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1 Introduction

Economists increasingly use quantitative spatial models to evaluate urban policies such as infras-

tructure investments and land-use planning decisions. The growing availability of economic data

observed at increasingly finer spatial scales offers tremendous potential for new insights. However, if

policymakers are to rely on these models to inform their decision-making, researchers must establish

that they reliably capture relevant features of the data and perform well in making counterfactual

predictions (Bryan, Glaeser, and Tsivanidis, 2019, p.31).

Quantitative spatial models characterize spatial linkages by the gravity equation, which says that

the volume of interactions between any two locations increases with their sizes and decreases with

the bilateral frictions between them (Redding and Rossi-Hansberg, 2017). The gravity equation, in

turn, is derived under the assumption that the volume of interactions between any two locations is

large enough to wash out any idiosyncratic choices of individuals. But when locations are defined at

fine spatial scales, the interactions between them are “granular.” That is, individual decision-makers

are large relative to the economic outcomes being analyzed. In such settings, the idiosyncratic

choices of individual decision-makers do not wash out. By assuming a continuum of individuals,

the extant literature has neglected granularity’s influence on its counterfactual predictions.

In this paper, we introduce a new framework for the quantitative analysis of spatial linkages

in granular settings. In doing so, we make four main contributions. First, we document that

a number of empirical settings studied by economists feature commuting matrices that exhibit

granularity. Second, we develop a quantitative spatial model that features a finite number of

individuals and is suitable for counterfactual analysis. While incumbent models assume a continuum

of individuals as a modeling convenience, our granular framework is just as tractable and matches

the basic fact that no empirical setting has a continuum of individuals. Third, we show that

estimates of commuting elasticities, workplace productivities, and residential characteristics can be

very sensitive to how the granular features of the data are (implicitly) modeled. Fourth, we assess

the “out-of-sample” predictions of quantitative spatial models using event studies of large changes

in employment arising from new office openings. Regressing observed changes in commuting flows

on the models’ predicted changes shows that our granular model predicts these changes better than

the conventional procedure applied to models assuming a continuum of commuters.

Section 2 shows that granularity is common in empirical settings of interest. Focusing on the

United States, we examine tract-to-tract and county-to-county commuting matrices used in prior

research. These settings are sufficiently granular that the commuting matrices are sparse: half

or more of geographic pairs—within reasonable commuting distance—have zero commuters. We

document that the commuter counts vary considerably from one year to the next, which may

be a symptom of granularity. This impersistence poses a challenge for calibration methods that

exactly replicate the commuting flows observed in a given year. Furthermore, commuting matrices’

zeros are often asymmetric. As a result, calibration procedures that rationalize zero-commuter

observations by infinite commuting costs impose severely asymmetric commuting costs despite the

fact that daily commutes are round-trip journeys.
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In Section 3, we propose a gravity-based general-equilibrium framework suitable for computing

counterfactual outcomes in applications featuring granular commuting matrices. We follow the

general-equilibrium approach employed in quantitative spatial models (e.g., Redding and Rossi-

Hansberg 2017), but we assume that the number of individuals in the economy is finite. The key

modeling challenge is that individual decisions affect wages and rents. We assume that individuals

act as price takers and optimize given their beliefs about wages and rents. Employing standard

discrete-choice methods (e.g., Train 2009), we model individuals choosing residence-workplace pairs

on the basis of wage beliefs, rent beliefs, commuting costs, and an individual-specific idiosyncratic

preference draw. We estimate the model assuming the price beliefs are “continuum-case rational

expectations,” which are the equilibrium prices in a model with the same parameters but a

continuum of individuals. In our granular model, equilibrium outcomes depend in part on the

idiosyncratic component of individuals’ choices. Thus, where the continuum model would yield a

single equilibrium allocation, our framework produces a distribution of economic outcomes instead.

Notably, a single realization of the stochastic process often produces zeros for equilibrium outcomes

that have strictly positive probabilities.

The continuum assumption has been made for reasons of convenience, not realism. Since our

granular model is just as tractable as the continuum approach, it can be applied in the same

empirical settings of interest. Moreover, since our granular framework coincides with the standard

model in the limit, it can be used to quantify the role of granularity in economic outcomes and

assess the (un)suitability of the continuum approximation.

Section 4 shows that the model’s parameters can be estimated using the same data on commut-

ing flows typically employed in the estimation of continuum-of-individuals models. Our maximum-

likelihood estimator treats observed data as a realization from a multinomial count process. By

contrast, the prior literature has frequently neglected the econometric concerns accompanying

granularity. For example, the most common practice in the extant literature is to restrict the

estimation sample to pairs of locations with strictly positive numbers of commuters between them.

While discarding observations with zero commuters allows researchers to estimate the commuting

elasticity using ordinary least squares, this practice has been criticized in the trade and industrial-

organization literatures for introducing a selection bias (e.g., Eaton and Tamura 1994; Head and

Mayer 2014; Wollmann 2018). The less common practice of recoding zeros as arbitrary small

numbers introduces other biases. We find that these three estimation procedures deliver quite

different parameter values in practice.

In Section 5, we describe how our framework can be used to compute counterfactual outcomes

in granular empirical settings. Our framework’s predictions about counterfactual outcomes can

differ considerably from the conventional calibrated-shares procedure that equates observed shares

and underlying probabilities. We illustrate that the calibrated-shares procedure predicts land-price

changes in response to a productivity increase that are, quantitatively, very close to proportional

to incumbent workers’ residential shares prior to the counterfactual change. The granularity and

impersistence of commuting flows suggest that these predictions are likely an artifact of overfitting
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the model to the observed data. By contrast, our granular framework ties the incidence of the

productivity improvement on local land prices to observable commuting frictions between residential

locations and the workplace, such as distance or commuting time, and predicts a distribution of

counterfactual outcomes.

We assess quantitative spatial models’ suitability for counterfactual analysis by comparing their

predictions for changes in commuting flows to observed outcomes after a local economic shock.

Examining the “out-of-sample” performance of these models is an important step in establishing

their value as an input into urban planning and other policymaking decisions. We examine

commuting flows, which are consistently reported in available data and the key spatial linkage

between neighborhoods in many models of cities. We study events in which there is a large,

discrete increase in employment in a single census tract arising from the arrival of a large employer

such as Google or Tiffany & Co. We increase the productivity parameter for that tract to match

the increase in total employment and compare the predicted changes in bilateral commuting flows

to those observed in the data. When examining 78 events of tract-level employment booms in New

York City, we find that our granular framework predicts the observed changes in commuting flows

better than the calibrated-shares procedure for 76 of these events. While predictive performance

varies across events, regressing the observed change in commuters on the granular model’s prediction

typically yields an estimated slope of one, whereas the estimated slope for the calibrated-shares

procedure is often near zero or negative. In other words, the counterfactual predictions from the

calibrated-shares procedure are negatively correlated with the observed changes in commuting in

more than half of the 78 events.

At first glance, it may be surprising that our granular model predicts changes in commuter

counts better than the procedure that calibrates parameters to perfectly fit the pre-event flows. For

intuition, note that each observation in the pre-event cross section has three parts: a time-invariant

component correlated with included covariates, a time-invariant component uncorrelated with those

covariates, and a time-varying component. On the one hand, the advantage of the calibrated-shares

procedure is its potential to capture real spatial linkages not predicted by covariates like transit

times, such as the fact that a very large share of Columbia University employees reside in nearby

university-owned residences. On the other hand, the calibrated-shares procedure matches every

bit of variation in the data, including transitory individual idiosyncrasies. This risks overfitting

the third component of the pre-event observations and failing to predict post-event outcomes. In

our event studies, the overfitting problem dominates. We explore the extent to which pooling

several years of pre-event data can improve the models’ predictions. While pooling improves the

calibrated-shares procedure’s predictions such that they are positively correlated with the observed

changes in almost two-thirds of the events, the granular model still outperforms the calibrated-

shares procedure in 65 of 78 events.

We contribute to the rapidly expanding literature on quantitative spatial economics.1 A growing

1In gravity-based quantitative models, a location’s access to all other locations’ goods and factors, which is impeded
by bilateral frictions, influences the magnitude and character of its economic activity. See Proost and Thisse (2019)
for a recent survey of these models, Donaldson (2015) on market access in goods trade, Redding and Turner (2015)
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body of research aims “to provide an empirically relevant quantitative model to perform general

equilibrium counterfactual policy exercises” concerning topics such as transportation-infrastructure

investment, neighborhood revitalization programs, and local business tax incentives (Redding and

Rossi-Hansberg, 2017, p.23).2 As anticipated by Holmes and Sieg (2015, p.106), “[a]s research

in urban and regional applications takes advantage of new data sets at high levels of geographic

resolution, it permits the study of interactions at narrow levels, where there may be relatively

few decision-makers,” but quantitative spatial models have largely abstracted from discreteness

in the underlying economic environment. The extant literature takes two distinct approaches

when applying a continuum model to residence-workplace pairs with zero commuters, which are

the most obvious symptom of granularity. The calibrated-shares procedure rationalizes zeros by

imposing infinite commuting costs or disamenities, so that every residence-workplace pair with zero

commuters in the observed equilibrium has zero commuters in any counterfactual scenario.3 The

second approach makes bilateral commuting costs a function of observable (or computed) transit

times that take finite values and therefore cannot produce the zero-commuter outcomes that are

pervasive in the data.4 Our granular framework generates zeros without imposing infinite costs.

Our event studies of new office openings contribute to a much smaller literature assessing

the predictive power of quantitative spatial models using observed economic changes. Ahlfeldt

et al. (2015) demonstrate their quantitative model’s ability to capture how changes in floor prices

associated with Berlin’s division and reunification correlated with distance to the pre-war central

business district. Monte, Redding, and Rossi-Hansberg (2018) verify a qualitative implication of

their quantitative spatial model—larger employment responses to a local productivity increase

in counties more open to commuting—using the million-dollar-plant openings examined by Green-

stone, Hornbeck, and Moretti (2010). Adão, Arkolakis, and Esposito (2020) compare US commuting

zones’ actual and predicted changes in employment and wages in response to the “China shock” of

Autor, Dorn, and Hanson (2013) for different calibrations of spatial links. Kreindler and Miyauchi

(2020) use a gravity model and cell-phone–derived commuting flows to predict workplace wage levels

in developing-economy cities that lack conventional data coverage. We explore the consequences

of the widespread continuum assumption for the predictive power of quantitative spatial models in

granular settings.

on transport costs for both goods and commuters, and Dingel (2017) on the income composition of goods market
access.

2 Heblich, Redding, and Sturm (2018); Severen (2019); Tsivanidis (2019); and Zárate (2019) study transportation-
infrastructure investments. Owens, Rossi-Hansberg, and Sarte (2020) evaluate strategic visions to revitalize Detroit.
Berkes and Gaetani (2020) compare the effects of siting Amazon’s HQ2 in four different New York City neighborhoods.

3Heblich, Redding, and Sturm (2018, p.22) and Monte, Redding, and Rossi-Hansberg (2018, p.3869) both write
that the “model implies prohibitive commuting costs” for all “pairs with zero commuting flows.” In a panel setting,
Severen (2019) imposes prohibitive commuting costs for tract pairs that had zero commuters in both time periods
when computing counterfactual outcomes.

