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1 Introduction

The rapid spread of COVID-19 in 2020 was accompanied by a vigorous debate over the
costs and benefits of actions taken to mitigate the spread of the pandemic. This debate
occurred surrounded by significant uncertainty about key parameters relating to the costs
of the new virus, including death rates, infection rates and the economic costs of policies
such as shuttering businesses and issuing shelter-in-place orders (Chater, 2020). Many
policymakers, academics and commentators in the media suggested that this parameter
uncertainty argued for a laxer quarantine and lockdown response.! It is not obvious that
this is true, and this paper formally explores how optimal pandemic mitigation policies
change when faced with significant uncertainty.

We focus on two epidemiological parameters that characterize the severity of a conta-
gious disease: the Case Fatality Rate (CFR), or the fraction of individuals infected who
die due to the disease, and the basic reproduction number Ry, or the number of people in
an otherwise healthy population that a single disease carrier is expected to infect. Early
estimates of the CFR ranged from a flu-like .08% to a catastrophic 13.04%. Estimating a
CFR for a new disease while cases are ongoing is inherently difficult, as cases must be closed
through either recovery or death before a CFR can be computed (Spychalski, Btazynska-
Spychalska, and Kobiela, 2020). For Ry, estimates ranged from 1.5 to 12 (Korolev, 2020).
Many academic papers, e.g., Stock (2020), note that Ry is difficult to estimate because
the provision of tests is not random, but rather targets those showing symptoms or those
thought to be at higher risk. Manski and Molinari (2020) discuss in detail the wide rage
of estimates and highlight how a lack of testing and the presence of many asymptomatic
carriers made measurement difficult. To highlight the wide variation in these estimates,
Figure 1 shows CFRs and R, across many countries and US states.

Knowledge of the CFR and Ry is critical in informing how to balance the economic costs
of mitigation with the public health costs of the disease, and policymakers found them-
selves confronting critical decisions with incomplete knowledge. Fortunately, economic
theory suggests a way forward when confronted with parameter uncertainty. In particular,
Wald (1950), Gilboa and Schmeidler (1989), and more recently Hansen and Sargent (2001)

'For example, New York Mayor De Blasio in a March 9 press conference saying “I am very resistant to
take actions that we’re not certain would be helpful, but that would cause people to lose their livelihoods.”
Epidemiologist John Ioannides remarked “In the absence of data, prepare-for-the-worst reasoning leads to
extreme measures of social distancing and lockdowns. Unfortunately, we do not know if these measures
work.... This has been the perspective behind the different stance of the United Kingdom keeping schools
open.”


https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/
https://www1.nyc.gov/office-of-the-mayor/news/129-20/transcript-mayor-de-blasio-new-yorkers-city-s-covid-19-response
https://www.statnews.com/2020/03/17/a-fiasco-in-the-making-as-the-coronavirus-pandemic-takes-hold-we-are-making-decisions-without-reliable-data/

Figure 1: Estimated CFR Rates and R,
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Panel A shows estimated CFRs for all countries with more than 1,000 cases and 100 deaths. Panel B shows
estimated Ro across countries and states given different incubation periods (o) and durations (7). Source:
European Centre for Disease Prevention and Control and Korolev (2020).



suggest a max-min criteria whereby a policymaker selects the policy that would be optimal
under a worst-case scenario. The worst-case scenario under consideration must be disci-
plined by what is reasonably consistent with the data: for example, an extremely contagious
disease with an eventual 100% fatality rate is indeed a worst-case scenario, but—parameter
uncertainty notwithstanding—is not consistent with even the most pessimistic estimates.
A CFR of 10%, however, while towards the extreme end of estimates, may be a reasonable
worst-case scenario to consider. In our paper, we adopt a formalization of this idea through
a smooth ambiguity approach, which provides a tractable framework to select a reasonable
worst-case scenario to inform optimal policy decisions.

We begin with a simple macroeconomic model with an epidemic. The epidemic spreads
according to a standard Susceptible-Infectious-Recovered (SIR) process employed in epi-
demiology and more recently in macroeconomic models.? Infected individuals are less pro-
ductive, spread the disease, and may die. We allow policymakers to impose a quarantine
of varying strictness. The quarantine slows the disease’s spread by removing individuals
from the working population. The optimal policy balances spread reduction against tem-
porary lost productivity, and depends critically on the CFR and R in the underlying SIR
model. We first show the wide range of optimal responses across different underlying pa-
rameters. These comparative statics drive home the potential costs of model ambiguity,
yet by themselves do not offer a prescription for how a policymaker facing this uncertainty
might actually respond.

To provide an answer, we adopt a smooth ambiguity approach to explicitly introduce
parameter uncertainty into the policymaker’s decision problem. As a critical first step,
we differentiate risk from uncertainty. Following Knight (1921) and Arrow (1951), risk
refers to the range of possible outcomes in a model where the parameters are known. In
contrast, uncertainty refers to the possibility that the model’s parameters are unknown
or that the model itself is misspecified.> In our context, we introduce risk by allowing
the disease to spread and kill non-deterministically. This risk gives rise to uncertainty

by obscuring the true parameters governing the disease’s spread and lethality from the

2SIR models are standard tools in epidemiology used to model the spread of infectious diseases. The
epidemiological SIR model computes the theoretical number of people infected with a contagious disease
in a closed population over time. The models have three key elements: S is the number of susceptible, I
is the number of infectious, and R is the number of recovered, deceased, or immune individuals. A recent
literature in macroeconomics incorporates SIR models into macroeconomics models. Stanford Earth System
Sciences notes provide an introduction to the standard epidemiological SIR model.

3A large literature refers to Brownian shocks and time variation in exposure to Brownian shocks as
uncertainty, for example Bloom (2009) and Baker, Bloom, and Davis (2016).


https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf
https://web.stanford.edu/~jhj1/teachingdocs/Jones-on-R0.pdf

policymaker. Facing this ambiguity, the policymaker then makes decisions considering
worst-case outcomes across alternate parameter settings, where the cost of considering any
particular set of parameters depends on how far the parameters lie from prior beliefs. We
calibrate the model to match the US economy, and explore how uncertainty influences
optimal quarantine policy.

We find that greater parameter uncertainty pushes the optimizing policymaker towards
stronger and more persistent quarantine. When the policy maker’s initial prior underes-
timates the severity of the disease, without uncertainty aversion the quarantine policy is
quite low and ends relatively quickly, even though infections and deaths reach very high
levels. Allowing for uncertainty aversion pushes the quarantine policy higher for longer,
though it does not quite reach the true optimal response. In contrast, if the social planner
initially overestimates the severity of the disease, even without uncertainty aversion the
quarantine policy matches and then persists higher than the true optimal policy. With
uncertainty aversion, the policy starts even higher and persists high, reflecting concerns
for severe consequences even when infections and deaths never spike. Finally, when the
planner’s baseline model parameters match the true model, the optimal policy without
ambiguity aversion is lower and less persistent than the true optimal response because the
prior is somewhat diffuse. However, with ambiguity aversion the quarantine policy is per-
sistently higher and essentially mirrors the true optimal model response. These important
asymmetries in the role of uncertainty thus suggests that when there is more uncertainty
about the impact of a new virus, the policymakers may want to do more to combat the
spread.

Our paper primarily links to a literature on ambiguity and robust control beginning with
Wald (1950) and Gilboa and Schmeidler (1989), and continued by Hansen and Sargent
(2001), Anderson, Hansen, and Sargent (2003), Maccheroni, Marinacci, and Rustichini
(2006), Hansen and Sargent (2011), and Hansen and Miao (2018).* Recent work in finance
and macroeconomics has emphasized the importance of ambiguity and uncertainty, for
example Hansen, Sargent, and Tallarini Jr (1999), Maenhout (2004), Garlappi, Uppal, and
Wang (2007), Cogley, Colacito, Hansen, and Sargent (2008), [zhakian and Yermack (2017),
Brenner and Izhakian (2018), Ai, Bansal, Guo, and Yaron (2019), and Borovicka (2020).

Robust control methods have also been used to study the economic impacts of climate

4There is an important and extensive theory literature on uncertainty of various forms dating to Knight
(1921), Ellsberg (1961), Anscombe and Aumann (1963), and Savage (1972). Recent examples include
Robson and Samuelson (2009) and Gilboa, Minardi, and Samuelson (2020).



change, as in Lemoine and Traeger (2012) and Li, Nezami Narajabad, and Temzelides
(2014). In the climate change example, climate damages can have both growth effects
and permanent level effects, as estimated empirically in Dell, Jones, and Olken (2012)
and Colacito, Hoffmann, and Phan (2018) and analyzed theoretically in Hambel, Kraft,
and Schwartz (2015) and Barnett, Brock, and Hansen (2020). However, in the pandemic
context, policy decisions trade-off temporary (through quarantine and temporary illness)
and permanent (through death) implications based on how model uncertainty amplifies
concerns about the worst case outcome. The paper also relates to a literature on dealing
with policy uncertainty, for example Bloom (2009) and Baker, Bloom, and Davis (2016).

