δ̃tit ´
1

2
i2tσ

2
d ` ξa

ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

` p1 ´ pκ ` λqdtqrvps, i ´ ∆iq ´ vps, iqst
itrγ ´ δ̃tits

p1 ´ pκ ` λqdtq

dt

∆i

u

` p1 ´ pκ ` λqdtqrvps, i ` ∆iq ´ 2vps, iq ` vps, i ´ ∆iqst
1

2

p1 ´ itq
2i2tσ

2
d

p1 ´ pκ ` λqdtq

dt

∆2
i

u

` p1 ´ pκ ` λqdtqvps, iq

44



When s “ 0, i “ imax:

vpst, itq “ κ logp1 ´ p1 ´ ϕqq ´ δ̃t ´
1

2
σ2
d ` ξa

ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

` p1 ´ pκ ` νqdtqrvps, i ´ ∆iq ´ vps, iqst
γ ´ δ̃t

p1 ´ pκ ` λqdtq

dt

∆i

u

` p1 ´ pκ ` λqdtqvps, iq

When 0 ă ss ă smax, 0 ă ii ă imax:

vpst, itq “ κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ´
α̃κ

κ ` 1
qt ´ δ̃tit

´
1

2
i2tσ

2
d ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s ` ξa

ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

` p1 ´ pκ ` λqdtqrvps ´ ∆s, iq ´ vps, iqst
Čβp1 ´ ζqtq2stit

p1 ´ pκ ` λqdtq

dt

∆s

u

` p1 ´ pκ ` λqdtqrvps ` ∆s,maxti ´ k ˆ ∆i, 1uq ´ vps, iqst
stitδ̃t

p1 ´ pκ ` λqdtq

dt

∆s

u

` p1 ´ pκ ` λqdtqrvps, i ´ ∆iq ´ vps, iqst
itrγ ´ δ̃tits

p1 ´ pκ ` λqdtq

dt

∆i

u

` p1 ´ pκ ` λqdtqrvps, i ` ∆iq ´ vps, iqst
Čβp1 ´ ζqtq2stit

p1 ´ pκ ` λqdtq

dt

∆i

u

` p1 ´ pκ ` λqdtqrvps ` ∆s,maxti ´ k ˆ ∆i, 1uq ´ 2vps, iq ` vps ´ ∆s, iqst
1

2

pσ2
d ` σ2

i qs2t i
2
t

p1 ´ pκ ` λqdtq

dt

∆2
s

u

` p1 ´ pκ ` λqdtqrvps, i ` ∆iq ´ 2vps, iq ` vps, i ´ ∆iqst
1

2

pσ2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dq

p1 ´ pκ ` λqdtq

dt

∆2
i

u

` p1 ´ pκ ` λqdtqvps, iq

In addition we need approximations for vi ´ vs, vsi. We use

vi ´ vs «
vps, i ` ∆iq ´ vps, iq

∆i

´
vps, iq ´ vps ´ ∆s, iq

∆s

vsi «

$

&

%

vps`∆s,i`∆iq´vps`∆s,i´∆iq´vps´∆s,i`∆iq`vps´∆s,i´∆iq

4∆s∆i
when ss ` ∆s ` ii ` ∆i ď 1

vps,i`∆iq´vps,i´∆iq´vps´∆s,i`∆iq`vps´∆s,i´∆iq

2∆s∆i
otherwise
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When 0 ă ss ă smax, i “ imax:

vpst, itq “ κ logp1 ´ qtq ` κ logp1 ´ p1 ´ ϕqitq ´
α̃κ

κ ` 1
qt ´ δ̃tit

´
1

2
i2tσ

2
d ´ vsirσ

2
i s

2
t i

2
t ` σ2

dstp1 ´ itqi
2
t s ` ξa

ÿ

θPΘ

π̃pθq log
π̃pθq

πpθq

` p1 ´ pκ ` λqdtqrvps ´ ∆s, i ` k ˆ ∆iq ´ vps, iqst
Čβp1 ´ ζqtq2stit

p1 ´ pκ ` λqdtq

dt

∆s

u

` p1 ´ pκ ` λqdtqrvps ` ∆s, i ´ k ˆ ∆iq ´ vps, i ´ k ˆ ∆iqst
stitδ̃t

p1 ´ pκ ` λqdtq

dt

∆s

u

` p1 ´ pκ ` λqdtqrvps, i ´ ∆iq ´ vps, iqst
itrγ ´ δ̃tits

p1 ´ pκ ` λqdtq

dt

∆i

u

` p1 ´ pκ ` λqdtqrvps ` ∆s, i ´ k ˆ ∆iq ´ 2vps, i ´ k ˆ ∆iq ` vps ´ ∆s, i ´ k ˆ ∆iqs