4See, for example, Ahlfeldt et al. (2015), Allen, Arkolakis, and Li (2015), and Tsivanidis (2019). Ahlfeldt et al.
(2015) and Tsivanidis (2019) analyze commuting data reported at a coarser level of aggregation than the geographic
units they study. Making bilateral frictions a function of observed characteristics allows them to estimate commuting
elasticities using aggregated data but apply their models to (unobserved) commuting between smaller geographic
units.
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Finally, our framework is also related to research about granular economies and discrete-choice

estimation. A growing literature examines the importance of granularity for aggregate fluctuations

in macroeconomics (Gabaix, 2011; Carvalho and Grassi, 2019) and international economics (di Gio-

vanni and Levchenko, 2012; di Giovanni, Levchenko, and Mejean, 2014; Gaubert and Itskhoki, 2018;

Daruich, Easterly, and Reshef, 2019). In addition to its relevance for aggregate fluctuations, firm-

level granularity has been studied as one explanation for zeros in the international trade matrix

(Eaton, Kortum, and Sotelo, 2013; Armenter and Koren, 2014).5 Recent research in industrial

organization draws attention to the problems associated with zero-valued market shares (Quan

and Williams, 2018; Gandhi, Lu, and Shi, 2019; Dubé, Hortaçsu, and Joo, 2020). Mogstad

et al. (2020) raise concerns about inference for ranks in granular settings. Our paper makes two

contributions to these various strands of the literature. First, we provide a general-equilibrium

modeling approach to granularity, namely continuum-case rational expectations, that is easy for

practitioners to implement. Second, we demonstrate the importance of addressing granularity when

making predictions about counterfactual outcomes.

2 Granular empirical settings

This section documents that granularity is common in empirical settings in which researchers

and policymakers are interested in the incidence of local economic shocks. We primarily focus

on the United States, examining tract-to-tract and county-to-county commuting matrices. After

establishing that these settings are granular, we document two additional patterns that are likely

symptoms of granularity: the commuter counts are impersistent over time, and zeros in the matrices

are often asymmetric.

2.1 Data sources

We employ commuting matrices at two different spatial scales for the United States. First, we use

data on commuting between census tracts taken from the Longitudinal Employer-Household Dy-

namics, Origin-Destination Employment Statistics (LODES). For illustrative purposes, we restrict

our attention to pairs of tracts in the Detroit urban area and New York City.6 Second, we use data

on commuting between US counties taken from the American Community Survey (ACS), which

surveys roughly 5% of the US population over a five-year period.7

An immediate implication of granularity is that some data providers perturb observations to

protect confidentiality. For example, the published LODES tract-level workplace employment

5Alternatively, one may generate zeros when there is a continuum of firms by assuming fixed costs and a bounded
productivity distribution, as in Helpman, Melitz, and Rubinstein (2008).

6Owens, Rossi-Hansberg, and Sarte (2020) use the 2014 wave of these data for the Detroit urban area to estimate
a gravity model of commuting. Davis et al. (2019) use the 2010 wave to compute the joint distribution of residences
and workplaces for New York City. Following Owens, Rossi-Hansberg, and Sarte (2020), we use the primary-job
counts in LODES.

7Monte, Redding, and Rossi-Hansberg (2018) use the 2006–2010 wave of this survey to estimate a gravity model
of commuting.

5



counts are noise-infused. Moreover, the published LODES commuting matrices report syntheti-

cally generated residence-workplace pairs.8 These confidentiality-protecting procedures are both a

symptom of the granular setting and an additional cause for caution when interpreting the value

of any individual observation.9

2.2 Tract-to-tract commuting matrices are granular

When working with fine spatial units like US census tracts, simply comparing the number of people

and the number of residence-workplace pairs reveals that the empirical setting is granular. For

example, the Detroit urban area has about 1.3 million pairs of census tracts and about 1.3 million

commuters. Thus, the average cell in the commuting matrix contains one person. As 74% of tract

pairs have zero commuters between them, the average positive cell contains about four people.

As shown in the left panel of Figure 1, nearly half of the tract pairs with a positive number of

commuters have only one commuter. More than 12% of Detroit commuters are the sole commuter

in their cell of the commuting matrix. For such observations, a change in one individual’s choice

alters the commuting flow by 100%. The right panel of Figure 1 shows similar patterns in New

York City.10

Figure 1: Number of commuters between pairs of tracts in Detroit and New York City

0
.1

.2
.3

.4
.5

D
en

si
ty

0 10 20 30 40

Number of individuals

Commuters between Detroit tract pairs

0
.1

.2
.3

.4
.5

D
en

si
ty

0 10 20 30 40

Number of individuals

Commuters between New York City tract pairs

Notes: These histograms report the number of tract pairs in the Detroit urban area (left panel) and
New York City (right panel) by the number of individuals who reside in the origin tract and work in the
destination tract in 2014 LODES data. These histograms restrict the samples to pairs of tracts with a
strictly positive number of commuters. There are 1166 residential census tracts in Detroit. There are
2168 residential census tracts in New York City.

8Graham, Kutzbach, and McKenzie (2014): “For each job in a workplace cell, LODES draws from a Dirichlet
multinomial posterior distribution of possible residential locations. . . The prior adds uncertainty, so that even
commutes with few or no observed flows may appear to have a job. Conversely, even when there are commuters
from an origin in the likelihood, that residence may not be drawn and thus would not appear in LODES.”

9The econometric consequences of noise infusion and synthetic observations are specific to each use case. For
example, see the discussion of these issues in Couture and Handbury (2019). Calibration approaches that perfectly
match every (synthetic) observation are likely the research design most sensitive to these procedures.

10About 2.5 million of New York City’s 8 million residents are employed in New York City. Since New York City’s
commuting matrix has more than 4.6 million cells, its average cell contains slightly more than half a commuter, and
this matrix is almost necessarily sparse.
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In fact, commuting matrices describing tract-to-tract flows for large US cities are inherently

granular. Tracts are defined by the US Census Bureau such that the typical tract has 4,000 resi-

dents.11 Thus, both the number of commuters and the number of tracts are roughly proportionate to

the city’s residential population, and the mean value of a cell in the tract-to-tract commuting matrix

is inversely proportionate to that population.12 In metropolitan areas with million of residents, the

mean cell value is about one commuter. Since commuting flows take integer values, smaller mean

values of cells make the commuting matrix necessarily granular and possibly even sparse.13

The spatial concentration of employment contributes to the sparsity of commuting matrices

in settings with small spatial units. When these small spatial units are defined by street blocks

or residential counts, the concentration of employment (relative to residences) implies that many

workplace destinations have a smaller number of employees than the number of residential origins.

The Detroit urban area illustrates the consequence. The median tract in the Detroit urban area

has 465 employees working in it. Since Detroit has 1,166 residential tracts, at least 60% of locations

must have zero residents commuting to this workplace.

Urban economists have studied other empirical settings in which the fine spatial resolution of

the geographic units employed makes the commuting matrix necessarily granular. Roughly three-

quarters of the cells in the Los Angeles metropolitan commuting matrix studied by Severen (2019)

are empty.14 Tsivanidis (2019) models the behavior of Bogota’s 8 million residents commuting

between almost 7 million pairs of tracts. Zárate (2019) examines Mexico City, which has 9 million

people commuting between 13 million pairs of tracts. Ahlfeldt et al. (2015) model the behavior of

about 3 million Berliners choosing among nearly 254 million pairs of city blocks.

2.3 The US county-to-county commuting matrix is granular

The commuting matrix for US counties is granular despite the large number of people relative to

the number of county pairs. In the 2006–2010 ACS data, there are 136 million commuters (with

commutes less than 120 kilometers).15 Of those 136 million, 101 million live and work in the same

county, so there are 35 million cross-county commuters between 79,188 pairs of counties. Thus,

the average off-diagonal element of the county-to-county commuting matrix has 445 commuters.

However, the distribution of commuters is extremely uneven. The top 10 county pairs account

for more than 2 million commuters alone. For the bottom 90% of off-diagonal observations, the

mean value is only 40 commuters. Figure 2 shows that this distribution is skewed, so that many

11Geography Program glossary: “Census tracts generally have a population size between 1,200 and 8,000 people,
with an optimum size of 4,000 people.”

12To be more precise, in a city with R residents and I workers, there are about N ≈ R/4000 tracts, and the mean
value of each commuting cell in a tract-to-tract matrix is approximately I

N2 = I
R

16 million
R

.
13The typical employed resident has only one place of employment. This imposes an integer constraint on

commuting flows not relevant for trade flows or transaction flows, since firms can export to multiple destinations
and shoppers can patronize multiple businesses.

14Comparing Tables 2 and F4 of Severen (2019) shows that each column of the latter has about four times as many
observations as its counterpart in the former.

15We follow Monte, Redding, and Rossi-Hansberg (2018) by restricting attention to county pairs that are less than
120 kilometers apart.
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thousands of county pairs have small numbers of commuters.

Figure 2: Number of commuters between US counties
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Notes: This histogram depicts the number of county pairs by the estimated
number of commuters in the 2006–2010 ACS. The sample is restricted
to pairs of distinct counties within 120 kilometers, the smallest 90% of
estimated commuter counts among such counties, and only those pairs
reporting a strictly positive number of commuters.

In practice, the granularity of this empirical settings is severely compounded by the fact that

the ACS is a 1-in-20 sample of the population. In three different five-year waves of the ACS, nearly

half of the county pairs within 120 kilometers of each other are reported to have zero commuters,

as shown in Table 1. More than half of county pairs report fewer than 100 commuters, therefore

representing the behavior of five or fewer respondents. As a consequence, as shown in the third

column of Table 1, for more than one-third of the county pairs with positive commuting flows, the

Census-reported margin of error exceeds the reported number of commuters.16

Commuting data from other countries also exhibit granularity. For example, one-quarter of

Germany’s county (Kreisfreie Städte and Landkreise) pairs within 120 kilometers have fewer than

10 commuters (Krebs and Pflüger, 2019). In Brazil’s 2010 Censo Demográfico, which reports

estimates based on a 10% sample of the population, there are 81 million commuters (with commutes

less than 60 kilometers).17 There are 7 million cross-municipality commuters between 131,620

pairs of municipalities. Thus, the average off-diagonal element of the municipality-to-municipality

commuting matrix has only 56 commuters. About three-quarters of the cells in this commuting

matrix are empty.

16At face value, this would seem to imply that one could not reject the null hypothesis that there were no commuters
for such county pairs. The unsuitability of the normal approximation for the binomial distribution in this case is
another symptom of granularity.

17Dingel, Miscio, and Davis (2019) use these data to construct metropolitan areas based on commuting flows.
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Table 1: Zeros in US county-to-county commuting matrix

Dataset Zero Pairs Positive Pairs MOE >X (percent)

ACS 2006-2010 36,403 42,785 37
ACS 2009-2013 35,547 43,641 36
ACS 2011-2015 35,002 44,096 35

Notes: This table reports the number of county pairs with zero commuters and
non-zero commuters for three editions of the ACS. The sample is restricted to
pairs of counties within 120 kilometers of each other. The final column reports
the share of county pairs for which the Census-reported margin of error exceeds
the (strictly positive) reported number of commuters.

2.4 Commuting counts are often impersistent

We now describe the first of two patterns that are likely symptoms of granularity. The integer

values appearing in commuting matrices are not very persistent. A residence-workplace pair may

have three commuters one year and none the next. Another pair of locations may double its

number of commuters, from one to two. While the conventional continuum approach interprets

these changes as substantial economic shifts, the finite-sample perspective is that these changes are

not very informative if they are merely a symptom of granularity. We document substantial churn

in commuting counts from year to year, suggesting that there is considerable finite-sample noise in

addition to signal in these commuting counts.