A key contribution of our paper is to introduce uncertainty to the discussion on eco-
nomic responses to the COVID-19 epidemic. A number of studies have built macroeconomic
frameworks, combining SIR models from epidemiology with macroeconomic models, such
as Abel and Panageas (2020), Kaplan, Moll, and Violante (2020), Jones, Philippon, and
Venkateswaran (2020), Baker, Bloom, Davis, and Terry (2020), Eichenbaum, Rebelo, and
Trabandt (2020), and Alvarez, Argente, and Lippi (2020). These studies rely on calibrated
parameters, which are often unknown. Parameter uncertainty is widely noted in this liter-
ature, and authors typically use a range of values. For example, Acemoglu, Chernozhukov,
Werning, and Whinston (2020) note that: “We stress that there is much uncertainty about
many of the key parameters for COVID19 (Manski and Molinari, 2020) and any optimal
policy, whether uniform or not, will be highly sensitive to these parameters (e.g., Atke-
son (2020a), Avery et al. (2020), Stock (2020)). So our quantitative results are mainly
illustrative and should be interpreted with caution.”

The need to address uncertainty in models goes beyond the COVID-19 setting. Box
(1976) and Cox (1995) noted the critical importance of accounting for uncertainty and
unknowns in scientific analysis, stating, respectively, that “/s/ince all models are wrong, the
scientist must be alert to what is importantly wrong...” and “[t/he idea that complex physical,
biological or sociological systems can be exactly described by a few formulae is patently
absurd... construction of idealized representations that capture important stable aspects of
such systems is, however, a vital part of general scientific analysis and statistical models,
especially substantive ones...” Our study addresses these issues by offering a framework for
incorporating uncertainty explicitly in a wide class of macroeconomics models.

The remainder of this paper is organized as follows. Section 2 presents our model.
Section 3 describes how to account for uncertainty. Section 4 presents simulation results

and section 5 concludes.



2 A Simple Economic Model of an Epidemic

We introduce a simple economic model of an epidemic without model uncertainty before
incorporating uncertainty in subsequent sections. Our model embeds a simple SIR frame-
work into an economic model that allows us to speak to the costs of the disease as well as

the costs and benefits of mitigation efforts.

2.1 Epidemic Model

Figure 2: Transition Rates between States in the Augmented SIR Model.
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A standard SIR model is characterized by three state variables: the number susceptible
individuals S;, the number infected individuals I;, and the number recovered individuals
R;. In addition, we include a state variable for the total population Ny, to account for
deaths from the pandemic. To simplify the model solution, we use in our analysis the SIR
state variables defined as fractions of the total population, i.e., s; = ]f,—tt, iy = ]{,—tt,rt = %.
Transitions between the different states in the model depend on f;, the rate at which a
susceptible becomes infected, p;, the rate at which an infected recovers, and J;, the rate
at which an infected dies. We have abstracted from births and deaths not related to the
epidemic for simplicity, which can be easily incorporated into our framework but has no
qualitative impact on our results.

Figure 2 illustrates the transition rates between states in our model. Under our speci-

fication, the transition rates (3, p;, and ¢; are directly linked to the key structural disease



parameters mentioned previously, the CFR and R, as follows

0.
R0:&7 CFR:_t? ’Yt:pt—‘f_(st

Tt Tt

We assume constant values, conditional on a given model, for the expected time of
infection and rate of infection, i.e., 7 = v and §; = (. For the death rate of infected
individuals ¢;, a critical issue that has been at the forefront during the COVID-19 pandemic
is the fact that increased infections has lead to increased death rates due to increased
hospitalizations and therefore limited resources for treatment. So, we specify J; as an
increasing function of i; given by 6, = & + 6,4,°. By definition, the recovery rate of infected
individuals p; will depend on this specification as well.

We motivated our paper with uncertainty over these pandemic model parameters, and so
departing from the standard model we introduce Brownian shocks through W = {WWs, Ws}°,
which are incorporated as parameter perturbations for 3; and d; with volatilities o3, 05, re-
spectively. These shocks capture, for example, variability in exposure, co-morbidities, mis-
measurement, and random fluctuations in the number of susceptible, infected, recovered,
and population size. Crucially, these shocks prevent the policymaker from immediately
inferring the fundamental transition rates of the disease as we explore the impacts of un-
certainty and ambiguity in the model.

The state evolution equations we use in our analysis are given as follows:

ds; = —Bsgirdl + s404(0 + d40p)dt — s4i05dWs + s4irosdWy
diy = Bsyizdt — vigdt + 7 (5 + 014 )dt + 05848 dWg — i,0qdWs + i2osdWs
e =1—5—1
dN,

- = —it<5 + (5+it)dt — 1,05dW
Ny

While we specify these state evolution equations directly here, Appendix A provides
the evolution processes S, I;, and Ry, as well as the derivation of the evolution processes

for sy, 14, 7 by way of Ito’s lemma.

5This assumption and our specification is similar to the frameworks used by Alvarez et al. (2020) and
Eichenbaum et al. (2020).

SFormally, W = {W, : t > 0} is a multi-dimensional Brownian motion where the corresponding Brownian
filtration is denoted by F = {F; : t > 0} and F; is generated by the Brownian motion between dates zero
and t.



2.1.1 Pandemic Mitigation

We allow for pandemic mitigation through quarantine measures. Let ¢ be the fraction
of the population in quarantine at any period of time, where “quarantine” captures a
wide range of policies such as school closures, business closures and shelter-in-place orders.
Quarantine prevents susceptible individuals from becoming infected. Given the mitigation

policy ¢;, the population laws of motion for the susceptible and infected become:

dSt = _Bstit(l — th)2dt + Stit<(5 + 6+’Lt)dt - StitaﬂdWﬂ + Stl'tO'gdWL;
di; = Bsyir(1 — (qi)?dt — yigdt +i7(8 + 844y)dt + 05540, dWs — i;04dWs + i705dWs

This specification mirrors that in Alvarez, Argente, and Lippi (2020) in terms of the impact
of the quarantine. s;(1—(q;) and 7;(1 — (q;) are the masses of susceptible and infected that
meet. ¢ € [0, 1] captures the incomplete effectiveness of quarantine measures, e.g., meeting

with family, shopping, or ignoring the policy altogether.

2.2 Economic and Public Health Model

2.2.1 Preferences, Production, and Consumption

The representative household has flow utility that depends on consumption C; and a sub-

jective discount rate x, and is given by’
U, = klog C,

Log utility allows us to incorporate risk aversion in the simplest way into our framework,
a relevant feature given the inclusion of Brownian shocks for our state variables.

A linear production technology produces output Y; with labor L; and labor productivity
A. Here, A includes the capital stock, which we hold fixed. Households consume everything
that is produced.

Cy =Y, = AL

The labor supply is determined by the total population, which varies with shocks and

"We discuss the impact of including nonpecuniary losses for deaths from the pandemic as in Alvarez et al.
(2020), Abel and Panageas (2020), and Jones et al. (2020) in the appendix. Such costs, and uncertainty
about these costs, should serve to enhance the results we find in our main analysis.



deaths from the pandemic, and the magnitude of the quarantine measures put in place to

mitigate spread of the pandemic. The effective supply is therefore defined by:

Ly = Ny [(1 — qi)(s¢ + ¢ty + 14)]
= Ny [(1 - Qt>(1 - (1 - ¢)Zt>]

where s; + ¢i; + 1y is the effective available labor force, ¢ € (0,1) represents the amount
by which an infected worker’s productivity is reduced, and 1 — ¢; is the non-quarantined

fraction of the available labor force.®

2.2.2 Arrival of a Vaccine and Cure

We assume that there is a constant arrival rate A\ of a resolution of the epidemic arriving
at some unknown time in the future 7. Our specification, consistent with other in this
literature such as Alvarez et al. (2020) and Abel and Panageas (2020), assumes that upon
the realization of the resolution shock taking place, a cure and a vaccine are found so that
all susceptible individuals are immune and all infected individuals recover. The arrival rate
is set so that this resolution is expected to occur in about 1.5 years. We provide the full
details for the derivation of the model under this assumption in Appendix B, however the
main impact of this assumption is that expectations about a resolution of the pandemic
lead to amplification of the subjective discount rate of the planner, providing quantitatively

more realistic policy responses.

3 Model Solutions

We solve the social planner’s problem with and without ambiguity-based model uncer-
tainty. From this we are able to make a direct comparison of the impact of uncertainty
on the optimum quarantine choice to highlight the key forces behind the uncertain plan-
ner’s uncertainty-adjusted policy decisions and the difference it has on the economic and
pandemic outcomes in the model. Furthermore, we will explore the differences across the
scenarios of when the planner overestimates, underestimates, and correctly estimates the

pandemic and the role that accounting for uncertainty has in each of the scenarios of interest

8 An alternate specification could target only infected or susceptible and infected workers for quarantine.
Because most quarantine policies in practice have been untargeted, we adopt the untargeted specification.
The results are easily extended to the targeted quarantine setting and qualitatively similar.



for a policymaker.