ˆ t
1

2

pσ2
d ` σ2

i qs2t i
2
t

p1 ´ pκ ` λqdtq

dt

∆2
s

u

` p1 ´ pκ ` λqdtqrvps ´ ∆s, i ` k ˆ ∆iq ´ 2vps ´ ∆s, iq ` vps ´ ∆s, i ´ k ˆ ∆iqs

ˆ t
1

2

pσ2
i s

2
t i

2
t ` p1 ´ itq

2i2tσ
2
dq

p1 ´ pκ ` λqdtq

dt

∆2
i

u

` p1 ´ pκ ` λqdtqvps, iq

In addition we need approximations for vi ´ vs, vsi. We use

vi ´ vs «
vps ´ ∆s, i ` ∆iq ´ vps, iq

∆s

vsi «
vps, iq ´ vps, i ´ ∆iq ´ vps ´ ∆s, iq ` vps ´ ∆s, i ´ ∆iq

∆s∆i

With the set-up for the Markov chain approximation set, we use the following hyper-
parameters and initial guesses in order to compute the numerical solutions used in our
analysis. First, we use 650 points along the st dimension, Ns “ 650, and five times as many
points along the it dimensions, Ni “ Ns ˆ 5 “ 3250. This leads to a discretization step
size along the st dimension that is ∆s “ 1

Ns´1
“ 0.0015 and along the it dimension that

is ∆i “ 1
Ni´1

“ 0.00031. The resulting state space includes over 2 million unique pst, itq

points, though this is significantly reduced by the fact that the adding up constraint of
1 “ st ` it ` rt makes certain points infeasible and therefore unused in our computations.
We use two different initial guesses for the value function based on specific cases. For all
but one of the individual models used in the “outside the model” uncertainty comparison,
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as well as for the uncertainty neutral cases where ξa “ 8, we use the same initial guess of

V0 “
κ logp1 ´ p1 ´ ϕqitq

κ ` λ
´
κ logp1 ´ stitq

κ ` λ

Because the case with pR0, CFR, ζ, αq “ p1.5, 0.02, 0.65, 0.0q produces particularly poor
derivative approximations near the boundary, we use the solution to the case with pR0, CFR, ζ, αq “

p1.5, 0.02, 0.35, 0.0q as the initial guess for more stable results. For the uncertainty averse
cases, we use the uncertainty neutral solution with the same prior weighting as the initial
value function guess V0. This ensures stability in convergence with the additional curva-
ture and decreases the number of iterations required for convergence. Finally, convergence
is achieved when the error terms for the policy function and the value function are below
given tolerance levels. For the value function error, call it V alueFunctionError, we set the
tolerance to be ϵ1 “ 1e´12 and use the same criteria as in Alvarez et al. (2020):

V alueFunctionError “ κ
||V nps, iq ´ V n´1ps, iq||1

n

where || ¨ ||1 represents the 1-norm and n denotes the iteration number in the Markov chain
approximation algorithm. We add an additional error term based on the policy function,
call it PolicyFunctionError, in order to ensure convergence. We set this tolerance to be
ϵ2 “ 5e´8 and use the criteria

PolicyFunctionError “
||qnt ´ qn´1

t ||2

||qn´1
t ||2

where || ¨ ||2 represents the 2-norm and again n denotes the iteration number in the
Markov chain approximation algorithm. The solutions are qualitatively similar for various
different hyper-parameters and initial guesses for which convergence is achieved, and any
quantitative differences that arise in a small number of cases are minor. For the most
extreme “outside the model” cases with the highest mitigation policy outcomes, i.e., the
cases with high infection and fatality rates and low quarantine effectiveness, occasionally
the iterative scheme will generate poor derivative approximations near the boundary which
produces unreliable results for some choices of the hyper-parameters. We tested numerous
hyper-parameter choices to verify that results are consistent across cases where this does not
occur.