Table 2, which presents the transition matrix for pairs of tracts in the Detroit urban area

between the years 2013 and 2014, demonstrates considerable impersistence. For pairs with one to

four commuters in 2013, the percentages appearing on the diagonal of the transition matrix are

quite low. A pair of tracts with one commuter in 2013 was almost three times as likely to have

zero commuters in 2014 than to have one commuter. A pair with four commuters in 2013 was more

likely to appear in any other column in 2014 than to report four commuters again. The 86% of pairs

that had zero commuters in both years may appear to suggest persistence, but this primarily is a

symptom of the fact that in both years about three-quarters of observations are zero.18 More than

130,000 pairs of tracts that had zero commuters in 2013 had at least one commuter in 2014. At the

same time, 39% of Detroit tract pairs with positive flow in 2013 were zeros in 2014 . Thus, while

zeros are pervasive in this commuting matrix, they are not very persistent. The results for New

York City in Table 2 are very similar to those for Detroit. The commuter counts are so impersistent

that, for many tract pairs, a gravity-based estimate predicts a tract-pair’s commuter count in 2014

better than its observed count in 2013 does, as reported in Appendix A.

There is considerable churn even when using larger geographic units. Table 3 shows that 22%

of the county pairs reporting zero commuters in the 2006–2010 ACS reported a positive number of

18If p ∈ [0, 1] of the pairs were randomly independently assigned zero in each period, then p2 of those pairs would
lie in the upper left cell of the transition matrix. Thus, even if zeros were randomly independently assigned to
three-quarters of tract pairs in each period, nine-sixteenths of the pairs would be zero in both periods. That would
not be evidence of persistence.
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Table 2: The impersistence of commuting counts for pairs of tracts in Detroit and New York City

(a) Detroit

2014
2013 0 1 2 3 4 5+

0 0.86 0.10 0.02 0.01 0.00 0.00
1 0.60 0.22 0.10 0.04 0.02 0.02
2 0.37 0.25 0.16 0.09 0.06 0.08
3 0.23 0.22 0.18 0.13 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.26
5+ 0.04 0.06 0.07 0.08 0.08 0.68

(b) NYC

2014
2013 0 1 2 3 4 5+

0 0.91 0.07 0.01 0.00 0.00 0.00
1 0.65 0.20 0.08 0.04 0.02 0.02
2 0.39 0.25 0.15 0.09 0.05 0.07
3 0.24 0.22 0.17 0.12 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.27
5+ 0.03 0.05 0.06 0.07 0.07 0.71

Notes: This table describes pairs of tracts in the Detroit urban area (left panel) and New York City (right panel)
by reported number of commuters in the 2013 and 2014 LODES. It is a transition matrix, in which each cell lists the
share of tract pairs in that row (number of commuters in 2013) that belong to that column (number of commuters
in 2014). Each row sums to 100%, modulo rounding.

commuters in the following five-year interval. Conversely, about 15% of pairs reporting a positive

number of commuters had zero commuters in the following five-year interval. For pairs of counties

with a strictly positive number of commuters smaller than 111 in 2006–2011, the diagonal elements

of the transition matrix are less than half. For example, a pair of counties reported to have 71–90

commuters in 2006–2011 has only a 14% probability of appearing in the same bin in the following

five-year interval.

To the extent that the observed impersistence of commuting counts is a symptom of granu-

larity, these findings caution against procedures that infer structural parameters from the relative

magnitudes of these counts. The difference between one commuter and two commuters (or one

respondent and two respondents in a finite sample) is little evidence that the latter outcome

was twice as probable. Similarly, procedures that rationalize observations with zero commuters

by imposing infinite commuting costs so that these are zero-probability events rule out potential

margins of adjustment based on zeros that appear to be largely transitory.

2.5 Zeros are often asymmetric

The zeros in commuting matrices are often asymmetric. Denoting the number of commuters living

in residence k and working in workplace n by `kn, an observed zero is asymmetric when `nk = 0

and `kn > 0. For US counties, `nk = 0 for 22% of county pairs with `kn > 0. In Detroit, `nk = 0

for 66% of tract pairs with `kn > 0. For Brazilian municipalities, `nk = 0 for 49% of municipio

pairs with `kn > 0. These asymmetric flows are not explained by asymmetric numbers of total

employees or residents: in Detroit, `nk = 0 for 47% of tract pairs for which `kn > 0 and total

employment in k and n differs by 10% or less.

The fact that commuting matrices’ zeros are often asymmetric poses a puzzle for calibration

procedures that rationalize zero-commuter observations by infinite commuting costs. This inter-

pretation of zeros implies severely asymmetric commuting costs, even though daily commutes are
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Table 3: The impersistence of commuting counts for pairs of US counties

45.97
19.66
5.47
3.43
2.50
1.86
12.03
5.01
4.07

0.78
0.35
0.16
0.08
0.05
0.02
0.00
0.00
0.00

0.18
0.45
0.36
0.26
0.16
0.11
0.02
0.00
0.00

0.02
0.10
0.19
0.18
0.15
0.12
0.03
0.00
0.00

0.01
0.05
0.12
0.15
0.16
0.15
0.04
0.00
0.00

0.00
0.02
0.07
0.10
0.14
0.12
0.05
0.00
0.00

0.00
0.01
0.04
0.08
0.12
0.13
0.05
0.00
0.00

0.00
0.02
0.07
0.15
0.23
0.35
0.74
0.13
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.81
0.06

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.94

0
1-30

31-50
51-70
71-90

91-110
111-500

501-1,500
>1,500

20
06

-2
01

0

Initial Share(%) 0 1-30 31-50 51-70 71-90 91-110 111-500 501-1,500 >1,500

2011-2015

Notes: This table presents a transition matrix for pairs of counties within 120 kilometers of each other by
reported number of commuters in two editions of the ACS. The first column reports the percentage of county
pairs that were in each row in the 2006–2010 data. The remaining columns report the share of county pairs
within the row that appeared in the corresponding bin in the 2011–2015 data. By definition, the shaded cells
in each row sum to one, modulo rounding. The bin boundaries are arbitrary, since Figure 2 shows no obvious
bunching. We found similar impersistence when using alternative boundaries.

roundtrip journeys. If we believe that commuting from n to k is impossible because we observe

`nk = 0, how do the individuals who live in k and work in n commute home at the end of the

day? The mechanisms generating prohibitive commuting costs would have to exhibit within-day

variation. But the most plausible source of intraday variation in commuting costs — congestion

caused by a large number of commuters — cannot explain residence-workplace pairs that have no

commuters.

In many empirical settings, asymmetric zeros may simply be a symptom of granularity rather

than evidence of very asymmetric commuting costs. When most pairs of locations have zero

commuters, and the modal pair with a positive number reflects the decision of only one commuter

or one survey respondent, the difference between zero and one isn’t particularly informative.

3 Model

This section introduces a model of granular residential and workplace location choices. We combine

tools used to describe a finite number of individuals’ decisions employed in the discrete-choice

literature (e.g., Train 2009) with the general-equilibrium approach employed in quantitative spatial

models (e.g., Redding and Rossi-Hansberg 2017). Extensions of the core model that introduce

trade costs, local increasing returns, and production employing land are presented in Appendix B.

The key challenge in modeling a finite number of people is that individual decisions can affect

wages and rents. This raises two issues. First, do individuals internalize the effects of their own

choices on local labor supplies and land demands? Second, are individuals able to enumerate the
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prices induced by every possible combination of others’ choices? In the interest of tractability,

we assume that individuals have common point-mass beliefs about wages and rents. Therefore,

individuals act as price takers, as in the granular economy of Gabaix (2011). In practice, we

assume that these beliefs are “continuum-case rational expectations.” In other words, given the

model parameters, each individual forms their beliefs about wages and rents using the conventional

continuum model, which is a limit case of our model as the number of individuals goes to infinity.

3.1 Setup

We consider a closed economy populated by I individuals. There is a set of locations indexed

by k or n. Each location k is endowed with a quantity of land, Tk, that is owned by immobile

landlords who consume only goods.19 Each location is endowed with the technology to produce a

differentiated good (i.e., the Armington assumption). For simplicity, we abstract from trade costs.

Individuals (denoted by i) have Cobb-Douglas preferences over these traded goods and land,

devoting α of their expenditure to the latter. They have constant elasticity of substitution (CES)

preferences over the set of differentiated goods, with elasticity of substitution σ > 1. Individuals

have idiosyncratic tastes for pairs of residential and workplace locations, such that i’s indirect

utility from living in k and working in n is

U ikn = ε ln

(
wn

Φkδkn

)
︸ ︷︷ ︸

≡Ukn

+νikn, (1)

where wn denotes the wage in location n, Φk denotes the price index of location k, δkn ≥ 1 denotes

the commuting cost between k and n, Ukn denotes the mean utility of choice kn, and νikn is the

idiosyncratic utility draw of individual i for living in k and working in n. The parameter ε governs

the importance of mean utility relative to the idiosyncratic utility draw. Given Cobb-Douglas

preferences, the price index in location k is Φk = rαkP
1−α, where rk denotes the local land price,

and P denotes the common CES price index for goods. We assume that νikn is drawn from a type

1 extreme value distribution.

Production of each location’s differentiated good is linear in labor. The goods market is perfectly

competitive.20 Each individual is endowed with L/I units of labor, such that the aggregate labor

endowment is L. Commuting is costly because time spent commuting is not spent working, so that

individuals residing in k and working in n earn only wn/δkn because they only spend 1/δkn of their

time working.21 Workers produce in location n with a linear production technology: qn = AnLn,

where Ln is the quantity of labor supplied by workers working in n and An is that location’s

productivity. Given this production function and perfect competition, the price of location n’s

19This simplifying assumption follows Monte, Redding, and Rossi-Hansberg (2018).
20Given established isomorphisms between perfect-competition and monopolistic-competition models of economic

geography (e.g., Allen and Arkolakis 2014), this assumption is not crucial to our results. See discussion in Appendix B.
21Alternatively, we could assume that δkn represents a utility shifter that does not affect working time. Modeling

δkn as reduced working time facilitates the commuting-elasticity estimation discussed in Section 4.

12



output is wn/An for all consumers. Thus, the CES price index is P =
[∑

n (wn/An)1−σ
]1/(1−σ)

.

We make the following assumptions about information and expectations. All workers know the

primitives of the model (L, {An}, {Tk}, {δkn}, α, ε, σ) and have (common) expectations about

the equilibrium variables rk and wn. We assume that the price expectations are point-mass beliefs,

such that each individual assigns 100% probability to a single vector of wages and a single vector

of land prices. Denote these belief vectors by {w̃n} and {r̃k}. Worker i knows her idiosyncratic

preferences {νikn}.
Decisions are made and markets clear in the following order. Based on beliefs {w̃n} and {r̃k},

each worker chooses the residential location and the work location that maximize expected utility

Ũ ikn = ε ln

(
w̃n

P̃ 1−αr̃αk δkn

)
︸ ︷︷ ︸

≡Ũkn

+νikn, (2)

where P̃ =
[∑

n (w̃n/An)1−σ
]1/(1−σ)

. After these decisions are made, workers are immobile and

cannot relocate. Realized equilibrium land prices rk and wages wn are those that clear goods, labor,

and land markets given individuals’ residential and workplace locations.

The assumption that individuals have point-mass beliefs about wages, {w̃n}, and rents, {r̃k},
considerably simplifies the analysis. Otherwise, individuals would need to compute the prices

associated with all possible residence-workplace allocations and then solve for the fixed-point

probabilities that each of these occurs. The set of feasible allocations is large. For example, a

granular economy with only 10 individuals and 16 workplace-residence pairs would have more than

3 million possible allocations.22 For empirically relevant magnitudes, computing the number of

possible allocations leads to such large numbers that they cause overflow problems in standard

software. While our approach is general in the sense that it allows for any kind of point-mass

beliefs about wages and rents, in our analysis below we assume that the expected prices are the

equilibrium wages and rents in a model with the same economic primitives (L, {An}, {Tk}, {δkn},
α, ε, σ) and a continuum of individuals (I →∞).