In each case, the solution to the infinitely-lived social planner’s problem is a recursive
equilibrium defined by a socially optimal quarantine policy ¢/ that maximizes the social
welfare or expected lifetime utility of the planner subject to the evolution of the stochas-
tic process for the state variables s;,14;, Ny, as well as the pandemic and economic adding
up constraints. The equilibrium solution has a Markovian structure such that the value
function that characterizes the solution and the optimal quarantine policy are functions
of the state variables s;,4;, N;. To derive the model’s socially optimal outcomes, I solve
for the social planner’s value function from the Hamilton-Jacobi-Bellman (HJB) equation
representing their optimization problem in a recursive format. First order conditions char-
acterizing the optimal policies are derived from this HJB equation and used to solve for
the value function and the optimal quarantine choice.

We assume a discrete set T of possible models v for the pandemic. Each v € T
corresponds to a set of parameters (5(v),d(v)). The interpretation is that each model
v comes from an existing estimate for the true pandemic model using historical data or

real-time information. Each v characterizes the state variable evolution equations as follows

dSt = —5(’1))81%(1 — th(v))2dt + Stit<5(U> + 6+ (’U)Zt)dt - St’itU/gde + StitO'(;dW(;
diy = B(v)ssir(1 — Cqu(v))2dt — vigdt + 07 (5(v) + 64 (v)iy)dt + ogs,i,dWs — i;02dWs + i705dWs
dNy

T = —Zt<(5(l}) + (54_ (U)Zt)dt - itagdW5
t

Conditional on a given v, we derive an optimal policy ¢;(v) without reference to ambi-
guity. The standard approach then compares optimal policies across Y. This “outside-the-
model uncertainty” corresponds to the typical sensitivity analysis exercise often undertaken
in the literature and does not account for the social planner making decisions under uncer-
tainty. In our numerical results we show how disperse the optimal quarantine policy and
pandemic outcomes can be across the set of models we consider.

The ambiguity averse planner’s solution incorporates concerns about uncertainty di-
rectly into the social planner’s decision problem, building on the continuous-time smooth
ambiguity framework developed in Hansen and Miao (2018), and applied in the analysis of
Barnett, Brock, and Hansen (2020). The result is a min-max problem where the planner
optimizes over constrained worst-case model distortions (minimization) and optimal mit-
igation policy (maximization). In contrast to a simple model averaging framework, this

form of uncertainty for the decision maker incorporates the fact that the planner does not

10



know what weights to place on the different potential models of the pandemic and explic-
itly incorporates this ambiguity into the planner’s decision problem. The decision maker
chooses an initial distribution of prior weights to place on the models and then distorts
these baseline weights based on endogenously determined optimal adjustments arising from
their aversion to uncertainty in the form of model ambiguity. As a result, uncertainty is
explicitly incorporated into the planner’s optimal policy choice through probability adjust-
ments used to weight the different models v, providing an uncertainty-adjusted optimal

policy, based on optimization from the min-max problem.

3.1 Optimal Policy without Uncertainty

For the solutions without uncertainty, we focus on solving the social planner’s problem
conditional on a given model v € Y. The social planner’s problem is to maximize life-
time expected utility by choosing the optimal mitigation or quarantine policy ¢;(v). The

planner’s problem can be expressed as

T
V(st,4t, Ni;v) = max EO[J e~V e log Cylge(v)) — @by (v)ig Yt + e * TV (Np)|v]

qt(v) 0

subject to economic and pandemic constraints. Note that C'(¢:) = A x L(g;) and
V(NT) is the continuation value post-pandemic. We represent the social planner’s problem
using a Hamilton-Jacobi-Bellman (HJB) equation for the value function resulting from the
social planner’s optimization. There is an analytical solution for V(NT) and an analytical
simplification for the value function given by V' (s, i, Ni;v) = log(A) + log Ny + v(sy, iy v).
After incorporating these simplifications, the simplified PDE we solve for the planner’s
problem is given by’

1
(K + Av(se, 1e) = mq?X’fIOg(l —q) + Klog(1 — (1 = @)ir) — ir(0 + 6.ie) — (6 + )iy — 52203

+ ’Uiﬁstit(l — 9qt)2 — 'Usﬁst'l.t(l — th)2 + USStit((s + (5+it) — Uﬂ.t[’y — (5 + 6+2.t)]it
1 2 .2:2 22 2

+ 5[055(% —0y)°8%1° + vg(oysiy — (1 — i)itad)Q] — [afvsi]z s

where we drop the v notation for brevity. The optimal choice of mitigation ¢ (v) is the

9See Appendix B for full details on the derivation and analytical simplification of the HJB equation.

11



solution to a quadratic equation resulting from the first-order condition and is given by

_ —B+VB?2-4C

q:(v) 9
1+¢
B=_—">
¢
C . i1

N 2C2(vi —vs)B(v)seiy €

The policy function depends on the parameters associated with v, (8(v), p(v),d(v), 04 (v)).
The standard typically stops here, focusing on the preferred model specification or perhaps
includes an “outside the model” uncertainty analysis or sensitivity analysis that compares
q:(v) across v € T. We include such a sensitivity or “outside the model” uncertainty
analysis as part of our numerical results. However, the main takeaway we view from this
comparison is the significant spread in optimal policy choices and model outcomes, only
enhancing the importance of taking the uncertainty analysis further taking uncertainty

“inside the model” through explicit inclusion in the planner’s decision problem.

Optimal Policy with Uncertainty

Our analysis of the impact of model uncertainty is implemented through a smooth ambi-
guity framework that follows the decision theoretic framework developed in Hansen and
Miao (2018) and applied in Barnett, Brock, and Hansen (2020). To do this, we return to
the full set discrete set T of possible models v for the pandemic as noted above. We first
specify prior probability weights for the set of models v € T, by assigning a probability

weight 7(v) to each model v, satisfying

m(v) =20 YveT, Zﬂ'(v) = 1.
veY
Like the alternative models in our set, the prior probability weights are assumed to come
from historical data or real-time observational inference.

We then allow for uncertainty aversion by using a penalization framework based on
conditional relative entropy. This framework allows the planner to consider alternative
distributions or sets of weights 7(v) across the set of conditional models in a way that
is statistically and quantitatively reasonable by restricting the set of alternative model

weights considered by the social planner based on an ambiguity aversion parameter and

12



the magnitude of the deviation of the distorted probability weights from the prior weights.*’
The parameter 6, is the chosen ambiguity parameter that determines the magnitude of this
penalization. Large values of 6, imply low aversion to ambiguity, while small values of 6,
imply strong aversion to ambiguity. Relative entropy, defined as the expected value of the
log-likelihood ratio between two models or the expected value of the log of the Radon-
Nikodym derivative between models, is the measure used to determine the magnitude of
the deviation of the distorted probability weights from the prior weights.!!

While we have incorporated additional structure and complexity to the model to account
for model uncertainty, the resulting household or social planner problem remains tractable

and similar to the previous, no uncertainty problem, and is given by

T
V (8¢, 14, N¢) = max min Eo[f —(rtA) {mlog Ci(qi) — poyiy

g 7(v) 0
+ ) #(v)8allog #(v) — log m(v)]}dt + eIV (Ny)]
veY

subject to market clearing and the dynamics of the state variables relevant to the model.
As before, the social planner’s solution is still characterized by a recursive Markov equi-

librium for which an equilibrium solution is defined as before. The HJB equation resulting

from this modified household or social planner optimization problem which characterizes

the socially optimal solution is now given by

(k4 Nv(se, ip) = maxry%lr)lf-@log(l —q) + rlog(l — (1 —¢@)ir) + Z 0, [log(7(v)) — log(m(v))]
gt m(v s
+ 2 — (8 4 64y )i + viBsiir(1 — 0g;)* — vy Bsyis(1 — Ogy)?
veY

+ UsSeir(0 + 01dr) — viie[y — (0 + 04ie) ]}

1 1
+ 5[’055(% —03)25%1% + v (03845 — (1 — 1)i,0q)?] — [07vs]i%s* — 52203

10To give a concrete example in the context of COVID-19, it may be relatively easy to observe the
number of people who died from the pandemic but difficult to observe the number of people who were
infected. On the basis of this data, it is difficult to tell whether the disease has a very high spread rate
(Ro) and a low death rate (CFR), or a low spread rate and a very high death rate, yet the optimal response
is likely to be very different under these scenarios.

HSee Hansen and Miao (2018) for details about relative entropy in this setting. Using relative entropy
means we are only considering relatively small distortions from the baseline model, but even small distor-
tions can have significant impacts on optimal policy. In particular, we apply relative entropy penalization
directly to the set of conditional value functions.
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Taking the first order condition for this problem, and imposing » 7 (v) = 1, we find the
optimally distorted probability weights are given by

(V) exp(—gAvsits(ar) + vipi(gr) + Enpin})
27 (v) exp(— g Avsts (ae) + vigti(ae) + Enpen})

(v) =

As the 7(v) in the model are optimally determined and state dependent, the magnitude
of the ambiguity considered by the social planner when making optimal policy decisions
will depend on the current state of the pandemic and evolve dynamically, as was the case
before. The key difference now is that the value function derivatives and drifts are what
determine the distorted probabilities, and not the value function solved for each individual
model. Substituting back into the objective function, our HJB after minimization can be

written in a certainty-equivalent type form as follows

(k 4+ ANv(se, i) = max klog(l — q) + klog(l — (1 — ¢)iy)

— 0, log(Z T(v) exp{—(8 + 644 )ir + viBsrir(1 — 0q)* — vsBssis(1 — Ogy)?
+ vsseie (0 + 01dy) — vty — (6 + 0440)]})

1 1
+ é[vss(od — 0)25%1% + v (03843, — (1 — 1)3,09)?] — [02vg]i%s* — 52'203

The optimal choice of mitigation ¢; has a very similar functional form, given by

K 1

C = - +
2¢2(v; — vs)Bsiy €

where the terms Bt and &, are given as before by
Br= Y 7)BL), b = Y F)(0(v) + 4 (v)iy)

Now the planner tilts their value function and probability weights towards certain models
based on state variable drifts and value function derivatives, which leads to the implied

distorted model parameters which are adjusted by worst-case outcomes which the planner
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uses to respond in a robustly optimal way in the face of uncertainty. Importantly, the
policy function depends on the parameters associated with the various v models. But
rather than solving for an optimal policy for each model and choosing either our preferred
specification or taking a weighted average across model solutions based on a prior weighting,
the optimally uncertainty-adjusted parameters are incorporated directly into the optimal
policy choice, as well as the solution for the value function.