Once we have model solutions using our algorithm, results are generated using simulations
based on the model solutions where model priors and underlying processes are chosen to fit
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the scenarios described in the main text. The simulations set shocks to zero, while using
solutions assuming there are shocks in the model. Initial values for the simulations are
chosen by assuming there is a small initial population of infected individuals, as well as
a small initial value of immune/recovered individuals. The first assumption is required to
provide a small but rapidly growing level of infection in the model as was observed in the
US, and the second is in line with Alvarez et al. (2020) and consistent with some recent
research that some people may have at least partial immunity18, and ensures stability of
the simulations that avoid numerical inaccuracies near boundary values as well. The initial
values we use are given by s0 “ 1 ´ i0 ´ r0, i0 “ 0.02, r0 “ 0.03, and d0 “ 0.

Appendix E Alternative Prior Weight Scenarios
We provide results for three additional sets of prior beliefs scenarios over the models which
we label as follows: (i) “under-estimated,” (ii) “over-estimated”, and (iii) “split-estimated.”
Each case highlights important scenarios the planner could confront, and how uncertainty in-
fluences policy choices and model outcomes in those different scenarios. For each scenario we
show the following results from the uncertainty neutral and the uncertainty averse solutions:
Figures A.1, A.4, and A.7 show the planner’s optimal quarantine and resulting infections
and deaths; Figures A.2, A.5, and A.8 show how the planner’s beliefs over R0, the CFR,
the mitigation policy losses, and the mitigation policy effectiveness evolve correspondingly;
Figures A.3, A.6, and A.9 show the uncertainty averse planner’s distorted probabilities over
each model and the detection error probability values for the uncertainty-adjusted solutions.

We first consider the “under-estimated” scenario where the planner assigns a weight of
50% to the model with R0 “ 1.5, initial CFR“ 0.005, ζ “ 0.65, and α “ 0.0, with the
remaining weight distributed equally to the remaining models. In this case, Figure A.1
shows that the uncertainty neutral optimal policy response is quite modest, with quarantine
measures starting at zero, peaking around 45%, and finishing after about 12 weeks. This
response results in a relatively high number of deaths (almost 2%). The uncertainty averse
response significantly increases the initial quarantine level (near 20%), the peak quarantine
level (over 60%) and the duration of the quarantine measures (about 20 weeks), drastically
reducing the number of deaths. Figures A.2 and A.3 show that this policymaker substantially
decreases weight on the best-case model, transferring much of that weight to the two most-
severe models as infections and deaths rise. This leads to implied R0, CFR, and α that are
much higher than originally assumed, and an implied ζ that is much lower than assumed

18See articles in Science, Nature, and medRxiv for examples of recent research discussing this.
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by the prior.19 The policymaker reassigns weight to the worst-case outcomes because as the
pandemic initially spreads quickly through the population the large number of infected means
that underestimating the pandemic becomes even more costly and the planner therefore takes
extreme measures to contain the pandemic going forward, approaching policy close to the
equal-weighted case in the main text. Thus, in a case where the planner underestimates
the severity and economic costs of the pandemic, incorporating uncertainty substantially
increases the quarantine policy choice, increasing as the pandemic runs its course, and only
shifting back to the prior after a sustained period of low infections.

Next we consider the “over-estimated” scenario where the planner assigns a weight of
50% to the model with R0 “ 4.5, initial CFR“ 0.02, ζ “ 0.35, and α “ 0.8, with the
remaining weight distributed equally to the remaining models. In this case, Figure A.4 shows
a higher quarantine policy for the uncertainty neutral solution, with quarantine measures
reaching nearly 50% at around 8-10 weeks. The deaths resulting from this response are
modest compared to the other scenarios. However, the uncertainty averse response has only
a modest impact on the quarantine response, peaking between 55% and 60%, and returning
to zero just before 20 weeks. Figures A.5 and A.6 show that the policymaker maintains
high weight on the most-severe model, and has a somewhat higher implied R0, CFR, and
α, and a lower implied ζ. However, given the already high initial weight on the worst-case
model, and the fact that the realized outcomes are in fact less severe than what the initial
prior weighting would have anticipated, the potential magnitude of probability weights is
somewhat limited.