3.2 Equilibrium

For expositional clarity, we distinguish between a trade equilibrium, which clears markets taking

individuals’ locations as given, and a granular commuting equilibrium, in which a finite number of

individuals choose their locations based on beliefs about the trade equilibrium that will result.

Goods market clearing equates each location’s output to the quantity demanded. If `kn/δkn

denotes the labor supply of individuals living in k and working in n, then output in location n is

An
∑

k `kn/δkn. Each individual devotes 1 − α of their expenditure to differentiated goods and α

22With I individuals and N2 residence-workplace pairs, the set of possible allocations (the support of the

multinomial distribution) contains

(
I +N2 − 1
N2 − 1

)
= (I+N2−1)!

(N2−1)!I!
elements. For I = 10 and N = 4, this is about

3.27× 106.
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of their expenditure to land, while immobile landlords spend all of their income on differentiated

goods, such that total expenditure on differentiated goods equals aggregate income. The demand

for each differentiated good stemming from CES preferences means that equating quantity supplied

and quantity demanded requires

An
∑
k

`kn
δkn

=
(wn/An)−σ

P 1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ ∀n. (3)

Note that goods market clearing implies labor market clearing.

Similarly, land market clearing equates the fixed land endowment Tk to the quantity demanded

by individuals, who devote a constant fraction α of their expenditure to land:

Tk =
α

rk

∑
n

`kn
δkn

wn ∀k. (4)

We next define the trade equilibrium, which clears markets taking individuals’ locations as given.

Definition 3.1. Trade equilibrium. Given the labor allocation {`kn} and economic primitives (L,

{An}, {Tk}, {δkn}, α, ε, σ), a trade equilibrium is a set of wages {wn} and land prices {rk} such

that equations (3) and (4) are satisfied.

Remark. Given the labor allocation {`kn}, there is a unique set of wages and land prices satisfying

equations (3) and (4). Since σ > 1, there is a unique set of wages satisfying equation (3), by

application of Theorem 1 of Allen, Arkolakis, and Takahashi (2020). Equation (4) can be rewritten

as rk = α
Tk

∑
n
`kn
δkn
wn, so there is a unique set of land prices associated with that wage vector.

Individuals’ choices of location are made on the basis of their beliefs about the subsequent trade

equilibrium. Given belief vectors {w̃n} and {r̃k} and the distribution of {νikn}, equation (2) implies

that the probability of any individual choosing kn as her residence-workplace pair is

Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) =
w̃εn (r̃αk δkn)−ε∑

k′,n′ w̃
ε
n′
(
r̃αk′δk′n′

)−ε . (5)

With these probabilities in hand, we define a granular commuting equilibrium as the labor allocation

resulting from drawing I realizations of this process and clearing markets.

Definition 3.2. Granular commuting equilibrium. Given a number of individuals I, economic

primitives (L, {An}, {Tk}, {δkn}, α, ε, σ), and a set of point-mass beliefs ({w̃n}, {r̃k}), a granular

commuting equilibrium is a labor allocation {`kn}, wages {wn}, and land prices {rk} such that

• `kn = L
I

∑I
i=1 1{Ũ ikn > Ũ ik′n′ ∀(k′, n′) 6= (k, n)} is the labor allocation resulting from I

independent draws from the probability mass function in equation (5); and

• wages {wn} and land prices {rk} are a trade equilibrium, per Definition 3.1, given the labor

allocation {`kn}.
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Distinguishing between the number of individuals I and the aggregate labor supply L allows us

to apply the law of large numbers to locational decisions without changing aggregate labor supply.

As Appendix B.1 shows, since I is the number of draws from the probability mass function in

equation (5), fixing L and taking I →∞ causes the labor allocation in the limiting case to be

`kn = L× Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) = L×
w̃εn (r̃αk δkn)−ε∑

k′,n′ w̃
ε
n′
(
r̃αk′δk′n′

)−ε . (6)

Note that this limiting labor allocation still depends on beliefs. We now define the idea that, for this

limiting case, rational expectations are point-mass beliefs that coincide with the resulting wages

and prices.

Definition 3.3. Rational expectations for the continuum case. Given economic primitives (L,

{An}, {Tk}, {δkn}, α, ε, σ), {w̃n} and {r̃k} are “continuum-case rational expectations” if {w̃n} and

{r̃k} constitute a trade equilibrium for the labor allocation {`kn} given in equation (6).

As I →∞, if individuals’ point-mass beliefs are continuum-case rational expectations, then the

model coincides with the standard continuum model of Redding and Rossi-Hansberg (2017). That

is, combining equations (3) and (4) with equation (6) evaluated at w̃n = wn and r̃k = rk is the

standard spatial-equilibrium model with a continuum of individuals.23

For finite I, a given set of economic primitives (L, {An}, {Tk}, {δkn}, α, ε, σ) and point-mass

beliefs ({w̃n, r̃k}) generate a distribution of equilibria associated with realizations of the process

generating νikn and hence {`kn}.24

Even though our implementation of the granular model uses the continuum model to generate

expectations for wages and rents, our granular framework differs from the conventional model in

fundamental ways. First, the granular model can generate zeros as outcomes for residence-workplace

pairs without assuming infinite commuting costs. Second, the granular model can rationalize the

observed positive commuting flows when commuting costs are a parsimonious function of transit

times, such as δkn = f(transit timekn). By contrast, the continuum model cannot rationalize the

data with such a specification, so it requires many more (and different) structural parameters,

which can lead to overfitting.

4 Estimation

In this section, we apply the model to the tract-to-tract commuting data from Detroit and New

York City discussed in Section 2. Section 4.1 describes the estimation procedure. Section 4.2

23In the absence of agglomeration forces, this quantitative spatial model with a continuum of individuals has a
unique equilibrium (see Ahlfeldt et al. (2015)). Therefore, the continuum-case rational expectations of wages and
land rents are unique.

24Redding and Rossi-Hansberg (2017, p.38) anticipated this implication of granularity: “At smaller spatial scales
(e.g., blocks within cities), one might expect such random idiosyncratic factors to be more important relative to the
systematic deterministic components of a model (e.g., natural resource abundance) than at larger spatial scales (e.g.,
across regions or countries).”
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reports the estimation results and contrasts them with estimates from other methods.

4.1 Estimation procedure

We assume each individual supplies one unit of labor, so that L = I is equal to the number of

employed individuals. We follow the literature to obtain values of α and σ. We impose α =

0.24, based on Davis and Ortalo-Magne (2011), and σ = 4, following Monte, Redding, and Rossi-

Hansberg (2018).

We estimate the remaining model parameters ({δkn}, ε, {r̃k}, {w̃n}, {Tk}, {An}) by the following

three steps:

1. we compute commuting costs {δkn} using transit times;

2. we estimate the commuting elasticity, ε, and the beliefs about wages and rents, {r̃k}, {w̃n},
using data on commuting counts {`kn}; and

3. we infer location fundamentals ({Tk}, {An}) by assuming that the wage and rent beliefs are

continuum-case rational expectations.

4.1.1 Commuting costs

We compute commuting costs by assuming that each worker has an exogenous endowment of H

hours that is spent either working or commuting. In the baseline parameterization, we assume

H = 9.25 We then construct the commuting costs as δkn = H
H−tkn−tnk , where tkn is the transit time

from k to n according to Google Maps.26 Given H hours, 1/δkn is the share of that time spent

working if the individual resides in k and works in n.

4.1.2 Estimation of commuting elasticity and wage and rent beliefs

Given observable values of commuting costs δkn, the commuting elasticity ε can be estimated by

maximum likelihood. Using the probability mass function in equation (5) and denoting the number

of individuals who chose the kn pair by `kn, the log likelihood function is

lnL ≡
∑
k

∑
n

`kn ln
[
Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n))

]
=
∑
k

∑
n

`kn ln

[
w̃εn (r̃αk δkn)−ε∑

k′,n′ w̃
ε
n′
(
r̃αk′δk′n′

)−ε
]
.

As shown by Guimarães, Figueirdo, and Woodward (2003), the maximization of this likelihood

function is numerically equivalent to a Poisson pseudo-maximum-likelihood estimator that is avail-

25Using H = 8 or H = 10 yields very little change in model fit relative to the H = 9 results reported in Table 4.
26For Detroit, we use Google Maps driving times collected by Owens, Rossi-Hansberg, and Sarte (2020). For New

York City, we use Google Maps public-transit times collected by Davis et al. (2019). We impute missing observations
by predicting transit times using physical distance, imputing transit times for fewer than 0.3% of tract pairs in Detroit
and fewer than 4.1% of tract pairs in New York City.
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able for a variety of software packages.27

Individuals’ beliefs about wages and land prices can be inferred from the same maximum

likelihood estimates. Given values of the commuting elasticity ε and the land expenditure share α,

the beliefs {r̃k} and {w̃n} can be recovered from transformations of the gravity equation’s origin

fixed effects and destination fixed effects. In particular, in equation (5) the origin fixed effect is

proportionate to r̃−αεk and the destination fixed effect is proportionate to w̃εn.

4.1.3 Estimation of location fundamentals

The economic primitives {Tk} and {An} can be inferred by assuming that individuals’ beliefs

are continuum-case rational expectations. Using the values of α, ε, and {δkn} described above,

plugging our estimates of the beliefs {r̃k} and {w̃n} into equation (6) yields the continuum-case labor

allocation. Given α, σ, {r̃k}, {w̃n}, {δkn} and that continuum-case labor allocation, equations (3)

and (4) can be solved to yield values of {Tk} and {An}.

4.2 Estimation results

We next describe our estimation results. Our baseline commuting cost elasticity estimate is

presented in column 1 of Table 4. We estimate only modest dispersion of the idiosyncratic utility

draws, leading to estimates of ε ≈ 20 for Detroit and ε ≈ 8 for New York City.

These elasticity estimates are substantially altered if we apply procedures used in the prior

literature to handle observations with zero commuters. While the granular model’s likelihood

function accommodates zero commuters for some pairs of locations, most prior work has estimated

the commuting gravity equation based on a log-linear transformation of equation (6) after dropping

all observations with zero commuters.28 Columns 2 and 3 illustrate that dropping the tract

pairs with zero flows leads to substantially smaller estimates of ε, about one-half to two-thirds

the magnitude of the estimates in column 1.29 A less common practice is to recode zero-value

observations to small numbers before estimating via OLS.30 Column 4 illustrates that recoding

zeros to small positive numbers yields estimates of the elasticity (and accompanying standard

errors) that are an order of magnitude larger in absolute value. These differences in estimated

elasticities are due to differences in the handling of zeros, not our use of transit times to measure

commuting costs, as shown in Appendix C.

Some prior work (e.g., Krebs and Pflüger 2019) has applied the Poisson PML estimator to

27See Sotelo (2019) for a discussion of the relationship between the multinomial and Poisson pseudo-maximum-
likelihood estimators in the context of gravity models. In practice, we use the Stata package ppmlhdfe of Correia,
Guimarães, and Zylkin (2019).

28Among others, Heblich, Redding, and Sturm (2018); Monte, Redding, and Rossi-Hansberg (2018); Severen (2019);
Tsivanidis (2019) drop pairs of geographic units with zero commuters.

29The selection bias is most clearly illustrated by contrasting columns 1 and 2. Columns 1 and 3 differ both in
estimation sample and estimator.