One particular advantage to using this smooth ambiguity framework as compared to
robust preferences as in Anderson, Hansen, and Sargent (2003) is that the uncertainty here
is structured into alternative models as characterized by sets of key parameters. This type of
structured uncertainty analysis allows us to examine how prior model weights are distorted
and therefore determine which models are of most interest to the uncertain planner when
making optimal policy choices that are robust to the existing ambiguity.!?

We note that this analysis abstracts from any form of Bayesian learning. While learn-
ing is certainly and interesting consideration to consider when thinking about the planner’s
optimal response to a pandemic, we find this setting valuable to consider for a number of
reasons. First, the rapid development of the COVID-19 pandemic and extreme difficulty
in determining the true model for policymakers responding in real-time based on imperfect
data, numerous virus variants, and an incomplete understanding of the effectiveness of
certain factors influencing infections and deaths, we view this assumption as a reasonable
starting point. Second, the tractability of the smooth ambiguity framework in our anal-
ysis is particularly valuable for providing intuition about the implications of uncertainty.
The characterization of ambiguity is condensed to a single dimensional parameter for un-
certainty aversion rather than the potentially high-dimensional complexities or additional

state variables than can arise from models of learning.

4 Numerical Results

Here we provide numerical results from simulations based on the theoretical solutions pro-

vided above. Calibration of parameters is discussed in Appendix A.2.

12Tn the appendix we provide an extension of the model where we apply the continuous-time robustness
framework studied in Hansen and Sargent (2001), Anderson, Hansen, and Sargent (2003), Maccheroni,
Marinacci, and Rustichini (2006), and others. While we are able to demonstrate the differences in how the
different types of decision theoretic frameworks impacts the structure of the planner’s problem, we expect
that quantitatively the results will actually be quite similar based on findings by Barnett et al. (2021)
which compare such differences in a climate model uncertainty setting.
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Figure 3: Outside the Model Uncertainty
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Notes: These figures show the range of possible outcomes and policy responses across nine potential models
of the pandemic that vary by Ry and CFR. The left column shows optimal quarantine policies by model
and the right column shows the fraction of the population that dies by model. The top row shows model
results where CFR = 0.005 and Ry is either 2.0,3.5, or 5.0. The middle row shows model results where
CFR = 0.02 and R is either 2.0, 3.5, or 5.0. The bottom row shows model results where CF R = 0.035 and

Ry is either 2.0, 3.5, or 5.0.
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Figure 4: Outside the Model Uncertainty
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Notes: These figures show the range of possible outcomes and policy responses across nine potential models
of the pandemic that vary by Ry and CFR. The left column shows optimal quarantine policies by model
and the right column shows the fraction of the population that dies by model. The top row shows model
results where CFR = 0.005 and Ry is either 2.0,3.5, or 5.0. The middle row shows model results where
CFR = 0.02 and R is either 2.0, 3.5, or 5.0. The bottom row shows model results where CF R = 0.035 and

Ry is either 2.0, 3.5, or 5.0.



4.1 Outside the Model Uncertainty Through Sensitivity Analysis

We first provide simulated outcomes of the model based on different pandemic models
without the planner accounting for uncertainty in their optimal decision. This corresponds
to what is typically termed as a sensitivity analysis and illustrates the wide range of optimal
responses that depend on the underlying model parameters. Figure 4 shows the spread of
outcomes for d;, and ¢; across the different model cases. The spreads are across all model
outcomes for Ry € {2.0,3.5,5.0} and initial CFR € {0.005, 0.02,0.035}.

Figure 4 indicates very different policies ¢ and outcomes d depending on parameters. For
example, the fraction of dead in the population varies by an order of magnitude, running
between nearly 0 to almost 4.0%. Observe that these are death rates obtained by a policy
maker who knows the true parameters and is reacting optimally, and in that sense is a best-
case outcome under each scenario. However, the quarantine policies vary dramatically in
magnitude and timing, suggesting that an inappropriate response could lead to even more
dramatically different outcomes. These differences highlight the likely significant role that
accounting for model uncertainty will play in determining an optimal quarantine policy

when the social planner accounts for model uncertainty and ambiguity aversion.

4.2 Inside the Model Uncertainty Through Smooth Ambiguity

The previous section highlighted drastically different responses and outcomes given different
parameters. In this section we examine how a policymaker explicitly accounting for these
differences might respond. We assume the true values match the simple averages of the
possible parameters, with Ry = 2.0 and initial CFR = 0.02. We then compare three sets of
prior beliefs over the models: (i) underestimating the pandemic, (ii) correctly estimating
the pandemic but with a disperse prior, and (iii) overestimating the pandemic. For each
scenario, we compare in Figure 6 the optimal quarantine and resulting deaths from a “naive
prior model” where the policymaker simply averages over optimal responses based on the
assumed prior, the uncertainty-adjusted policy starting from the same prior parameters but
with a somewhat diffuse prior, and finally the optimal response if the policymaker knows
the true model. Additionally, Figure 7 shows how the optimal beliefs evolve over time.
We first consider the scenario where the planner’s prior underestimates the severity
of the new disease by assigning a weight of 50% to the parameter set with Ry = 2 and
initial CFR= 0.005 and equal weight to the rest. In this case, the naive prior model optimal

response leads to much lower mitigation efforts relative to the true optimal response, as can
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Figure 5: Optimal Mitigation Under Three Scenarios
Panel A: Underestimating the Severity of the Pandemic
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Notes: These figures show the fraction of the population quarantined (first column) and dead (second column) under
(i) the naive prior model response (red), the uncertainty-adjusted model response (blue), and the true underlying
model response (black). The three rows refer respectively to the cases where the policy maker initially under, correctly
or over estimates the severity of the pandemic.
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Figure 6: Optimal Mitigation Under Three Scenarios
Panel A: Underestimating the Severity of the Pandemic
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Notes: These figures show the fraction of the population quarantined (first column) and dead (second column) under
(i) the naive prior model response (red), the uncertainty-adjusted model response (blue), and the true underlying
model response (black). The three rows refer respectively to the cases where the policy maker initially under, correctly

or over estimates the severity of the pandemic.
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Figure 7: Distorted Probabilities and Death Rates Under Three Scenarios

Panel A: Underestimating the Severity of the Pandemic
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Notes: The figures in the left panel show distorted probability weights 7; and the figures in the right panel show the
model CFR. For the distorted probability weights, the yellow solid line (CFR = 0.035, Rg = 5.0), and the yellow
dashed line (CFR = 0.02, Ry = 5.0) are always included as they are two of the models that receive the highest
distorted probability weight. For the top plot and middle plot, the blue dotted-dashed line (CFR = 0.005, Ry = 2.0)
and the red dashed line (CFR = 0.02, Ry = 3.5).are included because they receives the highest weight for the
assumed prior. The red shaded areas shows the rangeé of distorted probability weights for the remaining models. The
figures on the right panel show (i) the assumed naive prior model (red), the uncertainty-adjusted model (blue), and
the true underlying model (black) values for the CFR in each case.



be seen in the top row of Figure 6. This results in a sharp peak in infections and a higher
number of deaths relative to the optimal response. The uncertainty adjusted response
brings mitigation levels close to the true optimal, yet the high level of quarantine is not
sustained for as long, resulting in reduced deaths and infections compared to the naive prior
model, but not to the level of the true optimal model response. Figure 7 shows how the
policymaker’s beliefs evolve when underestimating the pandemic. Initially, the policymaker
puts a high weight on the most-severe case and remains pessimistic as infections rise. This
leads to an implied CFR even higher than the true model. Eventually, as the the pandemic
runs its course and then dies down, the prior weight and CFR shift toward the least-severe
case that has the highest weight in the prior weighting.

We next consider the scenario where the planner correctly estimates the severity of
the new disease, with a prior distribution assigning a weight of 50% to the parameter set
with Ry = 3.5 and initial CFR= 0.02 and equal weight to the rest. The outcomes are
shown in the middle row of Figure 6, with distorted beliefs shown in the middle for of
Figure 7. Mitigation efforts for the naive model are higher and more persistent than when
underestimating the severity of the epidemic, but still do not reach the level of the true
optimal model response. The uncertainty-adjusted response, however, now mirrors the
true optimal model’s quarantine, and as a result, in deaths and infections as well. The
probability weights start close to equal for most models, except the higher weight on the
true model and an increased weight on the most-severe model shown in the solid yellow line.
The impact is that the implied CFR increases for the ambiguity averse planner, persists at
a higher value, and does not revert as much or as quickly as previous scenario because the
prior model assumes a more severe pandemic than the first case.