Finally, we consider the “split-estimated” scenario where the planner assigns a weight
of 26.67% to the model with R0 “ 4.5, initial CFR“ 0.02, ζ “ 0.65, and α “ 0.0, a
weight of 26.67% to the model with R0 “ 1.5, initial CFR“ 0.005, ζ “ 0.35, and α “ 0.8

with the remaining weight distributed equally to the remaining models. The quarantine,
infection, and death outcomes are shown for this case in Figure A.7. Given the identical
weighted-average parameter values resulting from this case as in the equal-weighted case,
the uncertainty neutral results are the same as in that baseline setting. In terms of the
uncertainty averse response, we see again that there is a noticeable impact on quarantine
measures. However, the effect is more modest in this setting. Figures A.8 and A.9 show
that the policymaker has a fairly high weight on the most severe model, but still maintains
a relatively high weight on the least severe model. Thus, the structure of the prior and not
just the weighted-value outcomes of the prior, are shown to have some impact. In addition,
the implied R0, CFR, and α, and ζ values show movements similar to the equal-weighted

19In the uncertainty neutral case, the belief over the CFR increases because the death rate is state-
dependent and there is a significant increase in the number of infections.
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baseline, but are again less significant given this alternative weighting.
The detection error probabilities for each case are shown in Figures A.3, A.6, and A.9.

We can see that for each case, we have adjusted the value of ξa for each scenario to keep
the minimum value roughly consistent across settings. The “under-estimated” case uses an
uncertainty parameter value of ξa “ 0.0042, the “over-estimated” cases uses an uncertainty
parameter value of ξa “ 0.002, and the “split-estimated” case uses an uncertainty parameter
value of ξa “ 0.00745. Each case, apart from the “over-estimated” setting, has a minimum
value slightly above 10%. There are a few key differences to note across cases. First, the
“under-estimated” and “over-estimated” cases never converge back to the assumed prior
weight of 50%, because the model comparisons between uncertainty neutral and uncertainty
averse models assume the “under-estimated” and “over-estimated” priors but use the equal-
weighted parameter values to generate the model outcomes. As a result, there is always
some detection error probability because the assumed model and the data generating model
are in fact different. Also, the “split-estimated” converges much more slowly back to the
50% assumed prior weight value because of the more severe divergence in the weighting of
the discrete set of model possibilities. Finally, note that the detection error probability does
not go below 12%. This is due to the fact that the initial weight on worst-case model is
already substantial, limiting potential for probability weight distortions. Combined with the
fact that the realized outcomes are in fact less severe than what the initial prior weighting
would have anticipated, this limits the magnitude of potential model detection error.

These results demonstrate the asymmetric impact of uncertainty depending on the poli-
cymakers initial beliefs about the severity and economic costs of the pandemic. In each case,
uncertainty leads to higher and more persistent policy responses than the uncertainty neutral
counterpart, reinforcing our baseline model results. However, the results from these cases
show that the impact of incorporating uncertainty is greatest when we initially underestimate
the severity and economic costs of the pandemic. This is because the pandemic evolution
is the most negatively different from the assumed prior expectation, justifying and allowing
for the largest distortions to the prior model weights towards the worst-case model. The
smallest relative increase comes when we initially overestimate the severity and economic
costs of the pandemic because the pandemic evolution is the least negatively different from
the assumed prior expectation. Though there is additional weight placed on the worst-case
model because of ambiguity aversion when we overestimate the severity and economic costs
of the pandemic, this difference is modest because the planner does not entertain the same
relative increase in concerns about the worst-case model as when the pandemic severity is
underestimated, leading to the smallest distortions in relative terms.
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Figure A.1: Outcomes With and Without Uncertainty, “Under-Estimated” Prior

Notes: These figures show the fraction of the population quarantined (top), infected (bottom left), and dead
(bottom right) under (i) the uncertainty neutral model response (red) and the uncertainty averse model
response (blue).
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Figure A.2: Distorted Model Parameters: R0, CFR, α, ζ