30In spatial economics, Owens, Rossi-Hansberg, and Sarte (2020) replace `kn = 0 by 10−12 × `nn. See Gandhi, Lu,
and Shi (2019) and Dubé, Hortaçsu, and Joo (2020) for discussions of such ad hoc approaches to handling zero-value
market shares in the context of discrete-choice demand estimation.
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Table 4: Commuting elasticity estimates

(1) (2) (3) (4)
MLE MLE non-zero OLS non-zero OLS recode

Panel A. Detroit (2014)
Commuting cost -19.81 -14.08 -8.958 -85.41

(0.307) (0.227) (0.168) (1.606)

Model fit (R2 or pseudo-R2) 0.619 0.466 0.533 0.365
Location pairs 1,353,726 358,361 358,361 1,246,772
Commuters 1,307,096 1,307,096 1,307,096 1,307,096

Panel B. New York City (2010)
Commuting cost -7.986 -4.357 -2.307 -17.95

(0.307) (0.201) (0.0516) (0.339)

Model fit (R2 or pseudo-R2) 0.662 0.504 0.561 0.350
Location pairs 4,628,878 690,673 690,673 4,434,731
Commuters 2,488,905 2,488,905 2,488,905 2,488,905

Standard errors, two-way clustered by k and n, in parentheses
Notes: All specifications include destination fixed effects and origin fixed effects. Column 1 presents the
results from the maximum likelihood estimation described in Section 4.1.2. Column 2 presents the results
from applying the maximum likelihood estimator to a sample that omits observations with zero commuters.
Column 3 estimates the gravity equation in logs via OLS. Column 4 recodes `kn = 0 observations to
`kn = 10−12`nn before estimating the gravity equation in logs via OLS. The model-fit statistic is the
pseudo-R2 in columns 1 and 2 and R2 in columns 3 and 4.

equation (6). Such an approach produces point estimates for the elasticity that are identical to those

in column 1. However, in a model with a continuum of individuals, all positive-probability events

do occur in equilibrium, so the only way to rationalize zero flows is to assume an infinite commuting

cost on that route to make it a zero-probability event. Applying the Poisson PML estimator in line

with the continuum model’s assumption would involve dropping zero-commuter observations and

producing the elasticity estimates in column 2 of Table 4. With a continuum model, the pairing of

the estimator and sample used to produce column 1 is theoretically inconsistent.

Using our estimates corresponding to column 1 of Table 4, we recover the locational funda-

mentals by assuming that the wage and rent beliefs are continuum-case rational expectations. Per

equation (5), given α and ε, the origin fixed effects and destination fixed effects reveal (relative)

wage and rent beliefs. Applying Definition 3.3, these beliefs reveal locations’ relative productivities

and land endowments.

Dropping observations with zero commuters can substantially alter the estimated origin and des-

tination fixed effects in equation (5). When only using positive-commuter observations, these fixed

effects characterize the average number of commuters for a residence-workplace pair, conditional

on the number of commuters being strictly greater than zero. For destinations with small numbers

of employees, this conditional average is greater than the unconditional average. Figure 3 contrasts
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Figure 3: Destination fixed effects from tract-to-tract gravity regressions
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Notes: These plots depict the destination fixed effects estimated in Table 4’s column 1 (horizontal axis) and
column 3 (vertical axis). The left panel plots these fixed effects for Detroit; the right panel plots them for New
York City. See the notes to Table 4 for details.

the OLS (vertical axis) and maximum likelihood (horizontal axis) estimates of the destination fixed

effects. The difference is stark: the range of the OLS estimates is half that of the maximum-

likelihood estimates due to considerable truncation from below. In essence, the popular practice of

omitting zero-commuter observations attributes low-employment destinations’ lower employment

counts to infinite commuting costs, not lower wage beliefs (lower productivity).31 By contrast, our

maximum likelihood estimator infers that these destinations are unattractive workplaces from the

fact that many origins have zero residents working in these destinations.

5 Counterfactual analysis and event studies

Researchers employing quantitative spatial models aim to provide a parsimonious general-equilibrium

framework in order to predict counterfactual outcomes.32 The value of these quantitative models

for policy analysis therefore depends largely on their ability to predict the spatial distribution

of economic consequences of a shock.33 Oftentimes, quantitative spatial models are calibrated

to exactly replicate the observed spatial distribution of economic outcomes before introducing

31Census tracts are defined so that the number of residents is similar across tracts, while there is tremendous
heterogeneity in total employment. Thus, the selection bias is evident in the destination fixed effects. When estimating
the analogous gravity regression for county-to-county commuting flows, we find that the selection bias manifests in
both the origin and destination fixed effects. See Appendix C.

32Redding and Rossi-Hansberg (2017, p.23): “[T]his research does not aim to provide a fundamental explanation for
the agglomeration of economic activity, but rather to provide an empirically relevant quantitative model to perform
general equilibrium counterfactual policy exercises.” Waddell and Sarte (2016, p.190): “The development of the new
quantitative equilibrium models has initiated a more robust and realistic framework with which to model cities. . . By
offering a more accurate grounding for empirical models, it will also allow for more robust counterfactual policy
exercises that can inform practitioners and policymakers regarding strategies for urban development.”

33Bryan, Glaeser, and Tsivanidis (2019, p.31): “If quantitative models are to provide useful policy insights, their
results have to be trusted. First, researchers must establish that their model captures relevant features of the data
or (ideally) can replicate the real-world response to a policy change.”
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counterfactual changes in parameters.34 In granular settings, this calibrated-shares procedure

suffers the defect of overfitting outcomes that reflect individuals’ idiosyncratic choices rather than

persistent economic features. Such overfitting could reduce its predictive power.

The following sections contrast counterfactual analysis in our granular framework with the

calibrated-shares procedure. Section 5.1 describes and contrasts the two approaches to analyzing

outcomes in counterfactual scenarios. Section 5.2 contrasts the nature of the predicted incidence

of local productivity shocks using the example of Detroit. Section 5.3 examines each approach’s

ability to predict changes in commuting patterns associated with tract-level employment booms

in New York City. We find that the granular model outperforms the conventional calibrated-

shares procedure in the vast majority of events.35 Section 5.4 examines the potential for pooling

observations across years to improve predictive power and finds that the granular model still

outperforms the calibrated-shares procedure.

5.1 Counterfactual analysis in spatial models

Our granular framework yields counterfactual predictions that differ from those of models with

a continuum of individuals for two reasons: different estimated parameter values and different

counterfactual outcomes given parameter values. The estimated parameter values differ because

the continuum approach equates model probabilities and observed outcomes, whereas our granular

framework’s maximum-likelihood estimator allows these to differ. Given common parameter values,

the continuum approach typically predicts a unique counterfactual equilibrium (a deterministic dis-

tribution), whereas our granular framework yields a distribution of equilibrium outcomes associated

with the granular data-generating process due to the distribution of idiosyncratic preference shocks.

Calibrating quantitative spatial models to exactly replicate the observed spatial distribution

of economic outcomes equates model probabilities and observed shares. This has substantial

consequences for inferred amenities, productivities, and commuting costs. Most notably, this

procedure infers that unchosen outcomes are zero-probability events, thereby assigning infinite

commuting costs to residence-workplace pairs with zero commuters.36 More broadly, equating

relative probabilities with relative counts means that structural parameters are often inferred from

“lumpy” comparisons of one versus two versus three commuters.

While not all the parameters of quantitative spatial models are identified by this calibrated-

shares procedure, it allows one to compute the counterfactual equilibrium outcomes associated

with a proportionate changes in these parameters.37 In Appendix D, we apply this calibrated-

34Waddell and Sarte (2016, p.188): “[C]ounterfactual exercises involving a change to some exogenous aspect of the
city, or a change in urban policy, are rooted in a model that, as a benchmark, is able to exactly match basic observed
allocations and prices in the city as equilibrium outcomes.” This calibration approach has roots in the quantitative
trade practice called “calibrated share form” or “exact hat algebra” (Rutherford, 1995; Dekle, Eaton, and Kortum,
2008).

35Kehoe (2003) argues that “it is the responsibility of modelers to demonstrate that their models are capable of
predicting observed changes, at least ex post.”

36For example, see Monte, Redding, and Rossi-Hansberg (2018, p.3869); Heblich, Redding, and Sturm (2018, p.22);
and Severen (2019, p.7).

37For example, see Monte, Redding, and Rossi-Hansberg (2018, p.3866-7); Krebs and Pflüger (2019, p.32); and
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shares procedure to the continuum-of-individuals variant of the model in Section 3. Given a

labor allocation {`kn}, wages {wn}, labor demand elasticity σ, and commuting elasticity ε, one

can compute proportionate changes in wages, rents, and labor allocations for any combination of

proportionate changes in productivity {Ân}, land {T̂k}, and commuting costs {δ̂kn}. Implicitly,

the procedure calibrates initial combinations {An}, {Tk}, and {δkn} that rationalize the (observed)

initial equilibrium values of {`kn} and wages {wn}.
By contrast, we estimate the parameters of our granular model without perfectly equating

model probabilities and observed outcomes. Our maximum-likelihood estimator assumes that

the commuting cost δkn is a function of observed covariates, so that the number of underlying

commuting-cost parameters is smaller than the number of commuting observations. While the

parsimonious specification employed in Section 4 assumes that δkn is solely a function of Google

Maps transit times, one could employ far more flexible forms (such as interactive fixed effects or

regularization of pair fixed effects) without exhausting the available degrees of freedom. Since model

probabilities and equilibrium outcomes are not identical in our approach, there is a distribution

of counterfactual equilibrium outcomes associated with counterfactual parameter values. In par-

ticular, different values of the idiosyncratic preference shocks {νikn} generate different equilibrium

allocations and prices for the same counterfactual values of economic primitives. In practice, we

numerically simulate the model many times and present moments that summarize this distribution

of counterfactual outcomes.

5.2 Contrasting predictions for the incidence of shocks

As a first means of contrasting the calibrated-shares procedure with our granular approach, we

examine the predicted changes in land prices induced by a productivity increase in one workplace

location. We apply each procedure to the Detroit urban area, using census tracts as the spatial units

of interest and 2014 values as the initial equilibrium. The counterfactual change is a 20% increase

in the productivity level of one census tract that has total employment at the 70th percentile of the

workplace employment distribution.

Figure 4 depicts the (mean) predicted changes in land prices produced by each procedure and

the initial distribution of residents who in 2014 worked in the “treated” tract that has higher

productivity in the counterfactual scenario. The calibrated-shares procedure’s predictions for

changes in land prices depicted in the upper-left panel are highly correlated (0.88) with the

initial distribution of residents depicted in the bottom panel. Intuitively, the spatial incidence

of a productivity increase across different locations’ residential land prices is due to an increase in

the workplace wage making residential locations that have low costs of commuting to that workplace

more likely to be chosen. Since the majority of census tracts were home to zero residents who worked

in the treated tract in 2014, the calibrated-shares procedure says that the cost of commuting from

these residential locations to the treated workplace is infinity. As a result, these residential locations

are almost entirely unaffected by the counterfactual change in that tract’s productivity.

Severen (2019, p.30).

