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1 Introduction

Constant maturity zero coupon Treasury yields are a critical ingredient for researchers in

macroeconomics and finance for studying the term structure of interest rates (e.g., Ang and

Piazzesi (2003), Duffee (2002), Hamilton and Wu (2012), Diebold and Rudebusch (2013),

and Wu and Xia (2016)), estimating return forecasting regressions (e.g., Fama (1984) and

Cochrane and Piazzesi (2005)), analyzing monetary policy (e.g., Rudebusch (2002) and

Bernanke and Reinhart (2004)), and pricing other assets and derivatives (e.g., Hull and

White (1990), Jarrow and Yildirim (2003), Koijen et al. (2017) and Cieslak and Pang

(2020)). We construct a new set of zero coupon yields that better represent informa-

tion in the raw data. We make it available to researchers and will update it regularly:

https://sites.google.com/view/jingcynthiawu/yield-data.2

The most popular zero-coupon Treasury yield curve datasets are Fama and Bliss (1987)

and Gürkaynak et al. (2007) (GSW hereafter). However, both have their limitations. Fama

and Bliss (1987) data have limited maturities (1, 2, · · · , 5 years) and are only available at

a monthly frequency.3 Moreover, their yield curve is unsmoothed, and extending their data

to more densely distributed and longer maturities could lead to large fluctuations in forward

rates.4 GSW discard all underlying securities with less than three months to maturity and all

Treasury bills. Therefore, by construction, the short end of their yield curve is extrapolated

and has large pricing errors. An imprecise short end has important consequences for medium-

and long-term maturities because it prices coupons. Moreover, their parametric method,

which focuses on fitting the medium term, also makes the long end of their yield curve

subject to extrapolation errors. Despite these shortcomings, researchers heavily rely on the

short and long ends of the GSW dataset because it is the only option with a wide range of

maturities.

2The raw CUSIP-level coupon-bearing Treasury bond data come from the CRSP Treasuries Time Series.
3Their data are available from CRSP Treasuries.
4See Cochrane’s (2015) comments on Joslin et al. (2014), which apply Fama and Bliss (1987) methodology

to extend their data to more maturities.
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To address these issues, we construct a new zero-coupon yield curve dataset with a kernel-

smoothing method. Our dataset is at the daily frequency covering maturities of 1, 2,..., 360

months. We study its economic implications by revisiting the influential paper of Cochrane

and Piazzesi (2005) (CP) for bond return-forecasting regression, and the recent work on

excess volatility of long-term bond yields by Giglio and Kelly (2018) (GK).

For the CP return-forecasting regressions, using our data uncovers a robust loading pat-

tern over five forward rates. The same pattern holds for bonds with different maturities

and over different sample periods. This result is consistent with CP’s main conclusion that

one return-forecasting factor, which is a linear combination of forward rates, predicts excess

returns. By contrast, estimates based on the GSW data do not permit a one-factor interpre-

tation: the estimated loadings do not have a consistent pattern across maturity ranges or

over time. Moreover, their loadings differ by an order of magnitude between CP’s original

sample period up to 2003, and the sample extended through 2019.

Next, we test the spanning hypothesis (whether the three yield factors are sufficient to

predict bond returns) by regressing excess returns on the five principal components of the

five forward rates. Using our yield curve, we find the fourth and fifth principal components

have additional predictive power whether we base our conclusion on standard inference or

the bootstrap procedure recently developed by Bauer and Hamilton (2018). This result is

consistent with CP’s conclusion as well as the literature that argues for unspanned factors

(e.g., Duffee (2011)). By contrast, with GSW data, the higher-order principal components

fail to show additional predictive power using CP’s original sample period. Moreover, both

the sign and the order of magnitude of the loadings change between CP’s original sample

period and the extended sample, indicating instability of the GSW yield curve.

For excess volatility, we calculate the variance-ratio statistic proposed by GK, which

compares the unrestricted variance of the log price of a long bond with its variance imposing

the no-arbitrage restriction. For 20-, 25-, and 30- year bonds, we replicate GK’s variance

ratios of 1.19, 1.38, and 1.62, respectively, using the GSW data. However, GK find larger
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variance ratios (often above 2) across a variety of alternative asset classes. We show their

smaller estimates for Treasury securities are likely driven by the GSW data. Using our data

instead, the corresponding variance ratios become 1.62, 2.02, and 2.37, respectively, which

is consistent with their overall conclusion, and strengthens their Treasury results.

What drives the different behaviors of our yield curve and GSW’s? The main difference

is that we use a non-parametric kernel-smoothing method based on Linton et al. (2001),

whereas GSW apply Svensson’s (1994) extension of Nelson and Siegel’s (1987) parametric

function. The non-parametric approach allows us to generate a globally smooth yield curve

across maturities while still capturing important local variation.

We propose a novel approach to adaptively select bandwidths, which are the key to non-

parametric methods. This procedure is specifically designed for the Treasury yield curve.

The bandwidth is inversely related to the number of observed Treasury securities around a

given maturity. The more data, the smaller the bandwidth. Conversely, parametric methods

such as GSW have a fixed degree of freedom across all maturities. Our adaptive bandwidth

selection allows us to keep securities at the end of the yield curve including Treasury bills,

which we find contain important information in disciplining the overall behavior of the yield

curve. In general, the flexibility of our non-parametric approach enables our dataset to

represent information in the raw data, not only for the medium, but more importantly, for

the short and the long run.

Our online zero-coupon yield curve data are complemented by a bandwidth file, which

captures how much information is in the raw data. In general, the short term is associated

with the smallest bandwidth, implying ample observations. By contrast, the bandwidth at

maturities longer than 10 years is often large, due to intermittent issuance. Although a

popular choice in the literature, the 30-year yield sometimes pools information from bonds

with maturities that are 10 years away, even for the post-1990 sample. We recommend

researchers use the bandwidth data as additional information to assess the quality of the

zero-coupon yield curve and the availability of the raw coupon-bearing Treasury securities.
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Another methodological contribution we make is to propose a sequential method to sys-

tematically delete outliers in the raw data as opposed to ad hoc methods that are often used

in the literature. Our algorithmic approach is transparent and replicable for future research.

Another benefit is that it helps us detect calendar-based anomalies. Specifically, we find

the 1st, 15th, and last day of each month include an unusual number of outliers, whereas

the days before and after these calendar days are much less noisy and display similar yield

curves. The sequential method guarantees internal consistency of the yield curve across

days. Interestingly, for monthly data, the most popular choices in the literature are the end

of the month, the beginning of the month, and mid month. We show all of these choices are

subject to a larger number of outliers. Instead, we recommend researchers use the second to

last day of the month, the second day of the month, or the day before or after the 15th.

Having discussed how we construct the yield curve and its economic implications, we

next probe into its statistical performance. We first compare our dataset with GSW in

terms of how they fit the raw data in sample. We find that for maturities less than one year,

GSW generate large and sometimes extreme pricing errors as high as 7% in annualized yield

to maturity. Our method largely eliminates these extreme pricing errors and reduces the

average pricing error by as much as 60%. GSW have large pricing errors in the short end

because they choose not to use the raw data in that segment and subsequently extrapolate

the short end from longer-term bonds. Note these large errors are not due to different outlier

detection methods because we re-estimate their yield curves based on our filtered raw data

for a fair comparison.

Our model also systematically outperforms GSW’s for maturities longer than five years

over the entire sample period, with a reduction of 39% in the average pricing error. This

result highlights the extrapolation error in the long end of GSW’s parametric curve. For

the medium term, our model outperforms GSW’s mainly during the low-interest-rate period

after 2009. Overall, our model consistently outperforms GSW’s across the entire maturity

spectrum and over time.
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The better in-sample performance of our yield curve is not an artifact of the more flexible

non-parametric curve. The same comparison holds in an out-of-sample exercise: the average

reduction in the out-of-sample pricing error is 49% across maturity buckets. Furthermore, we

use the out-of-sample performance to determine the optimal bandwidths that best describe

the Treasury data.

Our paper is organized as follows. In Section 2, we describe the non-parametric kernel-

smoothing method. In Section 3, we discuss the adaptive bandwidth-selection procedure.

Section 4 details our outlier detection algorithm and highlights a few Treasury pricing anoma-

lies on selected days. Section 5 studies economic implications of our new data, and Section 6

focuses on its statistical performance. We offer concluding remarks in the final section.

2 Kernel-Smoothing Method

The goal is to extract a zero-coupon yield curve y(n) for any maturity n ∈ N from observed

Treasury bills, notes, and bonds, many of which have coupon payments. For theory, this

section uses the support N = (−∞,+∞). In our application, we make it N = {1, 2, ..., 360}

months.5

Estimation of the yield curve amounts to minimizing a weighted average of the distance

between the fitted price and the observed price across all available bonds. The number of

yields on the zero-coupon curve often exceeds the number of observations. To guarantee

uniqueness and smoothness, one needs to impose additional constraints on the minimiza-

tion problem. For example, Nelson and Siegel (1987) and Svensson (1994), which are the

underlying methods GSW follow, assume a parametric functional form for the yield curve.

Alternatively, we rely on a non-parametric method. The main advantage of a non-

parametric framework is that the yield curve does not need to have the same functional form

across all maturities. Typically, the short end of the yield curve has more local patterns,

5For earlier years when relatively long-maturity bonds are not available, the support is N = {1, 2, ..., n},
where n < 360 is the maturity limit that we will specify later on.
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whereas longer-term yields are smoother. We design our non-parametric method with an

adaptive bandwidth (in Section 3) to specifically target this feature of the yield curve. By

contrast, parametric methods including the ones in the literature struggle to capture both

features and need to make compromises.

Our framework builds on the work of Linton et al. (2001), who introduced a non-

parametric kernel-smoothing approach in estimating the yield curve. In particular, the

authors focus on the asymptotic distribution of the yield curve estimate when it is assumed

to be locally linear.

Different from their paper, we focus on the empirical performance based on a finite sample

of bonds. Specifically, our goal is to construct a smooth zero-coupon yield curve that best

describes the raw data. We make the following methodological contributions. First, we

propose a new method for bandwidth selection in Section 3 targeting the unique features of

the Treasuries. Second, we provide yield estimates over a denser set of maturities compared

to the literature, namely, N = {1, 2, ..., 360}. Third, we derive analytical derivatives for

the first-order conditions of the objective function to facilitate computation. Fourth, our

objective function is weighted by durations of bonds, which follows the literature on fitting

the yield curve parametrically and is new to the non-parametric literature.

2.1 Pricing Error for a Security

At a given point in time, suppose we focus on a generic bond.6 It is characterized by its

observed price p, its sequence of cash flows {cj}Jj=1 including its principal, and the corre-

sponding maturities {νj}Jj=1. Given y(νj), the implied bond price p̂ is

p̂ =
J∑
j=1

cj exp
(
− y(νj)νj

)
. (2.1)

The goal is to extract the entire zero-coupon yield curve y(n) for n ∈ N from observed

6For brevity, we omit indicators for both time and bond for now.
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bond prices. Note that n ∈ N denotes a maturity on the constant-maturity zero-coupon

yield curve, whereas νj denotes the maturity of the cash flow cj. {νj}Jj=1 do not cover the

entire support N , nor is νj necessarily in N . Therefore, we cannot obtain y(n) by simply

inverting (2.1).