In the third and final case, the planner overestimates the severity of the new disease
with a prior distribution giving the model with Ry = 5 and initial CFR= 0.035 a weight
of 50% and the remaining weight equally distributed across the other eight models. This
case is shown in the bottom row of Figure 6. In this scenario, the quarantine for the naive
prior model and uncertainty-adjusted model settings is high and much more persistent,
incorporating uncertainty leads to excessively high quarantining. Examining the evolution
of beliefs helps explain this asymmetry: when overestimating the pandemic, high weight is

already placed on the worst-case model.
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5 Concluding Remarks

This paper shows how to incorporate uncertainty in models of pandemics. Our main results
focus on the role of uncertainty aversion in a smooth ambiguity-based decision problem,
but we also show how a robust control approach would be implemented as well. With new
diseases, or diseases that have only had small outbreaks, there is often significant uncer-
tainty about key parameters which determine the overall costs of an epidemic. The results
highlight important asymmetries that may be present in many robust control problems.
When the assumed prior model underestimates the severity of a new threat, the planner
with ambiguity aversion responds early on in a way that substantially increases the mag-
nitude and persistence of the quarantine policy compared to response without uncertainty
concerns to a level that is closer to the optimal response when the true model is known, yet
the increased response does not persist as long. When the assumed prior matches the true
model but with a disperse prior, the uncertainty averse planner chooses a quarantine policy
that matches nearly identically the optimal true model response in terms of magnitude and
persistence, even though the disbursed nature of the prior leads the non-uncertainty averse
planner to under-react compared to the true optimal model response. These two cases
highlight the particular importance and value of accounting for uncertainty when com-
pared to the true optimal response. On the other hand, when the planner overestimates
the pandemic severity, the overreaction is at first fairly minimal for the uncertainty-based
response, though it persists at a higher level than for any other case.

Our analysis provides a framework under which uncertainty and model misspecification
can be incorporated into macroeconomic models of epidemics. Our work emphasizes that
uncertainty can play a large role in determining the optimal policy response to a new
disease. Economists and epidemiologists, rather than using a range of parameters, can use
our framework to explicitly model uncertainty. Future work can focus on making these

models more tractable for policymakers, who often have to make decisions in real time.
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Appendix A State Variable Dynamics and Volatility

A traditional SIR model is defined by state variables for the number of susceptible indi-
viduals S;, the number of infected individuals I;, and the number of recovered individuals
R;. In addition, the total population is tracked by the state variable N;. The evolution of

these state variables is typically determined by the deterministic differential equations

I
dS, = ¢y Nydt — 11, Sydt — BtStﬁtdt
t

I
d-[t = Btstﬁtdt — Mtltdt — ’Yt]tdt
t
th = —,uthdt + ptItdt
dNt/Nt = thdt — H't(St + It + Rt)dt - 5t-[tdt

where ; is the pandemic infection rate, 7; is the expected duration of infection, p; is
the pandemic recovery rate, d; is the pandemic death rate, u, is the birth rate, and ¢; is
the non-pandemic related death rate. In addition there is an adding up constraint such
that Ny = S; + I; + R;.

We then define new state variables, s; = R

J%’ 1y = ]{[—tt, and r; = A as the susceptible,
infected, and recovered fractions of the total population. Applying Ito’s lemma to these
new state variables, given the original level state variables dynamics, we find the evolution

of the fraction of the total population state variables as

dSt = gbtdt — BtStitdt — St(¢t — Zt(;t)dt
dit - Btstl.tdt - (pt + 6t)’ltdt - it(¢t - Zt(gt)dt
d?”t = ptltdt — ’f’t(QSt — Zt(;t)dt

Finally to arrive at the evolution equations we use in our analysis we make two assump-
tions. First, we assume pu; = ¢, = 0, allowing us to focus on the dynamics associated with
the pandemic. Second, we specify functional forms and add volatility in the form of param-
eter perturbations so that we replace 5:dt by pdt +ozdWp and §,dt by (ddt + 04;) + osdWs.
This results in the state variable evolution equations given in the beginning of the main
text. Furthermore, adding in quarantine impacts as discussed in the paper gives us the

final version of the state variable evolution equations used in our analysis.
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Appendix B Numerical Method

We solve numerically for a solution to the PDE representing the HJB equation for our
social planner’s problem. The numerical method we use to derive our solution is the
Markov chain approximation method developed by Kushner and Dupuis (2001), and the
specific algorithm given here builds on the publicly available code and algorithm provided
by Alvarez, Argente, and Lippi (2020)).

We start by deriving the solving the planner’s problem for the post-resolution period.
Once the vaccine and cure are developed, all concerns about the pandemic drop out, labor
is supplied inelastically, and so the planner’s problem is a simple present-discounted value

aggregation of linear utility given by

7 (Ny) — Eo[fo exp(—k(t — T))r log(C)dt ]

T

From this, the HJB equation and its solution are trivially derived as
kV(N7) = klog A + klog Ny < V(Nr) = log A + log Ny

With this solution, we can construct the pre-resolution period planner’s problem and

corresponding HJB equation. The planner’s problem is given by

V(st,ip, Njyv) = max EO[J exp(—(x + A)t){rlog(Ce(q(v)) — pirdi}dt + exp(—r(T — t)v(NT)‘U]

qt(v) 0
Incorporating the solution for V(Ny), the full HJB equation is given by

(k+ AV =maxrlog(l — q) + rlog(A) + klog(Ny) + rlog(l — (1 — ¢)ir) — @ir(d + d44¢)
qt

+ (‘/; - ‘/S)ﬂstZt(l — gqt)Q + Vgstit(5 + (5+Z.t) — ‘/;Zt["}/ — (5 + (54_2.,5)7;,5] — VN((S + 5+7;t)itNt

—_

1
+ i’ N?03Vyy + E[Vss(cfd — 07)25%1% + Vi (oissiy — (1 —4)i04)?]

— [07V,]i*s* — Viysitoa — i%(i — 1)03Vin + Mog(A) + Mog(Ny)

\)

Applying the analytical simplification for the value function described in the text, given

by V (s, ¢, Ni;v) = log(A) + log Ny + v(sy, 445 v), allows us to simplify the HJB equation for
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the planner’s problem to

1
(K + Av(se, ie) = mq?X’fIOg(l —q¢) + Klog(1 — (1 = @)ir) — ir(0 + 6.de) — (6 + )iy — 52203

+ 'Uiﬂstit(l — eqt)Q — ’Usﬁst'ét(l — th)2 + USStit((s + (5+'ét) — Uﬂ.t[’}/ — (5 + (54_2.15)7:75]
1
+ 5[053(% —03)%5%% + v (03848 — (1 — 1)iy0q)?] — [07v4]i%s>

Note that we can alternatively use the flow utility log(A) + xlog(NV;) + klog(1l — (1 —
)iy — qi(s¢ + ¢iy)), where quarantine is done only on susceptible and infected workers,
without any change to the algorithm that follows except for the definition of flow and the
expression for the optimal choice of ¢; which we will see below.

We define () as the terms involving quarantine in the HJB equation, to derive the

optimal quarantine choice ¢;. The equation Q(qy; ¢, 4, d;) is given by
Q(qt; 5t,0¢dy) = wlog(l — qi) + (Vi — V5) Bsyir(1 — ‘9%)2
Taking first and second derivatives of () with respect to ¢; gives

Q/ = _5(1 - Qt)fl - 29(% - Vs)ﬁstit(l - 9%)
Q" =—r(1— %)72 + 292(‘/2' — Vi) Bsiiy

Setting F’ = 0 we can derive the interior solution for the optimal choice of ¢; as

1+6 1+6) K
_( : ) + \/(( t )2 _4{—292(%__‘/5)6&“ + %}
2

qr =

Note that the complementary slackness condition for the first-order condition implies
that ¢mes = ¢ = 0. When Q" < 0, then the second-order condition is concave and
guarantees the optimal solution to ¢; is an interior solution satisfying the equation given
above. When Q)" = 0 the second-order condition is convex and so the optimal solution to ¢,
is a corner solution. Because of the Inada conditions associated with the use of log utility,
when Q" > 0 occurs the corner solution must be ¢; = 0. Furthermore, for numerical stability
we impose and upper bound constraint ¢; < 0.99 in the algorithm, though this constraint
never binds in our converged solution. As )" depends on ¢;, and we are simultaneously
solving for the value function V' and the optimal quarantine policy ¢, for each iteration of

the algorithm that we outline below, we use the previous guess for ¢; to determine whether
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Q" = 0 or Q" < 0, then then solve for the new optimal ¢; based on convexity or concavity,
updated our solution for V', and then use that new value of ¢; to check Q" in the following
iteration of the algorithm.