21



Figure 4: Calibrated-shares procedure’s predicted changes in land prices closely follow initial shares

(a) Calibrated-shares land-price changes (b) Granular model’s mean land-price changes

(c) Number of residents in baseline data

Notes: These maps depict the tracts of the Detroit urban area. We consider the incidence of a 20% productivity increase
in the treated tract, which has total employment at the 70th percentile of the workplace employment distribution. The
map in the upper-left panel depicts each tract’s percentage-point change in the price of land (rk/P ) computed using
the calibrated-shares procedure. The map in the upper-right panel depicts each tract’s percentage-point change in the
mean counterfactual land price from the mean baseline land price across one million simulations of the granular model
for both the baseline and counterfactual parameter values. The map in the lower panel depicts the number of residents
in each tract who work in the treated tract in the observed data that is perfectly rationalized by the calibrated-shares
procedure. In the legend, the number within parentheses denotes the value of the percentile that is the upper bound of
each percentile range.
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By contrast, in our granular framework the bilateral commuting cost is a function of transit

time, so locations that had zero residents working in the treated tract in 2014 may have residents

who work in that workplace in counterfactual equilibria. Thus, the increase in productivity triggers

increases in land prices in neighboring locations that have short commutes to the treated tract.

The upper-right panel of Figure 4 depicts the percentage-point change in the mean counterfactual

land price from the mean baseline land price for each tract across one million simulations of the

granular model for both the baseline and counterfactual parameter values. The mean incidence of

the productivity change on land prices is mildly correlated (0.40) with the initial distribution of

residents and more clearly connected to physical proximity to the treated tract.

Next, we use the estimated model to assess the sensitivity of equilibrium land prices to the

idiosyncratic component of individuals’ choices. We quantify the role of granularity by examining

how much equilibrium land prices vary across different equilibria generated by the same fundamental

parameters. The mean land prices across one million simulations are centered on the continuum-

case rational expectation values: across 1,166 tracts, the largest difference is less than 0.05%.

Variation in land-price changes around the mean changes depicted in Figure 4 reveals how far

this empirical setting is from the limiting case. Figure 5 summarizes land-price variation across

one million simulations of the impact of the productivity increase in the treated tract. It is clear

that the mean changes in land prices associated with the productivity increase are quite small

relative to the granular “noise.” The 5th percentile land-price change is less than zero and the 95th

percentile is greater than zero for all locations. The magnitude of the mean predicted incidence of

this productivity change on local land prices pales in comparison to the idiosyncratic component

of equilibrium outcomes that is attributable to granularity. Thus, while economists may be able to

compute numerous counterfactual outcomes for small spatial units, they should also quantify their

forecasts’ precision and sensitivity to granularity.

5.3 Event studies: Predicting observed commuting responses to a local shock

We now examine each approach’s predicted commuting patterns for a large, discrete change in

employment in a single census tract. Quantitative spatial models typically rationalize increases in

local labor demand as increases in local productivity. For each event, we use both our estimated

granular model and the popular calibrated-shares procedure to predict the changes in the number

of commuters from each residential location to the “treated” workplace tract in which employment

increased. These are the spatial linkages that govern quantitative spatial models’ predictions about

the incidence of local economic shocks on outcomes like land prices. The arrival of a new tenant that

substantially boosted tract-level employment constitutes a large local economic shock accompanied

by substantial changes in commuting counts. Examining these outcomes assesses these models’

characterization of spatial linkages without requiring that the increase in total employment in the

destination tract be exogenous to local economic outcomes.38 Of course, a number of concurrent

38As shown in the previous section, spatial linkages are critical to quantitative spatial models’ predictions about
incidence of a productivity increase. Studying changes in commuter counts addresses the limited data on tract-level
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Figure 5: Distribution of changes in land prices
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Notes: This figure summarizes variation in land prices (rk/P ) across 1,000,000 simulations of the
impact of the productivity increase described in the notes of Figure 4. For each tract, it depicts the
5th, 50th, and 95th percentile of the land-price change distribution for 1,000,000 simulations at the
new parameter values relative to the mean land price for 1,000,000 simulations at the old parameter
values.

changes in the city will cause the observed changes to differ from the predictions of these models

generated by increasing productivity in this workplace to increase total employment while leaving all

other parameters at their values estimated using the initial observed outcomes. Comparing relative

predictive power is informative about the relative value of these economic models for counterfactual

analysis.

To begin, we study two events in New York City in which the arrival of a large employer

increased local employment.39 The first event we study is the 2010–2012 change in employment in

the census tract in New York City that contains 200 Fifth Avenue. This building in the Flatiron

District was converted from a toy showroom into Class A office space by a developer over 2007–

2009. In 2011, Tiffany & Co. moved into 260,000 square feet of office space at 200 Fifth Avenue,

uniting employees who previously had been spread across three different offices. Our second event

study focuses on the tract containing 111 Eighth Avenue, a building of nearly 3 million square

feet that Google acquired in late 2010. The time series for total employment in each of the tracts

studied are depicted in Figure D.1.

We estimate or calibrate the model based on 2010 data for New York City. We estimate our

granular model using data on tract-to-tract commuting flows by maximum likelihood, as described

in Section 4. The calibrated-shares procedure perfectly rationalizes observed commuting flows and

wages, as described in Appendix D.40 Next, we compute the increase in productivity required

land prices and does not require that the local productivity increase be independent of other local changes that might
affect wages and land prices.

39We found these events by searching Google News for stories about moves to new offices in New York City.
40The largest commuting flow in the 2010 LODES data for New York City is 827 commuters who reside between

110th and 114th Streets in Morningside Heights and work at adjacent Columbia University. The estimated granular
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to match the observed 2010-2012 change in employment for the “treated” tract. Since the two

procedures fit the 2010 data differently, this productivity increase need not be the same.41 Since

the productivity increases are defined so that both procedures match the observed increase in

employment, we examine their predictions for the change in bilateral commuter counts.

Table 5 contrasts the two procedures’ predictions for the changes in commuter flows associated

with each of the anchor-tenant events. We regress the observed change in the number of residents

from each residential tract who work in the treated workplace tract on the predicted change for

each procedure. Ideally, a regression of the observed change on the predicted change would yield a

slope coefficient of one, an intercept coefficient of zero, and a high R2. Both procedures fall short of

this ideal, as the majority of variation in commuting changes is unexplained by both the granular

model (column 1) and the calibrated-shares procedure (column 2). Contrasting the two procedures,

the granular model’s predictions have lower mean absolute errors and root mean square errors than

those of the calibrated-shares procedure for both the Tiffany and Google events.

The granular model’s superior predictive power is not due solely to the presence of zeros in the

commuting matrix. To illustrate this, we compare the calibrated-shares procedure’s predictions

to those of a granular model in which commuting costs are infinite for residence-workplace pairs

that have zero commuters in the baseline 2010 data. For computational convenience, we use the

I →∞ limit of our granular model, which column 3 of Table 5 shows is very similar to the mean of

1,000 simulations of the granular model. The infinite-commuting-costs variant of the granular model

reported in column 4 of Table 5 produces predictions that have lower mean absolute errors and root

mean square errors than the predictions of the calibrated-shares procedure. Since the procedures in

columns 2 and 4 handle zero-commuter flows identically, the granular model’s superior predictive

performance is due in part to better predicting commuter-count changes for residence-workplace

pairs that have positive counts in the baseline 2010 data.

Next, we scale up our inquiry by examining numerous workplace tracts that experienced

substantial employment growth from 2010 to 2012. We conduct an “event study” for each of

the 78 workplace tracts in New York City that had a two-year increase in total employment of

at least 500 employees and at least 15% from a 2010 level of at least 500 employees. Though the

narrative behind each of these employment booms is not as clear as the two anchor-tenant events

described above, this greatly expanded scope of inquiry allows us to generalize the contrast between

the predictive performance of our granular model and the calibrated-shares procedure.

Figure 6 contrasts the two procedures’ predictions for the changes in commuter flows associated

with all 78 employment booms from 2010 to 2012. For each event, we estimate the slope and

intercept when regressing the observed change in commuters on the predicted change in commuters.

model that uses transit times predicts only 197 of the 827 observed commuters, failing to capture the effect of the
university’s dual role as employer and landlord. The advantage of the calibrated-shares procedure is its potential to
capture such linkages.

41For the granular model, we compute the productivity increase using the limiting I → ∞ case. This slightly
reduces the computational burden of searching over potential productivity increases. We have verified that the
average of 1,000 or more granular counterfactual simulations is very similar to the limiting case (under the same
parameter values).
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Table 5: Observed changes in commuter counts and models’ predictions

(1) (2) (3) (4)
Granular Calibrated Continuum limit Continuum limit
(mean) shares of granular (prohibitive costs)

Panel A. Tiffany & Co. (200 Fifth Ave.)
Predicted change 1.641 0.415 1.667 1.472

(0.119) (0.0736) (0.119) (0.114)
Constant -0.803 0.732 -0.833 -0.590

(0.184) (0.146) (0.184) (0.179)

Observations 2,160 2,160 2,160 2,160
R-squared 0.081 0.014 0.083 0.072
Mean absolute error 3.463 3.647 3.461 3.492
Root mean square error 5.089 5.312 5.086 5.101

Panel B. Google (111 Eighth Ave.)
Predicted change 1.806 0.445 1.811 1.056

(0.0855) (0.0409) (0.0855) (0.0660)
Constant -1.001 0.690 -1.008 -0.0692

(0.132) (0.0980) (0.132) (0.116)

Observations 2,160 2,160 2,160 2,160
R-squared 0.171 0.052 0.172 0.106
Mean absolute error 2.395 2.642 2.394 2.533
Root mean square error 3.715 4.056 3.714 3.782
Notes: This table reports OLS regressions for tract pairs in which the dependent variable is the observed change
in the number of commuters from each origin tract to the destination tract. Standard errors in parentheses. The
independent variables are the model-predicted change in commuters and a constant. The sample consists of pairs
of tracts in New York City in which the destination tract is 36061005800 (panel A) or 36061008300 (panel B). The
regressor in each column is the change in the number of commuters for that tract pair predicted by the mean of
1,000 simulations of the granular model (column 1), the calibrated-shares procedure (column 2), the I →∞ limit
of the granular model (column 3), and the I → ∞ limit of the granular model after imposing δkn = ∞ for all
observations in which `kn = 0 in 2010 (column 4). The predictions are generated by calibrating or estimating each
model using initial-year data and increasing productivity in the destination tract so that the model’s prediction
for total employment replicates the observed increase in total employment.

An unbiased prediction procedure should yield a slope of one and an intercept of zero. The

upper panel of Figure 6 depicts the distribution of these coefficients for both procedures. For our

granular model, the slope coefficients are roughly centered on one (median of 0.95) and the intercept

coefficients are roughly centered on zero (median of 0.02). The calibrated-shares procedure does not

perform as well. Across the 78 events, the median slope coefficient is -0.24 and the median intercept

coefficient is 0.57. That is, the calibrated-shares procedure’s predictions are negatively correlated

with observed outcomes in more than half the events. As a result, the granular model typically has

a lower forecast error. The lower panel of Figure 6 contrasts the two models’ root mean squared

errors (RMSE) for each event. The granular model has a lower RMSE than the calibrated-shares

procedure in 76 of the 78 events. While the calibrated-shares procedure necessarily has better
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Figure 6: Comparison of models’ predictive performance across 78 events

(a) Coefficients from regressing observed changes on predicted changes
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in-sample fit, it falls short when predicting changes in commuting flows.

A Monte Carlo exercise described in detail in Appendix D suggests that this failure could be

entirely due to granularity. In the simulations, the data-generating process is our estimated model

of New York City in 2010, and we impose a counterfactual productivity increase. With a continuum

of individuals, the calibrated-shares procedure would perfectly predict the associated changes in
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commuting flows. In practice, the calibrated-shares procedure has very limited predictive power

when applied to a finite (I ≈ 2.5 million) sample drawn from the data-generating process. Thus,

granularity alone can severely limit the calibrated-shares procedure’s predictive power.

5.4 Alternative prediction strategies

As an alternative to using a granular model, one might consider alternative strategies to “smooth”

granular data to be fed into the continuum model. For example, one might hope to eliminate

idiosyncratic elements of the data by averaging across multiple years of data.