Instead, we connect a given νj with an arbitrary nj ∈ N by approximating y(νj) with

y(nj) using a first-order Taylor expansion:

y(νj) ≈ y(nj) + (νj − nj)y′(nj), (2.2)

where y′(nj) is the first derivative of the yield curve evaluated at nj. Now, we can approxi-

mate the bond price in (2.1) using (2.2)

p̂(n1, n2, ....nJ) ≈
J∑
j=1

cj exp
[
−
(
y(nj) + (νj − nj)y′(nj)

)
νj

]
, (2.3)

where each y(νj) for the cash flow cj is approximated by an arbitrary point on the zero-

coupon yield curve y(nj).

In general, nj could be any maturity in N . However, the closer nj is to νj, the more

information the j-th coupon payment provides on y(nj). To capture this idea, we use a

normal kernel-weighting function:

K(nj, νj) = Kh(νj)(nj − νj),

=
1√

2πh(νj)2
exp

[
− (nj − νj)2

2h(νj)2

]
, (2.4)

where h(νj) is the bandwidth parameter or the standard deviation of the normal distribution.

The weighting function has two features. First, given the bandwidth, the weight is higher

when nj is closer to νj. Second, the bandwidth h(νj) is a function of νj. This is essential

for our application and allows us to pool information more locally around one maturity and

more globally around another.
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When h(νj) goes to zero, the cash flow cj only provides information for y(νj), but does not

provide any information for y(nj) when nj 6= νj. Therefore, a narrow bandwidth overweights

information locally and tends to generate a non-smooth yield curve. On the other hand, when

h(νj) approaches infinity, all maturities are weighted equally. Hence, a wide bandwidth pools

information more globally, but may generate yield curves that are overly smooth and lack

local variation. We design our bandwidth to specifically target features of the Treasury yield

curve; see details in Section 3.

Given the kernel weights, the kernel-weighted squared pricing error is

E =

∫
. . .

∫
(p− p̂(n1, n2, ....nJ))2

J∏
j=1

K(nj, νj)dnj, (2.5)

where p̂(n1, n2, ....nJ) is defined in (2.3). Note we have

∫
. . .

∫ J∏
j=1

K(nj, νj)dnj = 1, and

K(nj, νj) is positive everywhere, which makes it an appropriate density function.

Our choice of the normal kernel is motivated by two reasons. First, the fitting behavior is

similar among different kernels, but the normal kernel has an advantage due to its analytical

tractability (see, e.g., Wand and Jones (1994)). Second, in our framework, the continuous

differentiability of the normal kernel allows us to derive the first-order conditions associated

with (2.5) analytically, which greatly facilitates our estimation of a large dimensional yield

curve (see Subsection A.1 for derivation).7

2.2 Summarizing Information across Bonds

We have thus far constructed the kernel-weighted squared pricing error for a generic bond.

To combine information from all available bonds at a given point in time, we need to add

up the squared pricing errors across bonds. Suppose I bonds are available on a given day.

Let the kernel-weighted squared pricing error for bond i be E i for i = 1, . . . , I, where E i is

7In contrast, alternative kernels such as the box kernel or the Epanechnikov kernel are not differentiable
at the boundaries.
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defined in (2.5).

The same discrepancy between the actual price and the fitted price has different implica-

tions for two bonds that have different maturity structures. For example, a $1 pricing error

is more pronounced for a short-term Treasury bill as opposed to a 10-year Treasury note.

This difference can be captured by weighting E i with 1/D2
i , where Di is bond i’s duration,

defined as

D =
J∑
j=1

νjcj exp(−νj ȳ)

p
,

and the yield to maturity (YTM) ȳ is the constant discount rate that equates the present

value of the bond’s cash flows with its price:

p =
J∑
j=1

cj exp(−νj ȳ). (2.6)

The duration-weighted pricing error can be interpreted as the equally weighted error in

the yield space. Therefore, our objective function is

S(y(·), y′(·)) =
I∑
i=1

1

D2
i

· E i, (2.7)

where y(·) is the yield function and y′(·) is its first derivative. Our goal is to minimize this

objective function to obtain y(n) and y′(n) for all n ∈ N .

This weighting scheme is new in the non-parametric framework. We consider using

durations to weight bond prices to be important, because doing so allows us to put more

weight on fitting the shorter end of the yield curve, which affects coupon payments of bonds

at all maturities. Several papers that estimate the yield curve parametrically have applied

the same weighting scheme (e.g., Nelson and Siegel (1987), GSW).

Minimizing the objective function (2.7) with respect to y(·) and y′(·) is a non-trivial

optimization problem. The main issue is that the integral in (2.5) does not have a closed-form
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expression and needs to be approximated. Therefore, we need to choose a discrete support to

facilitate computation. We choose N = {1, 2, ..., 360} months, which is denser than Jeffrey

et al. (2006), for example. Our choice of a dense support in N requires estimating a large

number of parameters. To alleviate some numerical burden, we derive analytical derivatives

of the first-order conditions for (2.7), which provides efficient and accurate estimates of

the yield curve; see Subsection A.1. Once we have estimates of the yield curve over this

discrete support, our framework permits a kernel-weighted interpolation scheme to provide

estimates for maturities that are not in the support. Our choice of a dense support ensures

the estimated yield curve is smooth over the entire maturity range.8 See details on estimation

in Subsection A.1.

2.3 Model-Implied Bond Price

The model-implied bond price is

p̂ =

∫
. . .

∫
p̂(n1, n2, ....nJ)

J∏
j=1

K(nj, νj)dnj. (2.8)

Once we have the estimated y(·) and y′(·) over N = {1, 2, ..., 360}, we approximate this

object with (see our derivation in Subsection A.1)

p̂ =
J∑
j=1

cj

∑360
n=1K(n, νj) exp

[
−
(
y(n) + (νj − n)y′(n)

)
νj

]
∑360

n=1K(n, νj)

 . (2.9)

In empirical sections, we compute p̂ using (2.9), and then calculate its associated yield to

maturity.

8Note that interpolation guarantees the estimated yield curve is always continuous. However, a less dense
support may lead to kinks in the estimated yield curve, which makes the yield curve less smooth.
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3 Bandwidth

One main methodological contribution of our paper is to propose a bandwidth-selection

method for the yield curve. The choice of bandwidth determines the smoothness of the

estimated yield curve, which is crucial to generate a globally smooth yield curve while not

missing important local variation. Section 3.1 proposes our adaptive bandwidth-selection

procedure for the yield curve, and section 3.2 leverages the notion of bandwidth to summarize

information content in the raw data.

3.1 Adaptive Bandwidth-Selection Procedure

We propose a data-driven approach for choosing bandwidths. We follow the basic idea of

adaptive bandwidth selection in the literature on non-parametric estimators (see, e.g., Park

and Marron (1990), Fan and Gijbels (1995), and Ruppert et al. (1995)). We are the first to

apply an adaptive bandwidth-selection procedure to estimate the yield curve. Our specific

choices are new to the literature.

For each ν that corresponds to a cash flow, we choose h(ν) such that N0 bonds mature

within the two-bandwidth interval around ν (i.e., [ν − 2h(ν), ν) ∪ (ν, ν + 2h(ν)]). In our

main analysis, we set N0 at 8.9 For a maturity segment with plenty of observations, the

bandwidth h(ν) is small, and vice versa. To price this cash flow at ν, the relevant region in

the zero-coupon yield curve is n ∈ [ν − 2h(ν), ν + 2h(ν)], which covers 95% of probability

weights.

In practice, observations are not equally spaced, and they are asymmetric around ν.

For these reasons, we adapt our bandwidth-selection procedure as follows. Let N([νa, νb])

denote the number of bonds whose maturities fall into the interval [νa, νb]. We first define

9Our choice of N0 = 8 is dictated by our out-of-sample forecasting results in Subsection B.5.

11



the left-hand-side bandwidth at maturity ν (i.e., hl(ν)) as

hl(ν) =
1

2
min b

s.t. N([ν − b, ν)) ≥ N0/2. (3.1)

If no value of b satisfies N([ν − b, ν)) ≥ N0/2, we set hl(ν) at ν/2.

Similarly, define the right-hand-side bandwidth at maturity ν (i.e., hr(ν)) as

hr(ν) =
1

2
min b

s.t. N((ν, ν + b]) ≥ N0/2, (3.2)

with hr(ν) = 1
2
(nmax − ν) if N((ν, ν + b]) ≥ N0/2 cannot be satisfied for any b, where nmax

is the maximum maturity of the estimated yield curve.

Because the normal kernel is symmetric around ν, we consolidate hl(ν) and hr(ν) into

one bandwidth:

h(ν) = min{max{3, hl(ν), hr(ν)}, 120}, (3.3)

where three months is the minimum and 120 months (i.e., 10 years) is the maximum band-

width we set for any maturity.

Discussion Calculating hl(ν) and hr(ν) separately guarantees that we take information

from both the left side and the right side of ν. This is important because the maturity

distribution of outstanding Treasury securities on a given day often contains gaps, leading

to asymmetry between hl(ν) and hr(ν); see Figure 1. For example, suppose a 10-year gap

is present in the maturity space: no bonds exist with maturities between νa = 120 (i.e.,

10 years) and νb = 240 (i.e., 20 years). Also suppose a large number of bonds exist with

maturities that fall just below νa = 120, implying hl(νa) is small (in particular, hl(νa) �

12



Figure 1: Outstanding Treasury Securities

Notes: Maturity distribution of outstanding securities, 1961–2019.

60 = 1
2
× (240 − 120)). Now consider the bandwidth choice at νa. If we set the bandwidth

h(νa) at hl(νa), the bond price at maturity νa only provides information for the yield curve

up to maturity νa + 2hl(νa),
10 leaving the majority of the yield curve between νa and νb

undetermined. Our solution is to set the bandwidth at hr(νa), which is the larger one

between hl(νa) and hr(νa).

For shorter maturities, many observations contain potential micro-structure noise and

liquidity issues. For a fixed N0 = 8, the bandwidth of max{hl(ν), hr(ν)} tends to be small.

For example, max{hl(ν), hr(ν)} is, on average, around 0.5 months at the maturity of three

months. Such a small bandwidth tends to generate substantial local variation in the esti-

mated yield curve, which may not reflect the underlying true yield curve. Therefore, our

choice of a minimum bandwidth of three months allows us to pool information from matu-

10This is only approximately true, because the normal kernel assigns a non-zero weight to any maturity.
However, it assigns relatively large weights to observations that are within two bandwidths.
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rities that are within half a year of ν to smooth out the estimated yield curve.

On the other hand, too large a bandwidth may bias the yield curve estimate because the

Taylor expansion in (2.2) can be inaccurate. We therefore set the maximum bandwidth at

120 months. This maximum bandwidth only applies to long maturities where the data are

sparse and have large gaps in the maturity distribution.

Fixing the number of local observations at N0 allows us to pool roughly the same amount

of local information to estimate the yield curve at each maturity. Another benefit is that

it automatically adjusts for the total number of Treasury securities available at each date.

When more bonds exist (as in the later part of our sample), bandwidths in general shrink,

which allows us to better capture the local variation in the yield curve. Lastly, our bandwidth

choice is controlled by only one parameter N0, which facilitates our out-of-sample forecasting

exercise that chooses the optimal N0 in Subsection 6.4.

3.2 Information Content in the Raw Data

In this section, we leverage the notion of bandwidth to summarize the information content

in the raw data. Different from (3.3), which is the bandwidth for each cash flow ν, we are

now interested in the information contained at each maturity n on the zero-coupon yield

curve. We propose using

h(n) = min{hl(n), hr(n)}, (3.4)

where hl(n) and hr(n) are calculated using (3.1) and (3.2). Note that if b does not exist for

(3.1), we set hl(n) at ∞. The same applies to hr(n).