To solve the HJB equation, we separate the state space into the relevant cases over which
we need to impose distinct and necessary conditions for the Markov chain approximation
method to solve the HJB equation. We only solve the model for combinations of the state
variables such that s; +4; < 1, and therefore the adding up constraint s; +i; +7; = 1 can be
satisfied. We begin by first discretizing the values of the continuous-valued state variables

in the model as follows:

ss €{0,Aq, ..., 1 — A 1}
1; € {O,Ai, ceny 11— Ai7 1}

There is an analytical solution for the boundary of the state space where i; = 0. Note
that because i; = 0 there is no possibility of susceptible becoming infected, therefore the

optimal choice of ¢, = 0, and the analytical solution is given by
U(St,it‘it = O) = 0

The remaining state-space regions for which we need to solve for a numerical solution
to the PDE are given as follows. We first loop over values of s,, and check whether s, = 0
or 0 < sy < 1. For each of these cases, we check whether 0 < 4; < 7,40 OF 4; = T Where
Imae 18 the largest value of 7; in our discretized state space such that s, +1; < 1. Depending
on which case we are in, we use a different set of Markov chain Approximation conditions.

A visual construction of these conditions in an If-Then code structure is given as follows:

Table A.1: If-Then State-Variable Conditions

\ s state-variable condition \ 1 state-variable condition \
if s, =0

if 0 <4 < ipmaz
else if 4, = 1z

else if 0 < sy <1
if 0 <4 < ipmax
else if 4, = 1ax
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The Markov chain approximation is based on an upwind finite differencing scheme to
determine transition probabilities for each state at a given point in the state space. Starting
from the general HJB equation and replacing value function derivatives with the relevent
finite differences, subtracting xV from each side, multiplying by dt, and adding V' to each
side, we are able to rearrange to get common terms so that our expression to use in our

numerical algorithm is given by

1
(k + A)v(se,i¢) = klog(l — ) + klog(l — (1 — ¢)iy) — (1 + @)(d + dpip)iy — 51'202 — [07v4]i*s?
v(s,1) —v(s — Ag, 1)

N v(s, i+ 4A;) —v(s,1)

58%(1 - 9%)2} - 55%(1 - 9%)2

Az‘ AS
A i) : N AL
v(s + SZ> U(S’Z)Stit(é +0444) — v(s:9) Z@’Z l)ith — (0 + 0444 )14]
N %v(s + Ay, 1) + U(SA; Ag, 1) — 20(s,1) (04— 02)25%
lo(s,i +4A;) +v(s,i —A;) —2v(s,i _ .

Note that we “hold constant” the cross-partial term [c2vy;]i%s? by including it in the

flow utility at any given iteration in the algorithm and update each these values with

each iteration to find a consistent solution. For simplicity in notation after this, we define

flow = klog(1 — q;) + klog(l — (1 — @)iz) — (1 + @) (8 + d4ir)iy — 21205 — [0Fvsi]i%s?.
According to the method of Kushner and Dupuis (2001), the condition we need to

satisfy for convergence of our algorithm is that

Bstit(l — th)2 + Stit<5 + (S+it) I ﬁstit(l — Hqt)2 + (’}/ — (5 + 5+it)it)it
As JAY)
%(O’d — 0;)%s%i? N %(O’Z'Stit — (1 =1)ig0q)?

1
As? JAVE: )

dt < (k+ X+

Therefore, we impose

dt — 0.95 x min (k + A+ Bt + siie(0 + 0vie)  Bsiie + (v = (0 + 04 in)in)iy

seS,iel As Ai
N %(O’d — 0;)%s%i? N %(O’Z'Stit — (1 —14)i0q)*,
As? Ai? )

where the min operator is applied over the entire three-dimensional state-space for our

model. As the above approximation only holds for certain parts of the state-space because
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of the triangularity imposed by the adding up condition s;+1; < 1, we consider case-by-case
the alternative finite-difference approximations imposed in each relevant scenario to adapt

this general approximation expression to work in each region of the state-space.
When s, = 0,0 < 4; < it

: : N
v(8y,04) = ngx;@log(l —q) + klog(1 — (1 —)ig) — (1 +©)(0 + d14y)iy — 52203

iy — (0 + d1dy)ie] ﬁ}
(1—(k+wv)dt) A;
(=1 = 1)iog)* dt

(= (v s Ndf) A2

+ (1= (k+ N)dt)[v(s,i — A;) — v(s,)]{

+ (1= (k+ Ndt)[v(s,i + A;) — 2v(s,1) + v(s,i — 4Ay)]

+ (1 — (k + N)dt)v(s, 1)

When s = 0,7 = i,,45:

2
—0,
2d

(1= (), = A — (s DN (fjj)*;t) )

+ (1 — (k4 AN)dt)v(s, 1)

v(se, 1) = max klog(l — (1 — ) — (1 +¢)(d +d4) —

When 0 < 55 < Spmaz, 0 < 5 < tmawt

v(Sy,1y) = mqe:x&log(l —q) +rlog(l—(1—0¢)iy) — (1 4+ ¢)(6 + 04d4)ip — %i%g — [0}v,]i*s?
53%(1 - 9%)
(1—(k+AN)dt)A
s¢it(0 + 014) d
(1—(k+N)dt)A
, oy — (04 5+Zt)lt]
+ (1 = (k + AN)dt)[v(s,i — A;) —v(s,i){ 1= (7 /\)dt) —}
ﬁstzt(l - 9%) }
(1—(k+N)dt)A

2(0d —0;)%s%? dt

(1 —(k+ A)dt) A2

+ (1= (k+ AN)dt)[v(s — Ag, 1) —v(s,i){ }

}

+ (1= (k+ AN)dt)[v(s + Ag, i) —v(s,9)[{

+ (1= (k+ N)dt)[v(s,i + A;) —v(s,){

+ (1= (k+ Ndt)[v(s + Ay, 1) — 20(s,1) + v(s — A, 0)[{ —}
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L(ossiy — (1 — i)igoq)? dt
(I—(k+N)dt) A2

+ (1= (k+ ANdt)[v(s,i + A;) — 2v(s,1) + v(s,i — A)]{ }

+ (1 = (k4 N)dt)v(s, 1)

In addition we need approximations for v; — v, vy, We use

v(s, i+ Ay d) —v(sisd)  v(s,i,d) —v(s — Ay, i, d)

U — Vg A
Ai As
A it Bg)=v(s+As,i=Ag)—v(s— A i+ Ai) +v(s—As i=A; ~
V(s +As, i+ Ai) —v(s+As 4& Z(s AR08 when s, 4+ Ay + 6 + A < 1
Vi ~ s
st v(s,i-‘rA,-)—v(s,i—Ai)—1)2(2—AA‘S,i+Ai)+fu(s—As,i—Ai) otherwise
S 7

When 0 < s; < Spmazs = tmaz:

1
v(sg, i) = H;ztlxnlog(l —q) + klog(1—(1—¢)iy) — (L4 @)(d + dpiy)iy — 52'203 — [o7vg]i%s?

Bsiiz(1 — 0g)? dt
- (r+ A)dt)E}
+ (1= (5 + Nd)[v(s + Agi = A7) — (s, 1) I (ftz—t((iié;)zzf) Z_i}
iy = (6 + 04ir)ie] ﬁ}

Yoy — 0,)2s%2 dt

(1— (k + A\)dt) Ag}
H(osseis — (1 —4)izoq)? dt |
(1—(k+Ndt)  Ad2

+ (1= (k+ AN)dt)[v(s — Agy i+ A;) —v(s, 1) {

+ (1= (k+ N)dt)[v(s,i — A;) —v(s,4)]{

+ (1= (k+Ndt)[v(s + Ag, i — A;) —20(s,1) +v(s — Ag, 1) {

+ (1= (k+ AN)dt)[v(s — Agyi + A;) —20(s, 1) +v(s,i — A

+ (1 = (k + AN)dt)v(s, 1)

In addition we need approximations for v; — vy, vs;. We use

v(s — Ag, i+ A;) —v(s,9)

v(s,i) —wu(s,i — A;) —v(s — Ag, i) +v(s — Ag, i — A))
AGA;

Once we have model solutions using our algorithm, results are generated using simula-

tions based on the model solutions where model priors and underlying processes are chosen
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to fit the scenarios described in the main text. The simulations set shocks to zero, while
using solutions assuming there are shocks in the model. Initial values for the simulations
are chosen by assuming there is a small initial population of infected individuals, as well
as a small initial value of immune/recovered individuals. The first assumption is required
to provide a small but rapidly growing level of infection in the model as was observed in
the US, and the second is is in line with Alvarez et al. (2020) and consistent with some
recent research that exposure to related coronaviruses may provide some people with at
least partial immunity'®, and insures stability of the simulations as well. The initial values

we use are given by sop = 1 — €1 — €9, 19 = €, = 0.01, o = 0.02, and dy = 0.

Appendix C Parameter Values

This appendix discusses the parameter values used in the main calibration. These param-
eters are shown in the table below, and we discuss the parameter choices now. For the
economic side of the model, we normalize the working population to one and set produc-
tivity to A = 20/12 = 1.667 so that output in the non-pandemic version of the model
(A x L) matches recent, pre-pandemic data on US GDP of $20 trillion dollars annually
or $1.667 trillion dollars monthly. We choose an annual discount rate of 3%, and so the
subjective discount rate x is given by x = 0.0075 for the baseline analysis. We assume the
expected arrival time for a vaccine is one year, so that the value of the arrival rate is given
by/\zlx%:0.0%.