Averaging multiple years of data could improve the calibrated-shares procedure to the extent

that using more years of data is akin to using more observations. In many empirical settings,

particularly historical contexts, consecutive years of data are not available. In the case of the

LODES data, annual data are available since 2002, and pooling may average out noise introduced

by the confidentiality-protecting perturbations mentioned in Section 2.

To explore the gain from pooling multiple years of data, we average commuter and wage

observations for 2008-2010 before applying our granular model and the calibrated-shares procedure.

As depicted in Figure 7, pooling the data yields a modest improvement for the calibrated-shares

procedure. Its predictions are now positively correlated with observed outcomes for more than 60%

of the events. Nonetheless, the granular model typically forecasts the changes in commuter counts

much better. The granular model’s slope coefficients are closer to one (median of 0.95 vs. 0.11)

and its intercept coefficients are closer to zero (0.01 vs. 0.38). The granular model applied to the

pooled data has a lower RMSE than the pooled calibrated-shares procedure in 65 of the 78 events.

The predictive power of the granular model could potentially be improved further. Recall that

our implementation of the granular model uses only transit times to characterize commuting costs,

leaving many unused degrees of freedom. Depending on the context, one could add borough-pair

fixed effects, interactive fixed effects, or additional covariates such as the frequency of public-transit

connections, vehicular transit times, and so forth. By contrast, the calibrated-shares procedure is

already a saturated model that uses all degrees of freedom, and therefore its predictive power

cannot be easily improved further. Finally, note that the predictive power of the calibrated-shares

procedure in these events does not depend on the value of ε, since the procedure calibrates the values

of {δεkn}. While the magnitude of the productivity increase Ân needed to match the observed

employment increase in the destination tract depends on ε, the calibrated-shares procedure’s

predicted commuting-flow changes are invariant to this parameter.
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Figure 7: Comparison of models’ predictive performance across 78 events (pooled pre-event data)

(a) Coefficients from regressing observed changes on predicted changes
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(b) Ratio of two models’ prediction errors
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6 Conclusion

Economists increasingly have access to spatially fine data and use quantitative spatial models

to compute counterfactual general-equilibrium outcomes. The smaller the number of individuals

behind each economic outcome reported in these data, the less compelling the conventional modeling
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assumption that there is a continuum of individuals. We document that empirical settings of

interest exhibit granular commuting matrices and discuss the consequences of such granularity for

economic modeling, estimation, and predicting counterfactual outcomes. In short, the conventional

calibrated-shares procedure risks overfitting in-sample observations at the cost of failing to predict

out-of-sample outcomes. We need to evaluate the performance of these applied general-equilibrium

models in predicting observed changes if policymakers are going to rely on them to inform their

decisions (Kehoe, 2003; Bryan, Glaeser, and Tsivanidis, 2019).

In this paper, we propose a granular model that can generate patterns of outcomes like those

in the data, show how to estimate its parameters by maximum likelihood, and contrast its predic-

tions about local economic shocks to those of the conventional continuum model. Assuming that

commuting costs for millions of residence-workplace pairs are a parsimonious function of observed

covariates rather than millions of pair-specific parameters guards against overfitting granular data.

Studying 78 tract-level employment booms in New York City during 2010–2012, we find that our

granular model predicts changes in commuting flows better than the calibrated-shares procedure.

Since all empirical settings feature a finite number of individuals, the continuum assumption

has been made in the interest of modeling convenience, not realism. Our granular model is equally

tractable and leverages the same data as the continuum approach, so it can be applied in the same

settings in which economists have thus far assumed a continuum. Moreover, since our granular

framework coincides with the standard model in the limit, it can be used to quantify the role of

granularity in economic outcomes and assess the (un)suitability of the continuum approximation.

Since we have provided evidence that a great variety of spatial settings exhibit granularity, this

quantitative framework should find widespread application.
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Appendix – For Online Publication

A Additional results for granular empirical settings

Tract-pair-level commuter counts are so impersistent that a gravity model estimated using an

observed bilateral characteristic like transit time or distance can sometimes predict future commuter

counts better than the observed value. Table A.1 shows that, for tract pairs with fewer than ten

commuters reported, a gravity-based estimate predicts the following year’s value better than its

current value does. The fitted values from a gravity model estimated using 2013 data have a higher

R2 for predicting observed 2014 values than the observed 2013 values in both Detroit and New

York City. Using the observed 2013 values yields better predictions only for the tract pairs with

the largest 2% of commuter counts.

Table A.1: Gravity-based estimates predict 2014 commuter counts better than 2013 values do

# of commuters Share Gravity: time 2013 values Share Gravity: distance 2013 values

Panel A: Detroit

≤ 5 0.960 0.384 0.307 0.955 0.367 0.307
≤ 10 0.983 0.494 0.473 0.978 0.465 0.472
Panel B: NYC

≤ 5 0.978 0.364 0.306 0.968 0.373 0.306
≤ 10 0.990 0.476 0.475 0.980 0.477 0.473

Notes: Each row reports results for all tract pairs in Detroit (upper panel) or New York
City (lower panel) with fewer than 5 or 10 commuters in the 2013 LODES data. The “share”
columns report the share of tract pairs covered by the row. The first and fourth “share”
columns differ because some observations have missing transit-time values. The “gravity”
columns report the R2 obtained by regressing the 2014 number of commuters on the number
of commuters predicted by a gravity model estimated using 2013 data. The “2013 values”
columns report the R2 obtained by regressing the 2014 number of commuters on the 2013
number of commuters. The “gravity: time” column estimates the gravity equation (5) as
described in Section 4. The “gravity: distance” column uses ln δkn = ln distancekn rather than
commuting costs defined in Section 4.1.
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B Theory

We first demonstrate the claim made in the main text that the continuum model is a limiting case

of the granular model. The following subsections present extensions of the bare-bones model in

Section 3 that introduce trade costs, local increasing returns, and the use of land in production.

The model of perfect competition with local increasing returns should be isomorphic to a model of

monopolistic competition with free entry, per the logic in Allen and Arkolakis (2014).

B.1 Continuum model as limiting case of the granular model

We derive the result that the granular model coincides with the continuum model as the number

of individuals becomes infinite, I → ∞. Note that aggregate labor supply L is fixed, as each

individual supplies L/I units of labor. The key step is to show that equation (6) holds as I →∞.

Conditional on the labor allocation {`kn}, granularity plays no role in the trade equilibrium, which

will coincide with that of a continuum model.

Definition 3.2 says that labor supplied by residents of k who work in n is

`kn =
L

I

I∑
i=1

1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

}
.

Note that 1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

}
is a binary random variable that is equal to one with

probability Pr(Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)). Thus, E
(
1
{
Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)

})
=

Pr
(
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

)
. Since the idiosyncratic preference vectors are independent and

identically distributed random variables, the law of large numbers implies that, using equation (5),

lim
I→∞

1

I

I∑
i=1

1
{
Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)

}
= E

(
1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

})
=

w̃εn(r̃αk δkn)−ε∑
k′,n′ w̃

ε
n′(r̃

α
k′δk′n′)

−ε .

As a result, as I →∞, `kn → L× w̃εn(r̃αk δkn)−ε∑
k′,n′ w̃

ε
n′ (r̃

α
k′δk′n′ )

−ε .

B.2 Trade costs

Relative to the model in Section 3, we now assume that goods trade is subject to iceberg trade

costs: delivering a unit of the location-n variety to location k requires producing τnk ≥ 1 units in n.

Individuals consume differentiated goods at their residences, and the price of location n’s output

for consumers in location k is τnkwn/An. Thus, the price index in location k is Φk = rαkP
1−α
k ,

where the local CES price index for goods is Pk =
[∑

n (τnkwn/An)1−σ
]1/(1−σ)

.

In this environment, the equivalent of equation (2) is such that, based on the beliefs {w̃n} and

{r̃k}, each worker chooses the residential location and the work location that maximize expected
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utility,

Ũ ikn = ε ln

(
w̃n

r̃αk P̃
1−α
k δkn

)
︸ ︷︷ ︸

≡Ũkn

+νikn,

where P̃k =
[∑

n (τnkw̃n/An)1−σ
]1/(1−σ)

.

With trade costs, the goods-market-clearing condition, which is the equivalent of equation (3),

equates quantity supplied and quantity demanded:

An
∑
k

`kn
δkn

= (wn/An)−σ
∑
k

[(
τnk
Pk

)1−σ
(∑

n′

`kn′

δkn′
wn′

)]
. (B.1)

Equation (4), which clears the land market, is unchanged by the introduction of trade costs.

The definition of a trade equilibrium is akin to Definition 3.1, with equations (B.1) and (4)

serving as the relevant market-clearing conditions.

With trade costs, the expression for the probability of choosing residential-workplace pair kn

analogous to equation (5) is

Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) =
w̃εn

(
r̃αk P̃

1−α
k δkn

)−ε
∑

k′,n′ w̃
ε
n′

(
r̃αk′P̃

1−α
k′ δk′n′

)−ε . (B.2)

The definition of a granular commuting equilibrium is akin to Definition 3.2 with {τkn} added

to the list of economic primitives and expression (B.2) serving as the relevant probability mass

function.

B.3 Local increasing returns

Relative to the model in Section 3, we now assume that production exhibits local external economies

of scale. In particular, in each location n the linear production technology is qn = AnLn, where Ln

is the labor supply of workers working in location n and An ≡ ĀnL
η
n. Thus, the CES price index

is P =
[∑

n

(
wn/(ĀnL

η
n)
)1−σ]1/(1−σ)

.

Since output in location n is Ān (
∑

k `kn/δkn)1+η, equating quantity supplied and quantity

demanded requires

Ān

(∑
k

`kn/δkn

)1+η

=
wn
−σĀσn (

∑
k `kn/δkn)ησ

P 1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ . (B.3)

The remaining results are unchanged after appropriately substituting in equation (B.3). Equa-

tion (4), which clears the land market, and expression (5) are unchanged by the introduction

of local increasing returns. The definition of a trade equilibrium is akin to Definition 3.1, with

equations (B.3) and (4) serving as the relevant market-clearing conditions. The definition of a
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granular commuting equilibrium is akin to Definition 3.2 with {Ān} and η added to the list of

economic primitives.

B.4 Firms produce using land

Relative to the model in Section 3, we now assume that firms produce output using labor and

land inputs via a Cobb-Douglas production function. Workers produce in location n with a Cobb-

Douglas production technology:

qn = An

(
φnTn
β

)β ( Ln
1− β

)1−β
,

where Ln is the labor supply of workers working in location n and φn is the share of land in

location n that is used in production. As a result, the unit cost of production in location n is

cn = 1
An
rβnw

1−β
n . Thus, the CES price index is P =

[∑
n c

1−σ
n

]1/(1−σ)
.

Since output in location n is An(φnTn)β (
∑

k `kn)1−β, equating quantity supplied and quantity

demanded requires

An(φnTn)β

(∑
k

`kn/δkn

)1−β

=
(cn)−σ

P 1−σ

∑
n′

(
rn′φn′Tn′ + wn′

∑
k′

`k′n′/δk′n′

)
. (B.4)

Equating the fixed land supply Tk to the sum of the quantities of land demanded by firms and by

residents requires

Tk = α
∑
n

`kn
δkn

wn
rk

+ β
1

1−β

(
wk
rk

)∑
k′

`k′k
δk′k

. (B.5)

The definition of a trade equilibrium is akin to Definition 3.1, with equations (B.4) and (B.5)

serving as the relevant market-clearing conditions. The definition of a granular commuting equi-

librium is akin to Definition 3.2 with the Cobb-Douglas production parameter β added to the list

of economic primitives.