Why do we take the minimum instead of the maximum? We use the previous example

with a 10-year gap in the maturity space between 10 years and 20 years to illustrate. For

the bond with ν = 120, hl(ν) � hr(ν). But it needs to provide information to maturities

within the gap n ∈ (120, 240). This explains the maximum in (3.3). For n = 120 on the

14



Figure 2: Bandwidth on Selected Dates
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Notes: We plot the cross section of bandwidth for May 30, 1990, and May 27, 2005. The top panels plot

the bandwidth. The bottom panels plot the yield to maturity.

estimated constant-maturity zero-coupon yield curve, we still have hl(n)� hr(n). However,

the information we use to estimate the yield at n = 120 primarily comes from bonds on the

left side, and hl(n) is small. Hence, we need to take the minimum instead.

Figure 2 provides two examples. The left panel is May 30, 1990, and the right panel is

May 27, 2005. We plot bandwidths at the top. Yield to maturity is at the bottom and each

dot corresponds to one outstanding security.11

For both dates, the bandwidth increases with maturity in general, indicating observations

are more concentrated on the short end. For May 30, 1990, no outstanding securities have

maturities between 180 and 296 months, which results in the spike in bandwidth. On May

27, 2005, the longest maturity is 300 months, and we see the bandwidth increases sharply

after that time.

11See Subsection 4.1 for details on the data.
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Figure 3: Time Series of Bandwidth
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Notes: We plot the time series of bandwidth over the entire sample for 1961 to 2019, and the red vertical

bar marks the beginning of 1990.

Figure 3 shows the time series of the bandwidth for various maturities, with the red

vertical bar indicating the beginning of 1990. Data on the short end are abundant, and the

bandwidths for one, three, and six months are generally below 0.5 months.

The Treasury does not always issue notes and bonds with longer maturities. For example,

it started issuing the 10-year notes in September 1971, 15-year bonds in December 1971, 20-

year bonds in July 1981, and 30-year bonds in November 1985. Even after these starting

dates, they still issue them intermittently. This is consistent with Figure 1.

In general, the bandwidths become smaller after 1990 for maturities longer than one year.

But they remain large for maturities longer than 10 years. The 30-year yield is popular for
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studying the long end of the yield curve in the literature. However, due to the intermittent

issuance, even the post-1990 sample’s bandwidth can get as large as 60 months, implying a

lack of observations and hence pulling information from bonds that are 10 years away. 12

4 Raw Data and Outliers

4.1 Raw Data

The raw CUSIP-level coupon-bearing Treasury bond data come from the CRSP Treasuries

Time Series. For each bond, we observe the end-of-day bid and ask (and average) prices,

maturity, coupon payments, and schedule, as well as other characteristics. The sample is

from June 1961 to December 2019 at the daily frequency.

Figure 1 summarizes the maturity structure for all outstanding Treasury securities over

the entire sample period at the monthly frequency. The Treasury started issuing the 10-year

notes in September 1971, 15-year bonds in December 1971, 20-year bonds in July 1981, and

30-year bonds in November 1985. We set the maximum maturity nmax accordingly, which is

marked in red in Figure 1.

4.2 Outliers

In the literature on constructing a constant-maturity zero-coupon yield curve, outliers are

usually deleted in an ad-hoc fashion.13 We differ from the literature by taking a more sys-

tematic approach. We show our approach has important consequences in detecting periodic

outliers that repeatedly appear on certain days of the month; see Subsection 4.3. Moreover,

the nature of our approach makes it replicable for future research.

Note that our outlier detection does not drive the performance difference between our

12Note here we plot the bandwidth definition in (3.4) to summarize information content in the raw data,
and we do not impose a lower bound and upper bound as in (3.3).

13For example, GSW state in Section 4, item (vi), “Other issues that we judgmentally exclude on an ad
hoc basis.”
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yield curves and GSW’s, as we later document in Section 6. That is because we re-estimate

GSW’s yield curves based on the same filtered data, which facilitates a fair comparison.

Specifically, we take a three-step approach to drop outliers or inappropriate data from

the perspective of fitting the yield curve. The first two steps are similar to the literature and

ensure our estimation contains only plain vanilla bonds not severely affected by liquidity

issues. The last step is our novel algorithmic detection procedure, which systematically

deletes outliers.

The three steps are described as follows:

I. Only include fully taxable, non-callable, and non-flower bond issues (i.e., CRSP ITYPE

equals 1, 2, 3, or 4).

This step ensures our sample does not include bonds with tax benefits and option-like

features. Fama and Bliss (1987) apply the same filter.

II. Exclude the two most recently issued securities with maturities of 2, 3, 4, 5, 7, 10, 20,

and 30 years for securities issued in 1980 or later.

This procedure follows GSW and aims to delete on-the-run (or first “off-the-run”)

issues that often trade at a premium compared to other issues due to their liquidity

and specialness.

III. Sequentially delete outliers based on the fitted yield curve from the day before, where

statistical cutoffs are computed using a segment of maturities.

This step is new. Our approach is algorithmic in nature (as opposed to the ad-hoc

procedures in the literature), which makes it replicable in future research.14

Steps I and II of our filtering procedure are similar to Fama and Bliss (1987) and GSW.

The main difference from GSW is that we do not discard securities with shorter maturities

14There is no escaping that any outlier detection algorithm has some subjective element to it. GSW
exclude outliers on an ad hoc basis. Fama and Bliss (1987) drop observations when forward rate reversal
exceeds a pre-specified threshold level.
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or Treasury bills. We argued in Subsection 3.2 that these securities contain important

information, and in Section 6, we subsequently show the importance of keeping them.

Three important features mark Step III of our filtering procedure. First, we adaptively

drop outliers using information from the previous day. This approach helps ensure internal

consistency of the yield curve across days. Second, we compute summary statistics by

maturity segments, and use them to determine outliers within each segment. This takes into

account the differences in data quality across the maturity spectrum. Lastly, our statistical

cutoffs adjust for time-varying data quality, allowing us to keep bond observations that are

likely affected by microstructure noise during market stress or illiquidity.15 Our algorithm

strikes a balance in dropping extreme observations and keeping information. We provide

details in Subsection A.2.

4.3 Anomalies at the Beginning, Middle, and End of the Month

Our sequential approach for deleting outliers works particularly well when the amount of

noise spikes drastically on certain calendar days, and allows us to detect abnormal observa-

tions. We find that the 1st, 15th, and last day of each month frequently display a peculiar

amount of outliers.

The fist two columns of Figure 4 show two examples around the end of a month and the

beginning of the next. The yield to maturity is relatively smooth on the second to last day

of the month (the top row) and the second day of the next month (the bottom row) with a

few outliers (marked by red “+”s). They also look similar to each other. By contrast, the

last day of the month (the second row) is much noisier. The outliers are mainly concentrated

at the short end of the curve up to about five years, and they partially extend to the first

day of the next month (the third row) and disappear the next day (the bottom row).

The three panels on the right provide summary statistics. The distribution of the number

15While we maintain the same 3.0-IQR rule in our outlier detection (see Subsection A.2), IQR becomes
larger during market stress, allowing us to keep more observations.
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Figure 4: Beginning- and End-of-the-Month Anomalies
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Notes: The first two columns plot the yield to maturity for September 29, 1997, to October 2, 1997 (first
column) and June 27, 2008, to July 2, 2008 (second column). Red ‘+’s mark outliers and blue dots denote
bonds we keep. The last column shows the distribution of the number of outliers, and the sample is from
June 14, 1961, to December 31, 2019.

of outliers has a longer right tail for the last day of the month and the first day of the next

month compared to their adjacent days. We find a similar anomaly for the 15th of the month;

see details in Figure B.2 of Subsection B.2. We inspect these calendar-based anomalies and
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find they are likely associated with the maturity calendar of Treasury notes and bonds, which

are set to the 15th or end of the month, although the maturity calendar does not explain

why end-of-month anomalies spill over to the beginning of the month.16

These anomalies have important implications for the choice of data. For monthly fre-

quency, the most popular choices in the literature are the end of the month, the beginning

of the month, and mid month. We have shown all of these choices are subject to a larger

number of outliers. Instead, we recommend researchers use the second to last day of the

month, the second day of the month, or the day before or after the 15th. For this reason,

our analyses with monthly data and our online monthly yield curve data use the second to

last day of the month to proxy for the end-of-the-month yield curve.

5 Economic Implications of the New Yield Curve

With our newly constructed zero-coupon yield curve, we revisit two prominent studies using

the Treasury yield curve: the predictability of bond risk premia of Cochrane and Piazzesi

(2005) (CP) and the excess volatility of long-term bond prices of Giglio and Kelly (2018)

(GK). Note we focus on the comparison for the conclusion drawn based on our data with

that based on GSW’s data. For most of our analyses in Section 5 and Section 6, we do

not compare with Fama and Bliss (1987)’s data because of their limited maturities (in total

five maturities available from one to five years) and frequency (monthly only). The only

exception is CP, where we present results using Fama and Bliss (1987) in Appendix B.1.

5.1 Cochrane-Piazzesi Return-Forecasting Regressions

CP’s seminal paper finds that although three yield factors explain the majority of the cross-

sectional variation of the yield curve, an additional return-forecasting factor, which is a linear

combination of forward rates, predicts excess returns. This leads to a growing literature on

16See maturity calendar on TreasuryDirect: https://www.treasurydirect.gov/instit/annceresult/

annceresult_query.htm.

21

https://www.treasurydirect.gov/instit/annceresult/annceresult_query.htm
https://www.treasurydirect.gov/instit/annceresult/annceresult_query.htm


the spanning hypothesis (whether the three yield factors are sufficient for predicting bond

returns), which Duffee (2011) formalizes. For more references, see Cooper and Priestley

(2009), Ludvigson and Ng (2009), Greenwood and Vayanos (2014), and Cieslak and Povala

(2015).

We revisit CP’s analysis and study the economic consequences of using different under-

lying zero-coupon yield curves. We first repeat CP’s analysis using the same sample period

and forward rates with the same maturities. Then, we extend along several dimensions.

First, we introduce some notation. Define the zero-coupon yield at t with a maturity of

n as yt(n). The price of the n-year discount bond at time t relates to the zero-coupon yield

as follows:

logPt(n) = −nyt(n), (5.1)

where n is maturity in years as in CP.

The forward rate with maturity n at time t is defined as the return for a loan starting at

t+ n− 1 and maturing at t+ n:

ft(n) = logPt(n− 1)− logPt(n). (5.2)

The holding-period return of buying an n-period bond and selling it one year later is

rt+1(n) = logPt+1(n− 1)− logPt(n). (5.3)

The excess return is

rxt+1(n) = rt+1(n)− yt(1), (5.4)

where yt(1) is the one-year risk-free rate.
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Figure 5: CP Loadings of Individual Excess Returns
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Notes: X-axis: independent variables yt(1), ft(2), ..., ft(5). Different lines represent excess returns with

different maturities rxt+1(2), ..., rxt+1(5). We use CP’s original sample from 1964-2003.

To repeat CP’s analysis, we run the following return-forecasting regressions. The de-

pendent variables are the excess returns of bonds with maturities of two to five years

rxt+1(2), ..., rxt+1(5). The independent variables are the forward rates: yt(1), ft(2), ..., ft(5).

The regression has an intercept. The sample is CP’s original: monthly from 1964 to 2003.