For the pandemic model parameters, we use values from various studies (including
Korolev (2020), Atkeson (2020b), Atkeson (2020a), Wang, Wang, Dong, Chang, Xu, Yu,
Zhang, Tsamlag, Shang, Huang, et al. (2020), Abel and Panageas (2020), and estimates
from the European Centre for Disease Prevention and Control) to set the expected time
infected v, the case fatality rate CFR, and the birth rate Ry, which allows us to pin down

the infection rate 3, the death rate ¢, and the recovery rate p. The value of ~ is held

30
18°

models used in our analysis use initial values of CFR in the set {0.005,0.02,0.035} and
values of Ry in the set {2.0,3.5,5.0}. For the state dependent death rate, rather than

add an additional set of parameters we choose to scale the initial CFR values so that

fixed at v = or an expected duration of infection of one month. The set of underlying

0, =5 x 0 x i;. This means that if 20% of the population were to become infected, i.e., if
iy = 0.2, then the CFR would be double the initial value. These values are well within the

13See articles in Science, Nature, and medRxiv for examples.
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https://www.nature.com/articles/s41586-020-2550-z
https://www.medrxiv.org/content/10.1101/2020.04.17.20061440v1

range of values across these different studies. The value of ¢ is consistent with estimated
values for the fraction of infected individuals who are asymptomatic given by the CDC
COVD-19 Pandemic Planning Scenarios website. The value for quarantine effectiveness, ¢,
is chosen to match Alvarez, Argente, and Lippi (2020). For the volatilities o; and o4, we
use data from the Center for Systems Science and Engineering in the Whiting School of
Engineering at Johns Hopkins University!® to calculate empirical counterparts for these.
Finally, we must also specify values for the uncertainty parameter in our model 4, for
smooth ambiguity. Our main value main of the uncertainty parameter, 8, = 0.0275, imposes
a significant amount of uncertainty aversion to demonstrate the potential magnitude of
uncertainty impacts. This value can be difficult to interpret on its own, and are best
interpreted by way of the conditional relative entropy values implied by these parameter
choices and the distorted model probabilities provided in the analysis to determine if they
are reasonable. We do not provide those values here, but they can be provided upon request
from the authors. Furthermore, anecdotal evidence on model spreads implied by the recent
estimates of COVID-19 parameter values which guide the values we use ensure that our

distorted values remain within a reasonable region.

Table A.2: Parameter Values

Parameters Variable Value
Subjective Discount Rate K 0.0075
Non-Pandemic Output AxL 1.667
Infection Severity [0) 0.4
Quarantine Effectiveness ¢ 0.5
Arrival Rate of Vaccine A 0.056
Reproduction Number Ro {2.0,3.5,5.0}
Initial Case Fatality Rate ~ CFR  {0.005,0.02,0.035}
Infection Half Life Y 30/18
Death Rate Convexity o 5 x @
Volatility Oi, 04 {0.029,0.014}
Ambiguity Parameter 0, {0.0015, 0}

4This data is available through the CSSE GitHub repo.
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Appendix D Model Extensions

Preferences with Nonpecuniary Losses from Deaths

We can extend our model by adding an additional cost and uncertainty component from the
pandemic in the form of nonpecuniary losses from deaths due to the pandemic. To do this,
we now assume the representative household has flow utility that depends on consumption
Cy, a subjective discount rate x, and nonpecuniary losses nonpecuniary losses for deaths

from the pandemic
Uy = klogCy — a4

The nonpecuniary losses for deaths from the pandemic x; account for losses beyond the
economic costs of of a reduced labor force, and therefore reduced final output production,
from quarantine measures and death. Because these costs are determined by deaths from
the pandemic, there is a mapping between infections and nonpecuniary costs of the form
x; = x(i¢) , where we assume a functional form similar to Alvarez et al. (2020), Abel and
Panageas (2020), and Jones et al. (2020):

X(1) = @(0+ 54

The value of ¢ represents the valuation the planner places on the deaths from the pandemic
and (0 4+ d.4;)i; is the fraction of the population who die in any given period because of the

pandemic. Applying Ito’s lemma we derive the evolution of nonpecuniary costs as
doy = Xipi(se, ie; @, V)AE + Sxaloi (50, 00) [Pdt + xi0(s4, 1) AW,

where y; and y;; are the first and second derivatives, respectively of x(i;) and p; (s, it; q;, v)
and o;(8¢, 145 g, v) are the drift and volatility, respectively, of the state variable for infec-
tions 7;. Note optimal quarantine policy influences the drift of ¢, which directly enters the
evolution of ;. Therefore, the optimal choice for ¢; will include an explicit adjustment for
these nonpecuniary costs. Also, we note that uncertainty will enter through the existing
uncertainty related to Rg and the CF R, which enter into the drift for x;. As such, this ex-
tension will serve to amplify the existing channels related uncertainty and its implications

for the choice of optimal quarantine policy.
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Productivity Costs of Mitigation and Uncertainty

An important extension to consider is the possibility of additional costs of quarantine
measures on output, beyond the consumption-equivalent costs that result from reduced
labor. In addition, a potential consequence of mitigation efforts is that it could lead to
reduction in productivity. In particular, Barrot, Grassi, and Sauvagnat (2020) note that
social distancing measures could lead to a reduction in GDP growth. We model this

formally by extending our expression of productivity to be

A= Aexp(z)

1
dz = pdt — éazdt + o, dW;

This extends productivity to follow standard geometric Brownian motion growth as is
commonly used throughout economics and financial modeling. However, we add to this a
term to account for reduced growth resulting from social distancing quarantine measures,
which we will calibrate to fit the estimates provided by Barrot, Grassi, and Sauvagnat

(2020). This additional term augments the process for z to now be

A= Aexp(z)

_ 1 .
dz = pdt — agbdt — §0§dt + o, dW,;

The cost provides an additional impact from quarantine reflected in not only level im-
pacts but also growth implications for quarantine measures. In addition, as there exists
substantial uncertainty about the long-term economic consequences of “shutting down the

)

economy” in this manner, we can allow for this additional channel of model uncertainty

as we have done with the pandemic model, allowing for alternative values of @,b to be

specified and part of our v conditional models so that dz; is given b

A = Aexp(z)

~ v 1
dzy = p.dt — d(v)qf( Vdt — §a§dt + o, dW,;

This additional channel of uncertainty will interact with our existing uncertainties and will

potentially have meaningful implications for the social planner’s optimal policy response.
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Uncertainty Through Robustness

Though our analysis mainly used the smooth ambiguity framework, where the social plan-
ner optimally chose probability weights to place on competing parameterizations of the
model, an alternate approach to the problem is through applying the robust preferences
methodology established in the economics literature!®. Accounting for uncertainty in this
way allows the social planner to make optimal mitigation policy choices while acknowl-
edging that a given baseline model may be misspecified. As with smooth ambiguity, the
mathematical tractability of the robust preferences decision problem allows us to charac-
terize the implications of uncertainty for optimal policy decisions with clear intuition. We
briefly outline here how we incorporate robust preferences to account for model uncertainty,
and direct readers to the aforementioned references for complete mathematical details.
We define the approximating or baseline model using the evolution equations of the

state variables as previously given:

ds; = —(B+ oghe)siidt + s4i(0 + 043¢ + os5he)dt — spi;03dWp + spizosdWs
dic = (B4 oght)siydt — vyipdt + i7 (0 + 64y + oshy)dt + ogsiiydWs — (1 — ir)oadWs
re = l—s;—1
AN, = —i,N,(0 + 040y + oshy)dt — iy N;o5dWs

As was the case in the smooth ambiguity setting, we assume the baseline model is the
result of historical data or previous information about coronavirus pandemics and acts as
a best-guess at what the true COVID-19 pandemic model is for policymakers. However,
we allow the social planner in our model to consider the likelihood that this model is
misspecified, or that there are possibly other models which are the true model for the
COVID-19 pandemic.

Possible alternative models are represented by a drift distortion that is added to the
approximating model by changing the Brownian motion W to Wt + Sé hsds where h, and Wt

are processes adapted to the filtration generated by the Brownian motion W;. Therefore,

15Detailed explanations of robust preference problems and axiomatic treatment of such formulations using
penalization methods are given by Cagetti, Hansen, Sargent, and Williams (2002), Anderson, Hansen, and
Sargent (2003), Hansen, Sargent, Turmuhambetova, and Williams (2006), Maccheroni, Marinacci, and
Rustichini (2006), Izhakian (2020) and Hansen and Sargent (2011).
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alternative models under consideration by the social planner are of the form

ds; = —(B+ oshy)sii(1— Cqr)’dt + s4i(8 + 04y + o5hy)dt — s,i05dWs + syiyosdW
dis = (B +0she)siie(1 = Cqe)*dt — vigdt + i (0 + 0.4i¢ + 05he)dt + 050 dWs — iy(1 — i¢)oadWs
re = l—si—1u
dN; = —iyNy(6 + 044y + oshy)dt — iy NyosdWs

In this form, the alternative models are disguised by the Brownian motion and so are
hard to detect statistically using past data. In addition, the alternative models are given
without direct parametric form, which allows for a larger class of alternative models under
consideration by the planner.