Notes: The figures show the implied R0 (top left), CFR (top right), α (bottom left), and ζ (bottom right)
for the uncertainty neutral case (red lines) and the uncertainty averse case (blue lines). Each case uses the
simulation path resulting from its own optimal policy.
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Figure A.3: Uncertainty Aversion Distorted Model Probabilities and Detection
Error Probability Comparison

Notes: The left panel shows the distorted probability weights for the uncertainty averse planner. The red
dashed line is the model with the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5), the least
effective pandemic mitigation scenario (ζ “ 0.35), and the lowest economic cost of quarantine (α “ 0.0). The
yellow dashed line is the model with the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5), the
least effective pandemic mitigation scenario (ζ “ 0.35), and the highest economic cost of quarantine (α “ 0.8).
The green dashed line is the model with the least severe epidemiological scenario (CFR “ 0.005,R0 “ 1.5),
the most effective pandemic mitigation scenario (ζ “ 0.65), and the lowest economic cost of quarantine
(α “ 0.0). The red shaded area shows the range of distorted probability weights for the remaining models.
The right panel shows the detection error probability for model discrimination between the worst-case and
baseline models in the uncertainty averse (blue line) setting, as well as the assumed prior weight on the
baseline and worst-case models (dashed black line).
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Figure A.4: Outcomes With and Without Uncertainty, “Over-Estimated” Prior

Notes: These figures show the fraction of the population quarantined (top), infected (bottom left), and dead
(bottom right) under (i) the uncertainty neutral model response (red) and the uncertainty averse model
response (blue).
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Figure A.5: Distorted Model Parameters: R0, CFR, α, ζ

Notes: The figures show the implied R0 (top left), CFR (top right), α (bottom left), and ζ (bottom right)
for the uncertainty neutral case (red lines) and the uncertainty averse case (blue lines). Each case uses the
simulation path resulting from its own optimal policy.
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Figure A.6: Uncertainty Aversion Distorted Model Probabilities and Detection
Error Probability Comparison

Notes: The left panel shows the distorted probability weights for the uncertainty averse planner. The dashed
lines are the probability weights on the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5) with
the least effective pandemic mitigation scenario (ζ “ 0.35). The red dashed line is the model with the lowest
economic cost of quarantine (α “ 0.0) and the yellow dashed line is the model with the highest economic
cost of quarantine (α “ 0.8). The red shaded area shows the range of distorted probability weights for the
remaining models. The right panel shows the detection error probability for model discrimination between
the worst-case and baseline models in the uncertainty averse (blue line) setting, as well as the assumed prior
weight on the baseline and worst-case models (dashed black line).
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Figure A.7: Outcomes With and Without Uncertainty, “Split-Estimated” Prior

Notes: These figures show the fraction of the population quarantined (top), infected (bottom left), and dead
(bottom right) under (i) the uncertainty neutral model response (red) and the uncertainty averse model
response (blue).
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Figure A.8: Distorted Model Parameters: R0, CFR, α, ζ

Notes: The figures show the implied R0 (top left), CFR (top right), α (bottom left), and ζ (bottom right)
for the uncertainty neutral case (red lines) and the uncertainty averse case (blue lines). Each case uses the
simulation path resulting from its own optimal policy.
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Figure A.9: Uncertainty Aversion Distorted Model Probabilities and Detection
Error Probability Comparison

Notes: The left panel shows the distorted probability weights for the uncertainty averse planner. The red
dashed line is the model with the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5), the least
effective pandemic mitigation scenario (ζ “ 0.35), and the lowest economic cost of quarantine (α “ 0.0). The
yellow dashed line is the model with the most severe epidemiological scenario (CFR “ 0.02,R0 “ 4.5), the
least effective pandemic mitigation scenario (ζ “ 0.35), and the highest economic cost of quarantine (α “ 0.8).
The green dashed line is the model with the least severe epidemiological scenario (CFR “ 0.005,R0 “ 1.5),
the most effective pandemic mitigation scenario (ζ “ 0.65), and the lowest economic cost of quarantine
(α “ 0.0). The red shaded area shows the range of distorted probability weights for the remaining models.
The right panel shows the detection error probability for model discrimination between the worst-case and
baseline models in the uncertainty averse (blue line) setting, as well as the assumed prior weight on the
baseline and worst-case models (dashed black line).
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