C Estimation results

Much of the prior literature has used measures of distance rather than transit time. Table C.1

shows that the consequences of dropping observations with zero commuters or recoding zero-value

observations to small positive numbers reported in Section 4.2 are the same if one uses distance

rather than transit time as the observable measure of bilateral commuting costs. Dropping the

tract pairs with zero flows produces estimates of the commuting elasticity that are substantially

smaller. Recoding zeros to small positive numbers yields estimates of the elasticity that are an

order of magnitude larger in absolute value. Similarly, Figure C.1 shows that destination fixed

effects are biased by dropping observations with zero commuters, just as shown in Figure 3.

The main text reports gravity regressions for tract-to-tract commuting flows. Table C.2 reports
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gravity regressions for county-to-county commuting flows that are analogous to the results reported

in Table C.1. The contrasts between columns 1 and 2 and between columns 3 and 4 match those

found in the tract-to-tract regressions. Figure C.2 depicts the contrasting origin and destination

fixed effects estimated when using all the data and when using only positive observations. Origins

that have zero residents working in a greater share of destination counties tend to have higher

estimated origin fixed effects when zero-valued observations are omitted from the estimation sample.

The same upward bias is also evident for the destination fixed effects.
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Table C.1: Commuting elasticity estimates using distance

(1) (2) (3) (4)
MLE MLE non-zero OLS non-zero OLS recode

Panel A. Detroit (2014)
Distance (log) -1.098 -0.776 -0.599 -6.629

(0.0135) (0.0146) (0.0128) (0.110)

Model fit (R2 or pseudo-R2) 0.609 0.457 0.539 0.370
Location pairs 1,352,565 357,301 357,301 1,245,712
Commuters 1,281,738 1,281,738 1,281,738 1,281,738

Panel B. New York City (2010)
Distance (log) -0.998 -0.562 -0.380 -3.718

(0.0205) (0.0168) (0.00820) (0.0610)

Model fit (R2 or pseudo-R2) 0.673 0.523 0.588 0.362
Location pairs 4,626,742 688,626 688,626 4,432,686
Commuters 2,443,053 2,443,053 2,443,053 2,443,053

Standard errors, two-way clustered by k and n, in parentheses
Notes: All specifications include destination fixed effects and origin fixed effects. The covariate δkn
is now the geodesic distance between tracts k and n. The estimation sample is restricted to k 6= n
observations. Column 1 presents the results from the maximum likelihood estimation described in
Section 4.1.2. Column 2 presents the results from applying the maximum likelihood estimator to a
sample that omits observations with zero commuters. Column 3 estimates the gravity equation in logs via
OLS. Column 4 recodes `kn = 0 observations to `kn = 10−12`nn before estimating the gravity equation
in logs via OLS. The model-fit statistic is the pseudo-R2 in columns 1 and 2 and R2 in columns 3 and 4.

Figure C.1: Destination fixed effects from tract-to-tract gravity regressions with distance covariate
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Notes: These plots depict the destination fixed effects estimated in Table C.1’s column 1 (horizontal axis)
and column 3 (vertical axis). The left panel plots these fixed effects for Detroit; the right panel plots them for
New York City. See the notes to Table C.1 for details.
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Table C.2: Commuting elasticity estimates using distance for counties

(1) (2) (3) (4)
MLE MLE non-zero OLS non-zero OLS recode

Commuting cost -3.221 -3.064 -3.506 -20.31
(0.0810) (0.0778) (0.0280) (0.188)

Observations 79,112 42,687 42,687 79,128
Model fit (R2 or pseudo-R2) 0.927 0.917 0.765 0.564
Location pairs 79,188 42,785 42,785 79,188
Commuters 35,219,020 35,219,020 35,219,020 35,219,020

Standard errors, two-way clustered by k and n, in parentheses
Notes: The estimation sample contains pairs of counties within 120 kilometers in the 2006–2010 ACS. All
specifications include destination fixed effects and origin fixed effects. The covariate δkn is the geodesic
distance between counties k and n. Column 1 presents the results from the maximum likelihood estimation
described in Section 4.1.2. Column 2 presents the results from applying the maximum likelihood estimator
to a sample that omits observations with zero commuters. Column 3 estimates the gravity equation in
logs via OLS. Column 4 recodes `kn = 0 observations to `kn = 10−12`nn before estimating the gravity
equation in logs via OLS.

Figure C.2: Contrasting fixed effects from county-to-county gravity regressions
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Notes: These plots contrast county fixed effects estimated with and without zero-valued observations. The
vertical axis of each panel is the difference between the fixed effect estimated when dropping zeros (Table C.2’s
column 2) and using the full sample (Table C.2’s column 1). The horizontal axis of each panel is the share of
observations for which there are zero commuters. The sample is all county pairs within 120 kilometers of each
other in the 2006–2010 ACS. See Table C.2 notes for details on the estimation samples and estimators.

41



D Counterfactuals

D.1 Calibrated-shares procedure

This section describes a calibration procedure, known as “exact hat algebra” or “calibrated share

form” in the international trade literature (Rutherford, 1995; Dekle, Eaton, and Kortum, 2008),

often applied in quantitative spatial economics. This procedure makes a quantitative spatial

model perfectly match the observed spatial distribution of economic outcomes and allows one to

compute counterfactual equilibrium outcomes expressed as proportionate changes from the initial

equilibrium.

The procedure relies on rewriting the equilibrium equations to describe ratios of counterfactual

and initial equilibrium variables. To emulate the typical approach in the literature, we assume that

commuting costs δkn are preference shifters rather than reduced labor hours. In this specification,

the three equations that jointly define the equilibrium of the model in Section 3 when there is

a continuum of individuals with continuum-case rational expectations, such that w̃n = wn and

r̃k = rk, are equation (6) and slight variants of equations (3) and (4):

An
∑
k

`kn =
(wn/An)−σ

P 1−σ

∑
k′,n′

`k′n′wn′

Tk = α
∑
n

`kn
wn
rk

`kn = L×
wεn (rαk δkn)−ε∑

k′,n′ w
ε
n′
(
rαk′δk′n′

)−ε .
The researcher knows the labor demand elasticity σ and commuting elasticity ε and observes the

initial equilibrium labor allocation `kn and wages wn. Denote counterfactual equilibrium values of

wages, rents, and labor allocation by w′n, r′k, and `′kn. Denote the counterfactual-initial ratio of a

variable x by x̂ ≡ x′

x . Assume that `′kn = 0 if `kn = 0, so that, in a slight abuse of notation, we can

write ˆ̀
kn = 1 if `kn = 0.

One can solve for the counterfactual equilibrium variables associated with combinations of

counterfactual-initial ratios of productivities Ân, land endowments T̂k, and commuting costs δ̂kn.

Tedious manipulation of the three equations above leads to the following three equations written
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in terms of elasticities, initial equilibrium values, and counterfactual-initial ratios:

ŵn = Â
σ−1
σ

n

(∑
n

(
ŵn

Ân

)1−σ wn
∑

k `kn∑
k′,n′ wn′`k′n′

)−1
σ
(∑

k
ˆ̀
kn`kn∑
k `kn

)−1
σ

∑
k′,n′

ˆ̀
k′n′`k′n′ŵn′wn′∑
k′,n′ `k′n′wn′

 1
σ

(D.1)

r̂k = T̂−1
k

∑
n

ˆ̀
kn`knŵnwn∑

n `knwn
(D.2)

ˆ̀
kn =


1, if `kn = 0

ŵεn(r̂αk δ̂kn)−ε∑
k′,n′ ŵ

ε
n′ r̂
−αε
k′ δ̂−εk′n′

`kn
L

, if `kn > 0
(D.3)

These three equations deliver ŵn, r̂k, and ˆ̀
kn given the elasticities σ and ε, initial equilibrium

values `kn and wn, and counterfactual-initial ratios Ân, T̂k, and δ̂kn.

Note that this procedure implicitly rationalizes zero-commuters observations with infinity com-

muting costs, `kn = 0 ⇐⇒ δkn = ∞. This procedure cannot characterize cases in which `kn = 0

and `′kn 6= 0 because the object δ̂−εkn =
(
δ′kn
δkn

)−ε
is not sensibly defined if δ′kn 6= 0 and δkn =∞.

Note that this procedure does not identify the initial values of the parameters An, Tk, and δkn.

Given the elasticities σ and ε and the initial equilibrium values `kn and wn, equations (3), (4), and

(6) are insufficient to separately identify Tk and δkn. One would also need to observe land prices

rk to separate these parameters.

When implementing this procedure in Section 5, we compute tract-level workplace wages using

LODES and ZIP Business Patterns data following Owens, Rossi-Hansberg, and Sarte (2020).

D.2 Event studies

Figure D.1 depicts the time series of total employment in two New York City census tracts

that contain 200 Fifth Avenue and 111 Eighth Avenue. In Section 5, we examine tract-to-tract

commuting flows within New York City for which these two tracts are workplaces (commuting

destinations).

D.3 Monte Carlo exercise

A Monte Carlo exercise shows that granularity alone can substantially reduce the predictive power

of the calibrated-shares procedure. In this simulation, the data-generating process is our estimated

model of New York City in 2010. We impose a counterfactual 18% increase in productivity for the

tract containing 200 Fifth Avenue. In the limiting case, as I →∞, the calibrated-shares procedure

would perfectly describe the changes in commuting flows associated with this productivity increase.

Thus, any predictive failure when drawing granular (I = 2, 488, 905) realizations from this data-

generating process are due to problems stemming from the “continuum of individuals” assumption.

Given our estimated model of New York City in 2010, we simulate 100 “event studies” as in

Section 5. For each of the 100 events, we implement the following five steps:
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1. To mimic “observed” data, draw one realization from the data-generating process at its 2010

parameter values and one realization at its counterfactual parameter values. Compute the

difference in employment in the tract containing 200 Fifth Avenue.

2. Estimate the granular model and calibrate the continuum model to match the realization

drawn from the data-generating process at its 2010 parameter values.

3. Compute the increase in productivity required to match the “observed” change in employment

for the “treated” tract for both the calibrated-shares procedure and the granular model. These

increases may differ from each other and the true 18% increase.

4. Compute the predicted change in commuter counts for the calibrated-shares procedure and

1,000 simulations of the granular model.

5. Regress the “observed” changes in commuter counts destined for the tract containing 200

Fifth Avenue on the calibrated-shares predicted changes. Regress the “observed” changes

in commuter counts destined for the tract containing 200 Fifth Avenue on the mean of the

predicted changes from 1,000 granular simulations.

We summarize the 100 simulations by plotting the coefficients and relative RMSEs in Figure D.2,

which is analogous to Figure 6 in Section 5.

The Monte Carlo simulation shows that our estimation procedure recovers model parameters

well enough when the granular model is the data-generating process to predict counterfactual

changes in commuter counts. By contrast, the calibrated-shares procedure has limited predictive

power when applied to granular data. Figure D.2 shows that regressing the “observed” changes in

commuter counts on the values predicted by the calibrated-shares procedure yields a slope that is

close to zero and an intercept that is far from it. Since the only element of the data-generating

process at odds with the assumptions of the calibrated-shares procedure is the finite number of

individuals, granularity alone can severely limit that procedure’s predictive power.
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Figure D.1: Employment increases in the anchor-tenant event-study tracts
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Notes: This figure depicts the number of primary jobs in tracts 36061005800 and 36061008300 in the
LODES data.

Figure D.2: Monte Carlo: Calibrated-shares procedure performs poorly with granular data
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