Figure 5 plots the loadings (regression-slope coefficients). Different lines represent ma-

turities of excess returns (dependent variables) from two to five years. The X-axis denotes

forward rates at different maturities (independent variables).

The left panel plots the loadings using our data. The five lines display the same “M”

shape. CP highlight one single return-forecasting factor that predicts all excess returns.

Although we do not have the tent shape as in CP, the same “M” shape across different

maturities is consistent with CP’s main conclusion of one return-forecasting factor.17 By

contrast, the patterns of loadings in the right panel using the GSW data are different across

17We replicate CP’s tent shape in the left panel of Figure B.1 using Fama and Bliss (1987) data. The
main driver between their tent shape and our M shape is multicollinearity: ft(2), ft(3), ft(4) are highly
correlated with correlations between 0.97 and 0.98 in both ours and Fama and Bliss (1987)’s data. The
fact that multicollinearity drives the tent shape away is also found by Hodrick and Tomunen (2018) in their
international study. Moreover, it also changes the tent shape by simply extending the Fama and Bliss (1987)
data (see the middle panel of Figure B.1). However, two main conclusions are consistent between Fama and
Bliss (1987) and our data. First, both imply higher loadings for the three forward rates in the middle than
for yt(1) and ft(5). More importantly, both have one single return-forecasting factor.
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Figure 6: CP Loadings of Average Excess Returns
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Notes: X-axis: independent variables one- to five-year forward rates yt(1), ft(2), ..., ft(5). Dependent

variables are average excess returns. Bond maturities in the top panels are 2 to 5 years, 6 to 10 years in the

middle panels, and 11 to 15 years in the bottom panels. Blue lines are CP’s original sample from 1964-2003;

red lines in the middle and bottom panels are the extended sample from 1964-2019.

maturities. In particular, the loading on ft(3) is higher than ft(4) for excess returns of two

to four-year bonds. But this pattern is reversed for the five-year bond.

Next, we summarize results for the average excess returns rx
(2→5)
t+1 = 1

4

∑5
n=2 rxt+1(n).

The blue lines in the top panels of Figure 6 take the average of the four lines in Figure 5

to compute the average loading between two and five years. We then extend the sample

to current and plot the loadings for the 1964-2019 sample in the red dashed lines. We

also extend the dependent variables to longer maturities, and plot loadings of 6- to 10-

year bonds rx
(6→10)
t+1 = 1

5

∑10
n=6 rxt+1(n) in the middle panels, and 11- to 15-year bonds
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rx
(11→15)
t+1 = 1

5

∑15
n=11 rxt+1(n) in the bottom panels.

The same “M” shape preserves remarkably well with our dataset in the left three panels,

which implies one single return-forecasting factor prevails across different sample periods and

maturities. That is not the case with GSW data. Among the six lines in the right panels, the

shape changes over time and across maturities. For example, in the bottom-right panel, the

loadings between the 1964–2003 sample and the 1964–2019 sample are negatively correlated.

Moreover, the loadings differ by an order of magnitude between the two samples: the largest

loading (in absolute value) is 25.4 for the 1964–2003 sample but increases to 111.4 for the

1964–2019 sample.

The left panel of Table 1 reports the loadings of regressing the average bond excess

returns between two and five years on yt(1), ft(2), ..., ft(5). The loadings coincide with the

top panels of Figure 6.

The return-forecasting regression has overlapping observations. To adjust for them, we

make statistical inference using two alternative methods. First, we follow CP and calculate

t-statistics and p-values using Newey-West standard errors with 18 lags. Second, we use the

bootstrap procedure recently developed by Bauer and Hamilton (2018) (BH), and compute

the 5% critical values based on the bootstrap distributions and the corresponding p-values.18

We note that besides yt(1) (the log one-year bond yield), the other forward rates are

never significant with the GSW data. With our data, ft(4) and ft(5) are highly significant

using both Newey-West and BH bootstrap-based p-values. This result is consistent with the

stable “M” shape loadings on forward rates in Figures 5 and 6. Moreover, our R2’s are in

the same ballpark as the ones using Fama and Bliss (1987) data (see Table B.1), whereas

GSW produce smaller R2’s.

In the right panel of the Table 1, we conduct a test for the spanning hypothesis by

regressing excess returns on the five principal components (PC1-PC5) of the five forward

18We focus on the bias-corrected bootstrap procedure recommended by BH. Small sample bias is a pre-
vailing issue for modeling the yield curve because of its persistence. See Bauer et al. (2012, 2014) for further
discussion.
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Table 1: CP Regression Results (Predicting 2- to 5-Year Bond Returns)

LW Data

Forward Rates PCs

y(1) f(2) f(3) f(4) f(5) PC1 PC2 PC3 PC4 PC5 R-square

(1964-2003) Loadings -2.194 1.483 0.476 3.353 -2.846 0.164 -1.533 -3.795 1.664 -2.651 0.303

NW t-stat -4.597 1.359 0.294 2.483 -3.253 1.879 -4.519 -3.827 1.316 -1.340
[NW p-value] [0.00] [0.17] [0.77] [0.01] [0.00] [0.06] [0.00] [0.00] [0.19] [0.18]

BH 5% c.v. 5.620 3.785 2.524 2.324 2.588 4.077 5.584 4.852 2.538 2.445
[BH p-value] [0.15] [0.65] [0.82] [0.04] [0.01] [0.41] [0.13] [0.16] [0.32] [0.29]

F -stat 5.341
[p-value] [0.01]

BH 5% c.v. 4.483
[BH p-value] [0.03]

(1964-2019) Loadings -1.533 0.732 -0.752 3.646 -1.966 0.058 -1.316 -1.960 2.590 -2.886 0.217

NW t-stat -3.110 0.744 -0.544 3.437 -2.350 0.984 -4.262 -2.092 2.408 -1.722
[NW p-value] [0.00] [0.46] [0.59] [0.00] [0.02] [0.33] [0.00] [0.04] [0.02] [0.09]

BH 5% c.v. 5.199 3.149 2.420 2.124 2.294 3.604 5.712 4.183 2.260 2.299
[BH p-value] [0.42] [0.71] [0.67] [0.00] [0.04] [0.63] [0.19] [0.49] [0.04] [0.15]

F -stat 13.266
[p-value] [0.00]

BH 5% c.v. 4.042
[BH p-value] [0.00]

GSW Data

Forward Rates PCs

y(1) f(2) f(3) f(4) f(5) PC1 PC2 PC3 PC4 PC5 R-square

(1964-2003) Loadings -2.929 3.774 0.240 -1.016 0.319 0.154 -1.485 3.713 -2.818 -0.240 0.244

NW t-stat -4.026 0.613 0.012 -0.039 0.027 1.575 -3.461 2.796 -0.631 -0.007
[NW p-value] [0.00] [0.54] [0.99] [0.97] [0.98] [0.12] [0.00] [0.01] [0.53] [0.99]

BH 5% c.v. 4.039 2.358 2.138 2.132 2.156 3.831 5.853 3.595 2.113 2.119
[BH p-value] [0.05] [0.61] [0.99] [0.97] [0.98] [0.48] [0.33] [0.14] [0.56] [0.99]

F -stat 0.658
[p-value] [0.52]

BH 5% c.v. 3.058
[BH p-value] [0.52]

(1964-2019) Loadings -2.728 7.248 -11.315 8.463 -1.434 0.055 -1.263 1.218 6.441 14.735 0.168

NW t-stat -4.088 1.449 -0.721 0.430 -0.167 0.861 -3.501 1.187 1.965 0.549
[NW p-value] [0.00] [0.15] [0.47] [0.67] [0.87] [0.39] [0.00] [0.24] [0.05] [0.58]

BH 5% c.v. 3.519 2.167 2.081 2.117 2.096 3.563 5.901 2.864 2.069 2.095
[BH p-value] [0.02] [0.19] [0.51] [0.69] [0.88] [0.68] [0.38] [0.40] [0.06] [0.61]

F -stat 6.623
[p-value] [0.00]

BH 5% c.v. 3.042
[BH p-value] [0.00]

Notes: The dependent variable is the one-year excess return rx
(2→5)
t+1 = 1

4

∑5
n=2 rxt+1(n). The independent

variables are the forward rates: yt(1), ft(2), ..., ft(5), or the five PCs (PC1-PC5) The regression has an
intercept. NW t-stats and NW p-values are computed using Newey-West standard errors with 18 lags. F -
stats and the associated p-values report the joint F test for PC4 and PC5. For both t stats and F stats,
we also report the corresponding 5% critical values and p-values of the bootstrap distributions of Bauer and
Hamilton (2018).
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rates. The null hypothesis for the spanning hypothesis is that the loadings on PC4 and PC5

are jointly zero. We report the F -statistics and the associated p-values, as well as BH’s 5%

critical values based on the bootstrap distributions and the corresponding p-values.

Using our data, PC4 and PC5 are jointly significant in both sample periods with both

standard and BH p-values. This result is consistent with CP’s original conclusion as well as

the literature that argues for unspanned factors; see, Duffee (2011).19 By contrast, the GSW

data fail to reject the null hypothesis for CP’s original sample from 1964 to 2003, with both

p-values at 0.52.

Furthermore, the loadings on PC4 and PC5 are stable across the two samples using

our data. This result is consistent with the stable loadings illustrated in Figures 5 and 6.

However, with GSW data, the loading on PC4 (PC5) goes from -2.8 (-0.24) to 6.4 (14.7)

from CP’s original sample to the extended sample. Both the sign and the order of magnitude

change, indicating the instability of the loadings.20

Overall, our data support CP’s return-forecasting factor, and unspanned yield factors.

By contrast, GSW data fail to provide coherent evidence to draw a conclusion in either

direction.

5.2 Excess Volatility

GK document an excess volatility of long-term bond prices that cannot be explained by the

discount-rate variation spanned by shorter-term bond prices.21 Their analysis is based on

the GSW data. We repeat their exercises with GSW data as well as our data.

In an affine term structure model, the short rate is affine in underlying latent factors xt,

yt(1) = δ0 + δ′1xt, (5.5)

19For Fama and Bliss (1987) data, the null hypothesis is rejected with CP’s original sample, but we fail
to reject the null with the extended sample using BH bootstrap p-values.

20Loadings associated with Fama and Bliss (1987) data also change size and sign, although the change is
not as big as with the GSW data.

21Related work on excess volatility of long-run Treasury bond yields includes Gürkaynak et al. (2005) and
Hanson and Stein (2015).
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where δ1 is a column vector.

The factor dynamics follow an AR(1) process under the risk-neutral measure Q:

xt = cQ + ρQxt−1 + εt. (5.6)

As a result, log bond prices are affine in the latent factors,

logPt(n) = an + b′nxt, (5.7)

where the loading bn can be calculated recursively as

b′n = b′n−1ρ
Q − δ′1, (5.8)

where b1 = −δ1. For derivations, see Hamilton and Wu (2012, 2014). The identifying

assumptions are ρQ is diagonal, cQ = 0, and δ1 = [1, 1, 1]′.

We follow GK’s procedure to estimate ρQ. First, we regress the log price of the seven-

year zero-coupon bond logPt(7) on the log prices of one-, three-, and five-year bonds:

Pt = [logPt(1), logPt(3), logPt(5)]′, and label the 3 × 1 slope β̂7. Then, we solve the three

unknowns in ρQ from the three equations for β̂7:

β̂7 = [b1, b3, b5]
−1b7, (5.9)

where the loadings b1, b3, b5, b7 are functions of ρQ through (5.8). This step of backing out the

structural parameters from the reduced-form parameters follows Hamilton and Wu (2012).