We can interpret the drift perturbations for misspecification directly as parameter mis-

specifications and altered model parameters of the form

dSt = —Btstl.t(l — th)th + Stitgtdt — StitgﬂdWB + StitaddW(s
dit = Btstit(]- — th)th — ')/tht + Z?Stdt + UﬁS{iﬂiWﬁ — Zt(]. — it)UddW5
AN, = —i,Nbdt — i, N,o5;dW;

where 8, = B + hyop and 6, = & + 0,4y + hyos. The hy in the model will be optimally
determined and state dependent, and so the magnitude of the parameter misspecification
considered by the social planner when making optimal policy decisions will depend on the
current state of the pandemic and evolve dynamically.

For the uncertainty analysis to be reasonable, we will restrict the set of alternative
models considered by the social planner to those that are difficult to distinguish from the
baseline model using statistical methods and past data. A penalization term based on the
conditional relative entropy measure of model distance is used to accomplish this. The
parameter 6, is chosen to determine the magnitude of this penalization. We have defined
relative entropy previously, and note that Hansen, Sargent, Turmuhambetova, and Williams
(2006) provides complete details about relative entropy use in a robust preferences setting.
Again, relative entropy means we are only considering relatively small, though potentially
significant, distortions from the baseline model.

The time derivative of relative entropy or contribution of the current worst-case model
hidt to relative entropy is given by %|ht\2. This term is added to the flow utility or prefer-

ences of the household to account for model uncertainty. As was the case in the smooth
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ambiguity setting, optimal decisions will be determined by considering alternative worst-
case models as a device to generate optimal policies that are robust to alternative models,
and not as some type of distorted beliefs setting. The household maximization problem is
replaced with a max-min set-up, where the minimization is made over possible model dis-
tortions h; which are constrained by 6,,. This allows the planner to determine the relevant
worst-case model for given states of the world to help inform their optimal policy decisions.

While we have incorporated additional structure and complexity to the model to account
for model uncertainty, the resulting household or social planner problem remains tractable

and similar to the previous, no uncertainty problem, and is given by

T
0., ~
V (s, 44, Ny) = max n}lLin EO[J e~ N e log (Cy(qr) — @by + 7|htl2}dt + e "IV (Np) o]
qt t 0

subject to market clearing and labor supply constraints.

As before, the social planner’s solution is still characterized by a recursive Markov equi-
librium for which an equilibrium solution is defined as before. The HJB equation resulting
from this modified household or social planner optimization problem which characterizes

the socially optimal solution is now given by
. . N 1 .2 9 em 2
(k 4+ Nv(se, i) = max klog(l — q) + klog(l — (1 — ¢)iy) — (1 4+ @)(§ + 0444)iy — EZ o5+ 7|ht\
qt
+ ’Uiﬁst'l't(l — 9qt)2 — UsﬁSt’it(l — QQt)Q + USSt'it((s + 5+’it) — 'Uiit[’}/ - ((5 + 5+’Lt)]
+ [—s1it08Vs + 51110505 + 05510 — i (1 — ip)oqv; — 1:05| hy

1 . . . .
+ §[Uss(ad — ai)25222 + vy (oi8e1y — (1 — z)ztad)2] — [afvsi]z252

The first-order conditions for the optimal model distortions give us

hf? = (01— v (sviers)? + (su = (1= o = 1)2(1))

m

Plugging back in to the HJB equation, we are left with the following problem

1
(k + AN)v(sy,4) = maxklog(l — q;) + klog(l — (1 — @)iy) — (1 + ©)(0 + 0444)iy — §i20521

qt

o %[(Uz - Us>2(3tit05)2 + (spvs — (1 —dp)v; — 1)2(it05)2]

+ v; 88484 (1 — th)2 — vs s (1 — 9qt)2 + sS4i (0 + 0404) — viig[y — (0 + dpiy)]
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2.2:2 -2 2

+ —[vss(0q — 04)°s%1° + vy (oysiy — (1 — i)z’tad)2] — [aizvsi]z s

N | —

The optimal choice of mitigation ¢; is of the same functional form as in the smooth
ambiguity analysis. Key differences to the social planner problem and HJB equation show
up through the adjustments to the flow utility as a result of the penalization term accounting
for model uncertainty concerns. The optimal mitigation policy takes the same functional
form as before. The implications of model uncertainty for optimal mitigation policy and
social welfare in the face of a pandemic are not only the direct adjustments to the key
equations of interest, but also how these adjustments feed through the model solution and
alter the value function V' and the marginal values of changes to the susceptible, infected,
and dead populations, represented by V., V;, V,;. Though we do not report results from this
approach, they can easily be solved for numerically and should provide similar qualitative

findings to those under the smooth ambiguity approach.

Uncertainty Through Alternative Smooth Ambiguity Formulation

Here we incorporate uncertainty using the decision theoretic framework developed in Hansen
and Sargent (2011). Given an optimal policy ¢:(v) and value function v(s;,i;;v) for each
conditional model, we first specify a prior distribution to the set of models v € T, by

assigning a probability weight 7(v) to each model v, satisfying

m(v) =0 YveT, Zﬂ'(v) = 1.
veY
Like the alternative models in our set, the prior probability weights are assumed to come
from historical data or real-time observational inference.

We then allow for uncertainty aversion by using a penalization framework based on
conditional relative entropy. This framework allows the planner to consider alternative
distributions or sets of weights 7(v) across the set of conditional models in a way that
is statistically reasonable. This works by restricting the set of alternative model weights
considered by the social planner to those that are difficult to distinguish from the prior

model distribution using statistical methods.!® The parameter 6, is chosen to determine

16To give a concrete example in the context of COVID-19, it may be relatively easy to observe the
number of people who died from the pandemic but difficult to observe the number of people who were
infected. On the basis of this data, it is difficult to tell whether the disease has a very high spread rate
(Ro) and a low death rate (CFR), or a low spread rate and a very high death rate, yet the optimal response
is likely to be very different under these scenarios.
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the magnitude of this penalization. Large values of 6, imply low aversion to ambiguity,
while small values of 6, imply strong aversion to ambiguity. Relative entropy is defined as
the expected value of the log-likelihood ratio between two models or the expected value of
the log of the Radon-Nikodym derivative between two models.!”

This new, second-stage problem for the planner is a minimization problem, where the
minimization is made over possible distorted probability weights 7(v) which are constrained
by 6, based on the solutions to the v conditional value function solutions found previously.
This allows the planner to determine the relevant worst-case model for given states of
the world to help inform their optimal policy decisions.!® Though optimal decisions will
be determined by considering alternative worst-case models, this setting should not be
interpreted as a distorted beliefs model. The worst-case model is used as a device to
produce solutions that are robust to alternative models. The second-stage minimization

problem is given by the solution to the following problem

Vi =min ¥ #(0)(V(v) + 8,[log(7(v)) — log(m(v))])

() veY

subject to Z m(v) = Z m(v) =1
veY veY

Taking the first order condition for this problem, and imposing > 7 (v) = 1, we find the
optimally distorted probability weights are given by

exp(—g-V(v))
1

2 m(v) exp(—5-V(v))

7(v) = m(v)

As the m(v) in the model are optimally determined and state dependent, the magnitude

of the ambiguity adjustment considered by the social planner when making optimal policy

17See Hansen and Sargent (2011) for details about relative entropy in this setting. Using relative entropy
means we are only considering relatively small distortions from the baseline model, but even small distor-
tions can have significant impacts on optimal policy. In particular, we apply relative entropy penalization
directly to the set of conditional value functions.

80ne can view the optimal policies choices as being made by a sequence of policymakers at each point
in time, which assumes limited commitment in our framework. Issues of dynamic consistency and limited
commitment are relevant for a broad class of optimal control problems solved under uncertainty. The
limited commitment assumed by this interpretation of our model creates a possible tension in terms of
whether the planner’s optimal choices are consistent with time zero choices made. However, given that our
discount factor is close to zero because of the weekly time-scale used for our analysis, the intertemporal
differences in social valuations will be quite small and so we suspect that the impact of limited commitment
will be quantitatively small.
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decisions will depend on the current state of the pandemic and evolve dynamically.

From the distorted probability weights, we see that while the prior probability weights
anchor the outcomes to a baseline expectation of the true model, smooth ambiguity leads
to an exponential tilting towards those v conditional models that lead to the most negative
lifetime expected utility implications. In order to determine the ambiguity robust policy
for the social planner, we weight the v conditional optimal mitigation policies ¢ (v) using
the distorted probability weights. The magnitude of the weight given to each v conditional
model informs the planner on how to use the v conditional mitigation policies to determine
an ambiguity robust optimal policy. This same re-weighting using the distorted probability
weights provides us with the distorted parameters which the social planner uses to make
optimal policy decisions in this setting. The adjusted mitigation policy and distorted

parameters are therefore given by

Q= ), T(0)a(v), b= F()B0), b= ) 7(V)(E(v)+ 6 (v))
veY veYl veY
As the planner tilts their value function and probability weights towards certain models,
this leads to the implied distorted model parameters which are adjusted by worst-case
outcomes which the planner uses as a lens to view and respond in a robustly optimal way

in the face of uncertainty.
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