Let the estimated ρQ be ρ̂Q.

For a long-term bond (GK use maturities of 20, 25, and 30 years; we also include 10 and

15 years), we can calculate the amount of price variation explained by Pt by imposing ρ̂Q:

V r(n) ≡ V[logP r
t (n)] = βn(ρ̂Q)′COV[Pt]βn(ρ̂Q), (5.10)
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where βn(ρ̂Q) = [b1(ρ̂
Q), b3(ρ̂

Q), b5(ρ̂
Q)]−1bn(ρ̂Q). We refer to V r(n) as the restricted price

variation.

Alternatively, we can run an unconstrained OLS regression of the long-term bond price

on Pt, and obtain the unrestricted regression coefficients β̂n and hence the unrestricted price

variation V u(n) ≡ V[logP u
t (n)] = β̂′nCOV[Pt]β̂n. The ratio between the unrestricted and

the restricted price variation, which is usually larger than 1, measures the degree of excess

volatility:

V u(n)

V r(n)
=

β̂′nCOV[Pt]β̂n
βn(ρ̂Q)′COV[Pt]βn(ρ̂Q)

. (5.11)

We carry out GK’s analysis over both their original sample (i.e., 1985–2014) and our

extended sample (1985–2019) at the daily frequency.22 We use GK’s bootstrap procedure

to perform statistical inference, which is constructed under the null hypothesis of no excess

volatility; that is, V u(n)
V r(n)

= 1.

Figure 7 summarizes our findings. We plot the unrestricted price variations V u(n) in blue

solid lines. Red dashed lines plot restricted price variations V r(n) with a 95% bootstrapped

confidence band in the pink shaded area. The circles mark the maturities of interest, and

the numbers above them are variance ratios V u(n)
V r(n)

. Table 2 reports detailed testing results.

The top-right panel of Figure 7 uses GSW data to replicate GK’s results for bonds with

maturities of 20, 25, and 30 years. Our estimated variance ratios are almost identical to

their reported estimates (see their Table II). Long-term bonds display excess volatilities

as quantified by a variance ratio of 1.19, 1.38, and 1.62, respectively. Using our data, we

find substantially larger estimates than using GSW data, as shown in the top-left panel. In

particular, the three variance ratios for long-term bonds are 1.62, 2.02, and 2.37, respectively.

Note GK show a variance ratio larger than 2 is routinely observed for other asset classes, but

not for Treasuries. We show this result is driven by the GSW data they use. Using our data

22More specifically, our daily data go from November 29, 1985, to June 30, 2014, for GK’s original sample,
and from November 29, 1985, to December 31, 2019, for our extended sample.
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Figure 7: Excess Volatility
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Notes: We plot the unrestricted variance V u(n) (solid line) and the restricted variance V r(n) (dashed line)

for the log price of long-term bonds. The shaded area marks the 95% confidence bands. The circles highlight

the variance ratios V u(n)
V r(n) for bonds with selected maturities.

therefore helps GK reconcile the difference between Treasuries and other assets in terms of

excess price volatility. Moreover, the gap between the blue line and the pink shaded area is

also wider in the top-left panel. Overall, using our data strengthens GK’s Treasury results

and confirms their main conclusion.

Turning to the extended sample (bottom panels in Figure 7), variance ratios decline

compared to the two panels at the top. This decline can be explained by low and less

volatile interest rates caused by the zero lower bound starting from 2009.23 Regardless, the

23During the 2009–2015 zero lower bound period, the short end of the yield curve is flat around zero,
and does not display much variation. We find a reduction in both the restricted and the unrestricted price
variation. However, the unrestricted variation drops more, resulting in a variance ratio of around 0.8 (in
particular, 0.83 for 10-year, 0.78 for 15-year, 0.80 for 20-year, 0.77 for 25-year, and 0.87 for 30-year). Post
2015, the market continues to have small price variations under both the restricted and unrestricted model,
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Table 2: Testing Excess Volatility

Original Sample (1985-2014)

LW GSW

10yr 15yr 20yr 25yr 30yr 10yr 15yr 20yr 25yr 30yr
Restricted 0.039 0.062 0.080 0.093 0.101 0.037 0.066 0.096 0.126 0.153
2.5% c.v. 0.037 0.057 0.064 0.064 0.072 0.036 0.061 0.085 0.105 0.121
97.5% c.v. 0.040 0.071 0.113 0.170 0.166 0.038 0.071 0.114 0.169 0.233

Unrestricted 0.040 0.079 0.130 0.187 0.240 0.037 0.070 0.115 0.173 0.248

Variance ratio 1.04 1.27 1.62 2.02 2.37 1.01 1.06 1.19 1.38 1.62
[p-value] [0.02] [0.00] [0.00] [0.01] [0.00] [0.37] [0.08] [0.01] [0.01] [0.01]

Extended Sample (1985-2019)

LW GSW

Restricted 0.046 0.085 0.124 0.160 0.191 0.047 0.092 0.145 0.202 0.261
2.5% c.v. 0.045 0.078 0.108 0.133 0.163 0.046 0.085 0.131 0.179 0.224
97.5% c.v. 0.048 0.096 0.151 0.208 0.235 0.049 0.099 0.164 0.240 0.329

Unrestricted 0.048 0.102 0.169 0.238 0.306 0.049 0.101 0.168 0.250 0.344

Variance ratio 1.03 1.19 1.36 1.49 1.60 1.03 1.09 1.16 1.24 1.32
[p-value] [0.05] [0.00] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.00]

Notes: We compute the unrestricted variance V u(n) and the restricted variance V r(n) for the log price

of long-term bonds. The variance ratios is V u(n)
V r(n) . P -values and 2.5% and 97.5% critical values are obtained

through the bootstrap procedure of Giglio and Kelly (2018).

variance ratios estimated using our data remain larger than the ones implied by the GSW

data.

Table 2 provides test results for the variance ratios. Besides the differences for maturities

between 20 and 30 years that we highlight with Figure 7, we also find that with GK’s

original sample, a variance ratio of 1 is not rejected (at 5% level) for the 10-year and 15-year

bonds using the GSW data, whereas it is rejected with our data. This observation further

corroborates the ubiquity of excess volatility along the maturity spectrum, and demonstrates

the difference between our data and the GSW data for bonds with intermediate maturities.

Overall, our data provide stronger support for GK’s finding of excess volatility for long-

but the variance ratio is around 1 (in particular, 1.08 for 10-year, 1.04 for 15-year, 0.98 for 20-year, 0.88
for 25-year, and 0.94 for 30-year). Overall, the inclusion of the post-2015 sample for the extended sample
generates a smaller variance ratio than the 1985–2014 sample. For further details on the zero lower bound,
see Wu and Xia (2016).
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term bond prices compared to the GSW data. The difference stems from the non-parametric

method we use as opposed to the parametric approach adopted by GSW to construct the

zero-coupon yield curve. In fact, the affine term structure model GK use implies a parametric

yield curve with a few parameters. Suppose we use the GK model to construct the zero-

coupon yield curve; then, by construction, the variance ratio for all long-term bonds is 1. By

contrast, our nonparametric approach allows us to capture unique information that drives

the movement of long-term bond prices, leading to a larger estimate of excess volatility.

6 Statistical Performance of the New Yield Curve

Section 5 discussed economic implications of our new yield curve, and this section turns to

its statistical performance. Subsection 6.1 focuses on several selected dates to provide some

intuition. Subsection 6.2 and Subsection 6.3 evaluate the goodness of fit more systematically,

with the former examining summary statistics and the latter assessing the time series of

pricing errors. Subsection 6.4 presents the out-of-sample results. We use monthly frequency

for Subsection 6.2 and Subsection 6.3 and quarterly frequency for Subsection 6.4.

6.1 Yield Curves on Selected Dates

To gain some insights into the performance of our method, we use the yield to maturity

(YTM) computed with the average price to compare our newly constructed yield curve with

the raw data as well as the yield curve implied by GSW. For the raw data, the YTM is

computed by (2.6). The model-implied YTM is the solution to (2.6), except the left-hand

side is replaced with the model-implied price p̂, which is defined in (2.9) for our model.

Figure 8 illustrates the comparison for four dates: February 1968 (first column), July

2014 (second column), January 1990 (third column), and January 2010 (last column). The

top row shows the zero-coupon yield curve; the next two rows are the YTM. Red indicates
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observations, blue uses our method, and green is GSW.24

For February 1968, the main difference between our curve and GSW’s is the short end.

Whereas our zero-coupon yield approaches around 5% at a maturity of zero, it reaches a

level of 15% for GSW’s estimate. Importantly, as shown in panel (2,1) and more clearly in

panel (3,1), the data do not support GSW’s large estimate of the yield at the short end,

leading to pricing errors that are in the magnitude of 20%.

The main difference between our model and GSW’s in July 2014 is again the short end,

which can be better seen in the (3,2) panel. This date lies inside the zero-lower-bound period

(from 2009 to 2015). Our curve captures the pattern in the raw data and is consistent with

the zero lower bound: the short end converges to zero when maturity approaches zero. By

contrast, GSW has a U shape at the short end, and the difference in YTM between GSW

and the raw data is about 0.3%.

Two explanations drive the above results on the short end. First, GSW drop raw data

in the short end, including all observations with less than three months to maturity and all

Treasury bills. Second, they use a parametric model. Consequently, fitting their parametric

model mainly to securities with longer maturities may generate unstable and poorly identified

estimates on the short end that are inconsistent with the data.25 By contrast, our non-

parametric method allows us to keep raw observations in the short end without sacrificing

the fit for longer maturities.

For January 1990, the main difference is for longer maturities; see the (3,3) panel. The

raw data display a humped shape, whereas GSW’s estimate is monotonically increasing in

maturity. Therefore, GSW generate pricing errors that are systematically positive between

300 and 350 months, and negative between 120 and 300 months. Note the 0.1% difference in

YTM translates into a 0.5% difference in the zero-coupon yield. By contrast, our estimate

fits the raw data well across all maturities.

24We reestimate GSW parameters based on our filtered raw data; see details in Appendix A.3. We also
use GSW’s published parameters (https://www.federalreserve.gov/data/nominal-yield-curve.htm)
as a robustness check, and find the same results.

25See 5 of GSW for a related discussion on the instability of their estimates.
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What drives the performance of GSW is the large gap in the maturity distribution,

together with limited observations in the long end, which accounts for a large fraction of our

data; see Figure 1. This feature, combined with parametric methods with a limited degree of

freedom, leads to systematic pricing errors for bonds on both sides of the gap. By contrast,

our framework allows us to flexibly capture the local variation of the yield curve before and

after the gap, resulting in a substantial reduction in pricing errors.

Finally, the last date (January 2010) presents a time when our yield-curve estimate agrees

with GSW’s. Moreover, the implied YTMs from both methods also closely match the data.

This example illustrates that our non-parametric method can produce a smooth yield curve

and does not overfit.

6.2 Summary Statistics

This section systematically evaluates the performance of our dataset using the following

metrics: root-mean-squared pricing error (RMSPE), duration-weighted root-mean-squared

pricing error (WRMSPE), mean absolute pricing error (MAPE), duration-weighted mean

absolute pricing error (WMAPE), and mean absolute yield error (MAYE). We also take

bid-ask spread into account per Bliss (1996) and compile the corresponding MAPE (Bliss),

WMAPE (Bliss), and the hit rate (HR (Bliss)). See their definitions in A.4. For the first

seven, a smaller error indicates a better model, whereas a larger hit rate is associated with

better performance.

Table 3 reports the performance comparison between our method and GSW for nine

maturity buckets together with an overall comparison. Bold highlights the better performer.

The top panel evaluates our method. In the bottom panel, we estimate GSW’s curve with

our filtered raw data.26 As a robustness check, we also report results in Subsection B.3 using

GSW’s published parameters. Results remain the same.

26We follow GSW and add the following filter: drop all securities with maturities less than three months
as well as Treasury bills.
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Table 3: In-Sample Performance Summary

Maturity Bucket All

[0,3mth) [3mth, 1yr) [1yr, 2yr) [2yr,5r) [5yr, 7yr) [7yr, 10yr) [10yr, 15yr) [15yr, 20yr) [20yr, 30yr]

LW

RMSPE 0.016 0.043 0.079 0.148 0.242 0.399 0.406 0.189 0.117 0.167
WRMSPE 0.013 0.038 0.077 0.137 0.240 0.394 0.404 0.190 0.118 0.055
MAPE 0.013 0.033 0.062 0.108 0.199 0.341 0.358 0.157 0.092 0.088
WMAPE 0.010 0.028 0.061 0.100 0.197 0.336 0.356 0.158 0.092 0.023
MAPE (Bliss) 0.006 0.016 0.032 0.063 0.139 0.261 0.260 0.111 0.059 0.055
WMAPE (Bliss) 0.005 0.014 0.030 0.057 0.138 0.256 0.258 0.112 0.059 0.012
MAYE 0.108 0.063 0.045 0.035 0.041 0.053 0.045 0.013 0.006 0.054

HR (Bliss) 0.405 0.407 0.520 0.398 0.297 0.208 0.273 0.311 0.353 0.407

GSW

RMSPE 0.042 0.058 0.093 0.188 0.325 0.542 0.635 0.453 0.455 0.257
WRMSPE 0.037 0.053 0.091 0.176 0.323 0.534 0.629 0.455 0.453 0.088
MAPE 0.038 0.046 0.075 0.140 0.276 0.473 0.559 0.411 0.398 0.139
WMAPE 0.031 0.042 0.073 0.130 0.274 0.466 0.553 0.413 0.396 0.044
MAPE (Bliss) 0.029 0.029 0.041 0.092 0.214 0.387 0.455 0.357 0.359 0.104
WMAPE (Bliss) 0.025 0.027 0.040 0.084 0.212 0.379 0.448 0.359 0.357 0.032
MAYE 0.336 0.095 0.054 0.046 0.056 0.073 0.069 0.032 0.027 0.116

HR (Bliss) 0.243 0.340 0.402 0.296 0.184 0.112 0.149 0.110 0.125 0.282

Notes: We present results for two models: LW (our model) and GSW. For each maturity bucket (or

across all bonds) and for each date, we calculate eight measures of pricing error: root-mean-squared pricing

error (RMSPE), duration-weighted root-mean-squared pricing error (WRMSPE), mean absolute pricing

error (MAPE), duration-weighted absolute pricing error (WMAPE), mean absolute pricing error adjusted

for bid-ask spread (MAPE (Bliss)), duration-weighted absolute pricing error adjusted for bid-ask spread

(WMAPE (Bliss)), mean absolute yield error (MAYE), and the hit rate (HR (Bliss)). RMSPE, WRMSPE,

MAPE, WMAPE, MAPE (Bliss), and WMAPE (Bliss) are based on a face value of $100. MAYE is based

on annualized percentage yield. We report the average pricing errors from June 1961 to December 2019.

Our method performs better than GSW across all metrics and maturity buckets. The

improvement is substantial, and the reduction in pricing errors across all bonds (last column)

ranges between 35% and 62%, with the largest reduction occurring in WMAPE (Bliss).

Across maturity buckets, our model performs significantly better at the short end and the

longer end. For maturities less than three months, the percentage reduction in the pricing

error of our model relative to GSW ranges from 62% to 80%, with WMAPE (Bliss) implying

the largest reduction.

For maturities above five years, our model again presents a substantial improvement over

GSW. The percentage reduction in pricing error ranges from 26% to 33% over the maturity
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Figure 9: Time Series of Mean Absolute Error in YTM: The Short End
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Notes: We plot the mean absolute pricing errors in YTM (i.e., MAYE) for our method and GSW over
the entire sample period (i.e., 1961–2019). The top panel examines bonds with maturities less than three
months; the bottom panel examines bonds with maturities between three months and one year.

range between 5 years and 10 years, from 45% to 54% between 10 years and 20 years, and

74% to 84% between 20 years and 30 years.

6.3 Time-Series Evidence

This section examines the time series of pricing errors to provide more insights into the

performance of our method.

The short term Figure 9 shows our model performs consistently better than GSW across

different time periods for maturities less than one year. The top panel plots maturities less

than three months, and the bottom panel plots maturities between three months and one

year. We split the full sample into the 1961–1989 (left panels) and the 1990–2019 (right
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panels) sub-samples given the general decline in pricing error over time.27

For maturities less than three months (top panels), we observe that GSW occasionally

generate large pricing errors at around 7 annualized percentage points. The left column of

Figure 8 illustrates one such example in February 1968. We see a general decline in pricing

error over the post-1990 period. However, GSW’s pricing error can still reach 1%. Our

method is able to reduce these pricing errors significantly.

For maturities between three months and one year (bottom panels), our model continues

to outperform GSW. In particular, our model does better than GSW for the 1961-1975

period and the more recent post-2009 period. The post-2009 period is associated with the

zero lower bound and subsequent low-interest-rate environment. As in the second column of

Figure 8, we have illustrated that our method fits the short end of the yield curve better for

this special period in history.28

The large pricing errors of GSW at the short end come from the fact that they exclude all

securities with less than three months to maturity as well as all Treasury bills. Consequently,

GSW extrapolate the short end of the yield curve from securities with longer maturities,

which leads to imprecise and sometimes extreme estimates of the short end of the yield

curve.

Moreover, the issue of the short end of the yield curve of GSW is unlikely to be solved by

simply including securities with short maturities in their estimation. The challenge is that the

parametric model used in GSW has a limited degree of freedom and cannot simultaneously

capture short-term, medium-term, and long-term yields.

By contrast, our non-parametric framework with adaptive bandwidth presents a natural

solution to this challenge, because it adjusts the amount of local information used to construct

the yield curve.

27To ensure that reestimating GSW’s parameters based on our data does not cause the large pricing errors
for their model, we plot the minimum pricing error between their original and our re-estimated versions in
Figure 9.

28The superior performance of the short end of our yield curve data makes it particularly useful for studies
that try to disentangle short-rate expectations and risk premiums in driving bond returns (see Cieslak (2018)
for a recent application).
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The Medium and Long Term For maturities between one and five years, our model

performs similarly to GSW, with the exception of the post-2009 sample; see Figure B.3

for illustration. During the low-interest-rate period after 2009, our model significantly out-

performs GSW’s. The similarity in performance before that period is consistent with the

observation that abundant data are available over this maturity range, causing parametric

models such as GSW’s to use most of its degree of freedom to fit this part of the data.

For maturities above five years, we again see substantial improvement of our model over

GSW; see Figure B.4 for more details. Between 5 years and 10 years, we start to see the

improvement of our method. For example, between 2000 and 2006, we are able to reduce

the MAYE from 0.08% in GSW to around 0.02%.

The pricing errors of GSW for maturities longer than 10 years contain large spikes. For

example, between 1986 and 1990, GSW’s pricing error for maturities between 20 years and

30 years reaches 0.3%. By contrast, the pricing error from our method always stays under

0.05%. Moreover, our improvement applies not only to the pre-1990 sample for which a

limited number of long-term securities are outstanding, but also to the post-1990 sample,

including the most recent sample when abundant data on the long end are available.

6.4 Out-of-Sample Results

We have shown the superior in-sample performance of our non-parametric method. We next

examine its out-of-sample performance to address the overfitting concern for non-parametric

methods. We construct our out-of-sample prediction exercise as follows. On each date, we

estimate the yield curve It times, where It is the number of Treasury securities we observe

at t. Each time, we leave out a bond i and use the remaining bonds to compute the model-

implied price for bond i and hence its out-of-sample pricing error using the same eight metrics

as in Subsection 6.2. We repeat this exercise over t to calculate the average pricing error.

Given the computational burden of the out-of-sample exercise, we use quarterly sample from
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Table 4: Out-of-Sample Performance Comparison

Maturity Bucket All

[0,3mth) [3mth, 1yr) [1yr, 2yr) [2yr,5r) [5yr, 7yr) [7yr, 10yr) [10yr, 15yr) [15yr, 20yr) [20yr, 30yr]

LW

RMSPE 0.016 0.045 0.090 0.175 0.299 0.478 0.578 0.246 0.162 0.208
WRMSPE 0.013 0.039 0.088 0.162 0.297 0.472 0.576 0.247 0.162 0.064
MAPE 0.013 0.034 0.071 0.126 0.247 0.404 0.517 0.203 0.126 0.103
WMAPE 0.010 0.029 0.069 0.116 0.245 0.399 0.514 0.204 0.126 0.024
MAPE (Bliss) 0.006 0.017 0.039 0.079 0.185 0.324 0.411 0.156 0.091 0.070
WMAPE (Bliss) 0.005 0.014 0.037 0.071 0.183 0.319 0.409 0.157 0.091 0.013
MAYE 0.110 0.065 0.052 0.041 0.051 0.063 0.065 0.016 0.009 0.057

HR (Bliss) 0.409 0.398 0.490 0.361 0.229 0.175 0.210 0.252 0.274 0.384

GSW

RMSPE 0.038 0.050 0.094 0.198 0.344 0.564 0.628 0.476 0.468 0.293
WRMSPE 0.032 0.047 0.092 0.185 0.342 0.555 0.624 0.478 0.465 0.095
MAPE 0.035 0.040 0.076 0.147 0.294 0.491 0.541 0.429 0.403 0.165
WMAPE 0.027 0.037 0.074 0.137 0.292 0.483 0.538 0.432 0.401 0.044
MAPE (Bliss) 0.030 0.015 0.041 0.099 0.231 0.404 0.436 0.375 0.365 0.124
WMAPE (Bliss) 0.024 0.013 0.040 0.090 0.229 0.395 0.433 0.377 0.362 0.032
MAYE 0.324 0.070 0.054 0.048 0.059 0.076 0.067 0.032 0.027 0.113

HR (Bliss) 0.109 0.541 0.386 0.282 0.168 0.102 0.147 0.093 0.119 0.286

Notes: We present results for two models: LW (our model) and GSW. For each maturity bucket (or

across all bonds) and for each date, we calculate eight measures of pricing error: root-mean-squared pricing

error (RMSPE), duration-weighted root-mean-squared pricing error (WRMSPE), mean absolute pricing

error (MAPE), duration-weighted absolute pricing error (WMAPE), mean absolute pricing error adjusted

for bid-ask spread (MAPE (Bliss)), duration-weighted absolute pricing error adjusted for bid-ask spread

(WMAPE (Bliss)), mean absolute yield error (MAYE), and the hit rate (HR (Bliss)). RMSPE, WRMSPE,

MAPE, WMAPE, MAPE (Bliss), and WMAPE (Bliss) are based on a face value of $100. MAYE is based

on annualized percentage yield. We report the averaged pricing errors over the full sample from June 1961

to December 2019 at the quarterly frequency.

June 1961 to December 2019.29

We report in Table 4 the out-of-sample comparison between our approach at the optimal

N0 = 8 and GSW’s. The out-of-sample result is similar to the in-sample comparison in

Table 3: our method produces uniformly smaller pricing errors and a higher hit rate across

maturity buckets. For example, the average reduction in MAYE is 49%.

We also compare alternative values for N0 to search for the optimal bandwidth; see

details in Subsection B.5. Different N0 does not significantly change the relative performance

29For each of the four model specifications, the out-of-sample exercise takes about a week for a computer
with dual Intel Xeon Gold 6136 CPU and 208 GB memory using 24 workers in MATLAB parallel computing.
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between our approach and GSW’s. Across different values, N0 = 8 generates the smallest

pricing error in terms of RMSPE, and leads to a smoother yield curve than smaller N0 values.

We therefore consider N0 = 8 the optimal bandwidth parameter.

7 Conclusion

The zero-coupon yield curve provides important information about financial markets and

the macroeconomy, and is widely used by researchers and practitioners. Our paper develops

a new dataset using a non-parametric kernel-smoothing method with a novel adaptive band-

width specifically designed to fit the Treasury yield curve. Our method allows us to generate

a smoothed yield curve while preserving the information in the raw data. We show our

yield-curve estimate provides a more accurate description of the raw data than the leading

alternative GSW. Economically, we show that applying our data draws different conclusions

from GSW when we repeat two popular studies by CP and GK.
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A Details on Implementation

A.1 Derivation and Estimation

The first-order conditions for the minimization problem in (2.7) are

I∑
i=1

Ji∑
j=1

Φi
j(n; y, y′) · 1/D2

i = 0, (A.1)

I∑
i=1

Ji∑
j=1

Φi
j(n; y, y′)(n− νij) · 1/D2

i = 0, (A.2)

where Φi
j(n; y, y′) is given by

Φi
j(n; y, y′) =

(
Kh(νij)

(n− νij)cijνijdij(n)
)

×

pi − cijdij(n)−
Ji∑
k=1
k 6=j

(∫
Kh(νik)

(n− νik)cikdik(n)dn
) , (A.3)

dik(n) = exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
. (A.4)

Note equation (A.3) (and therefore equations (A.1) and (A.2)) contains integrals. Al-

though, in principle, solving equations (A.1) and (A.2) numerically is possible,30 we follow

Jeffrey et al. (2006) and approximate the integrals with interpolations that are functions of

y(·) and y′(·).31

In particular, suppose the support of y(·) and y′(·) isN = {1, 2, ..., 360}. We approximate

30See Linton et al. (2001) for the iterative algorithms they propose to solve a system of equations that are
similar to equations (A.1) and (A.2).

31We implemented both Linton et al. (2001) (in particular, the log-linear specification) and Jeffrey et al.
(2006) for our model. Our experience is that Jeffrey et al. (2006) indeed offer a more stable and computa-
tionally efficient solution than Linton et al. (2001).
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the integrals in equation (A.3) as

∫
Kh(νik)

(n− νik)dik(n)dn

≈

∑360
n=1Kh(νik)

(n− νik) exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
∑360

n=1Kh(νik)
(n− νik)

. (A.5)

On the other hand, viewing dik(n) as the discount rate at νik approximated by the yield

curve at n,
∫
Kh(νik)

(n − νik)d
i
k(n)dn can be interpreted as the kernel-smoothed discount

rate at νik. Letting the corresponding zero-coupon yield be ŷ(νik), which is defined through∫
Kh(νik)

(n− νik)dik(n)dn = exp[−νik × ŷ(νik)], we obtain ŷ(νik) as32

ŷ(νik) = − 1

νik
log

∑360
n=1Kh(νik)

(n− νik) exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
∑360

n=1Kh(νik)
(n− νik)

 . (A.6)

Replacing νik by an arbitrary maturity ν in (A.6), we arrive at the formula that we use to

interpolate the yield curve at any maturity ν.

In sum, we seek to solve equations (A.1) and (A.2) with respect to y(n) and y′(n) for

n ∈ N = {1, 2, ..., 360}, where Φi
j(n; y, y′) is given by equations (A.3) and (A.4), but with the

integrals in equation (A.3) replaced by equations (A.5) and (A.6). In essence, we are solving

a system of non-linear equations. By construction, all of these equations involve functions

that are infinitely differentiable. We provide closed-form gradients for these equations,33

which allows us to solve these non-linear equations efficiently.

32 The above interpolation can be interpreted as the solution to an optimization problem that is similar
to (2.7) for a pure discount bond with a maturity of νik. More specifically, for a given estimated ỹ(·)

and ỹ′(·), the solution to the minimization problem min
y(νi

k)

∫ (
exp

[
− y(νik) × νik

]
− exp

[
−
(
ỹ(n) + (νik −

n)ỹ′(n)
)
n
])2

Kh(νi
k)

(n−νik)dn is given by y(νik) = − 1

νik
log

(∫ (
exp

[
−
(
ỹ(n)+(νik−n)ỹ′(n)

)
n
])
Kh(νi

k)
(n−

νik)dn

)
. Because we only have solutions for ỹ(·) and ỹ′(·) over N = {1, 2, ..., 360}, the interpolated version

of this solution is given by equation (A.6).
33This is another benefit of replacing the integrals in equation (A.3) with interpolated yields as in equation

(A.6).
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A.2 Outlier Detection

Our outlier-detection algorithm follows several steps.

First, we drop observations whose yield to maturity (YTM) is higher than 30% (annual-

ized). In the data, sometimes bond price appears to be too low (equivalently, YTM appears

to be too high). Across time, bond prices in general reach their lowest during the early 1980s

recession, approaching a level of 20% in YTM. We therefore set 30% = 1.5×20% as a lenient

threshold in YTM to drop low-price observations. Note potential outliers that have a high

YTM but still below 30%, which are not dropped after this step, are likely to be dropped

after the following steps.

Next, suppose the current day is t. We obtain our nonparametric yield-curve estimate

from day t − 1. Based on this estimate, we calculate the implied YTM for all bond obser-

vations for day t (denoted as Ŷ TM i,t−1 for bond i). Assuming yield curves are internally

consistent across days and therefore display relatively small day-to-day variations, we take

Ŷ TM i,t−1 as the benchmark YTM and evaluate the distance between Y TMi,t (i.e., current

YTM for bond i) and Ŷ TM i,t−1. A bond with a large distance is a suspect outlier.

To take into account the difference in data quality (i.e., noise level) in different maturity

segments, we group bonds into several maturity ranges. For each maturity range and for

each bond within, we calculate Disti,t ≡ |Y TMi,t − Ŷ TM i,t−1|. We use ±Disti,t for all

bonds within the maturity range, and calculate the interquartile range (IQR, i.e., the 75th

percentile minus the 25th percentile). An outlier is detected if its current-day YTM (i.e.,

Y TMi,t) is either below Ŷ TM i,t−1−3×IQR or above Ŷ TM i,t−1+3×IQR. We choose three

(rather than 1.5 as usual for outlier detection; see, e.g., Tukey (1977)) to be conservative

in excluding bond observations. We also choose three maturity segments: bonds with a

maturity of less than one year, between one year and five years, and above five years. Our

3.0-IQR rule applied to segment-specific data allows us to keep as much data as possible.

Bond observations that are identified as outliers often have large discrepancy (in terms of

yield to maturity) from other observations that have similar maturities.
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A.3 Our Implementation of GSW

We obtain GSW’s parameters from the Federal Reserve Board’s webpage, and use them as

starting values and re-estimate their model based on our raw bond data. Besides applying

our filters described in Subsection 4.1, we also drop securities with less than three months

to maturity and all Treasury bills, following GSW. In addition, we follow GSW by using

the Nelson-Siegel four-parameter specification for the period before 1980 and GSW’s six-

parameter specification for the post-1980 period.

For most months, the re-estimated GSW curve is very similar to their original curve

computed using their published parameters. This finding confirms the similarity in the un-

derlying raw data we use. For a few months, the two versions have a substantial difference in

the short end, where observations are omitted in estimation following GSW. This instability

is consistent with what GSW find; see Section 5 of their paper. Given the parameter insta-

bility of GSW, we compare our method with both the re-estimated GSW and their reported

parameters.

A.4 Model-Comparison Metrics

Let the actual bond price and the model-implied bond price be pi and p̂i for i = 1, 2, ..., I.

We first define two measures of pricing error that are directly related to our objective

function. The first is the root-mean-squared pricing error (RMSPE) that calculates the

square root of the mean-squared distance between pi and p̂i, that is,
√

1
I

∑I
i=1(pi − p̂i)2.

The second is the duration-weighted root-mean-squared pricing error (WRMSPE) defined

as
√

1
I

∑I
i=1w

2
i (pi − p̂i)2, where wi =

D−1
i∑I

i=1D
−1
i

is the weight for bond i. Note WRMSPE is

equivalent to our objective function that also weights pricing errors by bond durations.

We next define two metrics related to absolute pricing errors. They are the mean absolute

pricing error, MAPE = 1
I

∑I
i=1 |pi − p̂i|, and the duration-weighted mean absolute pricing

error, WMAPE =
∑I

i=1wi|pi − p̂i|.
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Bliss (1996) argues the bid-ask spread needs to be taken into account when calculating

the pricing error. We follow Bliss (1996) to define the bid-ask-spread-adjusted pricing error

as

εi =


p̂i − pai if p̂i > pai ,

pbi − p̂i if p̂i < pbi ,

0 otherwise,

where pai and pbi are the ask and bid quotes, respectively, for the bond. The corresponding

mean absolute pricing error (denoted as MAPE (Bliss)) and duration-weighted absolute

pricing error (denoted as WMAPE (Bliss)) are defined as 1
I

∑I
i=1 εi and

∑I
i=1wiεi.

Next, rather than calculating the error between the actual and the fitted price, we define

the mean absolute yield error (MAYE) as the average absolute error between the observed

and the fitted YTM.

Lastly, we follow Bliss (1996) to define the hit rate (HR (Bliss)) as 1
I

∑I
i=1 1{pbi≤p̂i≤pai },

where 1{pbi≤p̂i≤pai } is the indicator function that equals 1 if p̂i falls within [pbi , p
a
i ]. The hit

rate calculates the number of times the fitted price falls within the bid-ask spread.
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B Additional Results

B.1 CP Regressions with Fama-Bliss Data

Figure B.1: CP Loadings with Fama-Bliss Data
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Table B.1: CP Regression Results with Fama-Bliss Data (Predicting 2- to 5-Year
Bond Returns)

Fama-Bliss Data

Forward Rates PCs

y(1) f(2) f(3) f(4) f(5) PC1 PC2 PC3 PC4 PC5 R-square

(1964-2003) Loadings -2.119 0.769 3.021 0.798 -2.067 0.168 -1.459 -2.624 3.143 0.437 0.351

NW t-stat -6.193 1.112 5.460 1.750 -4.997 2.190 -4.373 -6.237 4.981 0.570
[NW p-value] [0.00] [0.27] [0.00] [0.08] [0.00] [0.03] [0.00] [0.00] [0.00] [0.57]

BH 5% c.v. 4.819 2.429 2.682 2.991 2.580 4.134 6.578 2.744 2.745 2.227
[BH p-value] [0.01] [0.37] [0.00] [0.28] [0.00] [0.38] [0.27] [0.00] [0.00] [0.61]

F -stat 21.099
[p-value] [0.00]

BH 5% c.v. 8.061
[BH p-value] [0.00]

(1964-2019) Loadings -1.371 -0.399 1.781 1.286 -1.111 0.061 -1.254 -2.188 0.933 -0.928 0.228

NW t-stat -3.161 -0.603 2.561 3.026 -2.385 1.043 -4.038 -4.162 1.277 -1.202
[NW p-value] [0.00] [0.55] [0.01] [0.00] [0.02] [0.30] [0.00] [0.00] [0.20] [0.23]

BH 5% c.v. 4.597 2.178 2.489 3.150 2.863 3.806 6.705 2.755 2.253 2.097
[BH p-value] [0.25] [0.59] [0.04] [0.06] [0.10] [0.67] [0.40] [0.00] [0.26] [0.27]

F -stat 4.124
[p-value] [0.02]

BH 5% c.v. 5.252
[BH p-value] [0.09]

Notes: The dependent variable is the one-year excess return rx
(2→5)
t+1 = 1

4

∑5
n=2 rxt+1(n). The independent

variables are the forward rates: yt(1), ft(2), ..., ft(5), or the five PCs (PC1-PC5) The regression has an
intercept. NW t-stats and NW p-values are computed using Newey-West standard errors with 18 lags. F -
stats and the associated p-values report the joint F test for PC4 and PC5. For both t stats and F stats,
we also report the corresponding 5% critical values and p-values of the bootstrap distributions of Bauer and
Hamilton (2018).
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B.2 Anomalies on the 15th Day of the Month

Figure B.2: Mid-Month Anomalies
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Notes: The first two columns plot the yield to maturity for November 14-16, 1984 (first column) and
November 14-16, 2001 (second column). Red +’s mark outliers and blue dots denote bonds we keep. The
last column shows the distribution of the number of outliers, and the sample is from June 14, 1961, to
December 31, 2019.
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B.3 Performance Summary: GSW’s Published Parameters

Table B.2: In-Sample Performance Summary

Maturity Bucket All

[0,3mth) [3mth, 1yr) [1yr, 2yr) [2yr,5r) [5yr, 7yr) [7yr, 10yr) [10yr, 15yr) [15yr, 20yr) [20yr, 30yr]

LW

RMSPE 0.016 0.043 0.079 0.148 0.242 0.399 0.406 0.189 0.117 0.167
WRMSPE 0.013 0.038 0.077 0.137 0.240 0.394 0.404 0.190 0.118 0.055
MAPE 0.013 0.033 0.062 0.108 0.199 0.341 0.358 0.157 0.092 0.088
WMAPE 0.010 0.028 0.061 0.100 0.197 0.336 0.356 0.158 0.092 0.023
MAPE (Bliss) 0.006 0.016 0.032 0.063 0.139 0.261 0.260 0.111 0.059 0.055
WMAPE (Bliss) 0.005 0.014 0.030 0.057 0.138 0.256 0.258 0.112 0.059 0.012
MAYE 0.108 0.063 0.045 0.035 0.041 0.053 0.045 0.013 0.006 0.054

HR (Bliss) 0.405 0.407 0.520 0.398 0.297 0.208 0.273 0.311 0.353 0.407

GSW, Published Parameters

RMSPE 0.055 0.070 0.103 0.207 0.322 0.594 0.703 0.463 0.511 0.282
WRMSPE 0.046 0.067 0.101 0.194 0.320 0.584 0.696 0.465 0.507 0.099
MAPE 0.050 0.057 0.083 0.154 0.267 0.513 0.617 0.419 0.450 0.153
WMAPE 0.040 0.055 0.082 0.145 0.265 0.503 0.610 0.421 0.446 0.054
MAPE (Bliss) 0.041 0.038 0.048 0.105 0.205 0.426 0.510 0.364 0.410 0.117
WMAPE (Bliss) 0.032 0.039 0.047 0.096 0.203 0.416 0.503 0.366 0.406 0.041
MAYE 0.429 0.124 0.061 0.051 0.054 0.079 0.077 0.033 0.031 0.141

HR (Bliss) 0.183 0.269 0.362 0.262 0.202 0.108 0.128 0.110 0.094 0.243

Notes: We present results for two models: LW (our model) and GSW (using the parameter values published

here: https://www.federalreserve.gov/data/nominal-yield-curve.htm). For each maturity bucket (or

across all bonds) and for each date, we calculate eight measures of pricing error: root-mean-squared pricing

error (RMSPE), duration-weighted root-mean-squared pricing error (WRMSPE), mean absolute pricing

error (MAPE), duration-weighted absolute pricing error (WMAPE), mean absolute pricing error adjusted

for bid-ask spread (MAPE (Bliss)), duration-weighted absolute pricing error adjusted for bid-ask spread

(WMAPE (Bliss)), mean absolute yield error (MAYE), and the hit rate (HR (Bliss)). RMSPE, WRMSPE,

MAPE, WMAPE, MAPE (Bliss), and WMAPE (Bliss) are based on a face value of $100. MAYE is based

on annualized percentage yield. We report the averaged pricing errors over the full sample from June 1961

to December 2019.
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B.4 Time-Series Evidence

Figure B.3: Time Series of Mean Absolute Error in YTM: The Medium End
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Notes: We plot the mean absolute pricing errors in YTM (i.e., MAYE) for our method and GSW over
1961–1989 (left panels) and 1990–2019 (right panels). We group bonds into two maturity buckets: one- to
two-year (top row) and two- to five-year (bottom row).
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Figure B.4: Time Series of Mean Absolute Error in YTM: The Long End

0

0.1

0.2

0.3

0.4

0.5

0.6
P

er
ce

nt
 (

A
nn

ua
l)

5-10 year, 1961-1989

19
61

19
66

19
71

19
76

19
81

19
86

LW

GSW

0

0.1

0.2

0.3

P
er

ce
nt

 (
A

nn
ua

l)

5-10 year, 1990-2019

19
90

19
96

20
01

20
06

20
11

20
16

0

0.5

1.0

1.5

P
er

ce
nt

 (
A

nn
ua

l)

10-15 year, 1961-1989

19
61

19
66

19
71

19
76

19
81

19
86

0

0.05

0.10

0.15

P
er

ce
nt

 (
A

nn
ua

l)

10-15 year, 1990-2019

19
90

19
96

20
01

20
06

20
11

20
16

0

0.05

0.10

0.15

0.20

0.25

P
er

ce
nt

 (
A

nn
ua

l)

15-20 year, 1961-1989

19
61

19
66

19
71

19
76

19
81

19
86

0

0.05

0.10

0.15
P

er
ce

nt
 (

A
nn

ua
l)

15-20 year, 1990-2019

19
91

19
96

20
01

20
06

20
11

20
16

0

0.1

0.2

0.3

0.4

P
er

ce
nt

 (
A

nn
ua

l)

20-30 year, 1961-1989

19
61

19
66

19
71

19
76

19
81

19
86

0

0.02

0.04

0.06

0.08

P
er

ce
nt

 (
A

nn
ua

l)

20-30 year, 1990-2019

19
91

19
96

20
01

20
06

20
11

20
16

Notes: We plot the mean absolute pricing errors in YTM (i.e., MAYE) for our method and GSW, over
1961–1989 (left panels) and 1990–2019 (right panels). We group bonds into four maturity buckets: 5–10
year (top row), 10–15 year (second row), 15–20 year (third row), and 20–30 year (bottom row).
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B.5 Out-of-Sample Performance

Table B.3: Out-of-Sample Performance Comparison for Alternative Values of N0

Maturity Bucket All

[0,3mth) [3mth, 1yr) [1yr, 2yr) [2yr,5r) [5yr, 7yr) [7yr, 10yr) [10yr, 15yr) [15yr, 20yr) [20yr, 30yr]

Panel A: LW at N0 = 4

RMSPE 0.016 0.045 0.089 0.175 0.302 0.465 0.605 0.203 0.134 0.209
WRMSPE 0.013 0.039 0.086 0.162 0.300 0.459 0.604 0.205 0.133 0.064
MAPE 0.012 0.033 0.070 0.127 0.250 0.393 0.536 0.163 0.103 0.101
WMAPE 0.010 0.028 0.068 0.117 0.248 0.388 0.533 0.164 0.103 0.024
MAPE (Bliss) 0.006 0.016 0.039 0.080 0.188 0.312 0.435 0.117 0.069 0.068
WMAPE (Bliss) 0.004 0.014 0.037 0.072 0.187 0.307 0.433 0.118 0.068 0.013
MAYE 0.105 0.063 0.052 0.041 0.052 0.061 0.067 0.014 0.007 0.056

HR (Bliss) 0.424 0.407 0.493 0.366 0.251 0.186 0.273 0.297 0.330 0.399

Panel A: LW at N0 = 12

RMSPE 0.017 0.047 0.091 0.177 0.303 0.485 0.585 0.286 0.195 0.213
WRMSPE 0.014 0.041 0.089 0.164 0.301 0.478 0.583 0.287 0.195 0.065
MAPE 0.014 0.035 0.072 0.127 0.251 0.409 0.527 0.242 0.154 0.107
WMAPE 0.011 0.031 0.070 0.117 0.248 0.404 0.524 0.243 0.154 0.025
MAPE (Bliss) 0.007 0.019 0.039 0.079 0.188 0.329 0.420 0.193 0.117 0.074
WMAPE (Bliss) 0.005 0.015 0.038 0.072 0.186 0.323 0.418 0.195 0.117 0.014
MAYE 0.119 0.068 0.053 0.042 0.051 0.064 0.066 0.019 0.010 0.061

HR (Bliss) 0.375 0.379 0.468 0.357 0.240 0.181 0.183 0.238 0.211 0.365

Notes: We present out-of-sample results for two models: LW at N0 = 4 and LW at N0 = 12. For

each maturity bucket (or across all bonds) and for each date, we calculate eight measures of pricing error:

root-mean-squared pricing error (RMSPE), duration-weighted root-mean-squared pricing error (WRMSPE),

mean absolute pricing error (MAPE), duration-weighted absolute pricing error (WMAPE), mean absolute

pricing error adjusted for bid-ask spread (MAPE (Bliss)), duration-weighted absolute pricing error adjusted

for bid-ask spread (WMAPE (Bliss)), mean absolute yield error (MAYE), and the hit rate (HR (Bliss)).

RMSPE, WRMSPE, MAPE, WMAPE, MAPE (Bliss), and WMAPE (Bliss) are based on a face value of

$100. MAYE is based on annualized percentage yield. We report the averaged pricing errors over the full

sample from June 1961 to December 2019 at the quarterly frequency.

57


	Introduction
	Kernel-Smoothing Method
	Pricing Error for a Security
	Summarizing Information across Bonds
	Model-Implied Bond Price

	Bandwidth
	Adaptive Bandwidth-Selection Procedure
	Information Content in the Raw Data

	Raw Data and Outliers
	Raw Data
	Outliers
	Anomalies at the Beginning, Middle, and End of the Month 

	Economic Implications of the New Yield Curve
	Cochrane-Piazzesi Return-Forecasting Regressions
	Excess Volatility

	Statistical Performance of the New Yield Curve
	Yield Curves on Selected Dates
	Summary Statistics
	Time-Series Evidence
	Out-of-Sample Results

	Conclusion
	Details on Implementation
	Derivation and Estimation
	Outlier Detection
	Our Implementation of GSW
	Model-Comparison Metrics

	Additional Results
	CP Regressions with Fama-Bliss Data
	Anomalies on the 15th Day of the Month
	Performance Summary: GSW's Published Parameters
	Time-Series Evidence
	Out-of-Sample Performance




